My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 158KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  52. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  53. //Implemented Codes
  54. //-------------------
  55. // G0 -> G1
  56. // G1 - Coordinated Movement X Y Z E
  57. // G2 - CW ARC
  58. // G3 - CCW ARC
  59. // G4 - Dwell S<seconds> or P<milliseconds>
  60. // G10 - retract filament according to settings of M207
  61. // G11 - retract recover filament according to settings of M208
  62. // G28 - Home all Axis
  63. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  64. // G30 - Single Z Probe, probes bed at current XY location.
  65. // G31 - Dock sled (Z_PROBE_SLED only)
  66. // G32 - Undock sled (Z_PROBE_SLED only)
  67. // G90 - Use Absolute Coordinates
  68. // G91 - Use Relative Coordinates
  69. // G92 - Set current position to coordinates given
  70. // M Codes
  71. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  72. // M1 - Same as M0
  73. // M17 - Enable/Power all stepper motors
  74. // M18 - Disable all stepper motors; same as M84
  75. // M20 - List SD card
  76. // M21 - Init SD card
  77. // M22 - Release SD card
  78. // M23 - Select SD file (M23 filename.g)
  79. // M24 - Start/resume SD print
  80. // M25 - Pause SD print
  81. // M26 - Set SD position in bytes (M26 S12345)
  82. // M27 - Report SD print status
  83. // M28 - Start SD write (M28 filename.g)
  84. // M29 - Stop SD write
  85. // M30 - Delete file from SD (M30 filename.g)
  86. // M31 - Output time since last M109 or SD card start to serial
  87. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  88. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  89. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  90. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  91. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  92. // M80 - Turn on Power Supply
  93. // M81 - Turn off Power Supply
  94. // M82 - Set E codes absolute (default)
  95. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  96. // M84 - Disable steppers until next move,
  97. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  98. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  99. // M92 - Set axis_steps_per_unit - same syntax as G92
  100. // M104 - Set extruder target temp
  101. // M105 - Read current temp
  102. // M106 - Fan on
  103. // M107 - Fan off
  104. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  105. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  106. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  107. // M112 - Emergency stop
  108. // M114 - Output current position to serial port
  109. // M115 - Capabilities string
  110. // M117 - display message
  111. // M119 - Output Endstop status to serial port
  112. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  113. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  114. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M140 - Set bed target temp
  117. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  118. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  119. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  120. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  121. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  122. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  123. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  124. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  125. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  126. // M206 - Set additional homing offset
  127. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  128. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  129. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  130. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  131. // M220 S<factor in percent>- set speed factor override percentage
  132. // M221 S<factor in percent>- set extrude factor override percentage
  133. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  134. // M240 - Trigger a camera to take a photograph
  135. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  136. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  137. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  138. // M301 - Set PID parameters P I and D
  139. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  140. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  141. // M304 - Set bed PID parameters P I and D
  142. // M400 - Finish all moves
  143. // M401 - Lower z-probe if present
  144. // M402 - Raise z-probe if present
  145. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  146. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  147. // M406 - Turn off Filament Sensor extrusion control
  148. // M407 - Displays measured filament diameter
  149. // M500 - Store parameters in EEPROM
  150. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  151. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  152. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  153. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  154. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  155. // M665 - Set delta configurations
  156. // M666 - Set delta endstop adjustment
  157. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  158. // M907 - Set digital trimpot motor current using axis codes.
  159. // M908 - Control digital trimpot directly.
  160. // M350 - Set microstepping mode.
  161. // M351 - Toggle MS1 MS2 pins directly.
  162. // ************ SCARA Specific - This can change to suit future G-code regulations
  163. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  164. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  165. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  166. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  167. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  168. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  169. //************* SCARA End ***************
  170. // M928 - Start SD logging (M928 filename.g) - ended by M29
  171. // M999 - Restart after being stopped by error
  172. #ifdef SDSUPPORT
  173. CardReader card;
  174. #endif
  175. float homing_feedrate[] = HOMING_FEEDRATE;
  176. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  177. int feedmultiply = 100; //100->1 200->2
  178. int saved_feedmultiply;
  179. int extrudemultiply = 100; //100->1 200->2
  180. int extruder_multiply[EXTRUDERS] = { 100
  181. #if EXTRUDERS > 1
  182. , 100
  183. #if EXTRUDERS > 2
  184. , 100
  185. #if EXTRUDERS > 3
  186. , 100
  187. #endif
  188. #endif
  189. #endif
  190. };
  191. bool volumetric_enabled = false;
  192. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  193. #if EXTRUDERS > 1
  194. , DEFAULT_NOMINAL_FILAMENT_DIA
  195. #if EXTRUDERS > 2
  196. , DEFAULT_NOMINAL_FILAMENT_DIA
  197. #if EXTRUDERS > 3
  198. , DEFAULT_NOMINAL_FILAMENT_DIA
  199. #endif
  200. #endif
  201. #endif
  202. };
  203. float volumetric_multiplier[EXTRUDERS] = {1.0
  204. #if EXTRUDERS > 1
  205. , 1.0
  206. #if EXTRUDERS > 2
  207. , 1.0
  208. #if EXTRUDERS > 3
  209. , 1.0
  210. #endif
  211. #endif
  212. #endif
  213. };
  214. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  215. float add_homing[3] = { 0, 0, 0 };
  216. #ifdef DELTA
  217. float endstop_adj[3] = { 0, 0, 0 };
  218. #endif
  219. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  220. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  221. bool axis_known_position[3] = { false, false, false };
  222. float zprobe_zoffset;
  223. // Extruder offset
  224. #if EXTRUDERS > 1
  225. #ifndef DUAL_X_CARRIAGE
  226. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  227. #else
  228. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  229. #endif
  230. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  231. #if defined(EXTRUDER_OFFSET_X)
  232. EXTRUDER_OFFSET_X
  233. #else
  234. 0
  235. #endif
  236. ,
  237. #if defined(EXTRUDER_OFFSET_Y)
  238. EXTRUDER_OFFSET_Y
  239. #else
  240. 0
  241. #endif
  242. };
  243. #endif
  244. uint8_t active_extruder = 0;
  245. int fanSpeed = 0;
  246. #ifdef SERVO_ENDSTOPS
  247. int servo_endstops[] = SERVO_ENDSTOPS;
  248. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  249. #endif
  250. #ifdef BARICUDA
  251. int ValvePressure = 0;
  252. int EtoPPressure = 0;
  253. #endif
  254. #ifdef FWRETRACT
  255. bool autoretract_enabled = false;
  256. bool retracted[EXTRUDERS] = { false
  257. #if EXTRUDERS > 1
  258. , false
  259. #if EXTRUDERS > 2
  260. , false
  261. #if EXTRUDERS > 3
  262. , false
  263. #endif
  264. #endif
  265. #endif
  266. };
  267. bool retracted_swap[EXTRUDERS] = { false
  268. #if EXTRUDERS > 1
  269. , false
  270. #if EXTRUDERS > 2
  271. , false
  272. #if EXTRUDERS > 3
  273. , false
  274. #endif
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif // FWRETRACT
  286. #ifdef ULTIPANEL
  287. bool powersupply =
  288. #ifdef PS_DEFAULT_OFF
  289. false
  290. #else
  291. true
  292. #endif
  293. ;
  294. #endif
  295. #ifdef DELTA
  296. float delta[3] = { 0, 0, 0 };
  297. #define SIN_60 0.8660254037844386
  298. #define COS_60 0.5
  299. // these are the default values, can be overriden with M665
  300. float delta_radius = DELTA_RADIUS;
  301. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  302. float delta_tower1_y = -COS_60 * delta_radius;
  303. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  304. float delta_tower2_y = -COS_60 * delta_radius;
  305. float delta_tower3_x = 0; // back middle tower
  306. float delta_tower3_y = delta_radius;
  307. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  308. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  309. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  310. #endif
  311. #ifdef SCARA
  312. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  313. #endif
  314. bool cancel_heatup = false;
  315. #ifdef FILAMENT_SENSOR
  316. //Variables for Filament Sensor input
  317. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  318. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  319. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  320. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  321. int delay_index1=0; //index into ring buffer
  322. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  323. float delay_dist=0; //delay distance counter
  324. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  325. #endif
  326. const char errormagic[] PROGMEM = "Error:";
  327. const char echomagic[] PROGMEM = "echo:";
  328. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  329. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  330. #ifndef DELTA
  331. static float delta[3] = { 0, 0, 0 };
  332. #endif
  333. static float offset[3] = { 0, 0, 0 };
  334. static bool home_all_axis = true;
  335. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  336. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  337. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  338. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  339. static bool fromsd[BUFSIZE];
  340. static int bufindr = 0;
  341. static int bufindw = 0;
  342. static int buflen = 0;
  343. static char serial_char;
  344. static int serial_count = 0;
  345. static boolean comment_mode = false;
  346. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  347. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  348. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  349. // Inactivity shutdown
  350. static unsigned long previous_millis_cmd = 0;
  351. static unsigned long max_inactive_time = 0;
  352. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  353. unsigned long starttime = 0; ///< Print job start time
  354. unsigned long stoptime = 0; ///< Print job stop time
  355. static uint8_t tmp_extruder;
  356. bool Stopped = false;
  357. #if NUM_SERVOS > 0
  358. Servo servos[NUM_SERVOS];
  359. #endif
  360. bool CooldownNoWait = true;
  361. bool target_direction;
  362. #ifdef CHDK
  363. unsigned long chdkHigh = 0;
  364. boolean chdkActive = false;
  365. #endif
  366. //===========================================================================
  367. //=============================Routines======================================
  368. //===========================================================================
  369. void get_arc_coordinates();
  370. bool setTargetedHotend(int code);
  371. void serial_echopair_P(const char *s_P, float v)
  372. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  373. void serial_echopair_P(const char *s_P, double v)
  374. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  375. void serial_echopair_P(const char *s_P, unsigned long v)
  376. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. #ifdef SDSUPPORT
  378. #include "SdFatUtil.h"
  379. int freeMemory() { return SdFatUtil::FreeRam(); }
  380. #else
  381. extern "C" {
  382. extern unsigned int __bss_end;
  383. extern unsigned int __heap_start;
  384. extern void *__brkval;
  385. int freeMemory() {
  386. int free_memory;
  387. if ((int)__brkval == 0)
  388. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  389. else
  390. free_memory = ((int)&free_memory) - ((int)__brkval);
  391. return free_memory;
  392. }
  393. }
  394. #endif //!SDSUPPORT
  395. //Injects the next command from the pending sequence of commands, when possible
  396. //Return false if and only if no command was pending
  397. static bool drain_queued_commands_P()
  398. {
  399. char cmd[30];
  400. if(!queued_commands_P)
  401. return false;
  402. // Get the next 30 chars from the sequence of gcodes to run
  403. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  404. cmd[sizeof(cmd)-1]= 0;
  405. // Look for the end of line, or the end of sequence
  406. size_t i= 0;
  407. char c;
  408. while( (c= cmd[i]) && c!='\n' )
  409. ++i; // look for the end of this gcode command
  410. cmd[i]= 0;
  411. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  412. {
  413. if(c)
  414. queued_commands_P+= i+1; // move to next command
  415. else
  416. queued_commands_P= NULL; // will have no more commands in the sequence
  417. }
  418. return true;
  419. }
  420. //Record one or many commands to run from program memory.
  421. //Aborts the current queue, if any.
  422. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  423. void enquecommands_P(const char* pgcode)
  424. {
  425. queued_commands_P= pgcode;
  426. drain_queued_commands_P(); // first command exectuted asap (when possible)
  427. }
  428. //adds a single command to the main command buffer, from RAM
  429. //that is really done in a non-safe way.
  430. //needs overworking someday
  431. //Returns false if it failed to do so
  432. bool enquecommand(const char *cmd)
  433. {
  434. if(*cmd==';')
  435. return false;
  436. if(buflen >= BUFSIZE)
  437. return false;
  438. //this is dangerous if a mixing of serial and this happens
  439. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  440. SERIAL_ECHO_START;
  441. SERIAL_ECHOPGM(MSG_Enqueing);
  442. SERIAL_ECHO(cmdbuffer[bufindw]);
  443. SERIAL_ECHOLNPGM("\"");
  444. bufindw= (bufindw + 1)%BUFSIZE;
  445. buflen += 1;
  446. return true;
  447. }
  448. void setup_killpin()
  449. {
  450. #if defined(KILL_PIN) && KILL_PIN > -1
  451. SET_INPUT(KILL_PIN);
  452. WRITE(KILL_PIN,HIGH);
  453. #endif
  454. }
  455. // Set home pin
  456. void setup_homepin(void)
  457. {
  458. #if defined(HOME_PIN) && HOME_PIN > -1
  459. SET_INPUT(HOME_PIN);
  460. WRITE(HOME_PIN,HIGH);
  461. #endif
  462. }
  463. void setup_photpin()
  464. {
  465. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  466. SET_OUTPUT(PHOTOGRAPH_PIN);
  467. WRITE(PHOTOGRAPH_PIN, LOW);
  468. #endif
  469. }
  470. void setup_powerhold()
  471. {
  472. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  473. SET_OUTPUT(SUICIDE_PIN);
  474. WRITE(SUICIDE_PIN, HIGH);
  475. #endif
  476. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  477. SET_OUTPUT(PS_ON_PIN);
  478. #if defined(PS_DEFAULT_OFF)
  479. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  480. #else
  481. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  482. #endif
  483. #endif
  484. }
  485. void suicide()
  486. {
  487. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  488. SET_OUTPUT(SUICIDE_PIN);
  489. WRITE(SUICIDE_PIN, LOW);
  490. #endif
  491. }
  492. void servo_init()
  493. {
  494. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  495. servos[0].attach(SERVO0_PIN);
  496. #endif
  497. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  498. servos[1].attach(SERVO1_PIN);
  499. #endif
  500. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  501. servos[2].attach(SERVO2_PIN);
  502. #endif
  503. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  504. servos[3].attach(SERVO3_PIN);
  505. #endif
  506. #if (NUM_SERVOS >= 5)
  507. #error "TODO: enter initalisation code for more servos"
  508. #endif
  509. // Set position of Servo Endstops that are defined
  510. #ifdef SERVO_ENDSTOPS
  511. for(int8_t i = 0; i < 3; i++)
  512. {
  513. if(servo_endstops[i] > -1) {
  514. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  515. }
  516. }
  517. #endif
  518. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  519. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  520. servos[servo_endstops[Z_AXIS]].detach();
  521. #endif
  522. }
  523. void setup()
  524. {
  525. setup_killpin();
  526. setup_powerhold();
  527. MYSERIAL.begin(BAUDRATE);
  528. SERIAL_PROTOCOLLNPGM("start");
  529. SERIAL_ECHO_START;
  530. // Check startup - does nothing if bootloader sets MCUSR to 0
  531. byte mcu = MCUSR;
  532. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  533. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  534. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  535. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  536. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  537. MCUSR=0;
  538. SERIAL_ECHOPGM(MSG_MARLIN);
  539. SERIAL_ECHOLNPGM(STRING_VERSION);
  540. #ifdef STRING_VERSION_CONFIG_H
  541. #ifdef STRING_CONFIG_H_AUTHOR
  542. SERIAL_ECHO_START;
  543. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  544. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  545. SERIAL_ECHOPGM(MSG_AUTHOR);
  546. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  547. SERIAL_ECHOPGM("Compiled: ");
  548. SERIAL_ECHOLNPGM(__DATE__);
  549. #endif // STRING_CONFIG_H_AUTHOR
  550. #endif // STRING_VERSION_CONFIG_H
  551. SERIAL_ECHO_START;
  552. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  553. SERIAL_ECHO(freeMemory());
  554. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  555. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  556. for(int8_t i = 0; i < BUFSIZE; i++)
  557. {
  558. fromsd[i] = false;
  559. }
  560. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  561. Config_RetrieveSettings();
  562. tp_init(); // Initialize temperature loop
  563. plan_init(); // Initialize planner;
  564. watchdog_init();
  565. st_init(); // Initialize stepper, this enables interrupts!
