My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 201KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  31. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  32. #ifdef MESH_BED_LEVELING
  33. #include "mesh_bed_leveling.h"
  34. #endif
  35. #include "ultralcd.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "configuration_store.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "blinkm.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. /**
  56. * Look here for descriptions of G-codes:
  57. * - http://linuxcnc.org/handbook/gcode/g-code.html
  58. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. *
  60. * Help us document these G-codes online:
  61. * - http://reprap.org/wiki/G-code
  62. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  63. */
  64. /**
  65. * Implemented Codes
  66. * -------------------
  67. *
  68. * "G" Codes
  69. *
  70. * G0 -> G1
  71. * G1 - Coordinated Movement X Y Z E
  72. * G2 - CW ARC
  73. * G3 - CCW ARC
  74. * G4 - Dwell S<seconds> or P<milliseconds>
  75. * G10 - retract filament according to settings of M207
  76. * G11 - retract recover filament according to settings of M208
  77. * G28 - Home one or more axes
  78. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  79. * G30 - Single Z Probe, probes bed at current XY location.
  80. * G31 - Dock sled (Z_PROBE_SLED only)
  81. * G32 - Undock sled (Z_PROBE_SLED only)
  82. * G90 - Use Absolute Coordinates
  83. * G91 - Use Relative Coordinates
  84. * G92 - Set current position to coordinates given
  85. *
  86. * "M" Codes
  87. *
  88. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  89. * M1 - Same as M0
  90. * M17 - Enable/Power all stepper motors
  91. * M18 - Disable all stepper motors; same as M84
  92. * M20 - List SD card
  93. * M21 - Init SD card
  94. * M22 - Release SD card
  95. * M23 - Select SD file (M23 filename.g)
  96. * M24 - Start/resume SD print
  97. * M25 - Pause SD print
  98. * M26 - Set SD position in bytes (M26 S12345)
  99. * M27 - Report SD print status
  100. * M28 - Start SD write (M28 filename.g)
  101. * M29 - Stop SD write
  102. * M30 - Delete file from SD (M30 filename.g)
  103. * M31 - Output time since last M109 or SD card start to serial
  104. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  105. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  106. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  107. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  108. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  109. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  110. * M80 - Turn on Power Supply
  111. * M81 - Turn off Power Supply
  112. * M82 - Set E codes absolute (default)
  113. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. * M84 - Disable steppers until next move,
  115. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. * M92 - Set axis_steps_per_unit - same syntax as G92
  118. * M104 - Set extruder target temp
  119. * M105 - Read current temp
  120. * M106 - Fan on
  121. * M107 - Fan off
  122. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  126. * M112 - Emergency stop
  127. * M114 - Output current position to serial port
  128. * M115 - Capabilities string
  129. * M117 - display message
  130. * M119 - Output Endstop status to serial port
  131. * M120 - Enable endstop detection
  132. * M121 - Disable endstop detection
  133. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M140 - Set bed target temp
  138. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  139. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  140. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  142. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  143. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  144. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  145. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  146. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  147. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  148. * M206 - Set additional homing offset
  149. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  150. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  151. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  152. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  153. * M220 - Set speed factor override percentage: S<factor in percent>
  154. * M221 - Set extrude factor override percentage: S<factor in percent>
  155. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  156. * M240 - Trigger a camera to take a photograph
  157. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  158. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  159. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  160. * M301 - Set PID parameters P I and D
  161. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  162. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  163. * M304 - Set bed PID parameters P I and D
  164. * M380 - Activate solenoid on active extruder
  165. * M381 - Disable all solenoids
  166. * M400 - Finish all moves
  167. * M401 - Lower z-probe if present
  168. * M402 - Raise z-probe if present
  169. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  170. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  171. * M406 - Turn off Filament Sensor extrusion control
  172. * M407 - Display measured filament diameter
  173. * M410 - Quickstop. Abort all the planned moves
  174. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  175. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  176. * M428 - Set the home_offset logically based on the current_position
  177. * M500 - Store parameters in EEPROM
  178. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  179. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  180. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  181. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  182. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  183. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  184. * M666 - Set delta endstop adjustment
  185. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  186. * M907 - Set digital trimpot motor current using axis codes.
  187. * M908 - Control digital trimpot directly.
  188. * M350 - Set microstepping mode.
  189. * M351 - Toggle MS1 MS2 pins directly.
  190. *
  191. * ************ SCARA Specific - This can change to suit future G-code regulations
  192. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  193. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  194. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  195. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  196. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  197. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  198. * ************* SCARA End ***************
  199. *
  200. * M928 - Start SD logging (M928 filename.g) - ended by M29
  201. * M999 - Restart after being stopped by error
  202. */
  203. #ifdef SDSUPPORT
  204. CardReader card;
  205. #endif
  206. bool Running = true;
  207. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  208. static float feedrate = 1500.0, saved_feedrate;
  209. float current_position[NUM_AXIS] = { 0.0 };
  210. static float destination[NUM_AXIS] = { 0.0 };
  211. bool axis_known_position[3] = { false };
  212. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  213. static int cmd_queue_index_r = 0;
  214. static int cmd_queue_index_w = 0;
  215. static int commands_in_queue = 0;
  216. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  217. float homing_feedrate[] = HOMING_FEEDRATE;
  218. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  219. int feedrate_multiplier = 100; //100->1 200->2
  220. int saved_feedrate_multiplier;
  221. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  222. bool volumetric_enabled = false;
  223. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  224. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  225. float home_offset[3] = { 0 };
  226. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  227. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  228. uint8_t active_extruder = 0;
  229. int fanSpeed = 0;
  230. bool cancel_heatup = false;
  231. const char errormagic[] PROGMEM = "Error:";
  232. const char echomagic[] PROGMEM = "echo:";
  233. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  234. static float arc_offset[3] = { 0 };
  235. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  236. static char serial_char;
  237. static int serial_count = 0;
  238. static boolean comment_mode = false;
  239. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  240. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  241. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  242. // Inactivity shutdown
  243. millis_t previous_cmd_ms = 0;
  244. static millis_t max_inactive_time = 0;
  245. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  246. millis_t print_job_start_ms = 0; ///< Print job start time
  247. millis_t print_job_stop_ms = 0; ///< Print job stop time
  248. static uint8_t target_extruder;
  249. bool no_wait_for_cooling = true;
  250. bool target_direction;
  251. #ifdef ENABLE_AUTO_BED_LEVELING
  252. int xy_travel_speed = XY_TRAVEL_SPEED;
  253. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  254. #endif
  255. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  256. float z_endstop_adj = 0;
  257. #endif
  258. // Extruder offsets
  259. #if EXTRUDERS > 1
  260. #ifndef EXTRUDER_OFFSET_X
  261. #define EXTRUDER_OFFSET_X { 0 }
  262. #endif
  263. #ifndef EXTRUDER_OFFSET_Y
  264. #define EXTRUDER_OFFSET_Y { 0 }
  265. #endif
  266. float extruder_offset[][EXTRUDERS] = {
  267. EXTRUDER_OFFSET_X,
  268. EXTRUDER_OFFSET_Y
  269. #ifdef DUAL_X_CARRIAGE
  270. , { 0 } // supports offsets in XYZ plane
  271. #endif
  272. };
  273. #endif
  274. #ifdef SERVO_ENDSTOPS
  275. int servo_endstops[] = SERVO_ENDSTOPS;
  276. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  277. #endif
  278. #ifdef BARICUDA
  279. int ValvePressure = 0;
  280. int EtoPPressure = 0;
  281. #endif
  282. #ifdef FWRETRACT
  283. bool autoretract_enabled = false;
  284. bool retracted[EXTRUDERS] = { false };
  285. bool retracted_swap[EXTRUDERS] = { false };
  286. float retract_length = RETRACT_LENGTH;
  287. float retract_length_swap = RETRACT_LENGTH_SWAP;
  288. float retract_feedrate = RETRACT_FEEDRATE;
  289. float retract_zlift = RETRACT_ZLIFT;
  290. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  291. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  292. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  293. #endif // FWRETRACT
  294. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  295. bool powersupply =
  296. #ifdef PS_DEFAULT_OFF
  297. false
  298. #else
  299. true
  300. #endif
  301. ;
  302. #endif
  303. #ifdef DELTA
  304. float delta[3] = { 0 };
  305. #define SIN_60 0.8660254037844386
  306. #define COS_60 0.5
  307. float endstop_adj[3] = { 0 };
  308. // these are the default values, can be overriden with M665
  309. float delta_radius = DELTA_RADIUS;
  310. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  311. float delta_tower1_y = -COS_60 * delta_radius;
  312. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  313. float delta_tower2_y = -COS_60 * delta_radius;
  314. float delta_tower3_x = 0; // back middle tower
  315. float delta_tower3_y = delta_radius;
  316. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  317. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  318. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  319. #ifdef ENABLE_AUTO_BED_LEVELING
  320. int delta_grid_spacing[2] = { 0, 0 };
  321. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  322. #endif
  323. #else
  324. static bool home_all_axis = true;
  325. #endif
  326. #ifdef SCARA
  327. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  328. static float delta[3] = { 0 };
  329. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  330. #endif
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1 = 0; //index into ring buffer
  338. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist = 0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. #ifdef FILAMENT_RUNOUT_SENSOR
  343. static bool filrunoutEnqueued = false;
  344. #endif
  345. #ifdef SDSUPPORT
  346. static bool fromsd[BUFSIZE];
  347. #endif
  348. #if NUM_SERVOS > 0
  349. Servo servo[NUM_SERVOS];
  350. #endif
  351. #ifdef CHDK
  352. unsigned long chdkHigh = 0;
  353. boolean chdkActive = false;
  354. #endif
  355. //===========================================================================
  356. //================================ Functions ================================
  357. //===========================================================================
  358. bool setTargetedHotend(int code);
  359. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  360. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  361. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  362. #ifdef PREVENT_DANGEROUS_EXTRUDE
  363. float extrude_min_temp = EXTRUDE_MINTEMP;
  364. #endif
  365. #ifdef SDSUPPORT
  366. #include "SdFatUtil.h"
  367. int freeMemory() { return SdFatUtil::FreeRam(); }
  368. #else
  369. extern "C" {
  370. extern unsigned int __bss_end;
  371. extern unsigned int __heap_start;
  372. extern void *__brkval;
  373. int freeMemory() {
  374. int free_memory;
  375. if ((int)__brkval == 0)
  376. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  377. else
  378. free_memory = ((int)&free_memory) - ((int)__brkval);
  379. return free_memory;
  380. }
  381. }
  382. #endif //!SDSUPPORT
  383. /**
  384. * Inject the next command from the command queue, when possible
  385. * Return false only if no command was pending
  386. */
  387. static bool drain_queued_commands_P() {
  388. if (!queued_commands_P) return false;
  389. // Get the next 30 chars from the sequence of gcodes to run
  390. char cmd[30];
  391. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  392. cmd[sizeof(cmd) - 1] = '\0';
  393. // Look for the end of line, or the end of sequence
  394. size_t i = 0;
  395. char c;
  396. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  397. cmd[i] = '\0';
  398. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  399. if (c)
  400. queued_commands_P += i + 1; // move to next command
  401. else
  402. queued_commands_P = NULL; // will have no more commands in the sequence
  403. }
  404. return true;
  405. }
  406. /**
  407. * Record one or many commands to run from program memory.
  408. * Aborts the current queue, if any.
  409. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  410. */
  411. void enqueuecommands_P(const char* pgcode) {
  412. queued_commands_P = pgcode;
  413. drain_queued_commands_P(); // first command executed asap (when possible)
  414. }
  415. /**
  416. * Copy a command directly into the main command buffer, from RAM.
  417. *
  418. * This is done in a non-safe way and needs a rework someday.
  419. * Returns false if it doesn't add any command
  420. */
  421. bool enqueuecommand(const char *cmd) {
  422. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  423. // This is dangerous if a mixing of serial and this happens
  424. char *command = command_queue[cmd_queue_index_w];
  425. strcpy(command, cmd);
  426. SERIAL_ECHO_START;
  427. SERIAL_ECHOPGM(MSG_Enqueueing);
  428. SERIAL_ECHO(command);
  429. SERIAL_ECHOLNPGM("\"");
  430. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  431. commands_in_queue++;
  432. return true;
  433. }
  434. void setup_killpin() {
  435. #if HAS_KILL
  436. SET_INPUT(KILL_PIN);
  437. WRITE(KILL_PIN, HIGH);
  438. #endif
  439. }
  440. void setup_filrunoutpin() {
  441. #if HAS_FILRUNOUT
  442. pinMode(FILRUNOUT_PIN, INPUT);
  443. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  444. WRITE(FILRUNOUT_PIN, HIGH);
  445. #endif
  446. #endif
  447. }
  448. // Set home pin
  449. void setup_homepin(void) {
  450. #if HAS_HOME
  451. SET_INPUT(HOME_PIN);
  452. WRITE(HOME_PIN, HIGH);
  453. #endif
  454. }
  455. void setup_photpin() {
  456. #if HAS_PHOTOGRAPH
  457. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  458. #endif
  459. }
  460. void setup_powerhold() {
  461. #if HAS_SUICIDE
  462. OUT_WRITE(SUICIDE_PIN, HIGH);
  463. #endif
  464. #if HAS_POWER_SWITCH
  465. #ifdef PS_DEFAULT_OFF
  466. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  467. #else
  468. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  469. #endif
  470. #endif
  471. }
  472. void suicide() {
  473. #if HAS_SUICIDE
  474. OUT_WRITE(SUICIDE_PIN, LOW);
  475. #endif
  476. }
  477. void servo_init() {
  478. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  479. servo[0].attach(SERVO0_PIN);
  480. #endif
  481. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  482. servo[1].attach(SERVO1_PIN);
  483. #endif
  484. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  485. servo[2].attach(SERVO2_PIN);
  486. #endif
  487. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  488. servo[3].attach(SERVO3_PIN);
  489. #endif
  490. // Set position of Servo Endstops that are defined
  491. #ifdef SERVO_ENDSTOPS
  492. for (int i = 0; i < 3; i++)
  493. if (servo_endstops[i] >= 0)
  494. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  495. #endif
  496. #if SERVO_LEVELING
  497. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  498. servo[servo_endstops[Z_AXIS]].detach();
  499. #endif
  500. }
  501. /**
  502. * Marlin entry-point: Set up before the program loop
  503. * - Set up the kill pin, filament runout, power hold
  504. * - Start the serial port
  505. * - Print startup messages and diagnostics
  506. * - Get EEPROM or default settings
  507. * - Initialize managers for:
  508. * • temperature
  509. * • planner
  510. * • watchdog
  511. * • stepper
  512. * • photo pin
  513. * • servos
  514. * • LCD controller
  515. * • Digipot I2C
  516. * • Z probe sled
  517. * • status LEDs
  518. */
  519. void setup() {
  520. setup_killpin();
  521. setup_filrunoutpin();
  522. setup_powerhold();
  523. MYSERIAL.begin(BAUDRATE);
  524. SERIAL_PROTOCOLLNPGM("start");
  525. SERIAL_ECHO_START;
  526. // Check startup - does nothing if bootloader sets MCUSR to 0
  527. byte mcu = MCUSR;
  528. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  529. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  530. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  531. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  532. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  533. MCUSR = 0;
  534. SERIAL_ECHOPGM(MSG_MARLIN);
  535. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  536. #ifdef STRING_VERSION_CONFIG_H
  537. #ifdef STRING_CONFIG_H_AUTHOR
  538. SERIAL_ECHO_START;
  539. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  540. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  541. SERIAL_ECHOPGM(MSG_AUTHOR);
  542. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  543. SERIAL_ECHOPGM("Compiled: ");
  544. SERIAL_ECHOLNPGM(__DATE__);
  545. #endif // STRING_CONFIG_H_AUTHOR
  546. #endif // STRING_VERSION_CONFIG_H
  547. SERIAL_ECHO_START;
  548. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  549. SERIAL_ECHO(freeMemory());
  550. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  551. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  552. #ifdef SDSUPPORT
  553. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  554. #endif
  555. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  556. Config_RetrieveSettings();
  557. tp_init(); // Initialize temperature loop
  558. plan_init(); // Initialize planner;
  559. watchdog_init();
  560. st_init(); // Initialize stepper, this enables interrupts!
  561. setup_photpin();
  562. servo_init();
  563. lcd_init();
  564. _delay_ms(1000); // wait 1sec to display the splash screen
  565. #if HAS_CONTROLLERFAN
  566. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  567. #endif
  568. #ifdef DIGIPOT_I2C
  569. digipot_i2c_init();
  570. #endif
  571. #ifdef Z_PROBE_SLED
  572. pinMode(SLED_PIN, OUTPUT);
  573. digitalWrite(SLED_PIN, LOW); // turn it off
  574. #endif // Z_PROBE_SLED
  575. setup_homepin();
  576. #ifdef STAT_LED_RED
  577. pinMode(STAT_LED_RED, OUTPUT);
  578. digitalWrite(STAT_LED_RED, LOW); // turn it off
  579. #endif
  580. #ifdef STAT_LED_BLUE
  581. pinMode(STAT_LED_BLUE, OUTPUT);
  582. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  583. #endif
  584. }
  585. /**
  586. * The main Marlin program loop
  587. *
  588. * - Save or log commands to SD
  589. * - Process available commands (if not saving)
  590. * - Call heater manager
  591. * - Call inactivity manager
  592. * - Call endstop manager
  593. * - Call LCD update
  594. */
  595. void loop() {
  596. if (commands_in_queue < BUFSIZE - 1) get_command();
  597. #ifdef SDSUPPORT
  598. card.checkautostart(false);
  599. #endif
  600. if (commands_in_queue) {
  601. #ifdef SDSUPPORT
  602. if (card.saving) {
  603. char *command = command_queue[cmd_queue_index_r];
  604. if (strstr_P(command, PSTR("M29"))) {
  605. // M29 closes the file
  606. card.closefile();
  607. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  608. }
  609. else {
  610. // Write the string from the read buffer to SD
  611. card.write_command(command);
  612. if (card.logging)
  613. process_commands(); // The card is saving because it's logging
  614. else
  615. SERIAL_PROTOCOLLNPGM(MSG_OK);
  616. }
  617. }
  618. else
  619. process_commands();
  620. #else
  621. process_commands();
  622. #endif // SDSUPPORT
  623. commands_in_queue--;
  624. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  625. }
  626. // Check heater every n milliseconds
  627. manage_heater();
  628. manage_inactivity();
  629. checkHitEndstops();
  630. lcd_update();
  631. }
  632. /**
  633. * Add to the circular command queue the next command from:
  634. * - The command-injection queue (queued_commands_P)
  635. * - The active serial input (usually USB)
  636. * - The SD card file being actively printed
  637. */
  638. void get_command() {
  639. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  640. #ifdef NO_TIMEOUTS
  641. static millis_t last_command_time = 0;
  642. millis_t ms = millis();
  643. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  644. SERIAL_ECHOLNPGM(MSG_WAIT);
  645. last_command_time = ms;
  646. }
  647. #endif
  648. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  649. #ifdef NO_TIMEOUTS
  650. last_command_time = ms;
  651. #endif
  652. serial_char = MYSERIAL.read();
  653. if (serial_char == '\n' || serial_char == '\r' ||
  654. serial_count >= (MAX_CMD_SIZE - 1)
  655. ) {
  656. // end of line == end of comment
  657. comment_mode = false;
  658. if (!serial_count) return; // shortcut for empty lines
  659. char *command = command_queue[cmd_queue_index_w];
  660. command[serial_count] = 0; // terminate string
  661. #ifdef SDSUPPORT
  662. fromsd[cmd_queue_index_w] = false;
  663. #endif
  664. if (strchr(command, 'N') != NULL) {
  665. strchr_pointer = strchr(command, 'N');
  666. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  667. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  668. SERIAL_ERROR_START;
  669. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  670. SERIAL_ERRORLN(gcode_LastN);
  671. //Serial.println(gcode_N);
  672. FlushSerialRequestResend();
  673. serial_count = 0;
  674. return;
  675. }
  676. if (strchr(command, '*') != NULL) {
  677. byte checksum = 0;
  678. byte count = 0;
  679. while (command[count] != '*') checksum ^= command[count++];
  680. strchr_pointer = strchr(command, '*');
  681. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  682. SERIAL_ERROR_START;
  683. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  684. SERIAL_ERRORLN(gcode_LastN);
  685. FlushSerialRequestResend();
  686. serial_count = 0;
  687. return;
  688. }
  689. //if no errors, continue parsing
  690. }
  691. else {
  692. SERIAL_ERROR_START;
  693. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  694. SERIAL_ERRORLN(gcode_LastN);
  695. FlushSerialRequestResend();
  696. serial_count = 0;
  697. return;
  698. }
  699. gcode_LastN = gcode_N;
  700. //if no errors, continue parsing
  701. }
  702. else { // if we don't receive 'N' but still see '*'
  703. if ((strchr(command, '*') != NULL)) {
  704. SERIAL_ERROR_START;
  705. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  706. SERIAL_ERRORLN(gcode_LastN);
  707. serial_count = 0;
  708. return;
  709. }
  710. }
  711. if (strchr(command, 'G') != NULL) {
  712. strchr_pointer = strchr(command, 'G');
  713. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  714. case 0:
  715. case 1:
  716. case 2:
  717. case 3:
  718. if (IsStopped()) {
  719. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  720. LCD_MESSAGEPGM(MSG_STOPPED);
  721. }
  722. break;
  723. default:
  724. break;
  725. }
  726. }
  727. // If command was e-stop process now
  728. if (strcmp(command, "M112") == 0) kill();
  729. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  730. commands_in_queue += 1;
  731. serial_count = 0; //clear buffer
  732. }
  733. else if (serial_char == '\\') { // Handle escapes
  734. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  735. // if we have one more character, copy it over
  736. serial_char = MYSERIAL.read();
  737. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  738. }
  739. // otherwise do nothing
  740. }
  741. else { // its not a newline, carriage return or escape char
  742. if (serial_char == ';') comment_mode = true;
  743. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  744. }
  745. }
  746. #ifdef SDSUPPORT
  747. if (!card.sdprinting || serial_count) return;
  748. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  749. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  750. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  751. static bool stop_buffering = false;
  752. if (commands_in_queue == 0) stop_buffering = false;
  753. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  754. int16_t n = card.get();
  755. serial_char = (char)n;
  756. if (serial_char == '\n' || serial_char == '\r' ||
  757. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  758. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  759. ) {
  760. if (card.eof()) {
  761. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  762. print_job_stop_ms = millis();
  763. char time[30];
  764. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  765. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  766. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  767. SERIAL_ECHO_START;
  768. SERIAL_ECHOLN(time);
  769. lcd_setstatus(time, true);
  770. card.printingHasFinished();
  771. card.checkautostart(true);
  772. }
  773. if (serial_char == '#') stop_buffering = true;
  774. if (!serial_count) {
  775. comment_mode = false; //for new command
  776. return; //if empty line
  777. }
  778. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  779. // if (!comment_mode) {
  780. fromsd[cmd_queue_index_w] = true;
  781. commands_in_queue += 1;
  782. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  783. // }
  784. comment_mode = false; //for new command
  785. serial_count = 0; //clear buffer
  786. }
  787. else {
  788. if (serial_char == ';') comment_mode = true;
  789. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  790. }
  791. }
  792. #endif // SDSUPPORT
  793. }
  794. bool code_has_value() {
  795. int i = 1;
  796. char c = strchr_pointer[i];
  797. if (c == '-' || c == '+') c = strchr_pointer[++i];
  798. if (c == '.') c = strchr_pointer[++i];
  799. return (c >= '0' && c <= '9');
  800. }
  801. float code_value() {
  802. float ret;
  803. char *e = strchr(strchr_pointer, 'E');
  804. if (e) {
  805. *e = 0;
  806. ret = strtod(strchr_pointer+1, NULL);
  807. *e = 'E';
  808. }
  809. else
  810. ret = strtod(strchr_pointer+1, NULL);
  811. return ret;
  812. }
  813. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  814. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  815. bool code_seen(char code) {
  816. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  817. return (strchr_pointer != NULL); //Return True if a character was found
  818. }
  819. #define DEFINE_PGM_READ_ANY(type, reader) \
  820. static inline type pgm_read_any(const type *p) \
  821. { return pgm_read_##reader##_near(p); }
  822. DEFINE_PGM_READ_ANY(float, float);
  823. DEFINE_PGM_READ_ANY(signed char, byte);
  824. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  825. static const PROGMEM type array##_P[3] = \
  826. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  827. static inline type array(int axis) \
  828. { return pgm_read_any(&array##_P[axis]); }
  829. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  830. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  831. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  832. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  833. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  834. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  835. #ifdef DUAL_X_CARRIAGE
  836. #define DXC_FULL_CONTROL_MODE 0
  837. #define DXC_AUTO_PARK_MODE 1
  838. #define DXC_DUPLICATION_MODE 2
  839. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  840. static float x_home_pos(int extruder) {
  841. if (extruder == 0)
  842. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  843. else
  844. // In dual carriage mode the extruder offset provides an override of the
  845. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  846. // This allow soft recalibration of the second extruder offset position without firmware reflash
  847. // (through the M218 command).
