My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 230KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  31. #include "vector_3.h"
  32. #if ENABLED(AUTO_BED_LEVELING_GRID)
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // AUTO_BED_LEVELING_FEATURE
  36. #if ENABLED(MESH_BED_LEVELING)
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "configuration_store.h"
  45. #include "language.h"
  46. #include "pins_arduino.h"
  47. #include "math.h"
  48. #include "buzzer.h"
  49. #if ENABLED(USE_WATCHDOG)
  50. #include "watchdog.h"
  51. #endif
  52. #if ENABLED(BLINKM)
  53. #include "blinkm.h"
  54. #include "Wire.h"
  55. #endif
  56. #if HAS_SERVOS
  57. #include "servo.h"
  58. #endif
  59. #if HAS_DIGIPOTSS
  60. #include <SPI.h>
  61. #endif
  62. /**
  63. * Look here for descriptions of G-codes:
  64. * - http://linuxcnc.org/handbook/gcode/g-code.html
  65. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  66. *
  67. * Help us document these G-codes online:
  68. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  69. * - http://reprap.org/wiki/G-code
  70. *
  71. * -----------------
  72. * Implemented Codes
  73. * -----------------
  74. *
  75. * "G" Codes
  76. *
  77. * G0 -> G1
  78. * G1 - Coordinated Movement X Y Z E
  79. * G2 - CW ARC
  80. * G3 - CCW ARC
  81. * G4 - Dwell S<seconds> or P<milliseconds>
  82. * G10 - retract filament according to settings of M207
  83. * G11 - retract recover filament according to settings of M208
  84. * G28 - Home one or more axes
  85. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  86. * G30 - Single Z probe, probes bed at current XY location.
  87. * G31 - Dock sled (Z_PROBE_SLED only)
  88. * G32 - Undock sled (Z_PROBE_SLED only)
  89. * G90 - Use Absolute Coordinates
  90. * G91 - Use Relative Coordinates
  91. * G92 - Set current position to coordinates given
  92. *
  93. * "M" Codes
  94. *
  95. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  96. * M1 - Same as M0
  97. * M17 - Enable/Power all stepper motors
  98. * M18 - Disable all stepper motors; same as M84
  99. * M20 - List SD card
  100. * M21 - Init SD card
  101. * M22 - Release SD card
  102. * M23 - Select SD file (M23 filename.g)
  103. * M24 - Start/resume SD print
  104. * M25 - Pause SD print
  105. * M26 - Set SD position in bytes (M26 S12345)
  106. * M27 - Report SD print status
  107. * M28 - Start SD write (M28 filename.g)
  108. * M29 - Stop SD write
  109. * M30 - Delete file from SD (M30 filename.g)
  110. * M31 - Output time since last M109 or SD card start to serial
  111. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  112. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  113. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  114. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  115. * M33 - Get the longname version of a path
  116. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  117. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  118. * M80 - Turn on Power Supply
  119. * M81 - Turn off Power Supply
  120. * M82 - Set E codes absolute (default)
  121. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  122. * M84 - Disable steppers until next move,
  123. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  124. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  125. * M92 - Set axis_steps_per_unit - same syntax as G92
  126. * M104 - Set extruder target temp
  127. * M105 - Read current temp
  128. * M106 - Fan on
  129. * M107 - Fan off
  130. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  131. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  132. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  133. * M110 - Set the current line number
  134. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  135. * M112 - Emergency stop
  136. * M114 - Output current position to serial port
  137. * M115 - Capabilities string
  138. * M117 - Display a message on the controller screen
  139. * M119 - Output Endstop status to serial port
  140. * M120 - Enable endstop detection
  141. * M121 - Disable endstop detection
  142. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  143. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  144. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  145. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  146. * M140 - Set bed target temp
  147. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  148. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  149. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  150. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  151. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  152. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  153. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  154. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  155. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  156. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  157. * M206 - Set additional homing offset
  158. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  159. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  160. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  161. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  162. * M220 - Set speed factor override percentage: S<factor in percent>
  163. * M221 - Set extrude factor override percentage: S<factor in percent>
  164. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  165. * M240 - Trigger a camera to take a photograph
  166. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  167. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  168. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  169. * M301 - Set PID parameters P I and D
  170. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  171. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  172. * M304 - Set bed PID parameters P I and D
  173. * M380 - Activate solenoid on active extruder
  174. * M381 - Disable all solenoids
  175. * M400 - Finish all moves
  176. * M401 - Lower Z probe if present
  177. * M402 - Raise Z probe if present
  178. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  179. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  180. * M406 - Turn off Filament Sensor extrusion control
  181. * M407 - Display measured filament diameter
  182. * M410 - Quickstop. Abort all the planned moves
  183. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  184. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  185. * M428 - Set the home_offset logically based on the current_position
  186. * M500 - Store parameters in EEPROM
  187. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  188. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  189. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  190. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  191. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  192. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  193. * M666 - Set delta endstop adjustment
  194. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  195. * M907 - Set digital trimpot motor current using axis codes.
  196. * M908 - Control digital trimpot directly.
  197. * M350 - Set microstepping mode.
  198. * M351 - Toggle MS1 MS2 pins directly.
  199. *
  200. * ************ SCARA Specific - This can change to suit future G-code regulations
  201. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  202. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  203. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  204. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  205. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  206. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  207. * ************* SCARA End ***************
  208. *
  209. * ************ Custom codes - This can change to suit future G-code regulations
  210. * M100 - Watch Free Memory (For Debugging Only)
  211. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  212. * M928 - Start SD logging (M928 filename.g) - ended by M29
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  218. *
  219. */
  220. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  221. void gcode_M100();
  222. #endif
  223. #if ENABLED(SDSUPPORT)
  224. CardReader card;
  225. #endif
  226. bool Running = true;
  227. uint8_t marlin_debug_flags = DEBUG_INFO | DEBUG_ERRORS;
  228. static float feedrate = 1500.0, saved_feedrate;
  229. float current_position[NUM_AXIS] = { 0.0 };
  230. static float destination[NUM_AXIS] = { 0.0 };
  231. bool axis_known_position[3] = { false };
  232. bool axis_homed[3] = { false };
  233. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  234. static char* current_command, *current_command_args;
  235. static int cmd_queue_index_r = 0;
  236. static int cmd_queue_index_w = 0;
  237. static int commands_in_queue = 0;
  238. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  239. const float homing_feedrate[] = HOMING_FEEDRATE;
  240. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  241. int feedrate_multiplier = 100; //100->1 200->2
  242. int saved_feedrate_multiplier;
  243. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  244. bool volumetric_enabled = false;
  245. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  246. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  247. float home_offset[3] = { 0 };
  248. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  249. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  250. uint8_t active_extruder = 0;
  251. int fanSpeed = 0;
  252. bool cancel_heatup = false;
  253. const char errormagic[] PROGMEM = "Error:";
  254. const char echomagic[] PROGMEM = "echo:";
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  257. static int serial_count = 0;
  258. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  259. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  260. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  261. // Inactivity shutdown
  262. millis_t previous_cmd_ms = 0;
  263. static millis_t max_inactive_time = 0;
  264. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  265. millis_t print_job_start_ms = 0; ///< Print job start time
  266. millis_t print_job_stop_ms = 0; ///< Print job stop time
  267. static uint8_t target_extruder;
  268. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  269. int xy_travel_speed = XY_TRAVEL_SPEED;
  270. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  271. #endif
  272. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  273. float z_endstop_adj = 0;
  274. #endif
  275. // Extruder offsets
  276. #if EXTRUDERS > 1
  277. #ifndef EXTRUDER_OFFSET_X
  278. #define EXTRUDER_OFFSET_X { 0 }
  279. #endif
  280. #ifndef EXTRUDER_OFFSET_Y
  281. #define EXTRUDER_OFFSET_Y { 0 }
  282. #endif
  283. float extruder_offset[][EXTRUDERS] = {
  284. EXTRUDER_OFFSET_X,
  285. EXTRUDER_OFFSET_Y
  286. #if ENABLED(DUAL_X_CARRIAGE)
  287. , { 0 } // supports offsets in XYZ plane
  288. #endif
  289. };
  290. #endif
  291. #if HAS_SERVO_ENDSTOPS
  292. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  293. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  294. #endif
  295. #if ENABLED(BARICUDA)
  296. int ValvePressure = 0;
  297. int EtoPPressure = 0;
  298. #endif
  299. #if ENABLED(FWRETRACT)
  300. bool autoretract_enabled = false;
  301. bool retracted[EXTRUDERS] = { false };
  302. bool retracted_swap[EXTRUDERS] = { false };
  303. float retract_length = RETRACT_LENGTH;
  304. float retract_length_swap = RETRACT_LENGTH_SWAP;
  305. float retract_feedrate = RETRACT_FEEDRATE;
  306. float retract_zlift = RETRACT_ZLIFT;
  307. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  308. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  309. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  310. #endif // FWRETRACT
  311. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  312. bool powersupply =
  313. #if ENABLED(PS_DEFAULT_OFF)
  314. false
  315. #else
  316. true
  317. #endif
  318. ;
  319. #endif
  320. #if ENABLED(DELTA)
  321. #define TOWER_1 X_AXIS
  322. #define TOWER_2 Y_AXIS
  323. #define TOWER_3 Z_AXIS
  324. float delta[3] = { 0 };
  325. #define SIN_60 0.8660254037844386
  326. #define COS_60 0.5
  327. float endstop_adj[3] = { 0 };
  328. // these are the default values, can be overriden with M665
  329. float delta_radius = DELTA_RADIUS;
  330. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  331. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  332. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  333. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  334. float delta_tower3_x = 0; // back middle tower
  335. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  336. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  337. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  338. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  339. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  340. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  341. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  342. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  343. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  344. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  345. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  346. int delta_grid_spacing[2] = { 0, 0 };
  347. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  348. #endif
  349. #else
  350. static bool home_all_axis = true;
  351. #endif
  352. #if ENABLED(SCARA)
  353. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  354. static float delta[3] = { 0 };
  355. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  356. #endif
  357. #if ENABLED(FILAMENT_SENSOR)
  358. //Variables for Filament Sensor input
  359. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  360. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  361. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  362. signed char measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  363. int delay_index1 = 0; //index into ring buffer
  364. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  365. float delay_dist = 0; //delay distance counter
  366. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  367. #endif
  368. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  369. static bool filrunoutEnqueued = false;
  370. #endif
  371. static bool send_ok[BUFSIZE];
  372. #if HAS_SERVOS
  373. Servo servo[NUM_SERVOS];
  374. #endif
  375. #ifdef CHDK
  376. unsigned long chdkHigh = 0;
  377. boolean chdkActive = false;
  378. #endif
  379. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  380. int lpq_len = 20;
  381. #endif
  382. //===========================================================================
  383. //================================ Functions ================================
  384. //===========================================================================
  385. void process_next_command();
  386. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  387. bool setTargetedHotend(int code);
  388. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  390. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  394. float extrude_min_temp = EXTRUDE_MINTEMP;
  395. #endif
  396. #if ENABLED(SDSUPPORT)
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void* __brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. /**
  415. * Inject the next "immediate" command, when possible.
  416. * Return true if any immediate commands remain to inject.
  417. */
  418. static bool drain_queued_commands_P() {
  419. if (queued_commands_P != NULL) {
  420. // Get the next gcode to run
  421. size_t i = 0;
  422. char c;
  423. while ((c = queued_commands_P[i++]) && c != '\n') { };
  424. if (i > 1) {
  425. char cmd[i];
  426. strncpy_P(cmd, queued_commands_P, i - 1);
  427. cmd[i - 1] = '\0';
  428. if (enqueue_and_echo_command(cmd)) { // buffer was not full (else we will retry later)
  429. if (c)
  430. queued_commands_P += i; // move to next command
  431. else
  432. queued_commands_P = NULL; // no more commands in the sequence
  433. }
  434. }
  435. }
  436. return (queued_commands_P != NULL); // any more left to add?
  437. }
  438. /**
  439. * Record one or many commands to run from program memory.
  440. * Aborts the current queue, if any.
  441. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  442. */
  443. void enqueue_and_echo_commands_P(const char* pgcode) {
  444. queued_commands_P = pgcode;
  445. drain_queued_commands_P(); // first command executed asap (when possible)
  446. }
  447. /**
  448. * Once a new command is in the ring buffer, call this to commit it
  449. */
  450. inline void _commit_command(bool say_ok) {
  451. send_ok[cmd_queue_index_w] = say_ok;
  452. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  453. commands_in_queue++;
  454. }
  455. /**
  456. * Copy a command directly into the main command buffer, from RAM.
  457. * Returns true if successfully adds the command
  458. */
  459. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  460. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  461. strcpy(command_queue[cmd_queue_index_w], cmd);
  462. _commit_command(say_ok);
  463. return true;
  464. }
  465. /**
  466. * Enqueue with Serial Echo
  467. */
  468. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  469. if (_enqueuecommand(cmd, say_ok)) {
  470. SERIAL_ECHO_START;
  471. SERIAL_ECHOPGM(MSG_Enqueueing);
  472. SERIAL_ECHO(cmd);
  473. SERIAL_ECHOLNPGM("\"");
  474. return true;
  475. }
  476. return false;
  477. }
  478. void setup_killpin() {
  479. #if HAS_KILL
  480. SET_INPUT(KILL_PIN);
  481. WRITE(KILL_PIN, HIGH);
  482. #endif
  483. }
  484. void setup_filrunoutpin() {
  485. #if HAS_FILRUNOUT
  486. pinMode(FILRUNOUT_PIN, INPUT);
  487. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  488. WRITE(FILRUNOUT_PIN, HIGH);
  489. #endif
  490. #endif
  491. }
  492. // Set home pin
  493. void setup_homepin(void) {
  494. #if HAS_HOME
  495. SET_INPUT(HOME_PIN);
  496. WRITE(HOME_PIN, HIGH);
  497. #endif
  498. }
  499. void setup_photpin() {
  500. #if HAS_PHOTOGRAPH
  501. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  502. #endif
  503. }
  504. void setup_powerhold() {
  505. #if HAS_SUICIDE
  506. OUT_WRITE(SUICIDE_PIN, HIGH);
  507. #endif
  508. #if HAS_POWER_SWITCH
  509. #if ENABLED(PS_DEFAULT_OFF)
  510. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  511. #else
  512. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  513. #endif
  514. #endif
  515. }
  516. void suicide() {
  517. #if HAS_SUICIDE
  518. OUT_WRITE(SUICIDE_PIN, LOW);
  519. #endif
  520. }
  521. void servo_init() {
  522. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  523. servo[0].attach(SERVO0_PIN);
  524. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  525. #endif
  526. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  527. servo[1].attach(SERVO1_PIN);
  528. servo[1].detach();
  529. #endif
  530. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  531. servo[2].attach(SERVO2_PIN);
  532. servo[2].detach();
  533. #endif
  534. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  535. servo[3].attach(SERVO3_PIN);
  536. servo[3].detach();
  537. #endif
  538. // Set position of Servo Endstops that are defined
  539. #if HAS_SERVO_ENDSTOPS
  540. for (int i = 0; i < 3; i++)
  541. if (servo_endstop_id[i] >= 0)
  542. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  543. #endif
  544. }
  545. /**
  546. * Stepper Reset (RigidBoard, et.al.)
  547. */
  548. #if HAS_STEPPER_RESET
  549. void disableStepperDrivers() {
  550. pinMode(STEPPER_RESET_PIN, OUTPUT);
  551. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  552. }
  553. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  554. #endif
  555. /**
  556. * Marlin entry-point: Set up before the program loop
  557. * - Set up the kill pin, filament runout, power hold
  558. * - Start the serial port
  559. * - Print startup messages and diagnostics
  560. * - Get EEPROM or default settings
  561. * - Initialize managers for:
  562. * • temperature
  563. * • planner
  564. * • watchdog
  565. * • stepper
  566. * • photo pin
  567. * • servos
  568. * • LCD controller
  569. * • Digipot I2C
  570. * • Z probe sled
  571. * • status LEDs
  572. */
  573. void setup() {
  574. #ifdef DISABLE_JTAG
  575. // Disable JTAG on AT90USB chips to free up pins for IO
  576. MCUCR = 0x80;
  577. MCUCR = 0x80;
  578. #endif
  579. setup_killpin();
  580. setup_filrunoutpin();
  581. setup_powerhold();
  582. #if HAS_STEPPER_RESET
  583. disableStepperDrivers();
  584. #endif
  585. MYSERIAL.begin(BAUDRATE);
  586. SERIAL_PROTOCOLLNPGM("start");
  587. SERIAL_ECHO_START;
  588. // Check startup - does nothing if bootloader sets MCUSR to 0
  589. byte mcu = MCUSR;
  590. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  591. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  592. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  593. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  594. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  595. MCUSR = 0;
  596. SERIAL_ECHOPGM(MSG_MARLIN);
  597. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  598. #ifdef STRING_DISTRIBUTION_DATE
  599. #ifdef STRING_CONFIG_H_AUTHOR
  600. SERIAL_ECHO_START;
  601. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  602. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  603. SERIAL_ECHOPGM(MSG_AUTHOR);
  604. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  605. SERIAL_ECHOPGM("Compiled: ");
  606. SERIAL_ECHOLNPGM(__DATE__);
  607. #endif // STRING_CONFIG_H_AUTHOR
  608. #endif // STRING_DISTRIBUTION_DATE
  609. SERIAL_ECHO_START;
  610. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  611. SERIAL_ECHO(freeMemory());
  612. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  613. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  614. // Send "ok" after commands by default
  615. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  616. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  617. Config_RetrieveSettings();
  618. lcd_init();
  619. tp_init(); // Initialize temperature loop
  620. plan_init(); // Initialize planner;
  621. #if ENABLED(USE_WATCHDOG)
  622. watchdog_init();
  623. #endif
  624. st_init(); // Initialize stepper, this enables interrupts!
  625. setup_photpin();
  626. servo_init();
  627. #if HAS_CONTROLLERFAN
  628. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  629. #endif
  630. #if HAS_STEPPER_RESET
  631. enableStepperDrivers();
  632. #endif
  633. #if ENABLED(DIGIPOT_I2C)
  634. digipot_i2c_init();
  635. #endif
  636. #if ENABLED(Z_PROBE_SLED)
  637. pinMode(SLED_PIN, OUTPUT);
  638. digitalWrite(SLED_PIN, LOW); // turn it off
  639. #endif // Z_PROBE_SLED
  640. setup_homepin();
  641. #ifdef STAT_LED_RED
  642. pinMode(STAT_LED_RED, OUTPUT);
  643. digitalWrite(STAT_LED_RED, LOW); // turn it off
  644. #endif
  645. #ifdef STAT_LED_BLUE
  646. pinMode(STAT_LED_BLUE, OUTPUT);
  647. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  648. #endif
  649. }
  650. /**
  651. * The main Marlin program loop
  652. *
  653. * - Save or log commands to SD
  654. * - Process available commands (if not saving)
  655. * - Call heater manager
  656. * - Call inactivity manager
  657. * - Call endstop manager
  658. * - Call LCD update
  659. */
  660. void loop() {
  661. if (commands_in_queue < BUFSIZE) get_command();
  662. #if ENABLED(SDSUPPORT)
  663. card.checkautostart(false);
  664. #endif
  665. if (commands_in_queue) {
  666. #if ENABLED(SDSUPPORT)
  667. if (card.saving) {
  668. char* command = command_queue[cmd_queue_index_r];
  669. if (strstr_P(command, PSTR("M29"))) {
  670. // M29 closes the file
  671. card.closefile();
  672. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  673. ok_to_send();
  674. }
  675. else {
  676. // Write the string from the read buffer to SD
  677. card.write_command(command);
  678. if (card.logging)
  679. process_next_command(); // The card is saving because it's logging
  680. else
  681. ok_to_send();
  682. }
  683. }
  684. else
  685. process_next_command();
  686. #else
  687. process_next_command();
  688. #endif // SDSUPPORT
  689. commands_in_queue--;
  690. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  691. }
  692. checkHitEndstops();
  693. idle();
  694. }
  695. void gcode_line_error(const char* err, bool doFlush = true) {
  696. SERIAL_ERROR_START;
  697. serialprintPGM(err);
  698. SERIAL_ERRORLN(gcode_LastN);
  699. //Serial.println(gcode_N);
  700. if (doFlush) FlushSerialRequestResend();
  701. serial_count = 0;
  702. }
  703. /**
  704. * Add to the circular command queue the next command from:
  705. * - The command-injection queue (queued_commands_P)
  706. * - The active serial input (usually USB)
  707. * - The SD card file being actively printed
  708. */
  709. void get_command() {
  710. static char serial_line_buffer[MAX_CMD_SIZE];
  711. static boolean serial_comment_mode = false;
  712. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  713. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  714. static millis_t last_command_time = 0;
  715. millis_t ms = millis();
  716. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  717. SERIAL_ECHOLNPGM(MSG_WAIT);
  718. last_command_time = ms;
  719. }
  720. #endif
  721. //
  722. // Loop while serial characters are incoming and the queue is not full
  723. //
  724. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  725. char serial_char = MYSERIAL.read();
  726. //
  727. // If the character ends the line
  728. //
  729. if (serial_char == '\n' || serial_char == '\r') {
  730. serial_comment_mode = false; // end of line == end of comment
  731. if (!serial_count) return; // empty lines just exit
  732. serial_line_buffer[serial_count] = 0; // terminate string
  733. serial_count = 0; //reset buffer
  734. char* command = serial_line_buffer;
  735. while (*command == ' ') command++; // skip any leading spaces
  736. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  737. char* apos = strchr(command, '*');
  738. if (npos) {
  739. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  740. if (M110) {
  741. char* n2pos = strchr(command + 4, 'N');
  742. if (n2pos) npos = n2pos;
  743. }
  744. gcode_N = strtol(npos + 1, NULL, 10);
  745. if (gcode_N != gcode_LastN + 1 && !M110) {
  746. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  747. return;
  748. }
  749. if (apos) {
  750. byte checksum = 0, count = 0;
  751. while (command[count] != '*') checksum ^= command[count++];
  752. if (strtol(apos + 1, NULL, 10) != checksum) {
  753. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  754. return;
  755. }
  756. // if no errors, continue parsing
  757. }
  758. else {
  759. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  760. return;
  761. }
  762. gcode_LastN = gcode_N;
  763. // if no errors, continue parsing
  764. }
  765. else if (apos) { // No '*' without 'N'
  766. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  767. return;
  768. }
  769. // Movement commands alert when stopped
  770. if (IsStopped()) {
  771. char* gpos = strchr(command, 'G');
  772. if (gpos) {
  773. int codenum = strtol(gpos + 1, NULL, 10);
  774. switch (codenum) {
  775. case 0:
  776. case 1:
  777. case 2:
  778. case 3:
  779. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  780. LCD_MESSAGEPGM(MSG_STOPPED);
  781. break;
  782. }
  783. }
  784. }
  785. // If command was e-stop process now
  786. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  787. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  788. last_command_time = ms;
  789. #endif
  790. // Add the command to the queue
  791. _enqueuecommand(serial_line_buffer, true);
  792. }
  793. else if (serial_count >= MAX_CMD_SIZE - 1) {
  794. // Keep fetching, but ignore normal characters beyond the max length
  795. // The command will be injected when EOL is reached
  796. }
  797. else if (serial_char == '\\') { // Handle escapes
  798. if (MYSERIAL.available() > 0) {
  799. // if we have one more character, copy it over
  800. serial_char = MYSERIAL.read();
  801. serial_line_buffer[serial_count++] = serial_char;
  802. }
  803. // otherwise do nothing
  804. }
  805. else { // it's not a newline, carriage return or escape char
  806. if (serial_char == ';') serial_comment_mode = true;
  807. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  808. }
  809. } // queue has space, serial has data
  810. #if ENABLED(SDSUPPORT)
  811. static bool stop_buffering = false,
  812. sd_comment_mode = false;
  813. if (!card.sdprinting) return;
  814. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  815. // if it occurs, stop_buffering is triggered and the buffer is run dry.
