My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

stepper.cpp 49KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  54. #include "ubl.h"
  55. #endif
  56. #if HAS_DIGIPOTSS
  57. #include <SPI.h>
  58. #endif
  59. Stepper stepper; // Singleton
  60. // public:
  61. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  62. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  63. bool Stepper::abort_on_endstop_hit = false;
  64. #endif
  65. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  66. bool Stepper::performing_homing = false;
  67. #endif
  68. #if HAS_MOTOR_CURRENT_PWM
  69. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  70. #endif
  71. // private:
  72. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  73. uint16_t Stepper::cleaning_buffer_counter = 0;
  74. #if ENABLED(X_DUAL_ENDSTOPS)
  75. bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
  76. #endif
  77. #if ENABLED(Y_DUAL_ENDSTOPS)
  78. bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
  79. #endif
  80. #if ENABLED(Z_DUAL_ENDSTOPS)
  81. bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
  82. #endif
  83. long Stepper::counter_X = 0,
  84. Stepper::counter_Y = 0,
  85. Stepper::counter_Z = 0,
  86. Stepper::counter_E = 0;
  87. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  88. #if ENABLED(LIN_ADVANCE)
  89. constexpr uint16_t ADV_NEVER = 65535;
  90. uint16_t Stepper::nextMainISR = 0,
  91. Stepper::nextAdvanceISR = ADV_NEVER,
  92. Stepper::eISR_Rate = ADV_NEVER;
  93. volatile int Stepper::e_steps[E_STEPPERS];
  94. int Stepper::final_estep_rate,
  95. Stepper::current_estep_rate[E_STEPPERS],
  96. Stepper::current_adv_steps[E_STEPPERS];
  97. /**
  98. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  99. *
  100. * This fix isn't perfect and may lose steps - but better than locking up completely
  101. * in future the planner should slow down if advance stepping rate would be too high
  102. */
  103. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  104. if (steps) {
  105. const uint16_t rate = (timer * loops) / abs(steps);
  106. //return constrain(rate, 1, ADV_NEVER - 1)
  107. return rate ? rate : 1;
  108. }
  109. return ADV_NEVER;
  110. }
  111. #endif // LIN_ADVANCE
  112. long Stepper::acceleration_time, Stepper::deceleration_time;
  113. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  114. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  115. #if ENABLED(MIXING_EXTRUDER)
  116. long Stepper::counter_m[MIXING_STEPPERS];
  117. #endif
  118. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  119. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  120. unsigned short Stepper::OCR1A_nominal;
  121. volatile long Stepper::endstops_trigsteps[XYZ];
  122. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  123. #define LOCKED_X_MOTOR locked_x_motor
  124. #define LOCKED_Y_MOTOR locked_y_motor
  125. #define LOCKED_Z_MOTOR locked_z_motor
  126. #define LOCKED_X2_MOTOR locked_x2_motor
  127. #define LOCKED_Y2_MOTOR locked_y2_motor
  128. #define LOCKED_Z2_MOTOR locked_z2_motor
  129. #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
  130. if (performing_homing) { \
  131. if (AXIS##_HOME_DIR < 0) { \
  132. if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  133. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  134. } \
  135. else { \
  136. if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
  137. if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
  138. } \
  139. } \
  140. else { \
  141. AXIS##_STEP_WRITE(v); \
  142. AXIS##2_STEP_WRITE(v); \
  143. }
  144. #endif
  145. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  146. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  147. #if ENABLED(DUAL_X_CARRIAGE)
  148. #define X_APPLY_DIR(v,ALWAYS) \
  149. if (extruder_duplication_enabled || ALWAYS) { \
  150. X_DIR_WRITE(v); \
  151. X2_DIR_WRITE(v); \
  152. } \
  153. else { \
  154. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  155. }
  156. #define X_APPLY_STEP(v,ALWAYS) \
  157. if (extruder_duplication_enabled || ALWAYS) { \
  158. X_STEP_WRITE(v); \
  159. X2_STEP_WRITE(v); \
  160. } \
  161. else { \
  162. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  163. }
  164. #elif ENABLED(X_DUAL_ENDSTOPS)
  165. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  166. #else
  167. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  168. #endif
  169. #else
  170. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  171. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  172. #endif
  173. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  174. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  175. #if ENABLED(Y_DUAL_ENDSTOPS)
  176. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  177. #else
  178. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  179. #endif
  180. #else
  181. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  182. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  183. #endif
  184. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  185. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  186. #if ENABLED(Z_DUAL_ENDSTOPS)
  187. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  188. #else
  189. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  190. #endif
  191. #else
  192. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  193. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  194. #endif
  195. #if DISABLED(MIXING_EXTRUDER)
  196. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  197. #endif
  198. // intRes = longIn1 * longIn2 >> 24
  199. // uses:
  200. // r26 to store 0
  201. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  202. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  203. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  204. // B0 A0 are bits 24-39 and are the returned value