  848. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  849. }
  850. static int x_home_dir(int extruder) {
  851. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  852. }
  853. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  854. static bool active_extruder_parked = false; // used in mode 1 & 2
  855. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  856. static millis_t delayed_move_time = 0; // used in mode 1
  857. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  858. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  859. bool extruder_duplication_enabled = false; // used in mode 2
  860. #endif //DUAL_X_CARRIAGE
  861. static void axis_is_at_home(int axis) {
  862. #ifdef DUAL_X_CARRIAGE
  863. if (axis == X_AXIS) {
  864. if (active_extruder != 0) {
  865. current_position[X_AXIS] = x_home_pos(active_extruder);
  866. min_pos[X_AXIS] = X2_MIN_POS;
  867. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  868. return;
  869. }
  870. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  871. float xoff = home_offset[X_AXIS];
  872. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  873. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  874. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  875. return;
  876. }
  877. }
  878. #endif
  879. #ifdef SCARA
  880. if (axis == X_AXIS || axis == Y_AXIS) {
  881. float homeposition[3];
  882. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  883. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  884. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  885. // Works out real Homeposition angles using inverse kinematics,
  886. // and calculates homing offset using forward kinematics
  887. calculate_delta(homeposition);
  888. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  889. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  890. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  891. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  892. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  893. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  894. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  895. calculate_SCARA_forward_Transform(delta);
  896. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  897. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  898. current_position[axis] = delta[axis];
  899. // SCARA home positions are based on configuration since the actual limits are determined by the
  900. // inverse kinematic transform.
  901. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  902. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  903. }
  904. else
  905. #endif
  906. {
  907. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  908. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  909. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  910. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  911. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  912. #endif
  913. }
  914. }
  915. /**
  916. * Some planner shorthand inline functions
  917. */
  918. inline void set_homing_bump_feedrate(AxisEnum axis) {
  919. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  920. if (homing_bump_divisor[axis] >= 1)
  921. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  922. else {
  923. feedrate = homing_feedrate[axis] / 10;
  924. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  925. }
  926. }
  927. inline void line_to_current_position() {
  928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  929. }
  930. inline void line_to_z(float zPosition) {
  931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  932. }
  933. inline void line_to_destination(float mm_m) {
  934. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  935. }
  936. inline void line_to_destination() {
  937. line_to_destination(feedrate);
  938. }
  939. inline void sync_plan_position() {
  940. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  941. }
  942. #if defined(DELTA) || defined(SCARA)
  943. inline void sync_plan_position_delta() {
  944. calculate_delta(current_position);
  945. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  946. }
  947. #endif
  948. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  949. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  950. static void setup_for_endstop_move() {
  951. saved_feedrate = feedrate;
  952. saved_feedrate_multiplier = feedrate_multiplier;
  953. feedrate_multiplier = 100;
  954. refresh_cmd_timeout();
  955. enable_endstops(true);
  956. }
  957. #ifdef ENABLE_AUTO_BED_LEVELING
  958. #ifdef DELTA
  959. /**
  960. * Calculate delta, start a line, and set current_position to destination
  961. */
  962. void prepare_move_raw() {
  963. refresh_cmd_timeout();
  964. calculate_delta(destination);
  965. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  966. set_current_to_destination();
  967. }
  968. #endif
  969. #ifdef AUTO_BED_LEVELING_GRID
  970. #ifndef DELTA
  971. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  972. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  973. planeNormal.debug("planeNormal");
  974. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  975. //bedLevel.debug("bedLevel");
  976. //plan_bed_level_matrix.debug("bed level before");
  977. //vector_3 uncorrected_position = plan_get_position_mm();
  978. //uncorrected_position.debug("position before");
  979. vector_3 corrected_position = plan_get_position();
  980. //corrected_position.debug("position after");
  981. current_position[X_AXIS] = corrected_position.x;
  982. current_position[Y_AXIS] = corrected_position.y;
  983. current_position[Z_AXIS] = corrected_position.z;
  984. sync_plan_position();
  985. }
  986. #endif // !DELTA
  987. #else // !AUTO_BED_LEVELING_GRID
  988. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  989. plan_bed_level_matrix.set_to_identity();
  990. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  991. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  992. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  993. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  994. if (planeNormal.z < 0) {
  995. planeNormal.x = -planeNormal.x;
  996. planeNormal.y = -planeNormal.y;
  997. planeNormal.z = -planeNormal.z;
  998. }
  999. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1000. vector_3 corrected_position = plan_get_position();
  1001. current_position[X_AXIS] = corrected_position.x;
  1002. current_position[Y_AXIS] = corrected_position.y;
  1003. current_position[Z_AXIS] = corrected_position.z;
  1004. sync_plan_position();
  1005. }
  1006. #endif // !AUTO_BED_LEVELING_GRID
  1007. static void run_z_probe() {
  1008. #ifdef DELTA
  1009. float start_z = current_position[Z_AXIS];
  1010. long start_steps = st_get_position(Z_AXIS);
  1011. // move down slowly until you find the bed
  1012. feedrate = homing_feedrate[Z_AXIS] / 4;
  1013. destination[Z_AXIS] = -10;
  1014. prepare_move_raw(); // this will also set_current_to_destination
  1015. st_synchronize();
  1016. endstops_hit_on_purpose(); // clear endstop hit flags
  1017. // we have to let the planner know where we are right now as it is not where we said to go.
  1018. long stop_steps = st_get_position(Z_AXIS);
  1019. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1020. current_position[Z_AXIS] = mm;
  1021. sync_plan_position_delta();
  1022. #else // !DELTA
  1023. plan_bed_level_matrix.set_to_identity();
  1024. feedrate = homing_feedrate[Z_AXIS];
  1025. // move down until you find the bed
  1026. float zPosition = -10;
  1027. line_to_z(zPosition);
  1028. st_synchronize();
  1029. // we have to let the planner know where we are right now as it is not where we said to go.
  1030. zPosition = st_get_position_mm(Z_AXIS);
  1031. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1032. // move up the retract distance
  1033. zPosition += home_bump_mm(Z_AXIS);
  1034. line_to_z(zPosition);
  1035. st_synchronize();
  1036. endstops_hit_on_purpose(); // clear endstop hit flags
  1037. // move back down slowly to find bed
  1038. set_homing_bump_feedrate(Z_AXIS);
  1039. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1040. line_to_z(zPosition);
  1041. st_synchronize();
  1042. endstops_hit_on_purpose(); // clear endstop hit flags
  1043. // Get the current stepper position after bumping an endstop
  1044. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1045. sync_plan_position();
  1046. #endif // !DELTA
  1047. }
  1048. /**
  1049. * Plan a move to (X, Y, Z) and set the current_position
  1050. * The final current_position may not be the one that was requested
  1051. */
  1052. static void do_blocking_move_to(float x, float y, float z) {
  1053. float oldFeedRate = feedrate;
  1054. #ifdef DELTA
  1055. feedrate = XY_TRAVEL_SPEED;
  1056. destination[X_AXIS] = x;
  1057. destination[Y_AXIS] = y;
  1058. destination[Z_AXIS] = z;
  1059. prepare_move_raw(); // this will also set_current_to_destination
  1060. st_synchronize();
  1061. #else
  1062. feedrate = homing_feedrate[Z_AXIS];
  1063. current_position[Z_AXIS] = z;
  1064. line_to_current_position();
  1065. st_synchronize();
  1066. feedrate = xy_travel_speed;
  1067. current_position[X_AXIS] = x;
  1068. current_position[Y_AXIS] = y;
  1069. line_to_current_position();
  1070. st_synchronize();
  1071. #endif
  1072. feedrate = oldFeedRate;
  1073. }
  1074. static void clean_up_after_endstop_move() {
  1075. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1076. enable_endstops(false);
  1077. #endif
  1078. feedrate = saved_feedrate;
  1079. feedrate_multiplier = saved_feedrate_multiplier;
  1080. refresh_cmd_timeout();
  1081. }
  1082. static void deploy_z_probe() {
  1083. #ifdef SERVO_ENDSTOPS
  1084. // Engage Z Servo endstop if enabled
  1085. if (servo_endstops[Z_AXIS] >= 0) {
  1086. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1087. #if SERVO_LEVELING
  1088. srv->attach(0);
  1089. #endif
  1090. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1091. #if SERVO_LEVELING
  1092. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1093. srv->detach();
  1094. #endif
  1095. }
  1096. #elif defined(Z_PROBE_ALLEN_KEY)
  1097. feedrate = homing_feedrate[X_AXIS];
  1098. // Move to the start position to initiate deployment
  1099. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1100. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1101. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1102. prepare_move_raw(); // this will also set_current_to_destination
  1103. // Home X to touch the belt
  1104. feedrate = homing_feedrate[X_AXIS]/10;
  1105. destination[X_AXIS] = 0;
  1106. prepare_move_raw(); // this will also set_current_to_destination
  1107. // Home Y for safety
  1108. feedrate = homing_feedrate[X_AXIS]/2;
  1109. destination[Y_AXIS] = 0;
  1110. prepare_move_raw(); // this will also set_current_to_destination
  1111. st_synchronize();
  1112. #ifdef Z_PROBE_ENDSTOP
  1113. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1114. if (z_probe_endstop)
  1115. #else
  1116. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1117. if (z_min_endstop)
  1118. #endif
  1119. {
  1120. if (IsRunning()) {
  1121. SERIAL_ERROR_START;
  1122. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1123. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1124. }
  1125. Stop();
  1126. }
  1127. #endif // Z_PROBE_ALLEN_KEY
  1128. }
  1129. static void stow_z_probe(bool doRaise=true) {
  1130. #ifdef SERVO_ENDSTOPS
  1131. // Retract Z Servo endstop if enabled
  1132. if (servo_endstops[Z_AXIS] >= 0) {
  1133. #if Z_RAISE_AFTER_PROBING > 0
  1134. if (doRaise) {
  1135. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1136. st_synchronize();
  1137. }
  1138. #endif
  1139. // Change the Z servo angle
  1140. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1141. #if SERVO_LEVELING
  1142. srv->attach(0);
  1143. #endif
  1144. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1145. #if SERVO_LEVELING
  1146. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1147. srv->detach();
  1148. #endif
  1149. }
  1150. #elif defined(Z_PROBE_ALLEN_KEY)
  1151. // Move up for safety
  1152. feedrate = homing_feedrate[X_AXIS];
  1153. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1154. prepare_move_raw(); // this will also set_current_to_destination
  1155. // Move to the start position to initiate retraction
  1156. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1157. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1158. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1159. prepare_move_raw(); // this will also set_current_to_destination
  1160. // Move the nozzle down to push the probe into retracted position
  1161. feedrate = homing_feedrate[Z_AXIS]/10;
  1162. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1163. prepare_move_raw(); // this will also set_current_to_destination
  1164. // Move up for safety
  1165. feedrate = homing_feedrate[Z_AXIS]/2;
  1166. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1167. prepare_move_raw(); // this will also set_current_to_destination
  1168. // Home XY for safety
  1169. feedrate = homing_feedrate[X_AXIS]/2;
  1170. destination[X_AXIS] = 0;
  1171. destination[Y_AXIS] = 0;
  1172. prepare_move_raw(); // this will also set_current_to_destination
  1173. st_synchronize();
  1174. #ifdef Z_PROBE_ENDSTOP
  1175. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1176. if (!z_probe_endstop)
  1177. #else
  1178. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1179. if (!z_min_endstop)
  1180. #endif
  1181. {
  1182. if (IsRunning()) {
  1183. SERIAL_ERROR_START;
  1184. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1185. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1186. }
  1187. Stop();
  1188. }
  1189. #endif
  1190. }
  1191. enum ProbeAction {
  1192. ProbeStay = 0,
  1193. ProbeDeploy = BIT(0),
  1194. ProbeStow = BIT(1),
  1195. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1196. };
  1197. // Probe bed height at position (x,y), returns the measured z value
  1198. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1199. // move to right place
  1200. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1201. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1202. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1203. if (retract_action & ProbeDeploy) deploy_z_probe();
  1204. #endif
  1205. run_z_probe();
  1206. float measured_z = current_position[Z_AXIS];
  1207. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1208. if (retract_action == ProbeStay) {
  1209. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1210. st_synchronize();
  1211. }
  1212. #endif
  1213. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1214. if (retract_action & ProbeStow) stow_z_probe();
  1215. #endif
  1216. if (verbose_level > 2) {
  1217. SERIAL_PROTOCOLPGM("Bed");
  1218. SERIAL_PROTOCOLPGM(" X: ");
  1219. SERIAL_PROTOCOL_F(x, 3);
  1220. SERIAL_PROTOCOLPGM(" Y: ");
  1221. SERIAL_PROTOCOL_F(y, 3);
  1222. SERIAL_PROTOCOLPGM(" Z: ");
  1223. SERIAL_PROTOCOL_F(measured_z, 3);
  1224. SERIAL_EOL;
  1225. }
  1226. return measured_z;
  1227. }
  1228. #ifdef DELTA
  1229. /**
  1230. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1231. */
  1232. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1233. if (bed_level[x][y] != 0.0) {
  1234. return; // Don't overwrite good values.
  1235. }
  1236. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1237. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1238. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1239. float median = c; // Median is robust (ignores outliers).
  1240. if (a < b) {
  1241. if (b < c) median = b;
  1242. if (c < a) median = a;
  1243. } else { // b <= a
  1244. if (c < b) median = b;
  1245. if (a < c) median = a;
  1246. }
  1247. bed_level[x][y] = median;
  1248. }
  1249. // Fill in the unprobed points (corners of circular print surface)
  1250. // using linear extrapolation, away from the center.
  1251. static void extrapolate_unprobed_bed_level() {
  1252. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1253. for (int y = 0; y <= half; y++) {
  1254. for (int x = 0; x <= half; x++) {
  1255. if (x + y < 3) continue;
  1256. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1257. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1258. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1259. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1260. }
  1261. }
  1262. }
  1263. // Print calibration results for plotting or manual frame adjustment.
  1264. static void print_bed_level() {
  1265. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1266. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1267. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1268. SERIAL_PROTOCOLCHAR(' ');
  1269. }
  1270. SERIAL_EOL;
  1271. }
  1272. }
  1273. // Reset calibration results to zero.
  1274. void reset_bed_level() {
  1275. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1276. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1277. bed_level[x][y] = 0.0;
  1278. }
  1279. }
  1280. }
  1281. #endif // DELTA
  1282. #endif // ENABLE_AUTO_BED_LEVELING
  1283. #ifdef Z_PROBE_SLED
  1284. #ifndef SLED_DOCKING_OFFSET
  1285. #define SLED_DOCKING_OFFSET 0
  1286. #endif
  1287. /**
  1288. * Method to dock/undock a sled designed by Charles Bell.
