My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

ubl_G29.cpp 73KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "ubl.h"
  25. #include "Marlin.h"
  26. #include "hex_print_routines.h"
  27. #include "configuration_store.h"
  28. #include "ultralcd.h"
  29. #include "stepper.h"
  30. #include "planner.h"
  31. #include "gcode.h"
  32. #include "bitmap_flags.h"
  33. #include <math.h>
  34. #include "least_squares_fit.h"
  35. #define UBL_G29_P31
  36. extern float destination[XYZE], current_position[XYZE];
  37. #if ENABLED(NEWPANEL)
  38. void lcd_return_to_status();
  39. void lcd_mesh_edit_setup(float initial);
  40. float lcd_mesh_edit();
  41. void lcd_z_offset_edit_setup(float);
  42. extern void _lcd_ubl_output_map_lcd();
  43. extern bool ubl_lcd_clicked();
  44. float lcd_z_offset_edit();
  45. #endif
  46. extern float meshedit_done;
  47. extern long babysteps_done;
  48. extern float probe_pt(const float &rx, const float &ry, const bool, const uint8_t, const bool=true);
  49. extern bool set_probe_deployed(bool);
  50. extern void set_bed_leveling_enabled(bool);
  51. typedef void (*screenFunc_t)();
  52. extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
  53. #define SIZE_OF_LITTLE_RAISE 1
  54. #define BIG_RAISE_NOT_NEEDED 0
  55. int unified_bed_leveling::g29_verbose_level,
  56. unified_bed_leveling::g29_phase_value,
  57. unified_bed_leveling::g29_repetition_cnt,
  58. unified_bed_leveling::g29_storage_slot = 0,
  59. unified_bed_leveling::g29_map_type;
  60. bool unified_bed_leveling::g29_c_flag,
  61. unified_bed_leveling::g29_x_flag,
  62. unified_bed_leveling::g29_y_flag;
  63. float unified_bed_leveling::g29_x_pos,
  64. unified_bed_leveling::g29_y_pos,
  65. unified_bed_leveling::g29_card_thickness = 0.0,
  66. unified_bed_leveling::g29_constant = 0.0;
  67. #if HAS_BED_PROBE
  68. int unified_bed_leveling::g29_grid_size;
  69. #endif
  70. /**
  71. * G29: Unified Bed Leveling by Roxy
  72. *
  73. * Parameters understood by this leveling system:
  74. *
  75. * A Activate Activate the Unified Bed Leveling system.
  76. *
  77. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
  78. * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
  79. * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
  80. * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
  81. * same resistance is felt in the shim. You can omit the numerical value on first invocation
  82. * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
  83. * measured thickness by default.
  84. *
  85. * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
  86. * previous measurements.
  87. *
  88. * C Constant G29 P2 C specifies a Constant and tells the Manual Probe subsystem to use the current
  89. * location in its search for the closest unmeasured Mesh Point.
  90. *
  91. * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
  92. *
  93. * C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
  94. *
  95. * D Disable Disable the Unified Bed Leveling system.
  96. *
  97. * E Stow_probe Stow the probe after each sampled point.
  98. *
  99. * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
  100. * specified height, no correction is applied and natural printer kenimatics take over. If no
  101. * number is specified for the command, 10mm is assumed to be reasonable.
  102. *
  103. * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
  104. * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
  105. *
  106. * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
  107. * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
  108. *
  109. * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
  110. * the nozzle location is used. If no 'I' value is given, only the point nearest to the location
  111. * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
  112. * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
  113. * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
  114. * can move the nozzle around and use this feature to select the center of the area (or cell) to
  115. * invalidate.
  116. *
  117. * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  118. * Not specifying a grid size will invoke the 3-Point leveling function.
  119. *
  120. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  121. * command literally performs a diff between two Meshes.
  122. *
  123. * L Load Load Mesh from the previously activated location in the EEPROM.
  124. *
  125. * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
  126. * for subsequent Load and Store operations.
  127. *
  128. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  129. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  130. * each additional Phase that processes it.
  131. *
  132. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  133. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  134. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  135. * a subsequent G or T leveling operation for backward compatibility.
  136. *
  137. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  138. * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. On
  139. * Cartesian printers, points within the X_PROBE_OFFSET_FROM_EXTRUDER and Y_PROBE_OFFSET_FROM_EXTRUDER
  140. * area cannot be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
  141. * and DELTA_PRINTABLE_RADIUS do not overlap will not be automatically probed.