  816. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  817. if (commands_in_queue == 0) stop_buffering = false;
  818. uint16_t sd_count = 0;
  819. bool card_eof = card.eof();
  820. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  821. int16_t n = card.get();
  822. char sd_char = (char)n;
  823. card_eof = card.eof();
  824. if (card_eof || n == -1
  825. || sd_char == '\n' || sd_char == '\r'
  826. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  827. ) {
  828. if (card_eof) {
  829. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  830. print_job_stop_ms = millis();
  831. char time[30];
  832. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  833. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  834. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  835. SERIAL_ECHO_START;
  836. SERIAL_ECHOLN(time);
  837. lcd_setstatus(time, true);
  838. card.printingHasFinished();
  839. card.checkautostart(true);
  840. }
  841. if (sd_char == '#') stop_buffering = true;
  842. sd_comment_mode = false; //for new command
  843. if (!sd_count) continue; //skip empty lines
  844. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  845. sd_count = 0; //clear buffer
  846. _commit_command(false);
  847. }
  848. else if (sd_count >= MAX_CMD_SIZE - 1) {
  849. // Keep fetching, but ignore normal characters beyond the max length
  850. // The command will be injected when EOL is reached
  851. }
  852. else {
  853. if (sd_char == ';') sd_comment_mode = true;
  854. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  855. }
  856. }
  857. #endif // SDSUPPORT
  858. }
  859. bool code_has_value() {
  860. int i = 1;
  861. char c = seen_pointer[i];
  862. while (c == ' ') c = seen_pointer[++i];
  863. if (c == '-' || c == '+') c = seen_pointer[++i];
  864. if (c == '.') c = seen_pointer[++i];
  865. return (c >= '0' && c <= '9');
  866. }
  867. float code_value() {
  868. float ret;
  869. char* e = strchr(seen_pointer, 'E');
  870. if (e) {
  871. *e = 0;
  872. ret = strtod(seen_pointer + 1, NULL);
  873. *e = 'E';
  874. }
  875. else
  876. ret = strtod(seen_pointer + 1, NULL);
  877. return ret;
  878. }
  879. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  880. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  881. bool code_seen(char code) {
  882. seen_pointer = strchr(current_command_args, code);
  883. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  884. }
  885. #define DEFINE_PGM_READ_ANY(type, reader) \
  886. static inline type pgm_read_any(const type *p) \
  887. { return pgm_read_##reader##_near(p); }
  888. DEFINE_PGM_READ_ANY(float, float);
  889. DEFINE_PGM_READ_ANY(signed char, byte);
  890. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  891. static const PROGMEM type array##_P[3] = \
  892. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  893. static inline type array(int axis) \
  894. { return pgm_read_any(&array##_P[axis]); }
  895. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  896. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  897. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  898. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  899. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  900. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  901. #if ENABLED(DUAL_X_CARRIAGE)
  902. #define DXC_FULL_CONTROL_MODE 0
  903. #define DXC_AUTO_PARK_MODE 1
  904. #define DXC_DUPLICATION_MODE 2
  905. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  906. static float x_home_pos(int extruder) {
  907. if (extruder == 0)
  908. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  909. else
  910. // In dual carriage mode the extruder offset provides an override of the
  911. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  912. // This allow soft recalibration of the second extruder offset position without firmware reflash
  913. // (through the M218 command).
  914. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  915. }
  916. static int x_home_dir(int extruder) {
  917. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  918. }
  919. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  920. static bool active_extruder_parked = false; // used in mode 1 & 2
  921. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  922. static millis_t delayed_move_time = 0; // used in mode 1
  923. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  924. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  925. bool extruder_duplication_enabled = false; // used in mode 2
  926. #endif //DUAL_X_CARRIAGE
  927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  928. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  929. SERIAL_ECHO(prefix);
  930. SERIAL_ECHOPAIR(": (", x);
  931. SERIAL_ECHOPAIR(", ", y);
  932. SERIAL_ECHOPAIR(", ", z);
  933. SERIAL_ECHOLNPGM(")");
  934. }
  935. void print_xyz(const char* prefix, const float xyz[]) {
  936. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  937. }
  938. #endif
  939. static void set_axis_is_at_home(AxisEnum axis) {
  940. #if ENABLED(DUAL_X_CARRIAGE)
  941. if (axis == X_AXIS) {
  942. if (active_extruder != 0) {
  943. current_position[X_AXIS] = x_home_pos(active_extruder);
  944. min_pos[X_AXIS] = X2_MIN_POS;
  945. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  946. return;
  947. }
  948. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  949. float xoff = home_offset[X_AXIS];
  950. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  951. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  952. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  953. return;
  954. }
  955. }
  956. #endif
  957. #if ENABLED(SCARA)
  958. if (axis == X_AXIS || axis == Y_AXIS) {
  959. float homeposition[3];
  960. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  961. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  962. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  963. // Works out real Homeposition angles using inverse kinematics,
  964. // and calculates homing offset using forward kinematics
  965. calculate_delta(homeposition);
  966. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  967. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  968. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  969. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  970. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  971. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  972. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  973. calculate_SCARA_forward_Transform(delta);
  974. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  975. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  976. current_position[axis] = delta[axis];
  977. // SCARA home positions are based on configuration since the actual limits are determined by the
  978. // inverse kinematic transform.
  979. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  980. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  981. }
  982. else
  983. #endif
  984. {
  985. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  986. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  987. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  988. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  989. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  990. #endif
  991. #if ENABLED(DEBUG_LEVELING_FEATURE)
  992. if (marlin_debug_flags & DEBUG_LEVELING) {
  993. SERIAL_ECHOPAIR("set_axis_is_at_home ", (unsigned long)axis);
  994. SERIAL_ECHOPAIR(" > (home_offset[axis]==", home_offset[axis]);
  995. print_xyz(") > current_position", current_position);
  996. }
  997. #endif
  998. }
  999. }
  1000. /**
  1001. * Some planner shorthand inline functions
  1002. */
  1003. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1004. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1005. int hbd = homing_bump_divisor[axis];
  1006. if (hbd < 1) {
  1007. hbd = 10;
  1008. SERIAL_ECHO_START;
  1009. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1010. }
  1011. feedrate = homing_feedrate[axis] / hbd;
  1012. }
  1013. inline void line_to_current_position() {
  1014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1015. }
  1016. inline void line_to_z(float zPosition) {
  1017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1018. }
  1019. inline void line_to_destination(float mm_m) {
  1020. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1021. }
  1022. inline void line_to_destination() {
  1023. line_to_destination(feedrate);
  1024. }
  1025. inline void sync_plan_position() {
  1026. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1027. }
  1028. #if ENABLED(DELTA) || ENABLED(SCARA)
  1029. inline void sync_plan_position_delta() {
  1030. calculate_delta(current_position);
  1031. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1032. }
  1033. #endif
  1034. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1035. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1036. static void setup_for_endstop_move() {
  1037. saved_feedrate = feedrate;
  1038. saved_feedrate_multiplier = feedrate_multiplier;
  1039. feedrate_multiplier = 100;
  1040. refresh_cmd_timeout();
  1041. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1042. if (marlin_debug_flags & DEBUG_LEVELING) {
  1043. SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1044. }
  1045. #endif
  1046. enable_endstops(true);
  1047. }
  1048. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1049. #if ENABLED(DELTA)
  1050. /**
  1051. * Calculate delta, start a line, and set current_position to destination
  1052. */
  1053. void prepare_move_raw() {
  1054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1055. if (marlin_debug_flags & DEBUG_LEVELING) {
  1056. print_xyz("prepare_move_raw > destination", destination);
  1057. }
  1058. #endif
  1059. refresh_cmd_timeout();
  1060. calculate_delta(destination);
  1061. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1062. set_current_to_destination();
  1063. }
  1064. #endif
  1065. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1066. #if DISABLED(DELTA)
  1067. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1068. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1069. planeNormal.debug("planeNormal");
  1070. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1071. //bedLevel.debug("bedLevel");
  1072. //plan_bed_level_matrix.debug("bed level before");
  1073. //vector_3 uncorrected_position = plan_get_position_mm();
  1074. //uncorrected_position.debug("position before");
  1075. vector_3 corrected_position = plan_get_position();
  1076. //corrected_position.debug("position after");
  1077. current_position[X_AXIS] = corrected_position.x;
  1078. current_position[Y_AXIS] = corrected_position.y;
  1079. current_position[Z_AXIS] = corrected_position.z;
  1080. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1081. if (marlin_debug_flags & DEBUG_LEVELING) {
  1082. print_xyz("set_bed_level_equation_lsq > current_position", current_position);
  1083. }
  1084. #endif
  1085. sync_plan_position();
  1086. }
  1087. #endif // !DELTA
  1088. #else // !AUTO_BED_LEVELING_GRID
  1089. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1090. plan_bed_level_matrix.set_to_identity();
  1091. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1092. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1093. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1094. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1095. if (planeNormal.z < 0) {
  1096. planeNormal.x = -planeNormal.x;
  1097. planeNormal.y = -planeNormal.y;
  1098. planeNormal.z = -planeNormal.z;
  1099. }
  1100. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1101. vector_3 corrected_position = plan_get_position();
  1102. current_position[X_AXIS] = corrected_position.x;
  1103. current_position[Y_AXIS] = corrected_position.y;
  1104. current_position[Z_AXIS] = corrected_position.z;
  1105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1106. if (marlin_debug_flags & DEBUG_LEVELING) {
  1107. print_xyz("set_bed_level_equation_3pts > current_position", current_position);
  1108. }
  1109. #endif
  1110. sync_plan_position();
  1111. }
  1112. #endif // !AUTO_BED_LEVELING_GRID
  1113. static void run_z_probe() {
  1114. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1115. #if ENABLED(DELTA)
  1116. float start_z = current_position[Z_AXIS];
  1117. long start_steps = st_get_position(Z_AXIS);
  1118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1119. if (marlin_debug_flags & DEBUG_LEVELING) {
  1120. SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1121. }
  1122. #endif
  1123. // move down slowly until you find the bed
  1124. feedrate = homing_feedrate[Z_AXIS] / 4;
  1125. destination[Z_AXIS] = -10;
  1126. prepare_move_raw(); // this will also set_current_to_destination
  1127. st_synchronize();
  1128. endstops_hit_on_purpose(); // clear endstop hit flags
  1129. // we have to let the planner know where we are right now as it is not where we said to go.
  1130. long stop_steps = st_get_position(Z_AXIS);
  1131. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1132. current_position[Z_AXIS] = mm;
  1133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1134. if (marlin_debug_flags & DEBUG_LEVELING) {
  1135. print_xyz("run_z_probe (DELTA) 2 > current_position", current_position);
  1136. }
  1137. #endif
  1138. sync_plan_position_delta();
  1139. #else // !DELTA
  1140. plan_bed_level_matrix.set_to_identity();
  1141. feedrate = homing_feedrate[Z_AXIS];
  1142. // Move down until the Z probe (or endstop?) is triggered
  1143. float zPosition = -(Z_MAX_LENGTH + 10);
  1144. line_to_z(zPosition);
  1145. st_synchronize();
  1146. // Tell the planner where we ended up - Get this from the stepper handler
  1147. zPosition = st_get_axis_position_mm(Z_AXIS);
  1148. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1149. // move up the retract distance
  1150. zPosition += home_bump_mm(Z_AXIS);
  1151. line_to_z(zPosition);
  1152. st_synchronize();
  1153. endstops_hit_on_purpose(); // clear endstop hit flags
  1154. // move back down slowly to find bed
  1155. set_homing_bump_feedrate(Z_AXIS);
  1156. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1157. line_to_z(zPosition);
  1158. st_synchronize();
  1159. endstops_hit_on_purpose(); // clear endstop hit flags
  1160. // Get the current stepper position after bumping an endstop
  1161. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1162. sync_plan_position();
  1163. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1164. if (marlin_debug_flags & DEBUG_LEVELING) {
  1165. print_xyz("run_z_probe > current_position", current_position);
  1166. }
  1167. #endif
  1168. #endif // !DELTA
  1169. }
  1170. /**
  1171. * Plan a move to (X, Y, Z) and set the current_position
  1172. * The final current_position may not be the one that was requested
  1173. */
  1174. static void do_blocking_move_to(float x, float y, float z) {
  1175. float oldFeedRate = feedrate;
  1176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1177. if (marlin_debug_flags & DEBUG_LEVELING) {
  1178. print_xyz("do_blocking_move_to", x, y, z);
  1179. }
  1180. #endif
  1181. #if ENABLED(DELTA)
  1182. feedrate = XY_TRAVEL_SPEED;
  1183. destination[X_AXIS] = x;
  1184. destination[Y_AXIS] = y;
  1185. destination[Z_AXIS] = z;
  1186. prepare_move_raw(); // this will also set_current_to_destination
  1187. st_synchronize();
  1188. #else
  1189. feedrate = homing_feedrate[Z_AXIS];
  1190. current_position[Z_AXIS] = z;
  1191. line_to_current_position();
  1192. st_synchronize();
  1193. feedrate = xy_travel_speed;
  1194. current_position[X_AXIS] = x;
  1195. current_position[Y_AXIS] = y;
  1196. line_to_current_position();
  1197. st_synchronize();
  1198. #endif
  1199. feedrate = oldFeedRate;
  1200. }
  1201. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1202. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1203. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1204. inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); }
  1205. static void clean_up_after_endstop_move() {
  1206. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  1207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1208. if (marlin_debug_flags & DEBUG_LEVELING) {
  1209. SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > enable_endstops(false)");
  1210. }
  1211. #endif
  1212. enable_endstops(false);
  1213. #endif
  1214. feedrate = saved_feedrate;
  1215. feedrate_multiplier = saved_feedrate_multiplier;
  1216. refresh_cmd_timeout();
  1217. }
  1218. static void deploy_z_probe() {
  1219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1220. if (marlin_debug_flags & DEBUG_LEVELING) {
  1221. print_xyz("deploy_z_probe > current_position", current_position);
  1222. }
  1223. #endif
  1224. #if HAS_SERVO_ENDSTOPS
  1225. // Engage Z Servo endstop if enabled
  1226. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1227. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1228. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1229. // If endstop is already false, the Z probe is deployed
  1230. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1231. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1232. if (z_probe_endstop)
  1233. #else
  1234. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1235. if (z_min_endstop)
  1236. #endif
  1237. {
  1238. // Move to the start position to initiate deployment
  1239. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1240. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1241. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1242. prepare_move_raw(); // this will also set_current_to_destination
  1243. // Move to engage deployment
  1244. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1245. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1246. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1247. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1248. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1249. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1250. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1251. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1252. prepare_move_raw();
  1253. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1254. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1255. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1256. // Move to trigger deployment
  1257. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1258. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1259. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1260. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1261. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1262. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1263. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1264. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1265. prepare_move_raw();
  1266. #endif
  1267. }
  1268. // Partially Home X,Y for safety
  1269. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1270. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1271. prepare_move_raw(); // this will also set_current_to_destination
  1272. st_synchronize();
  1273. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1274. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1275. if (z_probe_endstop)
  1276. #else
  1277. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1278. if (z_min_endstop)
  1279. #endif
  1280. {
  1281. if (IsRunning()) {
  1282. SERIAL_ERROR_START;
  1283. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1284. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1285. }
  1286. Stop();
  1287. }
  1288. #endif // Z_PROBE_ALLEN_KEY
  1289. }
  1290. static void stow_z_probe(bool doRaise = true) {
  1291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1292. if (marlin_debug_flags & DEBUG_LEVELING) {
  1293. print_xyz("stow_z_probe > current_position", current_position);
  1294. }
  1295. #endif
  1296. #if HAS_SERVO_ENDSTOPS
  1297. // Retract Z Servo endstop if enabled
  1298. if (servo_endstop_id[Z_AXIS] >= 0) {
  1299. #if Z_RAISE_AFTER_PROBING > 0
  1300. if (doRaise) {
  1301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1302. if (marlin_debug_flags & DEBUG_LEVELING) {
  1303. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1304. SERIAL_EOL;
  1305. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1306. SERIAL_EOL;
  1307. }
  1308. #endif
  1309. raise_z_after_probing(); // this also updates current_position
  1310. st_synchronize();
  1311. }
  1312. #endif
  1313. // Change the Z servo angle
  1314. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1315. }
  1316. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1317. // Move up for safety
  1318. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1319. #if Z_RAISE_AFTER_PROBING > 0
  1320. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1321. prepare_move_raw(); // this will also set_current_to_destination
  1322. #endif
  1323. // Move to the start position to initiate retraction
  1324. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1325. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1326. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1327. prepare_move_raw();
  1328. // Move the nozzle down to push the Z probe into retracted position
  1329. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1330. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1331. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1332. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1333. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1334. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1335. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1336. prepare_move_raw();
  1337. // Move up for safety
  1338. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1339. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1340. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1341. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1342. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1343. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1344. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1345. prepare_move_raw();
  1346. // Home XY for safety
  1347. feedrate = homing_feedrate[X_AXIS] / 2;
  1348. destination[X_AXIS] = 0;
  1349. destination[Y_AXIS] = 0;
  1350. prepare_move_raw(); // this will also set_current_to_destination
  1351. st_synchronize();
  1352. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1353. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1354. if (!z_probe_endstop)
  1355. #else
  1356. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1357. if (!z_min_endstop)
  1358. #endif
  1359. {
  1360. if (IsRunning()) {
  1361. SERIAL_ERROR_START;
  1362. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1363. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1364. }
  1365. Stop();
  1366. }
  1367. #endif // Z_PROBE_ALLEN_KEY
  1368. }
  1369. enum ProbeAction {
  1370. ProbeStay = 0,
  1371. ProbeDeploy = _BV(0),
  1372. ProbeStow = _BV(1),
  1373. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1374. };
  1375. // Probe bed height at position (x,y), returns the measured z value
  1376. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1378. if (marlin_debug_flags & DEBUG_LEVELING) {
  1379. SERIAL_ECHOLNPGM("probe_pt >>>");
  1380. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1381. SERIAL_EOL;
  1382. print_xyz("> current_position", current_position);
  1383. }
  1384. #endif
  1385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1386. if (marlin_debug_flags & DEBUG_LEVELING) {
  1387. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1388. SERIAL_EOL;
  1389. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1390. SERIAL_EOL;
  1391. }
  1392. #endif
  1393. // Move Z up to the z_before height, then move the Z probe to the given XY
  1394. do_blocking_move_to_z(z_before); // this also updates current_position
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (marlin_debug_flags & DEBUG_LEVELING) {
  1397. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1398. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1399. SERIAL_EOL;
  1400. }
  1401. #endif
  1402. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); // this also updates current_position
  1403. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1404. if (probe_action & ProbeDeploy) {
  1405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1406. if (marlin_debug_flags & DEBUG_LEVELING) {
  1407. SERIAL_ECHOLNPGM("> ProbeDeploy");
  1408. }
  1409. #endif
  1410. deploy_z_probe();
  1411. }
  1412. #endif
  1413. run_z_probe();
  1414. float measured_z = current_position[Z_AXIS];
  1415. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1416. if (probe_action & ProbeStow) {
  1417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1418. if (marlin_debug_flags & DEBUG_LEVELING) {
  1419. SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1420. }
  1421. #endif
  1422. stow_z_probe();
  1423. }
  1424. #endif
  1425. if (verbose_level > 2) {
  1426. SERIAL_PROTOCOLPGM("Bed X: ");
  1427. SERIAL_PROTOCOL_F(x, 3);
  1428. SERIAL_PROTOCOLPGM(" Y: ");
  1429. SERIAL_PROTOCOL_F(y, 3);
  1430. SERIAL_PROTOCOLPGM(" Z: ");
  1431. SERIAL_PROTOCOL_F(measured_z, 3);
  1432. SERIAL_EOL;
  1433. }
  1434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1435. if (marlin_debug_flags & DEBUG_LEVELING) {
  1436. SERIAL_ECHOLNPGM("<<< probe_pt");
  1437. }
  1438. #endif
  1439. return measured_z;
  1440. }
  1441. #if ENABLED(DELTA)
  1442. /**
  1443. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1444. */
  1445. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1446. if (bed_level[x][y] != 0.0) {
  1447. return; // Don't overwrite good values.
  1448. }
  1449. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1450. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1451. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1452. float median = c; // Median is robust (ignores outliers).
  1453. if (a < b) {
  1454. if (b < c) median = b;
  1455. if (c < a) median = a;
  1456. }
  1457. else { // b <= a
  1458. if (c < b) median = b;
  1459. if (a < c) median = a;
  1460. }
  1461. bed_level[x][y] = median;
  1462. }
  1463. // Fill in the unprobed points (corners of circular print surface)
  1464. // using linear extrapolation, away from the center.
  1465. static void extrapolate_unprobed_bed_level() {
  1466. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1467. for (int y = 0; y <= half; y++) {
  1468. for (int x = 0; x <= half; x++) {
  1469. if (x + y < 3) continue;
  1470. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1471. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1472. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1473. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1474. }
  1475. }
  1476. }
  1477. // Print calibration results for plotting or manual frame adjustment.
  1478. static void print_bed_level() {
  1479. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1480. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1481. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1482. SERIAL_PROTOCOLCHAR(' ');
  1483. }
  1484. SERIAL_EOL;
  1485. }
  1486. }
  1487. // Reset calibration results to zero.
  1488. void reset_bed_level() {
  1489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1490. if (marlin_debug_flags & DEBUG_LEVELING) {
  1491. SERIAL_ECHOLNPGM("reset_bed_level");
  1492. }
  1493. #endif
  1494. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1495. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1496. bed_level[x][y] = 0.0;
  1497. }
  1498. }
  1499. }
  1500. #endif // DELTA
  1501. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1502. void raise_z_for_servo() {
  1503. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1504. // The zprobe_zoffset is negative any switch below the nozzle, so
  1505. // multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1506. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1507. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1508. }
  1509. #endif
  1510. #endif // AUTO_BED_LEVELING_FEATURE
  1511. #if ENABLED(Z_PROBE_SLED)
  1512. #ifndef SLED_DOCKING_OFFSET
  1513. #define SLED_DOCKING_OFFSET 0
  1514. #endif
  1515. /**
  1516. * Method to dock/undock a sled designed by Charles Bell.