  566. setup_photpin();
  567. servo_init();
  568. lcd_init();
  569. _delay_ms(1000); // wait 1sec to display the splash screen
  570. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  571. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  572. #endif
  573. #ifdef DIGIPOT_I2C
  574. digipot_i2c_init();
  575. #endif
  576. #ifdef Z_PROBE_SLED
  577. pinMode(SERVO0_PIN, OUTPUT);
  578. digitalWrite(SERVO0_PIN, LOW); // turn it off
  579. #endif // Z_PROBE_SLED
  580. setup_homepin();
  581. #ifdef STAT_LED_RED
  582. pinMode(STAT_LED_RED, OUTPUT);
  583. digitalWrite(STAT_LED_RED, LOW); // turn it off
  584. #endif
  585. #ifdef STAT_LED_BLUE
  586. pinMode(STAT_LED_BLUE, OUTPUT);
  587. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  588. #endif
  589. }
  590. void loop()
  591. {
  592. if(buflen < (BUFSIZE-1))
  593. get_command();
  594. #ifdef SDSUPPORT
  595. card.checkautostart(false);
  596. #endif
  597. if(buflen)
  598. {
  599. #ifdef SDSUPPORT
  600. if(card.saving)
  601. {
  602. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  603. {
  604. card.write_command(cmdbuffer[bufindr]);
  605. if(card.logging)
  606. {
  607. process_commands();
  608. }
  609. else
  610. {
  611. SERIAL_PROTOCOLLNPGM(MSG_OK);
  612. }
  613. }
  614. else
  615. {
  616. card.closefile();
  617. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  618. }
  619. }
  620. else
  621. {
  622. process_commands();
  623. }
  624. #else
  625. process_commands();
  626. #endif //SDSUPPORT
  627. buflen = (buflen-1);
  628. bufindr = (bufindr + 1)%BUFSIZE;
  629. }
  630. //check heater every n milliseconds
  631. manage_heater();
  632. manage_inactivity();
  633. checkHitEndstops();
  634. lcd_update();
  635. }
  636. void get_command()
  637. {
  638. if(drain_queued_commands_P()) // priority is given to non-serial commands
  639. return;
  640. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  641. serial_char = MYSERIAL.read();
  642. if(serial_char == '\n' ||
  643. serial_char == '\r' ||
  644. (serial_char == ':' && comment_mode == false) ||
  645. serial_count >= (MAX_CMD_SIZE - 1) )
  646. {
  647. if(!serial_count) { //if empty line
  648. comment_mode = false; //for new command
  649. return;
  650. }
  651. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  652. if(!comment_mode){
  653. comment_mode = false; //for new command
  654. fromsd[bufindw] = false;
  655. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  656. {
  657. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  658. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  659. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  660. SERIAL_ERROR_START;
  661. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  662. SERIAL_ERRORLN(gcode_LastN);
  663. //Serial.println(gcode_N);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  669. {
  670. byte checksum = 0;
  671. byte count = 0;
  672. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  673. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  674. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. FlushSerialRequestResend();
  679. serial_count = 0;
  680. return;
  681. }
  682. //if no errors, continue parsing
  683. }
  684. else
  685. {
  686. SERIAL_ERROR_START;
  687. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  688. SERIAL_ERRORLN(gcode_LastN);
  689. FlushSerialRequestResend();
  690. serial_count = 0;
  691. return;
  692. }
  693. gcode_LastN = gcode_N;
  694. //if no errors, continue parsing
  695. }
  696. else // if we don't receive 'N' but still see '*'
  697. {
  698. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  699. {
  700. SERIAL_ERROR_START;
  701. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  702. SERIAL_ERRORLN(gcode_LastN);
  703. serial_count = 0;
  704. return;
  705. }
  706. }
  707. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  708. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  709. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  710. case 0:
  711. case 1:
  712. case 2:
  713. case 3:
  714. if (Stopped == true) {
  715. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  716. LCD_MESSAGEPGM(MSG_STOPPED);
  717. }
  718. break;
  719. default:
  720. break;
  721. }
  722. }
  723. //If command was e-stop process now
  724. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  725. kill();
  726. bufindw = (bufindw + 1)%BUFSIZE;
  727. buflen += 1;
  728. }
  729. serial_count = 0; //clear buffer
  730. }
  731. else
  732. {
  733. if(serial_char == ';') comment_mode = true;
  734. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  735. }
  736. }
  737. #ifdef SDSUPPORT
  738. if(!card.sdprinting || serial_count!=0){
  739. return;
  740. }
  741. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  742. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  743. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  744. static bool stop_buffering=false;
  745. if(buflen==0) stop_buffering=false;
  746. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  747. int16_t n=card.get();
  748. serial_char = (char)n;
  749. if(serial_char == '\n' ||
  750. serial_char == '\r' ||
  751. (serial_char == '#' && comment_mode == false) ||
  752. (serial_char == ':' && comment_mode == false) ||
  753. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  754. {
  755. if(card.eof()){
  756. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  757. stoptime=millis();
  758. char time[30];
  759. unsigned long t=(stoptime-starttime)/1000;
  760. int hours, minutes;
  761. minutes=(t/60)%60;
  762. hours=t/60/60;
  763. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  764. SERIAL_ECHO_START;
  765. SERIAL_ECHOLN(time);
  766. lcd_setstatus(time);
  767. card.printingHasFinished();
  768. card.checkautostart(true);
  769. }
  770. if(serial_char=='#')
  771. stop_buffering=true;
  772. if(!serial_count)
  773. {
  774. comment_mode = false; //for new command
  775. return; //if empty line
  776. }
  777. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  778. // if(!comment_mode){
  779. fromsd[bufindw] = true;
  780. buflen += 1;
  781. bufindw = (bufindw + 1)%BUFSIZE;
  782. // }
  783. comment_mode = false; //for new command
  784. serial_count = 0; //clear buffer
  785. }
  786. else
  787. {
  788. if(serial_char == ';') comment_mode = true;
  789. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  790. }
  791. }
  792. #endif //SDSUPPORT
  793. }
  794. float code_value()
  795. {
  796. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  797. }
  798. long code_value_long()
  799. {
  800. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  801. }
  802. bool code_seen(char code)
  803. {
  804. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  805. return (strchr_pointer != NULL); //Return True if a character was found
  806. }
  807. #define DEFINE_PGM_READ_ANY(type, reader) \
  808. static inline type pgm_read_any(const type *p) \
  809. { return pgm_read_##reader##_near(p); }
  810. DEFINE_PGM_READ_ANY(float, float);
  811. DEFINE_PGM_READ_ANY(signed char, byte);
  812. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  813. static const PROGMEM type array##_P[3] = \
  814. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  815. static inline type array(int axis) \
  816. { return pgm_read_any(&array##_P[axis]); }
  817. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  818. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  819. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  820. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  821. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  822. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  823. #ifdef DUAL_X_CARRIAGE
  824. #if EXTRUDERS == 1 || defined(COREXY) \
  825. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  826. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  827. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  828. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  829. #endif
  830. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  831. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  832. #endif
  833. #define DXC_FULL_CONTROL_MODE 0
  834. #define DXC_AUTO_PARK_MODE 1
  835. #define DXC_DUPLICATION_MODE 2
  836. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  837. static float x_home_pos(int extruder) {
  838. if (extruder == 0)
  839. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  840. else
  841. // In dual carriage mode the extruder offset provides an override of the
  842. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  843. // This allow soft recalibration of the second extruder offset position without firmware reflash
  844. // (through the M218 command).
  845. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  846. }
  847. static int x_home_dir(int extruder) {
  848. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  849. }
  850. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  851. static bool active_extruder_parked = false; // used in mode 1 & 2
  852. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  853. static unsigned long delayed_move_time = 0; // used in mode 1
  854. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  855. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  856. bool extruder_duplication_enabled = false; // used in mode 2
  857. #endif //DUAL_X_CARRIAGE
  858. static void axis_is_at_home(int axis) {
  859. #ifdef DUAL_X_CARRIAGE
  860. if (axis == X_AXIS) {
  861. if (active_extruder != 0) {
  862. current_position[X_AXIS] = x_home_pos(active_extruder);
  863. min_pos[X_AXIS] = X2_MIN_POS;
  864. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  865. return;
  866. }
  867. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  868. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  869. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  870. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  871. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  872. return;
  873. }
  874. }
  875. #endif
  876. #ifdef SCARA
  877. float homeposition[3];
  878. char i;
  879. if (axis < 2)
  880. {
  881. for (i=0; i<3; i++)
  882. {
  883. homeposition[i] = base_home_pos(i);
  884. }
  885. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  886. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  887. // Works out real Homeposition angles using inverse kinematics,
  888. // and calculates homing offset using forward kinematics
  889. calculate_delta(homeposition);
  890. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  891. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  892. for (i=0; i<2; i++)
  893. {
  894. delta[i] -= add_homing[i];
  895. }
  896. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  897. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  898. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  899. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  900. calculate_SCARA_forward_Transform(delta);
  901. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  902. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  903. current_position[axis] = delta[axis];
  904. // SCARA home positions are based on configuration since the actual limits are determined by the
  905. // inverse kinematic transform.
  906. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  907. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  908. }
  909. else
  910. {
  911. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  912. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  913. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  914. }
  915. #else
  916. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  917. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  918. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  919. #endif
  920. }
  921. #ifdef ENABLE_AUTO_BED_LEVELING
  922. #ifdef AUTO_BED_LEVELING_GRID
  923. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  924. {
  925. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  926. planeNormal.debug("planeNormal");
  927. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  928. //bedLevel.debug("bedLevel");
  929. //plan_bed_level_matrix.debug("bed level before");
  930. //vector_3 uncorrected_position = plan_get_position_mm();
  931. //uncorrected_position.debug("position before");
  932. vector_3 corrected_position = plan_get_position();
  933. // corrected_position.debug("position after");
  934. current_position[X_AXIS] = corrected_position.x;
  935. current_position[Y_AXIS] = corrected_position.y;
  936. current_position[Z_AXIS] = corrected_position.z;
  937. // put the bed at 0 so we don't go below it.
  938. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  940. }
  941. #else // not AUTO_BED_LEVELING_GRID
  942. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  943. plan_bed_level_matrix.set_to_identity();
  944. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  945. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  946. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  947. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  948. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  949. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  950. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  951. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  952. vector_3 corrected_position = plan_get_position();
  953. current_position[X_AXIS] = corrected_position.x;
  954. current_position[Y_AXIS] = corrected_position.y;
  955. current_position[Z_AXIS] = corrected_position.z;
  956. // put the bed at 0 so we don't go below it.
  957. current_position[Z_AXIS] = zprobe_zoffset;
  958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  959. }
  960. #endif // AUTO_BED_LEVELING_GRID
  961. static void run_z_probe() {
  962. plan_bed_level_matrix.set_to_identity();
  963. feedrate = homing_feedrate[Z_AXIS];
  964. // move down until you find the bed
  965. float zPosition = -10;
  966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  967. st_synchronize();
  968. // we have to let the planner know where we are right now as it is not where we said to go.
  969. zPosition = st_get_position_mm(Z_AXIS);
  970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  971. // move up the retract distance
  972. zPosition += home_retract_mm(Z_AXIS);
  973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  974. st_synchronize();
  975. // move back down slowly to find bed
  976. feedrate = homing_feedrate[Z_AXIS]/4;
  977. zPosition -= home_retract_mm(Z_AXIS) * 2;
  978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  979. st_synchronize();
  980. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  981. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  982. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  983. }
  984. static void do_blocking_move_to(float x, float y, float z) {
  985. float oldFeedRate = feedrate;
  986. feedrate = homing_feedrate[Z_AXIS];
  987. current_position[Z_AXIS] = z;
  988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  989. st_synchronize();
  990. feedrate = XY_TRAVEL_SPEED;
  991. current_position[X_AXIS] = x;
  992. current_position[Y_AXIS] = y;
  993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  994. st_synchronize();
  995. feedrate = oldFeedRate;
  996. }
  997. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  998. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  999. }
  1000. static void setup_for_endstop_move() {
  1001. saved_feedrate = feedrate;
  1002. saved_feedmultiply = feedmultiply;
  1003. feedmultiply = 100;
  1004. previous_millis_cmd = millis();
  1005. enable_endstops(true);
  1006. }
  1007. static void clean_up_after_endstop_move() {
  1008. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1009. enable_endstops(false);
  1010. #endif
  1011. feedrate = saved_feedrate;
  1012. feedmultiply = saved_feedmultiply;
  1013. previous_millis_cmd = millis();
  1014. }
  1015. static void engage_z_probe() {
  1016. // Engage Z Servo endstop if enabled
  1017. #ifdef SERVO_ENDSTOPS
  1018. if (servo_endstops[Z_AXIS] > -1) {
  1019. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1020. servos[servo_endstops[Z_AXIS]].attach(0);
  1021. #endif
  1022. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1023. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1024. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1025. servos[servo_endstops[Z_AXIS]].detach();
  1026. #endif
  1027. }
  1028. #endif
  1029. }
  1030. static void retract_z_probe() {
  1031. // Retract Z Servo endstop if enabled
  1032. #ifdef SERVO_ENDSTOPS
  1033. if (servo_endstops[Z_AXIS] > -1) {
  1034. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1035. servos[servo_endstops[Z_AXIS]].attach(0);
  1036. #endif
  1037. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1038. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1039. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1040. servos[servo_endstops[Z_AXIS]].detach();
  1041. #endif
  1042. }
  1043. #endif
  1044. }
  1045. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1046. /// Probe bed height at position (x,y), returns the measured z value
  1047. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract) {
  1048. // move to right place
  1049. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1050. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1051. #ifndef Z_PROBE_SLED
  1052. if (retract_action & ProbeEngage) engage_z_probe();
  1053. #endif
  1054. run_z_probe();
  1055. float measured_z = current_position[Z_AXIS];
  1056. #ifndef Z_PROBE_SLED
  1057. if (retract_action & ProbeRetract) retract_z_probe();
  1058. #endif
  1059. SERIAL_PROTOCOLPGM(MSG_BED);
  1060. SERIAL_PROTOCOLPGM(" x: ");
  1061. SERIAL_PROTOCOL(x);
  1062. SERIAL_PROTOCOLPGM(" y: ");
  1063. SERIAL_PROTOCOL(y);
  1064. SERIAL_PROTOCOLPGM(" z: ");
  1065. SERIAL_PROTOCOL(measured_z);
  1066. SERIAL_PROTOCOLPGM("\n");
  1067. return measured_z;
  1068. }
  1069. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1070. static void homeaxis(int axis) {
  1071. #define HOMEAXIS_DO(LETTER) \
  1072. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1073. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1074. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1075. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1076. 0) {
  1077. int axis_home_dir = home_dir(axis);
  1078. #ifdef DUAL_X_CARRIAGE
  1079. if (axis == X_AXIS)
  1080. axis_home_dir = x_home_dir(active_extruder);
  1081. #endif
  1082. current_position[axis] = 0;
  1083. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1084. #ifndef Z_PROBE_SLED
  1085. // Engage Servo endstop if enabled
  1086. #ifdef SERVO_ENDSTOPS
  1087. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1088. if (axis==Z_AXIS) {
  1089. engage_z_probe();
  1090. }
  1091. else
  1092. #endif
  1093. if (servo_endstops[axis] > -1) {
  1094. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1095. }
  1096. #endif
  1097. #endif // Z_PROBE_SLED
  1098. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1099. feedrate = homing_feedrate[axis];
  1100. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1101. st_synchronize();
  1102. current_position[axis] = 0;
  1103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1104. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1105. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1106. st_synchronize();
  1107. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1108. #ifdef DELTA
  1109. feedrate = homing_feedrate[axis]/10;
  1110. #else
  1111. feedrate = homing_feedrate[axis]/2 ;
  1112. #endif
  1113. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1114. st_synchronize();
  1115. #ifdef DELTA
  1116. // retrace by the amount specified in endstop_adj
  1117. if (endstop_adj[axis] * axis_home_dir < 0) {
  1118. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1119. destination[axis] = endstop_adj[axis];
  1120. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1121. st_synchronize();
  1122. }
  1123. #endif
  1124. axis_is_at_home(axis);
  1125. destination[axis] = current_position[axis];
  1126. feedrate = 0.0;
  1127. endstops_hit_on_purpose();
  1128. axis_known_position[axis] = true;
  1129. // Retract Servo endstop if enabled
  1130. #ifdef SERVO_ENDSTOPS
  1131. if (servo_endstops[axis] > -1) {
  1132. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1133. }
  1134. #endif
  1135. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1136. #ifndef Z_PROBE_SLED
  1137. if (axis==Z_AXIS) retract_z_probe();
  1138. #endif
  1139. #endif
  1140. }
  1141. }
  1142. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1143. void refresh_cmd_timeout(void)
  1144. {
  1145. previous_millis_cmd = millis();
  1146. }
  1147. #ifdef FWRETRACT
  1148. void retract(bool retracting, bool swapretract = false) {
  1149. if(retracting && !retracted[active_extruder]) {
  1150. destination[X_AXIS]=current_position[X_AXIS];
  1151. destination[Y_AXIS]=current_position[Y_AXIS];
  1152. destination[Z_AXIS]=current_position[Z_AXIS];
  1153. destination[E_AXIS]=current_position[E_AXIS];
  1154. if (swapretract) {
  1155. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1156. } else {
  1157. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1158. }
  1159. plan_set_e_position(current_position[E_AXIS]);
  1160. float oldFeedrate = feedrate;
  1161. feedrate=retract_feedrate*60;
  1162. retracted[active_extruder]=true;
  1163. prepare_move();
  1164. if(retract_zlift > 0.01) {
  1165. current_position[Z_AXIS]-=retract_zlift;
  1166. #ifdef DELTA
  1167. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1168. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1169. #else
  1170. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1171. #endif
  1172. prepare_move();
  1173. }
  1174. feedrate = oldFeedrate;
  1175. } else if(!retracting && retracted[active_extruder]) {
  1176. destination[X_AXIS]=current_position[X_AXIS];
  1177. destination[Y_AXIS]=current_position[Y_AXIS];
  1178. destination[Z_AXIS]=current_position[Z_AXIS];
  1179. destination[E_AXIS]=current_position[E_AXIS];
  1180. if(retract_zlift > 0.01) {
  1181. current_position[Z_AXIS]+=retract_zlift;
  1182. #ifdef DELTA
  1183. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1184. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1185. #else
  1186. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1187. #endif
  1188. //prepare_move();
  1189. }
  1190. if (swapretract) {
  1191. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1192. } else {
  1193. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1194. }
  1195. plan_set_e_position(current_position[E_AXIS]);
  1196. float oldFeedrate = feedrate;
  1197. feedrate=retract_recover_feedrate*60;
  1198. retracted[active_extruder]=false;
  1199. prepare_move();
  1200. feedrate = oldFeedrate;
  1201. }
  1202. } //retract
  1203. #endif //FWRETRACT
  1204. #ifdef Z_PROBE_SLED
  1205. #ifndef SLED_DOCKING_OFFSET
  1206. #define SLED_DOCKING_OFFSET 0
  1207. #endif
  1208. //
  1209. // Method to dock/undock a sled designed by Charles Bell.