  1289. *
  1290. * dock[in] If true, move to MAX_X and engage the electromagnet
  1291. * offset[in] The additional distance to move to adjust docking location
  1292. */
  1293. static void dock_sled(bool dock, int offset=0) {
  1294. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1295. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1296. SERIAL_ECHO_START;
  1297. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1298. return;
  1299. }
  1300. if (dock) {
  1301. float oldXpos = current_position[X_AXIS]; // save x position
  1302. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1303. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1304. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1305. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1306. } else {
  1307. float oldXpos = current_position[X_AXIS]; // save x position
  1308. float z_loc = current_position[Z_AXIS];
  1309. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1310. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1311. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1312. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1313. }
  1314. }
  1315. #endif // Z_PROBE_SLED
  1316. /**
  1317. * Home an individual axis
  1318. */
  1319. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1320. static void homeaxis(AxisEnum axis) {
  1321. #define HOMEAXIS_DO(LETTER) \
  1322. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1323. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1324. int axis_home_dir =
  1325. #ifdef DUAL_X_CARRIAGE
  1326. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1327. #endif
  1328. home_dir(axis);
  1329. // Set the axis position as setup for the move
  1330. current_position[axis] = 0;
  1331. sync_plan_position();
  1332. #ifdef Z_PROBE_SLED
  1333. // Get Probe
  1334. if (axis == Z_AXIS) {
  1335. if (axis_home_dir < 0) dock_sled(false);
  1336. }
  1337. #endif
  1338. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1339. // Deploy a probe if there is one, and homing towards the bed
  1340. if (axis == Z_AXIS) {
  1341. if (axis_home_dir < 0) deploy_z_probe();
  1342. }
  1343. else
  1344. #endif
  1345. #ifdef SERVO_ENDSTOPS
  1346. {
  1347. // Engage Servo endstop if enabled
  1348. if (servo_endstops[axis] > -1)
  1349. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1350. }
  1351. #endif
  1352. // Set a flag for Z motor locking
  1353. #ifdef Z_DUAL_ENDSTOPS
  1354. if (axis == Z_AXIS) In_Homing_Process(true);
  1355. #endif
  1356. // Move towards the endstop until an endstop is triggered
  1357. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1358. feedrate = homing_feedrate[axis];
  1359. line_to_destination();
  1360. st_synchronize();
  1361. // Set the axis position as setup for the move
  1362. current_position[axis] = 0;
  1363. sync_plan_position();
  1364. enable_endstops(false); // Disable endstops while moving away
  1365. // Move away from the endstop by the axis HOME_BUMP_MM
  1366. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1367. line_to_destination();
  1368. st_synchronize();
  1369. enable_endstops(true); // Enable endstops for next homing move
  1370. // Slow down the feedrate for the next move
  1371. set_homing_bump_feedrate(axis);
  1372. // Move slowly towards the endstop until triggered
  1373. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1374. line_to_destination();
  1375. st_synchronize();
  1376. #ifdef Z_DUAL_ENDSTOPS
  1377. if (axis == Z_AXIS) {
  1378. float adj = fabs(z_endstop_adj);
  1379. bool lockZ1;
  1380. if (axis_home_dir > 0) {
  1381. adj = -adj;
  1382. lockZ1 = (z_endstop_adj > 0);
  1383. }
  1384. else
  1385. lockZ1 = (z_endstop_adj < 0);
  1386. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1387. sync_plan_position();
  1388. // Move to the adjusted endstop height
  1389. feedrate = homing_feedrate[axis];
  1390. destination[Z_AXIS] = adj;
  1391. line_to_destination();
  1392. st_synchronize();
  1393. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1394. In_Homing_Process(false);
  1395. } // Z_AXIS
  1396. #endif
  1397. #ifdef DELTA
  1398. // retrace by the amount specified in endstop_adj
  1399. if (endstop_adj[axis] * axis_home_dir < 0) {
  1400. enable_endstops(false); // Disable endstops while moving away
  1401. sync_plan_position();
  1402. destination[axis] = endstop_adj[axis];
  1403. line_to_destination();
  1404. st_synchronize();
  1405. enable_endstops(true); // Enable endstops for next homing move
  1406. }
  1407. #endif
  1408. // Set the axis position to its home position (plus home offsets)
  1409. axis_is_at_home(axis);
  1410. sync_plan_position();
  1411. destination[axis] = current_position[axis];
  1412. feedrate = 0.0;
  1413. endstops_hit_on_purpose(); // clear endstop hit flags
  1414. axis_known_position[axis] = true;
  1415. #ifdef Z_PROBE_SLED
  1416. // bring probe back
  1417. if (axis == Z_AXIS) {
  1418. if (axis_home_dir < 0) dock_sled(true);
  1419. }
  1420. #endif
  1421. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1422. // Deploy a probe if there is one, and homing towards the bed
  1423. if (axis == Z_AXIS) {
  1424. if (axis_home_dir < 0) stow_z_probe();
  1425. }
  1426. else
  1427. #endif
  1428. #ifdef SERVO_ENDSTOPS
  1429. {
  1430. // Retract Servo endstop if enabled
  1431. if (servo_endstops[axis] > -1)
  1432. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1433. }
  1434. #endif
  1435. }
  1436. }
  1437. #ifdef FWRETRACT
  1438. void retract(bool retracting, bool swapping=false) {
  1439. if (retracting == retracted[active_extruder]) return;
  1440. float oldFeedrate = feedrate;
  1441. set_destination_to_current();
  1442. if (retracting) {
  1443. feedrate = retract_feedrate * 60;
  1444. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1445. plan_set_e_position(current_position[E_AXIS]);
  1446. prepare_move();
  1447. if (retract_zlift > 0.01) {
  1448. current_position[Z_AXIS] -= retract_zlift;
  1449. #ifdef DELTA
  1450. sync_plan_position_delta();
  1451. #else
  1452. sync_plan_position();
  1453. #endif
  1454. prepare_move();
  1455. }
  1456. }
  1457. else {
  1458. if (retract_zlift > 0.01) {
  1459. current_position[Z_AXIS] += retract_zlift;
  1460. #ifdef DELTA
  1461. sync_plan_position_delta();
  1462. #else
  1463. sync_plan_position();
  1464. #endif
  1465. //prepare_move();
  1466. }
  1467. feedrate = retract_recover_feedrate * 60;
  1468. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1469. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1470. plan_set_e_position(current_position[E_AXIS]);
  1471. prepare_move();
  1472. }
  1473. feedrate = oldFeedrate;
  1474. retracted[active_extruder] = retracting;
  1475. } // retract()
  1476. #endif // FWRETRACT
  1477. /**
  1478. *
  1479. * G-Code Handler functions
  1480. *
  1481. */
  1482. /**
  1483. * Set XYZE destination and feedrate from the current GCode command
  1484. *
  1485. * - Set destination from included axis codes
  1486. * - Set to current for missing axis codes
  1487. * - Set the feedrate, if included
  1488. */
  1489. void gcode_get_destination() {
  1490. for (int i = 0; i < NUM_AXIS; i++) {
  1491. if (code_seen(axis_codes[i]))
  1492. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1493. else
  1494. destination[i] = current_position[i];
  1495. }
  1496. if (code_seen('F')) {
  1497. float next_feedrate = code_value();
  1498. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1499. }
  1500. }
  1501. /**
  1502. * G0, G1: Coordinated movement of X Y Z E axes
  1503. */
  1504. inline void gcode_G0_G1() {
  1505. if (IsRunning()) {
  1506. gcode_get_destination(); // For X Y Z E F
  1507. #ifdef FWRETRACT
  1508. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1509. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1510. // Is this move an attempt to retract or recover?
  1511. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1512. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1513. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1514. retract(!retracted[active_extruder]);
  1515. return;
  1516. }
  1517. }
  1518. #endif //FWRETRACT
  1519. prepare_move();
  1520. //ok_to_send();
  1521. }
  1522. }
  1523. /**
  1524. * Plan an arc in 2 dimensions
  1525. *
  1526. * The arc is approximated by generating many small linear segments.
  1527. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1528. * Arcs should only be made relatively large (over 5mm). Your slicer should have
  1529. * options for G2/G3 arc generation.
  1530. */
  1531. void plan_arc(
  1532. float *target, // Destination position
  1533. float *offset, // Center of rotation relative to current_position
  1534. uint8_t clockwise // Clockwise?
  1535. ) {
  1536. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1537. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1538. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1539. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1540. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1541. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1542. r_axis1 = -offset[Y_AXIS],
  1543. rt_axis0 = target[X_AXIS] - center_axis0,
  1544. rt_axis1 = target[Y_AXIS] - center_axis1;
  1545. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1546. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1547. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1548. if (clockwise) { angular_travel -= RADIANS(360); }
  1549. // Make a circle if the angular rotation is 0
  1550. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1551. angular_travel += RADIANS(360);
  1552. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1553. if (mm_of_travel < 0.001) { return; }
  1554. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1555. if (segments == 0) segments = 1;
  1556. float theta_per_segment = angular_travel/segments;
  1557. float linear_per_segment = linear_travel/segments;
  1558. float extruder_per_segment = extruder_travel/segments;
  1559. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1560. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1561. r_T = [cos(phi) -sin(phi);
  1562. sin(phi) cos(phi] * r ;
  1563. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1564. defined from the circle center to the initial position. Each line segment is formed by successive
  1565. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1566. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1567. all double numbers are single precision on the Arduino. (True double precision will not have
  1568. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1569. tool precision in some cases. Therefore, arc path correction is implemented.
  1570. Small angle approximation may be used to reduce computation overhead further. This approximation
  1571. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1572. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1573. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1574. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1575. issue for CNC machines with the single precision Arduino calculations.
  1576. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1577. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1578. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1579. This is important when there are successive arc motions.
  1580. */
  1581. // Vector rotation matrix values
  1582. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1583. float sin_T = theta_per_segment;
  1584. float arc_target[4];
  1585. float sin_Ti;
  1586. float cos_Ti;
  1587. float r_axisi;
  1588. uint16_t i;
  1589. int8_t count = 0;
  1590. // Initialize the linear axis
  1591. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1592. // Initialize the extruder axis
  1593. arc_target[E_AXIS] = current_position[E_AXIS];
  1594. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1595. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1596. if (count < N_ARC_CORRECTION) {
  1597. // Apply vector rotation matrix to previous r_axis0 / 1
  1598. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1599. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1600. r_axis1 = r_axisi;
  1601. count++;
  1602. }
  1603. else {
  1604. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1605. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1606. cos_Ti = cos(i*theta_per_segment);
  1607. sin_Ti = sin(i*theta_per_segment);
  1608. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1609. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1610. count = 0;
  1611. }
  1612. // Update arc_target location
  1613. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1614. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1615. arc_target[Z_AXIS] += linear_per_segment;
  1616. arc_target[E_AXIS] += extruder_per_segment;
  1617. clamp_to_software_endstops(arc_target);
  1618. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1619. }
  1620. // Ensure last segment arrives at target location.
  1621. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1622. // As far as the parser is concerned, the position is now == target. In reality the
  1623. // motion control system might still be processing the action and the real tool position
  1624. // in any intermediate location.
  1625. set_current_to_destination();
  1626. }
  1627. /**
  1628. * G2: Clockwise Arc
  1629. * G3: Counterclockwise Arc
  1630. */
  1631. inline void gcode_G2_G3(bool clockwise) {
  1632. if (IsRunning()) {
  1633. #ifdef SF_ARC_FIX
  1634. bool relative_mode_backup = relative_mode;
  1635. relative_mode = true;
  1636. #endif
  1637. gcode_get_destination();
  1638. #ifdef SF_ARC_FIX
  1639. relative_mode = relative_mode_backup;
  1640. #endif
  1641. // Center of arc as offset from current_position
  1642. arc_offset[0] = code_seen('I') ? code_value() : 0;
  1643. arc_offset[1] = code_seen('J') ? code_value() : 0;
  1644. // Send an arc to the planner
  1645. plan_arc(destination, arc_offset, clockwise);
  1646. refresh_cmd_timeout();
  1647. }
  1648. }
  1649. /**
  1650. * G4: Dwell S<seconds> or P<milliseconds>
  1651. */
  1652. inline void gcode_G4() {
  1653. millis_t codenum = 0;
  1654. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1655. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1656. st_synchronize();
  1657. refresh_cmd_timeout();
  1658. codenum += previous_cmd_ms; // keep track of when we started waiting
  1659. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1660. while (millis() < codenum) {
  1661. manage_heater();
  1662. manage_inactivity();
  1663. lcd_update();
  1664. }
  1665. }
  1666. #ifdef FWRETRACT
  1667. /**
  1668. * G10 - Retract filament according to settings of M207
  1669. * G11 - Recover filament according to settings of M208
  1670. */
  1671. inline void gcode_G10_G11(bool doRetract=false) {
  1672. #if EXTRUDERS > 1
  1673. if (doRetract) {
  1674. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1675. }
  1676. #endif
  1677. retract(doRetract
  1678. #if EXTRUDERS > 1
  1679. , retracted_swap[active_extruder]
  1680. #endif
  1681. );
  1682. }
  1683. #endif //FWRETRACT
  1684. /**
  1685. * G28: Home all axes according to settings
  1686. *
  1687. * Parameters
  1688. *
  1689. * None Home to all axes with no parameters.
  1690. * With QUICK_HOME enabled XY will home together, then Z.
  1691. *
  1692. * Cartesian parameters
  1693. *
  1694. * X Home to the X endstop
  1695. * Y Home to the Y endstop
  1696. * Z Home to the Z endstop
  1697. *
  1698. */
  1699. inline void gcode_G28() {
  1700. // Wait for planner moves to finish!
  1701. st_synchronize();
  1702. // For auto bed leveling, clear the level matrix
  1703. #ifdef ENABLE_AUTO_BED_LEVELING
  1704. plan_bed_level_matrix.set_to_identity();
  1705. #ifdef DELTA
  1706. reset_bed_level();
  1707. #endif
  1708. #endif
  1709. // For manual bed leveling deactivate the matrix temporarily
  1710. #ifdef MESH_BED_LEVELING
  1711. uint8_t mbl_was_active = mbl.active;
  1712. mbl.active = 0;
  1713. #endif
  1714. setup_for_endstop_move();
  1715. set_destination_to_current();
  1716. feedrate = 0.0;
  1717. #ifdef DELTA
  1718. // A delta can only safely home all axis at the same time
  1719. // all axis have to home at the same time
  1720. // Pretend the current position is 0,0,0
  1721. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1722. sync_plan_position();
  1723. // Move all carriages up together until the first endstop is hit.
  1724. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1725. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1726. line_to_destination();
  1727. st_synchronize();
  1728. endstops_hit_on_purpose(); // clear endstop hit flags
  1729. // Destination reached
  1730. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1731. // take care of back off and rehome now we are all at the top
  1732. HOMEAXIS(X);
  1733. HOMEAXIS(Y);
  1734. HOMEAXIS(Z);
  1735. sync_plan_position_delta();
  1736. #else // NOT DELTA
  1737. bool homeX = code_seen(axis_codes[X_AXIS]),
  1738. homeY = code_seen(axis_codes[Y_AXIS]),
  1739. homeZ = code_seen(axis_codes[Z_AXIS]);
  1740. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1741. if (home_all_axis || homeZ) {
  1742. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1743. HOMEAXIS(Z);
  1744. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1745. // Raise Z before homing any other axes
  1746. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1747. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1748. feedrate = max_feedrate[Z_AXIS] * 60;
  1749. line_to_destination();
  1750. st_synchronize();
  1751. #endif
  1752. } // home_all_axis || homeZ
  1753. #ifdef QUICK_HOME
  1754. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1755. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1756. #ifdef DUAL_X_CARRIAGE
  1757. int x_axis_home_dir = x_home_dir(active_extruder);
  1758. extruder_duplication_enabled = false;
  1759. #else
  1760. int x_axis_home_dir = home_dir(X_AXIS);
  1761. #endif
  1762. sync_plan_position();
  1763. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1764. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1765. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1766. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1767. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1768. line_to_destination();
  1769. st_synchronize();
  1770. axis_is_at_home(X_AXIS);
  1771. axis_is_at_home(Y_AXIS);
  1772. sync_plan_position();
  1773. destination[X_AXIS] = current_position[X_AXIS];
  1774. destination[Y_AXIS] = current_position[Y_AXIS];
  1775. line_to_destination();
  1776. feedrate = 0.0;
  1777. st_synchronize();
  1778. endstops_hit_on_purpose(); // clear endstop hit flags
  1779. current_position[X_AXIS] = destination[X_AXIS];
  1780. current_position[Y_AXIS] = destination[Y_AXIS];
  1781. #ifndef SCARA
  1782. current_position[Z_AXIS] = destination[Z_AXIS];
  1783. #endif
  1784. }
  1785. #endif // QUICK_HOME
  1786. #ifdef HOME_Y_BEFORE_X
  1787. // Home Y
  1788. if (home_all_axis || homeY) HOMEAXIS(Y);
  1789. #endif
  1790. // Home X
  1791. if (home_all_axis || homeX) {
  1792. #ifdef DUAL_X_CARRIAGE
  1793. int tmp_extruder = active_extruder;
  1794. extruder_duplication_enabled = false;
  1795. active_extruder = !active_extruder;
  1796. HOMEAXIS(X);
  1797. inactive_extruder_x_pos = current_position[X_AXIS];
  1798. active_extruder = tmp_extruder;
  1799. HOMEAXIS(X);
  1800. // reset state used by the different modes
  1801. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1802. delayed_move_time = 0;
  1803. active_extruder_parked = true;
  1804. #else
  1805. HOMEAXIS(X);
  1806. #endif
  1807. }
  1808. #ifndef HOME_Y_BEFORE_X
  1809. // Home Y
  1810. if (home_all_axis || homeY) HOMEAXIS(Y);
  1811. #endif
  1812. // Home Z last if homing towards the bed
  1813. #if Z_HOME_DIR < 0
  1814. if (home_all_axis || homeZ) {
  1815. #ifdef Z_SAFE_HOMING
  1816. if (home_all_axis) {
  1817. current_position[Z_AXIS] = 0;
  1818. sync_plan_position();
  1819. //
  1820. // Set the probe (or just the nozzle) destination to the safe homing point
  1821. //
  1822. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1823. // then this may not work as expected.
  1824. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1825. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1826. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1827. feedrate = XY_TRAVEL_SPEED;
  1828. // This could potentially move X, Y, Z all together
  1829. line_to_destination();
  1830. st_synchronize();
  1831. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1832. current_position[X_AXIS] = destination[X_AXIS];
  1833. current_position[Y_AXIS] = destination[Y_AXIS];
  1834. // Home the Z axis
  1835. HOMEAXIS(Z);
  1836. }
  1837. else if (homeZ) { // Don't need to Home Z twice
  1838. // Let's see if X and Y are homed
  1839. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1840. // Make sure the probe is within the physical limits
  1841. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1842. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1843. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1844. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1845. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1846. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1847. // Set the plan current position to X, Y, 0
  1848. current_position[Z_AXIS] = 0;
  1849. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1850. // Set Z destination away from bed and raise the axis
  1851. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1852. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1853. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1854. line_to_destination();
  1855. st_synchronize();
  1856. // Home the Z axis
  1857. HOMEAXIS(Z);
  1858. }
  1859. else {
  1860. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1861. SERIAL_ECHO_START;
  1862. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1863. }
  1864. }
  1865. else {
  1866. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1867. SERIAL_ECHO_START;
  1868. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1869. }
  1870. } // !home_all_axes && homeZ
  1871. #else // !Z_SAFE_HOMING
  1872. HOMEAXIS(Z);
  1873. #endif // !Z_SAFE_HOMING
  1874. } // home_all_axis || homeZ
  1875. #endif // Z_HOME_DIR < 0
  1876. sync_plan_position();
  1877. #endif // else DELTA
  1878. #ifdef SCARA
  1879. sync_plan_position_delta();
  1880. #endif
  1881. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1882. enable_endstops(false);
  1883. #endif
  1884. // For manual leveling move back to 0,0
  1885. #ifdef MESH_BED_LEVELING
  1886. if (mbl_was_active) {
  1887. current_position[X_AXIS] = mbl.get_x(0);
  1888. current_position[Y_AXIS] = mbl.get_y(0);
  1889. set_destination_to_current();
  1890. feedrate = homing_feedrate[X_AXIS];
  1891. line_to_destination();
  1892. st_synchronize();
  1893. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1894. sync_plan_position();
  1895. mbl.active = 1;
  1896. }
  1897. #endif
  1898. feedrate = saved_feedrate;
  1899. feedrate_multiplier = saved_feedrate_multiplier;
  1900. refresh_cmd_timeout();
  1901. endstops_hit_on_purpose(); // clear endstop hit flags
  1902. }
  1903. #ifdef MESH_BED_LEVELING
  1904. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1905. /**
  1906. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1907. * mesh to compensate for variable bed height
  1908. *
  1909. * Parameters With MESH_BED_LEVELING:
  1910. *
  1911. * S0 Produce a mesh report
  1912. * S1 Start probing mesh points
  1913. * S2 Probe the next mesh point
  1914. * S3 Xn Yn Zn.nn Manually modify a single point
  1915. *
  1916. * The S0 report the points as below
  1917. *
  1918. * +----> X-axis
  1919. * |
  1920. * |
  1921. * v Y-axis
  1922. *
  1923. */
  1924. inline void gcode_G29() {
  1925. static int probe_point = -1;
  1926. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1927. if (state < 0 || state > 3) {
  1928. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1929. return;
  1930. }
  1931. int ix, iy;
  1932. float z;
  1933. switch(state) {
  1934. case MeshReport:
  1935. if (mbl.active) {
  1936. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1937. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1938. SERIAL_PROTOCOLCHAR(',');
  1939. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1940. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1941. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1942. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1943. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1944. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1945. SERIAL_PROTOCOLPGM(" ");
  1946. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1947. }
  1948. SERIAL_EOL;
  1949. }
  1950. }
  1951. else
  1952. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1953. break;
  1954. case MeshStart:
  1955. mbl.reset();
  1956. probe_point = 0;
  1957. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1958. break;
  1959. case MeshNext:
  1960. if (probe_point < 0) {
  1961. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1962. return;
  1963. }
  1964. if (probe_point == 0) {
  1965. // Set Z to a positive value before recording the first Z.
  1966. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1967. sync_plan_position();
  1968. }
  1969. else {
  1970. // For others, save the Z of the previous point, then raise Z again.
  1971. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1972. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1973. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1974. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1975. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1977. st_synchronize();
  1978. }
  1979. // Is there another point to sample? Move there.
  1980. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1981. ix = probe_point % MESH_NUM_X_POINTS;
  1982. iy = probe_point / MESH_NUM_X_POINTS;
  1983. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1984. current_position[X_AXIS] = mbl.get_x(ix);
  1985. current_position[Y_AXIS] = mbl.get_y(iy);
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1987. st_synchronize();
  1988. probe_point++;
  1989. }
  1990. else {
  1991. // After recording the last point, activate the mbl and home
  1992. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1993. probe_point = -1;
  1994. mbl.active = 1;
  1995. enqueuecommands_P(PSTR("G28"));
  1996. }
  1997. break;
  1998. case MeshSet:
  1999. if (code_seen('X') || code_seen('x')) {
  2000. ix = code_value_long()-1;
  2001. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2002. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2003. return;
  2004. }
  2005. } else {
  2006. SERIAL_PROTOCOLPGM("X not entered.\n");
  2007. return;
  2008. }
  2009. if (code_seen('Y') || code_seen('y')) {
  2010. iy = code_value_long()-1;
  2011. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2012. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2013. return;
  2014. }
  2015. } else {
  2016. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2017. return;
  2018. }
  2019. if (code_seen('Z') || code_seen('z')) {
  2020. z = code_value();
  2021. } else {
  2022. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2023. return;
  2024. }
  2025. mbl.z_values[iy][ix] = z;
  2026. } // switch(state)
  2027. }
  2028. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2029. /**
  2030. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2031. * Will fail if the printer has not been homed with G28.
  2032. *
  2033. * Enhanced G29 Auto Bed Leveling Probe Routine
  2034. *
  2035. * Parameters With AUTO_BED_LEVELING_GRID:
  2036. *
  2037. * P Set the size of the grid that will be probed (P x P points).
  2038. * Not supported by non-linear delta printer bed leveling.
  2039. * Example: "G29 P4"
  2040. *
  2041. * S Set the XY travel speed between probe points (in mm/min)
  2042. *
  2043. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2044. * or clean the rotation Matrix. Useful to check the topology
  2045. * after a first run of G29.
  2046. *
  2047. * V Set the verbose level (0-4). Example: "G29 V3"
  2048. *
  2049. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2050. * This is useful for manual bed leveling and finding flaws in the bed (to
  2051. * assist with part placement).