  142. *
  143. * Unreachable points will be handled in Phase 2 and Phase 3.
  144. *
  145. * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
  146. * to invalidate parts of the Mesh but still use Automatic Probing.
  147. *
  148. * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
  149. * probe position is used.
  150. *
  151. * Use 'T' (Topology) to generate a report of mesh generation.
  152. *
  153. * P1 will suspend Mesh generation if the controller button is held down. Note that you may need
  154. * to press and hold the switch for several seconds if moves are underway.
  155. *
  156. * P2 Phase 2 Probe unreachable points.
  157. *
  158. * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
  159. * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
  160. * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
  161. * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
  162. *
  163. * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
  164. * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
  165. * with an 'H' parameter more suitable for the area you're manually probing. Note that the command
  166. * tries to start in a corner of the bed where movement will be predictable. Override the distance
  167. * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
  168. * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
  169. * indicate that the search should be based on the current position.
  170. *
  171. * The 'B' parameter for this command is described above. It places the manual probe subsystem into
  172. * Business Card mode where the thickness of a business card is measured and then used to accurately
  173. * set the nozzle height in all manual probing for the duration of the command. A Business card can
  174. * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
  175. * easier to produce similar amounts of force and get more accurate measurements. Google if you're
  176. * not sure how to use a shim.
  177. *
  178. * The 'T' (Map) parameter helps track Mesh building progress.
  179. *
  180. * NOTE: P2 requires an LCD controller!
  181. *
  182. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
  183. * go down:
  184. *
  185. * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
  186. * and a repeat count can then also be specified with 'R'.
  187. *
  188. * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
  189. * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
  190. * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
  191. * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
  192. * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
  193. * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
  194. *
  195. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
  196. * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
  197. * G42 and M421. See the UBL documentation for further details.
  198. *
  199. * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
  200. * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
  201. * adhesion.
  202. *
  203. * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
  204. * by the given 'H' offset (or default Z_CLEARANCE_BETWEEN_PROBES), and waits while the controller is
  205. * used to adjust the nozzle height. On click the displayed height is saved in the mesh.
  206. *
  207. * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
  208. * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
  209. * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
  210. *
  211. * The general form is G29 P4 [R points] [X position] [Y position]
  212. *
  213. * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
  214. * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
  215. * and on click the height minus the shim thickness will be saved in the mesh.
  216. *
  217. * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
  218. *
  219. * NOTE: P4 is not available unless you have LCD support enabled!
  220. *
  221. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  222. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  223. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  224. * execute a G29 P6 C <mean height>.
  225. *
  226. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  227. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  228. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  229. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  230. * 0.000 at the Z Home location.
  231. *
  232. * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
  233. * command is not anticipated to be of much value to the typical user. It is intended
  234. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  235. *
  236. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  237. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  238. *
  239. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  240. * current state of the Unified Bed Leveling system in the EEPROM.
  241. *
  242. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  243. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  244. * extend to a limit related to the available EEPROM storage.
  245. *
  246. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  247. * at a later date. The GCode output can be saved and later replayed by the host software
  248. * to reconstruct the current mesh on another machine.
  249. *
  250. * T Topology Display the Mesh Map Topology.
  251. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
  252. * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
  253. * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
  254. * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
  255. *
  256. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  257. * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
  258. * when the entire bed doesn't need to be probed because it will be adjusted.
  259. *
  260. * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
  261. *
  262. * W What? Display valuable Unified Bed Leveling System data.
  263. *
  264. * X # X Location for this command
  265. *
  266. * Y # Y Location for this command
  267. *
  268. *
  269. * Release Notes:
  270. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  271. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  272. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  273. * respectively.)
  274. *
  275. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  276. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  277. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  278. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  279. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  280. * perform a small print and check out your settings quicker. You do not need to populate the
  281. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  282. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  283. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  284. *
  285. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  286. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  287. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  288. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  289. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  290. * this is going to be helpful to the users!)
  291. *
  292. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  293. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  294. * we now have the functionality and features of all three systems combined.
  295. */
  296. void unified_bed_leveling::G29() {
  297. if (!settings.calc_num_meshes()) {
  298. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  299. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  300. return;
  301. }
  302. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  303. // Check for commands that require the printer to be homed
  304. if (axis_unhomed_error()) {
  305. const int8_t p_val = parser.intval('P', -1);
  306. if (p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'))
  307. home_all_axes();
  308. }
  309. // Invalidate Mesh Points. This command is a little bit asymmetrical because
  310. // it directly specifies the repetition count and does not use the 'R' parameter.