  205. // C1 B1 A1 is longIn1
  206. // D2 C2 B2 A2 is longIn2
  207. //
  208. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  209. asm volatile ( \
  210. "clr r26 \n\t" \
  211. "mul %A1, %B2 \n\t" \
  212. "mov r27, r1 \n\t" \
  213. "mul %B1, %C2 \n\t" \
  214. "movw %A0, r0 \n\t" \
  215. "mul %C1, %C2 \n\t" \
  216. "add %B0, r0 \n\t" \
  217. "mul %C1, %B2 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %A1, %C2 \n\t" \
  221. "add r27, r0 \n\t" \
  222. "adc %A0, r1 \n\t" \
  223. "adc %B0, r26 \n\t" \
  224. "mul %B1, %B2 \n\t" \
  225. "add r27, r0 \n\t" \
  226. "adc %A0, r1 \n\t" \
  227. "adc %B0, r26 \n\t" \
  228. "mul %C1, %A2 \n\t" \
  229. "add r27, r0 \n\t" \
  230. "adc %A0, r1 \n\t" \
  231. "adc %B0, r26 \n\t" \
  232. "mul %B1, %A2 \n\t" \
  233. "add r27, r1 \n\t" \
  234. "adc %A0, r26 \n\t" \
  235. "adc %B0, r26 \n\t" \
  236. "lsr r27 \n\t" \
  237. "adc %A0, r26 \n\t" \
  238. "adc %B0, r26 \n\t" \
  239. "mul %D2, %A1 \n\t" \
  240. "add %A0, r0 \n\t" \
  241. "adc %B0, r1 \n\t" \
  242. "mul %D2, %B1 \n\t" \
  243. "add %B0, r0 \n\t" \
  244. "clr r1 \n\t" \
  245. : \
  246. "=&r" (intRes) \
  247. : \
  248. "d" (longIn1), \
  249. "d" (longIn2) \
  250. : \
  251. "r26" , "r27" \
  252. )
  253. // Some useful constants
  254. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  255. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  256. /**
  257. * __________________________
  258. * /| |\ _________________ ^
  259. * / | | \ /| |\ |
  260. * / | | \ / | | \ s
  261. * / | | | | | \ p
  262. * / | | | | | \ e
  263. * +-----+------------------------+---+--+---------------+----+ e
  264. * | BLOCK 1 | BLOCK 2 | d
  265. *
  266. * time ----->
  267. *
  268. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  269. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  270. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  271. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  272. */
  273. void Stepper::wake_up() {
  274. // TCNT1 = 0;
  275. ENABLE_STEPPER_DRIVER_INTERRUPT();
  276. }
  277. /**
  278. * Set the stepper direction of each axis
  279. *
  280. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  281. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  282. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  283. */
  284. void Stepper::set_directions() {
  285. #define SET_STEP_DIR(AXIS) \
  286. if (motor_direction(AXIS ##_AXIS)) { \
  287. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  288. count_direction[AXIS ##_AXIS] = -1; \
  289. } \
  290. else { \
  291. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  292. count_direction[AXIS ##_AXIS] = 1; \
  293. }
  294. #if HAS_X_DIR
  295. SET_STEP_DIR(X); // A
  296. #endif
  297. #if HAS_Y_DIR
  298. SET_STEP_DIR(Y); // B
  299. #endif
  300. #if HAS_Z_DIR
  301. SET_STEP_DIR(Z); // C
  302. #endif
  303. #if DISABLED(LIN_ADVANCE)
  304. if (motor_direction(E_AXIS)) {
  305. REV_E_DIR();
  306. count_direction[E_AXIS] = -1;
  307. }
  308. else {
  309. NORM_E_DIR();
  310. count_direction[E_AXIS] = 1;
  311. }
  312. #endif // !LIN_ADVANCE
  313. }
  314. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  315. extern volatile uint8_t e_hit;
  316. #endif
  317. /**
  318. * Stepper Driver Interrupt
  319. *
  320. * Directly pulses the stepper motors at high frequency.
  321. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  322. *
  323. * OCR1A Frequency
  324. * 1 2 MHz
  325. * 50 40 KHz
  326. * 100 20 KHz - capped max rate
  327. * 200 10 KHz - nominal max rate
  328. * 2000 1 KHz - sleep rate
  329. * 4000 500 Hz - init rate
  330. */
  331. ISR(TIMER1_COMPA_vect) {
  332. #if ENABLED(LIN_ADVANCE)
  333. Stepper::advance_isr_scheduler();
  334. #else
  335. Stepper::isr();
  336. #endif
  337. }
  338. #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
  339. void Stepper::isr() {
  340. uint16_t ocr_val;
  341. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  342. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  343. #if DISABLED(LIN_ADVANCE)
  344. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  345. CBI(TIMSK0, OCIE0B); // Temperature ISR
  346. DISABLE_STEPPER_DRIVER_INTERRUPT();
  347. sei();
  348. #endif
  349. #define _SPLIT(L) (ocr_val = (uint16_t)L)
  350. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  351. #define SPLIT(L) _SPLIT(L)
  352. #else // sample endstops in between step pulses
  353. static uint32_t step_remaining = 0;
  354. #define SPLIT(L) do { \
  355. _SPLIT(L); \
  356. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  357. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  358. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  359. step_remaining = (uint16_t)L - ocr_val; \
  360. } \
  361. }while(0)
  362. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  363. endstops.update();
  364. if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
  365. step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
  366. ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
  367. }
  368. else {
  369. ocr_val = step_remaining;
  370. step_remaining = 0; // last one before the ISR that does the step
  371. }
  372. _NEXT_ISR(ocr_val);
  373. NOLESS(OCR1A, TCNT1 + 16);
  374. _ENABLE_ISRs(); // re-enable ISRs
  375. return;
  376. }
  377. #endif
  378. if (cleaning_buffer_counter) {
  379. --cleaning_buffer_counter;
  380. current_block = NULL;
  381. planner.discard_current_block();
  382. #ifdef SD_FINISHED_RELEASECOMMAND
  383. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  384. #endif
  385. _NEXT_ISR(200); // Run at max speed - 10 KHz
  386. _ENABLE_ISRs(); // re-enable ISRs
  387. return;
  388. }
  389. // If there is no current block, attempt to pop one from the buffer
  390. if (!current_block) {
  391. // Anything in the buffer?
