My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

UBL_G29.cpp 63KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#include "vector_3.h"
  25. //#include "qr_solve.h"
  26. #include "UBL.h"
  27. #include "Marlin.h"
  28. #include "hex_print_routines.h"
  29. #include "configuration_store.h"
  30. #include "planner.h"
  31. #include "ultralcd.h"
  32. #include <math.h>
  33. void lcd_babystep_z();
  34. void lcd_return_to_status();
  35. bool lcd_clicked();
  36. void lcd_implementation_clear();
  37. extern float meshedit_done;
  38. extern long babysteps_done;
  39. extern float code_value_float();
  40. extern bool code_value_bool();
  41. extern bool code_has_value();
  42. extern float probe_pt(float x, float y, bool, int);
  43. extern float zprobe_zoffset;
  44. extern bool set_probe_deployed(bool);
  45. #define DEPLOY_PROBE() set_probe_deployed(true)
  46. #define STOW_PROBE() set_probe_deployed(false)
  47. bool ProbeStay = true;
  48. constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
  49. ubl_3_point_1_Y = UBL_PROBE_PT_1_Y,
  50. ubl_3_point_2_X = UBL_PROBE_PT_2_X,
  51. ubl_3_point_2_Y = UBL_PROBE_PT_2_Y,
  52. ubl_3_point_3_X = UBL_PROBE_PT_3_X,
  53. ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
  54. #define SIZE_OF_LITTLE_RAISE 0
  55. #define BIG_RAISE_NOT_NEEDED 0
  56. extern void lcd_quick_feedback();
  57. /**
  58. * G29: Unified Bed Leveling by Roxy
  59. *
  60. * Parameters understood by this leveling system:
  61. *
  62. * A Activate Activate the Unified Bed Leveling system.
  63. *
  64. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  65. * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
  66. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  67. * can easily feel the nozzle getting to the same height by the amount of resistance
  68. * the business card exhibits to movement. You should try to achieve the same amount
  69. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  70. * You should be very careful not to drive the nozzle into the bussiness card with a
  71. * lot of force as it is very possible to cause damage to your printer if your are
  72. * careless. If you use the B option with G29 P2 B you can leave the number parameter off
  73. * on its first use to enable measurement of the business card thickness. Subsequent usage
  74. * of the B parameter can have the number previously measured supplied to the command.
  75. * Incidently, you are much better off using something like a Spark Gap feeler gauge than
  76. * something that compresses like a Business Card.
  77. *
  78. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  79. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  80. * continue the generation of a partially constructed Mesh without invalidating what has
  81. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  82. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  83. * it indicates to use the current location instead of defaulting to the center of the print bed.
  84. *
  85. * D Disable Disable the Unified Bed Leveling system.
  86. *
  87. * E Stow_probe Stow the probe after each sampled point.
  88. *
  89. * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
  90. * specified height, no correction is applied and natural printer kenimatics take over. If no
  91. * number is specified for the command, 10mm is assumed to be reasonable.
  92. *
  93. * G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  94. *
  95. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  96. * default is 5mm.
  97. *
  98. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  99. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  100. * point to the location is invalidated. The M parameter is available as well to produce
  101. * a map after the operation. This command is useful to invalidate a portion of the
  102. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  103. * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
  104. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  105. * the bed and use this feature to select the center of the area (or cell) you want to
  106. * invalidate.
  107. *
  108. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  109. * command literally performs a diff between two Meshes.
  110. *
  111. * L Load * Load Mesh from the previously activated location in the EEPROM.
  112. *
  113. * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
  114. * for subsequent Load and Store operations.
  115. *
  116. * O Map * Display the Mesh Map Topology.
  117. * The parameter can be specified alone (ie. G29 O) or in combination with many of the
  118. * other commands. The Mesh Map option works with all of the Phase
  119. * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
  120. * specified. A map type of 0 is the default is user readable. A map type of 1 can
  121. * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
  122. * mesh.
  123. *
  124. * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
  125. * N option. In general, you should not do this. This can only be done safely with
  126. * commands that do not move the nozzle.
  127. *
  128. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  129. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  130. * each additional Phase that processes it.
  131. *
  132. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  133. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  134. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  135. * a subsequent G or T leveling operation for backward compatability.
  136. *
  137. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  138. * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
  139. * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
  140. * generated. This will be handled in Phase 2. If the Phase 1 command is given the
  141. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  142. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  143. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  144. * parameter can be given to prioritize where the command should be trying to measure points.
  145. * If the X and Y parameters are not specified the current probe position is used. Phase 1
  146. * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
  147. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
  148. * It will suspend generation of the Mesh if it sees the user request that. (This check is
  149. * only done between probe points. You will need to press and hold the switch until the
  150. * Phase 1 command can detect it.)
  151. *
  152. * P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H
  153. * parameter to control the height between Mesh points. The default height for movement
  154. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  155. * calibration less time consuming. You will be running the nozzle down until it just barely
  156. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  157. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  158. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  159. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  160. *
  161. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  162. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  163. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  164. * area you are manually probing. Note that the command tries to start you in a corner
  165. * of the bed where movement will be predictable. You can force the location to be used in
  166. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  167. * print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
  168. * the nozzle will need to move in order to complete the command. The C parameter is
  169. * available on the Phase 2 command also and indicates the search for points to measure should
  170. * be done based on the current location of the nozzle.
