My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

planner.cpp 44KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112
  1. /**
  2. * planner.cpp - Buffer movement commands and manage the acceleration profile plan
  3. * Part of Grbl
  4. *
  5. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  6. *
  7. * Grbl is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * Grbl is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. *
  21. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  22. *
  23. *
  24. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  25. *
  26. * s == speed, a == acceleration, t == time, d == distance
  27. *
  28. * Basic definitions:
  29. * Speed[s_, a_, t_] := s + (a*t)
  30. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  31. *
  32. * Distance to reach a specific speed with a constant acceleration:
  33. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  34. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  35. *
  36. * Speed after a given distance of travel with constant acceleration:
  37. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  38. * m -> Sqrt[2 a d + s^2]
  39. *
  40. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  41. *
  42. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  43. * from initial speed s1 without ever stopping at a plateau:
  44. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  45. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  46. *
  47. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  48. *
  49. */
  50. #include "Marlin.h"
  51. #include "planner.h"
  52. #include "stepper.h"
  53. #include "temperature.h"
  54. #include "ultralcd.h"
  55. #include "language.h"
  56. #if ENABLED(MESH_BED_LEVELING)
  57. #include "mesh_bed_leveling.h"
  58. #endif
  59. //===========================================================================
  60. //============================= public variables ============================
  61. //===========================================================================
  62. millis_t minsegmenttime;
  63. float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
  64. float axis_steps_per_unit[NUM_AXIS];
  65. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  66. float minimumfeedrate;
  67. float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  68. float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  69. float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  70. float max_xy_jerk; // The largest speed change requiring no acceleration
  71. float max_z_jerk;
  72. float max_e_jerk;
  73. float mintravelfeedrate;
  74. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  75. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  76. // Transform required to compensate for bed level
  77. matrix_3x3 plan_bed_level_matrix = {
  78. 1.0, 0.0, 0.0,
  79. 0.0, 1.0, 0.0,
  80. 0.0, 0.0, 1.0
  81. };
  82. #endif // AUTO_BED_LEVELING_FEATURE
  83. #if ENABLED(AUTOTEMP)
  84. float autotemp_max = 250;
  85. float autotemp_min = 210;
  86. float autotemp_factor = 0.1;
  87. bool autotemp_enabled = false;
  88. #endif
  89. #if ENABLED(FAN_SOFT_PWM)
  90. extern unsigned char fanSpeedSoftPwm[FAN_COUNT];
  91. #endif
  92. //===========================================================================
  93. //============ semi-private variables, used in inline functions =============
  94. //===========================================================================
  95. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  96. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  97. volatile unsigned char block_buffer_tail; // Index of the block to process now
  98. //===========================================================================
  99. //============================ private variables ============================
  100. //===========================================================================
  101. // The current position of the tool in absolute steps
  102. long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode
  103. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  104. static float previous_nominal_speed; // Nominal speed of previous path line segment
  105. uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  106. #ifdef XY_FREQUENCY_LIMIT
  107. // Used for the frequency limit
  108. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  109. // Old direction bits. Used for speed calculations
  110. static unsigned char old_direction_bits = 0;
  111. // Segment times (in µs). Used for speed calculations
  112. static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
  113. #endif
  114. #if ENABLED(FILAMENT_SENSOR)
  115. static char meas_sample; //temporary variable to hold filament measurement sample
  116. #endif
  117. #if ENABLED(DUAL_X_CARRIAGE)
  118. extern bool extruder_duplication_enabled;
  119. #endif
  120. //===========================================================================
  121. //================================ functions ================================
  122. //===========================================================================
  123. // Get the next / previous index of the next block in the ring buffer
  124. // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
  125. FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  126. FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  127. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  128. // given acceleration:
  129. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
  130. if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
  131. return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
  132. }
  133. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  134. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  135. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  136. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  137. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
  138. if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
  139. return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
  140. }
  141. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  142. void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
  143. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
  144. unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
  145. // Limit minimal step rate (Otherwise the timer will overflow.)