  2052. * Not supported by non-linear delta printer bed leveling.
  2053. *
  2054. * F Set the Front limit of the probing grid
  2055. * B Set the Back limit of the probing grid
  2056. * L Set the Left limit of the probing grid
  2057. * R Set the Right limit of the probing grid
  2058. *
  2059. * Global Parameters:
  2060. *
  2061. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2062. * Include "E" to engage/disengage the probe for each sample.
  2063. * There's no extra effect if you have a fixed probe.
  2064. * Usage: "G29 E" or "G29 e"
  2065. *
  2066. */
  2067. inline void gcode_G29() {
  2068. // Don't allow auto-leveling without homing first
  2069. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2070. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2071. SERIAL_ECHO_START;
  2072. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2073. return;
  2074. }
  2075. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2076. if (verbose_level < 0 || verbose_level > 4) {
  2077. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2078. return;
  2079. }
  2080. bool dryrun = code_seen('D') || code_seen('d'),
  2081. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2082. #ifdef AUTO_BED_LEVELING_GRID
  2083. #ifndef DELTA
  2084. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2085. #endif
  2086. if (verbose_level > 0) {
  2087. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2088. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2089. }
  2090. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2091. #ifndef DELTA
  2092. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2093. if (auto_bed_leveling_grid_points < 2) {
  2094. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2095. return;
  2096. }
  2097. #endif
  2098. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2099. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2100. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2101. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2102. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2103. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2104. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2105. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2106. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2107. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2108. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2109. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2110. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2111. if (left_out || right_out || front_out || back_out) {
  2112. if (left_out) {
  2113. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  2114. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2115. }
  2116. if (right_out) {
  2117. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  2118. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2119. }
  2120. if (front_out) {
  2121. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  2122. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2123. }
  2124. if (back_out) {
  2125. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  2126. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2127. }
  2128. return;
  2129. }
  2130. #endif // AUTO_BED_LEVELING_GRID
  2131. #ifdef Z_PROBE_SLED
  2132. dock_sled(false); // engage (un-dock) the probe
  2133. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2134. deploy_z_probe();
  2135. #endif
  2136. st_synchronize();
  2137. if (!dryrun) {
  2138. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2139. plan_bed_level_matrix.set_to_identity();
  2140. #ifdef DELTA
  2141. reset_bed_level();
  2142. #else //!DELTA
  2143. //vector_3 corrected_position = plan_get_position_mm();
  2144. //corrected_position.debug("position before G29");
  2145. vector_3 uncorrected_position = plan_get_position();
  2146. //uncorrected_position.debug("position during G29");
  2147. current_position[X_AXIS] = uncorrected_position.x;
  2148. current_position[Y_AXIS] = uncorrected_position.y;
  2149. current_position[Z_AXIS] = uncorrected_position.z;
  2150. sync_plan_position();
  2151. #endif // !DELTA
  2152. }
  2153. setup_for_endstop_move();
  2154. feedrate = homing_feedrate[Z_AXIS];
  2155. #ifdef AUTO_BED_LEVELING_GRID
  2156. // probe at the points of a lattice grid
  2157. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2158. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2159. #ifdef DELTA
  2160. delta_grid_spacing[0] = xGridSpacing;
  2161. delta_grid_spacing[1] = yGridSpacing;
  2162. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2163. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2164. #else // !DELTA
  2165. // solve the plane equation ax + by + d = z
  2166. // A is the matrix with rows [x y 1] for all the probed points
  2167. // B is the vector of the Z positions
  2168. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2169. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2170. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2171. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2172. eqnBVector[abl2], // "B" vector of Z points
  2173. mean = 0.0;
  2174. #endif // !DELTA
  2175. int probePointCounter = 0;
  2176. bool zig = true;
  2177. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2178. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2179. int xStart, xStop, xInc;
  2180. if (zig) {
  2181. xStart = 0;
  2182. xStop = auto_bed_leveling_grid_points;
  2183. xInc = 1;
  2184. }
  2185. else {
  2186. xStart = auto_bed_leveling_grid_points - 1;
  2187. xStop = -1;
  2188. xInc = -1;
  2189. }
  2190. #ifndef DELTA
  2191. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2192. // This gets the probe points in more readable order.
  2193. if (!do_topography_map) zig = !zig;
  2194. #endif
  2195. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2196. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2197. // raise extruder
  2198. float measured_z,
  2199. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2200. #ifdef DELTA
  2201. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2202. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2203. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2204. #endif //DELTA
  2205. ProbeAction act;
  2206. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2207. act = ProbeDeployAndStow;
  2208. else if (yCount == 0 && xCount == xStart)
  2209. act = ProbeDeploy;
  2210. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2211. act = ProbeStow;
  2212. else
  2213. act = ProbeStay;
  2214. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2215. #ifndef DELTA
  2216. mean += measured_z;
  2217. eqnBVector[probePointCounter] = measured_z;
  2218. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2219. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2220. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2221. #else
  2222. bed_level[xCount][yCount] = measured_z + z_offset;
  2223. #endif
  2224. probePointCounter++;
  2225. manage_heater();
  2226. manage_inactivity();
  2227. lcd_update();
  2228. } //xProbe
  2229. } //yProbe
  2230. clean_up_after_endstop_move();
  2231. #ifdef DELTA
  2232. if (!dryrun) extrapolate_unprobed_bed_level();
  2233. print_bed_level();
  2234. #else // !DELTA
  2235. // solve lsq problem
  2236. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2237. mean /= abl2;
  2238. if (verbose_level) {
  2239. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2240. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2241. SERIAL_PROTOCOLPGM(" b: ");
  2242. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2243. SERIAL_PROTOCOLPGM(" d: ");
  2244. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2245. SERIAL_EOL;
  2246. if (verbose_level > 2) {
  2247. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2248. SERIAL_PROTOCOL_F(mean, 8);
  2249. SERIAL_EOL;
  2250. }
  2251. }
  2252. // Show the Topography map if enabled
  2253. if (do_topography_map) {
  2254. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2255. SERIAL_PROTOCOLPGM("+-----------+\n");
  2256. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2257. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2258. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2259. SERIAL_PROTOCOLPGM("+-----------+\n");
  2260. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2261. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2262. int ind = yy * auto_bed_leveling_grid_points + xx;
  2263. float diff = eqnBVector[ind] - mean;
  2264. if (diff >= 0.0)
  2265. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2266. else
  2267. SERIAL_PROTOCOLCHAR(' ');
  2268. SERIAL_PROTOCOL_F(diff, 5);
  2269. } // xx
  2270. SERIAL_EOL;
  2271. } // yy
  2272. SERIAL_EOL;
  2273. } //do_topography_map
  2274. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2275. free(plane_equation_coefficients);
  2276. #endif //!DELTA
  2277. #else // !AUTO_BED_LEVELING_GRID
  2278. // Actions for each probe
  2279. ProbeAction p1, p2, p3;
  2280. if (deploy_probe_for_each_reading)
  2281. p1 = p2 = p3 = ProbeDeployAndStow;
  2282. else
  2283. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2284. // Probe at 3 arbitrary points
  2285. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2286. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2287. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2288. clean_up_after_endstop_move();
  2289. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2290. #endif // !AUTO_BED_LEVELING_GRID
  2291. #ifndef DELTA
  2292. if (verbose_level > 0)
  2293. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2294. if (!dryrun) {
  2295. // Correct the Z height difference from z-probe position and hotend tip position.
  2296. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2297. // When the bed is uneven, this height must be corrected.
  2298. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2299. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2300. z_tmp = current_position[Z_AXIS],
  2301. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2302. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2303. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2304. sync_plan_position();
  2305. }
  2306. #endif // !DELTA
  2307. #ifdef Z_PROBE_SLED
  2308. dock_sled(true); // dock the probe
  2309. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2310. stow_z_probe();
  2311. #endif
  2312. #ifdef Z_PROBE_END_SCRIPT
  2313. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2314. st_synchronize();
  2315. #endif
  2316. }
  2317. #ifndef Z_PROBE_SLED
  2318. inline void gcode_G30() {
  2319. deploy_z_probe(); // Engage Z Servo endstop if available
  2320. st_synchronize();
  2321. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2322. setup_for_endstop_move();
  2323. feedrate = homing_feedrate[Z_AXIS];
  2324. run_z_probe();
  2325. SERIAL_PROTOCOLPGM("Bed");
  2326. SERIAL_PROTOCOLPGM(" X: ");
  2327. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2328. SERIAL_PROTOCOLPGM(" Y: ");
  2329. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2330. SERIAL_PROTOCOLPGM(" Z: ");
  2331. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2332. SERIAL_EOL;
  2333. clean_up_after_endstop_move();
  2334. stow_z_probe(); // Retract Z Servo endstop if available
  2335. }
  2336. #endif //!Z_PROBE_SLED
  2337. #endif //ENABLE_AUTO_BED_LEVELING
  2338. /**
  2339. * G92: Set current position to given X Y Z E
  2340. */
  2341. inline void gcode_G92() {
  2342. if (!code_seen(axis_codes[E_AXIS]))
  2343. st_synchronize();
  2344. bool didXYZ = false;
  2345. for (int i = 0; i < NUM_AXIS; i++) {
  2346. if (code_seen(axis_codes[i])) {
  2347. float v = current_position[i] = code_value();
  2348. if (i == E_AXIS)
  2349. plan_set_e_position(v);
  2350. else
  2351. didXYZ = true;
  2352. }
  2353. }
  2354. if (didXYZ) sync_plan_position();
  2355. }
  2356. #ifdef ULTIPANEL
  2357. /**
  2358. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2359. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2360. */
  2361. inline void gcode_M0_M1() {
  2362. char *src = strchr_pointer + 2;
  2363. millis_t codenum = 0;
  2364. bool hasP = false, hasS = false;
  2365. if (code_seen('P')) {
  2366. codenum = code_value_short(); // milliseconds to wait
  2367. hasP = codenum > 0;
  2368. }
  2369. if (code_seen('S')) {
  2370. codenum = code_value() * 1000; // seconds to wait
  2371. hasS = codenum > 0;
  2372. }
  2373. char* starpos = strchr(src, '*');
  2374. if (starpos != NULL) *(starpos) = '\0';
  2375. while (*src == ' ') ++src;
  2376. if (!hasP && !hasS && *src != '\0')
  2377. lcd_setstatus(src, true);
  2378. else {
  2379. LCD_MESSAGEPGM(MSG_USERWAIT);
  2380. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2381. dontExpireStatus();
  2382. #endif
  2383. }
  2384. lcd_ignore_click();
  2385. st_synchronize();
  2386. refresh_cmd_timeout();
  2387. if (codenum > 0) {
  2388. codenum += previous_cmd_ms; // keep track of when we started waiting
  2389. while(millis() < codenum && !lcd_clicked()) {
  2390. manage_heater();
  2391. manage_inactivity();
  2392. lcd_update();
  2393. }
  2394. lcd_ignore_click(false);
  2395. }
  2396. else {
  2397. if (!lcd_detected()) return;
  2398. while (!lcd_clicked()) {
  2399. manage_heater();
  2400. manage_inactivity();
  2401. lcd_update();
  2402. }
  2403. }
  2404. if (IS_SD_PRINTING)
  2405. LCD_MESSAGEPGM(MSG_RESUMING);
  2406. else
  2407. LCD_MESSAGEPGM(WELCOME_MSG);
  2408. }
  2409. #endif // ULTIPANEL
  2410. /**
  2411. * M17: Enable power on all stepper motors
  2412. */
  2413. inline void gcode_M17() {
  2414. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2415. enable_all_steppers();
  2416. }
  2417. #ifdef SDSUPPORT
  2418. /**
  2419. * M20: List SD card to serial output
  2420. */
  2421. inline void gcode_M20() {
  2422. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2423. card.ls();
  2424. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2425. }
  2426. /**
  2427. * M21: Init SD Card
  2428. */
  2429. inline void gcode_M21() {
  2430. card.initsd();
  2431. }
  2432. /**
  2433. * M22: Release SD Card
  2434. */
  2435. inline void gcode_M22() {
  2436. card.release();
  2437. }
  2438. /**
  2439. * M23: Select a file
  2440. */
  2441. inline void gcode_M23() {
  2442. char* codepos = strchr_pointer + 4;
  2443. char* starpos = strchr(codepos, '*');
  2444. if (starpos) *starpos = '\0';
  2445. card.openFile(codepos, true);
  2446. }
  2447. /**
  2448. * M24: Start SD Print
  2449. */
  2450. inline void gcode_M24() {
  2451. card.startFileprint();
  2452. print_job_start_ms = millis();
  2453. }
  2454. /**
  2455. * M25: Pause SD Print
  2456. */
  2457. inline void gcode_M25() {
  2458. card.pauseSDPrint();
  2459. }
  2460. /**
  2461. * M26: Set SD Card file index
  2462. */
  2463. inline void gcode_M26() {
  2464. if (card.cardOK && code_seen('S'))
  2465. card.setIndex(code_value_short());
  2466. }
  2467. /**
  2468. * M27: Get SD Card status
  2469. */
  2470. inline void gcode_M27() {
  2471. card.getStatus();
  2472. }
  2473. /**
  2474. * M28: Start SD Write
  2475. */
  2476. inline void gcode_M28() {
  2477. char* codepos = strchr_pointer + 4;
  2478. char* starpos = strchr(codepos, '*');
  2479. if (starpos) {
  2480. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2481. strchr_pointer = strchr(npos, ' ') + 1;
  2482. *(starpos) = '\0';
  2483. }
  2484. card.openFile(codepos, false);
  2485. }
  2486. /**
  2487. * M29: Stop SD Write
  2488. * Processed in write to file routine above
  2489. */
  2490. inline void gcode_M29() {
  2491. // card.saving = false;
  2492. }
  2493. /**
  2494. * M30 <filename>: Delete SD Card file
  2495. */
  2496. inline void gcode_M30() {
  2497. if (card.cardOK) {
  2498. card.closefile();
  2499. char* starpos = strchr(strchr_pointer + 4, '*');
  2500. if (starpos) {
  2501. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2502. strchr_pointer = strchr(npos, ' ') + 1;
  2503. *(starpos) = '\0';
  2504. }
  2505. card.removeFile(strchr_pointer + 4);
  2506. }
  2507. }
  2508. #endif
  2509. /**
  2510. * M31: Get the time since the start of SD Print (or last M109)
  2511. */
  2512. inline void gcode_M31() {
  2513. print_job_stop_ms = millis();
  2514. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2515. int min = t / 60, sec = t % 60;
  2516. char time[30];
  2517. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2518. SERIAL_ECHO_START;
  2519. SERIAL_ECHOLN(time);
  2520. lcd_setstatus(time);
  2521. autotempShutdown();
  2522. }
  2523. #ifdef SDSUPPORT
  2524. /**
  2525. * M32: Select file and start SD Print
  2526. */
  2527. inline void gcode_M32() {
  2528. if (card.sdprinting)
  2529. st_synchronize();
  2530. char* codepos = strchr_pointer + 4;
  2531. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2532. if (! namestartpos)
  2533. namestartpos = codepos; //default name position, 4 letters after the M
  2534. else
  2535. namestartpos++; //to skip the '!'
  2536. char* starpos = strchr(codepos, '*');
  2537. if (starpos) *(starpos) = '\0';
  2538. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2539. if (card.cardOK) {
  2540. card.openFile(namestartpos, true, !call_procedure);
  2541. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2542. card.setIndex(code_value_short());
  2543. card.startFileprint();
  2544. if (!call_procedure)
  2545. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2546. }
  2547. }
  2548. /**
  2549. * M928: Start SD Write
  2550. */
  2551. inline void gcode_M928() {
  2552. char* starpos = strchr(strchr_pointer + 5, '*');
  2553. if (starpos) {
  2554. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2555. strchr_pointer = strchr(npos, ' ') + 1;
  2556. *(starpos) = '\0';
  2557. }
  2558. card.openLogFile(strchr_pointer + 5);
  2559. }
  2560. #endif // SDSUPPORT
  2561. /**
  2562. * M42: Change pin status via GCode
  2563. */
  2564. inline void gcode_M42() {
  2565. if (code_seen('S')) {
  2566. int pin_status = code_value_short(),
  2567. pin_number = LED_PIN;
  2568. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2569. pin_number = code_value_short();
  2570. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2571. if (sensitive_pins[i] == pin_number) {
  2572. pin_number = -1;
  2573. break;
  2574. }
  2575. }
  2576. #if HAS_FAN
  2577. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2578. #endif
  2579. if (pin_number > -1) {
  2580. pinMode(pin_number, OUTPUT);
  2581. digitalWrite(pin_number, pin_status);
  2582. analogWrite(pin_number, pin_status);
  2583. }
  2584. } // code_seen('S')
  2585. }
  2586. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2587. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2588. #ifdef Z_PROBE_ENDSTOP
  2589. #if !HAS_Z_PROBE
  2590. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2591. #endif
  2592. #elif !HAS_Z_MIN
  2593. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2594. #endif
  2595. /**
  2596. * M48: Z-Probe repeatability measurement function.
  2597. *
  2598. * Usage:
  2599. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2600. * P = Number of sampled points (4-50, default 10)
  2601. * X = Sample X position
  2602. * Y = Sample Y position
  2603. * V = Verbose level (0-4, default=1)
  2604. * E = Engage probe for each reading
  2605. * L = Number of legs of movement before probe
  2606. *
  2607. * This function assumes the bed has been homed. Specifically, that a G28 command
  2608. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2609. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2610. * regenerated.
  2611. */
  2612. inline void gcode_M48() {
  2613. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2614. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2615. if (code_seen('V') || code_seen('v')) {
  2616. verbose_level = code_value_short();
  2617. if (verbose_level < 0 || verbose_level > 4 ) {
  2618. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2619. return;
  2620. }
  2621. }
  2622. if (verbose_level > 0)
  2623. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2624. if (code_seen('P') || code_seen('p')) {
  2625. n_samples = code_value_short();
  2626. if (n_samples < 4 || n_samples > 50) {
  2627. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2628. return;
  2629. }
  2630. }
  2631. double X_current = st_get_position_mm(X_AXIS),
  2632. Y_current = st_get_position_mm(Y_AXIS),
  2633. Z_current = st_get_position_mm(Z_AXIS),
  2634. E_current = st_get_position_mm(E_AXIS),
  2635. X_probe_location = X_current, Y_probe_location = Y_current,
  2636. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2637. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2638. if (code_seen('X') || code_seen('x')) {
  2639. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2640. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2641. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2642. return;
  2643. }
  2644. }
  2645. if (code_seen('Y') || code_seen('y')) {
  2646. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2647. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2648. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2649. return;
  2650. }
  2651. }
  2652. if (code_seen('L') || code_seen('l')) {
  2653. n_legs = code_value_short();
  2654. if (n_legs == 1) n_legs = 2;
  2655. if (n_legs < 0 || n_legs > 15) {
  2656. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2657. return;
  2658. }
  2659. }
  2660. //
  2661. // Do all the preliminary setup work. First raise the probe.
  2662. //
  2663. st_synchronize();
  2664. plan_bed_level_matrix.set_to_identity();
  2665. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2666. st_synchronize();
  2667. //
  2668. // Now get everything to the specified probe point So we can safely do a probe to
  2669. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2670. // use that as a starting point for each probe.
  2671. //
  2672. if (verbose_level > 2)
  2673. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2674. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2675. E_current,
  2676. homing_feedrate[X_AXIS]/60,
  2677. active_extruder);
  2678. st_synchronize();
  2679. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2680. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2681. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2682. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2683. //
  2684. // OK, do the initial probe to get us close to the bed.