  171. *
  172. * A B parameter is also available for this command and described up above. It places the
  173. * manual probe subsystem into Business Card mode where the thickness of a business care is
  174. * measured and then used to accurately set the nozzle height in all manual probing for the
  175. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  176. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  177. * better results if you use a flexible Shim that does not compress very much. That makes it
  178. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  179. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  180. * to get it to grasp the shim with the same force as when you measured the thickness of the
  181. * shim at the start of the command.
  182. *
  183. * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
  184. * of the Mesh being built.
  185. *
  186. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is
  187. * used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter
  188. * is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
  189. * of points to set. If the R parameter is specified the current nozzle position is used to
  190. * find the closest points to alter unless the X and Y parameter are used to specify the fill
  191. * location.
  192. *
  193. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
  194. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  195. * (More work and details on doing this later!)
  196. * The System will search for the closest Mesh Point to the nozzle. It will move the
  197. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  198. * so it is just barely touching the bed. When the user clicks the control, the System
  199. * will lock in that height for that point in the Mesh Compensation System.
  200. *
  201. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  202. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  203. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  204. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  205. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  206. * The command can be terminated early (or after the area of interest has been edited) by
  207. * pressing and holding the encoder wheel until the system recognizes the exit request.
  208. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  209. *
  210. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  211. * information left on the printer's bed from the G26 command it is very straight forward
  212. * and easy to fine tune the Mesh. One concept that is important to remember and that
  213. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  214. * If you have too little clearance and not much plastic was extruded in an area, you want to
  215. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  216. * RAISE the Mesh Point at that location.
  217. *
  218. *
  219. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  220. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  221. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  222. * execute a G29 P6 C <mean height>.
  223. *
  224. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  225. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  226. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  227. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  228. * 0.000 at the Z Home location.
  229. *
  230. * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
  231. * command is not anticipated to be of much value to the typical user. It is intended
  232. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  233. *
  234. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  235. * current state of the Unified Bed Leveling system in the EEPROM.
  236. *
  237. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  238. * for subsequent Load and Store operations. It will also store the current state of
  239. * the Unified Bed Leveling system in the EEPROM.
  240. *
  241. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
  242. * the system at a later date. The text generated can be saved and later sent by PronterFace or
  243. * Repetier Host to reconstruct the current mesh on another machine.
  244. *
  245. * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
  246. *
  247. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  248. * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
  249. * is useful when the entire bed does not need to be probed because it will be adjusted.
  250. *
  251. * W What? Display valuable data the Unified Bed Leveling System knows.
  252. *
  253. * X # * * X Location for this line of commands
  254. *
  255. * Y # * * Y Location for this line of commands
  256. *
  257. * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
  258. * by just doing a G29 Z
  259. *
  260. * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
  261. * zprobe_zoffset is added to the calculation.
  262. *
  263. *
  264. * Release Notes:
  265. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  266. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  267. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  268. * respectively.)
  269. *
  270. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  271. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  272. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  273. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  274. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  275. * perform a small print and check out your settings quicker. You do not need to populate the
  276. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  277. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  278. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  279. *
  280. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  281. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  282. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  283. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  284. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  285. * this is going to be helpful to the users!)
  286. *
  287. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  288. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions
  289. * we now have the functionality and features of all three systems combined.
  290. */
  291. int ubl_eeprom_start = -1;
  292. bool ubl_has_control_of_lcd_panel = false;
  293. volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
  294. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  295. static int g29_verbose_level = 0, phase_value = -1, repetition_cnt = 1,
  296. storage_slot = 0, map_type = 0, test_pattern = 0, unlevel_value = -1;
  297. static bool repeat_flag = UBL_OK, c_flag = false, x_flag = UBL_OK, y_flag = UBL_OK, statistics_flag = UBL_OK, business_card_mode = false;
  298. static float x_pos = 0.0, y_pos = 0.0, height_value = 5.0, measured_z, card_thickness = 0.0, constant = 0.0;
  299. #if ENABLED(ULTRA_LCD)
  300. void lcd_setstatus(const char* message, bool persist);
  301. #endif
  302. void gcode_G29() {
  303. float Z1, Z2, Z3;
  304. g29_verbose_level = 0; // These may change, but let's get some reasonable values into them.
  305. repeat_flag = UBL_OK;
  306. repetition_cnt = 1;
  307. c_flag = false;
  308. SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start);
  309. if (ubl_eeprom_start < 0) {
  310. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  311. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  312. return;
  313. }
  314. if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
  315. gcode_G28();
  316. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  317. // Invalidate Mesh Points. This command is a little bit asymetrical because
  318. // it directly specifies the repetition count and does not use the 'R' parameter.
  319. if (code_seen('I')) {
  320. repetition_cnt = code_has_value() ? code_value_int() : 1;
  321. while (repetition_cnt--) {
  322. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
  323. if (location.x_index < 0) {
  324. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  325. break; // No more invalid Mesh Points to populate
  326. }
  327. z_values[location.x_index][location.y_index] = NAN;
  328. }
  329. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  330. }
  331. if (code_seen('Q')) {
  332. if (code_has_value()) test_pattern = code_value_int();
  333. if (test_pattern < 0 || test_pattern > 4) {
  334. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-4)\n");
  335. return;
  336. }
  337. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  338. switch (test_pattern) {
  339. case 0:
  340. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape. This is
  341. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // similar to what a user would see with
  342. Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x; // a poorly calibrated Delta.