  311. if (parser.seen('I')) {
  312. uint8_t cnt = 0;
  313. g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
  314. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  315. set_all_mesh_points_to_value(NAN);
  316. }
  317. else {
  318. while (g29_repetition_cnt--) {
  319. if (cnt > 20) { cnt = 0; idle(); }
  320. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
  321. if (location.x_index < 0) {
  322. // No more REACHABLE mesh points to invalidate, so we ASSUME the user
  323. // meant to invalidate the ENTIRE mesh, which cannot be done with
  324. // find_closest_mesh_point loop which only returns REACHABLE points.
  325. set_all_mesh_points_to_value(NAN);
  326. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  327. break; // No more invalid Mesh Points to populate
  328. }
  329. z_values[location.x_index][location.y_index] = NAN;
  330. cnt++;
  331. }
  332. }
  333. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  334. }
  335. if (parser.seen('Q')) {
  336. const int test_pattern = parser.has_value() ? parser.value_int() : -99;
  337. if (!WITHIN(test_pattern, -1, 2)) {
  338. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n");
  339. return;
  340. }
  341. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  342. switch (test_pattern) {
  343. case -1:
  344. g29_eeprom_dump();
  345. break;
  346. case 0:
  347. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  348. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  349. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  350. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  351. z_values[x][y] += 2.0 * HYPOT(p1, p2);
  352. }
  353. }
  354. break;
  355. case 1:
  356. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  357. z_values[x][x] += 9.999;
  358. z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  359. }
  360. break;
  361. case 2:
  362. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  363. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  364. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  365. z_values[x][y] += parser.seen('C') ? g29_constant : 9.99;
  366. break;
  367. }
  368. }
  369. #if HAS_BED_PROBE
  370. if (parser.seen('J')) {
  371. if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
  372. save_ubl_active_state_and_disable();
  373. tilt_mesh_based_on_probed_grid(parser.seen('T'));
  374. restore_ubl_active_state_and_leave();
  375. }
  376. else { // grid_size == 0 : A 3-Point leveling has been requested
  377. float z3, z2, z1 = probe_pt(UBL_PROBE_PT_1_X, UBL_PROBE_PT_1_Y, false, g29_verbose_level);
  378. if (!isnan(z1)) {
  379. z2 = probe_pt(UBL_PROBE_PT_2_X, UBL_PROBE_PT_2_Y, false, g29_verbose_level);
  380. if (!isnan(z2))
  381. z3 = probe_pt(UBL_PROBE_PT_3_X, UBL_PROBE_PT_3_Y, true, g29_verbose_level);
  382. }
  383. if (isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
  384. SERIAL_ERROR_START();
  385. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  386. goto LEAVE;
  387. }
  388. // Adjust z1, z2, z3 by the Mesh Height at these points. Just because they're non-zero
  389. // doesn't mean the Mesh is tilted! (Compensate each probe point by what the Mesh says
  390. // its height is.)
  391. save_ubl_active_state_and_disable();
  392. z1 -= get_z_correction(UBL_PROBE_PT_1_X, UBL_PROBE_PT_1_Y) /* + zprobe_zoffset */ ;
  393. z2 -= get_z_correction(UBL_PROBE_PT_2_X, UBL_PROBE_PT_2_Y) /* + zprobe_zoffset */ ;
  394. z3 -= get_z_correction(UBL_PROBE_PT_3_X, UBL_PROBE_PT_3_Y) /* + zprobe_zoffset */ ;
  395. do_blocking_move_to_xy(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y)));
  396. tilt_mesh_based_on_3pts(z1, z2, z3);
  397. restore_ubl_active_state_and_leave();
  398. }
  399. }
  400. #endif // HAS_BED_PROBE
  401. if (parser.seen('P')) {
  402. if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) {
  403. storage_slot = 0;
  404. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
  405. }
  406. switch (g29_phase_value) {
  407. case 0:
  408. //
  409. // Zero Mesh Data
  410. //
  411. reset();
  412. SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
  413. break;
  414. #if HAS_BED_PROBE
  415. case 1:
  416. //
  417. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  418. //
  419. if (!parser.seen('C')) {
  420. invalidate();
  421. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
  422. }
  423. if (g29_verbose_level > 1) {
  424. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
  425. SERIAL_PROTOCOLCHAR(',');
  426. SERIAL_PROTOCOL(g29_y_pos);
  427. SERIAL_PROTOCOLLNPGM(").\n");
  428. }
  429. probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  430. parser.seen('T'), parser.seen('E'), parser.seen('U'));
  431. break;
  432. #endif // HAS_BED_PROBE
  433. case 2: {
  434. #if ENABLED(NEWPANEL)
  435. //
  436. // Manually Probe Mesh in areas that can't be reached by the probe
  437. //
  438. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
  439. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  440. if (!g29_x_flag && !g29_y_flag) {
  441. /**
  442. * Use a good default location for the path.