  2685. // Then retrace the right amount and use that in subsequent probes
  2686. //
  2687. deploy_z_probe();
  2688. setup_for_endstop_move();
  2689. run_z_probe();
  2690. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2691. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2692. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2693. E_current,
  2694. homing_feedrate[X_AXIS]/60,
  2695. active_extruder);
  2696. st_synchronize();
  2697. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2698. if (deploy_probe_for_each_reading) stow_z_probe();
  2699. for (uint8_t n=0; n < n_samples; n++) {
  2700. // Make sure we are at the probe location
  2701. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2702. if (n_legs) {
  2703. millis_t ms = millis();
  2704. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2705. theta = RADIANS(ms % 360L);
  2706. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2707. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2708. //SERIAL_ECHOPAIR(" theta: ",theta);
  2709. //SERIAL_ECHOPAIR(" direction: ",dir);
  2710. //SERIAL_EOL;
  2711. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2712. ms = millis();
  2713. theta += RADIANS(dir * (ms % 20L));
  2714. radius += (ms % 10L) - 5L;
  2715. if (radius < 0.0) radius = -radius;
  2716. X_current = X_probe_location + cos(theta) * radius;
  2717. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2718. Y_current = Y_probe_location + sin(theta) * radius;
  2719. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2720. if (verbose_level > 3) {
  2721. SERIAL_ECHOPAIR("x: ", X_current);
  2722. SERIAL_ECHOPAIR("y: ", Y_current);
  2723. SERIAL_EOL;
  2724. }
  2725. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2726. } // n_legs loop
  2727. // Go back to the probe location
  2728. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2729. } // n_legs
  2730. if (deploy_probe_for_each_reading) {
  2731. deploy_z_probe();
  2732. delay(1000);
  2733. }
  2734. setup_for_endstop_move();
  2735. run_z_probe();
  2736. sample_set[n] = current_position[Z_AXIS];
  2737. //
  2738. // Get the current mean for the data points we have so far
  2739. //
  2740. sum = 0.0;
  2741. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2742. mean = sum / (n + 1);
  2743. //
  2744. // Now, use that mean to calculate the standard deviation for the
  2745. // data points we have so far
  2746. //
  2747. sum = 0.0;
  2748. for (uint8_t j = 0; j <= n; j++) {
  2749. float ss = sample_set[j] - mean;
  2750. sum += ss * ss;
  2751. }
  2752. sigma = sqrt(sum / (n + 1));
  2753. if (verbose_level > 1) {
  2754. SERIAL_PROTOCOL(n+1);
  2755. SERIAL_PROTOCOLPGM(" of ");
  2756. SERIAL_PROTOCOL(n_samples);
  2757. SERIAL_PROTOCOLPGM(" z: ");
  2758. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2759. if (verbose_level > 2) {
  2760. SERIAL_PROTOCOLPGM(" mean: ");
  2761. SERIAL_PROTOCOL_F(mean,6);
  2762. SERIAL_PROTOCOLPGM(" sigma: ");
  2763. SERIAL_PROTOCOL_F(sigma,6);
  2764. }
  2765. }
  2766. if (verbose_level > 0) SERIAL_EOL;
  2767. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2768. st_synchronize();
  2769. // Stow between
  2770. if (deploy_probe_for_each_reading) {
  2771. stow_z_probe();
  2772. delay(1000);
  2773. }
  2774. }
  2775. // Stow after
  2776. if (!deploy_probe_for_each_reading) {
  2777. stow_z_probe();
  2778. delay(1000);
  2779. }
  2780. clean_up_after_endstop_move();
  2781. if (verbose_level > 0) {
  2782. SERIAL_PROTOCOLPGM("Mean: ");
  2783. SERIAL_PROTOCOL_F(mean, 6);
  2784. SERIAL_EOL;
  2785. }
  2786. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2787. SERIAL_PROTOCOL_F(sigma, 6);
  2788. SERIAL_EOL; SERIAL_EOL;
  2789. }
  2790. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2791. /**
  2792. * M104: Set hot end temperature
  2793. */
  2794. inline void gcode_M104() {
  2795. if (setTargetedHotend(104)) return;
  2796. if (code_seen('S')) {
  2797. float temp = code_value();
  2798. setTargetHotend(temp, target_extruder);
  2799. #ifdef DUAL_X_CARRIAGE
  2800. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2801. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2802. #endif
  2803. #ifdef THERMAL_PROTECTION_HOTENDS
  2804. start_watching_heater(target_extruder);
  2805. #endif
  2806. }
  2807. }
  2808. /**
  2809. * M105: Read hot end and bed temperature
  2810. */
  2811. inline void gcode_M105() {
  2812. if (setTargetedHotend(105)) return;
  2813. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2814. SERIAL_PROTOCOLPGM("ok");
  2815. #if HAS_TEMP_0
  2816. SERIAL_PROTOCOLPGM(" T:");
  2817. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2818. SERIAL_PROTOCOLPGM(" /");
  2819. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2820. #endif
  2821. #if HAS_TEMP_BED
  2822. SERIAL_PROTOCOLPGM(" B:");
  2823. SERIAL_PROTOCOL_F(degBed(), 1);
  2824. SERIAL_PROTOCOLPGM(" /");
  2825. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2826. #endif
  2827. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2828. SERIAL_PROTOCOLPGM(" T");
  2829. SERIAL_PROTOCOL(e);
  2830. SERIAL_PROTOCOLCHAR(':');
  2831. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2832. SERIAL_PROTOCOLPGM(" /");
  2833. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2834. }
  2835. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2836. SERIAL_ERROR_START;
  2837. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2838. #endif
  2839. SERIAL_PROTOCOLPGM(" @:");
  2840. #ifdef EXTRUDER_WATTS
  2841. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2842. SERIAL_PROTOCOLCHAR('W');
  2843. #else
  2844. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2845. #endif
  2846. SERIAL_PROTOCOLPGM(" B@:");
  2847. #ifdef BED_WATTS
  2848. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2849. SERIAL_PROTOCOLCHAR('W');
  2850. #else
  2851. SERIAL_PROTOCOL(getHeaterPower(-1));
  2852. #endif
  2853. #ifdef SHOW_TEMP_ADC_VALUES
  2854. #if HAS_TEMP_BED
  2855. SERIAL_PROTOCOLPGM(" ADC B:");
  2856. SERIAL_PROTOCOL_F(degBed(),1);
  2857. SERIAL_PROTOCOLPGM("C->");
  2858. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2859. #endif
  2860. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2861. SERIAL_PROTOCOLPGM(" T");
  2862. SERIAL_PROTOCOL(cur_extruder);
  2863. SERIAL_PROTOCOLCHAR(':');
  2864. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2865. SERIAL_PROTOCOLPGM("C->");
  2866. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2867. }
  2868. #endif
  2869. SERIAL_EOL;
  2870. }
  2871. #if HAS_FAN
  2872. /**
  2873. * M106: Set Fan Speed
  2874. */
  2875. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2876. /**
  2877. * M107: Fan Off
  2878. */
  2879. inline void gcode_M107() { fanSpeed = 0; }
  2880. #endif // HAS_FAN
  2881. /**
  2882. * M109: Wait for extruder(s) to reach temperature
  2883. */
  2884. inline void gcode_M109() {
  2885. if (setTargetedHotend(109)) return;
  2886. LCD_MESSAGEPGM(MSG_HEATING);
  2887. no_wait_for_cooling = code_seen('S');
  2888. if (no_wait_for_cooling || code_seen('R')) {
  2889. float temp = code_value();
  2890. setTargetHotend(temp, target_extruder);
  2891. #ifdef DUAL_X_CARRIAGE
  2892. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2893. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2894. #endif
  2895. }
  2896. #ifdef AUTOTEMP
  2897. autotemp_enabled = code_seen('F');
  2898. if (autotemp_enabled) autotemp_factor = code_value();
  2899. if (code_seen('S')) autotemp_min = code_value();
  2900. if (code_seen('B')) autotemp_max = code_value();
  2901. #endif
  2902. #ifdef THERMAL_PROTECTION_HOTENDS
  2903. start_watching_heater(target_extruder);
  2904. #endif
  2905. millis_t temp_ms = millis();
  2906. /* See if we are heating up or cooling down */
  2907. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2908. cancel_heatup = false;
  2909. #ifdef TEMP_RESIDENCY_TIME
  2910. long residency_start_ms = -1;
  2911. /* continue to loop until we have reached the target temp
  2912. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2913. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2914. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2915. #else
  2916. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2917. #endif //TEMP_RESIDENCY_TIME
  2918. { // while loop
  2919. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2920. SERIAL_PROTOCOLPGM("T:");
  2921. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2922. SERIAL_PROTOCOLPGM(" E:");
  2923. SERIAL_PROTOCOL((int)target_extruder);
  2924. #ifdef TEMP_RESIDENCY_TIME
  2925. SERIAL_PROTOCOLPGM(" W:");
  2926. if (residency_start_ms > -1) {
  2927. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2928. SERIAL_PROTOCOLLN(temp_ms);
  2929. }
  2930. else {
  2931. SERIAL_PROTOCOLLNPGM("?");
  2932. }
  2933. #else
  2934. SERIAL_EOL;
  2935. #endif
  2936. temp_ms = millis();
  2937. }
  2938. manage_heater();
  2939. manage_inactivity();
  2940. lcd_update();
  2941. #ifdef TEMP_RESIDENCY_TIME
  2942. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2943. // or when current temp falls outside the hysteresis after target temp was reached
  2944. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2945. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2946. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2947. {
  2948. residency_start_ms = millis();
  2949. }
  2950. #endif //TEMP_RESIDENCY_TIME
  2951. }
  2952. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2953. refresh_cmd_timeout();
  2954. print_job_start_ms = previous_cmd_ms;
  2955. }
  2956. #if HAS_TEMP_BED
  2957. /**
  2958. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2959. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2960. */
  2961. inline void gcode_M190() {
  2962. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2963. no_wait_for_cooling = code_seen('S');
  2964. if (no_wait_for_cooling || code_seen('R'))
  2965. setTargetBed(code_value());
  2966. millis_t temp_ms = millis();
  2967. cancel_heatup = false;
  2968. target_direction = isHeatingBed(); // true if heating, false if cooling
  2969. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2970. millis_t ms = millis();
  2971. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2972. temp_ms = ms;
  2973. float tt = degHotend(active_extruder);
  2974. SERIAL_PROTOCOLPGM("T:");
  2975. SERIAL_PROTOCOL(tt);
  2976. SERIAL_PROTOCOLPGM(" E:");
  2977. SERIAL_PROTOCOL((int)active_extruder);
  2978. SERIAL_PROTOCOLPGM(" B:");
  2979. SERIAL_PROTOCOL_F(degBed(), 1);
  2980. SERIAL_EOL;
  2981. }
  2982. manage_heater();
  2983. manage_inactivity();
  2984. lcd_update();
  2985. }
  2986. LCD_MESSAGEPGM(MSG_BED_DONE);
  2987. refresh_cmd_timeout();
  2988. }
  2989. #endif // HAS_TEMP_BED
  2990. /**
  2991. * M111: Set the debug level
  2992. */
  2993. inline void gcode_M111() {
  2994. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2995. }
  2996. /**
  2997. * M112: Emergency Stop
  2998. */
  2999. inline void gcode_M112() { kill(); }
  3000. #ifdef BARICUDA
  3001. #if HAS_HEATER_1
  3002. /**
  3003. * M126: Heater 1 valve open
  3004. */
  3005. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3006. /**
  3007. * M127: Heater 1 valve close
  3008. */
  3009. inline void gcode_M127() { ValvePressure = 0; }
  3010. #endif
  3011. #if HAS_HEATER_2
  3012. /**
  3013. * M128: Heater 2 valve open
  3014. */
  3015. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3016. /**
  3017. * M129: Heater 2 valve close
  3018. */
  3019. inline void gcode_M129() { EtoPPressure = 0; }
  3020. #endif
  3021. #endif //BARICUDA
  3022. /**
  3023. * M140: Set bed temperature
  3024. */
  3025. inline void gcode_M140() {
  3026. if (code_seen('S')) setTargetBed(code_value());
  3027. }
  3028. #ifdef ULTIPANEL
  3029. /**
  3030. * M145: Set the heatup state for a material in the LCD menu
  3031. * S<material> (0=PLA, 1=ABS)
  3032. * H<hotend temp>
  3033. * B<bed temp>
  3034. * F<fan speed>
  3035. */
  3036. inline void gcode_M145() {
  3037. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3038. if (material < 0 || material > 1) {
  3039. SERIAL_ERROR_START;
  3040. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3041. }
  3042. else {
  3043. int v;
  3044. switch (material) {
  3045. case 0:
  3046. if (code_seen('H')) {
  3047. v = code_value_short();
  3048. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3049. }
  3050. if (code_seen('F')) {
  3051. v = code_value_short();
  3052. plaPreheatFanSpeed = constrain(v, 0, 255);
  3053. }
  3054. #if TEMP_SENSOR_BED != 0
  3055. if (code_seen('B')) {
  3056. v = code_value_short();
  3057. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3058. }
  3059. #endif
  3060. break;
  3061. case 1:
  3062. if (code_seen('H')) {
  3063. v = code_value_short();
  3064. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3065. }
  3066. if (code_seen('F')) {
  3067. v = code_value_short();
  3068. absPreheatFanSpeed = constrain(v, 0, 255);
  3069. }
  3070. #if TEMP_SENSOR_BED != 0
  3071. if (code_seen('B')) {
  3072. v = code_value_short();
  3073. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3074. }
  3075. #endif
  3076. break;
  3077. }
  3078. }
  3079. }
  3080. #endif
  3081. #if HAS_POWER_SWITCH
  3082. /**
  3083. * M80: Turn on Power Supply
  3084. */
  3085. inline void gcode_M80() {
  3086. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3087. // If you have a switch on suicide pin, this is useful
  3088. // if you want to start another print with suicide feature after
  3089. // a print without suicide...
  3090. #if HAS_SUICIDE
  3091. OUT_WRITE(SUICIDE_PIN, HIGH);
  3092. #endif
  3093. #ifdef ULTIPANEL
  3094. powersupply = true;
  3095. LCD_MESSAGEPGM(WELCOME_MSG);
  3096. lcd_update();
  3097. #endif
  3098. }
  3099. #endif // HAS_POWER_SWITCH
  3100. /**
  3101. * M81: Turn off Power, including Power Supply, if there is one.
  3102. *
  3103. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3104. */
  3105. inline void gcode_M81() {
  3106. disable_all_heaters();
  3107. st_synchronize();
  3108. disable_e0();
  3109. disable_e1();
  3110. disable_e2();
  3111. disable_e3();
  3112. finishAndDisableSteppers();
  3113. fanSpeed = 0;
  3114. delay(1000); // Wait 1 second before switching off
  3115. #if HAS_SUICIDE
  3116. st_synchronize();
  3117. suicide();
  3118. #elif HAS_POWER_SWITCH
  3119. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3120. #endif
  3121. #ifdef ULTIPANEL
  3122. #if HAS_POWER_SWITCH
  3123. powersupply = false;
  3124. #endif
  3125. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3126. lcd_update();
  3127. #endif
  3128. }
  3129. /**
  3130. * M82: Set E codes absolute (default)
  3131. */
  3132. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3133. /**
  3134. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3135. */
  3136. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3137. /**
  3138. * M18, M84: Disable all stepper motors
  3139. */
  3140. inline void gcode_M18_M84() {
  3141. if (code_seen('S')) {
  3142. stepper_inactive_time = code_value() * 1000;
  3143. }
  3144. else {
  3145. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3146. if (all_axis) {
  3147. st_synchronize();
  3148. disable_e0();
  3149. disable_e1();
  3150. disable_e2();
  3151. disable_e3();
  3152. finishAndDisableSteppers();
  3153. }
  3154. else {
  3155. st_synchronize();
  3156. if (code_seen('X')) disable_x();
  3157. if (code_seen('Y')) disable_y();
  3158. if (code_seen('Z')) disable_z();
  3159. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3160. if (code_seen('E')) {
  3161. disable_e0();
  3162. disable_e1();
  3163. disable_e2();
  3164. disable_e3();
  3165. }
  3166. #endif
  3167. }
  3168. }
  3169. }
  3170. /**
  3171. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3172. */
  3173. inline void gcode_M85() {
  3174. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3175. }
  3176. /**
  3177. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3178. * (Follows the same syntax as G92)
  3179. */
  3180. inline void gcode_M92() {
  3181. for(int8_t i=0; i < NUM_AXIS; i++) {
  3182. if (code_seen(axis_codes[i])) {
  3183. if (i == E_AXIS) {
  3184. float value = code_value();
  3185. if (value < 20.0) {
  3186. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3187. max_e_jerk *= factor;
  3188. max_feedrate[i] *= factor;
  3189. axis_steps_per_sqr_second[i] *= factor;
  3190. }
  3191. axis_steps_per_unit[i] = value;
  3192. }
  3193. else {
  3194. axis_steps_per_unit[i] = code_value();
  3195. }
  3196. }
  3197. }
  3198. }
  3199. /**
  3200. * M114: Output current position to serial port
  3201. */
  3202. inline void gcode_M114() {
  3203. SERIAL_PROTOCOLPGM("X:");
  3204. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3205. SERIAL_PROTOCOLPGM(" Y:");
  3206. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3207. SERIAL_PROTOCOLPGM(" Z:");
  3208. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3209. SERIAL_PROTOCOLPGM(" E:");
  3210. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3211. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3212. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3213. SERIAL_PROTOCOLPGM(" Y:");
  3214. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3215. SERIAL_PROTOCOLPGM(" Z:");
  3216. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3217. SERIAL_EOL;
  3218. #ifdef SCARA
  3219. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3220. SERIAL_PROTOCOL(delta[X_AXIS]);
  3221. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3222. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3223. SERIAL_EOL;
  3224. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3225. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3226. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3227. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3228. SERIAL_EOL;
  3229. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3230. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3231. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3232. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3233. SERIAL_EOL; SERIAL_EOL;
  3234. #endif
  3235. }
  3236. /**
  3237. * M115: Capabilities string
  3238. */
  3239. inline void gcode_M115() {
  3240. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3241. }
  3242. /**
  3243. * M117: Set LCD Status Message
  3244. */
  3245. inline void gcode_M117() {
  3246. char* codepos = strchr_pointer + 5;
  3247. char* starpos = strchr(codepos, '*');
  3248. if (starpos) *starpos = '\0';
  3249. lcd_setstatus(codepos);
  3250. }
  3251. /**
  3252. * M119: Output endstop states to serial output
  3253. */
  3254. inline void gcode_M119() {
  3255. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3256. #if HAS_X_MIN
  3257. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3258. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3259. #endif
  3260. #if HAS_X_MAX
  3261. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3262. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3263. #endif
  3264. #if HAS_Y_MIN
  3265. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3266. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3267. #endif
  3268. #if HAS_Y_MAX
  3269. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3270. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3271. #endif
  3272. #if HAS_Z_MIN
  3273. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3274. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3275. #endif
  3276. #if HAS_Z_MAX
  3277. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3278. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3279. #endif
  3280. #if HAS_Z2_MAX
  3281. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3282. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3283. #endif
  3284. #if HAS_Z_PROBE
  3285. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3286. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3287. #endif
  3288. }
  3289. /**
  3290. * M120: Enable endstops
  3291. */
  3292. inline void gcode_M120() { enable_endstops(false); }
  3293. /**
  3294. * M121: Disable endstops
  3295. */
  3296. inline void gcode_M121() { enable_endstops(true); }
  3297. #ifdef BLINKM
  3298. /**
  3299. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3300. */
  3301. inline void gcode_M150() {
  3302. SendColors(
  3303. code_seen('R') ? (byte)code_value_short() : 0,
  3304. code_seen('U') ? (byte)code_value_short() : 0,
  3305. code_seen('B') ? (byte)code_value_short() : 0
  3306. );
  3307. }
  3308. #endif // BLINKM
  3309. /**
  3310. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3311. * T<extruder>
  3312. * D<millimeters>
  3313. */
  3314. inline void gcode_M200() {
  3315. int tmp_extruder = active_extruder;
  3316. if (code_seen('T')) {
  3317. tmp_extruder = code_value_short();
  3318. if (tmp_extruder >= EXTRUDERS) {
  3319. SERIAL_ECHO_START;
  3320. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3321. return;
  3322. }
  3323. }
  3324. if (code_seen('D')) {
  3325. float diameter = code_value();
  3326. // setting any extruder filament size disables volumetric on the assumption that
  3327. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3328. // for all extruders
  3329. volumetric_enabled = (diameter != 0.0);
  3330. if (volumetric_enabled) {
  3331. filament_size[tmp_extruder] = diameter;
  3332. // make sure all extruders have some sane value for the filament size
  3333. for (int i=0; i<EXTRUDERS; i++)
  3334. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3335. }
  3336. }
  3337. else {
  3338. //reserved for setting filament diameter via UFID or filament measuring device
  3339. return;
  3340. }
  3341. calculate_volumetric_multipliers();
  3342. }
  3343. /**
  3344. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3345. */
  3346. inline void gcode_M201() {
  3347. for (int8_t i=0; i < NUM_AXIS; i++) {
  3348. if (code_seen(axis_codes[i])) {
  3349. max_acceleration_units_per_sq_second[i] = code_value();
  3350. }
  3351. }
  3352. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3353. reset_acceleration_rates();
  3354. }
  3355. #if 0 // Not used for Sprinter/grbl gen6
  3356. inline void gcode_M202() {
  3357. for(int8_t i=0; i < NUM_AXIS; i++) {
  3358. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3359. }
  3360. }
  3361. #endif
  3362. /**
  3363. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3364. */
  3365. inline void gcode_M203() {
  3366. for (int8_t i=0; i < NUM_AXIS; i++) {
  3367. if (code_seen(axis_codes[i])) {
  3368. max_feedrate[i] = code_value();
  3369. }
  3370. }
  3371. }
  3372. /**
  3373. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3374. *
  3375. * P = Printing moves
  3376. * R = Retract only (no X, Y, Z) moves
  3377. * T = Travel (non printing) moves
  3378. *
  3379. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3380. */
  3381. inline void gcode_M204() {
  3382. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3383. acceleration = code_value();
  3384. travel_acceleration = acceleration;
  3385. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3386. SERIAL_EOL;
  3387. }
  3388. if (code_seen('P')) {
  3389. acceleration = code_value();
  3390. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3391. SERIAL_EOL;
  3392. }
  3393. if (code_seen('R')) {
  3394. retract_acceleration = code_value();
  3395. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3396. SERIAL_EOL;
  3397. }
  3398. if (code_seen('T')) {
  3399. travel_acceleration = code_value();
  3400. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3401. SERIAL_EOL;
  3402. }
  3403. }
  3404. /**
  3405. * M205: Set Advanced Settings
  3406. *
  3407. * S = Min Feed Rate (mm/s)
  3408. * T = Min Travel Feed Rate (mm/s)
  3409. * B = Min Segment Time (µs)
  3410. * X = Max XY Jerk (mm/s/s)
  3411. * Z = Max Z Jerk (mm/s/s)
  3412. * E = Max E Jerk (mm/s/s)
  3413. */
  3414. inline void gcode_M205() {
  3415. if (code_seen('S')) minimumfeedrate = code_value();
  3416. if (code_seen('T')) mintravelfeedrate = code_value();
  3417. if (code_seen('B')) minsegmenttime = code_value();
  3418. if (code_seen('X')) max_xy_jerk = code_value();
  3419. if (code_seen('Z')) max_z_jerk = code_value();
  3420. if (code_seen('E')) max_e_jerk = code_value();
  3421. }
  3422. /**
  3423. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3424. */
  3425. inline void gcode_M206() {
  3426. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3427. if (code_seen(axis_codes[i])) {
  3428. home_offset[i] = code_value();
  3429. }
  3430. }
  3431. #ifdef SCARA
  3432. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3433. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3434. #endif
  3435. }
  3436. #ifdef DELTA
  3437. /**
  3438. * M665: Set delta configurations