  1210. //
  1211. // dock[in] If true, move to MAX_X and engage the electromagnet
  1212. // offset[in] The additional distance to move to adjust docking location
  1213. //
  1214. static void dock_sled(bool dock, int offset=0) {
  1215. int z_loc;
  1216. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1217. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1218. SERIAL_ECHO_START;
  1219. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1220. return;
  1221. }
  1222. if (dock) {
  1223. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1224. current_position[Y_AXIS],
  1225. current_position[Z_AXIS]);
  1226. // turn off magnet
  1227. digitalWrite(SERVO0_PIN, LOW);
  1228. } else {
  1229. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1230. z_loc = Z_RAISE_BEFORE_PROBING;
  1231. else
  1232. z_loc = current_position[Z_AXIS];
  1233. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1234. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1235. // turn on magnet
  1236. digitalWrite(SERVO0_PIN, HIGH);
  1237. }
  1238. }
  1239. #endif
  1240. void process_commands()
  1241. {
  1242. unsigned long codenum; //throw away variable
  1243. char *starpos = NULL;
  1244. #ifdef ENABLE_AUTO_BED_LEVELING
  1245. float x_tmp, y_tmp, z_tmp, real_z;
  1246. #endif
  1247. if(code_seen('G'))
  1248. {
  1249. switch((int)code_value())
  1250. {
  1251. case 0: // G0 -> G1
  1252. case 1: // G1
  1253. if(Stopped == false) {
  1254. get_coordinates(); // For X Y Z E F
  1255. #ifdef FWRETRACT
  1256. if(autoretract_enabled)
  1257. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1258. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1259. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1260. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1261. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1262. retract(!retracted);
  1263. return;
  1264. }
  1265. }
  1266. #endif //FWRETRACT
  1267. prepare_move();
  1268. //ClearToSend();
  1269. }
  1270. break;
  1271. #ifndef SCARA //disable arc support
  1272. case 2: // G2 - CW ARC
  1273. if(Stopped == false) {
  1274. get_arc_coordinates();
  1275. prepare_arc_move(true);
  1276. }
  1277. break;
  1278. case 3: // G3 - CCW ARC
  1279. if(Stopped == false) {
  1280. get_arc_coordinates();
  1281. prepare_arc_move(false);
  1282. }
  1283. break;
  1284. #endif
  1285. case 4: // G4 dwell
  1286. LCD_MESSAGEPGM(MSG_DWELL);
  1287. codenum = 0;
  1288. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1289. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1290. st_synchronize();
  1291. codenum += millis(); // keep track of when we started waiting
  1292. previous_millis_cmd = millis();
  1293. while(millis() < codenum) {
  1294. manage_heater();
  1295. manage_inactivity();
  1296. lcd_update();
  1297. }
  1298. break;
  1299. #ifdef FWRETRACT
  1300. case 10: // G10 retract
  1301. #if EXTRUDERS > 1
  1302. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1303. retract(true,retracted_swap[active_extruder]);
  1304. #else
  1305. retract(true);
  1306. #endif
  1307. break;
  1308. case 11: // G11 retract_recover
  1309. #if EXTRUDERS > 1
  1310. retract(false,retracted_swap[active_extruder]);
  1311. #else
  1312. retract(false);
  1313. #endif
  1314. break;
  1315. #endif //FWRETRACT
  1316. case 28: //G28 Home all Axis one at a time
  1317. #ifdef ENABLE_AUTO_BED_LEVELING
  1318. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1319. #endif //ENABLE_AUTO_BED_LEVELING
  1320. saved_feedrate = feedrate;
  1321. saved_feedmultiply = feedmultiply;
  1322. feedmultiply = 100;
  1323. previous_millis_cmd = millis();
  1324. enable_endstops(true);
  1325. for(int8_t i=0; i < NUM_AXIS; i++) {
  1326. destination[i] = current_position[i];
  1327. }
  1328. feedrate = 0.0;
  1329. #ifdef DELTA
  1330. // A delta can only safely home all axis at the same time
  1331. // all axis have to home at the same time
  1332. // Move all carriages up together until the first endstop is hit.
  1333. current_position[X_AXIS] = 0;
  1334. current_position[Y_AXIS] = 0;
  1335. current_position[Z_AXIS] = 0;
  1336. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1337. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1338. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1339. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1340. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1341. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1342. st_synchronize();
  1343. endstops_hit_on_purpose();
  1344. current_position[X_AXIS] = destination[X_AXIS];
  1345. current_position[Y_AXIS] = destination[Y_AXIS];
  1346. current_position[Z_AXIS] = destination[Z_AXIS];
  1347. // take care of back off and rehome now we are all at the top
  1348. HOMEAXIS(X);
  1349. HOMEAXIS(Y);
  1350. HOMEAXIS(Z);
  1351. calculate_delta(current_position);
  1352. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1353. #else // NOT DELTA
  1354. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1355. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1356. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1357. HOMEAXIS(Z);
  1358. }
  1359. #endif
  1360. #ifdef QUICK_HOME
  1361. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1362. {
  1363. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1364. #ifndef DUAL_X_CARRIAGE
  1365. int x_axis_home_dir = home_dir(X_AXIS);
  1366. #else
  1367. int x_axis_home_dir = x_home_dir(active_extruder);
  1368. extruder_duplication_enabled = false;
  1369. #endif
  1370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1371. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1372. feedrate = homing_feedrate[X_AXIS];
  1373. if(homing_feedrate[Y_AXIS]<feedrate)
  1374. feedrate = homing_feedrate[Y_AXIS];
  1375. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1376. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1377. } else {
  1378. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1379. }
  1380. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1381. st_synchronize();
  1382. axis_is_at_home(X_AXIS);
  1383. axis_is_at_home(Y_AXIS);
  1384. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1385. destination[X_AXIS] = current_position[X_AXIS];
  1386. destination[Y_AXIS] = current_position[Y_AXIS];
  1387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1388. feedrate = 0.0;
  1389. st_synchronize();
  1390. endstops_hit_on_purpose();
  1391. current_position[X_AXIS] = destination[X_AXIS];
  1392. current_position[Y_AXIS] = destination[Y_AXIS];
  1393. #ifndef SCARA
  1394. current_position[Z_AXIS] = destination[Z_AXIS];
  1395. #endif
  1396. }
  1397. #endif
  1398. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1399. {
  1400. #ifdef DUAL_X_CARRIAGE
  1401. int tmp_extruder = active_extruder;
  1402. extruder_duplication_enabled = false;
  1403. active_extruder = !active_extruder;
  1404. HOMEAXIS(X);
  1405. inactive_extruder_x_pos = current_position[X_AXIS];
  1406. active_extruder = tmp_extruder;
  1407. HOMEAXIS(X);
  1408. // reset state used by the different modes
  1409. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1410. delayed_move_time = 0;
  1411. active_extruder_parked = true;
  1412. #else
  1413. HOMEAXIS(X);
  1414. #endif
  1415. }
  1416. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1417. HOMEAXIS(Y);
  1418. }
  1419. if(code_seen(axis_codes[X_AXIS]))
  1420. {
  1421. if(code_value_long() != 0) {
  1422. #ifdef SCARA
  1423. current_position[X_AXIS]=code_value();
  1424. #else
  1425. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1426. #endif
  1427. }
  1428. }
  1429. if(code_seen(axis_codes[Y_AXIS])) {
  1430. if(code_value_long() != 0) {
  1431. #ifdef SCARA
  1432. current_position[Y_AXIS]=code_value();
  1433. #else
  1434. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1435. #endif
  1436. }
  1437. }
  1438. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1439. #ifndef Z_SAFE_HOMING
  1440. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1441. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1442. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1443. feedrate = max_feedrate[Z_AXIS];
  1444. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1445. st_synchronize();
  1446. #endif
  1447. HOMEAXIS(Z);
  1448. }
  1449. #else // Z Safe mode activated.
  1450. if(home_all_axis) {
  1451. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1452. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1453. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1454. feedrate = XY_TRAVEL_SPEED/60;
  1455. current_position[Z_AXIS] = 0;
  1456. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1457. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1458. st_synchronize();
  1459. current_position[X_AXIS] = destination[X_AXIS];
  1460. current_position[Y_AXIS] = destination[Y_AXIS];
  1461. HOMEAXIS(Z);
  1462. }
  1463. // Let's see if X and Y are homed and probe is inside bed area.
  1464. if(code_seen(axis_codes[Z_AXIS])) {
  1465. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1466. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1467. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1468. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1469. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1470. current_position[Z_AXIS] = 0;
  1471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1472. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1473. feedrate = max_feedrate[Z_AXIS];
  1474. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1475. st_synchronize();
  1476. HOMEAXIS(Z);
  1477. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1478. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1479. SERIAL_ECHO_START;
  1480. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1481. } else {
  1482. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1483. SERIAL_ECHO_START;
  1484. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1485. }
  1486. }
  1487. #endif
  1488. #endif
  1489. if(code_seen(axis_codes[Z_AXIS])) {
  1490. if(code_value_long() != 0) {
  1491. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1492. }
  1493. }
  1494. #ifdef ENABLE_AUTO_BED_LEVELING
  1495. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1496. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1497. }
  1498. #endif
  1499. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1500. #endif // else DELTA
  1501. #ifdef SCARA
  1502. calculate_delta(current_position);
  1503. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1504. #endif // SCARA
  1505. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1506. enable_endstops(false);
  1507. #endif
  1508. feedrate = saved_feedrate;
  1509. feedmultiply = saved_feedmultiply;
  1510. previous_millis_cmd = millis();
  1511. endstops_hit_on_purpose();
  1512. break;
  1513. #ifdef ENABLE_AUTO_BED_LEVELING
  1514. #if Z_MIN_PIN == -1
  1515. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling!!! Z_MIN_PIN must point to a valid hardware pin."
  1516. #endif
  1517. /**
  1518. * Enhanced G29 Auto Bed Leveling Probe Routine
  1519. *
  1520. * Parameters With AUTO_BED_LEVELING_GRID:
  1521. *
  1522. * P Set the size of the grid that will be probed (P x P points).
  1523. * Example: "G29 P4"
  1524. *
  1525. * V Set the verbose level (0-4). Example: "G29 V3"
  1526. *
  1527. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1528. * This is useful for manual bed leveling and finding flaws in the bed (to
  1529. * assist with part placement).
  1530. *
  1531. * F Set the Front limit of the probing grid
  1532. * B Set the Back limit of the probing grid
  1533. * L Set the Left limit of the probing grid
  1534. * R Set the Right limit of the probing grid
  1535. *
  1536. * Global Parameters:
  1537. *
  1538. * E/e By default G29 engages / disengages the probe for each point.
  1539. * Include "E" to engage and disengage the probe just once.
  1540. * There's no extra effect if you have a fixed probe.
  1541. * Usage: "G29 E" or "G29 e"
  1542. *
  1543. */
  1544. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1545. {
  1546. // Use one of these defines to specify the origin
  1547. // for a topographical map to be printed for your bed.
  1548. #define ORIGIN_BACK_LEFT 1
  1549. #define ORIGIN_FRONT_RIGHT 2
  1550. #define ORIGIN_BACK_RIGHT 3
  1551. #define ORIGIN_FRONT_LEFT 4
  1552. #define TOPO_ORIGIN ORIGIN_FRONT_LEFT
  1553. // Prevent user from running a G29 without first homing in X and Y
  1554. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS])) {
  1555. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1556. SERIAL_ECHO_START;
  1557. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1558. break; // abort G29, since we don't know where we are
  1559. }
  1560. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1561. #ifdef AUTO_BED_LEVELING_GRID
  1562. // Example Syntax: G29 N4 V2 E T
  1563. int verbose_level = 1;
  1564. bool topo_flag = code_seen('T') || code_seen('t');
  1565. if (code_seen('V') || code_seen('v')) {
  1566. verbose_level = code_value();
  1567. if (verbose_level < 0 || verbose_level > 4) {
  1568. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  1569. break;
  1570. }
  1571. if (verbose_level > 0) {
  1572. SERIAL_PROTOCOLPGM("Enhanced G29 Auto_Bed_Leveling Code V1.25:\n");
  1573. SERIAL_PROTOCOLPGM("Full support at http://3dprintboard.com\n");
  1574. if (verbose_level > 2) topo_flag = true;
  1575. }
  1576. }
  1577. int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
  1578. if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
  1579. SERIAL_PROTOCOLPGM("?Number of probed points not plausible (2 minimum).\n");
  1580. break;
  1581. }
  1582. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION;
  1583. int right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION;
  1584. int back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1585. int front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION;
  1586. #endif
  1587. #ifdef Z_PROBE_SLED
  1588. dock_sled(false); // engage (un-dock) the probe
  1589. #endif
  1590. st_synchronize();
  1591. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1592. //vector_3 corrected_position = plan_get_position_mm();
  1593. //corrected_position.debug("position before G29");
  1594. plan_bed_level_matrix.set_to_identity();
  1595. vector_3 uncorrected_position = plan_get_position();
  1596. //uncorrected_position.debug("position durring G29");
  1597. current_position[X_AXIS] = uncorrected_position.x;
  1598. current_position[Y_AXIS] = uncorrected_position.y;
  1599. current_position[Z_AXIS] = uncorrected_position.z;
  1600. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1601. setup_for_endstop_move();
  1602. feedrate = homing_feedrate[Z_AXIS];
  1603. #ifdef AUTO_BED_LEVELING_GRID
  1604. // probe at the points of a lattice grid
  1605. int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1606. int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1607. // solve the plane equation ax + by + d = z
  1608. // A is the matrix with rows [x y 1] for all the probed points
  1609. // B is the vector of the Z positions
  1610. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1611. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1612. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1613. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1614. eqnBVector[abl2], // "B" vector of Z points
  1615. mean = 0.0;
  1616. int probePointCounter = 0;
  1617. bool zig = true;
  1618. for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
  1619. int xProbe, xInc;
  1620. if (zig)
  1621. xProbe = left_probe_bed_position, xInc = xGridSpacing;
  1622. else
  1623. xProbe = right_probe_bed_position, xInc = -xGridSpacing;
  1624. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1625. // This gets the probe points in more readable order.