  443. * The flipped > and < operators in these comparisons is intentional.
  444. * It should cause the probed points to follow a nice path on Cartesian printers.
  445. * It may make sense to have Delta printers default to the center of the bed.
  446. * Until that is decided, this can be forced with the X and Y parameters.
  447. */
  448. #if IS_KINEMATIC
  449. g29_x_pos = X_HOME_POS;
  450. g29_y_pos = Y_HOME_POS;
  451. #else // cartesian
  452. g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_BED_SIZE : 0;
  453. g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_BED_SIZE : 0;
  454. #endif
  455. }
  456. if (parser.seen('C')) {
  457. g29_x_pos = current_position[X_AXIS];
  458. g29_y_pos = current_position[Y_AXIS];
  459. }
  460. if (parser.seen('B')) {
  461. g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(Z_CLEARANCE_BETWEEN_PROBES);
  462. if (FABS(g29_card_thickness) > 1.5) {
  463. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
  464. return;
  465. }
  466. }
  467. if (!position_is_reachable(g29_x_pos, g29_y_pos)) {
  468. SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
  469. return;
  470. }
  471. const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
  472. manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
  473. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  474. #else
  475. SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
  476. return;
  477. #endif
  478. } break;
  479. case 3: {
  480. /**
  481. * Populate invalid mesh areas. Proceed with caution.
  482. * Two choices are available:
  483. * - Specify a constant with the 'C' parameter.
  484. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  485. */
  486. if (g29_c_flag) {
  487. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  488. set_all_mesh_points_to_value(g29_constant);
  489. }
  490. else {
  491. while (g29_repetition_cnt--) { // this only populates reachable mesh points near
  492. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
  493. if (location.x_index < 0) {
  494. // No more REACHABLE INVALID mesh points to populate, so we ASSUME
  495. // user meant to populate ALL INVALID mesh points to value
  496. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  497. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  498. if (isnan(z_values[x][y]))
  499. z_values[x][y] = g29_constant;
  500. break; // No more invalid Mesh Points to populate
  501. }
  502. z_values[location.x_index][location.y_index] = g29_constant;
  503. }
  504. }
  505. }
  506. else {
  507. const float cvf = parser.value_float();
  508. switch((int)truncf(cvf * 10.0) - 30) { // 3.1 -> 1
  509. #if ENABLED(UBL_G29_P31)
  510. case 1: {
  511. // P3.1 use least squares fit to fill missing mesh values
  512. // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
  513. // P3.11 10X weighting for nearest grid points versus farthest grid points
  514. // P3.12 100X distance weighting
  515. // P3.13 1000X distance weighting, approaches simple average of nearest points
  516. const float weight_power = (cvf - 3.10) * 100.0, // 3.12345 -> 2.345
  517. weight_factor = weight_power ? POW(10.0, weight_power) : 0;
  518. smart_fill_wlsf(weight_factor);
  519. }
  520. break;
  521. #endif
  522. case 0: // P3 or P3.0
  523. default: // and anything P3.x that's not P3.1
  524. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  525. break;
  526. }
  527. }
  528. break;
  529. }
  530. case 4: // Fine Tune (i.e., Edit) the Mesh
  531. #if ENABLED(NEWPANEL)
  532. fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
  533. #else
  534. SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
  535. return;
  536. #endif
  537. break;
  538. case 5: find_mean_mesh_height(); break;
  539. case 6: shift_mesh_height(); break;
  540. }
  541. }
  542. //
  543. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  544. // good to have the extra information. Soon... we prune this to just a few items
  545. //
  546. if (parser.seen('W')) g29_what_command();
  547. //
  548. // When we are fully debugged, this may go away. But there are some valid
  549. // use cases for the users. So we can wait and see what to do with it.