  1517. *
  1518. * dock[in] If true, move to MAX_X and engage the electromagnet
  1519. * offset[in] The additional distance to move to adjust docking location
  1520. */
  1521. static void dock_sled(bool dock, int offset = 0) {
  1522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1523. if (marlin_debug_flags & DEBUG_LEVELING) {
  1524. SERIAL_ECHOPAIR("dock_sled", dock);
  1525. SERIAL_EOL;
  1526. }
  1527. #endif
  1528. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1529. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1530. SERIAL_ECHO_START;
  1531. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1532. return;
  1533. }
  1534. float oldXpos = current_position[X_AXIS]; // save x position
  1535. if (dock) {
  1536. #if Z_RAISE_AFTER_PROBING > 0
  1537. raise_z_after_probing(); // raise Z
  1538. #endif
  1539. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1540. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1541. }
  1542. else {
  1543. float z_loc = current_position[Z_AXIS];
  1544. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1545. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1546. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1547. }
  1548. do_blocking_move_to_x(oldXpos); // return to position before docking
  1549. }
  1550. #endif // Z_PROBE_SLED
  1551. /**
  1552. * Home an individual axis
  1553. */
  1554. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1555. static void homeaxis(AxisEnum axis) {
  1556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1557. if (marlin_debug_flags & DEBUG_LEVELING) {
  1558. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1559. SERIAL_CHAR(')');
  1560. SERIAL_EOL;
  1561. }
  1562. #endif
  1563. #define HOMEAXIS_DO(LETTER) \
  1564. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1565. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1566. int axis_home_dir =
  1567. #if ENABLED(DUAL_X_CARRIAGE)
  1568. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1569. #endif
  1570. home_dir(axis);
  1571. // Set the axis position as setup for the move
  1572. current_position[axis] = 0;
  1573. sync_plan_position();
  1574. #if ENABLED(Z_PROBE_SLED)
  1575. // Get Probe
  1576. if (axis == Z_AXIS) {
  1577. if (axis_home_dir < 0) dock_sled(false);
  1578. }
  1579. #endif
  1580. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1581. // Deploy a Z probe if there is one, and homing towards the bed
  1582. if (axis == Z_AXIS) {
  1583. if (axis_home_dir < 0) deploy_z_probe();
  1584. }
  1585. #endif
  1586. #if HAS_SERVO_ENDSTOPS
  1587. // Engage Servo endstop if enabled
  1588. if (axis != Z_AXIS && servo_endstop_id[axis] >= 0)
  1589. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1590. #endif
  1591. // Set a flag for Z motor locking
  1592. #if ENABLED(Z_DUAL_ENDSTOPS)
  1593. if (axis == Z_AXIS) In_Homing_Process(true);
  1594. #endif
  1595. // Move towards the endstop until an endstop is triggered
  1596. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1597. feedrate = homing_feedrate[axis];
  1598. line_to_destination();
  1599. st_synchronize();
  1600. // Set the axis position as setup for the move
  1601. current_position[axis] = 0;
  1602. sync_plan_position();
  1603. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1604. if (marlin_debug_flags & DEBUG_LEVELING) {
  1605. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1606. }
  1607. #endif
  1608. enable_endstops(false); // Disable endstops while moving away
  1609. // Move away from the endstop by the axis HOME_BUMP_MM
  1610. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1611. line_to_destination();
  1612. st_synchronize();
  1613. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1614. if (marlin_debug_flags & DEBUG_LEVELING) {
  1615. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1616. }
  1617. #endif
  1618. enable_endstops(true); // Enable endstops for next homing move
  1619. // Slow down the feedrate for the next move
  1620. set_homing_bump_feedrate(axis);
  1621. // Move slowly towards the endstop until triggered
  1622. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1623. line_to_destination();
  1624. st_synchronize();
  1625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1626. if (marlin_debug_flags & DEBUG_LEVELING) {
  1627. print_xyz("> TRIGGER ENDSTOP > current_position", current_position);
  1628. }
  1629. #endif
  1630. #if ENABLED(Z_DUAL_ENDSTOPS)
  1631. if (axis == Z_AXIS) {
  1632. float adj = fabs(z_endstop_adj);
  1633. bool lockZ1;
  1634. if (axis_home_dir > 0) {
  1635. adj = -adj;
  1636. lockZ1 = (z_endstop_adj > 0);
  1637. }
  1638. else
  1639. lockZ1 = (z_endstop_adj < 0);
  1640. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1641. sync_plan_position();
  1642. // Move to the adjusted endstop height
  1643. feedrate = homing_feedrate[axis];
  1644. destination[Z_AXIS] = adj;
  1645. line_to_destination();
  1646. st_synchronize();
  1647. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1648. In_Homing_Process(false);
  1649. } // Z_AXIS
  1650. #endif
  1651. #if ENABLED(DELTA)
  1652. // retrace by the amount specified in endstop_adj
  1653. if (endstop_adj[axis] * axis_home_dir < 0) {
  1654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1655. if (marlin_debug_flags & DEBUG_LEVELING) {
  1656. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1657. }
  1658. #endif
  1659. enable_endstops(false); // Disable endstops while moving away
  1660. sync_plan_position();
  1661. destination[axis] = endstop_adj[axis];
  1662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1663. if (marlin_debug_flags & DEBUG_LEVELING) {
  1664. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1665. print_xyz(" > destination", destination);
  1666. }
  1667. #endif
  1668. line_to_destination();
  1669. st_synchronize();
  1670. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1671. if (marlin_debug_flags & DEBUG_LEVELING) {
  1672. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1673. }
  1674. #endif
  1675. enable_endstops(true); // Enable endstops for next homing move
  1676. }
  1677. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1678. else {
  1679. if (marlin_debug_flags & DEBUG_LEVELING) {
  1680. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1681. SERIAL_EOL;
  1682. }
  1683. }
  1684. #endif
  1685. #endif
  1686. // Set the axis position to its home position (plus home offsets)
  1687. set_axis_is_at_home(axis);
  1688. sync_plan_position();
  1689. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1690. if (marlin_debug_flags & DEBUG_LEVELING) {
  1691. print_xyz("> AFTER set_axis_is_at_home > current_position", current_position);
  1692. }
  1693. #endif
  1694. destination[axis] = current_position[axis];
  1695. feedrate = 0.0;
  1696. endstops_hit_on_purpose(); // clear endstop hit flags
  1697. axis_known_position[axis] = true;
  1698. axis_homed[axis] = true;
  1699. #if ENABLED(Z_PROBE_SLED)
  1700. // bring Z probe back
  1701. if (axis == Z_AXIS) {
  1702. if (axis_home_dir < 0) dock_sled(true);
  1703. }
  1704. #endif
  1705. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1706. // Deploy a Z probe if there is one, and homing towards the bed
  1707. if (axis == Z_AXIS) {
  1708. if (axis_home_dir < 0) {
  1709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1710. if (marlin_debug_flags & DEBUG_LEVELING) {
  1711. SERIAL_ECHOLNPGM("> SERVO_LEVELING > stow_z_probe");
  1712. }
  1713. #endif
  1714. stow_z_probe();
  1715. }
  1716. }
  1717. else
  1718. #endif
  1719. {
  1720. #if HAS_SERVO_ENDSTOPS
  1721. // Retract Servo endstop if enabled
  1722. if (servo_endstop_id[axis] >= 0) {
  1723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1724. if (marlin_debug_flags & DEBUG_LEVELING) {
  1725. SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1726. }
  1727. #endif
  1728. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1729. }
  1730. #endif
  1731. }
  1732. }
  1733. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1734. if (marlin_debug_flags & DEBUG_LEVELING) {
  1735. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1736. SERIAL_CHAR(')');
  1737. SERIAL_EOL;
  1738. }
  1739. #endif
  1740. }
  1741. #if ENABLED(FWRETRACT)
  1742. void retract(bool retracting, bool swapping = false) {
  1743. if (retracting == retracted[active_extruder]) return;
  1744. float oldFeedrate = feedrate;
  1745. set_destination_to_current();
  1746. if (retracting) {
  1747. feedrate = retract_feedrate * 60;
  1748. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1749. plan_set_e_position(current_position[E_AXIS]);
  1750. prepare_move();
  1751. if (retract_zlift > 0.01) {
  1752. current_position[Z_AXIS] -= retract_zlift;
  1753. #if ENABLED(DELTA)
  1754. sync_plan_position_delta();
  1755. #else
  1756. sync_plan_position();
  1757. #endif
  1758. prepare_move();
  1759. }
  1760. }
  1761. else {
  1762. if (retract_zlift > 0.01) {
  1763. current_position[Z_AXIS] += retract_zlift;
  1764. #if ENABLED(DELTA)
  1765. sync_plan_position_delta();
  1766. #else
  1767. sync_plan_position();
  1768. #endif
  1769. //prepare_move();
  1770. }
  1771. feedrate = retract_recover_feedrate * 60;
  1772. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1773. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1774. plan_set_e_position(current_position[E_AXIS]);
  1775. prepare_move();
  1776. }
  1777. feedrate = oldFeedrate;
  1778. retracted[active_extruder] = retracting;
  1779. } // retract()
  1780. #endif // FWRETRACT
  1781. /**
  1782. *
  1783. * G-Code Handler functions
  1784. *
  1785. */
  1786. /**
  1787. * Set XYZE destination and feedrate from the current GCode command
  1788. *
  1789. * - Set destination from included axis codes
  1790. * - Set to current for missing axis codes
  1791. * - Set the feedrate, if included
  1792. */
  1793. void gcode_get_destination() {
  1794. for (int i = 0; i < NUM_AXIS; i++) {
  1795. if (code_seen(axis_codes[i]))
  1796. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1797. else
  1798. destination[i] = current_position[i];
  1799. }
  1800. if (code_seen('F')) {
  1801. float next_feedrate = code_value();
  1802. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1803. }
  1804. }
  1805. void unknown_command_error() {
  1806. SERIAL_ECHO_START;
  1807. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1808. SERIAL_ECHO(current_command);
  1809. SERIAL_ECHOPGM("\"\n");
  1810. }
  1811. /**
  1812. * G0, G1: Coordinated movement of X Y Z E axes
  1813. */
  1814. inline void gcode_G0_G1() {
  1815. if (IsRunning()) {
  1816. gcode_get_destination(); // For X Y Z E F
  1817. #if ENABLED(FWRETRACT)
  1818. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1819. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1820. // Is this move an attempt to retract or recover?
  1821. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1822. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1823. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1824. retract(!retracted[active_extruder]);
  1825. return;
  1826. }
  1827. }
  1828. #endif //FWRETRACT
  1829. prepare_move();
  1830. }
  1831. }
  1832. /**
  1833. * G2: Clockwise Arc
  1834. * G3: Counterclockwise Arc
  1835. */
  1836. inline void gcode_G2_G3(bool clockwise) {
  1837. if (IsRunning()) {
  1838. #if ENABLED(SF_ARC_FIX)
  1839. bool relative_mode_backup = relative_mode;
  1840. relative_mode = true;
  1841. #endif
  1842. gcode_get_destination();
  1843. #if ENABLED(SF_ARC_FIX)
  1844. relative_mode = relative_mode_backup;
  1845. #endif
  1846. // Center of arc as offset from current_position
  1847. float arc_offset[2] = {
  1848. code_seen('I') ? code_value() : 0,
  1849. code_seen('J') ? code_value() : 0
  1850. };
  1851. // Send an arc to the planner
  1852. plan_arc(destination, arc_offset, clockwise);
  1853. refresh_cmd_timeout();
  1854. }
  1855. }
  1856. /**
  1857. * G4: Dwell S<seconds> or P<milliseconds>
  1858. */
  1859. inline void gcode_G4() {
  1860. millis_t codenum = 0;
  1861. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1862. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1863. st_synchronize();
  1864. refresh_cmd_timeout();
  1865. codenum += previous_cmd_ms; // keep track of when we started waiting
  1866. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1867. while (millis() < codenum) idle();
  1868. }
  1869. #if ENABLED(FWRETRACT)
  1870. /**
  1871. * G10 - Retract filament according to settings of M207
  1872. * G11 - Recover filament according to settings of M208
  1873. */
  1874. inline void gcode_G10_G11(bool doRetract=false) {
  1875. #if EXTRUDERS > 1
  1876. if (doRetract) {
  1877. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1878. }
  1879. #endif
  1880. retract(doRetract
  1881. #if EXTRUDERS > 1
  1882. , retracted_swap[active_extruder]
  1883. #endif
  1884. );
  1885. }
  1886. #endif //FWRETRACT
  1887. /**
  1888. * G28: Home all axes according to settings
  1889. *
  1890. * Parameters
  1891. *
  1892. * None Home to all axes with no parameters.
  1893. * With QUICK_HOME enabled XY will home together, then Z.
  1894. *
  1895. * Cartesian parameters
  1896. *
  1897. * X Home to the X endstop
  1898. * Y Home to the Y endstop
  1899. * Z Home to the Z endstop
  1900. *
  1901. */
  1902. inline void gcode_G28() {
  1903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1904. if (marlin_debug_flags & DEBUG_LEVELING) {
  1905. SERIAL_ECHOLNPGM("gcode_G28 >>>");
  1906. }
  1907. #endif
  1908. // Wait for planner moves to finish!
  1909. st_synchronize();
  1910. // For auto bed leveling, clear the level matrix
  1911. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1912. plan_bed_level_matrix.set_to_identity();
  1913. #if ENABLED(DELTA)
  1914. reset_bed_level();
  1915. #endif
  1916. #endif
  1917. // For manual bed leveling deactivate the matrix temporarily
  1918. #if ENABLED(MESH_BED_LEVELING)
  1919. uint8_t mbl_was_active = mbl.active;
  1920. mbl.active = 0;
  1921. #endif
  1922. setup_for_endstop_move();
  1923. set_destination_to_current(); // Directly after a reset this is all 0. Later we get a hint if we have to raise z or not.
  1924. feedrate = 0.0;
  1925. #if ENABLED(DELTA)
  1926. // A delta can only safely home all axis at the same time
  1927. // all axis have to home at the same time
  1928. // Pretend the current position is 0,0,0
  1929. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1930. sync_plan_position();
  1931. // Move all carriages up together until the first endstop is hit.
  1932. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  1933. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1934. line_to_destination();
  1935. st_synchronize();
  1936. endstops_hit_on_purpose(); // clear endstop hit flags
  1937. // Destination reached
  1938. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1939. // take care of back off and rehome now we are all at the top
  1940. HOMEAXIS(X);
  1941. HOMEAXIS(Y);
  1942. HOMEAXIS(Z);
  1943. sync_plan_position_delta();
  1944. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1945. if (marlin_debug_flags & DEBUG_LEVELING) {
  1946. print_xyz("(DELTA) > current_position", current_position);
  1947. }
  1948. #endif
  1949. #else // NOT DELTA
  1950. bool homeX = code_seen(axis_codes[X_AXIS]),
  1951. homeY = code_seen(axis_codes[Y_AXIS]),
  1952. homeZ = code_seen(axis_codes[Z_AXIS]);
  1953. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1954. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1955. if (home_all_axis || homeZ) {
  1956. HOMEAXIS(Z);
  1957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1958. if (marlin_debug_flags & DEBUG_LEVELING) {
  1959. print_xyz("> HOMEAXIS(Z) > current_position", current_position);
  1960. }
  1961. #endif
  1962. }
  1963. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  1964. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  1965. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  1966. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  1967. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (marlin_debug_flags & DEBUG_LEVELING) {
  1970. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  1971. SERIAL_EOL;
  1972. print_xyz("> (home_all_axis || homeZ) > current_position", current_position);
  1973. print_xyz("> (home_all_axis || homeZ) > destination", destination);
  1974. }
  1975. #endif
  1976. line_to_destination();
  1977. st_synchronize();
  1978. // Update the current Z position even if it currently not real from Z-home
  1979. // otherwise each call to line_to_destination() will want to move Z-axis
  1980. // by MIN_Z_HEIGHT_FOR_HOMING.
  1981. current_position[Z_AXIS] = destination[Z_AXIS];
  1982. }
  1983. #endif
  1984. #if ENABLED(QUICK_HOME)
  1985. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1986. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1987. #if ENABLED(DUAL_X_CARRIAGE)
  1988. int x_axis_home_dir = x_home_dir(active_extruder);
  1989. extruder_duplication_enabled = false;
  1990. #else
  1991. int x_axis_home_dir = home_dir(X_AXIS);
  1992. #endif
  1993. sync_plan_position();
  1994. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1995. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  1996. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1997. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1998. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1999. line_to_destination();
  2000. st_synchronize();
  2001. set_axis_is_at_home(X_AXIS);
  2002. set_axis_is_at_home(Y_AXIS);
  2003. sync_plan_position();
  2004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (marlin_debug_flags & DEBUG_LEVELING) {
  2006. print_xyz("> QUICK_HOME > current_position 1", current_position);
  2007. }
  2008. #endif
  2009. destination[X_AXIS] = current_position[X_AXIS];
  2010. destination[Y_AXIS] = current_position[Y_AXIS];
  2011. line_to_destination();
  2012. feedrate = 0.0;
  2013. st_synchronize();
  2014. endstops_hit_on_purpose(); // clear endstop hit flags
  2015. current_position[X_AXIS] = destination[X_AXIS];
  2016. current_position[Y_AXIS] = destination[Y_AXIS];
  2017. #if DISABLED(SCARA)
  2018. current_position[Z_AXIS] = destination[Z_AXIS];
  2019. #endif
  2020. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2021. if (marlin_debug_flags & DEBUG_LEVELING) {
  2022. print_xyz("> QUICK_HOME > current_position 2", current_position);
  2023. }
  2024. #endif
  2025. }
  2026. #endif // QUICK_HOME
  2027. #if ENABLED(HOME_Y_BEFORE_X)
  2028. // Home Y
  2029. if (home_all_axis || homeY) HOMEAXIS(Y);
  2030. #endif
  2031. // Home X
  2032. if (home_all_axis || homeX) {
  2033. #if ENABLED(DUAL_X_CARRIAGE)
  2034. int tmp_extruder = active_extruder;
  2035. extruder_duplication_enabled = false;
  2036. active_extruder = !active_extruder;
  2037. HOMEAXIS(X);
  2038. inactive_extruder_x_pos = current_position[X_AXIS];
  2039. active_extruder = tmp_extruder;
  2040. HOMEAXIS(X);
  2041. // reset state used by the different modes
  2042. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2043. delayed_move_time = 0;
  2044. active_extruder_parked = true;
  2045. #else
  2046. HOMEAXIS(X);
  2047. #endif
  2048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2049. if (marlin_debug_flags & DEBUG_LEVELING) {
  2050. print_xyz("> homeX", current_position);
  2051. }
  2052. #endif
  2053. }
  2054. #if DISABLED(HOME_Y_BEFORE_X)
  2055. // Home Y
  2056. if (home_all_axis || homeY) {
  2057. HOMEAXIS(Y);
  2058. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2059. if (marlin_debug_flags & DEBUG_LEVELING) {
  2060. print_xyz("> homeY", current_position);
  2061. }
  2062. #endif
  2063. }
  2064. #endif
  2065. // Home Z last if homing towards the bed
  2066. #if Z_HOME_DIR < 0
  2067. if (home_all_axis || homeZ) {
  2068. #if ENABLED(Z_SAFE_HOMING)
  2069. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2070. if (marlin_debug_flags & DEBUG_LEVELING) {
  2071. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2072. }
  2073. #endif
  2074. if (home_all_axis) {
  2075. // At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2076. // No need to move Z any more as this height should already be safe
  2077. // enough to reach Z_SAFE_HOMING XY positions.
  2078. // Just make sure the planner is in sync.
  2079. sync_plan_position();
  2080. //
  2081. // Set the Z probe (or just the nozzle) destination to the safe homing point
  2082. //
  2083. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2084. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2085. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2086. feedrate = XY_TRAVEL_SPEED;
  2087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2088. if (marlin_debug_flags & DEBUG_LEVELING) {
  2089. print_xyz("> Z_SAFE_HOMING > home_all_axis > current_position", current_position);
  2090. print_xyz("> Z_SAFE_HOMING > home_all_axis > destination", destination);
  2091. }
  2092. #endif
  2093. // Move in the XY plane
  2094. line_to_destination();
  2095. st_synchronize();
  2096. // Update the current positions for XY, Z is still at least at
  2097. // MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2098. current_position[X_AXIS] = destination[X_AXIS];
  2099. current_position[Y_AXIS] = destination[Y_AXIS];
  2100. // Home the Z axis
  2101. HOMEAXIS(Z);
  2102. }
  2103. else if (homeZ) { // Don't need to Home Z twice
  2104. // Let's see if X and Y are homed
  2105. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  2106. // Make sure the Z probe is within the physical limits
  2107. // NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
  2108. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2109. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2110. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2111. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2112. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2113. // Home the Z axis
  2114. HOMEAXIS(Z);
  2115. }
  2116. else {
  2117. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2118. SERIAL_ECHO_START;
  2119. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2120. }
  2121. }
  2122. else {
  2123. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2124. SERIAL_ECHO_START;
  2125. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2126. }
  2127. } // !home_all_axes && homeZ
  2128. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2129. if (marlin_debug_flags & DEBUG_LEVELING) {
  2130. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2131. }
  2132. #endif
  2133. #else // !Z_SAFE_HOMING
  2134. HOMEAXIS(Z);
  2135. #endif // !Z_SAFE_HOMING
  2136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2137. if (marlin_debug_flags & DEBUG_LEVELING) {
  2138. print_xyz("> (home_all_axis || homeZ) > final", current_position);
  2139. }
  2140. #endif
  2141. } // home_all_axis || homeZ
  2142. #endif // Z_HOME_DIR < 0
  2143. sync_plan_position();
  2144. #endif // else DELTA
  2145. #if ENABLED(SCARA)
  2146. sync_plan_position_delta();
  2147. #endif
  2148. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2150. if (marlin_debug_flags & DEBUG_LEVELING) {
  2151. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2152. }
  2153. #endif
  2154. enable_endstops(false);
  2155. #endif
  2156. // For manual leveling move back to 0,0
  2157. #if ENABLED(MESH_BED_LEVELING)
  2158. if (mbl_was_active) {
  2159. current_position[X_AXIS] = mbl.get_x(0);
  2160. current_position[Y_AXIS] = mbl.get_y(0);
  2161. set_destination_to_current();
  2162. feedrate = homing_feedrate[X_AXIS];
  2163. line_to_destination();
  2164. st_synchronize();
  2165. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2166. sync_plan_position();
  2167. mbl.active = 1;
  2168. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2169. if (marlin_debug_flags & DEBUG_LEVELING) {
  2170. print_xyz("mbl_was_active > current_position", current_position);
  2171. }
  2172. #endif
  2173. }
  2174. #endif
  2175. feedrate = saved_feedrate;
  2176. feedrate_multiplier = saved_feedrate_multiplier;
  2177. refresh_cmd_timeout();
  2178. endstops_hit_on_purpose(); // clear endstop hit flags
  2179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2180. if (marlin_debug_flags & DEBUG_LEVELING) {
  2181. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2182. }
  2183. #endif
  2184. }
  2185. #if ENABLED(MESH_BED_LEVELING)
  2186. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  2187. /**
  2188. * G29: Mesh-based Z probe, probes a grid and produces a
  2189. * mesh to compensate for variable bed height
  2190. *
  2191. * Parameters With MESH_BED_LEVELING:
  2192. *
  2193. * S0 Produce a mesh report
  2194. * S1 Start probing mesh points
  2195. * S2 Probe the next mesh point
  2196. * S3 Xn Yn Zn.nn Manually modify a single point
  2197. *
  2198. * The S0 report the points as below
  2199. *
  2200. * +----> X-axis
  2201. * |
  2202. * |
  2203. * v Y-axis
  2204. *
  2205. */
  2206. inline void gcode_G29() {
  2207. static int probe_point = -1;
  2208. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2209. if (state < 0 || state > 3) {
  2210. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  2211. return;
  2212. }
  2213. int ix, iy;
  2214. float z;
  2215. switch (state) {
  2216. case MeshReport:
  2217. if (mbl.active) {
  2218. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2219. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2220. SERIAL_PROTOCOLCHAR(',');
  2221. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2222. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2223. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2224. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2225. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2226. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2227. SERIAL_PROTOCOLPGM(" ");
  2228. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2229. }
  2230. SERIAL_EOL;
  2231. }
  2232. }
  2233. else
  2234. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2235. break;
  2236. case MeshStart:
  2237. mbl.reset();
  2238. probe_point = 0;
  2239. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2240. break;
  2241. case MeshNext:
  2242. if (probe_point < 0) {
  2243. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2244. return;
  2245. }
  2246. if (probe_point == 0) {
  2247. // Set Z to a positive value before recording the first Z.
  2248. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2249. sync_plan_position();
  2250. }
  2251. else {
  2252. // For others, save the Z of the previous point, then raise Z again.
  2253. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2254. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2255. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2256. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2257. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2258. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2259. st_synchronize();
  2260. }
  2261. // Is there another point to sample? Move there.
  2262. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2263. ix = probe_point % (MESH_NUM_X_POINTS);
  2264. iy = probe_point / (MESH_NUM_X_POINTS);
  2265. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2266. current_position[X_AXIS] = mbl.get_x(ix);
  2267. current_position[Y_AXIS] = mbl.get_y(iy);
  2268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2269. st_synchronize();
  2270. probe_point++;
  2271. }
  2272. else {
  2273. // After recording the last point, activate the mbl and home
  2274. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2275. probe_point = -1;
  2276. mbl.active = 1;
  2277. enqueue_and_echo_commands_P(PSTR("G28"));
  2278. }
  2279. break;
  2280. case MeshSet:
  2281. if (code_seen('X')) {
  2282. ix = code_value_long() - 1;
  2283. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2284. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2285. return;
  2286. }
  2287. }
  2288. else {
  2289. SERIAL_PROTOCOLPGM("X not entered.\n");
  2290. return;
  2291. }
  2292. if (code_seen('Y')) {
  2293. iy = code_value_long() - 1;
  2294. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2295. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2296. return;
  2297. }
  2298. }
  2299. else {
  2300. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2301. return;
  2302. }
  2303. if (code_seen('Z')) {
  2304. z = code_value();
  2305. }
  2306. else {
  2307. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2308. return;
  2309. }
  2310. mbl.z_values[iy][ix] = z;
  2311. } // switch(state)
  2312. }
  2313. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2314. void out_of_range_error(const char* p_edge) {
  2315. SERIAL_PROTOCOLPGM("?Probe ");
  2316. serialprintPGM(p_edge);
  2317. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2318. }
  2319. /**
  2320. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2321. * Will fail if the printer has not been homed with G28.
  2322. *
  2323. * Enhanced G29 Auto Bed Leveling Probe Routine
  2324. *
  2325. * Parameters With AUTO_BED_LEVELING_GRID:
  2326. *
  2327. * P Set the size of the grid that will be probed (P x P points).
  2328. * Not supported by non-linear delta printer bed leveling.
  2329. * Example: "G29 P4"
  2330. *
  2331. * S Set the XY travel speed between probe points (in mm/min)
  2332. *
  2333. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2334. * or clean the rotation Matrix. Useful to check the topology
  2335. * after a first run of G29.