  343. Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
  344. z_values[x][y] += 2.0 * HYPOT(Z1, Z2);
  345. }
  346. }
  347. break;
  348. case 1:
  349. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh
  350. z_values[x][x] += 9.999; // cells thick that is raised
  351. if (x < UBL_MESH_NUM_Y_POINTS - 1)
  352. z_values[x][x + 1] += 9.999; // We want the altered line several mesh points thick
  353. if (x > 0)
  354. z_values[x][x - 1] += 9.999; // We want the altered line several mesh points thick
  355. }
  356. break;
  357. case 2:
  358. // Allow the user to specify the height because 10mm is
  359. // a little bit extreme in some cases.
  360. for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
  361. for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
  362. z_values[x][y] += code_seen('C') ? constant : 9.99;
  363. break;
  364. case 3:
  365. break;
  366. }
  367. }
  368. /*
  369. if (code_seen('U')) {
  370. unlevel_value = code_value_int();
  371. // if (unlevel_value < 0 || unlevel_value > 7) {
  372. // SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
  373. // return;
  374. // }
  375. }
  376. */
  377. if (code_seen('P')) {
  378. phase_value = code_value_int();
  379. if (phase_value < 0 || phase_value > 7) {
  380. SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
  381. return;
  382. }
  383. switch (phase_value) {
  384. //
  385. // Zero Mesh Data
  386. //
  387. case 0:
  388. ubl.reset();
  389. SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
  390. break;
  391. //
  392. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  393. //
  394. case 1:
  395. if (!code_seen('C') ) {
  396. ubl.invalidate();
  397. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
  398. }
  399. if (g29_verbose_level > 1) {
  400. SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
  401. SERIAL_ECHO(x_pos);
  402. SERIAL_ECHOPAIR(",", y_pos);
  403. SERIAL_PROTOCOLLNPGM(")\n");
  404. }
  405. probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  406. code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
  407. break;
  408. //
  409. // Manually Probe Mesh in areas that can not be reached by the probe
  410. //
  411. case 2:
  412. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
  413. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  414. if (!x_flag && !y_flag) { // use a good default location for the path
  415. x_pos = X_MIN_POS;
  416. y_pos = Y_MIN_POS;
  417. if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
  418. x_pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
  419. if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
  420. y_pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
  421. } // For now, until that is decided, it can be forced with the X
  422. // and Y parameters.
  423. if (code_seen('C')) {
  424. x_pos = current_position[X_AXIS];
  425. y_pos = current_position[Y_AXIS];
  426. }
  427. height_value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
  428. if ((business_card_mode = code_seen('B'))) {
  429. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height_value);
  430. if (fabs(card_thickness) > 1.5) {
  431. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n");
  432. return;
  433. }
  434. }
  435. manually_probe_remaining_mesh(x_pos, y_pos, height_value, card_thickness, code_seen('O') || code_seen('M'));
  436. break;
  437. //
  438. // Populate invalid Mesh areas with a constant
  439. //
  440. case 3:
  441. height_value = 0.0; // Assume 0.0 until proven otherwise
  442. if (code_seen('C')) height_value = constant;
  443. // If no repetition is specified, do the whole Mesh
  444. if (!repeat_flag) repetition_cnt = 9999;
  445. while (repetition_cnt--) {
  446. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
  447. if (location.x_index < 0) break; // No more invalid Mesh Points to populate
  448. z_values[location.x_index][location.y_index] = height_value;
  449. }
  450. break;
  451. //
  452. // Fine Tune (Or Edit) the Mesh
  453. //
  454. case 4:
  455. fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
  456. break;
  457. case 5:
  458. find_mean_mesh_height();
  459. break;
  460. case 6:
  461. shift_mesh_height();
  462. break;
  463. case 10:
  464. // Debug code... Pay no attention to this stuff
  465. // it can be removed soon.
  466. SERIAL_ECHO_START;
  467. SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
  468. wait_for_user = true;
  469. while (!ubl_lcd_clicked()) {
  470. safe_delay(250);
  471. SERIAL_ECHO((int)ubl_encoderDiff);
  472. ubl_encoderDiff = 0;
  473. SERIAL_EOL;
  474. }
  475. SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
  476. break;
  477. }
  478. }
  479. if (code_seen('T')) {
  480. Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
  481. Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
  482. Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
  483. // We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
  484. // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
  485. Z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
  486. Z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
  487. Z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
  488. do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
  489. tilt_mesh_based_on_3pts(Z1, Z2, Z3);
  490. }
  491. //
  492. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  493. // good to have the extra information. Soon... we prune this to just a few items
  494. //
  495. if (code_seen('W')) g29_what_command();
  496. //
  497. // When we are fully debugged, the EEPROM dump command will get deleted also. But
  498. // right now, it is good to have the extra information. Soon... we prune this.
  499. //
  500. if (code_seen('J')) g29_eeprom_dump(); // EEPROM Dump
  501. //
  502. // When we are fully debugged, this may go away. But there are some valid
  503. // use cases for the users. So we can wait and see what to do with it.