  146. NOLESS(initial_rate, 120);
  147. NOLESS(final_rate, 120);
  148. long acceleration = block->acceleration_st;
  149. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  150. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  151. // Calculate the size of Plateau of Nominal Rate.
  152. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  153. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  154. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  155. // in order to reach the final_rate exactly at the end of this block.
  156. if (plateau_steps < 0) {
  157. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  158. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  159. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  160. plateau_steps = 0;
  161. }
  162. #if ENABLED(ADVANCE)
  163. volatile long initial_advance = block->advance * entry_factor * entry_factor;
  164. volatile long final_advance = block->advance * exit_factor * exit_factor;
  165. #endif // ADVANCE
  166. // block->accelerate_until = accelerate_steps;
  167. // block->decelerate_after = accelerate_steps+plateau_steps;
  168. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  169. if (!block->busy) { // Don't update variables if block is busy.
  170. block->accelerate_until = accelerate_steps;
  171. block->decelerate_after = accelerate_steps + plateau_steps;
  172. block->initial_rate = initial_rate;
  173. block->final_rate = final_rate;
  174. #if ENABLED(ADVANCE)
  175. block->initial_advance = initial_advance;
  176. block->final_advance = final_advance;
  177. #endif
  178. }
  179. CRITICAL_SECTION_END;
  180. }
  181. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  182. // acceleration within the allotted distance.
  183. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  184. return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
  185. }
  186. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  187. // This method will calculate the junction jerk as the euclidean distance between the nominal
  188. // velocities of the respective blocks.
  189. //inline float junction_jerk(block_t *before, block_t *after) {
  190. // return sqrt(
  191. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  192. //}
  193. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  194. void planner_reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  195. if (!current) return;
  196. UNUSED(previous);
  197. if (next) {
  198. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  199. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  200. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  201. float max_entry_speed = current->max_entry_speed;
  202. if (current->entry_speed != max_entry_speed) {
  203. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  204. // for max allowable speed if block is decelerating and nominal length is false.
  205. if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
  206. current->entry_speed = min(max_entry_speed,
  207. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  208. }
  209. else {
  210. current->entry_speed = max_entry_speed;
  211. }
  212. current->recalculate_flag = true;
  213. }
  214. } // Skip last block. Already initialized and set for recalculation.
  215. }
  216. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  217. // implements the reverse pass.
  218. void planner_reverse_pass() {
  219. uint8_t block_index = block_buffer_head;
  220. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  221. CRITICAL_SECTION_START;
  222. unsigned char tail = block_buffer_tail;
  223. CRITICAL_SECTION_END
  224. if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
  225. block_index = BLOCK_MOD(block_buffer_head - 3);
  226. block_t* block[3] = { NULL, NULL, NULL };
  227. while (block_index != tail) {
  228. block_index = prev_block_index(block_index);
  229. block[2] = block[1];
  230. block[1] = block[0];
  231. block[0] = &block_buffer[block_index];
  232. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  233. }
  234. }
  235. }
  236. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  237. void planner_forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  238. if (!previous) return;
  239. UNUSED(next);
  240. // If the previous block is an acceleration block, but it is not long enough to complete the
  241. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  242. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  243. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  244. if (!previous->nominal_length_flag) {
  245. if (previous->entry_speed < current->entry_speed) {
  246. double entry_speed = min(current->entry_speed,
  247. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  248. // Check for junction speed change
  249. if (current->entry_speed != entry_speed) {
  250. current->entry_speed = entry_speed;
  251. current->recalculate_flag = true;
  252. }
  253. }
  254. }
  255. }
  256. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  257. // implements the forward pass.
  258. void planner_forward_pass() {
  259. uint8_t block_index = block_buffer_tail;
  260. block_t* block[3] = { NULL, NULL, NULL };
  261. while (block_index != block_buffer_head) {
  262. block[0] = block[1];
  263. block[1] = block[2];
  264. block[2] = &block_buffer[block_index];
  265. planner_forward_pass_kernel(block[0], block[1], block[2]);
  266. block_index = next_block_index(block_index);
  267. }
  268. planner_forward_pass_kernel(block[1], block[2], NULL);
  269. }
  270. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  271. // entry_factor for each junction. Must be called by planner_recalculate() after
  272. // updating the blocks.