  2336. *
  2337. * V Set the verbose level (0-4). Example: "G29 V3"
  2338. *
  2339. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2340. * This is useful for manual bed leveling and finding flaws in the bed (to
  2341. * assist with part placement).
  2342. * Not supported by non-linear delta printer bed leveling.
  2343. *
  2344. * F Set the Front limit of the probing grid
  2345. * B Set the Back limit of the probing grid
  2346. * L Set the Left limit of the probing grid
  2347. * R Set the Right limit of the probing grid
  2348. *
  2349. * Global Parameters:
  2350. *
  2351. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2352. * Include "E" to engage/disengage the Z probe for each sample.
  2353. * There's no extra effect if you have a fixed Z probe.
  2354. * Usage: "G29 E" or "G29 e"
  2355. *
  2356. */
  2357. inline void gcode_G29() {
  2358. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2359. if (marlin_debug_flags & DEBUG_LEVELING) {
  2360. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2361. }
  2362. #endif
  2363. // Don't allow auto-leveling without homing first
  2364. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2365. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2366. SERIAL_ECHO_START;
  2367. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2368. return;
  2369. }
  2370. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2371. if (verbose_level < 0 || verbose_level > 4) {
  2372. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2373. return;
  2374. }
  2375. bool dryrun = code_seen('D'),
  2376. deploy_probe_for_each_reading = code_seen('E');
  2377. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2378. #if DISABLED(DELTA)
  2379. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2380. #endif
  2381. if (verbose_level > 0) {
  2382. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2383. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2384. }
  2385. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2386. #if DISABLED(DELTA)
  2387. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2388. if (auto_bed_leveling_grid_points < 2) {
  2389. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2390. return;
  2391. }
  2392. #endif
  2393. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2394. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2395. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2396. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2397. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2398. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2399. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2400. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2401. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2402. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2403. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2404. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2405. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2406. if (left_out || right_out || front_out || back_out) {
  2407. if (left_out) {
  2408. out_of_range_error(PSTR("(L)eft"));
  2409. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2410. }
  2411. if (right_out) {
  2412. out_of_range_error(PSTR("(R)ight"));
  2413. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2414. }
  2415. if (front_out) {
  2416. out_of_range_error(PSTR("(F)ront"));
  2417. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2418. }
  2419. if (back_out) {
  2420. out_of_range_error(PSTR("(B)ack"));
  2421. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2422. }
  2423. return;
  2424. }
  2425. #endif // AUTO_BED_LEVELING_GRID
  2426. #if ENABLED(Z_PROBE_SLED)
  2427. dock_sled(false); // engage (un-dock) the Z probe
  2428. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2429. deploy_z_probe();
  2430. #endif
  2431. st_synchronize();
  2432. if (!dryrun) {
  2433. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2434. plan_bed_level_matrix.set_to_identity();
  2435. #if ENABLED(DELTA)
  2436. reset_bed_level();
  2437. #else //!DELTA
  2438. //vector_3 corrected_position = plan_get_position_mm();
  2439. //corrected_position.debug("position before G29");
  2440. vector_3 uncorrected_position = plan_get_position();
  2441. //uncorrected_position.debug("position during G29");
  2442. current_position[X_AXIS] = uncorrected_position.x;
  2443. current_position[Y_AXIS] = uncorrected_position.y;
  2444. current_position[Z_AXIS] = uncorrected_position.z;
  2445. sync_plan_position();
  2446. #endif // !DELTA
  2447. }
  2448. setup_for_endstop_move();
  2449. feedrate = homing_feedrate[Z_AXIS];
  2450. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2451. // probe at the points of a lattice grid
  2452. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2453. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2454. #if ENABLED(DELTA)
  2455. delta_grid_spacing[0] = xGridSpacing;
  2456. delta_grid_spacing[1] = yGridSpacing;
  2457. float z_offset = zprobe_zoffset;
  2458. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2459. #else // !DELTA
  2460. // solve the plane equation ax + by + d = z
  2461. // A is the matrix with rows [x y 1] for all the probed points
  2462. // B is the vector of the Z positions
  2463. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2464. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2465. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2466. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2467. eqnBVector[abl2], // "B" vector of Z points
  2468. mean = 0.0;
  2469. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2470. #endif // !DELTA
  2471. int probePointCounter = 0;
  2472. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2473. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2474. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2475. int xStart, xStop, xInc;
  2476. if (zig) {
  2477. xStart = 0;
  2478. xStop = auto_bed_leveling_grid_points;
  2479. xInc = 1;
  2480. }
  2481. else {
  2482. xStart = auto_bed_leveling_grid_points - 1;
  2483. xStop = -1;
  2484. xInc = -1;
  2485. }
  2486. zig = !zig;
  2487. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2488. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2489. // raise extruder
  2490. float measured_z,
  2491. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2492. if (probePointCounter) {
  2493. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2494. if (marlin_debug_flags & DEBUG_LEVELING) {
  2495. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2496. SERIAL_EOL;
  2497. }
  2498. #endif
  2499. }
  2500. else {
  2501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2502. if (marlin_debug_flags & DEBUG_LEVELING) {
  2503. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2504. SERIAL_EOL;
  2505. }
  2506. #endif
  2507. }
  2508. #if ENABLED(DELTA)
  2509. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2510. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2511. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2512. #endif //DELTA
  2513. ProbeAction act;
  2514. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2515. act = ProbeDeployAndStow;
  2516. else if (yCount == 0 && xCount == xStart)
  2517. act = ProbeDeploy;
  2518. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2519. act = ProbeStow;
  2520. else
  2521. act = ProbeStay;
  2522. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2523. #if DISABLED(DELTA)
  2524. mean += measured_z;
  2525. eqnBVector[probePointCounter] = measured_z;
  2526. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2527. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2528. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2529. indexIntoAB[xCount][yCount] = probePointCounter;
  2530. #else
  2531. bed_level[xCount][yCount] = measured_z + z_offset;
  2532. #endif
  2533. probePointCounter++;
  2534. idle();
  2535. } //xProbe
  2536. } //yProbe
  2537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2538. if (marlin_debug_flags & DEBUG_LEVELING) {
  2539. print_xyz("> probing complete > current_position", current_position);
  2540. }
  2541. #endif
  2542. clean_up_after_endstop_move();
  2543. #if ENABLED(DELTA)
  2544. if (!dryrun) extrapolate_unprobed_bed_level();
  2545. print_bed_level();
  2546. #else // !DELTA
  2547. // solve lsq problem
  2548. double plane_equation_coefficients[3];
  2549. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2550. mean /= abl2;
  2551. if (verbose_level) {
  2552. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2553. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2554. SERIAL_PROTOCOLPGM(" b: ");
  2555. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2556. SERIAL_PROTOCOLPGM(" d: ");
  2557. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2558. SERIAL_EOL;
  2559. if (verbose_level > 2) {
  2560. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2561. SERIAL_PROTOCOL_F(mean, 8);
  2562. SERIAL_EOL;
  2563. }
  2564. }
  2565. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2566. // Show the Topography map if enabled
  2567. if (do_topography_map) {
  2568. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2569. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2570. SERIAL_PROTOCOLPGM(" | |\n");
  2571. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2572. SERIAL_PROTOCOLPGM(" E | | I\n");
  2573. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2574. SERIAL_PROTOCOLPGM(" T | | H\n");
  2575. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2576. SERIAL_PROTOCOLPGM(" | |\n");
  2577. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2578. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2579. float min_diff = 999;
  2580. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2581. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2582. int ind = indexIntoAB[xx][yy];
  2583. float diff = eqnBVector[ind] - mean;
  2584. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2585. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2586. z_tmp = 0;
  2587. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2588. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2589. if (diff >= 0.0)
  2590. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2591. else
  2592. SERIAL_PROTOCOLCHAR(' ');
  2593. SERIAL_PROTOCOL_F(diff, 5);
  2594. } // xx
  2595. SERIAL_EOL;
  2596. } // yy
  2597. SERIAL_EOL;
  2598. if (verbose_level > 3) {
  2599. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2600. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2601. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2602. int ind = indexIntoAB[xx][yy];
  2603. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2604. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2605. z_tmp = 0;
  2606. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2607. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2608. if (diff >= 0.0)
  2609. SERIAL_PROTOCOLPGM(" +");
  2610. // Include + for column alignment
  2611. else
  2612. SERIAL_PROTOCOLCHAR(' ');
  2613. SERIAL_PROTOCOL_F(diff, 5);
  2614. } // xx
  2615. SERIAL_EOL;
  2616. } // yy
  2617. SERIAL_EOL;
  2618. }
  2619. } //do_topography_map
  2620. #endif //!DELTA
  2621. #else // !AUTO_BED_LEVELING_GRID
  2622. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2623. if (marlin_debug_flags & DEBUG_LEVELING) {
  2624. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2625. }
  2626. #endif
  2627. // Actions for each probe
  2628. ProbeAction p1, p2, p3;
  2629. if (deploy_probe_for_each_reading)
  2630. p1 = p2 = p3 = ProbeDeployAndStow;
  2631. else
  2632. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2633. // Probe at 3 arbitrary points
  2634. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2635. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2636. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2637. clean_up_after_endstop_move();
  2638. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2639. #endif // !AUTO_BED_LEVELING_GRID
  2640. #if ENABLED(DELTA)
  2641. // Allen Key Probe for Delta
  2642. #if ENABLED(Z_PROBE_ALLEN_KEY)
  2643. stow_z_probe();
  2644. #elif Z_RAISE_AFTER_PROBING > 0
  2645. raise_z_after_probing();
  2646. #endif
  2647. #else // !DELTA
  2648. if (verbose_level > 0)
  2649. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2650. if (!dryrun) {
  2651. // Correct the Z height difference from Z probe position and nozzle tip position.
  2652. // The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
  2653. // When the bed is uneven, this height must be corrected.
  2654. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2655. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2656. z_tmp = current_position[Z_AXIS],
  2657. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2658. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2659. if (marlin_debug_flags & DEBUG_LEVELING) {
  2660. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2661. SERIAL_EOL;
  2662. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2663. SERIAL_EOL;
  2664. }
  2665. #endif
  2666. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
  2667. // Get the current Z position and send it to the planner.
  2668. //
  2669. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2670. //
  2671. // >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
  2672. //
  2673. // >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
  2674. //
  2675. // >> Should home_offset[Z_AXIS] be included?
  2676. //
  2677. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2678. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2679. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2680. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2681. // added here, it could be seen as a compensating factor for the Z probe.
  2682. //
  2683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2684. if (marlin_debug_flags & DEBUG_LEVELING) {
  2685. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2686. SERIAL_EOL;
  2687. }
  2688. #endif
  2689. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2690. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2691. + Z_RAISE_AFTER_PROBING
  2692. #endif
  2693. ;
  2694. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2695. sync_plan_position();
  2696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2697. if (marlin_debug_flags & DEBUG_LEVELING) {
  2698. print_xyz("> corrected Z in G29", current_position);
  2699. }
  2700. #endif
  2701. }
  2702. // Sled assembly for Cartesian bots
  2703. #if ENABLED(Z_PROBE_SLED)
  2704. dock_sled(true); // dock the sled
  2705. #elif Z_RAISE_AFTER_PROBING > 0
  2706. // Raise Z axis for non-delta and non servo based probes
  2707. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2708. raise_z_after_probing();
  2709. #endif
  2710. #endif
  2711. #endif // !DELTA
  2712. #ifdef Z_PROBE_END_SCRIPT
  2713. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2714. if (marlin_debug_flags & DEBUG_LEVELING) {
  2715. SERIAL_ECHO("Z Probe End Script: ");
  2716. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2717. }
  2718. #endif
  2719. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2720. st_synchronize();
  2721. #endif
  2722. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2723. if (marlin_debug_flags & DEBUG_LEVELING) {
  2724. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2725. }
  2726. #endif
  2727. }
  2728. #if DISABLED(Z_PROBE_SLED)
  2729. /**
  2730. * G30: Do a single Z probe at the current XY
  2731. */
  2732. inline void gcode_G30() {
  2733. #if HAS_SERVO_ENDSTOPS
  2734. raise_z_for_servo();
  2735. #endif
  2736. deploy_z_probe(); // Engage Z Servo endstop if available
  2737. st_synchronize();
  2738. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2739. setup_for_endstop_move();
  2740. feedrate = homing_feedrate[Z_AXIS];
  2741. run_z_probe();
  2742. SERIAL_PROTOCOLPGM("Bed X: ");
  2743. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2744. SERIAL_PROTOCOLPGM(" Y: ");
  2745. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2746. SERIAL_PROTOCOLPGM(" Z: ");
  2747. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2748. SERIAL_EOL;
  2749. clean_up_after_endstop_move();
  2750. #if HAS_SERVO_ENDSTOPS
  2751. raise_z_for_servo();
  2752. #endif
  2753. stow_z_probe(false); // Retract Z Servo endstop if available
  2754. }
  2755. #endif //!Z_PROBE_SLED
  2756. #endif //AUTO_BED_LEVELING_FEATURE
  2757. /**
  2758. * G92: Set current position to given X Y Z E
  2759. */
  2760. inline void gcode_G92() {
  2761. if (!code_seen(axis_codes[E_AXIS]))
  2762. st_synchronize();
  2763. bool didXYZ = false;
  2764. for (int i = 0; i < NUM_AXIS; i++) {
  2765. if (code_seen(axis_codes[i])) {
  2766. float v = current_position[i] = code_value();
  2767. if (i == E_AXIS)
  2768. plan_set_e_position(v);
  2769. else
  2770. didXYZ = true;
  2771. }
  2772. }
  2773. if (didXYZ) {
  2774. #if ENABLED(DELTA) || ENABLED(SCARA)
  2775. sync_plan_position_delta();
  2776. #else
  2777. sync_plan_position();
  2778. #endif
  2779. }
  2780. }
  2781. #if ENABLED(ULTIPANEL)
  2782. /**
  2783. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2784. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2785. */
  2786. inline void gcode_M0_M1() {
  2787. char* args = current_command_args;
  2788. millis_t codenum = 0;
  2789. bool hasP = false, hasS = false;
  2790. if (code_seen('P')) {
  2791. codenum = code_value_short(); // milliseconds to wait
  2792. hasP = codenum > 0;
  2793. }
  2794. if (code_seen('S')) {
  2795. codenum = code_value() * 1000; // seconds to wait
  2796. hasS = codenum > 0;
  2797. }
  2798. if (!hasP && !hasS && *args != '\0')
  2799. lcd_setstatus(args, true);
  2800. else {
  2801. LCD_MESSAGEPGM(MSG_USERWAIT);
  2802. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2803. dontExpireStatus();
  2804. #endif
  2805. }
  2806. lcd_ignore_click();
  2807. st_synchronize();
  2808. refresh_cmd_timeout();
  2809. if (codenum > 0) {
  2810. codenum += previous_cmd_ms; // wait until this time for a click
  2811. while (millis() < codenum && !lcd_clicked()) idle();
  2812. lcd_ignore_click(false);
  2813. }
  2814. else {
  2815. if (!lcd_detected()) return;
  2816. while (!lcd_clicked()) idle();
  2817. }
  2818. if (IS_SD_PRINTING)
  2819. LCD_MESSAGEPGM(MSG_RESUMING);
  2820. else
  2821. LCD_MESSAGEPGM(WELCOME_MSG);
  2822. }
  2823. #endif // ULTIPANEL
  2824. /**
  2825. * M17: Enable power on all stepper motors
  2826. */
  2827. inline void gcode_M17() {
  2828. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2829. enable_all_steppers();
  2830. }
  2831. #if ENABLED(SDSUPPORT)
  2832. /**
  2833. * M20: List SD card to serial output
  2834. */
  2835. inline void gcode_M20() {
  2836. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2837. card.ls();
  2838. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2839. }
  2840. /**
  2841. * M21: Init SD Card
  2842. */
  2843. inline void gcode_M21() {
  2844. card.initsd();
  2845. }
  2846. /**
  2847. * M22: Release SD Card
  2848. */
  2849. inline void gcode_M22() {
  2850. card.release();
  2851. }
  2852. /**
  2853. * M23: Open a file
  2854. */
  2855. inline void gcode_M23() {
  2856. card.openFile(current_command_args, true);
  2857. }
  2858. /**
  2859. * M24: Start SD Print
  2860. */
  2861. inline void gcode_M24() {
  2862. card.startFileprint();
  2863. print_job_start_ms = millis();
  2864. }
  2865. /**
  2866. * M25: Pause SD Print
  2867. */
  2868. inline void gcode_M25() {
  2869. card.pauseSDPrint();
  2870. }
  2871. /**
  2872. * M26: Set SD Card file index
  2873. */
  2874. inline void gcode_M26() {
  2875. if (card.cardOK && code_seen('S'))
  2876. card.setIndex(code_value_short());
  2877. }
  2878. /**
  2879. * M27: Get SD Card status
  2880. */
  2881. inline void gcode_M27() {
  2882. card.getStatus();
  2883. }
  2884. /**
  2885. * M28: Start SD Write
  2886. */
  2887. inline void gcode_M28() {
  2888. card.openFile(current_command_args, false);
  2889. }
  2890. /**
  2891. * M29: Stop SD Write
  2892. * Processed in write to file routine above
  2893. */
  2894. inline void gcode_M29() {
  2895. // card.saving = false;
  2896. }
  2897. /**
  2898. * M30 <filename>: Delete SD Card file
  2899. */
  2900. inline void gcode_M30() {
  2901. if (card.cardOK) {
  2902. card.closefile();
  2903. card.removeFile(current_command_args);
  2904. }
  2905. }
  2906. #endif //SDSUPPORT
  2907. /**
  2908. * M31: Get the time since the start of SD Print (or last M109)
  2909. */
  2910. inline void gcode_M31() {
  2911. print_job_stop_ms = millis();
  2912. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2913. int min = t / 60, sec = t % 60;
  2914. char time[30];
  2915. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2916. SERIAL_ECHO_START;
  2917. SERIAL_ECHOLN(time);
  2918. lcd_setstatus(time);
  2919. autotempShutdown();
  2920. }
  2921. #if ENABLED(SDSUPPORT)
  2922. /**
  2923. * M32: Select file and start SD Print
  2924. */
  2925. inline void gcode_M32() {
  2926. if (card.sdprinting)
  2927. st_synchronize();
  2928. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2929. if (!namestartpos)
  2930. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2931. else
  2932. namestartpos++; //to skip the '!'
  2933. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2934. if (card.cardOK) {
  2935. card.openFile(namestartpos, true, !call_procedure);
  2936. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2937. card.setIndex(code_value_short());
  2938. card.startFileprint();
  2939. if (!call_procedure)
  2940. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2941. }
  2942. }
  2943. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  2944. /**
  2945. * M33: Get the long full path of a file or folder
  2946. *
  2947. * Parameters:
  2948. * <dospath> Case-insensitive DOS-style path to a file or folder
  2949. *
  2950. * Example:
  2951. * M33 miscel~1/armchair/armcha~1.gco
  2952. *
  2953. * Output:
  2954. * /Miscellaneous/Armchair/Armchair.gcode
  2955. */
  2956. inline void gcode_M33() {
  2957. card.printLongPath(current_command_args);
  2958. }
  2959. #endif
  2960. /**
  2961. * M928: Start SD Write
  2962. */
  2963. inline void gcode_M928() {
  2964. card.openLogFile(current_command_args);
  2965. }
  2966. #endif // SDSUPPORT
  2967. /**
  2968. * M42: Change pin status via GCode
  2969. */
  2970. inline void gcode_M42() {
  2971. if (code_seen('S')) {
  2972. int pin_status = code_value_short(),
  2973. pin_number = LED_PIN;
  2974. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2975. pin_number = code_value_short();
  2976. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  2977. if (sensitive_pins[i] == pin_number) {
  2978. pin_number = -1;
  2979. break;
  2980. }
  2981. }
  2982. #if HAS_FAN
  2983. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2984. #endif
  2985. if (pin_number > -1) {
  2986. pinMode(pin_number, OUTPUT);
  2987. digitalWrite(pin_number, pin_status);
  2988. analogWrite(pin_number, pin_status);
  2989. }
  2990. } // code_seen('S')
  2991. }
  2992. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  2993. // This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
  2994. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  2995. #if !HAS_Z_PROBE
  2996. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  2997. #endif
  2998. #elif !HAS_Z_MIN
  2999. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3000. #endif
  3001. /**
  3002. * M48: Z probe repeatability measurement function.
  3003. *
  3004. * Usage:
  3005. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3006. * P = Number of sampled points (4-50, default 10)
  3007. * X = Sample X position
  3008. * Y = Sample Y position
  3009. * V = Verbose level (0-4, default=1)
  3010. * E = Engage Z probe for each reading
  3011. * L = Number of legs of movement before probe
  3012. *
  3013. * This function assumes the bed has been homed. Specifically, that a G28 command
  3014. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3015. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3016. * regenerated.
  3017. */
  3018. inline void gcode_M48() {
  3019. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3020. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  3021. if (code_seen('V')) {
  3022. verbose_level = code_value_short();
  3023. if (verbose_level < 0 || verbose_level > 4) {
  3024. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3025. return;
  3026. }
  3027. }
  3028. if (verbose_level > 0)
  3029. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3030. if (code_seen('P')) {
  3031. n_samples = code_value_short();
  3032. if (n_samples < 4 || n_samples > 50) {
  3033. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3034. return;
  3035. }
  3036. }
  3037. double X_current = st_get_axis_position_mm(X_AXIS),
  3038. Y_current = st_get_axis_position_mm(Y_AXIS),
  3039. Z_current = st_get_axis_position_mm(Z_AXIS),
  3040. E_current = st_get_axis_position_mm(E_AXIS),
  3041. X_probe_location = X_current, Y_probe_location = Y_current,
  3042. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3043. bool deploy_probe_for_each_reading = code_seen('E');
  3044. if (code_seen('X')) {
  3045. X_probe_location = code_value() - (X_PROBE_OFFSET_FROM_EXTRUDER);
  3046. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  3047. out_of_range_error(PSTR("X"));
  3048. return;
  3049. }
  3050. }
  3051. if (code_seen('Y')) {
  3052. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3053. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  3054. out_of_range_error(PSTR("Y"));
  3055. return;
  3056. }
  3057. }
  3058. if (code_seen('L')) {
  3059. n_legs = code_value_short();
  3060. if (n_legs == 1) n_legs = 2;
  3061. if (n_legs < 0 || n_legs > 15) {
  3062. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3063. return;
  3064. }
  3065. }
  3066. //
  3067. // Do all the preliminary setup work. First raise the Z probe.
  3068. //
  3069. st_synchronize();
  3070. plan_bed_level_matrix.set_to_identity();
  3071. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  3072. st_synchronize();
  3073. //
  3074. // Now get everything to the specified probe point So we can safely do a probe to
  3075. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3076. // use that as a starting point for each probe.
  3077. //
  3078. if (verbose_level > 2)
  3079. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3080. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  3081. E_current,
  3082. homing_feedrate[X_AXIS] / 60,
  3083. active_extruder);
  3084. st_synchronize();
  3085. current_position[X_AXIS] = X_current = st_get_axis_position_mm(X_AXIS);
  3086. current_position[Y_AXIS] = Y_current = st_get_axis_position_mm(Y_AXIS);
  3087. current_position[Z_AXIS] = Z_current = st_get_axis_position_mm(Z_AXIS);
  3088. current_position[E_AXIS] = E_current = st_get_axis_position_mm(E_AXIS);
  3089. //
  3090. // OK, do the initial probe to get us close to the bed.