  3439. *
  3440. * L = diagonal rod
  3441. * R = delta radius
  3442. * S = segments per second
  3443. */
  3444. inline void gcode_M665() {
  3445. if (code_seen('L')) delta_diagonal_rod = code_value();
  3446. if (code_seen('R')) delta_radius = code_value();
  3447. if (code_seen('S')) delta_segments_per_second = code_value();
  3448. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3449. }
  3450. /**
  3451. * M666: Set delta endstop adjustment
  3452. */
  3453. inline void gcode_M666() {
  3454. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3455. if (code_seen(axis_codes[i])) {
  3456. endstop_adj[i] = code_value();
  3457. }
  3458. }
  3459. }
  3460. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3461. /**
  3462. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3463. */
  3464. inline void gcode_M666() {
  3465. if (code_seen('Z')) z_endstop_adj = code_value();
  3466. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3467. SERIAL_EOL;
  3468. }
  3469. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3470. #ifdef FWRETRACT
  3471. /**
  3472. * M207: Set firmware retraction values
  3473. *
  3474. * S[+mm] retract_length
  3475. * W[+mm] retract_length_swap (multi-extruder)
  3476. * F[mm/min] retract_feedrate
  3477. * Z[mm] retract_zlift
  3478. */
  3479. inline void gcode_M207() {
  3480. if (code_seen('S')) retract_length = code_value();
  3481. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3482. if (code_seen('Z')) retract_zlift = code_value();
  3483. #if EXTRUDERS > 1
  3484. if (code_seen('W')) retract_length_swap = code_value();
  3485. #endif
  3486. }
  3487. /**
  3488. * M208: Set firmware un-retraction values
  3489. *
  3490. * S[+mm] retract_recover_length (in addition to M207 S*)
  3491. * W[+mm] retract_recover_length_swap (multi-extruder)
  3492. * F[mm/min] retract_recover_feedrate
  3493. */
  3494. inline void gcode_M208() {
  3495. if (code_seen('S')) retract_recover_length = code_value();
  3496. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3497. #if EXTRUDERS > 1
  3498. if (code_seen('W')) retract_recover_length_swap = code_value();
  3499. #endif
  3500. }
  3501. /**
  3502. * M209: Enable automatic retract (M209 S1)
  3503. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3504. */
  3505. inline void gcode_M209() {
  3506. if (code_seen('S')) {
  3507. int t = code_value_short();
  3508. switch(t) {
  3509. case 0:
  3510. autoretract_enabled = false;
  3511. break;
  3512. case 1:
  3513. autoretract_enabled = true;
  3514. break;
  3515. default:
  3516. SERIAL_ECHO_START;
  3517. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3518. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3519. SERIAL_ECHOLNPGM("\"");
  3520. return;
  3521. }
  3522. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3523. }
  3524. }
  3525. #endif // FWRETRACT
  3526. #if EXTRUDERS > 1
  3527. /**
  3528. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3529. */
  3530. inline void gcode_M218() {
  3531. if (setTargetedHotend(218)) return;
  3532. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3533. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3534. #ifdef DUAL_X_CARRIAGE
  3535. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3536. #endif
  3537. SERIAL_ECHO_START;
  3538. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3539. for (int e = 0; e < EXTRUDERS; e++) {
  3540. SERIAL_CHAR(' ');
  3541. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3542. SERIAL_CHAR(',');
  3543. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3544. #ifdef DUAL_X_CARRIAGE
  3545. SERIAL_CHAR(',');
  3546. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3547. #endif
  3548. }
  3549. SERIAL_EOL;
  3550. }
  3551. #endif // EXTRUDERS > 1
  3552. /**
  3553. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3554. */
  3555. inline void gcode_M220() {
  3556. if (code_seen('S')) feedrate_multiplier = code_value();
  3557. }
  3558. /**
  3559. * M221: Set extrusion percentage (M221 T0 S95)
  3560. */
  3561. inline void gcode_M221() {
  3562. if (code_seen('S')) {
  3563. int sval = code_value();
  3564. if (code_seen('T')) {
  3565. if (setTargetedHotend(221)) return;
  3566. extruder_multiply[target_extruder] = sval;
  3567. }
  3568. else {
  3569. extruder_multiply[active_extruder] = sval;
  3570. }
  3571. }
  3572. }
  3573. /**
  3574. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3575. */
  3576. inline void gcode_M226() {
  3577. if (code_seen('P')) {
  3578. int pin_number = code_value();
  3579. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3580. if (pin_state >= -1 && pin_state <= 1) {
  3581. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3582. if (sensitive_pins[i] == pin_number) {
  3583. pin_number = -1;
  3584. break;
  3585. }
  3586. }
  3587. if (pin_number > -1) {
  3588. int target = LOW;
  3589. st_synchronize();
  3590. pinMode(pin_number, INPUT);
  3591. switch(pin_state){
  3592. case 1:
  3593. target = HIGH;
  3594. break;
  3595. case 0:
  3596. target = LOW;
  3597. break;
  3598. case -1:
  3599. target = !digitalRead(pin_number);
  3600. break;
  3601. }
  3602. while(digitalRead(pin_number) != target) {
  3603. manage_heater();
  3604. manage_inactivity();
  3605. lcd_update();
  3606. }
  3607. } // pin_number > -1
  3608. } // pin_state -1 0 1
  3609. } // code_seen('P')
  3610. }
  3611. #if NUM_SERVOS > 0
  3612. /**
  3613. * M280: Get or set servo position. P<index> S<angle>
  3614. */
  3615. inline void gcode_M280() {
  3616. int servo_index = code_seen('P') ? code_value_short() : -1;
  3617. int servo_position = 0;
  3618. if (code_seen('S')) {
  3619. servo_position = code_value_short();
  3620. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3621. Servo *srv = &servo[servo_index];
  3622. #if SERVO_LEVELING
  3623. srv->attach(0);
  3624. #endif
  3625. srv->write(servo_position);
  3626. #if SERVO_LEVELING
  3627. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3628. srv->detach();
  3629. #endif
  3630. }
  3631. else {
  3632. SERIAL_ECHO_START;
  3633. SERIAL_ECHO("Servo ");
  3634. SERIAL_ECHO(servo_index);
  3635. SERIAL_ECHOLN(" out of range");
  3636. }
  3637. }
  3638. else if (servo_index >= 0) {
  3639. SERIAL_PROTOCOL(MSG_OK);
  3640. SERIAL_PROTOCOL(" Servo ");
  3641. SERIAL_PROTOCOL(servo_index);
  3642. SERIAL_PROTOCOL(": ");
  3643. SERIAL_PROTOCOL(servo[servo_index].read());
  3644. SERIAL_EOL;
  3645. }
  3646. }
  3647. #endif // NUM_SERVOS > 0
  3648. #if HAS_LCD_BUZZ
  3649. /**
  3650. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3651. */
  3652. inline void gcode_M300() {
  3653. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3654. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3655. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3656. lcd_buzz(beepP, beepS);
  3657. }
  3658. #endif // HAS_LCD_BUZZ
  3659. #ifdef PIDTEMP
  3660. /**
  3661. * M301: Set PID parameters P I D (and optionally C)
  3662. */
  3663. inline void gcode_M301() {
  3664. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3665. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3666. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3667. if (e < EXTRUDERS) { // catch bad input value
  3668. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3669. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3670. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3671. #ifdef PID_ADD_EXTRUSION_RATE
  3672. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3673. #endif
  3674. updatePID();
  3675. SERIAL_PROTOCOL(MSG_OK);
  3676. #ifdef PID_PARAMS_PER_EXTRUDER
  3677. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3678. SERIAL_PROTOCOL(e);
  3679. #endif // PID_PARAMS_PER_EXTRUDER
  3680. SERIAL_PROTOCOL(" p:");
  3681. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3682. SERIAL_PROTOCOL(" i:");
  3683. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3684. SERIAL_PROTOCOL(" d:");
  3685. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3686. #ifdef PID_ADD_EXTRUSION_RATE
  3687. SERIAL_PROTOCOL(" c:");
  3688. //Kc does not have scaling applied above, or in resetting defaults
  3689. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3690. #endif
  3691. SERIAL_EOL;
  3692. }
  3693. else {
  3694. SERIAL_ECHO_START;
  3695. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3696. }
  3697. }
  3698. #endif // PIDTEMP
  3699. #ifdef PIDTEMPBED
  3700. inline void gcode_M304() {
  3701. if (code_seen('P')) bedKp = code_value();
  3702. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3703. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3704. updatePID();
  3705. SERIAL_PROTOCOL(MSG_OK);
  3706. SERIAL_PROTOCOL(" p:");
  3707. SERIAL_PROTOCOL(bedKp);
  3708. SERIAL_PROTOCOL(" i:");
  3709. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3710. SERIAL_PROTOCOL(" d:");
  3711. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3712. SERIAL_EOL;
  3713. }
  3714. #endif // PIDTEMPBED
  3715. #if defined(CHDK) || HAS_PHOTOGRAPH
  3716. /**
  3717. * M240: Trigger a camera by emulating a Canon RC-1
  3718. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3719. */
  3720. inline void gcode_M240() {
  3721. #ifdef CHDK
  3722. OUT_WRITE(CHDK, HIGH);
  3723. chdkHigh = millis();
  3724. chdkActive = true;
  3725. #elif HAS_PHOTOGRAPH
  3726. const uint8_t NUM_PULSES = 16;
  3727. const float PULSE_LENGTH = 0.01524;
  3728. for (int i = 0; i < NUM_PULSES; i++) {
  3729. WRITE(PHOTOGRAPH_PIN, HIGH);
  3730. _delay_ms(PULSE_LENGTH);
  3731. WRITE(PHOTOGRAPH_PIN, LOW);
  3732. _delay_ms(PULSE_LENGTH);
  3733. }
  3734. delay(7.33);
  3735. for (int i = 0; i < NUM_PULSES; i++) {
  3736. WRITE(PHOTOGRAPH_PIN, HIGH);
  3737. _delay_ms(PULSE_LENGTH);
  3738. WRITE(PHOTOGRAPH_PIN, LOW);
  3739. _delay_ms(PULSE_LENGTH);
  3740. }
  3741. #endif // !CHDK && HAS_PHOTOGRAPH
  3742. }
  3743. #endif // CHDK || PHOTOGRAPH_PIN
  3744. #ifdef HAS_LCD_CONTRAST
  3745. /**
  3746. * M250: Read and optionally set the LCD contrast
  3747. */
  3748. inline void gcode_M250() {
  3749. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3750. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3751. SERIAL_PROTOCOL(lcd_contrast);
  3752. SERIAL_EOL;
  3753. }
  3754. #endif // HAS_LCD_CONTRAST
  3755. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3756. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3757. /**
  3758. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3759. */
  3760. inline void gcode_M302() {
  3761. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3762. }
  3763. #endif // PREVENT_DANGEROUS_EXTRUDE
  3764. /**
  3765. * M303: PID relay autotune
  3766. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3767. * E<extruder> (-1 for the bed)
  3768. * C<cycles>
  3769. */
  3770. inline void gcode_M303() {
  3771. int e = code_seen('E') ? code_value_short() : 0;
  3772. int c = code_seen('C') ? code_value_short() : 5;
  3773. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3774. PID_autotune(temp, e, c);
  3775. }
  3776. #ifdef SCARA
  3777. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3778. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3779. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3780. if (IsRunning()) {
  3781. //gcode_get_destination(); // For X Y Z E F
  3782. delta[X_AXIS] = delta_x;
  3783. delta[Y_AXIS] = delta_y;
  3784. calculate_SCARA_forward_Transform(delta);
  3785. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3786. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3787. prepare_move();
  3788. //ok_to_send();
  3789. return true;
  3790. }
  3791. return false;
  3792. }
  3793. /**
  3794. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3795. */
  3796. inline bool gcode_M360() {
  3797. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3798. return SCARA_move_to_cal(0, 120);
  3799. }
  3800. /**
  3801. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3802. */
  3803. inline bool gcode_M361() {
  3804. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3805. return SCARA_move_to_cal(90, 130);
  3806. }
  3807. /**
  3808. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3809. */
  3810. inline bool gcode_M362() {
  3811. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3812. return SCARA_move_to_cal(60, 180);
  3813. }
  3814. /**
  3815. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3816. */
  3817. inline bool gcode_M363() {
  3818. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3819. return SCARA_move_to_cal(50, 90);
  3820. }
  3821. /**
  3822. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3823. */
  3824. inline bool gcode_M364() {
  3825. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3826. return SCARA_move_to_cal(45, 135);
  3827. }
  3828. /**
  3829. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3830. */
  3831. inline void gcode_M365() {
  3832. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3833. if (code_seen(axis_codes[i])) {
  3834. axis_scaling[i] = code_value();
  3835. }
  3836. }
  3837. }
  3838. #endif // SCARA
  3839. #ifdef EXT_SOLENOID
  3840. void enable_solenoid(uint8_t num) {
  3841. switch(num) {
  3842. case 0:
  3843. OUT_WRITE(SOL0_PIN, HIGH);
  3844. break;
  3845. #if HAS_SOLENOID_1
  3846. case 1:
  3847. OUT_WRITE(SOL1_PIN, HIGH);
  3848. break;
  3849. #endif
  3850. #if HAS_SOLENOID_2
  3851. case 2:
  3852. OUT_WRITE(SOL2_PIN, HIGH);
  3853. break;
  3854. #endif
  3855. #if HAS_SOLENOID_3
  3856. case 3:
  3857. OUT_WRITE(SOL3_PIN, HIGH);
  3858. break;
  3859. #endif
  3860. default:
  3861. SERIAL_ECHO_START;
  3862. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3863. break;
  3864. }
  3865. }
  3866. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3867. void disable_all_solenoids() {
  3868. OUT_WRITE(SOL0_PIN, LOW);
  3869. OUT_WRITE(SOL1_PIN, LOW);
  3870. OUT_WRITE(SOL2_PIN, LOW);
  3871. OUT_WRITE(SOL3_PIN, LOW);
  3872. }
  3873. /**
  3874. * M380: Enable solenoid on the active extruder
  3875. */
  3876. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3877. /**
  3878. * M381: Disable all solenoids
  3879. */
  3880. inline void gcode_M381() { disable_all_solenoids(); }
  3881. #endif // EXT_SOLENOID
  3882. /**
  3883. * M400: Finish all moves
  3884. */
  3885. inline void gcode_M400() { st_synchronize(); }
  3886. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3887. #ifdef SERVO_ENDSTOPS
  3888. void raise_z_for_servo() {
  3889. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3890. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3891. if (zpos < z_dest)
  3892. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3893. }
  3894. #endif
  3895. /**
  3896. * M401: Engage Z Servo endstop if available
  3897. */
  3898. inline void gcode_M401() {
  3899. #ifdef SERVO_ENDSTOPS
  3900. raise_z_for_servo();
  3901. #endif
  3902. deploy_z_probe();
  3903. }
  3904. /**
  3905. * M402: Retract Z Servo endstop if enabled
  3906. */
  3907. inline void gcode_M402() {
  3908. #ifdef SERVO_ENDSTOPS
  3909. raise_z_for_servo();
  3910. #endif
  3911. stow_z_probe(false);
  3912. }
  3913. #endif
  3914. #ifdef FILAMENT_SENSOR
  3915. /**
  3916. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3917. */
  3918. inline void gcode_M404() {
  3919. #if HAS_FILWIDTH
  3920. if (code_seen('W')) {
  3921. filament_width_nominal = code_value();
  3922. }
  3923. else {
  3924. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3925. SERIAL_PROTOCOLLN(filament_width_nominal);
  3926. }
  3927. #endif
  3928. }
  3929. /**
  3930. * M405: Turn on filament sensor for control
  3931. */
  3932. inline void gcode_M405() {
  3933. if (code_seen('D')) meas_delay_cm = code_value();
  3934. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3935. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3936. int temp_ratio = widthFil_to_size_ratio();
  3937. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3938. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3939. delay_index1 = delay_index2 = 0;
  3940. }
  3941. filament_sensor = true;
  3942. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3943. //SERIAL_PROTOCOL(filament_width_meas);
  3944. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3945. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3946. }
  3947. /**
  3948. * M406: Turn off filament sensor for control
  3949. */
  3950. inline void gcode_M406() { filament_sensor = false; }
  3951. /**
  3952. * M407: Get measured filament diameter on serial output
  3953. */
  3954. inline void gcode_M407() {
  3955. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3956. SERIAL_PROTOCOLLN(filament_width_meas);
  3957. }
  3958. #endif // FILAMENT_SENSOR
  3959. /**
  3960. * M410: Quickstop - Abort all planned moves
  3961. *
  3962. * This will stop the carriages mid-move, so most likely they
  3963. * will be out of sync with the stepper position after this.
  3964. */
  3965. inline void gcode_M410() { quickStop(); }
  3966. #ifdef MESH_BED_LEVELING
  3967. /**
  3968. * M420: Enable/Disable Mesh Bed Leveling
  3969. */
  3970. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3971. /**
  3972. * M421: Set a single Mesh Bed Leveling Z coordinate
  3973. */
  3974. inline void gcode_M421() {
  3975. float x, y, z;
  3976. bool err = false, hasX, hasY, hasZ;
  3977. if ((hasX = code_seen('X'))) x = code_value();
  3978. if ((hasY = code_seen('Y'))) y = code_value();
  3979. if ((hasZ = code_seen('Z'))) z = code_value();
  3980. if (!hasX || !hasY || !hasZ) {
  3981. SERIAL_ERROR_START;
  3982. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3983. err = true;
  3984. }
  3985. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3986. SERIAL_ERROR_START;
  3987. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3988. err = true;
  3989. }
  3990. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3991. }
  3992. #endif
  3993. /**
  3994. * M428: Set home_offset based on the distance between the
  3995. * current_position and the nearest "reference point."
  3996. * If an axis is past center its endstop position
  3997. * is the reference-point. Otherwise it uses 0. This allows
  3998. * the Z offset to be set near the bed when using a max endstop.
  3999. *
  4000. * M428 can't be used more than 2cm away from 0 or an endstop.
  4001. *
  4002. * Use M206 to set these values directly.
  4003. */
  4004. inline void gcode_M428() {
  4005. bool err = false;
  4006. float new_offs[3], new_pos[3];
  4007. memcpy(new_pos, current_position, sizeof(new_pos));
  4008. memcpy(new_offs, home_offset, sizeof(new_offs));
  4009. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4010. if (axis_known_position[i]) {
  4011. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4012. diff = new_pos[i] - base;
  4013. if (diff > -20 && diff < 20) {
  4014. new_offs[i] -= diff;
  4015. new_pos[i] = base;
  4016. }
  4017. else {
  4018. SERIAL_ERROR_START;
  4019. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4020. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4021. #if HAS_LCD_BUZZ
  4022. enqueuecommands_P(PSTR("M300 S40 P200"));
  4023. #endif
  4024. err = true;
  4025. break;
  4026. }
  4027. }
  4028. }
  4029. if (!err) {
  4030. memcpy(current_position, new_pos, sizeof(new_pos));
  4031. memcpy(home_offset, new_offs, sizeof(new_offs));
  4032. sync_plan_position();
  4033. LCD_ALERTMESSAGEPGM("Offset applied.");
  4034. #if HAS_LCD_BUZZ
  4035. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4036. #endif
  4037. }
  4038. }
  4039. /**
  4040. * M500: Store settings in EEPROM
  4041. */
  4042. inline void gcode_M500() {
  4043. Config_StoreSettings();
  4044. }
  4045. /**
  4046. * M501: Read settings from EEPROM
  4047. */
  4048. inline void gcode_M501() {
  4049. Config_RetrieveSettings();
  4050. }
  4051. /**
  4052. * M502: Revert to default settings
  4053. */
  4054. inline void gcode_M502() {
  4055. Config_ResetDefault();
  4056. }
  4057. /**
  4058. * M503: print settings currently in memory
  4059. */
  4060. inline void gcode_M503() {
  4061. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4062. }
  4063. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4064. /**
  4065. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4066. */
  4067. inline void gcode_M540() {
  4068. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4069. }
  4070. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4071. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4072. inline void gcode_SET_Z_PROBE_OFFSET() {
  4073. float value;
  4074. if (code_seen('Z')) {
  4075. value = code_value();
  4076. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4077. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  4078. SERIAL_ECHO_START;
  4079. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4080. SERIAL_EOL;
  4081. }
  4082. else {
  4083. SERIAL_ECHO_START;
  4084. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4085. SERIAL_ECHOPGM(MSG_Z_MIN);
  4086. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4087. SERIAL_ECHOPGM(MSG_Z_MAX);
  4088. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4089. SERIAL_EOL;
  4090. }
  4091. }
  4092. else {
  4093. SERIAL_ECHO_START;
  4094. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  4095. SERIAL_ECHO(-zprobe_zoffset);
  4096. SERIAL_EOL;
  4097. }
  4098. }
  4099. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4100. #ifdef FILAMENTCHANGEENABLE
  4101. /**
  4102. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4103. */
  4104. inline void gcode_M600() {
  4105. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4106. for (int i=0; i<NUM_AXIS; i++)
  4107. target[i] = lastpos[i] = current_position[i];
  4108. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  4109. #ifdef DELTA
  4110. #define RUNPLAN calculate_delta(target); BASICPLAN
  4111. #else
  4112. #define RUNPLAN BASICPLAN
  4113. #endif
  4114. //retract by E
  4115. if (code_seen('E')) target[E_AXIS] += code_value();
  4116. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4117. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4118. #endif
  4119. RUNPLAN;
  4120. //lift Z
  4121. if (code_seen('Z')) target[Z_AXIS] += code_value();
  4122. #ifdef FILAMENTCHANGE_ZADD
  4123. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4124. #endif
  4125. RUNPLAN;
  4126. //move xy
  4127. if (code_seen('X')) target[X_AXIS] = code_value();
  4128. #ifdef FILAMENTCHANGE_XPOS
  4129. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  4130. #endif
  4131. if (code_seen('Y')) target[Y_AXIS] = code_value();
  4132. #ifdef FILAMENTCHANGE_YPOS
  4133. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4134. #endif
  4135. RUNPLAN;
  4136. if (code_seen('L')) target[E_AXIS] += code_value();
  4137. #ifdef FILAMENTCHANGE_FINALRETRACT
  4138. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4139. #endif
  4140. RUNPLAN;
  4141. //finish moves
  4142. st_synchronize();
  4143. //disable extruder steppers so filament can be removed
  4144. disable_e0();
  4145. disable_e1();
  4146. disable_e2();
  4147. disable_e3();
  4148. delay(100);
  4149. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4150. uint8_t cnt = 0;
  4151. while (!lcd_clicked()) {
  4152. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4153. manage_heater();
  4154. manage_inactivity(true);
  4155. lcd_update();
  4156. } // while(!lcd_clicked)
  4157. //return to normal
  4158. if (code_seen('L')) target[E_AXIS] -= code_value();
  4159. #ifdef FILAMENTCHANGE_FINALRETRACT
  4160. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4161. #endif
  4162. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4163. plan_set_e_position(current_position[E_AXIS]);
  4164. RUNPLAN; //should do nothing
  4165. lcd_reset_alert_level();
  4166. #ifdef DELTA
  4167. calculate_delta(lastpos);
  4168. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4169. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4170. #else
  4171. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4172. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4173. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4174. #endif
  4175. #ifdef FILAMENT_RUNOUT_SENSOR
  4176. filrunoutEnqueued = false;
  4177. #endif
  4178. }
  4179. #endif // FILAMENTCHANGEENABLE
  4180. #ifdef DUAL_X_CARRIAGE
  4181. /**
  4182. * M605: Set dual x-carriage movement mode
  4183. *
  4184. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4185. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4186. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4187. * millimeters x-offset and an optional differential hotend temperature of
  4188. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4189. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4190. *
  4191. * Note: the X axis should be homed after changing dual x-carriage mode.