  273. void planner_recalculate_trapezoids() {
  274. int8_t block_index = block_buffer_tail;
  275. block_t* current;
  276. block_t* next = NULL;
  277. while (block_index != block_buffer_head) {
  278. current = next;
  279. next = &block_buffer[block_index];
  280. if (current) {
  281. // Recalculate if current block entry or exit junction speed has changed.
  282. if (current->recalculate_flag || next->recalculate_flag) {
  283. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  284. float nom = current->nominal_speed;
  285. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  286. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  287. }
  288. }
  289. block_index = next_block_index(block_index);
  290. }
  291. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  292. if (next) {
  293. float nom = next->nominal_speed;
  294. calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
  295. next->recalculate_flag = false;
  296. }
  297. }
  298. // Recalculates the motion plan according to the following algorithm:
  299. //
  300. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  301. // so that:
  302. // a. The junction jerk is within the set limit
  303. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  304. // acceleration.
  305. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  306. // a. The speed increase within one block would require faster acceleration than the one, true
  307. // constant acceleration.
  308. //
  309. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  310. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  311. // the set limit. Finally it will:
  312. //
  313. // 3. Recalculate trapezoids for all blocks.
  314. void planner_recalculate() {
  315. planner_reverse_pass();
  316. planner_forward_pass();
  317. planner_recalculate_trapezoids();
  318. }
  319. void plan_init() {
  320. block_buffer_head = block_buffer_tail = 0;
  321. memset(position, 0, sizeof(position)); // clear position
  322. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  323. previous_nominal_speed = 0.0;
  324. }
  325. #if ENABLED(AUTOTEMP)
  326. void getHighESpeed() {
  327. static float oldt = 0;
  328. if (!autotemp_enabled) return;
  329. if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
  330. float high = 0.0;
  331. uint8_t block_index = block_buffer_tail;
  332. while (block_index != block_buffer_head) {
  333. block_t* block = &block_buffer[block_index];
  334. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  335. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  336. NOLESS(high, se);
  337. }
  338. block_index = next_block_index(block_index);
  339. }
  340. float t = autotemp_min + high * autotemp_factor;
  341. t = constrain(t, autotemp_min, autotemp_max);
  342. if (oldt > t) {
  343. t *= (1 - (AUTOTEMP_OLDWEIGHT));
  344. t += (AUTOTEMP_OLDWEIGHT) * oldt;
  345. }
  346. oldt = t;
  347. setTargetHotend0(t);
  348. }
  349. #endif //AUTOTEMP
  350. void check_axes_activity() {
  351. unsigned char axis_active[NUM_AXIS] = { 0 },
  352. tail_fan_speed[FAN_COUNT];
  353. #if FAN_COUNT > 0
  354. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
  355. #endif
  356. #if ENABLED(BARICUDA)
  357. unsigned char tail_valve_pressure = ValvePressure,
  358. tail_e_to_p_pressure = EtoPPressure;
  359. #endif
  360. block_t* block;
  361. if (blocks_queued()) {
  362. uint8_t block_index = block_buffer_tail;
  363. #if FAN_COUNT > 0
  364. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_index].fan_speed[i];