  3091. // Then retrace the right amount and use that in subsequent probes
  3092. //
  3093. deploy_z_probe();
  3094. setup_for_endstop_move();
  3095. run_z_probe();
  3096. Z_current = current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  3097. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3098. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  3099. E_current,
  3100. homing_feedrate[X_AXIS] / 60,
  3101. active_extruder);
  3102. st_synchronize();
  3103. Z_current = current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  3104. if (deploy_probe_for_each_reading) stow_z_probe();
  3105. for (uint8_t n = 0; n < n_samples; n++) {
  3106. // Make sure we are at the probe location
  3107. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  3108. if (n_legs) {
  3109. millis_t ms = millis();
  3110. double radius = ms % ((X_MAX_LENGTH) / 4), // limit how far out to go
  3111. theta = RADIANS(ms % 360L);
  3112. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  3113. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3114. //SERIAL_ECHOPAIR(" theta: ",theta);
  3115. //SERIAL_ECHOPAIR(" direction: ",dir);
  3116. //SERIAL_EOL;
  3117. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3118. ms = millis();
  3119. theta += RADIANS(dir * (ms % 20L));
  3120. radius += (ms % 10L) - 5L;
  3121. if (radius < 0.0) radius = -radius;
  3122. X_current = X_probe_location + cos(theta) * radius;
  3123. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3124. Y_current = Y_probe_location + sin(theta) * radius;
  3125. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3126. if (verbose_level > 3) {
  3127. SERIAL_ECHOPAIR("x: ", X_current);
  3128. SERIAL_ECHOPAIR("y: ", Y_current);
  3129. SERIAL_EOL;
  3130. }
  3131. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  3132. } // n_legs loop
  3133. // Go back to the probe location
  3134. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  3135. } // n_legs
  3136. if (deploy_probe_for_each_reading) {
  3137. deploy_z_probe();
  3138. delay(1000);
  3139. }
  3140. setup_for_endstop_move();
  3141. run_z_probe();
  3142. sample_set[n] = current_position[Z_AXIS];
  3143. //
  3144. // Get the current mean for the data points we have so far
  3145. //
  3146. sum = 0.0;
  3147. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3148. mean = sum / (n + 1);
  3149. //
  3150. // Now, use that mean to calculate the standard deviation for the
  3151. // data points we have so far
  3152. //
  3153. sum = 0.0;
  3154. for (uint8_t j = 0; j <= n; j++) {
  3155. float ss = sample_set[j] - mean;
  3156. sum += ss * ss;
  3157. }
  3158. sigma = sqrt(sum / (n + 1));
  3159. if (verbose_level > 1) {
  3160. SERIAL_PROTOCOL(n + 1);
  3161. SERIAL_PROTOCOLPGM(" of ");
  3162. SERIAL_PROTOCOL((int)n_samples);
  3163. SERIAL_PROTOCOLPGM(" z: ");
  3164. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3165. if (verbose_level > 2) {
  3166. SERIAL_PROTOCOLPGM(" mean: ");
  3167. SERIAL_PROTOCOL_F(mean, 6);
  3168. SERIAL_PROTOCOLPGM(" sigma: ");
  3169. SERIAL_PROTOCOL_F(sigma, 6);
  3170. }
  3171. }
  3172. if (verbose_level > 0) SERIAL_EOL;
  3173. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3174. st_synchronize();
  3175. // Stow between
  3176. if (deploy_probe_for_each_reading) {
  3177. stow_z_probe();
  3178. delay(1000);
  3179. }
  3180. }
  3181. // Stow after
  3182. if (!deploy_probe_for_each_reading) {
  3183. stow_z_probe();
  3184. delay(1000);
  3185. }
  3186. clean_up_after_endstop_move();
  3187. if (verbose_level > 0) {
  3188. SERIAL_PROTOCOLPGM("Mean: ");
  3189. SERIAL_PROTOCOL_F(mean, 6);
  3190. SERIAL_EOL;
  3191. }
  3192. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3193. SERIAL_PROTOCOL_F(sigma, 6);
  3194. SERIAL_EOL; SERIAL_EOL;
  3195. }
  3196. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3197. /**
  3198. * M104: Set hot end temperature
  3199. */
  3200. inline void gcode_M104() {
  3201. if (setTargetedHotend(104)) return;
  3202. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3203. if (code_seen('S')) {
  3204. float temp = code_value();
  3205. setTargetHotend(temp, target_extruder);
  3206. #if ENABLED(DUAL_X_CARRIAGE)
  3207. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3208. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3209. #endif
  3210. }
  3211. }
  3212. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3213. void print_heaterstates() {
  3214. #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
  3215. SERIAL_PROTOCOLPGM(" T:");
  3216. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3217. SERIAL_PROTOCOLPGM(" /");
  3218. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3219. #endif
  3220. #if HAS_TEMP_BED
  3221. SERIAL_PROTOCOLPGM(" B:");
  3222. SERIAL_PROTOCOL_F(degBed(), 1);
  3223. SERIAL_PROTOCOLPGM(" /");
  3224. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3225. #endif
  3226. #if EXTRUDERS > 1
  3227. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3228. SERIAL_PROTOCOLPGM(" T");
  3229. SERIAL_PROTOCOL(e);
  3230. SERIAL_PROTOCOLCHAR(':');
  3231. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3232. SERIAL_PROTOCOLPGM(" /");
  3233. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3234. }
  3235. #endif
  3236. #if HAS_TEMP_BED
  3237. SERIAL_PROTOCOLPGM(" B@:");
  3238. #ifdef BED_WATTS
  3239. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3240. SERIAL_PROTOCOLCHAR('W');
  3241. #else
  3242. SERIAL_PROTOCOL(getHeaterPower(-1));
  3243. #endif
  3244. #endif
  3245. SERIAL_PROTOCOLPGM(" @:");
  3246. #ifdef EXTRUDER_WATTS
  3247. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3248. SERIAL_PROTOCOLCHAR('W');
  3249. #else
  3250. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3251. #endif
  3252. #if EXTRUDERS > 1
  3253. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3254. SERIAL_PROTOCOLPGM(" @");
  3255. SERIAL_PROTOCOL(e);
  3256. SERIAL_PROTOCOLCHAR(':');
  3257. #ifdef EXTRUDER_WATTS
  3258. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3259. SERIAL_PROTOCOLCHAR('W');
  3260. #else
  3261. SERIAL_PROTOCOL(getHeaterPower(e));
  3262. #endif
  3263. }
  3264. #endif
  3265. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3266. #if HAS_TEMP_BED
  3267. SERIAL_PROTOCOLPGM(" ADC B:");
  3268. SERIAL_PROTOCOL_F(degBed(), 1);
  3269. SERIAL_PROTOCOLPGM("C->");
  3270. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3271. #endif
  3272. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3273. SERIAL_PROTOCOLPGM(" T");
  3274. SERIAL_PROTOCOL(cur_extruder);
  3275. SERIAL_PROTOCOLCHAR(':');
  3276. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3277. SERIAL_PROTOCOLPGM("C->");
  3278. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3279. }
  3280. #endif
  3281. }
  3282. #endif
  3283. /**
  3284. * M105: Read hot end and bed temperature
  3285. */
  3286. inline void gcode_M105() {
  3287. if (setTargetedHotend(105)) return;
  3288. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3289. SERIAL_PROTOCOLPGM(MSG_OK);
  3290. print_heaterstates();
  3291. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  3292. SERIAL_ERROR_START;
  3293. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3294. #endif
  3295. SERIAL_EOL;
  3296. }
  3297. #if HAS_FAN
  3298. /**
  3299. * M106: Set Fan Speed
  3300. */
  3301. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  3302. /**
  3303. * M107: Fan Off
  3304. */
  3305. inline void gcode_M107() { fanSpeed = 0; }
  3306. #endif // HAS_FAN
  3307. /**
  3308. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3309. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3310. */
  3311. inline void gcode_M109() {
  3312. bool no_wait_for_cooling = true;
  3313. if (setTargetedHotend(109)) return;
  3314. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3315. LCD_MESSAGEPGM(MSG_HEATING);
  3316. no_wait_for_cooling = code_seen('S');
  3317. if (no_wait_for_cooling || code_seen('R')) {
  3318. float temp = code_value();
  3319. setTargetHotend(temp, target_extruder);
  3320. #if ENABLED(DUAL_X_CARRIAGE)
  3321. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3322. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3323. #endif
  3324. }
  3325. #if ENABLED(AUTOTEMP)
  3326. autotemp_enabled = code_seen('F');
  3327. if (autotemp_enabled) autotemp_factor = code_value();
  3328. if (code_seen('S')) autotemp_min = code_value();
  3329. if (code_seen('B')) autotemp_max = code_value();
  3330. #endif
  3331. // Exit if the temperature is above target and not waiting for cooling
  3332. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3333. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3334. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3335. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP/2)) return;
  3336. #ifdef TEMP_RESIDENCY_TIME
  3337. long residency_start_ms = -1;
  3338. // Loop until the temperature has stabilized
  3339. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3340. #else
  3341. // Loop until the temperature is very close target
  3342. #define TEMP_CONDITIONS (fabs(degHotend(target_extruder) - degTargetHotend(target_extruder)) < 0.75f)
  3343. #endif //TEMP_RESIDENCY_TIME
  3344. cancel_heatup = false;
  3345. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3346. while (!cancel_heatup && TEMP_CONDITIONS) {
  3347. now = millis();
  3348. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3349. next_temp_ms = now + 1000UL;
  3350. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3351. print_heaterstates();
  3352. #endif
  3353. #ifdef TEMP_RESIDENCY_TIME
  3354. SERIAL_PROTOCOLPGM(" W:");
  3355. if (residency_start_ms >= 0) {
  3356. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3357. SERIAL_PROTOCOLLN(rem);
  3358. }
  3359. else {
  3360. SERIAL_PROTOCOLLNPGM("?");
  3361. }
  3362. #else
  3363. SERIAL_EOL;
  3364. #endif //TEMP_RESIDENCY_TIME
  3365. }
  3366. idle();
  3367. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3368. #ifdef TEMP_RESIDENCY_TIME
  3369. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3370. // Restart the timer whenever the temperature falls outside the hysteresis.
  3371. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3372. residency_start_ms = millis();
  3373. #endif //TEMP_RESIDENCY_TIME
  3374. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3375. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3376. print_job_start_ms = previous_cmd_ms;
  3377. }
  3378. #if HAS_TEMP_BED
  3379. /**
  3380. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3381. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3382. */
  3383. inline void gcode_M190() {
  3384. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3385. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3386. bool no_wait_for_cooling = code_seen('S');
  3387. if (no_wait_for_cooling || code_seen('R'))
  3388. setTargetBed(code_value());
  3389. // Exit if the temperature is above target and not waiting for cooling
  3390. if (no_wait_for_cooling && !isHeatingBed()) return;
  3391. cancel_heatup = false;
  3392. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3393. while (!cancel_heatup && degTargetBed() != degBed()) {
  3394. millis_t now = millis();
  3395. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3396. next_temp_ms = now + 1000UL;
  3397. print_heaterstates();
  3398. SERIAL_EOL;
  3399. }
  3400. idle();
  3401. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3402. }
  3403. LCD_MESSAGEPGM(MSG_BED_DONE);
  3404. }
  3405. #endif // HAS_TEMP_BED
  3406. /**
  3407. * M110: Set Current Line Number
  3408. */
  3409. inline void gcode_M110() {
  3410. if (code_seen('N')) gcode_N = code_value_long();
  3411. }
  3412. /**
  3413. * M111: Set the debug level
  3414. */
  3415. inline void gcode_M111() {
  3416. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO | DEBUG_COMMUNICATION;
  3417. if (marlin_debug_flags & DEBUG_ECHO) {
  3418. SERIAL_ECHO_START;
  3419. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3420. }
  3421. // FOR MOMENT NOT ACTIVE
  3422. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3423. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3424. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3425. SERIAL_ECHO_START;
  3426. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3427. disable_all_heaters();
  3428. }
  3429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3430. if (marlin_debug_flags & DEBUG_LEVELING) {
  3431. SERIAL_ECHO_START;
  3432. SERIAL_ECHOLNPGM(MSG_DEBUG_LEVELING);
  3433. }
  3434. #endif
  3435. }
  3436. /**
  3437. * M112: Emergency Stop
  3438. */
  3439. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3440. #if ENABLED(BARICUDA)
  3441. #if HAS_HEATER_1
  3442. /**
  3443. * M126: Heater 1 valve open
  3444. */
  3445. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3446. /**
  3447. * M127: Heater 1 valve close
  3448. */
  3449. inline void gcode_M127() { ValvePressure = 0; }
  3450. #endif
  3451. #if HAS_HEATER_2
  3452. /**
  3453. * M128: Heater 2 valve open
  3454. */
  3455. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3456. /**
  3457. * M129: Heater 2 valve close
  3458. */
  3459. inline void gcode_M129() { EtoPPressure = 0; }
  3460. #endif
  3461. #endif //BARICUDA
  3462. /**
  3463. * M140: Set bed temperature
  3464. */
  3465. inline void gcode_M140() {
  3466. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3467. if (code_seen('S')) setTargetBed(code_value());
  3468. }
  3469. #if ENABLED(ULTIPANEL)
  3470. /**
  3471. * M145: Set the heatup state for a material in the LCD menu
  3472. * S<material> (0=PLA, 1=ABS)
  3473. * H<hotend temp>
  3474. * B<bed temp>
  3475. * F<fan speed>
  3476. */
  3477. inline void gcode_M145() {
  3478. int8_t material = code_seen('S') ? code_value_short() : 0;
  3479. if (material < 0 || material > 1) {
  3480. SERIAL_ERROR_START;
  3481. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3482. }
  3483. else {
  3484. int v;
  3485. switch (material) {
  3486. case 0:
  3487. if (code_seen('H')) {
  3488. v = code_value_short();
  3489. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3490. }
  3491. if (code_seen('F')) {
  3492. v = code_value_short();
  3493. plaPreheatFanSpeed = constrain(v, 0, 255);
  3494. }
  3495. #if TEMP_SENSOR_BED != 0
  3496. if (code_seen('B')) {
  3497. v = code_value_short();
  3498. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3499. }
  3500. #endif
  3501. break;
  3502. case 1:
  3503. if (code_seen('H')) {
  3504. v = code_value_short();
  3505. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3506. }
  3507. if (code_seen('F')) {
  3508. v = code_value_short();
  3509. absPreheatFanSpeed = constrain(v, 0, 255);
  3510. }
  3511. #if TEMP_SENSOR_BED != 0
  3512. if (code_seen('B')) {
  3513. v = code_value_short();
  3514. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3515. }
  3516. #endif
  3517. break;
  3518. }
  3519. }
  3520. }
  3521. #endif
  3522. #if HAS_POWER_SWITCH
  3523. /**
  3524. * M80: Turn on Power Supply
  3525. */
  3526. inline void gcode_M80() {
  3527. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3528. // If you have a switch on suicide pin, this is useful
  3529. // if you want to start another print with suicide feature after
  3530. // a print without suicide...
  3531. #if HAS_SUICIDE
  3532. OUT_WRITE(SUICIDE_PIN, HIGH);
  3533. #endif
  3534. #if ENABLED(ULTIPANEL)
  3535. powersupply = true;
  3536. LCD_MESSAGEPGM(WELCOME_MSG);
  3537. lcd_update();
  3538. #endif
  3539. }
  3540. #endif // HAS_POWER_SWITCH
  3541. /**
  3542. * M81: Turn off Power, including Power Supply, if there is one.
  3543. *
  3544. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3545. */
  3546. inline void gcode_M81() {
  3547. disable_all_heaters();
  3548. finishAndDisableSteppers();
  3549. fanSpeed = 0;
  3550. delay(1000); // Wait 1 second before switching off
  3551. #if HAS_SUICIDE
  3552. st_synchronize();
  3553. suicide();
  3554. #elif HAS_POWER_SWITCH
  3555. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3556. #endif
  3557. #if ENABLED(ULTIPANEL)
  3558. #if HAS_POWER_SWITCH
  3559. powersupply = false;
  3560. #endif
  3561. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3562. lcd_update();
  3563. #endif
  3564. }
  3565. /**
  3566. * M82: Set E codes absolute (default)
  3567. */
  3568. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3569. /**
  3570. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3571. */
  3572. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3573. /**
  3574. * M18, M84: Disable all stepper motors
  3575. */
  3576. inline void gcode_M18_M84() {
  3577. if (code_seen('S')) {
  3578. stepper_inactive_time = code_value() * 1000;
  3579. }
  3580. else {
  3581. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3582. if (all_axis) {
  3583. finishAndDisableSteppers();
  3584. }
  3585. else {
  3586. st_synchronize();
  3587. if (code_seen('X')) disable_x();
  3588. if (code_seen('Y')) disable_y();
  3589. if (code_seen('Z')) disable_z();
  3590. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3591. if (code_seen('E')) {
  3592. disable_e0();
  3593. disable_e1();
  3594. disable_e2();
  3595. disable_e3();
  3596. }
  3597. #endif
  3598. }
  3599. }
  3600. }
  3601. /**
  3602. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3603. */
  3604. inline void gcode_M85() {
  3605. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3606. }
  3607. /**
  3608. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3609. * (Follows the same syntax as G92)
  3610. */
  3611. inline void gcode_M92() {
  3612. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3613. if (code_seen(axis_codes[i])) {
  3614. if (i == E_AXIS) {
  3615. float value = code_value();
  3616. if (value < 20.0) {
  3617. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3618. max_e_jerk *= factor;
  3619. max_feedrate[i] *= factor;
  3620. axis_steps_per_sqr_second[i] *= factor;
  3621. }
  3622. axis_steps_per_unit[i] = value;
  3623. }
  3624. else {
  3625. axis_steps_per_unit[i] = code_value();
  3626. }
  3627. }
  3628. }
  3629. }
  3630. /**
  3631. * M114: Output current position to serial port
  3632. */
  3633. inline void gcode_M114() {
  3634. SERIAL_PROTOCOLPGM("X:");
  3635. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3636. SERIAL_PROTOCOLPGM(" Y:");
  3637. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3638. SERIAL_PROTOCOLPGM(" Z:");
  3639. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3640. SERIAL_PROTOCOLPGM(" E:");
  3641. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3642. CRITICAL_SECTION_START;
  3643. extern volatile long count_position[NUM_AXIS];
  3644. long xpos = count_position[X_AXIS],
  3645. ypos = count_position[Y_AXIS],
  3646. zpos = count_position[Z_AXIS];
  3647. CRITICAL_SECTION_END;
  3648. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3649. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3650. #else
  3651. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3652. #endif
  3653. SERIAL_PROTOCOL(xpos);
  3654. #if ENABLED(COREXY)
  3655. SERIAL_PROTOCOLPGM(" B:");
  3656. #else
  3657. SERIAL_PROTOCOLPGM(" Y:");
  3658. #endif
  3659. SERIAL_PROTOCOL(ypos);
  3660. #if ENABLED(COREXZ)
  3661. SERIAL_PROTOCOLPGM(" C:");
  3662. #else
  3663. SERIAL_PROTOCOLPGM(" Z:");
  3664. #endif
  3665. SERIAL_PROTOCOL(zpos);
  3666. SERIAL_EOL;
  3667. #if ENABLED(SCARA)
  3668. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3669. SERIAL_PROTOCOL(delta[X_AXIS]);
  3670. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3671. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3672. SERIAL_EOL;
  3673. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3674. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3675. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3676. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3677. SERIAL_EOL;
  3678. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3679. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3680. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3681. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3682. SERIAL_EOL; SERIAL_EOL;
  3683. #endif
  3684. }
  3685. /**
  3686. * M115: Capabilities string
  3687. */
  3688. inline void gcode_M115() {
  3689. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3690. }
  3691. /**
  3692. * M117: Set LCD Status Message
  3693. */
  3694. inline void gcode_M117() {
  3695. lcd_setstatus(current_command_args);
  3696. }
  3697. /**
  3698. * M119: Output endstop states to serial output
  3699. */
  3700. inline void gcode_M119() {
  3701. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3702. #if HAS_X_MIN
  3703. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3704. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3705. #endif
  3706. #if HAS_X_MAX
  3707. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3708. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3709. #endif
  3710. #if HAS_Y_MIN
  3711. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3712. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3713. #endif
  3714. #if HAS_Y_MAX
  3715. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3716. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3717. #endif
  3718. #if HAS_Z_MIN
  3719. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3720. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3721. #endif
  3722. #if HAS_Z_MAX
  3723. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3724. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3725. #endif
  3726. #if HAS_Z2_MAX
  3727. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3728. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3729. #endif
  3730. #if HAS_Z_PROBE
  3731. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3732. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3733. #endif
  3734. }
  3735. /**
  3736. * M120: Enable endstops
  3737. */
  3738. inline void gcode_M120() { enable_endstops(true); }
  3739. /**
  3740. * M121: Disable endstops
  3741. */
  3742. inline void gcode_M121() { enable_endstops(false); }
  3743. #if ENABLED(BLINKM)
  3744. /**
  3745. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3746. */
  3747. inline void gcode_M150() {
  3748. SendColors(
  3749. code_seen('R') ? (byte)code_value_short() : 0,
  3750. code_seen('U') ? (byte)code_value_short() : 0,
  3751. code_seen('B') ? (byte)code_value_short() : 0
  3752. );
  3753. }
  3754. #endif // BLINKM
  3755. /**
  3756. * M200: Set filament diameter and set E axis units to cubic millimeters
  3757. *
  3758. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3759. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3760. */
  3761. inline void gcode_M200() {
  3762. if (setTargetedHotend(200)) return;
  3763. if (code_seen('D')) {
  3764. float diameter = code_value();
  3765. // setting any extruder filament size disables volumetric on the assumption that
  3766. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3767. // for all extruders
  3768. volumetric_enabled = (diameter != 0.0);
  3769. if (volumetric_enabled) {
  3770. filament_size[target_extruder] = diameter;
  3771. // make sure all extruders have some sane value for the filament size
  3772. for (int i = 0; i < EXTRUDERS; i++)
  3773. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3774. }
  3775. }
  3776. else {
  3777. //reserved for setting filament diameter via UFID or filament measuring device
  3778. return;
  3779. }
  3780. calculate_volumetric_multipliers();
  3781. }
  3782. /**
  3783. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3784. */
  3785. inline void gcode_M201() {
  3786. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3787. if (code_seen(axis_codes[i])) {
  3788. max_acceleration_units_per_sq_second[i] = code_value();
  3789. }
  3790. }
  3791. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3792. reset_acceleration_rates();
  3793. }
  3794. #if 0 // Not used for Sprinter/grbl gen6
  3795. inline void gcode_M202() {
  3796. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3797. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3798. }
  3799. }
  3800. #endif
  3801. /**
  3802. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3803. */
  3804. inline void gcode_M203() {
  3805. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3806. if (code_seen(axis_codes[i])) {
  3807. max_feedrate[i] = code_value();
  3808. }
  3809. }
  3810. }
  3811. /**
  3812. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3813. *
  3814. * P = Printing moves
  3815. * R = Retract only (no X, Y, Z) moves
  3816. * T = Travel (non printing) moves
  3817. *
  3818. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3819. */
  3820. inline void gcode_M204() {
  3821. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3822. travel_acceleration = acceleration = code_value();
  3823. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3824. SERIAL_EOL;
  3825. }
  3826. if (code_seen('P')) {
  3827. acceleration = code_value();
  3828. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  3829. SERIAL_EOL;
  3830. }
  3831. if (code_seen('R')) {
  3832. retract_acceleration = code_value();
  3833. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  3834. SERIAL_EOL;
  3835. }
  3836. if (code_seen('T')) {
  3837. travel_acceleration = code_value();
  3838. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  3839. SERIAL_EOL;
  3840. }
  3841. }
  3842. /**
  3843. * M205: Set Advanced Settings
  3844. *
  3845. * S = Min Feed Rate (mm/s)
  3846. * T = Min Travel Feed Rate (mm/s)
  3847. * B = Min Segment Time (µs)
  3848. * X = Max XY Jerk (mm/s/s)
  3849. * Z = Max Z Jerk (mm/s/s)
  3850. * E = Max E Jerk (mm/s/s)
  3851. */
  3852. inline void gcode_M205() {
  3853. if (code_seen('S')) minimumfeedrate = code_value();
  3854. if (code_seen('T')) mintravelfeedrate = code_value();
  3855. if (code_seen('B')) minsegmenttime = code_value();
  3856. if (code_seen('X')) max_xy_jerk = code_value();
  3857. if (code_seen('Z')) max_z_jerk = code_value();
  3858. if (code_seen('E')) max_e_jerk = code_value();
  3859. }
  3860. /**
  3861. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3862. */
  3863. inline void gcode_M206() {
  3864. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3865. if (code_seen(axis_codes[i])) {
  3866. home_offset[i] = code_value();
  3867. }
  3868. }
  3869. #if ENABLED(SCARA)
  3870. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3871. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3872. #endif
  3873. }
  3874. #if ENABLED(DELTA)
  3875. /**