  4192. */
  4193. inline void gcode_M605() {
  4194. st_synchronize();
  4195. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4196. switch(dual_x_carriage_mode) {
  4197. case DXC_DUPLICATION_MODE:
  4198. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4199. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4200. SERIAL_ECHO_START;
  4201. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4202. SERIAL_CHAR(' ');
  4203. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4204. SERIAL_CHAR(',');
  4205. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4206. SERIAL_CHAR(' ');
  4207. SERIAL_ECHO(duplicate_extruder_x_offset);
  4208. SERIAL_CHAR(',');
  4209. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4210. break;
  4211. case DXC_FULL_CONTROL_MODE:
  4212. case DXC_AUTO_PARK_MODE:
  4213. break;
  4214. default:
  4215. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4216. break;
  4217. }
  4218. active_extruder_parked = false;
  4219. extruder_duplication_enabled = false;
  4220. delayed_move_time = 0;
  4221. }
  4222. #endif // DUAL_X_CARRIAGE
  4223. /**
  4224. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4225. */
  4226. inline void gcode_M907() {
  4227. #if HAS_DIGIPOTSS
  4228. for (int i=0;i<NUM_AXIS;i++)
  4229. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4230. if (code_seen('B')) digipot_current(4, code_value());
  4231. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4232. #endif
  4233. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4234. if (code_seen('X')) digipot_current(0, code_value());
  4235. #endif
  4236. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4237. if (code_seen('Z')) digipot_current(1, code_value());
  4238. #endif
  4239. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4240. if (code_seen('E')) digipot_current(2, code_value());
  4241. #endif
  4242. #ifdef DIGIPOT_I2C
  4243. // this one uses actual amps in floating point
  4244. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4245. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4246. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4247. #endif
  4248. }
  4249. #if HAS_DIGIPOTSS
  4250. /**
  4251. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4252. */
  4253. inline void gcode_M908() {
  4254. digitalPotWrite(
  4255. code_seen('P') ? code_value() : 0,
  4256. code_seen('S') ? code_value() : 0
  4257. );
  4258. }
  4259. #endif // HAS_DIGIPOTSS
  4260. #if HAS_MICROSTEPS
  4261. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4262. inline void gcode_M350() {
  4263. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4264. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4265. if(code_seen('B')) microstep_mode(4,code_value());
  4266. microstep_readings();
  4267. }
  4268. /**
  4269. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4270. * S# determines MS1 or MS2, X# sets the pin high/low.
  4271. */
  4272. inline void gcode_M351() {
  4273. if (code_seen('S')) switch(code_value_short()) {
  4274. case 1:
  4275. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4276. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4277. break;
  4278. case 2:
  4279. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4280. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4281. break;
  4282. }
  4283. microstep_readings();
  4284. }
  4285. #endif // HAS_MICROSTEPS
  4286. /**
  4287. * M999: Restart after being stopped
  4288. */
  4289. inline void gcode_M999() {
  4290. Running = true;
  4291. lcd_reset_alert_level();
  4292. gcode_LastN = Stopped_gcode_LastN;
  4293. FlushSerialRequestResend();
  4294. }
  4295. /**
  4296. * T0-T3: Switch tool, usually switching extruders
  4297. */
  4298. inline void gcode_T() {
  4299. int tmp_extruder = code_value();
  4300. if (tmp_extruder >= EXTRUDERS) {
  4301. SERIAL_ECHO_START;
  4302. SERIAL_CHAR('T');
  4303. SERIAL_ECHO(tmp_extruder);
  4304. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4305. }
  4306. else {
  4307. target_extruder = tmp_extruder;
  4308. #if EXTRUDERS > 1
  4309. bool make_move = false;
  4310. #endif
  4311. if (code_seen('F')) {
  4312. #if EXTRUDERS > 1
  4313. make_move = true;
  4314. #endif
  4315. float next_feedrate = code_value();
  4316. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4317. }
  4318. #if EXTRUDERS > 1
  4319. if (tmp_extruder != active_extruder) {
  4320. // Save current position to return to after applying extruder offset
  4321. set_destination_to_current();
  4322. #ifdef DUAL_X_CARRIAGE
  4323. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4324. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4325. // Park old head: 1) raise 2) move to park position 3) lower
  4326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4327. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4328. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4329. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4330. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4331. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4332. st_synchronize();
  4333. }
  4334. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4335. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4336. extruder_offset[Y_AXIS][active_extruder] +
  4337. extruder_offset[Y_AXIS][tmp_extruder];
  4338. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4339. extruder_offset[Z_AXIS][active_extruder] +
  4340. extruder_offset[Z_AXIS][tmp_extruder];
  4341. active_extruder = tmp_extruder;
  4342. // This function resets the max/min values - the current position may be overwritten below.
  4343. axis_is_at_home(X_AXIS);
  4344. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4345. current_position[X_AXIS] = inactive_extruder_x_pos;
  4346. inactive_extruder_x_pos = destination[X_AXIS];
  4347. }
  4348. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4349. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4350. if (active_extruder == 0 || active_extruder_parked)
  4351. current_position[X_AXIS] = inactive_extruder_x_pos;
  4352. else
  4353. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4354. inactive_extruder_x_pos = destination[X_AXIS];
  4355. extruder_duplication_enabled = false;
  4356. }
  4357. else {
  4358. // record raised toolhead position for use by unpark
  4359. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4360. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4361. active_extruder_parked = true;
  4362. delayed_move_time = 0;
  4363. }
  4364. #else // !DUAL_X_CARRIAGE
  4365. // Offset extruder (only by XY)
  4366. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4367. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4368. // Set the new active extruder and position
  4369. active_extruder = tmp_extruder;
  4370. #endif // !DUAL_X_CARRIAGE
  4371. #ifdef DELTA
  4372. sync_plan_position_delta();
  4373. #else
  4374. sync_plan_position();
  4375. #endif
  4376. // Move to the old position if 'F' was in the parameters
  4377. if (make_move && IsRunning()) prepare_move();
  4378. }
  4379. #ifdef EXT_SOLENOID
  4380. st_synchronize();
  4381. disable_all_solenoids();
  4382. enable_solenoid_on_active_extruder();
  4383. #endif // EXT_SOLENOID
  4384. #endif // EXTRUDERS > 1
  4385. SERIAL_ECHO_START;
  4386. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4387. SERIAL_PROTOCOLLN((int)active_extruder);
  4388. }
  4389. }
  4390. /**
  4391. * Process Commands and dispatch them to handlers
  4392. * This is called from the main loop()
  4393. */
  4394. void process_commands() {
  4395. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4396. SERIAL_ECHO_START;
  4397. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4398. }
  4399. if (code_seen('G')) {
  4400. int gCode = code_value_short();
  4401. switch(gCode) {
  4402. // G0, G1
  4403. case 0:
  4404. case 1:
  4405. gcode_G0_G1();
  4406. break;
  4407. // G2, G3
  4408. #ifndef SCARA
  4409. case 2: // G2 - CW ARC
  4410. case 3: // G3 - CCW ARC
  4411. gcode_G2_G3(gCode == 2);
  4412. break;
  4413. #endif
  4414. // G4 Dwell
  4415. case 4:
  4416. gcode_G4();
  4417. break;
  4418. #ifdef FWRETRACT
  4419. case 10: // G10: retract
  4420. case 11: // G11: retract_recover
  4421. gcode_G10_G11(gCode == 10);
  4422. break;
  4423. #endif //FWRETRACT
  4424. case 28: // G28: Home all axes, one at a time
  4425. gcode_G28();
  4426. break;
  4427. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4428. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4429. gcode_G29();
  4430. break;
  4431. #endif
  4432. #ifdef ENABLE_AUTO_BED_LEVELING
  4433. #ifndef Z_PROBE_SLED
  4434. case 30: // G30 Single Z Probe
  4435. gcode_G30();
  4436. break;
  4437. #else // Z_PROBE_SLED
  4438. case 31: // G31: dock the sled
  4439. case 32: // G32: undock the sled
  4440. dock_sled(gCode == 31);
  4441. break;
  4442. #endif // Z_PROBE_SLED
  4443. #endif // ENABLE_AUTO_BED_LEVELING
  4444. case 90: // G90
  4445. relative_mode = false;
  4446. break;
  4447. case 91: // G91
  4448. relative_mode = true;
  4449. break;
  4450. case 92: // G92
  4451. gcode_G92();
  4452. break;
  4453. }
  4454. }
  4455. else if (code_seen('M')) {
  4456. switch(code_value_short()) {
  4457. #ifdef ULTIPANEL
  4458. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4459. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4460. gcode_M0_M1();
  4461. break;
  4462. #endif // ULTIPANEL
  4463. case 17:
  4464. gcode_M17();
  4465. break;
  4466. #ifdef SDSUPPORT
  4467. case 20: // M20 - list SD card
  4468. gcode_M20(); break;
  4469. case 21: // M21 - init SD card
  4470. gcode_M21(); break;
  4471. case 22: //M22 - release SD card
  4472. gcode_M22(); break;
  4473. case 23: //M23 - Select file
  4474. gcode_M23(); break;
  4475. case 24: //M24 - Start SD print
  4476. gcode_M24(); break;
  4477. case 25: //M25 - Pause SD print
  4478. gcode_M25(); break;
  4479. case 26: //M26 - Set SD index
  4480. gcode_M26(); break;
  4481. case 27: //M27 - Get SD status
  4482. gcode_M27(); break;
  4483. case 28: //M28 - Start SD write
  4484. gcode_M28(); break;
  4485. case 29: //M29 - Stop SD write
  4486. gcode_M29(); break;
  4487. case 30: //M30 <filename> Delete File
  4488. gcode_M30(); break;
  4489. case 32: //M32 - Select file and start SD print
  4490. gcode_M32(); break;
  4491. case 928: //M928 - Start SD write
  4492. gcode_M928(); break;
  4493. #endif //SDSUPPORT
  4494. case 31: //M31 take time since the start of the SD print or an M109 command
  4495. gcode_M31();
  4496. break;
  4497. case 42: //M42 -Change pin status via gcode
  4498. gcode_M42();
  4499. break;
  4500. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4501. case 48: // M48 Z-Probe repeatability
  4502. gcode_M48();
  4503. break;
  4504. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4505. case 104: // M104
  4506. gcode_M104();
  4507. break;
  4508. case 111: // M111: Set debug level
  4509. gcode_M111();
  4510. break;
  4511. case 112: // M112: Emergency Stop
  4512. gcode_M112();
  4513. break;
  4514. case 140: // M140: Set bed temp
  4515. gcode_M140();
  4516. break;
  4517. case 105: // M105: Read current temperature
  4518. gcode_M105();
  4519. return;
  4520. break;
  4521. case 109: // M109: Wait for temperature
  4522. gcode_M109();
  4523. break;
  4524. #if HAS_TEMP_BED
  4525. case 190: // M190: Wait for bed heater to reach target
  4526. gcode_M190();
  4527. break;
  4528. #endif // HAS_TEMP_BED
  4529. #if HAS_FAN
  4530. case 106: // M106: Fan On
  4531. gcode_M106();
  4532. break;
  4533. case 107: // M107: Fan Off
  4534. gcode_M107();
  4535. break;
  4536. #endif // HAS_FAN
  4537. #ifdef BARICUDA
  4538. // PWM for HEATER_1_PIN
  4539. #if HAS_HEATER_1
  4540. case 126: // M126: valve open
  4541. gcode_M126();
  4542. break;
  4543. case 127: // M127: valve closed
  4544. gcode_M127();
  4545. break;
  4546. #endif // HAS_HEATER_1
  4547. // PWM for HEATER_2_PIN
  4548. #if HAS_HEATER_2
  4549. case 128: // M128: valve open
  4550. gcode_M128();
  4551. break;
  4552. case 129: // M129: valve closed
  4553. gcode_M129();
  4554. break;
  4555. #endif // HAS_HEATER_2
  4556. #endif // BARICUDA
  4557. #if HAS_POWER_SWITCH
  4558. case 80: // M80: Turn on Power Supply
  4559. gcode_M80();
  4560. break;
  4561. #endif // HAS_POWER_SWITCH
  4562. case 81: // M81: Turn off Power, including Power Supply, if possible
  4563. gcode_M81();
  4564. break;
  4565. case 82:
  4566. gcode_M82();
  4567. break;
  4568. case 83:
  4569. gcode_M83();
  4570. break;
  4571. case 18: // (for compatibility)
  4572. case 84: // M84
  4573. gcode_M18_M84();
  4574. break;
  4575. case 85: // M85
  4576. gcode_M85();
  4577. break;
  4578. case 92: // M92: Set the steps-per-unit for one or more axes
  4579. gcode_M92();
  4580. break;
  4581. case 115: // M115: Report capabilities
  4582. gcode_M115();
  4583. break;
  4584. case 117: // M117: Set LCD message text
  4585. gcode_M117();
  4586. break;
  4587. case 114: // M114: Report current position
  4588. gcode_M114();
  4589. break;
  4590. case 120: // M120: Enable endstops
  4591. gcode_M120();
  4592. break;
  4593. case 121: // M121: Disable endstops
  4594. gcode_M121();
  4595. break;
  4596. case 119: // M119: Report endstop states
  4597. gcode_M119();
  4598. break;
  4599. #ifdef ULTIPANEL
  4600. case 145: // M145: Set material heatup parameters
  4601. gcode_M145();
  4602. break;
  4603. #endif
  4604. #ifdef BLINKM
  4605. case 150: // M150
  4606. gcode_M150();
  4607. break;
  4608. #endif //BLINKM
  4609. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4610. gcode_M200();
  4611. break;
  4612. case 201: // M201
  4613. gcode_M201();
  4614. break;
  4615. #if 0 // Not used for Sprinter/grbl gen6
  4616. case 202: // M202
  4617. gcode_M202();
  4618. break;
  4619. #endif
  4620. case 203: // M203 max feedrate mm/sec
  4621. gcode_M203();
  4622. break;
  4623. case 204: // M204 acclereration S normal moves T filmanent only moves
  4624. gcode_M204();
  4625. break;
  4626. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4627. gcode_M205();
  4628. break;
  4629. case 206: // M206 additional homing offset
  4630. gcode_M206();
  4631. break;
  4632. #ifdef DELTA
  4633. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4634. gcode_M665();
  4635. break;
  4636. #endif
  4637. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4638. case 666: // M666 set delta / dual endstop adjustment
  4639. gcode_M666();
  4640. break;
  4641. #endif
  4642. #ifdef FWRETRACT
  4643. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4644. gcode_M207();
  4645. break;
  4646. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4647. gcode_M208();
  4648. break;
  4649. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4650. gcode_M209();
  4651. break;
  4652. #endif // FWRETRACT
  4653. #if EXTRUDERS > 1
  4654. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4655. gcode_M218();
  4656. break;
  4657. #endif
  4658. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4659. gcode_M220();
  4660. break;
  4661. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4662. gcode_M221();
  4663. break;
  4664. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4665. gcode_M226();
  4666. break;
  4667. #if NUM_SERVOS > 0
  4668. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4669. gcode_M280();
  4670. break;
  4671. #endif // NUM_SERVOS > 0
  4672. #if HAS_LCD_BUZZ
  4673. case 300: // M300 - Play beep tone
  4674. gcode_M300();
  4675. break;
  4676. #endif // HAS_LCD_BUZZ
  4677. #ifdef PIDTEMP
  4678. case 301: // M301
  4679. gcode_M301();
  4680. break;
  4681. #endif // PIDTEMP
  4682. #ifdef PIDTEMPBED
  4683. case 304: // M304
  4684. gcode_M304();
  4685. break;
  4686. #endif // PIDTEMPBED
  4687. #if defined(CHDK) || HAS_PHOTOGRAPH
  4688. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4689. gcode_M240();
  4690. break;
  4691. #endif // CHDK || PHOTOGRAPH_PIN
  4692. #ifdef HAS_LCD_CONTRAST
  4693. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4694. gcode_M250();
  4695. break;
  4696. #endif // HAS_LCD_CONTRAST
  4697. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4698. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4699. gcode_M302();
  4700. break;
  4701. #endif // PREVENT_DANGEROUS_EXTRUDE
  4702. case 303: // M303 PID autotune
  4703. gcode_M303();
  4704. break;
  4705. #ifdef SCARA
  4706. case 360: // M360 SCARA Theta pos1
  4707. if (gcode_M360()) return;
  4708. break;
  4709. case 361: // M361 SCARA Theta pos2
  4710. if (gcode_M361()) return;
  4711. break;
  4712. case 362: // M362 SCARA Psi pos1
  4713. if (gcode_M362()) return;
  4714. break;
  4715. case 363: // M363 SCARA Psi pos2
  4716. if (gcode_M363()) return;
  4717. break;
  4718. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4719. if (gcode_M364()) return;
  4720. break;
  4721. case 365: // M365 Set SCARA scaling for X Y Z
  4722. gcode_M365();
  4723. break;
  4724. #endif // SCARA
  4725. case 400: // M400 finish all moves
  4726. gcode_M400();
  4727. break;
  4728. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4729. case 401:
  4730. gcode_M401();
  4731. break;
  4732. case 402:
  4733. gcode_M402();
  4734. break;
  4735. #endif
  4736. #ifdef FILAMENT_SENSOR
  4737. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4738. gcode_M404();
  4739. break;
  4740. case 405: //M405 Turn on filament sensor for control
  4741. gcode_M405();
  4742. break;
  4743. case 406: //M406 Turn off filament sensor for control
  4744. gcode_M406();
  4745. break;
  4746. case 407: //M407 Display measured filament diameter
  4747. gcode_M407();
  4748. break;
  4749. #endif // FILAMENT_SENSOR
  4750. case 410: // M410 quickstop - Abort all the planned moves.
  4751. gcode_M410();
  4752. break;
  4753. #ifdef MESH_BED_LEVELING
  4754. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4755. gcode_M420();
  4756. break;
  4757. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4758. gcode_M421();
  4759. break;
  4760. #endif
  4761. case 428: // M428 Apply current_position to home_offset
  4762. gcode_M428();
  4763. break;
  4764. case 500: // M500 Store settings in EEPROM
  4765. gcode_M500();
  4766. break;
  4767. case 501: // M501 Read settings from EEPROM
  4768. gcode_M501();
  4769. break;
  4770. case 502: // M502 Revert to default settings
  4771. gcode_M502();
  4772. break;
  4773. case 503: // M503 print settings currently in memory
  4774. gcode_M503();
  4775. break;
  4776. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4777. case 540:
  4778. gcode_M540();
  4779. break;
  4780. #endif
  4781. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4782. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4783. gcode_SET_Z_PROBE_OFFSET();
  4784. break;
  4785. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4786. #ifdef FILAMENTCHANGEENABLE
  4787. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4788. gcode_M600();
  4789. break;
  4790. #endif // FILAMENTCHANGEENABLE
  4791. #ifdef DUAL_X_CARRIAGE
  4792. case 605:
  4793. gcode_M605();
  4794. break;
  4795. #endif // DUAL_X_CARRIAGE
  4796. case 907: // M907 Set digital trimpot motor current using axis codes.