  1626. if (!topo_flag) zig = !zig;
  1627. for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
  1628. // raise extruder
  1629. float z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  1630. measured_z;
  1631. // Enhanced G29 - Do not retract servo between probes
  1632. ProbeAction act;
  1633. if (enhanced_g29) {
  1634. if (yProbe == front_probe_bed_position && xCount == 0)
  1635. act = ProbeEngage;
  1636. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1637. act = ProbeRetract;
  1638. else
  1639. act = ProbeStay;
  1640. }
  1641. else
  1642. act = ProbeEngageRetract;
  1643. measured_z = probe_pt(xProbe, yProbe, z_before, act);
  1644. mean += measured_z;
  1645. eqnBVector[probePointCounter] = measured_z;
  1646. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1647. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1648. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1649. probePointCounter++;
  1650. xProbe += xInc;
  1651. } //xProbe
  1652. } //yProbe
  1653. clean_up_after_endstop_move();
  1654. // solve lsq problem
  1655. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1656. mean /= abl2;
  1657. if (verbose_level) {
  1658. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1659. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1660. SERIAL_PROTOCOLPGM(" b: ");
  1661. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1662. SERIAL_PROTOCOLPGM(" d: ");
  1663. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1664. if (verbose_level > 2) {
  1665. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1666. SERIAL_PROTOCOL_F(mean, 6);
  1667. SERIAL_PROTOCOLPGM(" \n");
  1668. }
  1669. }
  1670. if (topo_flag) {
  1671. int xx, yy;
  1672. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1673. #if TOPO_ORIGIN == ORIGIN_FRONT_LEFT
  1674. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1675. #else
  1676. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1677. #endif
  1678. {
  1679. #if TOPO_ORIGIN == ORIGIN_BACK_RIGHT
  1680. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1681. #else
  1682. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1683. #endif
  1684. {
  1685. int ind =
  1686. #if TOPO_ORIGIN == ORIGIN_BACK_RIGHT || TOPO_ORIGIN == ORIGIN_FRONT_LEFT
  1687. yy * auto_bed_leveling_grid_points + xx
  1688. #elif TOPO_ORIGIN == ORIGIN_BACK_LEFT
  1689. xx * auto_bed_leveling_grid_points + yy
  1690. #elif TOPO_ORIGIN == ORIGIN_FRONT_RIGHT
  1691. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1692. #endif
  1693. ;
  1694. float diff = eqnBVector[ind] - mean;
  1695. if (diff >= 0.0)
  1696. SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
  1697. else
  1698. SERIAL_PROTOCOLPGM(" -");
  1699. SERIAL_PROTOCOL_F(diff, 5);
  1700. } // xx
  1701. SERIAL_PROTOCOLPGM("\n");
  1702. } // yy
  1703. SERIAL_PROTOCOLPGM("\n");
  1704. } //topo_flag
  1705. set_bed_level_equation_lsq(plane_equation_coefficients);
  1706. free(plane_equation_coefficients);
  1707. #else // !AUTO_BED_LEVELING_GRID
  1708. // Probe at 3 arbitrary points
  1709. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1710. if (enhanced_g29) {
  1711. // Basic Enhanced G29
  1712. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
  1713. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
  1714. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
  1715. }
  1716. else {
  1717. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1718. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1719. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1720. }
  1721. clean_up_after_endstop_move();
  1722. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1723. #endif // !AUTO_BED_LEVELING_GRID
  1724. st_synchronize();
  1725. if (verbose_level > 0)
  1726. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  1727. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1728. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1729. // When the bed is uneven, this height must be corrected.
  1730. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1731. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1732. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1733. z_tmp = current_position[Z_AXIS];
  1734. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1735. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1736. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1737. #ifdef Z_PROBE_SLED
  1738. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  1739. #endif
  1740. }
  1741. break;
  1742. #ifndef Z_PROBE_SLED
  1743. case 30: // G30 Single Z Probe
  1744. {
  1745. engage_z_probe(); // Engage Z Servo endstop if available
  1746. st_synchronize();
  1747. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1748. setup_for_endstop_move();
  1749. feedrate = homing_feedrate[Z_AXIS];
  1750. run_z_probe();
  1751. SERIAL_PROTOCOLPGM(MSG_BED);
  1752. SERIAL_PROTOCOLPGM(" X: ");
  1753. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1754. SERIAL_PROTOCOLPGM(" Y: ");
  1755. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1756. SERIAL_PROTOCOLPGM(" Z: ");
  1757. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1758. SERIAL_PROTOCOLPGM("\n");
  1759. clean_up_after_endstop_move();
  1760. retract_z_probe(); // Retract Z Servo endstop if available
  1761. }
  1762. break;
  1763. #else
  1764. case 31: // dock the sled
  1765. dock_sled(true);
  1766. break;
  1767. case 32: // undock the sled
  1768. dock_sled(false);
  1769. break;
  1770. #endif // Z_PROBE_SLED
  1771. #endif // ENABLE_AUTO_BED_LEVELING
  1772. case 90: // G90
  1773. relative_mode = false;
  1774. break;
  1775. case 91: // G91
  1776. relative_mode = true;
  1777. break;
  1778. case 92: // G92
  1779. if(!code_seen(axis_codes[E_AXIS]))
  1780. st_synchronize();
  1781. for(int8_t i=0; i < NUM_AXIS; i++) {
  1782. if(code_seen(axis_codes[i])) {
  1783. if(i == E_AXIS) {
  1784. current_position[i] = code_value();
  1785. plan_set_e_position(current_position[E_AXIS]);
  1786. }
  1787. else {
  1788. #ifdef SCARA
  1789. if (i == X_AXIS || i == Y_AXIS) {
  1790. current_position[i] = code_value();
  1791. }
  1792. else {
  1793. current_position[i] = code_value()+add_homing[i];
  1794. }
  1795. #else
  1796. current_position[i] = code_value()+add_homing[i];
  1797. #endif
  1798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1799. }
  1800. }
  1801. }
  1802. break;
  1803. }
  1804. }
  1805. else if(code_seen('M'))
  1806. {
  1807. switch( (int)code_value() )
  1808. {
  1809. #ifdef ULTIPANEL
  1810. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1811. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1812. {
  1813. char *src = strchr_pointer + 2;
  1814. codenum = 0;
  1815. bool hasP = false, hasS = false;
  1816. if (code_seen('P')) {
  1817. codenum = code_value(); // milliseconds to wait
  1818. hasP = codenum > 0;
  1819. }
  1820. if (code_seen('S')) {
  1821. codenum = code_value() * 1000; // seconds to wait
  1822. hasS = codenum > 0;
  1823. }
  1824. starpos = strchr(src, '*');
  1825. if (starpos != NULL) *(starpos) = '\0';
  1826. while (*src == ' ') ++src;
  1827. if (!hasP && !hasS && *src != '\0') {
  1828. lcd_setstatus(src);
  1829. } else {
  1830. LCD_MESSAGEPGM(MSG_USERWAIT);
  1831. }
  1832. lcd_ignore_click();
  1833. st_synchronize();
  1834. previous_millis_cmd = millis();
  1835. if (codenum > 0){
  1836. codenum += millis(); // keep track of when we started waiting
  1837. while(millis() < codenum && !lcd_clicked()){
  1838. manage_heater();
  1839. manage_inactivity();
  1840. lcd_update();
  1841. }
  1842. lcd_ignore_click(false);
  1843. }else{
  1844. if (!lcd_detected())
  1845. break;
  1846. while(!lcd_clicked()){
  1847. manage_heater();
  1848. manage_inactivity();
  1849. lcd_update();
  1850. }
  1851. }
  1852. if (IS_SD_PRINTING)
  1853. LCD_MESSAGEPGM(MSG_RESUMING);
  1854. else
  1855. LCD_MESSAGEPGM(WELCOME_MSG);
  1856. }
  1857. break;
  1858. #endif
  1859. case 17:
  1860. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1861. enable_x();
  1862. enable_y();
  1863. enable_z();
  1864. enable_e0();
  1865. enable_e1();
  1866. enable_e2();
  1867. break;
  1868. #ifdef SDSUPPORT
  1869. case 20: // M20 - list SD card
  1870. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1871. card.ls();
  1872. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1873. break;
  1874. case 21: // M21 - init SD card
  1875. card.initsd();
  1876. break;
  1877. case 22: //M22 - release SD card
  1878. card.release();
  1879. break;
  1880. case 23: //M23 - Select file
  1881. starpos = (strchr(strchr_pointer + 4,'*'));
  1882. if(starpos!=NULL)
  1883. *(starpos)='\0';
  1884. card.openFile(strchr_pointer + 4,true);
  1885. break;
  1886. case 24: //M24 - Start SD print
  1887. card.startFileprint();
  1888. starttime=millis();
  1889. break;
  1890. case 25: //M25 - Pause SD print
  1891. card.pauseSDPrint();
  1892. break;
  1893. case 26: //M26 - Set SD index
  1894. if(card.cardOK && code_seen('S')) {
  1895. card.setIndex(code_value_long());
  1896. }
  1897. break;
  1898. case 27: //M27 - Get SD status
  1899. card.getStatus();
  1900. break;
  1901. case 28: //M28 - Start SD write
  1902. starpos = (strchr(strchr_pointer + 4,'*'));
  1903. if(starpos != NULL){
  1904. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1905. strchr_pointer = strchr(npos,' ') + 1;
  1906. *(starpos) = '\0';
  1907. }
  1908. card.openFile(strchr_pointer+4,false);
  1909. break;
  1910. case 29: //M29 - Stop SD write
  1911. //processed in write to file routine above
  1912. //card,saving = false;
  1913. break;
  1914. case 30: //M30 <filename> Delete File
  1915. if (card.cardOK){
  1916. card.closefile();
  1917. starpos = (strchr(strchr_pointer + 4,'*'));
  1918. if(starpos != NULL){
  1919. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1920. strchr_pointer = strchr(npos,' ') + 1;
  1921. *(starpos) = '\0';
  1922. }
  1923. card.removeFile(strchr_pointer + 4);
  1924. }
  1925. break;
  1926. case 32: //M32 - Select file and start SD print
  1927. {
  1928. if(card.sdprinting) {
  1929. st_synchronize();
  1930. }
  1931. starpos = (strchr(strchr_pointer + 4,'*'));
  1932. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1933. if(namestartpos==NULL)
  1934. {
  1935. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1936. }
  1937. else
  1938. namestartpos++; //to skip the '!'
  1939. if(starpos!=NULL)
  1940. *(starpos)='\0';
  1941. bool call_procedure=(code_seen('P'));
  1942. if(strchr_pointer>namestartpos)
  1943. call_procedure=false; //false alert, 'P' found within filename
  1944. if( card.cardOK )
  1945. {
  1946. card.openFile(namestartpos,true,!call_procedure);
  1947. if(code_seen('S'))
  1948. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1949. card.setIndex(code_value_long());
  1950. card.startFileprint();
  1951. if(!call_procedure)
  1952. starttime=millis(); //procedure calls count as normal print time.
  1953. }
  1954. } break;
  1955. case 928: //M928 - Start SD write
  1956. starpos = (strchr(strchr_pointer + 5,'*'));
  1957. if(starpos != NULL){
  1958. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1959. strchr_pointer = strchr(npos,' ') + 1;
  1960. *(starpos) = '\0';
  1961. }
  1962. card.openLogFile(strchr_pointer+5);
  1963. break;
  1964. #endif //SDSUPPORT
  1965. case 31: //M31 take time since the start of the SD print or an M109 command
  1966. {
  1967. stoptime=millis();
  1968. char time[30];
  1969. unsigned long t=(stoptime-starttime)/1000;
  1970. int sec,min;
  1971. min=t/60;
  1972. sec=t%60;
  1973. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1974. SERIAL_ECHO_START;
  1975. SERIAL_ECHOLN(time);
  1976. lcd_setstatus(time);
  1977. autotempShutdown();
  1978. }
  1979. break;
  1980. case 42: //M42 -Change pin status via gcode
  1981. if (code_seen('S'))
  1982. {
  1983. int pin_status = code_value();
  1984. int pin_number = LED_PIN;
  1985. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1986. pin_number = code_value();
  1987. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1988. {
  1989. if (sensitive_pins[i] == pin_number)
  1990. {
  1991. pin_number = -1;
  1992. break;
  1993. }
  1994. }
  1995. #if defined(FAN_PIN) && FAN_PIN > -1
  1996. if (pin_number == FAN_PIN)
  1997. fanSpeed = pin_status;
  1998. #endif
  1999. if (pin_number > -1)
  2000. {
  2001. pinMode(pin_number, OUTPUT);
  2002. digitalWrite(pin_number, pin_status);
  2003. analogWrite(pin_number, pin_status);
  2004. }
  2005. }
  2006. break;
  2007. // M48 Z-Probe repeatability measurement function.
  2008. //
  2009. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  2010. //
  2011. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2012. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2013. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2014. // regenerated.
  2015. //
  2016. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2017. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2018. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2019. //
  2020. #ifdef ENABLE_AUTO_BED_LEVELING
  2021. #ifdef Z_PROBE_REPEATABILITY_TEST
  2022. case 48: // M48 Z-Probe repeatability
  2023. {
  2024. #if Z_MIN_PIN == -1
  2025. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2026. #endif
  2027. double sum=0.0;
  2028. double mean=0.0;
  2029. double sigma=0.0;
  2030. double sample_set[50];
  2031. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  2032. double X_current, Y_current, Z_current;
  2033. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2034. if (code_seen('V') || code_seen('v')) {
  2035. verbose_level = code_value();
  2036. if (verbose_level<0 || verbose_level>4 ) {
  2037. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2038. goto Sigma_Exit;
  2039. }
  2040. }
  2041. if (verbose_level > 0) {
  2042. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2043. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2044. }
  2045. if (code_seen('n')) {
  2046. n_samples = code_value();
  2047. if (n_samples<4 || n_samples>50 ) {
  2048. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2049. goto Sigma_Exit;
  2050. }
  2051. }
  2052. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2053. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2054. Z_current = st_get_position_mm(Z_AXIS);
  2055. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2056. ext_position = st_get_position_mm(E_AXIS);
  2057. if (code_seen('E') || code_seen('e') )
  2058. engage_probe_for_each_reading++;
  2059. if (code_seen('X') || code_seen('x') ) {
  2060. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2061. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2062. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2063. goto Sigma_Exit;
  2064. }
  2065. }
  2066. if (code_seen('Y') || code_seen('y') ) {
  2067. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2068. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2069. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2070. goto Sigma_Exit;
  2071. }
  2072. }
  2073. if (code_seen('L') || code_seen('l') ) {
  2074. n_legs = code_value();
  2075. if ( n_legs==1 )
  2076. n_legs = 2;
  2077. if ( n_legs<0 || n_legs>15 ) {
  2078. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2079. goto Sigma_Exit;
  2080. }
  2081. }
  2082. //
  2083. // Do all the preliminary setup work. First raise the probe.
  2084. //
  2085. st_synchronize();
  2086. plan_bed_level_matrix.set_to_identity();
  2087. plan_buffer_line( X_current, Y_current, Z_start_location,
  2088. ext_position,
  2089. homing_feedrate[Z_AXIS]/60,
  2090. active_extruder);
  2091. st_synchronize();
  2092. //
  2093. // Now get everything to the specified probe point So we can safely do a probe to
  2094. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2095. // use that as a starting point for each probe.
  2096. //
  2097. if (verbose_level > 2)
  2098. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2099. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2100. ext_position,
  2101. homing_feedrate[X_AXIS]/60,
  2102. active_extruder);
  2103. st_synchronize();
  2104. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2105. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2106. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2107. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2108. //
  2109. // OK, do the inital probe to get us close to the bed.