  392. if ((current_block = planner.get_current_block())) {
  393. trapezoid_generator_reset();
  394. // Initialize Bresenham counters to 1/2 the ceiling
  395. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  396. #if ENABLED(MIXING_EXTRUDER)
  397. MIXING_STEPPERS_LOOP(i)
  398. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  399. #endif
  400. step_events_completed = 0;
  401. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  402. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  403. // No 'change' can be detected.
  404. #endif
  405. #if ENABLED(Z_LATE_ENABLE)
  406. if (current_block->steps[Z_AXIS] > 0) {
  407. enable_Z();
  408. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  409. _ENABLE_ISRs(); // re-enable ISRs
  410. return;
  411. }
  412. #endif
  413. }
  414. else {
  415. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  416. _ENABLE_ISRs(); // re-enable ISRs
  417. return;
  418. }
  419. }
  420. // Update endstops state, if enabled
  421. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  422. if (e_hit && ENDSTOPS_ENABLED) {
  423. endstops.update();
  424. e_hit--;
  425. }
  426. #else
  427. if (ENDSTOPS_ENABLED) endstops.update();
  428. #endif
  429. // Take multiple steps per interrupt (For high speed moves)
  430. bool all_steps_done = false;
  431. for (uint8_t i = step_loops; i--;) {
  432. #if ENABLED(LIN_ADVANCE)
  433. counter_E += current_block->steps[E_AXIS];
  434. if (counter_E > 0) {
  435. counter_E -= current_block->step_event_count;
  436. #if DISABLED(MIXING_EXTRUDER)
  437. // Don't step E here for mixing extruder
  438. count_position[E_AXIS] += count_direction[E_AXIS];
  439. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  440. #endif
  441. }
  442. #if ENABLED(MIXING_EXTRUDER)
  443. // Step mixing steppers proportionally
  444. const bool dir = motor_direction(E_AXIS);
  445. MIXING_STEPPERS_LOOP(j) {
  446. counter_m[j] += current_block->steps[E_AXIS];
  447. if (counter_m[j] > 0) {
  448. counter_m[j] -= current_block->mix_event_count[j];
  449. dir ? --e_steps[j] : ++e_steps[j];
  450. }
  451. }
  452. #endif
  453. #endif // LIN_ADVANCE
  454. #define _COUNTER(AXIS) counter_## AXIS
  455. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  456. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  457. // Advance the Bresenham counter; start a pulse if the axis needs a step
  458. #define PULSE_START(AXIS) \
  459. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  460. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  461. // Stop an active pulse, reset the Bresenham counter, update the position
  462. #define PULSE_STOP(AXIS) \
  463. if (_COUNTER(AXIS) > 0) { \
  464. _COUNTER(AXIS) -= current_block->step_event_count; \
  465. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  466. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  467. }
  468. /**
  469. * Estimate the number of cycles that the stepper logic already takes
  470. * up between the start and stop of the X stepper pulse.
  471. *
  472. * Currently this uses very modest estimates of around 5 cycles.
  473. * True values may be derived by careful testing.
  474. *
  475. * Once any delay is added, the cost of the delay code itself
  476. * may be subtracted from this value to get a more accurate delay.
  477. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  478. * Longer delays use a loop. The resolution is 8 cycles.
  479. */
  480. #if HAS_X_STEP
  481. #define _CYCLE_APPROX_1 5
  482. #else
  483. #define _CYCLE_APPROX_1 0
  484. #endif
  485. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  486. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  487. #else
  488. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  489. #endif
  490. #if HAS_Y_STEP
  491. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  492. #else
  493. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  494. #endif
  495. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  496. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  497. #else
  498. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  499. #endif
  500. #if HAS_Z_STEP
  501. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  502. #else
  503. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  504. #endif
  505. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  506. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  507. #else
  508. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  509. #endif
  510. #if DISABLED(LIN_ADVANCE)
  511. #if ENABLED(MIXING_EXTRUDER)
  512. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  513. #else
  514. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  515. #endif
  516. #else
  517. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  518. #endif
  519. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  520. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  521. /**
  522. * If a minimum pulse time was specified get the timer 0 value.
  523. *
  524. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  525. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  526. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  527. * 10µs = 160 or 200 cycles.