  3876. * M665: Set delta configurations
  3877. *
  3878. * L = diagonal rod
  3879. * R = delta radius
  3880. * S = segments per second
  3881. * A = Alpha (Tower 1) diagonal rod trim
  3882. * B = Beta (Tower 2) diagonal rod trim
  3883. * C = Gamma (Tower 3) diagonal rod trim
  3884. */
  3885. inline void gcode_M665() {
  3886. if (code_seen('L')) delta_diagonal_rod = code_value();
  3887. if (code_seen('R')) delta_radius = code_value();
  3888. if (code_seen('S')) delta_segments_per_second = code_value();
  3889. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  3890. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  3891. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  3892. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3893. }
  3894. /**
  3895. * M666: Set delta endstop adjustment
  3896. */
  3897. inline void gcode_M666() {
  3898. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3899. if (marlin_debug_flags & DEBUG_LEVELING) {
  3900. SERIAL_ECHOLNPGM(">>> gcode_M666");
  3901. }
  3902. #endif
  3903. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3904. if (code_seen(axis_codes[i])) {
  3905. endstop_adj[i] = code_value();
  3906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3907. if (marlin_debug_flags & DEBUG_LEVELING) {
  3908. SERIAL_ECHOPGM("endstop_adj[");
  3909. SERIAL_ECHO(axis_codes[i]);
  3910. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  3911. SERIAL_EOL;
  3912. }
  3913. #endif
  3914. }
  3915. }
  3916. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3917. if (marlin_debug_flags & DEBUG_LEVELING) {
  3918. SERIAL_ECHOLNPGM("<<< gcode_M666");
  3919. }
  3920. #endif
  3921. }
  3922. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  3923. /**
  3924. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3925. */
  3926. inline void gcode_M666() {
  3927. if (code_seen('Z')) z_endstop_adj = code_value();
  3928. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3929. SERIAL_EOL;
  3930. }
  3931. #endif // !DELTA && Z_DUAL_ENDSTOPS
  3932. #if ENABLED(FWRETRACT)
  3933. /**
  3934. * M207: Set firmware retraction values
  3935. *
  3936. * S[+mm] retract_length
  3937. * W[+mm] retract_length_swap (multi-extruder)
  3938. * F[mm/min] retract_feedrate
  3939. * Z[mm] retract_zlift
  3940. */
  3941. inline void gcode_M207() {
  3942. if (code_seen('S')) retract_length = code_value();
  3943. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3944. if (code_seen('Z')) retract_zlift = code_value();
  3945. #if EXTRUDERS > 1
  3946. if (code_seen('W')) retract_length_swap = code_value();
  3947. #endif
  3948. }
  3949. /**
  3950. * M208: Set firmware un-retraction values
  3951. *
  3952. * S[+mm] retract_recover_length (in addition to M207 S*)
  3953. * W[+mm] retract_recover_length_swap (multi-extruder)
  3954. * F[mm/min] retract_recover_feedrate
  3955. */
  3956. inline void gcode_M208() {
  3957. if (code_seen('S')) retract_recover_length = code_value();
  3958. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3959. #if EXTRUDERS > 1
  3960. if (code_seen('W')) retract_recover_length_swap = code_value();
  3961. #endif
  3962. }
  3963. /**
  3964. * M209: Enable automatic retract (M209 S1)
  3965. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3966. */
  3967. inline void gcode_M209() {
  3968. if (code_seen('S')) {
  3969. int t = code_value_short();
  3970. switch (t) {
  3971. case 0:
  3972. autoretract_enabled = false;
  3973. break;
  3974. case 1:
  3975. autoretract_enabled = true;
  3976. break;
  3977. default:
  3978. unknown_command_error();
  3979. return;
  3980. }
  3981. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  3982. }
  3983. }
  3984. #endif // FWRETRACT
  3985. #if EXTRUDERS > 1
  3986. /**
  3987. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3988. */
  3989. inline void gcode_M218() {
  3990. if (setTargetedHotend(218)) return;
  3991. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3992. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3993. #if ENABLED(DUAL_X_CARRIAGE)
  3994. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3995. #endif
  3996. SERIAL_ECHO_START;
  3997. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3998. for (int e = 0; e < EXTRUDERS; e++) {
  3999. SERIAL_CHAR(' ');
  4000. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4001. SERIAL_CHAR(',');
  4002. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4003. #if ENABLED(DUAL_X_CARRIAGE)
  4004. SERIAL_CHAR(',');
  4005. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4006. #endif
  4007. }
  4008. SERIAL_EOL;
  4009. }
  4010. #endif // EXTRUDERS > 1
  4011. /**
  4012. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4013. */
  4014. inline void gcode_M220() {
  4015. if (code_seen('S')) feedrate_multiplier = code_value();
  4016. }
  4017. /**
  4018. * M221: Set extrusion percentage (M221 T0 S95)
  4019. */
  4020. inline void gcode_M221() {
  4021. if (code_seen('S')) {
  4022. int sval = code_value();
  4023. if (setTargetedHotend(221)) return;
  4024. extruder_multiplier[target_extruder] = sval;
  4025. }
  4026. }
  4027. /**
  4028. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4029. */
  4030. inline void gcode_M226() {
  4031. if (code_seen('P')) {
  4032. int pin_number = code_value();
  4033. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4034. if (pin_state >= -1 && pin_state <= 1) {
  4035. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4036. if (sensitive_pins[i] == pin_number) {
  4037. pin_number = -1;
  4038. break;
  4039. }
  4040. }
  4041. if (pin_number > -1) {
  4042. int target = LOW;
  4043. st_synchronize();
  4044. pinMode(pin_number, INPUT);
  4045. switch (pin_state) {
  4046. case 1:
  4047. target = HIGH;
  4048. break;
  4049. case 0:
  4050. target = LOW;
  4051. break;
  4052. case -1:
  4053. target = !digitalRead(pin_number);
  4054. break;
  4055. }
  4056. while (digitalRead(pin_number) != target) idle();
  4057. } // pin_number > -1
  4058. } // pin_state -1 0 1
  4059. } // code_seen('P')
  4060. }
  4061. #if HAS_SERVOS
  4062. /**
  4063. * M280: Get or set servo position. P<index> S<angle>
  4064. */
  4065. inline void gcode_M280() {
  4066. int servo_index = code_seen('P') ? code_value_short() : -1;
  4067. int servo_position = 0;
  4068. if (code_seen('S')) {
  4069. servo_position = code_value_short();
  4070. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4071. servo[servo_index].move(servo_position);
  4072. else {
  4073. SERIAL_ERROR_START;
  4074. SERIAL_ERROR("Servo ");
  4075. SERIAL_ERROR(servo_index);
  4076. SERIAL_ERRORLN(" out of range");
  4077. }
  4078. }
  4079. else if (servo_index >= 0) {
  4080. SERIAL_ECHO_START;
  4081. SERIAL_ECHO(" Servo ");
  4082. SERIAL_ECHO(servo_index);
  4083. SERIAL_ECHO(": ");
  4084. SERIAL_ECHOLN(servo[servo_index].read());
  4085. }
  4086. }
  4087. #endif // HAS_SERVOS
  4088. #if HAS_BUZZER
  4089. /**
  4090. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4091. */
  4092. inline void gcode_M300() {
  4093. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4094. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4095. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4096. buzz(beepP, beepS);
  4097. }
  4098. #endif // HAS_BUZZER
  4099. #if ENABLED(PIDTEMP)
  4100. /**
  4101. * M301: Set PID parameters P I D (and optionally C, L)
  4102. *
  4103. * P[float] Kp term
  4104. * I[float] Ki term (unscaled)
  4105. * D[float] Kd term (unscaled)
  4106. *
  4107. * With PID_ADD_EXTRUSION_RATE:
  4108. *
  4109. * C[float] Kc term
  4110. * L[float] LPQ length
  4111. */
  4112. inline void gcode_M301() {
  4113. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4114. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4115. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4116. if (e < EXTRUDERS) { // catch bad input value
  4117. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4118. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4119. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4120. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4121. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4122. if (code_seen('L')) lpq_len = code_value();
  4123. NOMORE(lpq_len, LPQ_MAX_LEN);
  4124. #endif
  4125. updatePID();
  4126. SERIAL_ECHO_START;
  4127. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4128. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4129. SERIAL_ECHO(e);
  4130. #endif // PID_PARAMS_PER_EXTRUDER
  4131. SERIAL_ECHO(" p:");
  4132. SERIAL_ECHO(PID_PARAM(Kp, e));
  4133. SERIAL_ECHO(" i:");
  4134. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4135. SERIAL_ECHO(" d:");
  4136. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4137. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4138. SERIAL_ECHO(" c:");
  4139. //Kc does not have scaling applied above, or in resetting defaults
  4140. SERIAL_ECHO(PID_PARAM(Kc, e));
  4141. #endif
  4142. SERIAL_EOL;
  4143. }
  4144. else {
  4145. SERIAL_ERROR_START;
  4146. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4147. }
  4148. }
  4149. #endif // PIDTEMP
  4150. #if ENABLED(PIDTEMPBED)
  4151. inline void gcode_M304() {
  4152. if (code_seen('P')) bedKp = code_value();
  4153. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4154. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4155. updatePID();
  4156. SERIAL_ECHO_START;
  4157. SERIAL_ECHO(" p:");
  4158. SERIAL_ECHO(bedKp);
  4159. SERIAL_ECHO(" i:");
  4160. SERIAL_ECHO(unscalePID_i(bedKi));
  4161. SERIAL_ECHO(" d:");
  4162. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4163. }
  4164. #endif // PIDTEMPBED
  4165. #if defined(CHDK) || HAS_PHOTOGRAPH
  4166. /**
  4167. * M240: Trigger a camera by emulating a Canon RC-1
  4168. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4169. */
  4170. inline void gcode_M240() {
  4171. #ifdef CHDK
  4172. OUT_WRITE(CHDK, HIGH);
  4173. chdkHigh = millis();
  4174. chdkActive = true;
  4175. #elif HAS_PHOTOGRAPH
  4176. const uint8_t NUM_PULSES = 16;
  4177. const float PULSE_LENGTH = 0.01524;
  4178. for (int i = 0; i < NUM_PULSES; i++) {
  4179. WRITE(PHOTOGRAPH_PIN, HIGH);
  4180. _delay_ms(PULSE_LENGTH);
  4181. WRITE(PHOTOGRAPH_PIN, LOW);
  4182. _delay_ms(PULSE_LENGTH);
  4183. }
  4184. delay(7.33);
  4185. for (int i = 0; i < NUM_PULSES; i++) {
  4186. WRITE(PHOTOGRAPH_PIN, HIGH);
  4187. _delay_ms(PULSE_LENGTH);
  4188. WRITE(PHOTOGRAPH_PIN, LOW);
  4189. _delay_ms(PULSE_LENGTH);
  4190. }
  4191. #endif // !CHDK && HAS_PHOTOGRAPH
  4192. }
  4193. #endif // CHDK || PHOTOGRAPH_PIN
  4194. #if ENABLED(HAS_LCD_CONTRAST)
  4195. /**
  4196. * M250: Read and optionally set the LCD contrast
  4197. */
  4198. inline void gcode_M250() {
  4199. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4200. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4201. SERIAL_PROTOCOL(lcd_contrast);
  4202. SERIAL_EOL;
  4203. }
  4204. #endif // HAS_LCD_CONTRAST
  4205. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4206. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4207. /**
  4208. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4209. */
  4210. inline void gcode_M302() {
  4211. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4212. }
  4213. #endif // PREVENT_DANGEROUS_EXTRUDE
  4214. /**
  4215. * M303: PID relay autotune
  4216. * S<temperature> sets the target temperature. (default target temperature = 150C)
  4217. * E<extruder> (-1 for the bed)
  4218. * C<cycles>
  4219. */
  4220. inline void gcode_M303() {
  4221. int e = code_seen('E') ? code_value_short() : 0;
  4222. int c = code_seen('C') ? code_value_short() : 5;
  4223. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4224. if (e >=0 && e < EXTRUDERS)
  4225. target_extruder = e;
  4226. PID_autotune(temp, e, c);
  4227. }
  4228. #if ENABLED(SCARA)
  4229. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4230. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4231. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4232. if (IsRunning()) {
  4233. //gcode_get_destination(); // For X Y Z E F
  4234. delta[X_AXIS] = delta_x;
  4235. delta[Y_AXIS] = delta_y;
  4236. calculate_SCARA_forward_Transform(delta);
  4237. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4238. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4239. prepare_move();
  4240. //ok_to_send();
  4241. return true;
  4242. }
  4243. return false;
  4244. }
  4245. /**
  4246. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4247. */
  4248. inline bool gcode_M360() {
  4249. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4250. return SCARA_move_to_cal(0, 120);
  4251. }
  4252. /**
  4253. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4254. */
  4255. inline bool gcode_M361() {
  4256. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4257. return SCARA_move_to_cal(90, 130);
  4258. }
  4259. /**
  4260. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4261. */
  4262. inline bool gcode_M362() {
  4263. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4264. return SCARA_move_to_cal(60, 180);
  4265. }
  4266. /**
  4267. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4268. */
  4269. inline bool gcode_M363() {
  4270. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4271. return SCARA_move_to_cal(50, 90);
  4272. }
  4273. /**
  4274. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4275. */
  4276. inline bool gcode_M364() {
  4277. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4278. return SCARA_move_to_cal(45, 135);
  4279. }
  4280. /**
  4281. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4282. */
  4283. inline void gcode_M365() {
  4284. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4285. if (code_seen(axis_codes[i])) {
  4286. axis_scaling[i] = code_value();
  4287. }
  4288. }
  4289. }
  4290. #endif // SCARA
  4291. #if ENABLED(EXT_SOLENOID)
  4292. void enable_solenoid(uint8_t num) {
  4293. switch (num) {
  4294. case 0:
  4295. OUT_WRITE(SOL0_PIN, HIGH);
  4296. break;
  4297. #if HAS_SOLENOID_1
  4298. case 1:
  4299. OUT_WRITE(SOL1_PIN, HIGH);
  4300. break;
  4301. #endif
  4302. #if HAS_SOLENOID_2
  4303. case 2:
  4304. OUT_WRITE(SOL2_PIN, HIGH);
  4305. break;
  4306. #endif
  4307. #if HAS_SOLENOID_3
  4308. case 3:
  4309. OUT_WRITE(SOL3_PIN, HIGH);
  4310. break;
  4311. #endif
  4312. default:
  4313. SERIAL_ECHO_START;
  4314. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4315. break;
  4316. }
  4317. }
  4318. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4319. void disable_all_solenoids() {
  4320. OUT_WRITE(SOL0_PIN, LOW);
  4321. OUT_WRITE(SOL1_PIN, LOW);
  4322. OUT_WRITE(SOL2_PIN, LOW);
  4323. OUT_WRITE(SOL3_PIN, LOW);
  4324. }
  4325. /**
  4326. * M380: Enable solenoid on the active extruder
  4327. */
  4328. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4329. /**
  4330. * M381: Disable all solenoids
  4331. */
  4332. inline void gcode_M381() { disable_all_solenoids(); }
  4333. #endif // EXT_SOLENOID
  4334. /**
  4335. * M400: Finish all moves
  4336. */
  4337. inline void gcode_M400() { st_synchronize(); }
  4338. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4339. /**
  4340. * M401: Engage Z Servo endstop if available
  4341. */
  4342. inline void gcode_M401() {
  4343. #if HAS_SERVO_ENDSTOPS
  4344. raise_z_for_servo();
  4345. #endif
  4346. deploy_z_probe();
  4347. }
  4348. /**
  4349. * M402: Retract Z Servo endstop if enabled
  4350. */
  4351. inline void gcode_M402() {
  4352. #if HAS_SERVO_ENDSTOPS
  4353. raise_z_for_servo();
  4354. #endif
  4355. stow_z_probe(false);
  4356. }
  4357. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4358. #if ENABLED(FILAMENT_SENSOR)
  4359. /**
  4360. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4361. */
  4362. inline void gcode_M404() {
  4363. #if HAS_FILWIDTH
  4364. if (code_seen('W')) {
  4365. filament_width_nominal = code_value();
  4366. }
  4367. else {
  4368. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4369. SERIAL_PROTOCOLLN(filament_width_nominal);
  4370. }
  4371. #endif
  4372. }
  4373. /**
  4374. * M405: Turn on filament sensor for control
  4375. */
  4376. inline void gcode_M405() {
  4377. if (code_seen('D')) meas_delay_cm = code_value();
  4378. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4379. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  4380. int temp_ratio = widthFil_to_size_ratio();
  4381. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  4382. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4383. delay_index1 = delay_index2 = 0;
  4384. }
  4385. filament_sensor = true;
  4386. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4387. //SERIAL_PROTOCOL(filament_width_meas);
  4388. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4389. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4390. }
  4391. /**
  4392. * M406: Turn off filament sensor for control
  4393. */
  4394. inline void gcode_M406() { filament_sensor = false; }
  4395. /**
  4396. * M407: Get measured filament diameter on serial output
  4397. */
  4398. inline void gcode_M407() {
  4399. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4400. SERIAL_PROTOCOLLN(filament_width_meas);
  4401. }
  4402. #endif // FILAMENT_SENSOR
  4403. /**
  4404. * M410: Quickstop - Abort all planned moves
  4405. *
  4406. * This will stop the carriages mid-move, so most likely they
  4407. * will be out of sync with the stepper position after this.
  4408. */
  4409. inline void gcode_M410() { quickStop(); }
  4410. #if ENABLED(MESH_BED_LEVELING)
  4411. /**
  4412. * M420: Enable/Disable Mesh Bed Leveling
  4413. */
  4414. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4415. /**
  4416. * M421: Set a single Mesh Bed Leveling Z coordinate
  4417. */
  4418. inline void gcode_M421() {
  4419. float x, y, z;
  4420. bool err = false, hasX, hasY, hasZ;
  4421. if ((hasX = code_seen('X'))) x = code_value();
  4422. if ((hasY = code_seen('Y'))) y = code_value();
  4423. if ((hasZ = code_seen('Z'))) z = code_value();
  4424. if (!hasX || !hasY || !hasZ) {
  4425. SERIAL_ERROR_START;
  4426. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4427. err = true;
  4428. }
  4429. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4430. SERIAL_ERROR_START;
  4431. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4432. err = true;
  4433. }
  4434. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4435. }
  4436. #endif
  4437. /**
  4438. * M428: Set home_offset based on the distance between the
  4439. * current_position and the nearest "reference point."
  4440. * If an axis is past center its endstop position
  4441. * is the reference-point. Otherwise it uses 0. This allows
  4442. * the Z offset to be set near the bed when using a max endstop.
  4443. *
  4444. * M428 can't be used more than 2cm away from 0 or an endstop.
  4445. *
  4446. * Use M206 to set these values directly.
  4447. */
  4448. inline void gcode_M428() {
  4449. bool err = false;
  4450. float new_offs[3], new_pos[3];
  4451. memcpy(new_pos, current_position, sizeof(new_pos));
  4452. memcpy(new_offs, home_offset, sizeof(new_offs));
  4453. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4454. if (axis_known_position[i]) {
  4455. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4456. diff = new_pos[i] - base;
  4457. if (diff > -20 && diff < 20) {
  4458. new_offs[i] -= diff;
  4459. new_pos[i] = base;
  4460. }
  4461. else {
  4462. SERIAL_ERROR_START;
  4463. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4464. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4465. #if HAS_BUZZER
  4466. enqueue_and_echo_commands_P(PSTR("M300 S40 P200"));
  4467. #endif
  4468. err = true;
  4469. break;
  4470. }
  4471. }
  4472. }
  4473. if (!err) {
  4474. memcpy(current_position, new_pos, sizeof(new_pos));
  4475. memcpy(home_offset, new_offs, sizeof(new_offs));
  4476. sync_plan_position();
  4477. LCD_ALERTMESSAGEPGM("Offset applied.");
  4478. #if HAS_BUZZER
  4479. enqueue_and_echo_commands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4480. #endif
  4481. }
  4482. }
  4483. /**
  4484. * M500: Store settings in EEPROM
  4485. */
  4486. inline void gcode_M500() {
  4487. Config_StoreSettings();
  4488. }
  4489. /**
  4490. * M501: Read settings from EEPROM
  4491. */
  4492. inline void gcode_M501() {
  4493. Config_RetrieveSettings();
  4494. }
  4495. /**
  4496. * M502: Revert to default settings
  4497. */
  4498. inline void gcode_M502() {
  4499. Config_ResetDefault();
  4500. }
  4501. /**
  4502. * M503: print settings currently in memory
  4503. */
  4504. inline void gcode_M503() {
  4505. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4506. }
  4507. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4508. /**
  4509. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4510. */
  4511. inline void gcode_M540() {
  4512. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4513. }
  4514. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4515. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4516. inline void gcode_SET_Z_PROBE_OFFSET() {
  4517. SERIAL_ECHO_START;
  4518. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4519. SERIAL_CHAR(' ');
  4520. if (code_seen('Z')) {
  4521. float value = code_value();
  4522. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4523. zprobe_zoffset = value;
  4524. SERIAL_ECHO(zprobe_zoffset);
  4525. }
  4526. else {
  4527. SERIAL_ECHOPGM(MSG_Z_MIN);
  4528. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4529. SERIAL_ECHOPGM(MSG_Z_MAX);
  4530. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4531. }
  4532. }
  4533. else {
  4534. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4535. }
  4536. SERIAL_EOL;
  4537. }
  4538. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4539. #if ENABLED(FILAMENTCHANGEENABLE)
  4540. /**
  4541. * M600: Pause for filament change
  4542. *
  4543. * E[distance] - Retract the filament this far (negative value)
  4544. * Z[distance] - Move the Z axis by this distance
  4545. * X[position] - Move to this X position, with Y
  4546. * Y[position] - Move to this Y position, with X
  4547. * L[distance] - Retract distance for removal (manual reload)
  4548. *
  4549. * Default values are used for omitted arguments.
  4550. *
  4551. */
  4552. inline void gcode_M600() {
  4553. if (degHotend(active_extruder) < extrude_min_temp) {
  4554. SERIAL_ERROR_START;
  4555. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4556. return;
  4557. }
  4558. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4559. for (int i = 0; i < NUM_AXIS; i++)
  4560. lastpos[i] = destination[i] = current_position[i];
  4561. #if ENABLED(DELTA)
  4562. #define RUNPLAN calculate_delta(destination); \
  4563. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4564. #else
  4565. #define RUNPLAN line_to_destination();
  4566. #endif
  4567. //retract by E
  4568. if (code_seen('E')) destination[E_AXIS] += code_value();
  4569. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4570. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4571. #endif
  4572. RUNPLAN;
  4573. //lift Z
  4574. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4575. #ifdef FILAMENTCHANGE_ZADD
  4576. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4577. #endif
  4578. RUNPLAN;
  4579. //move xy
  4580. if (code_seen('X')) destination[X_AXIS] = code_value();
  4581. #ifdef FILAMENTCHANGE_XPOS
  4582. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4583. #endif
  4584. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4585. #ifdef FILAMENTCHANGE_YPOS
  4586. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4587. #endif
  4588. RUNPLAN;
  4589. if (code_seen('L')) destination[E_AXIS] += code_value();
  4590. #ifdef FILAMENTCHANGE_FINALRETRACT
  4591. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4592. #endif
  4593. RUNPLAN;
  4594. //finish moves
  4595. st_synchronize();
  4596. //disable extruder steppers so filament can be removed
  4597. disable_e0();
  4598. disable_e1();
  4599. disable_e2();
  4600. disable_e3();
  4601. delay(100);
  4602. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4603. millis_t next_tick = 0;
  4604. while (!lcd_clicked()) {
  4605. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4606. millis_t ms = millis();
  4607. if (ms >= next_tick) {
  4608. lcd_quick_feedback();
  4609. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4610. }
  4611. manage_heater();
  4612. manage_inactivity(true);
  4613. lcd_update();
  4614. #else
  4615. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4616. destination[E_AXIS] = current_position[E_AXIS];
  4617. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4618. st_synchronize();
  4619. #endif
  4620. } // while(!lcd_clicked)
  4621. lcd_quick_feedback(); // click sound feedback
  4622. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4623. current_position[E_AXIS] = 0;
  4624. st_synchronize();
  4625. #endif
  4626. //return to normal
  4627. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4628. #ifdef FILAMENTCHANGE_FINALRETRACT
  4629. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4630. #endif
  4631. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4632. plan_set_e_position(current_position[E_AXIS]);
  4633. RUNPLAN; //should do nothing
  4634. lcd_reset_alert_level();
  4635. #if ENABLED(DELTA)
  4636. // Move XYZ to starting position, then E
  4637. calculate_delta(lastpos);
  4638. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4639. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4640. #else
  4641. // Move XY to starting position, then Z, then E
  4642. destination[X_AXIS] = lastpos[X_AXIS];
  4643. destination[Y_AXIS] = lastpos[Y_AXIS];
  4644. line_to_destination();
  4645. destination[Z_AXIS] = lastpos[Z_AXIS];
  4646. line_to_destination();
  4647. destination[E_AXIS] = lastpos[E_AXIS];
  4648. line_to_destination();
  4649. #endif
  4650. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4651. filrunoutEnqueued = false;
  4652. #endif
  4653. }
  4654. #endif // FILAMENTCHANGEENABLE
  4655. #if ENABLED(DUAL_X_CARRIAGE)
  4656. /**
  4657. * M605: Set dual x-carriage movement mode
  4658. *
  4659. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4660. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4661. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4662. * millimeters x-offset and an optional differential hotend temperature of
  4663. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4664. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4665. *
  4666. * Note: the X axis should be homed after changing dual x-carriage mode.