  4797. gcode_M907();
  4798. break;
  4799. #if HAS_DIGIPOTSS
  4800. case 908: // M908 Control digital trimpot directly.
  4801. gcode_M908();
  4802. break;
  4803. #endif // HAS_DIGIPOTSS
  4804. #if HAS_MICROSTEPS
  4805. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4806. gcode_M350();
  4807. break;
  4808. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4809. gcode_M351();
  4810. break;
  4811. #endif // HAS_MICROSTEPS
  4812. case 999: // M999: Restart after being Stopped
  4813. gcode_M999();
  4814. break;
  4815. }
  4816. }
  4817. else if (code_seen('T')) {
  4818. gcode_T();
  4819. }
  4820. else {
  4821. SERIAL_ECHO_START;
  4822. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4823. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4824. SERIAL_ECHOLNPGM("\"");
  4825. }
  4826. ok_to_send();
  4827. }
  4828. void FlushSerialRequestResend() {
  4829. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4830. MYSERIAL.flush();
  4831. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4832. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4833. ok_to_send();
  4834. }
  4835. void ok_to_send() {
  4836. refresh_cmd_timeout();
  4837. #ifdef SDSUPPORT
  4838. if (fromsd[cmd_queue_index_r]) return;
  4839. #endif
  4840. SERIAL_PROTOCOLPGM(MSG_OK);
  4841. #ifdef ADVANCED_OK
  4842. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4843. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4844. #endif
  4845. SERIAL_EOL;
  4846. }
  4847. void clamp_to_software_endstops(float target[3]) {
  4848. if (min_software_endstops) {
  4849. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4850. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4851. float negative_z_offset = 0;
  4852. #ifdef ENABLE_AUTO_BED_LEVELING
  4853. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4854. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4855. #endif
  4856. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4857. }
  4858. if (max_software_endstops) {
  4859. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4860. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4861. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4862. }
  4863. }
  4864. #ifdef DELTA
  4865. void recalc_delta_settings(float radius, float diagonal_rod) {
  4866. delta_tower1_x = -SIN_60 * radius; // front left tower
  4867. delta_tower1_y = -COS_60 * radius;
  4868. delta_tower2_x = SIN_60 * radius; // front right tower
  4869. delta_tower2_y = -COS_60 * radius;
  4870. delta_tower3_x = 0.0; // back middle tower
  4871. delta_tower3_y = radius;
  4872. delta_diagonal_rod_2 = sq(diagonal_rod);
  4873. }
  4874. void calculate_delta(float cartesian[3]) {
  4875. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4876. - sq(delta_tower1_x-cartesian[X_AXIS])
  4877. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4878. ) + cartesian[Z_AXIS];
  4879. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4880. - sq(delta_tower2_x-cartesian[X_AXIS])
  4881. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4882. ) + cartesian[Z_AXIS];
  4883. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4884. - sq(delta_tower3_x-cartesian[X_AXIS])
  4885. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4886. ) + cartesian[Z_AXIS];
  4887. /*
  4888. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4889. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4890. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4891. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4892. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4893. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4894. */
  4895. }
  4896. #ifdef ENABLE_AUTO_BED_LEVELING
  4897. // Adjust print surface height by linear interpolation over the bed_level array.
  4898. void adjust_delta(float cartesian[3]) {
  4899. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4900. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4901. float h1 = 0.001 - half, h2 = half - 0.001,
  4902. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4903. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4904. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4905. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4906. z1 = bed_level[floor_x + half][floor_y + half],
  4907. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4908. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4909. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4910. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4911. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4912. offset = (1 - ratio_x) * left + ratio_x * right;
  4913. delta[X_AXIS] += offset;
  4914. delta[Y_AXIS] += offset;
  4915. delta[Z_AXIS] += offset;
  4916. /*
  4917. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4918. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4919. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4920. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4921. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4922. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4923. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4924. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4925. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4926. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4927. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4928. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4929. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4930. */
  4931. }
  4932. #endif // ENABLE_AUTO_BED_LEVELING
  4933. #endif // DELTA
  4934. #ifdef MESH_BED_LEVELING
  4935. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4936. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4937. {
  4938. if (!mbl.active) {
  4939. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4940. set_current_to_destination();
  4941. return;
  4942. }
  4943. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4944. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4945. int ix = mbl.select_x_index(x);
  4946. int iy = mbl.select_y_index(y);
  4947. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4948. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4949. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4950. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4951. if (pix == ix && piy == iy) {
  4952. // Start and end on same mesh square
  4953. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4954. set_current_to_destination();
  4955. return;
  4956. }
  4957. float nx, ny, ne, normalized_dist;
  4958. if (ix > pix && (x_splits) & BIT(ix)) {
  4959. nx = mbl.get_x(ix);
  4960. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4961. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4962. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4963. x_splits ^= BIT(ix);
  4964. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4965. nx = mbl.get_x(pix);
  4966. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4967. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4968. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4969. x_splits ^= BIT(pix);
  4970. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4971. ny = mbl.get_y(iy);
  4972. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4973. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4974. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4975. y_splits ^= BIT(iy);
  4976. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4977. ny = mbl.get_y(piy);
  4978. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4979. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4980. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4981. y_splits ^= BIT(piy);
  4982. } else {
  4983. // Already split on a border
  4984. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4985. set_current_to_destination();
  4986. return;
  4987. }
  4988. // Do the split and look for more borders
  4989. destination[X_AXIS] = nx;
  4990. destination[Y_AXIS] = ny;
  4991. destination[E_AXIS] = ne;
  4992. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4993. destination[X_AXIS] = x;
  4994. destination[Y_AXIS] = y;
  4995. destination[E_AXIS] = e;
  4996. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4997. }
  4998. #endif // MESH_BED_LEVELING
  4999. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5000. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5001. float de = dest_e - curr_e;
  5002. if (de) {
  5003. if (degHotend(active_extruder) < extrude_min_temp) {
  5004. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5005. SERIAL_ECHO_START;
  5006. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5007. }
  5008. #ifdef PREVENT_LENGTHY_EXTRUDE
  5009. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5010. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5011. SERIAL_ECHO_START;
  5012. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5013. }
  5014. #endif
  5015. }
  5016. }
  5017. #endif // PREVENT_DANGEROUS_EXTRUDE
  5018. #if defined(DELTA) || defined(SCARA)
  5019. inline bool prepare_move_delta() {
  5020. float difference[NUM_AXIS];
  5021. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5022. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5023. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5024. if (cartesian_mm < 0.000001) return false;
  5025. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5026. int steps = max(1, int(delta_segments_per_second * seconds));
  5027. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5028. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5029. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5030. for (int s = 1; s <= steps; s++) {
  5031. float fraction = float(s) / float(steps);
  5032. for (int8_t i = 0; i < NUM_AXIS; i++)
  5033. destination[i] = current_position[i] + difference[i] * fraction;
  5034. calculate_delta(destination);
  5035. #ifdef ENABLE_AUTO_BED_LEVELING
  5036. adjust_delta(destination);
  5037. #endif
  5038. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5039. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5040. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5041. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5042. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5043. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5044. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5045. }
  5046. return true;
  5047. }
  5048. #endif // DELTA || SCARA
  5049. #ifdef SCARA
  5050. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5051. #endif
  5052. #ifdef DUAL_X_CARRIAGE
  5053. inline bool prepare_move_dual_x_carriage() {
  5054. if (active_extruder_parked) {
  5055. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5056. // move duplicate extruder into correct duplication position.
  5057. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5058. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5059. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5060. sync_plan_position();
  5061. st_synchronize();
  5062. extruder_duplication_enabled = true;
  5063. active_extruder_parked = false;
  5064. }
  5065. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5066. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5067. // This is a travel move (with no extrusion)
  5068. // Skip it, but keep track of the current position
  5069. // (so it can be used as the start of the next non-travel move)
  5070. if (delayed_move_time != 0xFFFFFFFFUL) {
  5071. set_current_to_destination();
  5072. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5073. delayed_move_time = millis();
  5074. return false;
  5075. }
  5076. }
  5077. delayed_move_time = 0;
  5078. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5079. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5081. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5082. active_extruder_parked = false;
  5083. }
  5084. }
  5085. return true;
  5086. }
  5087. #endif // DUAL_X_CARRIAGE
  5088. #if !defined(DELTA) && !defined(SCARA)
  5089. inline bool prepare_move_cartesian() {
  5090. // Do not use feedrate_multiplier for E or Z only moves
  5091. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5092. line_to_destination();
  5093. }
  5094. else {
  5095. #ifdef MESH_BED_LEVELING
  5096. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5097. return false;
  5098. #else
  5099. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5100. #endif
  5101. }
  5102. return true;
  5103. }
  5104. #endif // !DELTA && !SCARA
  5105. /**
  5106. * Prepare a single move and get ready for the next one
  5107. */
  5108. void prepare_move() {
  5109. clamp_to_software_endstops(destination);
  5110. refresh_cmd_timeout();
  5111. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5112. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5113. #endif
  5114. #ifdef SCARA
  5115. if (!prepare_move_scara()) return;
  5116. #elif defined(DELTA)
  5117. if (!prepare_move_delta()) return;
  5118. #endif
  5119. #ifdef DUAL_X_CARRIAGE
  5120. if (!prepare_move_dual_x_carriage()) return;
  5121. #endif
  5122. #if !defined(DELTA) && !defined(SCARA)
  5123. if (!prepare_move_cartesian()) return;
  5124. #endif
  5125. set_current_to_destination();
  5126. }
  5127. #if HAS_CONTROLLERFAN
  5128. void controllerFan() {
  5129. static millis_t lastMotor = 0; // Last time a motor was turned on
  5130. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5131. millis_t ms = millis();
  5132. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5133. lastMotorCheck = ms;
  5134. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5135. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5136. #if EXTRUDERS > 1
  5137. || E1_ENABLE_READ == E_ENABLE_ON
  5138. #if HAS_X2_ENABLE
  5139. || X2_ENABLE_READ == X_ENABLE_ON
  5140. #endif
  5141. #if EXTRUDERS > 2
  5142. || E2_ENABLE_READ == E_ENABLE_ON
  5143. #if EXTRUDERS > 3
  5144. || E3_ENABLE_READ == E_ENABLE_ON
  5145. #endif
  5146. #endif
  5147. #endif
  5148. ) {
  5149. lastMotor = ms; //... set time to NOW so the fan will turn on
  5150. }
  5151. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5152. // allows digital or PWM fan output to be used (see M42 handling)
  5153. digitalWrite(CONTROLLERFAN_PIN, speed);
  5154. analogWrite(CONTROLLERFAN_PIN, speed);
  5155. }
  5156. }
  5157. #endif // HAS_CONTROLLERFAN
  5158. #ifdef SCARA
  5159. void calculate_SCARA_forward_Transform(float f_scara[3])
  5160. {
  5161. // Perform forward kinematics, and place results in delta[3]
  5162. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5163. float x_sin, x_cos, y_sin, y_cos;
  5164. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5165. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5166. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5167. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5168. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5169. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5170. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5171. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5172. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5173. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5174. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5175. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5176. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5177. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5178. }
  5179. void calculate_delta(float cartesian[3]){
  5180. //reverse kinematics.
  5181. // Perform reversed kinematics, and place results in delta[3]
  5182. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5183. float SCARA_pos[2];
  5184. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5185. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5186. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5187. #if (Linkage_1 == Linkage_2)
  5188. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5189. #else
  5190. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5191. #endif
  5192. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5193. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5194. SCARA_K2 = Linkage_2 * SCARA_S2;
  5195. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5196. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5197. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5198. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5199. delta[Z_AXIS] = cartesian[Z_AXIS];
  5200. /*
  5201. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5202. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5203. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5204. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5205. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5206. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5207. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5208. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5209. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5210. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5211. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5212. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5213. SERIAL_ECHOLN(" ");*/
  5214. }
  5215. #endif
  5216. #ifdef TEMP_STAT_LEDS
  5217. static bool red_led = false;
  5218. static millis_t next_status_led_update_ms = 0;
  5219. void handle_status_leds(void) {
  5220. float max_temp = 0.0;
  5221. if (millis() > next_status_led_update_ms) {
  5222. next_status_led_update_ms += 500; // Update every 0.5s
  5223. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5224. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5225. #if HAS_TEMP_BED
  5226. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5227. #endif
  5228. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5229. if (new_led != red_led) {
  5230. red_led = new_led;
  5231. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5232. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5233. }
  5234. }
  5235. }
  5236. #endif
  5237. void enable_all_steppers() {
  5238. enable_x();
  5239. enable_y();
  5240. enable_z();
  5241. enable_e0();
  5242. enable_e1();
  5243. enable_e2();
  5244. enable_e3();
  5245. }
  5246. void disable_all_steppers() {
  5247. disable_x();
  5248. disable_y();
  5249. disable_z();
  5250. disable_e0();
  5251. disable_e1();
  5252. disable_e2();
  5253. disable_e3();
  5254. }
  5255. /**
  5256. * Manage several activities:
  5257. * - Check for Filament Runout
  5258. * - Keep the command buffer full
  5259. * - Check for maximum inactive time between commands
  5260. * - Check for maximum inactive time between stepper commands
  5261. * - Check if pin CHDK needs to go LOW
  5262. * - Check for KILL button held down
  5263. * - Check for HOME button held down
  5264. * - Check if cooling fan needs to be switched on
  5265. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5266. */
  5267. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5268. #if HAS_FILRUNOUT
  5269. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5270. filrunout();
  5271. #endif
  5272. if (commands_in_queue < BUFSIZE - 1) get_command();
  5273. millis_t ms = millis();
  5274. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5275. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5276. && !ignore_stepper_queue && !blocks_queued())
  5277. disable_all_steppers();
  5278. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5279. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5280. chdkActive = false;
  5281. WRITE(CHDK, LOW);
  5282. }
  5283. #endif
  5284. #if HAS_KILL
  5285. // Check if the kill button was pressed and wait just in case it was an accidental
  5286. // key kill key press
  5287. // -------------------------------------------------------------------------------
  5288. static int killCount = 0; // make the inactivity button a bit less responsive
  5289. const int KILL_DELAY = 750;
  5290. if (!READ(KILL_PIN))
  5291. killCount++;
  5292. else if (killCount > 0)
  5293. killCount--;
  5294. // Exceeded threshold and we can confirm that it was not accidental
  5295. // KILL the machine
  5296. // ----------------------------------------------------------------
  5297. if (killCount >= KILL_DELAY) kill();
  5298. #endif
  5299. #if HAS_HOME
  5300. // Check to see if we have to home, use poor man's debouncer
  5301. // ---------------------------------------------------------
  5302. static int homeDebounceCount = 0; // poor man's debouncing count
  5303. const int HOME_DEBOUNCE_DELAY = 750;
  5304. if (!READ(HOME_PIN)) {
  5305. if (!homeDebounceCount) {
  5306. enqueuecommands_P(PSTR("G28"));
  5307. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5308. }
  5309. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5310. homeDebounceCount++;
  5311. else
  5312. homeDebounceCount = 0;
  5313. }
  5314. #endif
  5315. #if HAS_CONTROLLERFAN
  5316. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5317. #endif
  5318. #ifdef EXTRUDER_RUNOUT_PREVENT
  5319. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5320. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5321. bool oldstatus;
  5322. switch(active_extruder) {
  5323. case 0:
  5324. oldstatus = E0_ENABLE_READ;
  5325. enable_e0();
  5326. break;
  5327. #if EXTRUDERS > 1
  5328. case 1:
  5329. oldstatus = E1_ENABLE_READ;
  5330. enable_e1();
  5331. break;
  5332. #if EXTRUDERS > 2
  5333. case 2:
  5334. oldstatus = E2_ENABLE_READ;
  5335. enable_e2();
  5336. break;
  5337. #if EXTRUDERS > 3
  5338. case 3:
  5339. oldstatus = E3_ENABLE_READ;
  5340. enable_e3();
  5341. break;
  5342. #endif
  5343. #endif
  5344. #endif
  5345. }
  5346. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5347. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5348. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5349. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5350. current_position[E_AXIS] = oldepos;
  5351. destination[E_AXIS] = oldedes;
  5352. plan_set_e_position(oldepos);
  5353. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5354. st_synchronize();
  5355. switch(active_extruder) {
  5356. case 0:
  5357. E0_ENABLE_WRITE(oldstatus);
  5358. break;
  5359. #if EXTRUDERS > 1
  5360. case 1:
  5361. E1_ENABLE_WRITE(oldstatus);
  5362. break;
  5363. #if EXTRUDERS > 2
  5364. case 2:
  5365. E2_ENABLE_WRITE(oldstatus);
  5366. break;
  5367. #if EXTRUDERS > 3
  5368. case 3:
  5369. E3_ENABLE_WRITE(oldstatus);
  5370. break;
  5371. #endif
  5372. #endif
  5373. #endif
  5374. }
  5375. }
  5376. #endif
  5377. #ifdef DUAL_X_CARRIAGE
  5378. // handle delayed move timeout
  5379. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5380. // travel moves have been received so enact them
  5381. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5382. set_destination_to_current();
  5383. prepare_move();
  5384. }
  5385. #endif
  5386. #ifdef TEMP_STAT_LEDS
  5387. handle_status_leds();
  5388. #endif
  5389. check_axes_activity();
  5390. }
  5391. void kill()
  5392. {
  5393. cli(); // Stop interrupts
  5394. disable_all_heaters();
  5395. disable_all_steppers();
  5396. #if HAS_POWER_SWITCH
  5397. pinMode(PS_ON_PIN, INPUT);
  5398. #endif
  5399. SERIAL_ERROR_START;
  5400. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5401. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5402. // FMC small patch to update the LCD before ending
  5403. sei(); // enable interrupts
  5404. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5405. cli(); // disable interrupts
  5406. suicide();
  5407. while(1) { /* Intentionally left empty */ } // Wait for reset
  5408. }
  5409. #ifdef FILAMENT_RUNOUT_SENSOR
  5410. void filrunout() {
  5411. if (!filrunoutEnqueued) {
  5412. filrunoutEnqueued = true;
  5413. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5414. st_synchronize();
  5415. }
  5416. }
  5417. #endif
  5418. void Stop() {
  5419. disable_all_heaters();
  5420. if (IsRunning()) {
  5421. Running = false;
  5422. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5423. SERIAL_ERROR_START;
  5424. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5425. LCD_MESSAGEPGM(MSG_STOPPED);
  5426. }
  5427. }
  5428. #ifdef FAST_PWM_FAN
  5429. void setPwmFrequency(uint8_t pin, int val)
  5430. {
  5431. val &= 0x07;
  5432. switch(digitalPinToTimer(pin))
  5433. {
  5434. #if defined(TCCR0A)
  5435. case TIMER0A:
  5436. case TIMER0B:
  5437. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5438. // TCCR0B |= val;
  5439. break;
  5440. #endif
  5441. #if defined(TCCR1A)
  5442. case TIMER1A:
  5443. case TIMER1B:
  5444. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5445. // TCCR1B |= val;
  5446. break;
  5447. #endif
  5448. #if defined(TCCR2)
  5449. case TIMER2:
  5450. case TIMER2:
  5451. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5452. TCCR2 |= val;
  5453. break;
  5454. #endif
  5455. #if defined(TCCR2A)
  5456. case TIMER2A:
  5457. case TIMER2B:
  5458. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5459. TCCR2B |= val;
  5460. break;
  5461. #endif
  5462. #if defined(TCCR3A)
  5463. case TIMER3A:
  5464. case TIMER3B:
  5465. case TIMER3C:
  5466. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5467. TCCR3B |= val;
  5468. break;
  5469. #endif
  5470. #if defined(TCCR4A)
  5471. case TIMER4A:
  5472. case TIMER4B:
  5473. case TIMER4C:
  5474. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5475. TCCR4B |= val;
  5476. break;
  5477. #endif
  5478. #if defined(TCCR5A)
  5479. case TIMER5A:
  5480. case TIMER5B:
  5481. case TIMER5C:
  5482. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5483. TCCR5B |= val;
  5484. break;
  5485. #endif
  5486. }
  5487. }
  5488. #endif //FAST_PWM_FAN
  5489. bool setTargetedHotend(int code){
  5490. target_extruder = active_extruder;
  5491. if (code_seen('T')) {
  5492. target_extruder = code_value_short();
  5493. if (target_extruder >= EXTRUDERS) {
  5494. SERIAL_ECHO_START;
  5495. switch(code){
  5496. case 104:
  5497. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5498. break;
  5499. case 105:
  5500. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5501. break;
  5502. case 109:
  5503. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5504. break;
  5505. case 218:
  5506. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5507. break;
  5508. case 221:
  5509. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5510. break;
  5511. }
  5512. SERIAL_ECHOLN(target_extruder);
  5513. return true;
  5514. }
  5515. }
  5516. return false;
  5517. }
  5518. float calculate_volumetric_multiplier(float diameter) {
  5519. if (!volumetric_enabled || diameter == 0) return 1.0;
  5520. float d2 = diameter * 0.5;
  5521. return 1.0 / (M_PI * d2 * d2);
  5522. }
  5523. void calculate_volumetric_multipliers() {
  5524. for (int i=0; i<EXTRUDERS; i++)
  5525. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5526. }