  550. //
  551. if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  552. g29_compare_current_mesh_to_stored_mesh();
  553. //
  554. // Load a Mesh from the EEPROM
  555. //
  556. if (parser.seen('L')) { // Load Current Mesh Data
  557. g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
  558. int16_t a = settings.calc_num_meshes();
  559. if (!a) {
  560. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  561. return;
  562. }
  563. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  564. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  565. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  566. return;
  567. }
  568. settings.load_mesh(g29_storage_slot);
  569. storage_slot = g29_storage_slot;
  570. SERIAL_PROTOCOLLNPGM("Done.");
  571. }
  572. //
  573. // Store a Mesh in the EEPROM
  574. //
  575. if (parser.seen('S')) { // Store (or Save) Current Mesh Data
  576. g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
  577. if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  578. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  579. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  580. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  581. if (!isnan(z_values[x][y])) {
  582. SERIAL_ECHOPAIR("M421 I ", x);
  583. SERIAL_ECHOPAIR(" J ", y);
  584. SERIAL_ECHOPGM(" Z ");
  585. SERIAL_ECHO_F(z_values[x][y], 6);
  586. SERIAL_ECHOPAIR(" ; X ", mesh_index_to_xpos(x));
  587. SERIAL_ECHOPAIR(", Y ", mesh_index_to_ypos(y));
  588. SERIAL_EOL();
  589. }
  590. return;
  591. }
  592. int16_t a = settings.calc_num_meshes();
  593. if (!a) {
  594. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  595. goto LEAVE;
  596. }
  597. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  598. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  599. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  600. goto LEAVE;
  601. }
  602. settings.store_mesh(g29_storage_slot);
  603. storage_slot = g29_storage_slot;
  604. SERIAL_PROTOCOLLNPGM("Done.");
  605. }
  606. if (parser.seen('T'))
  607. display_map(g29_map_type);
  608. LEAVE:
  609. #if ENABLED(NEWPANEL)
  610. lcd_reset_alert_level();
  611. LCD_MESSAGEPGM("");
  612. lcd_quick_feedback();
  613. lcd_external_control = false;
  614. #endif
  615. return;
  616. }
  617. void unified_bed_leveling::find_mean_mesh_height() {
  618. float sum = 0.0;
  619. int n = 0;
  620. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  621. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  622. if (!isnan(z_values[x][y])) {
  623. sum += z_values[x][y];
  624. n++;
  625. }
  626. const float mean = sum / n;
  627. //
  628. // Sum the squares of difference from mean
  629. //
  630. float sum_of_diff_squared = 0.0;
  631. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  632. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  633. if (!isnan(z_values[x][y]))
  634. sum_of_diff_squared += sq(z_values[x][y] - mean);
  635. SERIAL_ECHOLNPAIR("# of samples: ", n);
  636. SERIAL_ECHOPGM("Mean Mesh Height: ");
  637. SERIAL_ECHO_F(mean, 6);
  638. SERIAL_EOL();
  639. const float sigma = SQRT(sum_of_diff_squared / (n + 1));
  640. SERIAL_ECHOPGM("Standard Deviation: ");
  641. SERIAL_ECHO_F(sigma, 6);
  642. SERIAL_EOL();
  643. if (g29_c_flag)
  644. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  645. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  646. if (!isnan(z_values[x][y]))
  647. z_values[x][y] -= mean + g29_constant;
  648. }
  649. void unified_bed_leveling::shift_mesh_height() {
  650. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  651. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  652. if (!isnan(z_values[x][y]))
  653. z_values[x][y] += g29_constant;
  654. }
  655. #if HAS_BED_PROBE
  656. /**
  657. * Probe all invalidated locations of the mesh that can be reached by the probe.
  658. * This attempts to fill in locations closest to the nozzle's start location first.