  504. //
  505. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  506. g29_compare_current_mesh_to_stored_mesh();
  507. //
  508. // Load a Mesh from the EEPROM
  509. //
  510. if (code_seen('L')) { // Load Current Mesh Data
  511. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  512. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
  513. if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
  514. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  515. return;
  516. }
  517. ubl.load_mesh(storage_slot);
  518. ubl.state.eeprom_storage_slot = storage_slot;
  519. if (storage_slot != ubl.state.eeprom_storage_slot)
  520. ubl.store_state();
  521. SERIAL_PROTOCOLLNPGM("Done.\n");
  522. }
  523. //
  524. // Store a Mesh in the EEPROM
  525. //
  526. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  527. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  528. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  529. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  530. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  531. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  532. if (!isnan(z_values[x][y])) {
  533. SERIAL_ECHOPAIR("M421 I ", x);
  534. SERIAL_ECHOPAIR(" J ", y);
  535. SERIAL_ECHOPGM(" Z ");
  536. SERIAL_ECHO_F(z_values[x][y], 6);
  537. SERIAL_EOL;
  538. }
  539. return;
  540. }
  541. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
  542. if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
  543. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  544. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
  545. goto LEAVE;
  546. }
  547. ubl.store_mesh(storage_slot);
  548. ubl.state.eeprom_storage_slot = storage_slot;
  549. //
  550. // if (storage_slot != ubl.state.eeprom_storage_slot)
  551. ubl.store_state(); // Always save an updated copy of the UBL State info
  552. SERIAL_PROTOCOLLNPGM("Done.\n");
  553. }
  554. if (code_seen('O') || code_seen('M'))
  555. ubl.display_map(code_has_value() ? code_value_int() : 0);
  556. if (code_seen('Z')) {
  557. if (code_has_value())
  558. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  559. else {
  560. save_ubl_active_state_and_disable();
  561. //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  562. ubl_has_control_of_lcd_panel = true;// Grab the LCD Hardware
  563. measured_z = 1.5;
  564. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  565. // The user is not going to be locking in a new Z-Offset very often so
  566. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  567. lcd_implementation_clear();
  568. lcd_z_offset_edit_setup(measured_z);
  569. do {
  570. measured_z = lcd_z_offset_edit();
  571. idle();
  572. do_blocking_move_to_z(measured_z);
  573. } while (!ubl_lcd_clicked());
  574. ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
  575. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  576. // or here. So, until we are done looking for a long Encoder Wheel Press,
  577. // we need to take control of the panel
  578. lcd_return_to_status();
  579. const millis_t nxt = millis() + 1500UL;
  580. while (ubl_lcd_clicked()) { // debounce and watch for abort
  581. idle();
  582. if (ELAPSED(millis(), nxt)) {
  583. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  584. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  585. lcd_setstatus("Z-Offset Stopped", true);
  586. ubl_has_control_of_lcd_panel = false;
  587. restore_ubl_active_state_and_leave();
  588. goto LEAVE;
  589. }
  590. }
  591. ubl_has_control_of_lcd_panel = false;
  592. safe_delay(20); // We don't want any switch noise.
  593. ubl.state.z_offset = measured_z;
  594. lcd_implementation_clear();
  595. restore_ubl_active_state_and_leave();
  596. }
  597. }
  598. LEAVE:
  599. #if ENABLED(ULTRA_LCD)
  600. lcd_setstatus(" ", true);
  601. lcd_quick_feedback();
  602. #endif
  603. ubl_has_control_of_lcd_panel = false;
  604. }
  605. void find_mean_mesh_height() {
  606. uint8_t x, y;
  607. int n;
  608. float sum, sum_of_diff_squared, sigma, difference, mean;
  609. sum = sum_of_diff_squared = 0.0;
  610. n = 0;
  611. for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  612. for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  613. if (!isnan(z_values[x][y])) {
  614. sum += z_values[x][y];
  615. n++;
  616. }
  617. mean = sum / n;
  618. //
  619. // Now do the sumation of the squares of difference from mean
  620. //
  621. for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  622. for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  623. if (!isnan(z_values[x][y])) {
  624. difference = (z_values[x][y] - mean);
  625. sum_of_diff_squared += difference * difference;
  626. }
  627. SERIAL_ECHOLNPAIR("# of samples: ", n);
  628. SERIAL_ECHOPGM("Mean Mesh Height: ");
  629. SERIAL_ECHO_F(mean, 6);
  630. SERIAL_EOL;
  631. sigma = sqrt(sum_of_diff_squared / (n + 1));
  632. SERIAL_ECHOPGM("Standard Deviation: ");
  633. SERIAL_ECHO_F(sigma, 6);
  634. SERIAL_EOL;
  635. if (c_flag)
  636. for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  637. for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  638. if (!isnan(z_values[x][y]))
  639. z_values[x][y] -= mean + constant;
  640. }
  641. void shift_mesh_height() {
  642. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  643. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  644. if (!isnan(z_values[x][y]))
  645. z_values[x][y] += constant;
  646. }
  647. /**
  648. * Probe all invalidated locations of the mesh that can be reached by the probe.
  649. * This attempts to fill in locations closest to the nozzle's start location first.