  365. #endif
  366. #if ENABLED(BARICUDA)
  367. block = &block_buffer[block_index];
  368. tail_valve_pressure = block->valve_pressure;
  369. tail_e_to_p_pressure = block->e_to_p_pressure;
  370. #endif
  371. while (block_index != block_buffer_head) {
  372. block = &block_buffer[block_index];
  373. for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
  374. block_index = next_block_index(block_index);
  375. }
  376. }
  377. #if ENABLED(DISABLE_X)
  378. if (!axis_active[X_AXIS]) disable_x();
  379. #endif
  380. #if ENABLED(DISABLE_Y)
  381. if (!axis_active[Y_AXIS]) disable_y();
  382. #endif
  383. #if ENABLED(DISABLE_Z)
  384. if (!axis_active[Z_AXIS]) disable_z();
  385. #endif
  386. #if ENABLED(DISABLE_E)
  387. if (!axis_active[E_AXIS]) {
  388. disable_e0();
  389. disable_e1();
  390. disable_e2();
  391. disable_e3();
  392. }
  393. #endif
  394. #if FAN_COUNT > 0
  395. #if defined(FAN_MIN_PWM)
  396. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  397. #else
  398. #define CALC_FAN_SPEED(f) tail_fan_speed[f]
  399. #endif
  400. #ifdef FAN_KICKSTART_TIME
  401. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  402. #define KICKSTART_FAN(f) \
  403. if (tail_fan_speed[f]) { \
  404. millis_t ms = millis(); \
  405. if (fan_kick_end[f] == 0) { \
  406. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  407. tail_fan_speed[f] = 255; \
  408. } else { \
  409. if (fan_kick_end[f] > ms) { \
  410. tail_fan_speed[f] = 255; \
  411. } \
  412. } \
  413. } else { \
  414. fan_kick_end[f] = 0; \
  415. }
  416. #if HAS_FAN0
  417. KICKSTART_FAN(0);
  418. #endif
  419. #if HAS_FAN1
  420. KICKSTART_FAN(1);
  421. #endif
  422. #if HAS_FAN2
  423. KICKSTART_FAN(2);
  424. #endif
  425. #endif //FAN_KICKSTART_TIME
  426. #if ENABLED(FAN_SOFT_PWM)
  427. #if HAS_FAN0
  428. fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
  429. #endif
  430. #if HAS_FAN1
  431. fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
  432. #endif
  433. #if HAS_FAN2
  434. fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
  435. #endif
  436. #else
  437. #if HAS_FAN0
  438. analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
  439. #endif
  440. #if HAS_FAN1
  441. analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
  442. #endif
  443. #if HAS_FAN2
  444. analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
  445. #endif
  446. #endif
  447. #endif // FAN_COUNT > 0
  448. #if ENABLED(AUTOTEMP)
  449. getHighESpeed();
  450. #endif
  451. #if ENABLED(BARICUDA)
  452. #if HAS_HEATER_1
  453. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  454. #endif
  455. #if HAS_HEATER_2
  456. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  457. #endif
  458. #endif
  459. }
  460. float junction_deviation = 0.1;
  461. // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
  462. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  463. // calculation the caller must also provide the physical length of the line in millimeters.
  464. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  465. void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
  466. #else
  467. void plan_buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
  468. #endif // AUTO_BED_LEVELING_FEATURE
  469. {
  470. // Calculate the buffer head after we push this byte
  471. int next_buffer_head = next_block_index(block_buffer_head);
  472. // If the buffer is full: good! That means we are well ahead of the robot.
  473. // Rest here until there is room in the buffer.