  4667. */
  4668. inline void gcode_M605() {
  4669. st_synchronize();
  4670. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4671. switch (dual_x_carriage_mode) {
  4672. case DXC_DUPLICATION_MODE:
  4673. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4674. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4675. SERIAL_ECHO_START;
  4676. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4677. SERIAL_CHAR(' ');
  4678. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4679. SERIAL_CHAR(',');
  4680. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4681. SERIAL_CHAR(' ');
  4682. SERIAL_ECHO(duplicate_extruder_x_offset);
  4683. SERIAL_CHAR(',');
  4684. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4685. break;
  4686. case DXC_FULL_CONTROL_MODE:
  4687. case DXC_AUTO_PARK_MODE:
  4688. break;
  4689. default:
  4690. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4691. break;
  4692. }
  4693. active_extruder_parked = false;
  4694. extruder_duplication_enabled = false;
  4695. delayed_move_time = 0;
  4696. }
  4697. #endif // DUAL_X_CARRIAGE
  4698. /**
  4699. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4700. */
  4701. inline void gcode_M907() {
  4702. #if HAS_DIGIPOTSS
  4703. for (int i = 0; i < NUM_AXIS; i++)
  4704. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4705. if (code_seen('B')) digipot_current(4, code_value());
  4706. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  4707. #endif
  4708. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4709. if (code_seen('X')) digipot_current(0, code_value());
  4710. #endif
  4711. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4712. if (code_seen('Z')) digipot_current(1, code_value());
  4713. #endif
  4714. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4715. if (code_seen('E')) digipot_current(2, code_value());
  4716. #endif
  4717. #if ENABLED(DIGIPOT_I2C)
  4718. // this one uses actual amps in floating point
  4719. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4720. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4721. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  4722. #endif
  4723. }
  4724. #if HAS_DIGIPOTSS
  4725. /**
  4726. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4727. */
  4728. inline void gcode_M908() {
  4729. digitalPotWrite(
  4730. code_seen('P') ? code_value() : 0,
  4731. code_seen('S') ? code_value() : 0
  4732. );
  4733. }
  4734. #endif // HAS_DIGIPOTSS
  4735. #if HAS_MICROSTEPS
  4736. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4737. inline void gcode_M350() {
  4738. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  4739. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  4740. if (code_seen('B')) microstep_mode(4, code_value());
  4741. microstep_readings();
  4742. }
  4743. /**
  4744. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4745. * S# determines MS1 or MS2, X# sets the pin high/low.
  4746. */
  4747. inline void gcode_M351() {
  4748. if (code_seen('S')) switch (code_value_short()) {
  4749. case 1:
  4750. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4751. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4752. break;
  4753. case 2:
  4754. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4755. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4756. break;
  4757. }
  4758. microstep_readings();
  4759. }
  4760. #endif // HAS_MICROSTEPS
  4761. /**
  4762. * M999: Restart after being stopped
  4763. */
  4764. inline void gcode_M999() {
  4765. Running = true;
  4766. lcd_reset_alert_level();
  4767. // gcode_LastN = Stopped_gcode_LastN;
  4768. FlushSerialRequestResend();
  4769. }
  4770. /**
  4771. * T0-T3: Switch tool, usually switching extruders
  4772. *
  4773. * F[mm/min] Set the movement feedrate
  4774. */
  4775. inline void gcode_T(uint8_t tmp_extruder) {
  4776. if (tmp_extruder >= EXTRUDERS) {
  4777. SERIAL_ECHO_START;
  4778. SERIAL_CHAR('T');
  4779. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  4780. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4781. }
  4782. else {
  4783. target_extruder = tmp_extruder;
  4784. #if EXTRUDERS > 1
  4785. bool make_move = false;
  4786. #endif
  4787. if (code_seen('F')) {
  4788. #if EXTRUDERS > 1
  4789. make_move = true;
  4790. #endif
  4791. float next_feedrate = code_value();
  4792. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4793. }
  4794. #if EXTRUDERS > 1
  4795. if (tmp_extruder != active_extruder) {
  4796. // Save current position to return to after applying extruder offset
  4797. set_destination_to_current();
  4798. #if ENABLED(DUAL_X_CARRIAGE)
  4799. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4800. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4801. // Park old head: 1) raise 2) move to park position 3) lower
  4802. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4803. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4804. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4805. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4806. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4807. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4808. st_synchronize();
  4809. }
  4810. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4811. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  4812. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  4813. active_extruder = tmp_extruder;
  4814. // This function resets the max/min values - the current position may be overwritten below.
  4815. set_axis_is_at_home(X_AXIS);
  4816. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4817. current_position[X_AXIS] = inactive_extruder_x_pos;
  4818. inactive_extruder_x_pos = destination[X_AXIS];
  4819. }
  4820. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4821. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4822. if (active_extruder == 0 || active_extruder_parked)
  4823. current_position[X_AXIS] = inactive_extruder_x_pos;
  4824. else
  4825. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4826. inactive_extruder_x_pos = destination[X_AXIS];
  4827. extruder_duplication_enabled = false;
  4828. }
  4829. else {
  4830. // record raised toolhead position for use by unpark
  4831. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4832. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4833. active_extruder_parked = true;
  4834. delayed_move_time = 0;
  4835. }
  4836. #else // !DUAL_X_CARRIAGE
  4837. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  4838. // Offset extruder, make sure to apply the bed level rotation matrix
  4839. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  4840. extruder_offset[Y_AXIS][tmp_extruder],
  4841. extruder_offset[Z_AXIS][tmp_extruder]),
  4842. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  4843. extruder_offset[Y_AXIS][active_extruder],
  4844. extruder_offset[Z_AXIS][active_extruder]),
  4845. offset_vec = tmp_offset_vec - act_offset_vec;
  4846. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  4847. current_position[X_AXIS] += offset_vec.x;
  4848. current_position[Y_AXIS] += offset_vec.y;
  4849. current_position[Z_AXIS] += offset_vec.z;
  4850. #else // !AUTO_BED_LEVELING_FEATURE
  4851. // Offset extruder (only by XY)
  4852. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4853. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4854. #endif // !AUTO_BED_LEVELING_FEATURE
  4855. // Set the new active extruder and position
  4856. active_extruder = tmp_extruder;
  4857. #endif // !DUAL_X_CARRIAGE
  4858. #if ENABLED(DELTA)
  4859. sync_plan_position_delta();
  4860. #else
  4861. sync_plan_position();
  4862. #endif
  4863. // Move to the old position if 'F' was in the parameters
  4864. if (make_move && IsRunning()) prepare_move();
  4865. }
  4866. #if ENABLED(EXT_SOLENOID)
  4867. st_synchronize();
  4868. disable_all_solenoids();
  4869. enable_solenoid_on_active_extruder();
  4870. #endif // EXT_SOLENOID
  4871. #endif // EXTRUDERS > 1
  4872. SERIAL_ECHO_START;
  4873. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4874. SERIAL_PROTOCOLLN((int)active_extruder);
  4875. }
  4876. }
  4877. /**
  4878. * Process a single command and dispatch it to its handler
  4879. * This is called from the main loop()
  4880. */
  4881. void process_next_command() {
  4882. current_command = command_queue[cmd_queue_index_r];
  4883. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4884. SERIAL_ECHO_START;
  4885. SERIAL_ECHOLN(current_command);
  4886. }
  4887. // Sanitize the current command:
  4888. // - Skip leading spaces
  4889. // - Bypass N[-0-9][0-9]*[ ]*
  4890. // - Overwrite * with nul to mark the end
  4891. while (*current_command == ' ') ++current_command;
  4892. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4893. current_command += 2; // skip N[-0-9]
  4894. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4895. while (*current_command == ' ') ++current_command; // skip [ ]*
  4896. }
  4897. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  4898. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4899. // Get the command code, which must be G, M, or T
  4900. char command_code = *current_command;
  4901. // Skip the letter-code and spaces to get the numeric part
  4902. current_command_args = current_command + 1;
  4903. while (*current_command_args == ' ') ++current_command_args;
  4904. // The code must have a numeric value
  4905. bool code_is_good = (*current_command_args >= '0' && *current_command_args <= '9');
  4906. int codenum; // define ahead of goto
  4907. // Bail early if there's no code
  4908. if (!code_is_good) goto ExitUnknownCommand;
  4909. // Args pointer optimizes code_seen, especially those taking XYZEF
  4910. // This wastes a little cpu on commands that expect no arguments.
  4911. while (*current_command_args == ' ' || (*current_command_args >= '0' && *current_command_args <= '9')) ++current_command_args;
  4912. // Interpret the code int
  4913. seen_pointer = current_command;
  4914. codenum = code_value_short();
  4915. // Handle a known G, M, or T
  4916. switch (command_code) {
  4917. case 'G': switch (codenum) {
  4918. // G0, G1
  4919. case 0:
  4920. case 1:
  4921. gcode_G0_G1();
  4922. break;
  4923. // G2, G3
  4924. #if DISABLED(SCARA)
  4925. case 2: // G2 - CW ARC
  4926. case 3: // G3 - CCW ARC
  4927. gcode_G2_G3(codenum == 2);
  4928. break;
  4929. #endif
  4930. // G4 Dwell
  4931. case 4:
  4932. gcode_G4();
  4933. break;
  4934. #if ENABLED(FWRETRACT)
  4935. case 10: // G10: retract
  4936. case 11: // G11: retract_recover
  4937. gcode_G10_G11(codenum == 10);
  4938. break;
  4939. #endif //FWRETRACT
  4940. case 28: // G28: Home all axes, one at a time
  4941. gcode_G28();
  4942. break;
  4943. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  4944. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  4945. gcode_G29();
  4946. break;
  4947. #endif
  4948. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  4949. #if DISABLED(Z_PROBE_SLED)
  4950. case 30: // G30 Single Z probe
  4951. gcode_G30();
  4952. break;
  4953. #else // Z_PROBE_SLED
  4954. case 31: // G31: dock the sled
  4955. case 32: // G32: undock the sled
  4956. dock_sled(codenum == 31);
  4957. break;
  4958. #endif // Z_PROBE_SLED
  4959. #endif // AUTO_BED_LEVELING_FEATURE
  4960. case 90: // G90
  4961. relative_mode = false;
  4962. break;
  4963. case 91: // G91
  4964. relative_mode = true;
  4965. break;
  4966. case 92: // G92
  4967. gcode_G92();
  4968. break;
  4969. }
  4970. break;
  4971. case 'M': switch (codenum) {
  4972. #if ENABLED(ULTIPANEL)
  4973. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4974. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4975. gcode_M0_M1();
  4976. break;
  4977. #endif // ULTIPANEL
  4978. case 17:
  4979. gcode_M17();
  4980. break;
  4981. #if ENABLED(SDSUPPORT)
  4982. case 20: // M20 - list SD card
  4983. gcode_M20(); break;
  4984. case 21: // M21 - init SD card
  4985. gcode_M21(); break;
  4986. case 22: //M22 - release SD card
  4987. gcode_M22(); break;
  4988. case 23: //M23 - Select file
  4989. gcode_M23(); break;
  4990. case 24: //M24 - Start SD print
  4991. gcode_M24(); break;
  4992. case 25: //M25 - Pause SD print
  4993. gcode_M25(); break;
  4994. case 26: //M26 - Set SD index
  4995. gcode_M26(); break;
  4996. case 27: //M27 - Get SD status
  4997. gcode_M27(); break;
  4998. case 28: //M28 - Start SD write
  4999. gcode_M28(); break;
  5000. case 29: //M29 - Stop SD write
  5001. gcode_M29(); break;
  5002. case 30: //M30 <filename> Delete File
  5003. gcode_M30(); break;
  5004. case 32: //M32 - Select file and start SD print
  5005. gcode_M32(); break;
  5006. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5007. case 33: //M33 - Get the long full path to a file or folder
  5008. gcode_M33(); break;
  5009. #endif // LONG_FILENAME_HOST_SUPPORT
  5010. case 928: //M928 - Start SD write
  5011. gcode_M928(); break;
  5012. #endif //SDSUPPORT
  5013. case 31: //M31 take time since the start of the SD print or an M109 command
  5014. gcode_M31();
  5015. break;
  5016. case 42: //M42 -Change pin status via gcode
  5017. gcode_M42();
  5018. break;
  5019. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5020. case 48: // M48 Z probe repeatability
  5021. gcode_M48();
  5022. break;
  5023. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5024. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5025. case 100:
  5026. gcode_M100();
  5027. break;
  5028. #endif
  5029. case 104: // M104
  5030. gcode_M104();
  5031. break;
  5032. case 110: // M110: Set Current Line Number
  5033. gcode_M110();
  5034. break;
  5035. case 111: // M111: Set debug level
  5036. gcode_M111();
  5037. break;
  5038. case 112: // M112: Emergency Stop
  5039. gcode_M112();
  5040. break;
  5041. case 140: // M140: Set bed temp
  5042. gcode_M140();
  5043. break;
  5044. case 105: // M105: Read current temperature
  5045. gcode_M105();
  5046. return; // "ok" already printed
  5047. case 109: // M109: Wait for temperature
  5048. gcode_M109();
  5049. break;
  5050. #if HAS_TEMP_BED
  5051. case 190: // M190: Wait for bed heater to reach target
  5052. gcode_M190();
  5053. break;
  5054. #endif // HAS_TEMP_BED
  5055. #if HAS_FAN
  5056. case 106: // M106: Fan On
  5057. gcode_M106();
  5058. break;
  5059. case 107: // M107: Fan Off
  5060. gcode_M107();
  5061. break;
  5062. #endif // HAS_FAN
  5063. #if ENABLED(BARICUDA)
  5064. // PWM for HEATER_1_PIN
  5065. #if HAS_HEATER_1
  5066. case 126: // M126: valve open
  5067. gcode_M126();
  5068. break;
  5069. case 127: // M127: valve closed
  5070. gcode_M127();
  5071. break;
  5072. #endif // HAS_HEATER_1
  5073. // PWM for HEATER_2_PIN
  5074. #if HAS_HEATER_2
  5075. case 128: // M128: valve open
  5076. gcode_M128();
  5077. break;
  5078. case 129: // M129: valve closed
  5079. gcode_M129();
  5080. break;
  5081. #endif // HAS_HEATER_2
  5082. #endif // BARICUDA
  5083. #if HAS_POWER_SWITCH
  5084. case 80: // M80: Turn on Power Supply
  5085. gcode_M80();
  5086. break;
  5087. #endif // HAS_POWER_SWITCH
  5088. case 81: // M81: Turn off Power, including Power Supply, if possible
  5089. gcode_M81();
  5090. break;
  5091. case 82:
  5092. gcode_M82();
  5093. break;
  5094. case 83:
  5095. gcode_M83();
  5096. break;
  5097. case 18: // (for compatibility)
  5098. case 84: // M84
  5099. gcode_M18_M84();
  5100. break;
  5101. case 85: // M85
  5102. gcode_M85();
  5103. break;
  5104. case 92: // M92: Set the steps-per-unit for one or more axes
  5105. gcode_M92();
  5106. break;
  5107. case 115: // M115: Report capabilities
  5108. gcode_M115();
  5109. break;
  5110. case 117: // M117: Set LCD message text, if possible
  5111. gcode_M117();
  5112. break;
  5113. case 114: // M114: Report current position
  5114. gcode_M114();
  5115. break;
  5116. case 120: // M120: Enable endstops
  5117. gcode_M120();
  5118. break;
  5119. case 121: // M121: Disable endstops
  5120. gcode_M121();
  5121. break;
  5122. case 119: // M119: Report endstop states
  5123. gcode_M119();
  5124. break;
  5125. #if ENABLED(ULTIPANEL)
  5126. case 145: // M145: Set material heatup parameters
  5127. gcode_M145();
  5128. break;
  5129. #endif
  5130. #if ENABLED(BLINKM)
  5131. case 150: // M150
  5132. gcode_M150();
  5133. break;
  5134. #endif //BLINKM
  5135. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5136. gcode_M200();
  5137. break;
  5138. case 201: // M201
  5139. gcode_M201();
  5140. break;
  5141. #if 0 // Not used for Sprinter/grbl gen6
  5142. case 202: // M202
  5143. gcode_M202();
  5144. break;
  5145. #endif
  5146. case 203: // M203 max feedrate mm/sec
  5147. gcode_M203();
  5148. break;
  5149. case 204: // M204 acclereration S normal moves T filmanent only moves
  5150. gcode_M204();
  5151. break;
  5152. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5153. gcode_M205();
  5154. break;
  5155. case 206: // M206 additional homing offset
  5156. gcode_M206();
  5157. break;
  5158. #if ENABLED(DELTA)
  5159. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5160. gcode_M665();
  5161. break;
  5162. #endif
  5163. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5164. case 666: // M666 set delta / dual endstop adjustment
  5165. gcode_M666();
  5166. break;
  5167. #endif
  5168. #if ENABLED(FWRETRACT)
  5169. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5170. gcode_M207();
  5171. break;
  5172. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5173. gcode_M208();
  5174. break;
  5175. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5176. gcode_M209();
  5177. break;
  5178. #endif // FWRETRACT
  5179. #if EXTRUDERS > 1
  5180. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5181. gcode_M218();
  5182. break;
  5183. #endif
  5184. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5185. gcode_M220();
  5186. break;
  5187. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5188. gcode_M221();
  5189. break;
  5190. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5191. gcode_M226();
  5192. break;
  5193. #if HAS_SERVOS
  5194. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5195. gcode_M280();
  5196. break;
  5197. #endif // HAS_SERVOS
  5198. #if HAS_BUZZER
  5199. case 300: // M300 - Play beep tone
  5200. gcode_M300();
  5201. break;
  5202. #endif // HAS_BUZZER
  5203. #if ENABLED(PIDTEMP)
  5204. case 301: // M301
  5205. gcode_M301();
  5206. break;
  5207. #endif // PIDTEMP
  5208. #if ENABLED(PIDTEMPBED)
  5209. case 304: // M304
  5210. gcode_M304();
  5211. break;
  5212. #endif // PIDTEMPBED
  5213. #if defined(CHDK) || HAS_PHOTOGRAPH
  5214. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5215. gcode_M240();
  5216. break;
  5217. #endif // CHDK || PHOTOGRAPH_PIN
  5218. #if ENABLED(HAS_LCD_CONTRAST)
  5219. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5220. gcode_M250();
  5221. break;
  5222. #endif // HAS_LCD_CONTRAST
  5223. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5224. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5225. gcode_M302();
  5226. break;
  5227. #endif // PREVENT_DANGEROUS_EXTRUDE
  5228. case 303: // M303 PID autotune
  5229. gcode_M303();
  5230. break;
  5231. #if ENABLED(SCARA)
  5232. case 360: // M360 SCARA Theta pos1
  5233. if (gcode_M360()) return;
  5234. break;
  5235. case 361: // M361 SCARA Theta pos2
  5236. if (gcode_M361()) return;
  5237. break;
  5238. case 362: // M362 SCARA Psi pos1
  5239. if (gcode_M362()) return;
  5240. break;
  5241. case 363: // M363 SCARA Psi pos2
  5242. if (gcode_M363()) return;
  5243. break;
  5244. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5245. if (gcode_M364()) return;
  5246. break;
  5247. case 365: // M365 Set SCARA scaling for X Y Z
  5248. gcode_M365();
  5249. break;
  5250. #endif // SCARA
  5251. case 400: // M400 finish all moves
  5252. gcode_M400();
  5253. break;
  5254. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5255. case 401:
  5256. gcode_M401();
  5257. break;
  5258. case 402:
  5259. gcode_M402();
  5260. break;
  5261. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5262. #if ENABLED(FILAMENT_SENSOR)
  5263. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5264. gcode_M404();
  5265. break;
  5266. case 405: //M405 Turn on filament sensor for control
  5267. gcode_M405();
  5268. break;
  5269. case 406: //M406 Turn off filament sensor for control
  5270. gcode_M406();
  5271. break;
  5272. case 407: //M407 Display measured filament diameter
  5273. gcode_M407();
  5274. break;
  5275. #endif // FILAMENT_SENSOR
  5276. case 410: // M410 quickstop - Abort all the planned moves.
  5277. gcode_M410();
  5278. break;
  5279. #if ENABLED(MESH_BED_LEVELING)
  5280. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5281. gcode_M420();
  5282. break;
  5283. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5284. gcode_M421();
  5285. break;
  5286. #endif
  5287. case 428: // M428 Apply current_position to home_offset
  5288. gcode_M428();
  5289. break;
  5290. case 500: // M500 Store settings in EEPROM
  5291. gcode_M500();
  5292. break;
  5293. case 501: // M501 Read settings from EEPROM
  5294. gcode_M501();
  5295. break;
  5296. case 502: // M502 Revert to default settings
  5297. gcode_M502();
  5298. break;
  5299. case 503: // M503 print settings currently in memory
  5300. gcode_M503();
  5301. break;
  5302. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5303. case 540:
  5304. gcode_M540();
  5305. break;
  5306. #endif
  5307. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5308. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5309. gcode_SET_Z_PROBE_OFFSET();
  5310. break;
  5311. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5312. #if ENABLED(FILAMENTCHANGEENABLE)
  5313. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5314. gcode_M600();
  5315. break;
  5316. #endif // FILAMENTCHANGEENABLE
  5317. #if ENABLED(DUAL_X_CARRIAGE)
  5318. case 605:
  5319. gcode_M605();
  5320. break;
  5321. #endif // DUAL_X_CARRIAGE
  5322. case 907: // M907 Set digital trimpot motor current using axis codes.
  5323. gcode_M907();
  5324. break;
  5325. #if HAS_DIGIPOTSS
  5326. case 908: // M908 Control digital trimpot directly.
  5327. gcode_M908();
  5328. break;
  5329. #endif // HAS_DIGIPOTSS
  5330. #if HAS_MICROSTEPS
  5331. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5332. gcode_M350();
  5333. break;
  5334. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5335. gcode_M351();
  5336. break;
  5337. #endif // HAS_MICROSTEPS
  5338. case 999: // M999: Restart after being Stopped
  5339. gcode_M999();
  5340. break;
  5341. }
  5342. break;
  5343. case 'T':
  5344. gcode_T(codenum);
  5345. break;
  5346. default: code_is_good = false;
  5347. }
  5348. ExitUnknownCommand:
  5349. // Still unknown command? Throw an error
  5350. if (!code_is_good) unknown_command_error();
  5351. ok_to_send();
  5352. }
  5353. void FlushSerialRequestResend() {
  5354. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5355. MYSERIAL.flush();
  5356. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5357. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5358. ok_to_send();
  5359. }
  5360. void ok_to_send() {
  5361. refresh_cmd_timeout();
  5362. if (!send_ok[cmd_queue_index_r]) return;
  5363. SERIAL_PROTOCOLPGM(MSG_OK);
  5364. #if ENABLED(ADVANCED_OK)
  5365. char* p = command_queue[cmd_queue_index_r];
  5366. if (*p == 'N') {
  5367. SERIAL_PROTOCOL(' ');
  5368. SERIAL_ECHO(*p++);
  5369. while ((*p >= '0' && *p <= '9') || *p == '-')
  5370. SERIAL_ECHO(*p++);
  5371. }
  5372. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5373. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5374. #endif
  5375. SERIAL_EOL;
  5376. }
  5377. void clamp_to_software_endstops(float target[3]) {
  5378. if (min_software_endstops) {
  5379. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5380. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5381. float negative_z_offset = 0;
  5382. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5383. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5384. if (home_offset[Z_AXIS] < 0) {
  5385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5386. if (marlin_debug_flags & DEBUG_LEVELING) {
  5387. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5388. SERIAL_EOL;
  5389. }
  5390. #endif
  5391. negative_z_offset += home_offset[Z_AXIS];
  5392. }
  5393. #endif
  5394. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5395. }
  5396. if (max_software_endstops) {
  5397. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5398. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5399. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5400. }
  5401. }
  5402. #if ENABLED(DELTA)
  5403. void recalc_delta_settings(float radius, float diagonal_rod) {
  5404. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5405. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5406. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5407. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5408. delta_tower3_x = 0.0; // back middle tower
  5409. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5410. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5411. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5412. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5413. }
  5414. void calculate_delta(float cartesian[3]) {
  5415. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5416. - sq(delta_tower1_x - cartesian[X_AXIS])
  5417. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5418. ) + cartesian[Z_AXIS];
  5419. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5420. - sq(delta_tower2_x - cartesian[X_AXIS])
  5421. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5422. ) + cartesian[Z_AXIS];
  5423. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5424. - sq(delta_tower3_x - cartesian[X_AXIS])
  5425. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5426. ) + cartesian[Z_AXIS];
  5427. /*
  5428. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5429. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5430. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5431. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5432. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5433. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5434. */
  5435. }
  5436. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5437. // Adjust print surface height by linear interpolation over the bed_level array.