  2110. // Then retrace the right amount and use that in subsequent probes
  2111. //
  2112. engage_z_probe();
  2113. setup_for_endstop_move();
  2114. run_z_probe();
  2115. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2116. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2117. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2118. ext_position,
  2119. homing_feedrate[X_AXIS]/60,
  2120. active_extruder);
  2121. st_synchronize();
  2122. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2123. if (engage_probe_for_each_reading)
  2124. retract_z_probe();
  2125. for( n=0; n<n_samples; n++) {
  2126. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2127. if ( n_legs) {
  2128. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2129. int rotational_direction, l;
  2130. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2131. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2132. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2133. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2134. //SERIAL_ECHOPAIR(" theta: ",theta);
  2135. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2136. //SERIAL_PROTOCOLLNPGM("");
  2137. for( l=0; l<n_legs-1; l++) {
  2138. if (rotational_direction==1)
  2139. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2140. else
  2141. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2142. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2143. if ( radius<0.0 )
  2144. radius = -radius;
  2145. X_current = X_probe_location + cos(theta) * radius;
  2146. Y_current = Y_probe_location + sin(theta) * radius;
  2147. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2148. X_current = X_MIN_POS;
  2149. if ( X_current>X_MAX_POS)
  2150. X_current = X_MAX_POS;
  2151. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2152. Y_current = Y_MIN_POS;
  2153. if ( Y_current>Y_MAX_POS)
  2154. Y_current = Y_MAX_POS;
  2155. if (verbose_level>3 ) {
  2156. SERIAL_ECHOPAIR("x: ", X_current);
  2157. SERIAL_ECHOPAIR("y: ", Y_current);
  2158. SERIAL_PROTOCOLLNPGM("");
  2159. }
  2160. do_blocking_move_to( X_current, Y_current, Z_current );
  2161. }
  2162. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2163. }
  2164. if (engage_probe_for_each_reading) {
  2165. engage_z_probe();
  2166. delay(1000);
  2167. }
  2168. setup_for_endstop_move();
  2169. run_z_probe();
  2170. sample_set[n] = current_position[Z_AXIS];
  2171. //
  2172. // Get the current mean for the data points we have so far
  2173. //
  2174. sum=0.0;
  2175. for( j=0; j<=n; j++) {
  2176. sum = sum + sample_set[j];
  2177. }
  2178. mean = sum / (double (n+1));
  2179. //
  2180. // Now, use that mean to calculate the standard deviation for the
  2181. // data points we have so far
  2182. //
  2183. sum=0.0;
  2184. for( j=0; j<=n; j++) {
  2185. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2186. }
  2187. sigma = sqrt( sum / (double (n+1)) );
  2188. if (verbose_level > 1) {
  2189. SERIAL_PROTOCOL(n+1);
  2190. SERIAL_PROTOCOL(" of ");
  2191. SERIAL_PROTOCOL(n_samples);
  2192. SERIAL_PROTOCOLPGM(" z: ");
  2193. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2194. }
  2195. if (verbose_level > 2) {
  2196. SERIAL_PROTOCOL(" mean: ");
  2197. SERIAL_PROTOCOL_F(mean,6);
  2198. SERIAL_PROTOCOL(" sigma: ");
  2199. SERIAL_PROTOCOL_F(sigma,6);
  2200. }
  2201. if (verbose_level > 0)
  2202. SERIAL_PROTOCOLPGM("\n");
  2203. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2204. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2205. st_synchronize();
  2206. if (engage_probe_for_each_reading) {
  2207. retract_z_probe();
  2208. delay(1000);
  2209. }
  2210. }
  2211. retract_z_probe();
  2212. delay(1000);
  2213. clean_up_after_endstop_move();
  2214. // enable_endstops(true);
  2215. if (verbose_level > 0) {
  2216. SERIAL_PROTOCOLPGM("Mean: ");
  2217. SERIAL_PROTOCOL_F(mean, 6);
  2218. SERIAL_PROTOCOLPGM("\n");
  2219. }
  2220. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2221. SERIAL_PROTOCOL_F(sigma, 6);
  2222. SERIAL_PROTOCOLPGM("\n\n");
  2223. Sigma_Exit:
  2224. break;
  2225. }
  2226. #endif // Z_PROBE_REPEATABILITY_TEST
  2227. #endif // ENABLE_AUTO_BED_LEVELING
  2228. case 104: // M104
  2229. if(setTargetedHotend(104)){
  2230. break;
  2231. }
  2232. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2233. #ifdef DUAL_X_CARRIAGE
  2234. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2235. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2236. #endif
  2237. setWatch();
  2238. break;
  2239. case 112: // M112 -Emergency Stop
  2240. kill();
  2241. break;
  2242. case 140: // M140 set bed temp
  2243. if (code_seen('S')) setTargetBed(code_value());
  2244. break;
  2245. case 105 : // M105
  2246. if(setTargetedHotend(105)){
  2247. break;
  2248. }
  2249. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2250. SERIAL_PROTOCOLPGM("ok T:");
  2251. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2252. SERIAL_PROTOCOLPGM(" /");
  2253. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2254. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2255. SERIAL_PROTOCOLPGM(" B:");
  2256. SERIAL_PROTOCOL_F(degBed(),1);
  2257. SERIAL_PROTOCOLPGM(" /");
  2258. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2259. #endif //TEMP_BED_PIN
  2260. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2261. SERIAL_PROTOCOLPGM(" T");
  2262. SERIAL_PROTOCOL(cur_extruder);
  2263. SERIAL_PROTOCOLPGM(":");
  2264. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2265. SERIAL_PROTOCOLPGM(" /");
  2266. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2267. }
  2268. #else
  2269. SERIAL_ERROR_START;
  2270. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2271. #endif
  2272. SERIAL_PROTOCOLPGM(" @:");
  2273. #ifdef EXTRUDER_WATTS
  2274. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2275. SERIAL_PROTOCOLPGM("W");
  2276. #else
  2277. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2278. #endif
  2279. SERIAL_PROTOCOLPGM(" B@:");
  2280. #ifdef BED_WATTS
  2281. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2282. SERIAL_PROTOCOLPGM("W");
  2283. #else
  2284. SERIAL_PROTOCOL(getHeaterPower(-1));
  2285. #endif
  2286. #ifdef SHOW_TEMP_ADC_VALUES
  2287. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2288. SERIAL_PROTOCOLPGM(" ADC B:");
  2289. SERIAL_PROTOCOL_F(degBed(),1);
  2290. SERIAL_PROTOCOLPGM("C->");
  2291. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2292. #endif
  2293. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2294. SERIAL_PROTOCOLPGM(" T");
  2295. SERIAL_PROTOCOL(cur_extruder);
  2296. SERIAL_PROTOCOLPGM(":");
  2297. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2298. SERIAL_PROTOCOLPGM("C->");
  2299. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2300. }
  2301. #endif
  2302. SERIAL_PROTOCOLLN("");
  2303. return;
  2304. break;
  2305. case 109:
  2306. {// M109 - Wait for extruder heater to reach target.
  2307. if(setTargetedHotend(109)){
  2308. break;
  2309. }
  2310. LCD_MESSAGEPGM(MSG_HEATING);
  2311. #ifdef AUTOTEMP
  2312. autotemp_enabled=false;
  2313. #endif
  2314. if (code_seen('S')) {
  2315. setTargetHotend(code_value(), tmp_extruder);
  2316. #ifdef DUAL_X_CARRIAGE
  2317. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2318. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2319. #endif
  2320. CooldownNoWait = true;
  2321. } else if (code_seen('R')) {
  2322. setTargetHotend(code_value(), tmp_extruder);
  2323. #ifdef DUAL_X_CARRIAGE
  2324. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2325. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2326. #endif
  2327. CooldownNoWait = false;
  2328. }
  2329. #ifdef AUTOTEMP
  2330. if (code_seen('S')) autotemp_min=code_value();
  2331. if (code_seen('B')) autotemp_max=code_value();
  2332. if (code_seen('F'))
  2333. {
  2334. autotemp_factor=code_value();
  2335. autotemp_enabled=true;
  2336. }
  2337. #endif
  2338. setWatch();
  2339. codenum = millis();
  2340. /* See if we are heating up or cooling down */
  2341. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2342. cancel_heatup = false;
  2343. #ifdef TEMP_RESIDENCY_TIME
  2344. long residencyStart;
  2345. residencyStart = -1;
  2346. /* continue to loop until we have reached the target temp
  2347. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2348. while((!cancel_heatup)&&((residencyStart == -1) ||
  2349. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2350. #else
  2351. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2352. #endif //TEMP_RESIDENCY_TIME
  2353. if( (millis() - codenum) > 1000UL )
  2354. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2355. SERIAL_PROTOCOLPGM("T:");
  2356. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2357. SERIAL_PROTOCOLPGM(" E:");
  2358. SERIAL_PROTOCOL((int)tmp_extruder);
  2359. #ifdef TEMP_RESIDENCY_TIME
  2360. SERIAL_PROTOCOLPGM(" W:");
  2361. if(residencyStart > -1)
  2362. {
  2363. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2364. SERIAL_PROTOCOLLN( codenum );
  2365. }
  2366. else
  2367. {
  2368. SERIAL_PROTOCOLLN( "?" );
  2369. }
  2370. #else
  2371. SERIAL_PROTOCOLLN("");
  2372. #endif
  2373. codenum = millis();
  2374. }
  2375. manage_heater();
  2376. manage_inactivity();
  2377. lcd_update();
  2378. #ifdef TEMP_RESIDENCY_TIME
  2379. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2380. or when current temp falls outside the hysteresis after target temp was reached */
  2381. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2382. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2383. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2384. {
  2385. residencyStart = millis();
  2386. }
  2387. #endif //TEMP_RESIDENCY_TIME
  2388. }
  2389. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2390. starttime=millis();
  2391. previous_millis_cmd = millis();
  2392. }
  2393. break;
  2394. case 190: // M190 - Wait for bed heater to reach target.
  2395. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2396. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2397. if (code_seen('S')) {
  2398. setTargetBed(code_value());
  2399. CooldownNoWait = true;
  2400. } else if (code_seen('R')) {
  2401. setTargetBed(code_value());
  2402. CooldownNoWait = false;
  2403. }
  2404. codenum = millis();
  2405. cancel_heatup = false;
  2406. target_direction = isHeatingBed(); // true if heating, false if cooling
  2407. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2408. {
  2409. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2410. {
  2411. float tt=degHotend(active_extruder);
  2412. SERIAL_PROTOCOLPGM("T:");
  2413. SERIAL_PROTOCOL(tt);
  2414. SERIAL_PROTOCOLPGM(" E:");
  2415. SERIAL_PROTOCOL((int)active_extruder);
  2416. SERIAL_PROTOCOLPGM(" B:");
  2417. SERIAL_PROTOCOL_F(degBed(),1);
  2418. SERIAL_PROTOCOLLN("");
  2419. codenum = millis();
  2420. }
  2421. manage_heater();
  2422. manage_inactivity();
  2423. lcd_update();
  2424. }
  2425. LCD_MESSAGEPGM(MSG_BED_DONE);
  2426. previous_millis_cmd = millis();
  2427. #endif
  2428. break;
  2429. #if defined(FAN_PIN) && FAN_PIN > -1
  2430. case 106: //M106 Fan On
  2431. if (code_seen('S')){
  2432. fanSpeed=constrain(code_value(),0,255);
  2433. }
  2434. else {
  2435. fanSpeed=255;
  2436. }
  2437. break;
  2438. case 107: //M107 Fan Off
  2439. fanSpeed = 0;
  2440. break;
  2441. #endif //FAN_PIN
  2442. #ifdef BARICUDA
  2443. // PWM for HEATER_1_PIN
  2444. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2445. case 126: //M126 valve open
  2446. if (code_seen('S')){
  2447. ValvePressure=constrain(code_value(),0,255);
  2448. }
  2449. else {
  2450. ValvePressure=255;
  2451. }
  2452. break;
  2453. case 127: //M127 valve closed
  2454. ValvePressure = 0;
  2455. break;
  2456. #endif //HEATER_1_PIN
  2457. // PWM for HEATER_2_PIN
  2458. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2459. case 128: //M128 valve open
  2460. if (code_seen('S')){
  2461. EtoPPressure=constrain(code_value(),0,255);
  2462. }
  2463. else {
  2464. EtoPPressure=255;
  2465. }
  2466. break;
  2467. case 129: //M129 valve closed
  2468. EtoPPressure = 0;
  2469. break;
  2470. #endif //HEATER_2_PIN
  2471. #endif
  2472. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2473. case 80: // M80 - Turn on Power Supply
  2474. SET_OUTPUT(PS_ON_PIN); //GND
  2475. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2476. // If you have a switch on suicide pin, this is useful
  2477. // if you want to start another print with suicide feature after
  2478. // a print without suicide...