  474. while (block_buffer_tail == next_buffer_head) idle();
  475. #if ENABLED(MESH_BED_LEVELING)
  476. if (mbl.active) z += mbl.get_z(x, y);
  477. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  478. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  479. #endif
  480. // The target position of the tool in absolute steps
  481. // Calculate target position in absolute steps
  482. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  483. long target[NUM_AXIS];
  484. target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  485. target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  486. target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
  487. target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  488. long dx = target[X_AXIS] - position[X_AXIS],
  489. dy = target[Y_AXIS] - position[Y_AXIS],
  490. dz = target[Z_AXIS] - position[Z_AXIS];
  491. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  492. if (marlin_debug_flags & DEBUG_DRYRUN)
  493. position[E_AXIS] = target[E_AXIS];
  494. long de = target[E_AXIS] - position[E_AXIS];
  495. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  496. if (de) {
  497. if (degHotend(extruder) < extrude_min_temp) {
  498. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  499. de = 0; // no difference
  500. SERIAL_ECHO_START;
  501. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  502. }
  503. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  504. if (labs(de) > axis_steps_per_unit[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
  505. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  506. de = 0; // no difference
  507. SERIAL_ECHO_START;
  508. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  509. }
  510. #endif
  511. }
  512. #endif
  513. // Prepare to set up new block
  514. block_t* block = &block_buffer[block_buffer_head];
  515. // Mark block as not busy (Not executed by the stepper interrupt)
  516. block->busy = false;
  517. // Number of steps for each axis
  518. #if ENABLED(COREXY)
  519. // corexy planning
  520. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  521. block->steps[A_AXIS] = labs(dx + dy);
  522. block->steps[B_AXIS] = labs(dx - dy);
  523. block->steps[Z_AXIS] = labs(dz);
  524. #elif ENABLED(COREXZ)
  525. // corexz planning
  526. block->steps[A_AXIS] = labs(dx + dz);
  527. block->steps[Y_AXIS] = labs(dy);
  528. block->steps[C_AXIS] = labs(dx - dz);
  529. #else
  530. // default non-h-bot planning
  531. block->steps[X_AXIS] = labs(dx);
  532. block->steps[Y_AXIS] = labs(dy);
  533. block->steps[Z_AXIS] = labs(dz);
  534. #endif
  535. block->steps[E_AXIS] = labs(de);
  536. block->steps[E_AXIS] *= volumetric_multiplier[extruder];
  537. block->steps[E_AXIS] *= extruder_multiplier[extruder];
  538. block->steps[E_AXIS] /= 100;
  539. block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
  540. // Bail if this is a zero-length block
  541. if (block->step_event_count <= dropsegments) return;
  542. #if FAN_COUNT > 0
  543. for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
  544. #endif
  545. #if ENABLED(BARICUDA)
  546. block->valve_pressure = ValvePressure;
  547. block->e_to_p_pressure = EtoPPressure;
  548. #endif
  549. // Compute direction bits for this block
  550. uint8_t db = 0;
  551. #if ENABLED(COREXY)
  552. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  553. if (dy < 0) SBI(db, Y_HEAD); // ...and Y
  554. if (dz < 0) SBI(db, Z_AXIS);
  555. if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
  556. if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
  557. #elif ENABLED(COREXZ)
  558. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  559. if (dy < 0) SBI(db, Y_AXIS);
  560. if (dz < 0) SBI(db, Z_HEAD); // ...and Z
  561. if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
  562. if (dx - dz < 0) SBI(db, C_AXIS); // Motor B direction
  563. #else
  564. if (dx < 0) SBI(db, X_AXIS);
  565. if (dy < 0) SBI(db, Y_AXIS);
  566. if (dz < 0) SBI(db, Z_AXIS);
  567. #endif
  568. if (de < 0) SBI(db, E_AXIS);
  569. block->direction_bits = db;
  570. block->active_extruder = extruder;
  571. //enable active axes
  572. #if ENABLED(COREXY)
  573. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  574. enable_x();
  575. enable_y();
  576. }
  577. #if DISABLED(Z_LATE_ENABLE)
  578. if (block->steps[Z_AXIS]) enable_z();
  579. #endif
  580. #elif ENABLED(COREXZ)
  581. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  582. enable_x();
  583. enable_z();
  584. }
  585. if (block->steps[Y_AXIS]) enable_y();
  586. #else
  587. if (block->steps[X_AXIS]) enable_x();
  588. if (block->steps[Y_AXIS]) enable_y();
  589. #if DISABLED(Z_LATE_ENABLE)
  590. if (block->steps[Z_AXIS]) enable_z();
  591. #endif
  592. #endif
  593. // Enable extruder(s)
  594. if (block->steps[E_AXIS]) {
  595. if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
  596. for (int i = 0; i < EXTRUDERS; i++)
  597. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  598. switch(extruder) {
  599. case 0:
  600. enable_e0();
  601. #if ENABLED(DUAL_X_CARRIAGE)
  602. if (extruder_duplication_enabled) {
  603. enable_e1();
  604. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  605. }
  606. #endif
  607. g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
  608. #if EXTRUDERS > 1
  609. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  610. #if EXTRUDERS > 2
  611. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  612. #if EXTRUDERS > 3
  613. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  614. #endif
  615. #endif
  616. #endif
  617. break;
  618. #if EXTRUDERS > 1
  619. case 1:
  620. enable_e1();