  528. */
  529. #if EXTRA_CYCLES_XYZE > 20
  530. uint32_t pulse_start = TCNT0;
  531. #endif
  532. #if HAS_X_STEP
  533. PULSE_START(X);
  534. #endif
  535. #if HAS_Y_STEP
  536. PULSE_START(Y);
  537. #endif
  538. #if HAS_Z_STEP
  539. PULSE_START(Z);
  540. #endif
  541. // For non-advance use linear interpolation for E also
  542. #if DISABLED(LIN_ADVANCE)
  543. #if ENABLED(MIXING_EXTRUDER)
  544. // Keep updating the single E axis
  545. counter_E += current_block->steps[E_AXIS];
  546. // Tick the counters used for this mix
  547. MIXING_STEPPERS_LOOP(j) {
  548. // Step mixing steppers (proportionally)
  549. counter_m[j] += current_block->steps[E_AXIS];
  550. // Step when the counter goes over zero
  551. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  552. }
  553. #else // !MIXING_EXTRUDER
  554. PULSE_START(E);
  555. #endif
  556. #endif // !LIN_ADVANCE
  557. // For minimum pulse time wait before stopping pulses
  558. #if EXTRA_CYCLES_XYZE > 20
  559. while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  560. pulse_start = TCNT0;
  561. #elif EXTRA_CYCLES_XYZE > 0
  562. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  563. #endif
  564. #if HAS_X_STEP
  565. PULSE_STOP(X);
  566. #endif
  567. #if HAS_Y_STEP
  568. PULSE_STOP(Y);
  569. #endif
  570. #if HAS_Z_STEP
  571. PULSE_STOP(Z);
  572. #endif
  573. #if DISABLED(LIN_ADVANCE)
  574. #if ENABLED(MIXING_EXTRUDER)
  575. // Always step the single E axis
  576. if (counter_E > 0) {
  577. counter_E -= current_block->step_event_count;
  578. count_position[E_AXIS] += count_direction[E_AXIS];
  579. }
  580. MIXING_STEPPERS_LOOP(j) {
  581. if (counter_m[j] > 0) {
  582. counter_m[j] -= current_block->mix_event_count[j];
  583. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  584. }
  585. }
  586. #else // !MIXING_EXTRUDER
  587. PULSE_STOP(E);
  588. #endif
  589. #endif // !LIN_ADVANCE
  590. if (++step_events_completed >= current_block->step_event_count) {
  591. all_steps_done = true;
  592. break;
  593. }
  594. // For minimum pulse time wait after stopping pulses also
  595. #if EXTRA_CYCLES_XYZE > 20
  596. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  597. #elif EXTRA_CYCLES_XYZE > 0
  598. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  599. #endif
  600. } // steps_loop
  601. #if ENABLED(LIN_ADVANCE)
  602. if (current_block->use_advance_lead) {
  603. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  604. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  605. #if ENABLED(MIXING_EXTRUDER)
  606. // Mixing extruders apply advance lead proportionally
  607. MIXING_STEPPERS_LOOP(j)
  608. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  609. #else
  610. // For most extruders, advance the single E stepper
  611. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  612. #endif
  613. }
  614. // If we have esteps to execute, fire the next advance_isr "now"
  615. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  616. #endif // LIN_ADVANCE
  617. // Calculate new timer value
  618. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  619. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  620. acc_step_rate += current_block->initial_rate;
  621. // upper limit
  622. NOMORE(acc_step_rate, current_block->nominal_rate);
  623. // step_rate to timer interval
  624. const uint16_t timer = calc_timer(acc_step_rate);
  625. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  626. _NEXT_ISR(ocr_val);
  627. acceleration_time += timer;
  628. #if ENABLED(LIN_ADVANCE)
  629. if (current_block->use_advance_lead) {
  630. #if ENABLED(MIXING_EXTRUDER)
  631. MIXING_STEPPERS_LOOP(j)
  632. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  633. #else
  634. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  635. #endif
  636. }
  637. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  638. #endif // LIN_ADVANCE
  639. }
  640. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  641. uint16_t step_rate;
  642. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  643. if (step_rate < acc_step_rate) { // Still decelerating?
  644. step_rate = acc_step_rate - step_rate;
  645. NOLESS(step_rate, current_block->final_rate);
  646. }
  647. else
  648. step_rate = current_block->final_rate;
  649. // step_rate to timer interval
  650. const uint16_t timer = calc_timer(step_rate);
  651. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  652. _NEXT_ISR(ocr_val);
  653. deceleration_time += timer;
  654. #if ENABLED(LIN_ADVANCE)
  655. if (current_block->use_advance_lead) {
  656. #if ENABLED(MIXING_EXTRUDER)
  657. MIXING_STEPPERS_LOOP(j)
  658. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  659. #else
  660. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  661. #endif
  662. }
  663. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  664. #endif // LIN_ADVANCE
  665. }
  666. else {
  667. #if ENABLED(LIN_ADVANCE)
  668. if (current_block->use_advance_lead)
  669. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  670. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  671. #endif
  672. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  673. _NEXT_ISR(ocr_val);
  674. // ensure we're running at the correct step rate, even if we just came off an acceleration
  675. step_loops = step_loops_nominal;
  676. }
  677. #if DISABLED(LIN_ADVANCE)
  678. NOLESS(OCR1A, TCNT1 + 16);
  679. #endif
  680. // If current block is finished, reset pointer
  681. if (all_steps_done) {
  682. current_block = NULL;
  683. planner.discard_current_block();
  684. }
  685. #if DISABLED(LIN_ADVANCE)
  686. _ENABLE_ISRs(); // re-enable ISRs
  687. #endif
  688. }
  689. #if ENABLED(LIN_ADVANCE)
  690. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  691. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  692. // Timer interrupt for E. e_steps is set in the main routine;
  693. void Stepper::advance_isr() {
  694. nextAdvanceISR = eISR_Rate;
  695. #if ENABLED(MK2_MULTIPLEXER)
  696. // Even-numbered steppers are reversed
  697. #define SET_E_STEP_DIR(INDEX) \
  698. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  699. #else
  700. #define SET_E_STEP_DIR(INDEX) \
  701. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  702. #endif
  703. #define START_E_PULSE(INDEX) \
  704. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  705. #define STOP_E_PULSE(INDEX) \
  706. if (e_steps[INDEX]) { \
  707. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  708. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  709. }
  710. SET_E_STEP_DIR(0);
  711. #if E_STEPPERS > 1
  712. SET_E_STEP_DIR(1);
  713. #if E_STEPPERS > 2
  714. SET_E_STEP_DIR(2);
  715. #if E_STEPPERS > 3
  716. SET_E_STEP_DIR(3);
  717. #if E_STEPPERS > 4
  718. SET_E_STEP_DIR(4);
  719. #endif
  720. #endif
  721. #endif
  722. #endif
  723. // Step all E steppers that have steps
  724. for (uint8_t i = step_loops; i--;) {
  725. #if EXTRA_CYCLES_E > 20
  726. uint32_t pulse_start = TCNT0;
  727. #endif
  728. START_E_PULSE(0);
  729. #if E_STEPPERS > 1
  730. START_E_PULSE(1);
  731. #if E_STEPPERS > 2
  732. START_E_PULSE(2);
  733. #if E_STEPPERS > 3
  734. START_E_PULSE(3);
  735. #if E_STEPPERS > 4
  736. START_E_PULSE(4);
  737. #endif
  738. #endif
  739. #endif
  740. #endif
  741. // For minimum pulse time wait before stopping pulses
  742. #if EXTRA_CYCLES_E > 20
  743. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  744. pulse_start = TCNT0;
  745. #elif EXTRA_CYCLES_E > 0
  746. DELAY_NOPS(EXTRA_CYCLES_E);
  747. #endif
  748. STOP_E_PULSE(0);
  749. #if E_STEPPERS > 1
  750. STOP_E_PULSE(1);
  751. #if E_STEPPERS > 2
  752. STOP_E_PULSE(2);
  753. #if E_STEPPERS > 3
  754. STOP_E_PULSE(3);
  755. #if E_STEPPERS > 4
  756. STOP_E_PULSE(4);
  757. #endif
  758. #endif
  759. #endif
  760. #endif
  761. // For minimum pulse time wait before looping
  762. #if EXTRA_CYCLES_E > 20
  763. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  764. #elif EXTRA_CYCLES_E > 0
  765. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  766. #endif
  767. } // steps_loop
  768. }
  769. void Stepper::advance_isr_scheduler() {
  770. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  771. CBI(TIMSK0, OCIE0B); // Temperature ISR
  772. DISABLE_STEPPER_DRIVER_INTERRUPT();
  773. sei();
  774. // Run main stepping ISR if flagged
  775. if (!nextMainISR) isr();
  776. // Run Advance stepping ISR if flagged
  777. if (!nextAdvanceISR) advance_isr();
  778. // Is the next advance ISR scheduled before the next main ISR?