  650. */
  651. void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
  652. mesh_index_pair location;
  653. ubl_has_control_of_lcd_panel++;
  654. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  655. DEPLOY_PROBE();
  656. do {
  657. if (ubl_lcd_clicked()) {
  658. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  659. lcd_quick_feedback();
  660. STOW_PROBE();
  661. while (ubl_lcd_clicked() ) {
  662. idle();
  663. }
  664. ubl_has_control_of_lcd_panel = false;
  665. restore_ubl_active_state_and_leave();
  666. safe_delay(50); // Debounce the Encoder wheel
  667. return;
  668. }
  669. location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
  670. if (location.x_index >= 0 && location.y_index >= 0) {
  671. const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
  672. yProbe = ubl.map_y_index_to_bed_location(location.y_index);
  673. if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) {
  674. SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
  675. ubl_has_control_of_lcd_panel = false;
  676. goto LEAVE;
  677. }
  678. const float measured_z = probe_pt(xProbe, yProbe, stow_probe, g29_verbose_level);
  679. z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset;
  680. }
  681. if (do_ubl_mesh_map) ubl.display_map(map_type);
  682. } while (location.x_index >= 0 && location.y_index >= 0);
  683. LEAVE:
  684. STOW_PROBE();
  685. restore_ubl_active_state_and_leave();
  686. do_blocking_move_to_xy(
  687. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
  688. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
  689. );
  690. }
  691. vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) {
  692. float c, d, t;
  693. int i, j;
  694. vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
  695. (ubl_3_point_1_Y - ubl_3_point_2_Y),
  696. (pt1 - pt2) ),
  697. v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
  698. (ubl_3_point_3_Y - ubl_3_point_2_Y),
  699. (pt3 - pt2) ),
  700. normal = vector_3::cross(v1, v2);
  701. // printf("[%f,%f,%f] ", normal.x, normal.y, normal.z);
  702. /**
  703. * This code does two things. This vector is normal to the tilted plane.
  704. * However, we don't know its direction. We need it to point up. So if
  705. * Z is negative, we need to invert the sign of all components of the vector
  706. * We also need Z to be unity because we are going to be treating this triangle
  707. * as the sin() and cos() of the bed's tilt
  708. */
  709. const float inv_z = 1.0 / normal.z;
  710. normal.x *= inv_z;
  711. normal.y *= inv_z;
  712. normal.z = 1.0;
  713. //
  714. // All of 3 of these points should give us the same d constant
  715. //
  716. t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
  717. d = t + normal.z * pt1;
  718. c = d - t;
  719. SERIAL_ECHOPGM("d from 1st point: ");
  720. SERIAL_ECHO_F(d, 6);
  721. SERIAL_ECHOPGM(" c: ");
  722. SERIAL_ECHO_F(c, 6);
  723. SERIAL_EOL;
  724. t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
  725. d = t + normal.z * pt2;
  726. c = d - t;
  727. SERIAL_ECHOPGM("d from 2nd point: ");
  728. SERIAL_ECHO_F(d, 6);
  729. SERIAL_ECHOPGM(" c: ");
  730. SERIAL_ECHO_F(c, 6);
  731. SERIAL_EOL;
  732. t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
  733. d = t + normal.z * pt3;
  734. c = d - t;
  735. SERIAL_ECHOPGM("d from 3rd point: ");
  736. SERIAL_ECHO_F(d, 6);
  737. SERIAL_ECHOPGM(" c: ");
  738. SERIAL_ECHO_F(c, 6);
  739. SERIAL_EOL;
  740. for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  741. for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  742. c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
  743. z_values[i][j] += c;
  744. }
  745. }
  746. return normal;
  747. }
  748. float use_encoder_wheel_to_measure_point() {
  749. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  750. idle();
  751. if (ubl_encoderDiff) {
  752. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl_encoderDiff));
  753. ubl_encoderDiff = 0;
  754. }
  755. }
  756. return current_position[Z_AXIS];
  757. }
  758. float measure_business_card_thickness(const float &height_value) {
  759. ubl_has_control_of_lcd_panel++;
  760. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  761. SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
  762. do_blocking_move_to_z(height_value);
  763. do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
  764. //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
  765. const float Z1 = use_encoder_wheel_to_measure_point();
  766. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  767. ubl_has_control_of_lcd_panel = false;
  768. SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
  769. const float Z2 = use_encoder_wheel_to_measure_point();
  770. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  771. if (g29_verbose_level > 1) {
  772. SERIAL_PROTOCOLPGM("Business Card is: ");
  773. SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6);
  774. SERIAL_PROTOCOLLNPGM("mm thick.");
  775. }
  776. restore_ubl_active_state_and_leave();
  777. return abs(Z1 - Z2);
  778. }
  779. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  780. ubl_has_control_of_lcd_panel++;
  781. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  782. do_blocking_move_to_z(z_clearance);
  783. do_blocking_move_to_xy(lx, ly);
  784. float last_x = -9999.99, last_y = -9999.99;
  785. mesh_index_pair location;
  786. do {
  787. if (do_ubl_mesh_map) ubl.display_map(map_type);
  788. location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
  789. // It doesn't matter if the probe can not reach the
  790. // NAN location. This is a manual probe.
  791. if (location.x_index < 0 && location.y_index < 0) continue;
  792. const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
  793. yProbe = ubl.map_y_index_to_bed_location(location.y_index);
  794. // Modify to use if (position_is_reachable(pos[XYZ]))
  795. if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) {
  796. SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
  797. ubl_has_control_of_lcd_panel = false;
  798. goto LEAVE;
  799. }
  800. const float dx = xProbe - last_x,
  801. dy = yProbe - last_y;
  802. if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
  803. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  804. else
  805. do_blocking_move_to_z(z_clearance);
  806. do_blocking_move_to_xy(xProbe, yProbe);
  807. last_x = xProbe;
  808. last_y = yProbe;
  809. ubl_has_control_of_lcd_panel = true;
  810. while (!ubl_lcd_clicked) { // we need the loop to move the nozzle based on the encoder wheel here!