  5438. void adjust_delta(float cartesian[3]) {
  5439. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5440. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5441. float h1 = 0.001 - half, h2 = half - 0.001,
  5442. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5443. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5444. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5445. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5446. z1 = bed_level[floor_x + half][floor_y + half],
  5447. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5448. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5449. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5450. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5451. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5452. offset = (1 - ratio_x) * left + ratio_x * right;
  5453. delta[X_AXIS] += offset;
  5454. delta[Y_AXIS] += offset;
  5455. delta[Z_AXIS] += offset;
  5456. /*
  5457. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5458. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5459. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5460. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5461. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5462. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5463. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5464. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5465. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5466. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5467. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5468. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5469. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5470. */
  5471. }
  5472. #endif // AUTO_BED_LEVELING_FEATURE
  5473. #endif // DELTA
  5474. #if ENABLED(MESH_BED_LEVELING)
  5475. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5476. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5477. if (!mbl.active) {
  5478. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5479. set_current_to_destination();
  5480. return;
  5481. }
  5482. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5483. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5484. int ix = mbl.select_x_index(x);
  5485. int iy = mbl.select_y_index(y);
  5486. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5487. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5488. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5489. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5490. if (pix == ix && piy == iy) {
  5491. // Start and end on same mesh square
  5492. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5493. set_current_to_destination();
  5494. return;
  5495. }
  5496. float nx, ny, nz, ne, normalized_dist;
  5497. if (ix > pix && TEST(x_splits, ix)) {
  5498. nx = mbl.get_x(ix);
  5499. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5500. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5501. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5502. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5503. CBI(x_splits, ix);
  5504. }
  5505. else if (ix < pix && TEST(x_splits, pix)) {
  5506. nx = mbl.get_x(pix);
  5507. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5508. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5509. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5510. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5511. CBI(x_splits, pix);
  5512. }
  5513. else if (iy > piy && TEST(y_splits, iy)) {
  5514. ny = mbl.get_y(iy);
  5515. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5516. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5517. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5518. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5519. CBI(y_splits, iy);
  5520. }
  5521. else if (iy < piy && TEST(y_splits, piy)) {
  5522. ny = mbl.get_y(piy);
  5523. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5524. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5525. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5526. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5527. CBI(y_splits, piy);
  5528. }
  5529. else {
  5530. // Already split on a border
  5531. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5532. set_current_to_destination();
  5533. return;
  5534. }
  5535. // Do the split and look for more borders
  5536. destination[X_AXIS] = nx;
  5537. destination[Y_AXIS] = ny;
  5538. destination[Z_AXIS] = nz;
  5539. destination[E_AXIS] = ne;
  5540. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5541. destination[X_AXIS] = x;
  5542. destination[Y_AXIS] = y;
  5543. destination[Z_AXIS] = z;
  5544. destination[E_AXIS] = e;
  5545. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5546. }
  5547. #endif // MESH_BED_LEVELING
  5548. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5549. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5550. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5551. float de = dest_e - curr_e;
  5552. if (de) {
  5553. if (degHotend(active_extruder) < extrude_min_temp) {
  5554. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5555. SERIAL_ECHO_START;
  5556. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5557. }
  5558. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5559. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5560. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5561. SERIAL_ECHO_START;
  5562. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5563. }
  5564. #endif
  5565. }
  5566. }
  5567. #endif // PREVENT_DANGEROUS_EXTRUDE
  5568. #if ENABLED(DELTA) || ENABLED(SCARA)
  5569. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5570. float difference[NUM_AXIS];
  5571. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5572. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5573. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5574. if (cartesian_mm < 0.000001) return false;
  5575. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5576. int steps = max(1, int(delta_segments_per_second * seconds));
  5577. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5578. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5579. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5580. for (int s = 1; s <= steps; s++) {
  5581. float fraction = float(s) / float(steps);
  5582. for (int8_t i = 0; i < NUM_AXIS; i++)
  5583. target[i] = current_position[i] + difference[i] * fraction;
  5584. calculate_delta(target);
  5585. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5586. adjust_delta(target);
  5587. #endif
  5588. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5589. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5590. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5591. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5592. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5593. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5594. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5595. }
  5596. return true;
  5597. }
  5598. #endif // DELTA || SCARA
  5599. #if ENABLED(SCARA)
  5600. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5601. #endif
  5602. #if ENABLED(DUAL_X_CARRIAGE)
  5603. inline bool prepare_move_dual_x_carriage() {
  5604. if (active_extruder_parked) {
  5605. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5606. // move duplicate extruder into correct duplication position.
  5607. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5608. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5609. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5610. sync_plan_position();
  5611. st_synchronize();
  5612. extruder_duplication_enabled = true;
  5613. active_extruder_parked = false;
  5614. }
  5615. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5616. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5617. // This is a travel move (with no extrusion)
  5618. // Skip it, but keep track of the current position
  5619. // (so it can be used as the start of the next non-travel move)
  5620. if (delayed_move_time != 0xFFFFFFFFUL) {
  5621. set_current_to_destination();
  5622. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5623. delayed_move_time = millis();
  5624. return false;
  5625. }
  5626. }
  5627. delayed_move_time = 0;
  5628. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5629. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5632. active_extruder_parked = false;
  5633. }
  5634. }
  5635. return true;
  5636. }
  5637. #endif // DUAL_X_CARRIAGE
  5638. #if DISABLED(DELTA) && DISABLED(SCARA)
  5639. inline bool prepare_move_cartesian() {
  5640. // Do not use feedrate_multiplier for E or Z only moves
  5641. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5642. line_to_destination();
  5643. }
  5644. else {
  5645. #if ENABLED(MESH_BED_LEVELING)
  5646. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5647. return false;
  5648. #else
  5649. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5650. #endif
  5651. }
  5652. return true;
  5653. }
  5654. #endif // !DELTA && !SCARA
  5655. /**
  5656. * Prepare a single move and get ready for the next one
  5657. *
  5658. * (This may call plan_buffer_line several times to put
  5659. * smaller moves into the planner for DELTA or SCARA.)
  5660. */
  5661. void prepare_move() {
  5662. clamp_to_software_endstops(destination);
  5663. refresh_cmd_timeout();
  5664. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5665. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5666. #endif
  5667. #if ENABLED(SCARA)
  5668. if (!prepare_move_scara(destination)) return;
  5669. #elif ENABLED(DELTA)
  5670. if (!prepare_move_delta(destination)) return;
  5671. #endif
  5672. #if ENABLED(DUAL_X_CARRIAGE)
  5673. if (!prepare_move_dual_x_carriage()) return;
  5674. #endif
  5675. #if DISABLED(DELTA) && DISABLED(SCARA)
  5676. if (!prepare_move_cartesian()) return;
  5677. #endif
  5678. set_current_to_destination();
  5679. }
  5680. /**
  5681. * Plan an arc in 2 dimensions
  5682. *
  5683. * The arc is approximated by generating many small linear segments.
  5684. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5685. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5686. * larger segments will tend to be more efficient. Your slicer should have
  5687. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5688. */
  5689. void plan_arc(
  5690. float target[NUM_AXIS], // Destination position
  5691. float* offset, // Center of rotation relative to current_position
  5692. uint8_t clockwise // Clockwise?
  5693. ) {
  5694. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5695. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5696. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5697. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5698. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5699. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5700. r_axis1 = -offset[Y_AXIS],
  5701. rt_axis0 = target[X_AXIS] - center_axis0,
  5702. rt_axis1 = target[Y_AXIS] - center_axis1;
  5703. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5704. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  5705. if (angular_travel < 0) angular_travel += RADIANS(360);
  5706. if (clockwise) angular_travel -= RADIANS(360);
  5707. // Make a circle if the angular rotation is 0
  5708. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5709. angular_travel += RADIANS(360);
  5710. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  5711. if (mm_of_travel < 0.001) return;
  5712. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  5713. if (segments == 0) segments = 1;
  5714. float theta_per_segment = angular_travel / segments;
  5715. float linear_per_segment = linear_travel / segments;
  5716. float extruder_per_segment = extruder_travel / segments;
  5717. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5718. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5719. r_T = [cos(phi) -sin(phi);
  5720. sin(phi) cos(phi] * r ;
  5721. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5722. defined from the circle center to the initial position. Each line segment is formed by successive
  5723. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5724. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5725. all double numbers are single precision on the Arduino. (True double precision will not have
  5726. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5727. tool precision in some cases. Therefore, arc path correction is implemented.
  5728. Small angle approximation may be used to reduce computation overhead further. This approximation
  5729. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5730. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5731. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5732. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5733. issue for CNC machines with the single precision Arduino calculations.
  5734. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5735. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5736. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5737. This is important when there are successive arc motions.
  5738. */
  5739. // Vector rotation matrix values
  5740. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  5741. float sin_T = theta_per_segment;
  5742. float arc_target[NUM_AXIS];
  5743. float sin_Ti;
  5744. float cos_Ti;
  5745. float r_axisi;
  5746. uint16_t i;
  5747. int8_t count = 0;
  5748. // Initialize the linear axis
  5749. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5750. // Initialize the extruder axis
  5751. arc_target[E_AXIS] = current_position[E_AXIS];
  5752. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  5753. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5754. if (count < N_ARC_CORRECTION) {
  5755. // Apply vector rotation matrix to previous r_axis0 / 1
  5756. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  5757. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  5758. r_axis1 = r_axisi;
  5759. count++;
  5760. }
  5761. else {
  5762. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5763. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5764. cos_Ti = cos(i * theta_per_segment);
  5765. sin_Ti = sin(i * theta_per_segment);
  5766. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  5767. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  5768. count = 0;
  5769. }
  5770. // Update arc_target location
  5771. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5772. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5773. arc_target[Z_AXIS] += linear_per_segment;
  5774. arc_target[E_AXIS] += extruder_per_segment;
  5775. clamp_to_software_endstops(arc_target);
  5776. #if ENABLED(DELTA) || ENABLED(SCARA)
  5777. calculate_delta(arc_target);
  5778. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5779. adjust_delta(arc_target);
  5780. #endif
  5781. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5782. #else
  5783. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5784. #endif
  5785. }
  5786. // Ensure last segment arrives at target location.
  5787. #if ENABLED(DELTA) || ENABLED(SCARA)
  5788. calculate_delta(target);
  5789. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5790. adjust_delta(target);
  5791. #endif
  5792. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5793. #else
  5794. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5795. #endif
  5796. // As far as the parser is concerned, the position is now == target. In reality the
  5797. // motion control system might still be processing the action and the real tool position
  5798. // in any intermediate location.
  5799. set_current_to_destination();
  5800. }
  5801. #if HAS_CONTROLLERFAN
  5802. void controllerFan() {
  5803. static millis_t lastMotor = 0; // Last time a motor was turned on
  5804. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5805. millis_t ms = millis();
  5806. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5807. lastMotorCheck = ms;
  5808. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5809. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5810. #if EXTRUDERS > 1
  5811. || E1_ENABLE_READ == E_ENABLE_ON
  5812. #if HAS_X2_ENABLE
  5813. || X2_ENABLE_READ == X_ENABLE_ON
  5814. #endif
  5815. #if EXTRUDERS > 2
  5816. || E2_ENABLE_READ == E_ENABLE_ON
  5817. #if EXTRUDERS > 3
  5818. || E3_ENABLE_READ == E_ENABLE_ON
  5819. #endif
  5820. #endif
  5821. #endif
  5822. ) {
  5823. lastMotor = ms; //... set time to NOW so the fan will turn on
  5824. }
  5825. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + ((CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5826. // allows digital or PWM fan output to be used (see M42 handling)
  5827. digitalWrite(CONTROLLERFAN_PIN, speed);
  5828. analogWrite(CONTROLLERFAN_PIN, speed);
  5829. }
  5830. }
  5831. #endif // HAS_CONTROLLERFAN
  5832. #if ENABLED(SCARA)
  5833. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5834. // Perform forward kinematics, and place results in delta[3]
  5835. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5836. float x_sin, x_cos, y_sin, y_cos;
  5837. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5838. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5839. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  5840. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  5841. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  5842. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  5843. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5844. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5845. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5846. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5847. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5848. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5849. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5850. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5851. }
  5852. void calculate_delta(float cartesian[3]) {
  5853. //reverse kinematics.
  5854. // Perform reversed kinematics, and place results in delta[3]
  5855. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5856. float SCARA_pos[2];
  5857. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5858. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5859. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5860. #if (Linkage_1 == Linkage_2)
  5861. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  5862. #else
  5863. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  5864. #endif
  5865. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  5866. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5867. SCARA_K2 = Linkage_2 * SCARA_S2;
  5868. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  5869. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  5870. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5871. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5872. delta[Z_AXIS] = cartesian[Z_AXIS];
  5873. /*
  5874. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5875. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5876. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5877. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5878. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5879. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5880. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5881. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5882. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5883. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5884. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5885. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5886. SERIAL_EOL;
  5887. */
  5888. }
  5889. #endif // SCARA
  5890. #if ENABLED(TEMP_STAT_LEDS)
  5891. static bool red_led = false;
  5892. static millis_t next_status_led_update_ms = 0;
  5893. void handle_status_leds(void) {
  5894. float max_temp = 0.0;
  5895. if (millis() > next_status_led_update_ms) {
  5896. next_status_led_update_ms += 500; // Update every 0.5s
  5897. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5898. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5899. #if HAS_TEMP_BED
  5900. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5901. #endif
  5902. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5903. if (new_led != red_led) {
  5904. red_led = new_led;
  5905. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5906. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5907. }
  5908. }
  5909. }
  5910. #endif
  5911. void enable_all_steppers() {
  5912. enable_x();
  5913. enable_y();
  5914. enable_z();
  5915. enable_e0();
  5916. enable_e1();
  5917. enable_e2();
  5918. enable_e3();
  5919. }
  5920. void disable_all_steppers() {
  5921. disable_x();
  5922. disable_y();
  5923. disable_z();
  5924. disable_e0();
  5925. disable_e1();
  5926. disable_e2();
  5927. disable_e3();
  5928. }
  5929. /**
  5930. * Standard idle routine keeps the machine alive
  5931. */
  5932. void idle() {
  5933. manage_heater();
  5934. manage_inactivity();
  5935. lcd_update();
  5936. }
  5937. /**
  5938. * Manage several activities:
  5939. * - Check for Filament Runout
  5940. * - Keep the command buffer full
  5941. * - Check for maximum inactive time between commands
  5942. * - Check for maximum inactive time between stepper commands
  5943. * - Check if pin CHDK needs to go LOW
  5944. * - Check for KILL button held down
  5945. * - Check for HOME button held down
  5946. * - Check if cooling fan needs to be switched on
  5947. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5948. */
  5949. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5950. #if HAS_FILRUNOUT
  5951. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5952. filrunout();
  5953. #endif
  5954. if (commands_in_queue < BUFSIZE) get_command();
  5955. millis_t ms = millis();
  5956. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5957. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5958. && !ignore_stepper_queue && !blocks_queued()) {
  5959. #if ENABLED(DISABLE_INACTIVE_X)
  5960. disable_x();
  5961. #endif
  5962. #if ENABLED(DISABLE_INACTIVE_Y)
  5963. disable_y();
  5964. #endif
  5965. #if ENABLED(DISABLE_INACTIVE_Z)
  5966. disable_z();
  5967. #endif
  5968. #if ENABLED(DISABLE_INACTIVE_E)
  5969. disable_e0();
  5970. disable_e1();
  5971. disable_e2();
  5972. disable_e3();
  5973. #endif
  5974. }
  5975. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5976. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5977. chdkActive = false;
  5978. WRITE(CHDK, LOW);
  5979. }
  5980. #endif
  5981. #if HAS_KILL
  5982. // Check if the kill button was pressed and wait just in case it was an accidental
  5983. // key kill key press
  5984. // -------------------------------------------------------------------------------
  5985. static int killCount = 0; // make the inactivity button a bit less responsive
  5986. const int KILL_DELAY = 750;
  5987. if (!READ(KILL_PIN))
  5988. killCount++;
  5989. else if (killCount > 0)
  5990. killCount--;
  5991. // Exceeded threshold and we can confirm that it was not accidental
  5992. // KILL the machine
  5993. // ----------------------------------------------------------------
  5994. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5995. #endif
  5996. #if HAS_HOME
  5997. // Check to see if we have to home, use poor man's debouncer
  5998. // ---------------------------------------------------------
  5999. static int homeDebounceCount = 0; // poor man's debouncing count
  6000. const int HOME_DEBOUNCE_DELAY = 2500;
  6001. if (!READ(HOME_PIN)) {
  6002. if (!homeDebounceCount) {
  6003. enqueue_and_echo_commands_P(PSTR("G28"));
  6004. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6005. }
  6006. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6007. homeDebounceCount++;
  6008. else
  6009. homeDebounceCount = 0;
  6010. }
  6011. #endif
  6012. #if HAS_CONTROLLERFAN
  6013. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6014. #endif
  6015. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6016. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6017. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6018. bool oldstatus;
  6019. switch (active_extruder) {
  6020. case 0:
  6021. oldstatus = E0_ENABLE_READ;
  6022. enable_e0();
  6023. break;
  6024. #if EXTRUDERS > 1
  6025. case 1:
  6026. oldstatus = E1_ENABLE_READ;
  6027. enable_e1();
  6028. break;
  6029. #if EXTRUDERS > 2
  6030. case 2:
  6031. oldstatus = E2_ENABLE_READ;
  6032. enable_e2();
  6033. break;
  6034. #if EXTRUDERS > 3
  6035. case 3:
  6036. oldstatus = E3_ENABLE_READ;
  6037. enable_e3();
  6038. break;
  6039. #endif
  6040. #endif
  6041. #endif
  6042. }
  6043. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6044. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6045. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6046. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6047. current_position[E_AXIS] = oldepos;
  6048. destination[E_AXIS] = oldedes;
  6049. plan_set_e_position(oldepos);
  6050. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6051. st_synchronize();
  6052. switch (active_extruder) {
  6053. case 0:
  6054. E0_ENABLE_WRITE(oldstatus);
  6055. break;
  6056. #if EXTRUDERS > 1
  6057. case 1:
  6058. E1_ENABLE_WRITE(oldstatus);
  6059. break;
  6060. #if EXTRUDERS > 2
  6061. case 2:
  6062. E2_ENABLE_WRITE(oldstatus);
  6063. break;
  6064. #if EXTRUDERS > 3
  6065. case 3:
  6066. E3_ENABLE_WRITE(oldstatus);
  6067. break;
  6068. #endif
  6069. #endif
  6070. #endif
  6071. }
  6072. }
  6073. #endif
  6074. #if ENABLED(DUAL_X_CARRIAGE)
  6075. // handle delayed move timeout
  6076. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6077. // travel moves have been received so enact them
  6078. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6079. set_destination_to_current();
  6080. prepare_move();
  6081. }
  6082. #endif
  6083. #if ENABLED(TEMP_STAT_LEDS)
  6084. handle_status_leds();
  6085. #endif
  6086. check_axes_activity();
  6087. }
  6088. void kill(const char* lcd_msg) {
  6089. #if ENABLED(ULTRA_LCD)
  6090. lcd_setalertstatuspgm(lcd_msg);
  6091. #else
  6092. UNUSED(lcd_msg);
  6093. #endif
  6094. cli(); // Stop interrupts
  6095. disable_all_heaters();
  6096. disable_all_steppers();
  6097. #if HAS_POWER_SWITCH
  6098. pinMode(PS_ON_PIN, INPUT);
  6099. #endif
  6100. SERIAL_ERROR_START;
  6101. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6102. // FMC small patch to update the LCD before ending
  6103. sei(); // enable interrupts
  6104. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6105. cli(); // disable interrupts
  6106. suicide();
  6107. while (1) {
  6108. #if ENABLED(USE_WATCHDOG)
  6109. watchdog_reset();
  6110. #endif
  6111. } // Wait for reset
  6112. }
  6113. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6114. void filrunout() {
  6115. if (!filrunoutEnqueued) {
  6116. filrunoutEnqueued = true;
  6117. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6118. st_synchronize();
  6119. }
  6120. }
  6121. #endif // FILAMENT_RUNOUT_SENSOR
  6122. #if ENABLED(FAST_PWM_FAN)
  6123. void setPwmFrequency(uint8_t pin, int val) {
  6124. val &= 0x07;
  6125. switch (digitalPinToTimer(pin)) {
  6126. #if defined(TCCR0A)
  6127. case TIMER0A:
  6128. case TIMER0B:
  6129. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6130. // TCCR0B |= val;
  6131. break;
  6132. #endif
  6133. #if defined(TCCR1A)
  6134. case TIMER1A:
  6135. case TIMER1B:
  6136. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6137. // TCCR1B |= val;
  6138. break;
  6139. #endif
  6140. #if defined(TCCR2)
  6141. case TIMER2:
  6142. case TIMER2:
  6143. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6144. TCCR2 |= val;
  6145. break;
  6146. #endif
  6147. #if defined(TCCR2A)
  6148. case TIMER2A:
  6149. case TIMER2B:
  6150. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6151. TCCR2B |= val;
  6152. break;
  6153. #endif
  6154. #if defined(TCCR3A)
  6155. case TIMER3A:
  6156. case TIMER3B:
  6157. case TIMER3C:
  6158. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6159. TCCR3B |= val;
  6160. break;
  6161. #endif
  6162. #if defined(TCCR4A)
  6163. case TIMER4A:
  6164. case TIMER4B:
  6165. case TIMER4C:
  6166. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6167. TCCR4B |= val;
  6168. break;
  6169. #endif
  6170. #if defined(TCCR5A)
  6171. case TIMER5A:
  6172. case TIMER5B:
  6173. case TIMER5C:
  6174. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6175. TCCR5B |= val;
  6176. break;
  6177. #endif
  6178. }
  6179. }
  6180. #endif // FAST_PWM_FAN
  6181. void Stop() {
  6182. disable_all_heaters();
  6183. if (IsRunning()) {
  6184. Running = false;
  6185. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6186. SERIAL_ERROR_START;
  6187. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6188. LCD_MESSAGEPGM(MSG_STOPPED);
  6189. }
  6190. }
  6191. /**
  6192. * Set target_extruder from the T parameter or the active_extruder
  6193. *
  6194. * Returns TRUE if the target is invalid
  6195. */
  6196. bool setTargetedHotend(int code) {
  6197. target_extruder = active_extruder;
  6198. if (code_seen('T')) {
  6199. target_extruder = code_value_short();
  6200. if (target_extruder >= EXTRUDERS) {
  6201. SERIAL_ECHO_START;
  6202. SERIAL_CHAR('M');
  6203. SERIAL_ECHO(code);
  6204. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6205. SERIAL_ECHOLN(target_extruder);
  6206. return true;
  6207. }
  6208. }
  6209. return false;
  6210. }
  6211. float calculate_volumetric_multiplier(float diameter) {
  6212. if (!volumetric_enabled || diameter == 0) return 1.0;
  6213. float d2 = diameter * 0.5;
  6214. return 1.0 / (M_PI * d2 * d2);
  6215. }
  6216. void calculate_volumetric_multipliers() {
  6217. for (int i = 0; i < EXTRUDERS; i++)
  6218. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6219. }