  779. if (nextAdvanceISR <= nextMainISR) {
  780. // Set up the next interrupt
  781. OCR1A = nextAdvanceISR;
  782. // New interval for the next main ISR
  783. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  784. // Will call Stepper::advance_isr on the next interrupt
  785. nextAdvanceISR = 0;
  786. }
  787. else {
  788. // The next main ISR comes first
  789. OCR1A = nextMainISR;
  790. // New interval for the next advance ISR, if any
  791. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  792. nextAdvanceISR -= nextMainISR;
  793. // Will call Stepper::isr on the next interrupt
  794. nextMainISR = 0;
  795. }
  796. // Don't run the ISR faster than possible
  797. NOLESS(OCR1A, TCNT1 + 16);
  798. // Restore original ISR settings
  799. _ENABLE_ISRs();
  800. }
  801. #endif // LIN_ADVANCE
  802. void Stepper::init() {
  803. // Init Digipot Motor Current
  804. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  805. digipot_init();
  806. #endif
  807. // Init Microstepping Pins
  808. #if HAS_MICROSTEPS
  809. microstep_init();
  810. #endif
  811. // Init TMC Steppers
  812. #if ENABLED(HAVE_TMCDRIVER)
  813. tmc_init();
  814. #endif
  815. // Init TMC2130 Steppers
  816. #if ENABLED(HAVE_TMC2130)
  817. tmc2130_init();
  818. #endif
  819. // Init L6470 Steppers
  820. #if ENABLED(HAVE_L6470DRIVER)
  821. L6470_init();
  822. #endif
  823. // Init Dir Pins
  824. #if HAS_X_DIR
  825. X_DIR_INIT;
  826. #endif
  827. #if HAS_X2_DIR
  828. X2_DIR_INIT;
  829. #endif
  830. #if HAS_Y_DIR
  831. Y_DIR_INIT;
  832. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  833. Y2_DIR_INIT;
  834. #endif
  835. #endif
  836. #if HAS_Z_DIR
  837. Z_DIR_INIT;
  838. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  839. Z2_DIR_INIT;
  840. #endif
  841. #endif
  842. #if HAS_E0_DIR
  843. E0_DIR_INIT;
  844. #endif
  845. #if HAS_E1_DIR
  846. E1_DIR_INIT;
  847. #endif
  848. #if HAS_E2_DIR
  849. E2_DIR_INIT;
  850. #endif
  851. #if HAS_E3_DIR
  852. E3_DIR_INIT;
  853. #endif
  854. #if HAS_E4_DIR
  855. E4_DIR_INIT;
  856. #endif
  857. // Init Enable Pins - steppers default to disabled.