  2479. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2480. SET_OUTPUT(SUICIDE_PIN);
  2481. WRITE(SUICIDE_PIN, HIGH);
  2482. #endif
  2483. #ifdef ULTIPANEL
  2484. powersupply = true;
  2485. LCD_MESSAGEPGM(WELCOME_MSG);
  2486. lcd_update();
  2487. #endif
  2488. break;
  2489. #endif
  2490. case 81: // M81 - Turn off Power Supply
  2491. disable_heater();
  2492. st_synchronize();
  2493. disable_e0();
  2494. disable_e1();
  2495. disable_e2();
  2496. finishAndDisableSteppers();
  2497. fanSpeed = 0;
  2498. delay(1000); // Wait a little before to switch off
  2499. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2500. st_synchronize();
  2501. suicide();
  2502. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2503. SET_OUTPUT(PS_ON_PIN);
  2504. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2505. #endif
  2506. #ifdef ULTIPANEL
  2507. powersupply = false;
  2508. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2509. lcd_update();
  2510. #endif
  2511. break;
  2512. case 82:
  2513. axis_relative_modes[3] = false;
  2514. break;
  2515. case 83:
  2516. axis_relative_modes[3] = true;
  2517. break;
  2518. case 18: //compatibility
  2519. case 84: // M84
  2520. if(code_seen('S')){
  2521. stepper_inactive_time = code_value() * 1000;
  2522. }
  2523. else
  2524. {
  2525. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2526. if(all_axis)
  2527. {
  2528. st_synchronize();
  2529. disable_e0();
  2530. disable_e1();
  2531. disable_e2();
  2532. finishAndDisableSteppers();
  2533. }
  2534. else
  2535. {
  2536. st_synchronize();
  2537. if(code_seen('X')) disable_x();
  2538. if(code_seen('Y')) disable_y();
  2539. if(code_seen('Z')) disable_z();
  2540. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2541. if(code_seen('E')) {
  2542. disable_e0();
  2543. disable_e1();
  2544. disable_e2();
  2545. }
  2546. #endif
  2547. }
  2548. }
  2549. break;
  2550. case 85: // M85
  2551. if(code_seen('S')) {
  2552. max_inactive_time = code_value() * 1000;
  2553. }
  2554. break;
  2555. case 92: // M92
  2556. for(int8_t i=0; i < NUM_AXIS; i++)
  2557. {
  2558. if(code_seen(axis_codes[i]))
  2559. {
  2560. if(i == 3) { // E
  2561. float value = code_value();
  2562. if(value < 20.0) {
  2563. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2564. max_e_jerk *= factor;
  2565. max_feedrate[i] *= factor;
  2566. axis_steps_per_sqr_second[i] *= factor;
  2567. }
  2568. axis_steps_per_unit[i] = value;
  2569. }
  2570. else {
  2571. axis_steps_per_unit[i] = code_value();
  2572. }
  2573. }
  2574. }
  2575. break;
  2576. case 115: // M115
  2577. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2578. break;
  2579. case 117: // M117 display message
  2580. starpos = (strchr(strchr_pointer + 5,'*'));
  2581. if(starpos!=NULL)
  2582. *(starpos)='\0';
  2583. lcd_setstatus(strchr_pointer + 5);
  2584. break;
  2585. case 114: // M114
  2586. SERIAL_PROTOCOLPGM("X:");
  2587. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2588. SERIAL_PROTOCOLPGM(" Y:");
  2589. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2590. SERIAL_PROTOCOLPGM(" Z:");
  2591. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2592. SERIAL_PROTOCOLPGM(" E:");
  2593. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2594. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2595. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2596. SERIAL_PROTOCOLPGM(" Y:");
  2597. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2598. SERIAL_PROTOCOLPGM(" Z:");
  2599. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2600. SERIAL_PROTOCOLLN("");
  2601. #ifdef SCARA
  2602. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2603. SERIAL_PROTOCOL(delta[X_AXIS]);
  2604. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2605. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2606. SERIAL_PROTOCOLLN("");
  2607. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2608. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2609. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2610. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2611. SERIAL_PROTOCOLLN("");
  2612. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2613. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2614. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2615. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2616. SERIAL_PROTOCOLLN("");
  2617. SERIAL_PROTOCOLLN("");
  2618. #endif
  2619. break;
  2620. case 120: // M120
  2621. enable_endstops(false) ;
  2622. break;
  2623. case 121: // M121
  2624. enable_endstops(true) ;
  2625. break;
  2626. case 119: // M119
  2627. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2628. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2629. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2630. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2631. #endif
  2632. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2633. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2634. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2635. #endif
  2636. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2637. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2638. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2639. #endif
  2640. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2641. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2642. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2643. #endif
  2644. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2645. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2646. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2647. #endif
  2648. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2649. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2650. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2651. #endif
  2652. break;
  2653. //TODO: update for all axis, use for loop
  2654. #ifdef BLINKM
  2655. case 150: // M150
  2656. {
  2657. byte red;
  2658. byte grn;
  2659. byte blu;
  2660. if(code_seen('R')) red = code_value();
  2661. if(code_seen('U')) grn = code_value();
  2662. if(code_seen('B')) blu = code_value();
  2663. SendColors(red,grn,blu);
  2664. }
  2665. break;
  2666. #endif //BLINKM
  2667. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2668. {
  2669. tmp_extruder = active_extruder;
  2670. if(code_seen('T')) {
  2671. tmp_extruder = code_value();
  2672. if(tmp_extruder >= EXTRUDERS) {
  2673. SERIAL_ECHO_START;
  2674. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2675. break;
  2676. }
  2677. }
  2678. float area = .0;
  2679. if(code_seen('D')) {
  2680. float diameter = code_value();
  2681. // setting any extruder filament size disables volumetric on the assumption that
  2682. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2683. // for all extruders
  2684. volumetric_enabled = (diameter != 0.0);
  2685. if (volumetric_enabled) {
  2686. filament_size[tmp_extruder] = diameter;
  2687. // make sure all extruders have some sane value for the filament size
  2688. for (int i=0; i<EXTRUDERS; i++)
  2689. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2690. }
  2691. } else {
  2692. //reserved for setting filament diameter via UFID or filament measuring device
  2693. break;
  2694. }
  2695. calculate_volumetric_multipliers();
  2696. }
  2697. break;
  2698. case 201: // M201
  2699. for(int8_t i=0; i < NUM_AXIS; i++)
  2700. {
  2701. if(code_seen(axis_codes[i]))
  2702. {
  2703. max_acceleration_units_per_sq_second[i] = code_value();
  2704. }
  2705. }
  2706. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2707. reset_acceleration_rates();
  2708. break;
  2709. #if 0 // Not used for Sprinter/grbl gen6
  2710. case 202: // M202
  2711. for(int8_t i=0; i < NUM_AXIS; i++) {
  2712. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2713. }
  2714. break;
  2715. #endif
  2716. case 203: // M203 max feedrate mm/sec
  2717. for(int8_t i=0; i < NUM_AXIS; i++) {
  2718. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2719. }
  2720. break;
  2721. case 204: // M204 acclereration S normal moves T filmanent only moves
  2722. {
  2723. if(code_seen('S')) acceleration = code_value() ;
  2724. if(code_seen('T')) retract_acceleration = code_value() ;
  2725. }
  2726. break;
  2727. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2728. {
  2729. if(code_seen('S')) minimumfeedrate = code_value();
  2730. if(code_seen('T')) mintravelfeedrate = code_value();
  2731. if(code_seen('B')) minsegmenttime = code_value() ;
  2732. if(code_seen('X')) max_xy_jerk = code_value() ;
  2733. if(code_seen('Z')) max_z_jerk = code_value() ;
  2734. if(code_seen('E')) max_e_jerk = code_value() ;
  2735. }
  2736. break;
  2737. case 206: // M206 additional homing offset
  2738. for(int8_t i=0; i < 3; i++)
  2739. {
  2740. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2741. }
  2742. #ifdef SCARA
  2743. if(code_seen('T')) // Theta
  2744. {
  2745. add_homing[X_AXIS] = code_value() ;
  2746. }
  2747. if(code_seen('P')) // Psi
  2748. {
  2749. add_homing[Y_AXIS] = code_value() ;
  2750. }
  2751. #endif
  2752. break;
  2753. #ifdef DELTA
  2754. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2755. if(code_seen('L')) {
  2756. delta_diagonal_rod= code_value();
  2757. }
  2758. if(code_seen('R')) {
  2759. delta_radius= code_value();
  2760. }
  2761. if(code_seen('S')) {
  2762. delta_segments_per_second= code_value();
  2763. }
  2764. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2765. break;
  2766. case 666: // M666 set delta endstop adjustemnt
  2767. for(int8_t i=0; i < 3; i++)
  2768. {
  2769. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2770. }
  2771. break;
  2772. #endif
  2773. #ifdef FWRETRACT
  2774. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2775. {
  2776. if(code_seen('S'))
  2777. {
  2778. retract_length = code_value() ;
  2779. }
  2780. if(code_seen('F'))
  2781. {
  2782. retract_feedrate = code_value()/60 ;
  2783. }
  2784. if(code_seen('Z'))
  2785. {
  2786. retract_zlift = code_value() ;
  2787. }
  2788. }break;
  2789. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2790. {
  2791. if(code_seen('S'))
  2792. {
  2793. retract_recover_length = code_value() ;
  2794. }
  2795. if(code_seen('F'))
  2796. {
  2797. retract_recover_feedrate = code_value()/60 ;
  2798. }
  2799. }break;
  2800. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2801. {
  2802. if(code_seen('S'))
  2803. {
  2804. int t= code_value() ;
  2805. switch(t)
  2806. {
  2807. case 0:
  2808. case 1:
  2809. {
  2810. autoretract_enabled = (t == 1);
  2811. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  2812. }break;
  2813. default:
  2814. SERIAL_ECHO_START;
  2815. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2816. SERIAL_ECHO(cmdbuffer[bufindr]);
  2817. SERIAL_ECHOLNPGM("\"");
  2818. }
  2819. }
  2820. }break;
  2821. #endif // FWRETRACT
  2822. #if EXTRUDERS > 1
  2823. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2824. {
  2825. if(setTargetedHotend(218)){
  2826. break;
  2827. }
  2828. if(code_seen('X'))
  2829. {
  2830. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2831. }
  2832. if(code_seen('Y'))
  2833. {
  2834. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2835. }
  2836. #ifdef DUAL_X_CARRIAGE
  2837. if(code_seen('Z'))
  2838. {
  2839. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2840. }
  2841. #endif
  2842. SERIAL_ECHO_START;
  2843. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2844. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2845. {
  2846. SERIAL_ECHO(" ");
  2847. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2848. SERIAL_ECHO(",");
  2849. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2850. #ifdef DUAL_X_CARRIAGE
  2851. SERIAL_ECHO(",");
  2852. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2853. #endif
  2854. }
  2855. SERIAL_ECHOLN("");
  2856. }break;
  2857. #endif
  2858. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2859. {
  2860. if(code_seen('S'))
  2861. {
  2862. feedmultiply = code_value() ;
  2863. }
  2864. }
  2865. break;
  2866. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2867. {
  2868. if(code_seen('S'))
  2869. {
  2870. int tmp_code = code_value();
  2871. if (code_seen('T'))
  2872. {
  2873. if(setTargetedHotend(221)){
  2874. break;
  2875. }
  2876. extruder_multiply[tmp_extruder] = tmp_code;
  2877. }
  2878. else
  2879. {
  2880. extrudemultiply = tmp_code ;
  2881. }
  2882. }
  2883. }
  2884. break;
  2885. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2886. {
  2887. if(code_seen('P')){
  2888. int pin_number = code_value(); // pin number
  2889. int pin_state = -1; // required pin state - default is inverted
  2890. if(code_seen('S')) pin_state = code_value(); // required pin state
  2891. if(pin_state >= -1 && pin_state <= 1){
  2892. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2893. {
  2894. if (sensitive_pins[i] == pin_number)
  2895. {
  2896. pin_number = -1;
  2897. break;
  2898. }
  2899. }
  2900. if (pin_number > -1)
  2901. {
  2902. int target = LOW;
  2903. st_synchronize();
  2904. pinMode(pin_number, INPUT);
  2905. switch(pin_state){
  2906. case 1:
  2907. target = HIGH;
  2908. break;
  2909. case 0:
  2910. target = LOW;
  2911. break;
  2912. case -1:
  2913. target = !digitalRead(pin_number);
  2914. break;
  2915. }
  2916. while(digitalRead(pin_number) != target){
  2917. manage_heater();
  2918. manage_inactivity();
  2919. lcd_update();
  2920. }
  2921. }
  2922. }
  2923. }
  2924. }
  2925. break;
  2926. #if NUM_SERVOS > 0
  2927. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2928. {
  2929. int servo_index = -1;
  2930. int servo_position = 0;
  2931. if (code_seen('P'))
  2932. servo_index = code_value();
  2933. if (code_seen('S')) {
  2934. servo_position = code_value();
  2935. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2936. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2937. servos[servo_index].attach(0);
  2938. #endif
  2939. servos[servo_index].write(servo_position);
  2940. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2941. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2942. servos[servo_index].detach();
  2943. #endif
  2944. }
  2945. else {
  2946. SERIAL_ECHO_START;
  2947. SERIAL_ECHO("Servo ");
  2948. SERIAL_ECHO(servo_index);
  2949. SERIAL_ECHOLN(" out of range");
  2950. }
  2951. }
  2952. else if (servo_index >= 0) {
  2953. SERIAL_PROTOCOL(MSG_OK);
  2954. SERIAL_PROTOCOL(" Servo ");
  2955. SERIAL_PROTOCOL(servo_index);
  2956. SERIAL_PROTOCOL(": ");
  2957. SERIAL_PROTOCOL(servos[servo_index].read());
  2958. SERIAL_PROTOCOLLN("");
  2959. }
  2960. }
  2961. break;
  2962. #endif // NUM_SERVOS > 0
  2963. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2964. case 300: // M300
  2965. {
  2966. int beepS = code_seen('S') ? code_value() : 110;
  2967. int beepP = code_seen('P') ? code_value() : 1000;
  2968. if (beepS > 0)
  2969. {
  2970. #if BEEPER > 0
  2971. tone(BEEPER, beepS);
  2972. delay(beepP);
  2973. noTone(BEEPER);
  2974. #elif defined(ULTRALCD)
  2975. lcd_buzz(beepS, beepP);
  2976. #elif defined(LCD_USE_I2C_BUZZER)
  2977. lcd_buzz(beepP, beepS);
  2978. #endif
  2979. }
  2980. else
  2981. {
  2982. delay(beepP);
  2983. }
  2984. }
  2985. break;
  2986. #endif // M300
  2987. #ifdef PIDTEMP
  2988. case 301: // M301
  2989. {
  2990. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2991. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2992. int e = 0; // extruder being updated
  2993. if (code_seen('E'))
  2994. {
  2995. e = (int)code_value();
  2996. }
  2997. if (e < EXTRUDERS) // catch bad input value
  2998. {
  2999. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  3000. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  3001. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  3002. #ifdef PID_ADD_EXTRUSION_RATE
  3003. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  3004. #endif
  3005. updatePID();
  3006. SERIAL_PROTOCOL(MSG_OK);
  3007. #ifdef PID_PARAMS_PER_EXTRUDER
  3008. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3009. SERIAL_PROTOCOL(e);
  3010. #endif // PID_PARAMS_PER_EXTRUDER
  3011. SERIAL_PROTOCOL(" p:");
  3012. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  3013. SERIAL_PROTOCOL(" i:");
  3014. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  3015. SERIAL_PROTOCOL(" d:");
  3016. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  3017. #ifdef PID_ADD_EXTRUSION_RATE
  3018. SERIAL_PROTOCOL(" c:");
  3019. //Kc does not have scaling applied above, or in resetting defaults
  3020. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  3021. #endif
  3022. SERIAL_PROTOCOLLN("");
  3023. }
  3024. else
  3025. {
  3026. SERIAL_ECHO_START;
  3027. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3028. }
  3029. }
  3030. break;
  3031. #endif //PIDTEMP
  3032. #ifdef PIDTEMPBED
  3033. case 304: // M304
  3034. {
  3035. if(code_seen('P')) bedKp = code_value();
  3036. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3037. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3038. updatePID();
  3039. SERIAL_PROTOCOL(MSG_OK);
  3040. SERIAL_PROTOCOL(" p:");
  3041. SERIAL_PROTOCOL(bedKp);
  3042. SERIAL_PROTOCOL(" i:");
  3043. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3044. SERIAL_PROTOCOL(" d:");
  3045. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3046. SERIAL_PROTOCOLLN("");
  3047. }
  3048. break;
  3049. #endif //PIDTEMP
  3050. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3051. {
  3052. #ifdef CHDK
  3053. SET_OUTPUT(CHDK);
  3054. WRITE(CHDK, HIGH);
  3055. chdkHigh = millis();
  3056. chdkActive = true;
  3057. #else
  3058. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3059. const uint8_t NUM_PULSES=16;
  3060. const float PULSE_LENGTH=0.01524;
  3061. for(int i=0; i < NUM_PULSES; i++) {
  3062. WRITE(PHOTOGRAPH_PIN, HIGH);
  3063. _delay_ms(PULSE_LENGTH);
  3064. WRITE(PHOTOGRAPH_PIN, LOW);
  3065. _delay_ms(PULSE_LENGTH);
  3066. }
  3067. delay(7.33);
  3068. for(int i=0; i < NUM_PULSES; i++) {
  3069. WRITE(PHOTOGRAPH_PIN, HIGH);
  3070. _delay_ms(PULSE_LENGTH);
  3071. WRITE(PHOTOGRAPH_PIN, LOW);
  3072. _delay_ms(PULSE_LENGTH);
  3073. }
  3074. #endif
  3075. #endif //chdk end if
  3076. }
  3077. break;
  3078. #ifdef DOGLCD
  3079. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3080. {
  3081. if (code_seen('C')) {
  3082. lcd_setcontrast( ((int)code_value())&63 );
  3083. }
  3084. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3085. SERIAL_PROTOCOL(lcd_contrast);
  3086. SERIAL_PROTOCOLLN("");
  3087. }
  3088. break;
  3089. #endif
  3090. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3091. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3092. {
  3093. float temp = .0;
  3094. if (code_seen('S')) temp=code_value();
  3095. set_extrude_min_temp(temp);
  3096. }
  3097. break;
  3098. #endif
  3099. case 303: // M303 PID autotune
  3100. {
  3101. float temp = 150.0;
  3102. int e=0;
  3103. int c=5;
  3104. if (code_seen('E')) e=code_value();
  3105. if (e<0)
  3106. temp=70;
  3107. if (code_seen('S')) temp=code_value();
  3108. if (code_seen('C')) c=code_value();
  3109. PID_autotune(temp, e, c);
  3110. }
  3111. break;
  3112. #ifdef SCARA