  621. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  622. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  623. #if EXTRUDERS > 2
  624. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  625. #if EXTRUDERS > 3
  626. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  627. #endif
  628. #endif
  629. break;
  630. #if EXTRUDERS > 2
  631. case 2:
  632. enable_e2();
  633. g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
  634. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  635. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  636. #if EXTRUDERS > 3
  637. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  638. #endif
  639. break;
  640. #if EXTRUDERS > 3
  641. case 3:
  642. enable_e3();
  643. g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
  644. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  645. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  646. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  647. break;
  648. #endif // EXTRUDERS > 3
  649. #endif // EXTRUDERS > 2
  650. #endif // EXTRUDERS > 1
  651. }
  652. }
  653. else { // enable all
  654. enable_e0();
  655. enable_e1();
  656. enable_e2();
  657. enable_e3();
  658. }
  659. }
  660. if (block->steps[E_AXIS])
  661. NOLESS(feed_rate, minimumfeedrate);
  662. else
  663. NOLESS(feed_rate, mintravelfeedrate);
  664. /**
  665. * This part of the code calculates the total length of the movement.
  666. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  667. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  668. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  669. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  670. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  671. */
  672. #if ENABLED(COREXY)
  673. float delta_mm[6];
  674. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  675. delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
  676. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  677. delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
  678. delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
  679. #elif ENABLED(COREXZ)
  680. float delta_mm[6];
  681. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  682. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  683. delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
  684. delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
  685. delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
  686. #else
  687. float delta_mm[4];
  688. delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
  689. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  690. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  691. #endif
  692. delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
  693. if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
  694. block->millimeters = fabs(delta_mm[E_AXIS]);
  695. }
  696. else {
  697. block->millimeters = sqrt(
  698. #if ENABLED(COREXY)
  699. square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
  700. #elif ENABLED(COREXZ)
  701. square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
  702. #else
  703. square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
  704. #endif
  705. );
  706. }
  707. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  708. // Calculate moves/second for this move. No divide by zero due to previous checks.
  709. float inverse_second = feed_rate * inverse_millimeters;
  710. int moves_queued = movesplanned();
  711. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  712. #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
  713. bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
  714. #if ENABLED(OLD_SLOWDOWN)
  715. if (mq) feed_rate *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
  716. #endif
  717. #if ENABLED(SLOWDOWN)
  718. // segment time im micro seconds
  719. unsigned long segment_time = lround(1000000.0/inverse_second);
  720. if (mq) {
  721. if (segment_time < minsegmenttime) {
  722. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  723. inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
  724. #ifdef XY_FREQUENCY_LIMIT
  725. segment_time = lround(1000000.0 / inverse_second);
  726. #endif
  727. }
  728. }
  729. #endif
  730. #endif
  731. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  732. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  733. #if ENABLED(FILAMENT_SENSOR)
  734. //FMM update ring buffer used for delay with filament measurements
  735. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
  736. const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
  737. delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
  738. while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
  739. while (delay_dist < 0) delay_dist += MMD10;
  740. delay_index1 = delay_dist / 10.0; // calculate index
  741. delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
  742. if (delay_index1 != delay_index2) { // moved index
  743. meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  744. while (delay_index1 != delay_index2) {
  745. // Increment and loop around buffer
  746. if (++delay_index2 >= MMD) delay_index2 -= MMD;
  747. delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
  748. measurement_delay[delay_index2] = meas_sample;
  749. }
  750. }
  751. }
  752. #endif
  753. // Calculate and limit speed in mm/sec for each axis
  754. float current_speed[NUM_AXIS];
  755. float speed_factor = 1.0; //factor <=1 do decrease speed
  756. for (int i = 0; i < NUM_AXIS; i++) {
  757. current_speed[i] = delta_mm[i] * inverse_second;
  758. float cs = fabs(current_speed[i]), mf = max_feedrate[i];
  759. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  760. }
  761. // Max segement time in us.