  858. #if HAS_X_ENABLE
  859. X_ENABLE_INIT;
  860. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  861. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  862. X2_ENABLE_INIT;
  863. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  864. #endif
  865. #endif
  866. #if HAS_Y_ENABLE
  867. Y_ENABLE_INIT;
  868. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  869. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  870. Y2_ENABLE_INIT;
  871. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  872. #endif
  873. #endif
  874. #if HAS_Z_ENABLE
  875. Z_ENABLE_INIT;
  876. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  877. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  878. Z2_ENABLE_INIT;
  879. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  880. #endif
  881. #endif
  882. #if HAS_E0_ENABLE
  883. E0_ENABLE_INIT;
  884. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  885. #endif
  886. #if HAS_E1_ENABLE
  887. E1_ENABLE_INIT;
  888. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  889. #endif
  890. #if HAS_E2_ENABLE
  891. E2_ENABLE_INIT;
  892. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  893. #endif
  894. #if HAS_E3_ENABLE
  895. E3_ENABLE_INIT;
  896. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  897. #endif
  898. #if HAS_E4_ENABLE
  899. E4_ENABLE_INIT;
  900. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  901. #endif
  902. // Init endstops and pullups
  903. endstops.init();
  904. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  905. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  906. #define _DISABLE(AXIS) disable_## AXIS()
  907. #define AXIS_INIT(AXIS, PIN) \
  908. _STEP_INIT(AXIS); \
  909. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  910. _DISABLE(AXIS)
  911. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  912. // Init Step Pins
  913. #if HAS_X_STEP
  914. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  915. X2_STEP_INIT;
  916. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  917. #endif
  918. AXIS_INIT(X, X);
  919. #endif
  920. #if HAS_Y_STEP
  921. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  922. Y2_STEP_INIT;
  923. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  924. #endif
  925. AXIS_INIT(Y, Y);
  926. #endif
  927. #if HAS_Z_STEP
  928. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  929. Z2_STEP_INIT;
  930. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  931. #endif
  932. AXIS_INIT(Z, Z);
  933. #endif
  934. #if HAS_E0_STEP
  935. E_AXIS_INIT(0);
  936. #endif
  937. #if HAS_E1_STEP
  938. E_AXIS_INIT(1);
  939. #endif
  940. #if HAS_E2_STEP
  941. E_AXIS_INIT(2);
  942. #endif
  943. #if HAS_E3_STEP
  944. E_AXIS_INIT(3);
  945. #endif
  946. #if HAS_E4_STEP
  947. E_AXIS_INIT(4);
  948. #endif
  949. // waveform generation = 0100 = CTC
  950. SET_WGM(1, CTC_OCRnA);
  951. // output mode = 00 (disconnected)
  952. SET_COMA(1, NORMAL);
  953. // Set the timer pre-scaler
  954. // Generally we use a divider of 8, resulting in a 2MHz timer
  955. // frequency on a 16MHz MCU. If you are going to change this, be
  956. // sure to regenerate speed_lookuptable.h with
  957. // create_speed_lookuptable.py
  958. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  959. // Init Stepper ISR to 122 Hz for quick starting
  960. OCR1A = 0x4000;
  961. TCNT1 = 0;
  962. ENABLE_STEPPER_DRIVER_INTERRUPT();
  963. #if ENABLED(LIN_ADVANCE)
  964. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  965. ZERO(current_adv_steps);
  966. #endif
  967. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  968. sei();
  969. set_directions(); // Init directions to last_direction_bits = 0
  970. }
  971. /**
  972. * Block until all buffered steps are executed
  973. */
  974. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  975. /**
  976. * Set the stepper positions directly in steps
  977. *
  978. * The input is based on the typical per-axis XYZ steps.
  979. * For CORE machines XYZ needs to be translated to ABC.
  980. *
  981. * This allows get_axis_position_mm to correctly
  982. * derive the current XYZ position later on.
  983. */
  984. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  985. synchronize(); // Bad to set stepper counts in the middle of a move
  986. CRITICAL_SECTION_START;
  987. #if CORE_IS_XY
  988. // corexy positioning
  989. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  990. count_position[A_AXIS] = a + b;
  991. count_position[B_AXIS] = CORESIGN(a - b);
  992. count_position[Z_AXIS] = c;
  993. #elif CORE_IS_XZ
  994. // corexz planning
  995. count_position[A_AXIS] = a + c;
  996. count_position[Y_AXIS] = b;
  997. count_position[C_AXIS] = CORESIGN(a - c);
  998. #elif CORE_IS_YZ
  999. // coreyz planning
  1000. count_position[X_AXIS] = a;
  1001. count_position[B_AXIS] = b + c;
  1002. count_position[C_AXIS] = CORESIGN(b - c);
  1003. #else
  1004. // default non-h-bot planning
  1005. count_position[X_AXIS] = a;
  1006. count_position[Y_AXIS] = b;
  1007. count_position[Z_AXIS] = c;
  1008. #endif
  1009. count_position[E_AXIS] = e;
  1010. CRITICAL_SECTION_END;
  1011. }
  1012. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1013. CRITICAL_SECTION_START;
  1014. count_position[axis] = v;
  1015. CRITICAL_SECTION_END;
  1016. }
  1017. void Stepper::set_e_position(const long &e) {
  1018. CRITICAL_SECTION_START;
  1019. count_position[E_AXIS] = e;
  1020. CRITICAL_SECTION_END;
  1021. }
  1022. /**
  1023. * Get a stepper's position in steps.
  1024. */
  1025. long Stepper::position(AxisEnum axis) {
  1026. CRITICAL_SECTION_START;
  1027. const long count_pos = count_position[axis];
  1028. CRITICAL_SECTION_END;
  1029. return count_pos;
  1030. }
  1031. /**
  1032. * Get an axis position according to stepper position(s)
  1033. * For CORE machines apply translation from ABC to XYZ.
  1034. */
  1035. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1036. float axis_steps;
  1037. #if IS_CORE
  1038. // Requesting one of the "core" axes?