  3113. case 360: // M360 SCARA Theta pos1
  3114. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3115. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3116. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3117. if(Stopped == false) {
  3118. //get_coordinates(); // For X Y Z E F
  3119. delta[X_AXIS] = 0;
  3120. delta[Y_AXIS] = 120;
  3121. calculate_SCARA_forward_Transform(delta);
  3122. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3123. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3124. prepare_move();
  3125. //ClearToSend();
  3126. return;
  3127. }
  3128. break;
  3129. case 361: // SCARA Theta pos2
  3130. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3131. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3132. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3133. if(Stopped == false) {
  3134. //get_coordinates(); // For X Y Z E F
  3135. delta[X_AXIS] = 90;
  3136. delta[Y_AXIS] = 130;
  3137. calculate_SCARA_forward_Transform(delta);
  3138. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3139. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3140. prepare_move();
  3141. //ClearToSend();
  3142. return;
  3143. }
  3144. break;
  3145. case 362: // SCARA Psi pos1
  3146. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3147. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3148. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3149. if(Stopped == false) {
  3150. //get_coordinates(); // For X Y Z E F
  3151. delta[X_AXIS] = 60;
  3152. delta[Y_AXIS] = 180;
  3153. calculate_SCARA_forward_Transform(delta);
  3154. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3155. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3156. prepare_move();
  3157. //ClearToSend();
  3158. return;
  3159. }
  3160. break;
  3161. case 363: // SCARA Psi pos2
  3162. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3163. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3164. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3165. if(Stopped == false) {
  3166. //get_coordinates(); // For X Y Z E F
  3167. delta[X_AXIS] = 50;
  3168. delta[Y_AXIS] = 90;
  3169. calculate_SCARA_forward_Transform(delta);
  3170. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3171. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3172. prepare_move();
  3173. //ClearToSend();
  3174. return;
  3175. }
  3176. break;
  3177. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3178. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3179. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3180. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3181. if(Stopped == false) {
  3182. //get_coordinates(); // For X Y Z E F
  3183. delta[X_AXIS] = 45;
  3184. delta[Y_AXIS] = 135;
  3185. calculate_SCARA_forward_Transform(delta);
  3186. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3187. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3188. prepare_move();
  3189. //ClearToSend();
  3190. return;
  3191. }
  3192. break;
  3193. case 365: // M364 Set SCARA scaling for X Y Z
  3194. for(int8_t i=0; i < 3; i++)
  3195. {
  3196. if(code_seen(axis_codes[i]))
  3197. {
  3198. axis_scaling[i] = code_value();
  3199. }
  3200. }
  3201. break;
  3202. #endif
  3203. case 400: // M400 finish all moves
  3204. {
  3205. st_synchronize();
  3206. }
  3207. break;
  3208. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3209. case 401:
  3210. {
  3211. engage_z_probe(); // Engage Z Servo endstop if available
  3212. }
  3213. break;
  3214. case 402:
  3215. {
  3216. retract_z_probe(); // Retract Z Servo endstop if enabled
  3217. }
  3218. break;
  3219. #endif
  3220. #ifdef FILAMENT_SENSOR
  3221. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3222. {
  3223. #if (FILWIDTH_PIN > -1)
  3224. if(code_seen('N')) filament_width_nominal=code_value();
  3225. else{
  3226. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3227. SERIAL_PROTOCOLLN(filament_width_nominal);
  3228. }
  3229. #endif
  3230. }
  3231. break;
  3232. case 405: //M405 Turn on filament sensor for control
  3233. {
  3234. if(code_seen('D')) meas_delay_cm=code_value();
  3235. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3236. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3237. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3238. {
  3239. int temp_ratio = widthFil_to_size_ratio();
  3240. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3241. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3242. }
  3243. delay_index1=0;
  3244. delay_index2=0;
  3245. }
  3246. filament_sensor = true ;
  3247. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3248. //SERIAL_PROTOCOL(filament_width_meas);
  3249. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3250. //SERIAL_PROTOCOL(extrudemultiply);
  3251. }
  3252. break;
  3253. case 406: //M406 Turn off filament sensor for control
  3254. {
  3255. filament_sensor = false ;
  3256. }
  3257. break;
  3258. case 407: //M407 Display measured filament diameter
  3259. {
  3260. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3261. SERIAL_PROTOCOLLN(filament_width_meas);
  3262. }
  3263. break;
  3264. #endif
  3265. case 500: // M500 Store settings in EEPROM
  3266. {
  3267. Config_StoreSettings();
  3268. }
  3269. break;
  3270. case 501: // M501 Read settings from EEPROM
  3271. {
  3272. Config_RetrieveSettings();
  3273. }
  3274. break;
  3275. case 502: // M502 Revert to default settings
  3276. {
  3277. Config_ResetDefault();
  3278. }
  3279. break;
  3280. case 503: // M503 print settings currently in memory
  3281. {
  3282. Config_PrintSettings(code_seen('S') && code_value == 0);
  3283. }
  3284. break;
  3285. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3286. case 540:
  3287. {
  3288. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3289. }
  3290. break;
  3291. #endif
  3292. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3293. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3294. {
  3295. float value;
  3296. if (code_seen('Z'))
  3297. {
  3298. value = code_value();
  3299. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3300. {
  3301. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3302. SERIAL_ECHO_START;
  3303. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3304. SERIAL_PROTOCOLLN("");
  3305. }
  3306. else
  3307. {
  3308. SERIAL_ECHO_START;
  3309. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3310. SERIAL_ECHOPGM(MSG_Z_MIN);
  3311. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3312. SERIAL_ECHOPGM(MSG_Z_MAX);
  3313. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3314. SERIAL_PROTOCOLLN("");
  3315. }
  3316. }
  3317. else
  3318. {
  3319. SERIAL_ECHO_START;
  3320. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3321. SERIAL_ECHO(-zprobe_zoffset);
  3322. SERIAL_PROTOCOLLN("");
  3323. }
  3324. break;
  3325. }
  3326. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3327. #ifdef FILAMENTCHANGEENABLE
  3328. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3329. {
  3330. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate/60;
  3331. for (int i=0; i<NUM_AXIS; i++)
  3332. target[i] = lastpos[i] = current_position[i];
  3333. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3334. #ifdef DELTA
  3335. #define RUNPLAN calculate_delta(target); BASICPLAN
  3336. #else
  3337. #define RUNPLAN BASICPLAN
  3338. #endif
  3339. //retract by E
  3340. if(code_seen('E'))
  3341. {
  3342. target[E_AXIS]+= code_value();
  3343. }
  3344. else
  3345. {
  3346. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3347. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3348. #endif
  3349. }
  3350. RUNPLAN;
  3351. //lift Z
  3352. if(code_seen('Z'))
  3353. {
  3354. target[Z_AXIS]+= code_value();
  3355. }
  3356. else
  3357. {
  3358. #ifdef FILAMENTCHANGE_ZADD
  3359. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3360. #endif
  3361. }
  3362. RUNPLAN;
  3363. //move xy
  3364. if(code_seen('X'))
  3365. {
  3366. target[X_AXIS]= code_value();
  3367. }
  3368. else
  3369. {
  3370. #ifdef FILAMENTCHANGE_XPOS
  3371. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3372. #endif
  3373. }
  3374. if(code_seen('Y'))
  3375. {
  3376. target[Y_AXIS]= code_value();
  3377. }
  3378. else
  3379. {
  3380. #ifdef FILAMENTCHANGE_YPOS
  3381. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3382. #endif
  3383. }
  3384. RUNPLAN;
  3385. if(code_seen('L'))
  3386. {
  3387. target[E_AXIS]+= code_value();
  3388. }
  3389. else
  3390. {
  3391. #ifdef FILAMENTCHANGE_FINALRETRACT
  3392. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3393. #endif
  3394. }
  3395. RUNPLAN;
  3396. //finish moves
  3397. st_synchronize();
  3398. //disable extruder steppers so filament can be removed
  3399. disable_e0();
  3400. disable_e1();
  3401. disable_e2();
  3402. delay(100);
  3403. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3404. uint8_t cnt=0;
  3405. while(!lcd_clicked()){
  3406. cnt++;
  3407. manage_heater();
  3408. manage_inactivity(true);
  3409. lcd_update();
  3410. if(cnt==0)
  3411. {
  3412. #if BEEPER > 0
  3413. SET_OUTPUT(BEEPER);
  3414. WRITE(BEEPER,HIGH);
  3415. delay(3);
  3416. WRITE(BEEPER,LOW);
  3417. delay(3);
  3418. #else
  3419. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3420. lcd_buzz(1000/6,100);
  3421. #else
  3422. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3423. #endif
  3424. #endif
  3425. }
  3426. }
  3427. //return to normal
  3428. if(code_seen('L'))
  3429. {
  3430. target[E_AXIS]+= -code_value();
  3431. }
  3432. else
  3433. {
  3434. #ifdef FILAMENTCHANGE_FINALRETRACT
  3435. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3436. #endif
  3437. }
  3438. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3439. plan_set_e_position(current_position[E_AXIS]);
  3440. RUNPLAN; //should do nothing
  3441. //reset LCD alert message
  3442. lcd_reset_alert_level();
  3443. #ifdef DELTA
  3444. calculate_delta(lastpos);
  3445. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3446. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3447. #else
  3448. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3449. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3450. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3451. #endif
  3452. }
  3453. break;
  3454. #endif //FILAMENTCHANGEENABLE
  3455. #ifdef DUAL_X_CARRIAGE
  3456. case 605: // Set dual x-carriage movement mode:
  3457. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3458. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3459. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3460. // millimeters x-offset and an optional differential hotend temperature of
  3461. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3462. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3463. //
  3464. // Note: the X axis should be homed after changing dual x-carriage mode.
  3465. {
  3466. st_synchronize();
  3467. if (code_seen('S'))
  3468. dual_x_carriage_mode = code_value();
  3469. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3470. {
  3471. if (code_seen('X'))
  3472. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3473. if (code_seen('R'))
  3474. duplicate_extruder_temp_offset = code_value();
  3475. SERIAL_ECHO_START;
  3476. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3477. SERIAL_ECHO(" ");
  3478. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3479. SERIAL_ECHO(",");
  3480. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3481. SERIAL_ECHO(" ");
  3482. SERIAL_ECHO(duplicate_extruder_x_offset);
  3483. SERIAL_ECHO(",");
  3484. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3485. }
  3486. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3487. {
  3488. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3489. }
  3490. active_extruder_parked = false;
  3491. extruder_duplication_enabled = false;
  3492. delayed_move_time = 0;
  3493. }
  3494. break;
  3495. #endif //DUAL_X_CARRIAGE
  3496. case 907: // M907 Set digital trimpot motor current using axis codes.
  3497. {
  3498. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3499. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3500. if(code_seen('B')) digipot_current(4,code_value());
  3501. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3502. #endif
  3503. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3504. if(code_seen('X')) digipot_current(0, code_value());
  3505. #endif
  3506. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3507. if(code_seen('Z')) digipot_current(1, code_value());
  3508. #endif
  3509. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3510. if(code_seen('E')) digipot_current(2, code_value());
  3511. #endif
  3512. #ifdef DIGIPOT_I2C
  3513. // this one uses actual amps in floating point
  3514. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3515. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3516. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3517. #endif
  3518. }
  3519. break;
  3520. case 908: // M908 Control digital trimpot directly.
  3521. {
  3522. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3523. uint8_t channel,current;
  3524. if(code_seen('P')) channel=code_value();
  3525. if(code_seen('S')) current=code_value();
  3526. digitalPotWrite(channel, current);
  3527. #endif
  3528. }
  3529. break;
  3530. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3531. {
  3532. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3533. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3534. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3535. if(code_seen('B')) microstep_mode(4,code_value());
  3536. microstep_readings();
  3537. #endif
  3538. }
  3539. break;
  3540. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3541. {
  3542. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3543. if(code_seen('S')) switch((int)code_value())
  3544. {
  3545. case 1:
  3546. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3547. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3548. break;
  3549. case 2:
  3550. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3551. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3552. break;
  3553. }
  3554. microstep_readings();
  3555. #endif
  3556. }
  3557. break;
  3558. case 999: // M999: Restart after being stopped
  3559. Stopped = false;
  3560. lcd_reset_alert_level();
  3561. gcode_LastN = Stopped_gcode_LastN;
  3562. FlushSerialRequestResend();
  3563. break;
  3564. }
  3565. }
  3566. else if(code_seen('T'))
  3567. {
  3568. tmp_extruder = code_value();
  3569. if(tmp_extruder >= EXTRUDERS) {
  3570. SERIAL_ECHO_START;
  3571. SERIAL_ECHO("T");
  3572. SERIAL_ECHO(tmp_extruder);
  3573. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3574. }
  3575. else {
  3576. boolean make_move = false;
  3577. if(code_seen('F')) {
  3578. make_move = true;
  3579. next_feedrate = code_value();
  3580. if(next_feedrate > 0.0) {
  3581. feedrate = next_feedrate;
  3582. }
  3583. }
  3584. #if EXTRUDERS > 1
  3585. if(tmp_extruder != active_extruder) {
  3586. // Save current position to return to after applying extruder offset
  3587. memcpy(destination, current_position, sizeof(destination));
  3588. #ifdef DUAL_X_CARRIAGE
  3589. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3590. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3591. {
  3592. // Park old head: 1) raise 2) move to park position 3) lower
  3593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3594. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3595. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3596. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3597. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3598. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3599. st_synchronize();
  3600. }
  3601. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3602. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3603. extruder_offset[Y_AXIS][active_extruder] +
  3604. extruder_offset[Y_AXIS][tmp_extruder];
  3605. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3606. extruder_offset[Z_AXIS][active_extruder] +
  3607. extruder_offset[Z_AXIS][tmp_extruder];
  3608. active_extruder = tmp_extruder;
  3609. // This function resets the max/min values - the current position may be overwritten below.
  3610. axis_is_at_home(X_AXIS);
  3611. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3612. {
  3613. current_position[X_AXIS] = inactive_extruder_x_pos;
  3614. inactive_extruder_x_pos = destination[X_AXIS];
  3615. }
  3616. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3617. {
  3618. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3619. if (active_extruder == 0 || active_extruder_parked)
  3620. current_position[X_AXIS] = inactive_extruder_x_pos;
  3621. else
  3622. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3623. inactive_extruder_x_pos = destination[X_AXIS];
  3624. extruder_duplication_enabled = false;
  3625. }
  3626. else
  3627. {
  3628. // record raised toolhead position for use by unpark
  3629. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3630. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3631. active_extruder_parked = true;
  3632. delayed_move_time = 0;
  3633. }
  3634. #else
  3635. // Offset extruder (only by XY)
  3636. int i;
  3637. for(i = 0; i < 2; i++) {
  3638. current_position[i] = current_position[i] -
  3639. extruder_offset[i][active_extruder] +
  3640. extruder_offset[i][tmp_extruder];
  3641. }
  3642. // Set the new active extruder and position
  3643. active_extruder = tmp_extruder;
  3644. #endif //else DUAL_X_CARRIAGE
  3645. #ifdef DELTA
  3646. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3647. //sent position to plan_set_position();
  3648. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3649. #else
  3650. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3651. #endif
  3652. // Move to the old position if 'F' was in the parameters
  3653. if(make_move && Stopped == false) {
  3654. prepare_move();
  3655. }
  3656. }
  3657. #endif
  3658. SERIAL_ECHO_START;
  3659. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3660. SERIAL_PROTOCOLLN((int)active_extruder);
  3661. }
  3662. }
  3663. else
  3664. {
  3665. SERIAL_ECHO_START;
  3666. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3667. SERIAL_ECHO(cmdbuffer[bufindr]);
  3668. SERIAL_ECHOLNPGM("\"");
  3669. }
  3670. ClearToSend();
  3671. }
  3672. void FlushSerialRequestResend()
  3673. {
  3674. //char cmdbuffer[bufindr][100]="Resend:";
  3675. MYSERIAL.flush();
  3676. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3677. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3678. ClearToSend();
  3679. }
  3680. void ClearToSend()
  3681. {
  3682. previous_millis_cmd = millis();
  3683. #ifdef SDSUPPORT
  3684. if(fromsd[bufindr])
  3685. return;
  3686. #endif //SDSUPPORT
  3687. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3688. }
  3689. void get_coordinates()
  3690. {
  3691. bool seen[4]={false,false,false,false};
  3692. for(int8_t i=0; i < NUM_AXIS; i++) {
  3693. if(code_seen(axis_codes[i]))
  3694. {
  3695. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3696. seen[i]=true;
  3697. }
  3698. else destination[i] = current_position[i]; //Are these else lines really needed?