  811. idle();
  812. if (ubl_encoderDiff) {
  813. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0);
  814. ubl_encoderDiff = 0;
  815. }
  816. }
  817. const millis_t nxt = millis() + 1500L;
  818. while (ubl_lcd_clicked()) { // debounce and watch for abort
  819. idle();
  820. if (ELAPSED(millis(), nxt)) {
  821. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  822. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  823. lcd_quick_feedback();
  824. while (ubl_lcd_clicked()) idle();
  825. ubl_has_control_of_lcd_panel = false;
  826. restore_ubl_active_state_and_leave();
  827. return;
  828. }
  829. }
  830. z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  831. if (g29_verbose_level > 2) {
  832. SERIAL_PROTOCOL("Mesh Point Measured at: ");
  833. SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
  834. SERIAL_EOL;
  835. }
  836. } while (location.x_index >= 0 && location.y_index >= 0);
  837. if (do_ubl_mesh_map) ubl.display_map(map_type);
  838. LEAVE:
  839. restore_ubl_active_state_and_leave();
  840. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  841. do_blocking_move_to_xy(lx, ly);
  842. }
  843. bool g29_parameter_parsing() {
  844. #if ENABLED(ULTRA_LCD)
  845. lcd_setstatus("Doing G29 UBL !", true);
  846. lcd_quick_feedback();
  847. #endif
  848. x_pos = current_position[X_AXIS];
  849. y_pos = current_position[Y_AXIS];
  850. x_flag = y_flag = repeat_flag = false;
  851. map_type = 0;
  852. constant = 0.0;
  853. repetition_cnt = 1;
  854. if ((x_flag = code_seen('X'))) {
  855. x_pos = code_value_float();
  856. if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
  857. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  858. return UBL_ERR;
  859. }
  860. }
  861. if ((y_flag = code_seen('Y'))) {
  862. y_pos = code_value_float();
  863. if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
  864. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  865. return UBL_ERR;
  866. }
  867. }
  868. if (x_flag != y_flag) {
  869. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  870. return UBL_ERR;
  871. }
  872. g29_verbose_level = 0;
  873. if (code_seen('V')) {
  874. g29_verbose_level = code_value_int();
  875. if (g29_verbose_level < 0 || g29_verbose_level > 4) {
  876. SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
  877. return UBL_ERR;
  878. }
  879. }
  880. if (code_seen('A')) { // Activate the Unified Bed Leveling System
  881. ubl.state.active = 1;
  882. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
  883. ubl.store_state();
  884. }
  885. if ((c_flag = code_seen('C') && code_has_value()))
  886. constant = code_value_float();
  887. if (code_seen('D')) { // Disable the Unified Bed Leveling System
  888. ubl.state.active = 0;
  889. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
  890. ubl.store_state();
  891. }
  892. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  893. if (code_seen('F') && code_has_value()) {
  894. const float fh = code_value_float();
  895. if (fh < 0.0 || fh > 100.0) {
  896. SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
  897. return UBL_ERR;
  898. }
  899. ubl.state.g29_correction_fade_height = fh;
  900. ubl.state.g29_fade_height_multiplier = 1.0 / fh;
  901. }
  902. #endif
  903. if ((repeat_flag = code_seen('R'))) {
  904. repetition_cnt = code_has_value() ? code_value_int() : 9999;
  905. if (repetition_cnt < 1) {
  906. SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
  907. return UBL_ERR;
  908. }
  909. }
  910. if (code_seen('O')) { // Check if a map type was specified
  911. map_type = code_value_int() ? code_has_value() : 0;
  912. if ( map_type<0 || map_type>1) {
  913. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  914. return UBL_ERR;
  915. }
  916. }
  917. if (code_seen('M')) { // Check if a map type was specified
  918. map_type = code_value_int() ? code_has_value() : 0;
  919. if ( map_type<0 || map_type>1) {
  920. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  921. return UBL_ERR;
  922. }
  923. }
  924. return UBL_OK;
  925. }
  926. /**
  927. * This function goes away after G29 debug is complete. But for right now, it is a handy
  928. * routine to dump binary data structures.