  1039. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1040. CRITICAL_SECTION_START;
  1041. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1042. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1043. axis_steps = 0.5f * (
  1044. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1045. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1046. );
  1047. CRITICAL_SECTION_END;
  1048. }
  1049. else
  1050. axis_steps = position(axis);
  1051. #else
  1052. axis_steps = position(axis);
  1053. #endif
  1054. return axis_steps * planner.steps_to_mm[axis];
  1055. }
  1056. void Stepper::finish_and_disable() {
  1057. synchronize();
  1058. disable_all_steppers();
  1059. }
  1060. void Stepper::quick_stop() {
  1061. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  1062. if (!ubl.lcd_map_control)
  1063. cleaning_buffer_counter = 5000;
  1064. #else
  1065. cleaning_buffer_counter = 5000;
  1066. #endif
  1067. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1068. while (planner.blocks_queued()) planner.discard_current_block();
  1069. current_block = NULL;
  1070. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1071. #if ENABLED(ULTRA_LCD)
  1072. planner.clear_block_buffer_runtime();
  1073. #endif
  1074. }
  1075. void Stepper::endstop_triggered(AxisEnum axis) {
  1076. #if IS_CORE
  1077. endstops_trigsteps[axis] = 0.5f * (
  1078. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1079. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1080. );
  1081. #else // !COREXY && !COREXZ && !COREYZ
  1082. endstops_trigsteps[axis] = count_position[axis];
  1083. #endif // !COREXY && !COREXZ && !COREYZ
  1084. kill_current_block();
  1085. }
  1086. void Stepper::report_positions() {
  1087. CRITICAL_SECTION_START;
  1088. const long xpos = count_position[X_AXIS],
  1089. ypos = count_position[Y_AXIS],
  1090. zpos = count_position[Z_AXIS];
  1091. CRITICAL_SECTION_END;
  1092. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1093. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1094. #else
  1095. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1096. #endif
  1097. SERIAL_PROTOCOL(xpos);
  1098. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1099. SERIAL_PROTOCOLPGM(" B:");
  1100. #else
  1101. SERIAL_PROTOCOLPGM(" Y:");
  1102. #endif
  1103. SERIAL_PROTOCOL(ypos);
  1104. #if CORE_IS_XZ || CORE_IS_YZ
  1105. SERIAL_PROTOCOLPGM(" C:");
  1106. #else
  1107. SERIAL_PROTOCOLPGM(" Z:");
  1108. #endif
  1109. SERIAL_PROTOCOL(zpos);
  1110. SERIAL_EOL();
  1111. }
  1112. #if ENABLED(BABYSTEPPING)
  1113. #if ENABLED(DELTA)
  1114. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1115. #else
  1116. #define CYCLES_EATEN_BABYSTEP 0
  1117. #endif
  1118. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1119. #define _ENABLE(AXIS) enable_## AXIS()
  1120. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1121. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1122. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1123. #if EXTRA_CYCLES_BABYSTEP > 20
  1124. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1125. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1126. #else
  1127. #define _SAVE_START NOOP
  1128. #if EXTRA_CYCLES_BABYSTEP > 0
  1129. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1130. #elif STEP_PULSE_CYCLES > 0
  1131. #define _PULSE_WAIT NOOP
  1132. #elif ENABLED(DELTA)
  1133. #define _PULSE_WAIT delayMicroseconds(2);
  1134. #else
  1135. #define _PULSE_WAIT delayMicroseconds(4);
  1136. #endif
  1137. #endif
  1138. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1139. const uint8_t old_dir = _READ_DIR(AXIS); \
  1140. _ENABLE(AXIS); \
  1141. _SAVE_START; \
  1142. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1143. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1144. _PULSE_WAIT; \
  1145. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1146. _APPLY_DIR(AXIS, old_dir); \
  1147. }
  1148. // MUST ONLY BE CALLED BY AN ISR,
  1149. // No other ISR should ever interrupt this!
  1150. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1151. cli();
  1152. switch (axis) {
  1153. #if ENABLED(BABYSTEP_XY)
  1154. case X_AXIS:
  1155. BABYSTEP_AXIS(X, false);
  1156. break;
  1157. case Y_AXIS:
  1158. BABYSTEP_AXIS(Y, false);
  1159. break;
  1160. #endif
  1161. case Z_AXIS: {
  1162. #if DISABLED(DELTA)
  1163. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1164. #else // DELTA
  1165. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1166. enable_X();
  1167. enable_Y();
  1168. enable_Z();
  1169. const uint8_t old_x_dir_pin = X_DIR_READ,
  1170. old_y_dir_pin = Y_DIR_READ,
  1171. old_z_dir_pin = Z_DIR_READ;
  1172. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1173. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1174. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1175. _SAVE_START;
  1176. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1177. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1178. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1179. _PULSE_WAIT;
  1180. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1181. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1182. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1183. // Restore direction bits
  1184. X_DIR_WRITE(old_x_dir_pin);
  1185. Y_DIR_WRITE(old_y_dir_pin);
  1186. Z_DIR_WRITE(old_z_dir_pin);
  1187. #endif
  1188. } break;
  1189. default: break;
  1190. }
  1191. sei();
  1192. }
  1193. #endif // BABYSTEPPING
  1194. /**
  1195. * Software-controlled Stepper Motor Current
  1196. */
  1197. #if HAS_DIGIPOTSS
  1198. // From Arduino DigitalPotControl example
  1199. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1200. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1201. SPI.transfer(address); // Send the address and value via SPI
  1202. SPI.transfer(value);
  1203. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1204. //delay(10);
  1205. }
  1206. #endif // HAS_DIGIPOTSS
  1207. #if HAS_MOTOR_CURRENT_PWM
  1208. void Stepper::refresh_motor_power() {
  1209. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1210. switch (i) {
  1211. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1212. case 0:
  1213. #endif
  1214. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1215. case 1:
  1216. #endif
  1217. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1218. case 2:
  1219. #endif
  1220. digipot_current(i, motor_current_setting[i]);
  1221. default: break;
  1222. }
  1223. }
  1224. }
  1225. #endif // HAS_MOTOR_CURRENT_PWM