  3699. }
  3700. if(code_seen('F')) {
  3701. next_feedrate = code_value();
  3702. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3703. }
  3704. }
  3705. void get_arc_coordinates()
  3706. {
  3707. #ifdef SF_ARC_FIX
  3708. bool relative_mode_backup = relative_mode;
  3709. relative_mode = true;
  3710. #endif
  3711. get_coordinates();
  3712. #ifdef SF_ARC_FIX
  3713. relative_mode=relative_mode_backup;
  3714. #endif
  3715. if(code_seen('I')) {
  3716. offset[0] = code_value();
  3717. }
  3718. else {
  3719. offset[0] = 0.0;
  3720. }
  3721. if(code_seen('J')) {
  3722. offset[1] = code_value();
  3723. }
  3724. else {
  3725. offset[1] = 0.0;
  3726. }
  3727. }
  3728. void clamp_to_software_endstops(float target[3])
  3729. {
  3730. if (min_software_endstops) {
  3731. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3732. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3733. float negative_z_offset = 0;
  3734. #ifdef ENABLE_AUTO_BED_LEVELING
  3735. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3736. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3737. #endif
  3738. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3739. }
  3740. if (max_software_endstops) {
  3741. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3742. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3743. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3744. }
  3745. }
  3746. #ifdef DELTA
  3747. void recalc_delta_settings(float radius, float diagonal_rod)
  3748. {
  3749. delta_tower1_x= -SIN_60*radius; // front left tower
  3750. delta_tower1_y= -COS_60*radius;
  3751. delta_tower2_x= SIN_60*radius; // front right tower
  3752. delta_tower2_y= -COS_60*radius;
  3753. delta_tower3_x= 0.0; // back middle tower
  3754. delta_tower3_y= radius;
  3755. delta_diagonal_rod_2= sq(diagonal_rod);
  3756. }
  3757. void calculate_delta(float cartesian[3])
  3758. {
  3759. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3760. - sq(delta_tower1_x-cartesian[X_AXIS])
  3761. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3762. ) + cartesian[Z_AXIS];
  3763. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3764. - sq(delta_tower2_x-cartesian[X_AXIS])
  3765. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3766. ) + cartesian[Z_AXIS];
  3767. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3768. - sq(delta_tower3_x-cartesian[X_AXIS])
  3769. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3770. ) + cartesian[Z_AXIS];
  3771. /*
  3772. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3773. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3774. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3775. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3776. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3777. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3778. */
  3779. }
  3780. #endif
  3781. void prepare_move()
  3782. {
  3783. clamp_to_software_endstops(destination);
  3784. previous_millis_cmd = millis();
  3785. #ifdef SCARA //for now same as delta-code
  3786. float difference[NUM_AXIS];
  3787. for (int8_t i=0; i < NUM_AXIS; i++) {
  3788. difference[i] = destination[i] - current_position[i];
  3789. }
  3790. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3791. sq(difference[Y_AXIS]) +
  3792. sq(difference[Z_AXIS]));
  3793. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3794. if (cartesian_mm < 0.000001) { return; }
  3795. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3796. int steps = max(1, int(scara_segments_per_second * seconds));
  3797. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3798. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3799. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3800. for (int s = 1; s <= steps; s++) {
  3801. float fraction = float(s) / float(steps);
  3802. for(int8_t i=0; i < NUM_AXIS; i++) {
  3803. destination[i] = current_position[i] + difference[i] * fraction;
  3804. }
  3805. calculate_delta(destination);
  3806. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3807. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3808. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3809. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3810. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3811. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3812. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3813. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3814. active_extruder);
  3815. }
  3816. #endif // SCARA
  3817. #ifdef DELTA
  3818. float difference[NUM_AXIS];
  3819. for (int8_t i=0; i < NUM_AXIS; i++) {
  3820. difference[i] = destination[i] - current_position[i];
  3821. }
  3822. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3823. sq(difference[Y_AXIS]) +
  3824. sq(difference[Z_AXIS]));
  3825. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3826. if (cartesian_mm < 0.000001) { return; }
  3827. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3828. int steps = max(1, int(delta_segments_per_second * seconds));
  3829. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3830. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3831. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3832. for (int s = 1; s <= steps; s++) {
  3833. float fraction = float(s) / float(steps);
  3834. for(int8_t i=0; i < NUM_AXIS; i++) {
  3835. destination[i] = current_position[i] + difference[i] * fraction;
  3836. }
  3837. calculate_delta(destination);
  3838. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3839. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3840. active_extruder);
  3841. }
  3842. #endif // DELTA
  3843. #ifdef DUAL_X_CARRIAGE
  3844. if (active_extruder_parked)
  3845. {
  3846. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3847. {
  3848. // move duplicate extruder into correct duplication position.
  3849. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3850. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3851. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3852. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3853. st_synchronize();
  3854. extruder_duplication_enabled = true;
  3855. active_extruder_parked = false;
  3856. }
  3857. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3858. {
  3859. if (current_position[E_AXIS] == destination[E_AXIS])
  3860. {
  3861. // this is a travel move - skit it but keep track of current position (so that it can later
  3862. // be used as start of first non-travel move)
  3863. if (delayed_move_time != 0xFFFFFFFFUL)
  3864. {
  3865. memcpy(current_position, destination, sizeof(current_position));
  3866. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3867. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3868. delayed_move_time = millis();
  3869. return;
  3870. }
  3871. }
  3872. delayed_move_time = 0;
  3873. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3874. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3875. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3876. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3878. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3879. active_extruder_parked = false;
  3880. }
  3881. }
  3882. #endif //DUAL_X_CARRIAGE
  3883. #if ! (defined DELTA || defined SCARA)
  3884. // Do not use feedmultiply for E or Z only moves
  3885. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3887. }
  3888. else {
  3889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3890. }
  3891. #endif // !(DELTA || SCARA)
  3892. for(int8_t i=0; i < NUM_AXIS; i++) {
  3893. current_position[i] = destination[i];
  3894. }
  3895. }
  3896. void prepare_arc_move(char isclockwise) {
  3897. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3898. // Trace the arc
  3899. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3900. // As far as the parser is concerned, the position is now == target. In reality the
  3901. // motion control system might still be processing the action and the real tool position
  3902. // in any intermediate location.
  3903. for(int8_t i=0; i < NUM_AXIS; i++) {
  3904. current_position[i] = destination[i];
  3905. }
  3906. previous_millis_cmd = millis();
  3907. }
  3908. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3909. #if defined(FAN_PIN)
  3910. #if CONTROLLERFAN_PIN == FAN_PIN
  3911. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3912. #endif
  3913. #endif
  3914. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3915. unsigned long lastMotorCheck = 0;
  3916. void controllerFan()
  3917. {
  3918. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3919. {
  3920. lastMotorCheck = millis();
  3921. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3922. #if EXTRUDERS > 2
  3923. || !READ(E2_ENABLE_PIN)
  3924. #endif
  3925. #if EXTRUDER > 1
  3926. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3927. || !READ(X2_ENABLE_PIN)
  3928. #endif
  3929. || !READ(E1_ENABLE_PIN)
  3930. #endif
  3931. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3932. {
  3933. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3934. }
  3935. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3936. {
  3937. digitalWrite(CONTROLLERFAN_PIN, 0);
  3938. analogWrite(CONTROLLERFAN_PIN, 0);
  3939. }
  3940. else
  3941. {
  3942. // allows digital or PWM fan output to be used (see M42 handling)
  3943. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3944. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3945. }
  3946. }
  3947. }
  3948. #endif
  3949. #ifdef SCARA
  3950. void calculate_SCARA_forward_Transform(float f_scara[3])
  3951. {
  3952. // Perform forward kinematics, and place results in delta[3]
  3953. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3954. float x_sin, x_cos, y_sin, y_cos;
  3955. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3956. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3957. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3958. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3959. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3960. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3961. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3962. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3963. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3964. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3965. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3966. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3967. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3968. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3969. }
  3970. void calculate_delta(float cartesian[3]){
  3971. //reverse kinematics.
  3972. // Perform reversed kinematics, and place results in delta[3]
  3973. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3974. float SCARA_pos[2];
  3975. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3976. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3977. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3978. #if (Linkage_1 == Linkage_2)
  3979. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3980. #else
  3981. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3982. #endif
  3983. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3984. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3985. SCARA_K2 = Linkage_2 * SCARA_S2;
  3986. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3987. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3988. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3989. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3990. delta[Z_AXIS] = cartesian[Z_AXIS];
  3991. /*
  3992. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3993. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3994. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3995. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3996. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3997. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3998. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3999. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4000. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4001. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4002. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4003. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4004. SERIAL_ECHOLN(" ");*/
  4005. }
  4006. #endif
  4007. #ifdef TEMP_STAT_LEDS
  4008. static bool blue_led = false;
  4009. static bool red_led = false;
  4010. static uint32_t stat_update = 0;
  4011. void handle_status_leds(void) {
  4012. float max_temp = 0.0;
  4013. if(millis() > stat_update) {
  4014. stat_update += 500; // Update every 0.5s
  4015. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4016. max_temp = max(max_temp, degHotend(cur_extruder));
  4017. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4018. }
  4019. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4020. max_temp = max(max_temp, degTargetBed());
  4021. max_temp = max(max_temp, degBed());
  4022. #endif
  4023. if((max_temp > 55.0) && (red_led == false)) {
  4024. digitalWrite(STAT_LED_RED, 1);
  4025. digitalWrite(STAT_LED_BLUE, 0);
  4026. red_led = true;
  4027. blue_led = false;
  4028. }
  4029. if((max_temp < 54.0) && (blue_led == false)) {
  4030. digitalWrite(STAT_LED_RED, 0);
  4031. digitalWrite(STAT_LED_BLUE, 1);
  4032. red_led = false;
  4033. blue_led = true;
  4034. }
  4035. }
  4036. }
  4037. #endif
  4038. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4039. {
  4040. #if defined(KILL_PIN) && KILL_PIN > -1
  4041. static int killCount = 0; // make the inactivity button a bit less responsive
  4042. const int KILL_DELAY = 10000;
  4043. #endif
  4044. #if defined(HOME_PIN) && HOME_PIN > -1
  4045. static int homeDebounceCount = 0; // poor man's debouncing count
  4046. const int HOME_DEBOUNCE_DELAY = 10000;
  4047. #endif
  4048. if(buflen < (BUFSIZE-1))
  4049. get_command();
  4050. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4051. if(max_inactive_time)
  4052. kill();
  4053. if(stepper_inactive_time) {
  4054. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4055. {
  4056. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4057. disable_x();
  4058. disable_y();
  4059. disable_z();
  4060. disable_e0();
  4061. disable_e1();
  4062. disable_e2();
  4063. }
  4064. }
  4065. }
  4066. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4067. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4068. {
  4069. chdkActive = false;
  4070. WRITE(CHDK, LOW);
  4071. }
  4072. #endif
  4073. #if defined(KILL_PIN) && KILL_PIN > -1
  4074. // Check if the kill button was pressed and wait just in case it was an accidental
  4075. // key kill key press
  4076. // -------------------------------------------------------------------------------
  4077. if( 0 == READ(KILL_PIN) )
  4078. {
  4079. killCount++;
  4080. }
  4081. else if (killCount > 0)
  4082. {
  4083. killCount--;
  4084. }
  4085. // Exceeded threshold and we can confirm that it was not accidental
  4086. // KILL the machine
  4087. // ----------------------------------------------------------------
  4088. if ( killCount >= KILL_DELAY)
  4089. {
  4090. kill();
  4091. }
  4092. #endif
  4093. #if defined(HOME_PIN) && HOME_PIN > -1
  4094. // Check to see if we have to home, use poor man's debouncer
  4095. // ---------------------------------------------------------
  4096. if ( 0 == READ(HOME_PIN) )
  4097. {
  4098. if (homeDebounceCount == 0)
  4099. {
  4100. enquecommands_P((PSTR("G28")));
  4101. homeDebounceCount++;
  4102. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4103. }
  4104. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4105. {
  4106. homeDebounceCount++;
  4107. }
  4108. else
  4109. {
  4110. homeDebounceCount = 0;
  4111. }
  4112. }
  4113. #endif
  4114. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4115. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4116. #endif
  4117. #ifdef EXTRUDER_RUNOUT_PREVENT
  4118. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4119. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4120. {
  4121. bool oldstatus=READ(E0_ENABLE_PIN);
  4122. enable_e0();
  4123. float oldepos=current_position[E_AXIS];
  4124. float oldedes=destination[E_AXIS];
  4125. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4126. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4127. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4128. current_position[E_AXIS]=oldepos;
  4129. destination[E_AXIS]=oldedes;
  4130. plan_set_e_position(oldepos);
  4131. previous_millis_cmd=millis();
  4132. st_synchronize();
  4133. WRITE(E0_ENABLE_PIN,oldstatus);
  4134. }
  4135. #endif
  4136. #if defined(DUAL_X_CARRIAGE)
  4137. // handle delayed move timeout
  4138. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4139. {
  4140. // travel moves have been received so enact them
  4141. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4142. memcpy(destination,current_position,sizeof(destination));
  4143. prepare_move();
  4144. }
  4145. #endif
  4146. #ifdef TEMP_STAT_LEDS
  4147. handle_status_leds();
  4148. #endif
  4149. check_axes_activity();
  4150. }
  4151. void kill()
  4152. {
  4153. cli(); // Stop interrupts
  4154. disable_heater();
  4155. disable_x();
  4156. disable_y();
  4157. disable_z();
  4158. disable_e0();
  4159. disable_e1();
  4160. disable_e2();
  4161. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4162. pinMode(PS_ON_PIN,INPUT);
  4163. #endif
  4164. SERIAL_ERROR_START;
  4165. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4166. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4167. // FMC small patch to update the LCD before ending
  4168. sei(); // enable interrupts
  4169. for ( int i=5; i--; lcd_update())
  4170. {
  4171. delay(200);
  4172. }
  4173. cli(); // disable interrupts
  4174. suicide();
  4175. while(1) { /* Intentionally left empty */ } // Wait for reset
  4176. }
  4177. void Stop()
  4178. {
  4179. disable_heater();
  4180. if(Stopped == false) {
  4181. Stopped = true;
  4182. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4183. SERIAL_ERROR_START;
  4184. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4185. LCD_MESSAGEPGM(MSG_STOPPED);
  4186. }
  4187. }
  4188. bool IsStopped() { return Stopped; };
  4189. #ifdef FAST_PWM_FAN
  4190. void setPwmFrequency(uint8_t pin, int val)
  4191. {
  4192. val &= 0x07;
  4193. switch(digitalPinToTimer(pin))
  4194. {
  4195. #if defined(TCCR0A)
  4196. case TIMER0A:
  4197. case TIMER0B:
  4198. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4199. // TCCR0B |= val;
  4200. break;
  4201. #endif
  4202. #if defined(TCCR1A)
  4203. case TIMER1A:
  4204. case TIMER1B:
  4205. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4206. // TCCR1B |= val;
  4207. break;
  4208. #endif
  4209. #if defined(TCCR2)
  4210. case TIMER2:
  4211. case TIMER2:
  4212. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4213. TCCR2 |= val;
  4214. break;
  4215. #endif
  4216. #if defined(TCCR2A)
  4217. case TIMER2A:
  4218. case TIMER2B:
  4219. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4220. TCCR2B |= val;
  4221. break;
  4222. #endif
  4223. #if defined(TCCR3A)
  4224. case TIMER3A:
  4225. case TIMER3B:
  4226. case TIMER3C:
  4227. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4228. TCCR3B |= val;
  4229. break;
  4230. #endif
  4231. #if defined(TCCR4A)
  4232. case TIMER4A:
  4233. case TIMER4B:
  4234. case TIMER4C:
  4235. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4236. TCCR4B |= val;
  4237. break;
  4238. #endif
  4239. #if defined(TCCR5A)
  4240. case TIMER5A:
  4241. case TIMER5B:
  4242. case TIMER5C:
  4243. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4244. TCCR5B |= val;
  4245. break;
  4246. #endif
  4247. }
  4248. }
  4249. #endif //FAST_PWM_FAN
  4250. bool setTargetedHotend(int code){
  4251. tmp_extruder = active_extruder;
  4252. if(code_seen('T')) {
  4253. tmp_extruder = code_value();
  4254. if(tmp_extruder >= EXTRUDERS) {
  4255. SERIAL_ECHO_START;
  4256. switch(code){
  4257. case 104:
  4258. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4259. break;
  4260. case 105:
  4261. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4262. break;
  4263. case 109:
  4264. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4265. break;
  4266. case 218:
  4267. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4268. break;
  4269. case 221:
  4270. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4271. break;
  4272. }
  4273. SERIAL_ECHOLN(tmp_extruder);
  4274. return true;
  4275. }
  4276. }
  4277. return false;
  4278. }
  4279. float calculate_volumetric_multiplier(float diameter) {
  4280. if (!volumetric_enabled || diameter == 0) return 1.0;
  4281. float d2 = diameter * 0.5;
  4282. return 1.0 / (M_PI * d2 * d2);
  4283. }
  4284. void calculate_volumetric_multipliers() {
  4285. for (int i=0; i<EXTRUDERS; i++)
  4286. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  4287. }