  762. #ifdef XY_FREQUENCY_LIMIT
  763. // Check and limit the xy direction change frequency
  764. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  765. old_direction_bits = block->direction_bits;
  766. segment_time = lround((float)segment_time / speed_factor);
  767. long xs0 = axis_segment_time[X_AXIS][0],
  768. xs1 = axis_segment_time[X_AXIS][1],
  769. xs2 = axis_segment_time[X_AXIS][2],
  770. ys0 = axis_segment_time[Y_AXIS][0],
  771. ys1 = axis_segment_time[Y_AXIS][1],
  772. ys2 = axis_segment_time[Y_AXIS][2];
  773. if (TEST(direction_change, X_AXIS)) {
  774. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  775. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  776. xs0 = 0;
  777. }
  778. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  779. if (TEST(direction_change, Y_AXIS)) {
  780. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  781. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  782. ys0 = 0;
  783. }
  784. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  785. long max_x_segment_time = max(xs0, max(xs1, xs2)),
  786. max_y_segment_time = max(ys0, max(ys1, ys2)),
  787. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  788. if (min_xy_segment_time < MAX_FREQ_TIME) {
  789. float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
  790. speed_factor = min(speed_factor, low_sf);
  791. }
  792. #endif // XY_FREQUENCY_LIMIT
  793. // Correct the speed
  794. if (speed_factor < 1.0) {
  795. for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
  796. block->nominal_speed *= speed_factor;
  797. block->nominal_rate *= speed_factor;
  798. }
  799. // Compute and limit the acceleration rate for the trapezoid generator.
  800. float steps_per_mm = block->step_event_count / block->millimeters;
  801. unsigned long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  802. if (bsx == 0 && bsy == 0 && bsz == 0) {
  803. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  804. }
  805. else if (bse == 0) {
  806. block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  807. }
  808. else {
  809. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  810. }
  811. // Limit acceleration per axis
  812. unsigned long acc_st = block->acceleration_st,
  813. xsteps = axis_steps_per_sqr_second[X_AXIS],
  814. ysteps = axis_steps_per_sqr_second[Y_AXIS],
  815. zsteps = axis_steps_per_sqr_second[Z_AXIS],
  816. esteps = axis_steps_per_sqr_second[E_AXIS],
  817. allsteps = block->step_event_count;
  818. if (xsteps < (acc_st * bsx) / allsteps) acc_st = (xsteps * allsteps) / bsx;
  819. if (ysteps < (acc_st * bsy) / allsteps) acc_st = (ysteps * allsteps) / bsy;
  820. if (zsteps < (acc_st * bsz) / allsteps) acc_st = (zsteps * allsteps) / bsz;
  821. if (esteps < (acc_st * bse) / allsteps) acc_st = (esteps * allsteps) / bse;
  822. block->acceleration_st = acc_st;
  823. block->acceleration = acc_st / steps_per_mm;
  824. block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
  825. #if 0 // Use old jerk for now
  826. // Compute path unit vector
  827. double unit_vec[3];
  828. unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
  829. unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
  830. unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
  831. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  832. // Let a circle be tangent to both previous and current path line segments, where the junction
  833. // deviation is defined as the distance from the junction to the closest edge of the circle,
  834. // collinear with the circle center. The circular segment joining the two paths represents the
  835. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  836. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  837. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  838. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  839. // nonlinearities of both the junction angle and junction velocity.
  840. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  841. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  842. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  843. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  844. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  845. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  846. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  847. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  848. // Skip and use default max junction speed for 0 degree acute junction.