  929. */
  930. void dump(char * const str, const float &f) {
  931. char *ptr;
  932. SERIAL_PROTOCOL(str);
  933. SERIAL_PROTOCOL_F(f, 8);
  934. SERIAL_PROTOCOL(" ");
  935. ptr = (char*)&f;
  936. for (uint8_t i = 0; i < 4; i++) {
  937. SERIAL_PROTOCOL(" ");
  938. prt_hex_byte(*ptr++);
  939. }
  940. SERIAL_PROTOCOL(" isnan()=");
  941. SERIAL_PROTOCOL(isnan(f));
  942. SERIAL_PROTOCOL(" isinf()=");
  943. SERIAL_PROTOCOL(isinf(f));
  944. constexpr float g = INFINITY;
  945. if (f == -g)
  946. SERIAL_PROTOCOL(" Minus Infinity detected.");
  947. SERIAL_EOL;
  948. }
  949. static int ubl_state_at_invocation = 0,
  950. ubl_state_recursion_chk = 0;
  951. void save_ubl_active_state_and_disable() {
  952. ubl_state_recursion_chk++;
  953. if (ubl_state_recursion_chk != 1) {
  954. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  955. lcd_setstatus("save_UBL_active() error", true);
  956. lcd_quick_feedback();
  957. return;
  958. }
  959. ubl_state_at_invocation = ubl.state.active;
  960. ubl.state.active = 0;
  961. }
  962. void restore_ubl_active_state_and_leave() {
  963. if (--ubl_state_recursion_chk) {
  964. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  965. lcd_setstatus("restore_UBL_active() error", true);
  966. lcd_quick_feedback();
  967. return;
  968. }
  969. ubl.state.active = ubl_state_at_invocation;
  970. }
  971. /**
  972. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  973. * good to have the extra information. Soon... we prune this to just a few items
  974. */
  975. void g29_what_command() {
  976. const uint16_t k = E2END - ubl_eeprom_start;
  977. statistics_flag++;
  978. SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 ");
  979. if (ubl.state.active)
  980. SERIAL_PROTOCOLCHAR('A');
  981. else
  982. SERIAL_PROTOCOLPGM("In");
  983. SERIAL_PROTOCOLLNPGM("ctive.\n");
  984. safe_delay(50);
  985. if (ubl.state.eeprom_storage_slot == -1)
  986. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  987. else {
  988. SERIAL_PROTOCOLPGM("Mesh: ");
  989. prt_hex_word(ubl.state.eeprom_storage_slot);
  990. SERIAL_PROTOCOLPGM(" Loaded.");
  991. }
  992. SERIAL_EOL;
  993. safe_delay(50);
  994. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  995. SERIAL_PROTOCOLPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height);
  996. SERIAL_EOL;
  997. #endif
  998. SERIAL_PROTOCOLPGM("z_offset: ");
  999. SERIAL_PROTOCOL_F(ubl.state.z_offset, 6);
  1000. SERIAL_EOL;
  1001. safe_delay(50);
  1002. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1003. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  1004. SERIAL_PROTOCOL_F( ubl.map_x_index_to_bed_location(i), 1);
  1005. SERIAL_PROTOCOLPGM(" ");
  1006. safe_delay(50);
  1007. }
  1008. SERIAL_EOL;
  1009. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1010. for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
  1011. SERIAL_PROTOCOL_F( ubl.map_y_index_to_bed_location(i), 1);
  1012. SERIAL_PROTOCOLPGM(" ");
  1013. safe_delay(50);
  1014. }
  1015. SERIAL_EOL;
  1016. #if HAS_KILL
  1017. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1018. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1019. #endif
  1020. SERIAL_EOL;
  1021. safe_delay(50);
  1022. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1023. SERIAL_EOL;
  1024. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1025. SERIAL_EOL;
  1026. safe_delay(50);
  1027. SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x");
  1028. prt_hex_word(ubl_eeprom_start);
  1029. SERIAL_EOL;
  1030. SERIAL_PROTOCOLPGM("end of EEPROM : ");
  1031. prt_hex_word(E2END);
  1032. SERIAL_EOL;
  1033. safe_delay(50);
  1034. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1035. SERIAL_EOL;
  1036. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  1037. SERIAL_EOL;
  1038. safe_delay(50);
  1039. SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x");
  1040. prt_hex_word(k);
  1041. SERIAL_EOL;
  1042. safe_delay(50);
  1043. SERIAL_PROTOCOLPGM("EEPROM can hold 0x");
  1044. prt_hex_word(k / sizeof(z_values));
  1045. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1046. safe_delay(50);
  1047. SERIAL_PROTOCOLPGM("sizeof(ubl.state) :");
  1048. prt_hex_word(sizeof(ubl.state));
  1049. SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
  1050. SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
  1051. safe_delay(50);
  1052. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
  1053. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
  1054. safe_delay(50);
  1055. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
  1056. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
  1057. safe_delay(50);
  1058. SERIAL_PROTOCOLPGM("\nMESH_X_DIST ");
  1059. SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
  1060. SERIAL_PROTOCOLPGM("\nMESH_Y_DIST ");
  1061. SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
  1062. SERIAL_EOL;
  1063. safe_delay(50);
  1064. if (!ubl.sanity_check())
  1065. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
  1066. }
  1067. /**
  1068. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1069. * right now, it is good to have the extra information. Soon... we prune this.
  1070. */
  1071. void g29_eeprom_dump() {
  1072. unsigned char cccc;
  1073. uint16_t kkkk;
  1074. SERIAL_ECHO_START;
  1075. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1076. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1077. if (!(i & 0x3)) idle();
  1078. prt_hex_word(i);
  1079. SERIAL_ECHOPGM(": ");
  1080. for (uint16_t j = 0; j < 16; j++) {
  1081. kkkk = i + j;
  1082. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1083. prt_hex_byte(cccc);
  1084. SERIAL_ECHO(' ');
  1085. }
  1086. SERIAL_EOL;
  1087. }
  1088. SERIAL_EOL;
  1089. }
  1090. /**
  1091. * When we are fully debugged, this may go away. But there are some valid
  1092. * use cases for the users. So we can wait and see what to do with it.
  1093. */
  1094. void g29_compare_current_mesh_to_stored_mesh() {
  1095. float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
  1096. if (!code_has_value()) {
  1097. SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
  1098. return;
  1099. }
  1100. storage_slot = code_value_int();
  1101. int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(tmp_z_values);
  1102. if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) {
  1103. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  1104. return;
  1105. }
  1106. j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
  1107. eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
  1108. SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
  1109. SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing
  1110. prt_hex_word(j); // the address in the EEPROM where the Mesh is stored.