  1226. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1227. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1228. #if HAS_DIGIPOTSS
  1229. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1230. digitalPotWrite(digipot_ch[driver], current);
  1231. #elif HAS_MOTOR_CURRENT_PWM
  1232. if (WITHIN(driver, 0, 2))
  1233. motor_current_setting[driver] = current; // update motor_current_setting
  1234. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1235. switch (driver) {
  1236. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1237. case 0: _WRITE_CURRENT_PWM(XY); break;
  1238. #endif
  1239. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1240. case 1: _WRITE_CURRENT_PWM(Z); break;
  1241. #endif
  1242. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1243. case 2: _WRITE_CURRENT_PWM(E); break;
  1244. #endif
  1245. }
  1246. #endif
  1247. }
  1248. void Stepper::digipot_init() {
  1249. #if HAS_DIGIPOTSS
  1250. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1251. SPI.begin();
  1252. SET_OUTPUT(DIGIPOTSS_PIN);
  1253. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1254. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1255. digipot_current(i, digipot_motor_current[i]);
  1256. }
  1257. #elif HAS_MOTOR_CURRENT_PWM
  1258. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1259. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1260. #endif
  1261. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1262. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1263. #endif
  1264. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1265. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1266. #endif
  1267. refresh_motor_power();
  1268. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1269. SET_CS5(PRESCALER_1);
  1270. #endif
  1271. }
  1272. #endif
  1273. #if HAS_MICROSTEPS
  1274. /**
  1275. * Software-controlled Microstepping
  1276. */
  1277. void Stepper::microstep_init() {
  1278. SET_OUTPUT(X_MS1_PIN);
  1279. SET_OUTPUT(X_MS2_PIN);
  1280. #if HAS_Y_MICROSTEPS
  1281. SET_OUTPUT(Y_MS1_PIN);
  1282. SET_OUTPUT(Y_MS2_PIN);
  1283. #endif
  1284. #if HAS_Z_MICROSTEPS
  1285. SET_OUTPUT(Z_MS1_PIN);
  1286. SET_OUTPUT(Z_MS2_PIN);
  1287. #endif
  1288. #if HAS_E0_MICROSTEPS
  1289. SET_OUTPUT(E0_MS1_PIN);
  1290. SET_OUTPUT(E0_MS2_PIN);
  1291. #endif
  1292. #if HAS_E1_MICROSTEPS
  1293. SET_OUTPUT(E1_MS1_PIN);
  1294. SET_OUTPUT(E1_MS2_PIN);
  1295. #endif
  1296. #if HAS_E2_MICROSTEPS
  1297. SET_OUTPUT(E2_MS1_PIN);
  1298. SET_OUTPUT(E2_MS2_PIN);
  1299. #endif
  1300. #if HAS_E3_MICROSTEPS
  1301. SET_OUTPUT(E3_MS1_PIN);
  1302. SET_OUTPUT(E3_MS2_PIN);
  1303. #endif
  1304. #if HAS_E4_MICROSTEPS
  1305. SET_OUTPUT(E4_MS1_PIN);
  1306. SET_OUTPUT(E4_MS2_PIN);
  1307. #endif
  1308. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1309. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1310. microstep_mode(i, microstep_modes[i]);
  1311. }
  1312. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1313. if (ms1 >= 0) switch (driver) {
  1314. case 0: WRITE(X_MS1_PIN, ms1); break;
  1315. #if HAS_Y_MICROSTEPS
  1316. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1317. #endif
  1318. #if HAS_Z_MICROSTEPS
  1319. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1320. #endif
  1321. #if HAS_E0_MICROSTEPS
  1322. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1323. #endif
  1324. #if HAS_E1_MICROSTEPS
  1325. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1326. #endif
  1327. #if HAS_E2_MICROSTEPS
  1328. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1329. #endif
  1330. #if HAS_E3_MICROSTEPS
  1331. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1332. #endif
  1333. #if HAS_E4_MICROSTEPS
  1334. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1335. #endif
  1336. }
  1337. if (ms2 >= 0) switch (driver) {
  1338. case 0: WRITE(X_MS2_PIN, ms2); break;
  1339. #if HAS_Y_MICROSTEPS
  1340. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1341. #endif
  1342. #if HAS_Z_MICROSTEPS
  1343. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1344. #endif
  1345. #if HAS_E0_MICROSTEPS
  1346. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1347. #endif
  1348. #if HAS_E1_MICROSTEPS
  1349. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1350. #endif
  1351. #if HAS_E2_MICROSTEPS
  1352. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1353. #endif
  1354. #if HAS_E3_MICROSTEPS
  1355. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1356. #endif
  1357. #if HAS_E4_MICROSTEPS
  1358. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1359. #endif
  1360. }
  1361. }
  1362. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1363. switch (stepping_mode) {
  1364. case 1: microstep_ms(driver, MICROSTEP1); break;
  1365. case 2: microstep_ms(driver, MICROSTEP2); break;
  1366. case 4: microstep_ms(driver, MICROSTEP4); break;
  1367. case 8: microstep_ms(driver, MICROSTEP8); break;
  1368. case 16: microstep_ms(driver, MICROSTEP16); break;
  1369. }
  1370. }
  1371. void Stepper::microstep_readings() {
  1372. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1373. SERIAL_PROTOCOLPGM("X: ");
  1374. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1375. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1376. #if HAS_Y_MICROSTEPS
  1377. SERIAL_PROTOCOLPGM("Y: ");
  1378. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1379. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1380. #endif
  1381. #if HAS_Z_MICROSTEPS
  1382. SERIAL_PROTOCOLPGM("Z: ");
  1383. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1384. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1385. #endif
  1386. #if HAS_E0_MICROSTEPS
  1387. SERIAL_PROTOCOLPGM("E0: ");
  1388. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1389. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1390. #endif
  1391. #if HAS_E1_MICROSTEPS
  1392. SERIAL_PROTOCOLPGM("E1: ");
  1393. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1394. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1395. #endif
  1396. #if HAS_E2_MICROSTEPS
  1397. SERIAL_PROTOCOLPGM("E2: ");
  1398. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1399. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1400. #endif
  1401. #if HAS_E3_MICROSTEPS
  1402. SERIAL_PROTOCOLPGM("E3: ");
  1403. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1404. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1405. #endif
  1406. #if HAS_E4_MICROSTEPS
  1407. SERIAL_PROTOCOLPGM("E4: ");
  1408. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1409. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1410. #endif
  1411. }
  1412. #endif // HAS_MICROSTEPS