  849. if (cos_theta < 0.95) {
  850. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  851. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  852. if (cos_theta > -0.95) {
  853. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  854. double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  855. vmax_junction = min(vmax_junction,
  856. sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  857. }
  858. }
  859. }
  860. #endif
  861. // Start with a safe speed
  862. float vmax_junction = max_xy_jerk / 2;
  863. float vmax_junction_factor = 1.0;
  864. float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  865. float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  866. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  867. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  868. vmax_junction = min(vmax_junction, block->nominal_speed);
  869. float safe_speed = vmax_junction;
  870. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  871. float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  872. dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  873. dsz = fabs(csz - previous_speed[Z_AXIS]),
  874. dse = fabs(cse - previous_speed[E_AXIS]),
  875. jerk = sqrt(dsx * dsx + dsy * dsy);
  876. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  877. vmax_junction = block->nominal_speed;
  878. // }
  879. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  880. if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz);
  881. if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse);
  882. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  883. }
  884. block->max_entry_speed = vmax_junction;
  885. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  886. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  887. block->entry_speed = min(vmax_junction, v_allowable);
  888. // Initialize planner efficiency flags
  889. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  890. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  891. // the current block and next block junction speeds are guaranteed to always be at their maximum
  892. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  893. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  894. // the reverse and forward planners, the corresponding block junction speed will always be at the
  895. // the maximum junction speed and may always be ignored for any speed reduction checks.
  896. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  897. block->recalculate_flag = true; // Always calculate trapezoid for new block
  898. // Update previous path unit_vector and nominal speed
  899. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  900. previous_nominal_speed = block->nominal_speed;
  901. #if ENABLED(ADVANCE)
  902. // Calculate advance rate
  903. if (!bse || (!bsx && !bsy && !bsz)) {
  904. block->advance_rate = 0;
  905. block->advance = 0;
  906. }
  907. else {
  908. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  909. float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
  910. block->advance = advance;
  911. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  912. }
  913. /*
  914. SERIAL_ECHO_START;
  915. SERIAL_ECHOPGM("advance :");
  916. SERIAL_ECHO(block->advance/256.0);
  917. SERIAL_ECHOPGM("advance rate :");
  918. SERIAL_ECHOLN(block->advance_rate/256.0);
  919. */
  920. #endif // ADVANCE
  921. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  922. // Move buffer head
  923. block_buffer_head = next_buffer_head;
  924. // Update position
  925. for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
  926. planner_recalculate();
  927. st_wake_up();
  928. } // plan_buffer_line()
  929. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
  930. vector_3 plan_get_position() {
  931. vector_3 position = vector_3(st_get_axis_position_mm(X_AXIS), st_get_axis_position_mm(Y_AXIS), st_get_axis_position_mm(Z_AXIS));
  932. //position.debug("in plan_get position");
  933. //plan_bed_level_matrix.debug("in plan_get_position");
  934. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  935. //inverse.debug("in plan_get inverse");
  936. position.apply_rotation(inverse);
  937. //position.debug("after rotation");
  938. return position;
  939. }
  940. #endif // AUTO_BED_LEVELING_FEATURE && !DELTA
  941. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  942. void plan_set_position(float x, float y, float z, const float& e)
  943. #else
  944. void plan_set_position(const float& x, const float& y, const float& z, const float& e)
  945. #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
  946. {
  947. #if ENABLED(MESH_BED_LEVELING)
  948. if (mbl.active) z += mbl.get_z(x, y);
  949. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  950. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  951. #endif
  952. long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
  953. ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
  954. nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
  955. ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  956. st_set_position(nx, ny, nz, ne);
  957. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  958. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  959. }
  960. void plan_set_e_position(const float& e) {
  961. position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  962. st_set_e_position(position[E_AXIS]);
  963. }
  964. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  965. void reset_acceleration_rates() {
  966. for (int i = 0; i < NUM_AXIS; i++)
  967. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  968. }