  1111. SERIAL_EOL;
  1112. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  1113. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  1114. z_values[x][y] = z_values[x][y] - tmp_z_values[x][y];
  1115. }
  1116. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
  1117. int i, j, k, l;
  1118. float distance, closest = far_flag ? -99999.99 : 99999.99;
  1119. mesh_index_pair return_val;
  1120. return_val.x_index = return_val.y_index = -1;
  1121. const float current_x = current_position[X_AXIS],
  1122. current_y = current_position[Y_AXIS];
  1123. // Get our reference position. Either the nozzle or probe location.
  1124. const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1125. py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1126. for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  1127. for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  1128. if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
  1129. || (type == REAL && !isnan(z_values[i][j]))
  1130. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1131. ) {
  1132. // We only get here if we found a Mesh Point of the specified type
  1133. const float mx = LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), // Check if we can probe this mesh location
  1134. my = LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(j));
  1135. // If we are using the probe as the reference there are some locations we can't get to.
  1136. // We prune these out of the list and ignore them until the next Phase where we do the
  1137. // manual nozzle probing.
  1138. if (probe_as_reference &&
  1139. (mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y))
  1140. ) continue;
  1141. // We can get to it. Let's see if it is the closest location to the nozzle.
  1142. // Add in a weighting factor that considers the current location of the nozzle.
  1143. distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
  1144. if (far_flag) { // If doing the far_flag action, we want to be as far as possible
  1145. for (k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We
  1146. for (l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
  1147. if ( !isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
  1148. distance += (i-k)*(i-k)*MESH_X_DIST*.05; // point we can find.
  1149. distance += (j-l)*(j-l)*MESH_Y_DIST*.05;
  1150. }
  1151. }
  1152. }
  1153. }
  1154. if ( (!far_flag&&(distance < closest)) || (far_flag&&(distance > closest)) ) { // if far_flag, look for furthest away point
  1155. closest = distance; // We found a closer location with
  1156. return_val.x_index = i; // the specified type of mesh value.
  1157. return_val.y_index = j;
  1158. return_val.distance = closest;
  1159. }
  1160. }
  1161. }
  1162. }
  1163. return return_val;
  1164. }
  1165. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1166. mesh_index_pair location;
  1167. uint16_t not_done[16];
  1168. int32_t round_off;
  1169. save_ubl_active_state_and_disable();
  1170. memset(not_done, 0xFF, sizeof(not_done));
  1171. #if ENABLED(ULTRA_LCD)
  1172. lcd_setstatus("Fine Tuning Mesh.", true);
  1173. #endif
  1174. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1175. do_blocking_move_to_xy(lx, ly);
  1176. do {
  1177. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1178. location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx, ly, 0, not_done, false); // The '0' says we want to use the nozzle's position
  1179. // It doesn't matter if the probe can not reach this
  1180. // location. This is a manual edit of the Mesh Point.
  1181. if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
  1182. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1183. // different location the next time through the loop
  1184. const float xProbe = ubl.map_x_index_to_bed_location(location.x_index),
  1185. yProbe = ubl.map_y_index_to_bed_location(location.y_index);
  1186. if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
  1187. SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now,
  1188. ubl_has_control_of_lcd_panel = false; // Let's do the check.
  1189. goto FINE_TUNE_EXIT;
  1190. }
  1191. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
  1192. do_blocking_move_to_xy(xProbe, yProbe);
  1193. float new_z = z_values[location.x_index][location.y_index];
  1194. round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
  1195. new_z = float(round_off) / 1000.0;
  1196. ubl_has_control_of_lcd_panel = true;
  1197. lcd_implementation_clear();
  1198. lcd_mesh_edit_setup(new_z);
  1199. wait_for_user = true;
  1200. do {
  1201. new_z = lcd_mesh_edit();
  1202. idle();
  1203. } while (!ubl_lcd_clicked());
  1204. lcd_return_to_status();
  1205. ubl_has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
  1206. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  1207. // or here.
  1208. const millis_t nxt = millis() + 1500UL;
  1209. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1210. idle();
  1211. if (ELAPSED(millis(), nxt)) {
  1212. lcd_return_to_status();
  1213. // SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1214. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1215. lcd_setstatus("Mesh Editing Stopped", true);
  1216. while (ubl_lcd_clicked()) idle();
  1217. ubl_has_control_of_lcd_panel = false;
  1218. goto FINE_TUNE_EXIT;
  1219. }
  1220. }
  1221. safe_delay(20); // We don't want any switch noise.
  1222. z_values[location.x_index][location.y_index] = new_z;
  1223. lcd_implementation_clear();
  1224. } while (location.x_index >= 0 && location.y_index >= 0 && --repetition_cnt);
  1225. FINE_TUNE_EXIT:
  1226. ubl_has_control_of_lcd_panel = false;
  1227. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1228. restore_ubl_active_state_and_leave();
  1229. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1230. do_blocking_move_to_xy(lx, ly);
  1231. #if ENABLED(ULTRA_LCD)
  1232. lcd_setstatus("Done Editing Mesh", true);
  1233. #endif
  1234. SERIAL_ECHOLNPGM("Done Editing Mesh.");
  1235. }
  1236. #endif // AUTO_BED_LEVELING_UBL