  659. */
  660. void unified_bed_leveling::probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
  661. mesh_index_pair location;
  662. #if ENABLED(NEWPANEL)
  663. lcd_external_control = true;
  664. #endif
  665. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  666. DEPLOY_PROBE();
  667. uint16_t max_iterations = GRID_MAX_POINTS;
  668. do {
  669. if (do_ubl_mesh_map) display_map(g29_map_type);
  670. #if ENABLED(NEWPANEL)
  671. if (ubl_lcd_clicked()) {
  672. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  673. lcd_quick_feedback();
  674. STOW_PROBE();
  675. while (ubl_lcd_clicked()) idle();
  676. lcd_external_control = false;
  677. restore_ubl_active_state_and_leave();
  678. safe_delay(50); // Debounce the Encoder wheel
  679. return;
  680. }
  681. #endif
  682. if (close_or_far)
  683. location = find_furthest_invalid_mesh_point();
  684. else
  685. location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_PROBE_AS_REFERENCE, NULL);
  686. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  687. const float rawx = mesh_index_to_xpos(location.x_index),
  688. rawy = mesh_index_to_ypos(location.y_index);
  689. const float measured_z = probe_pt(rawx, rawy, stow_probe, g29_verbose_level); // TODO: Needs error handling
  690. z_values[location.x_index][location.y_index] = measured_z;
  691. }
  692. } while (location.x_index >= 0 && --max_iterations);
  693. STOW_PROBE();
  694. restore_ubl_active_state_and_leave();
  695. do_blocking_move_to_xy(
  696. constrain(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_X, MESH_MAX_X),
  697. constrain(ry - (Y_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_Y, MESH_MAX_Y)
  698. );
  699. }
  700. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  701. matrix_3x3 rotation;
  702. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  703. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  704. (z1 - z2) ),
  705. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  706. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  707. (z3 - z2) ),
  708. normal = vector_3::cross(v1, v2);
  709. normal = normal.get_normal();
  710. /**
  711. * This vector is normal to the tilted plane.
  712. * However, we don't know its direction. We need it to point up. So if
  713. * Z is negative, we need to invert the sign of all components of the vector
  714. */
  715. if (normal.z < 0.0) {
  716. normal.x = -normal.x;
  717. normal.y = -normal.y;
  718. normal.z = -normal.z;
  719. }
  720. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  721. if (g29_verbose_level > 2) {
  722. SERIAL_ECHOPGM("bed plane normal = [");
  723. SERIAL_PROTOCOL_F(normal.x, 7);
  724. SERIAL_PROTOCOLCHAR(',');
  725. SERIAL_PROTOCOL_F(normal.y, 7);
  726. SERIAL_PROTOCOLCHAR(',');
  727. SERIAL_PROTOCOL_F(normal.z, 7);
  728. SERIAL_ECHOLNPGM("]");
  729. rotation.debug(PSTR("rotation matrix:"));
  730. }
  731. //
  732. // All of 3 of these points should give us the same d constant
  733. //
  734. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  735. d = t + normal.z * z1;
  736. if (g29_verbose_level>2) {
  737. SERIAL_ECHOPGM("D constant: ");
  738. SERIAL_PROTOCOL_F(d, 7);
  739. SERIAL_ECHOLNPGM(" ");
  740. }
  741. #if ENABLED(DEBUG_LEVELING_FEATURE)
  742. if (DEBUGGING(LEVELING)) {
  743. SERIAL_ECHOPGM("d from 1st point: ");
  744. SERIAL_ECHO_F(d, 6);
  745. SERIAL_EOL();
  746. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  747. d = t + normal.z * z2;
  748. SERIAL_ECHOPGM("d from 2nd point: ");
  749. SERIAL_ECHO_F(d, 6);
  750. SERIAL_EOL();
  751. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  752. d = t + normal.z * z3;
  753. SERIAL_ECHOPGM("d from 3rd point: ");
  754. SERIAL_ECHO_F(d, 6);
  755. SERIAL_EOL();
  756. }
  757. #endif
  758. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  759. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  760. float x_tmp = mesh_index_to_xpos(i),
  761. y_tmp = mesh_index_to_ypos(j),
  762. z_tmp = z_values[i][j];
  763. #if ENABLED(DEBUG_LEVELING_FEATURE)
  764. if (DEBUGGING(LEVELING)) {
  765. SERIAL_ECHOPGM("before rotation = [");
  766. SERIAL_PROTOCOL_F(x_tmp, 7);
  767. SERIAL_PROTOCOLCHAR(',');
  768. SERIAL_PROTOCOL_F(y_tmp, 7);
  769. SERIAL_PROTOCOLCHAR(',');
  770. SERIAL_PROTOCOL_F(z_tmp, 7);
  771. SERIAL_ECHOPGM("] ---> ");
  772. safe_delay(20);
  773. }
  774. #endif
  775. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  777. if (DEBUGGING(LEVELING)) {
  778. SERIAL_ECHOPGM("after rotation = [");
  779. SERIAL_PROTOCOL_F(x_tmp, 7);
  780. SERIAL_PROTOCOLCHAR(',');
  781. SERIAL_PROTOCOL_F(y_tmp, 7);
  782. SERIAL_PROTOCOLCHAR(',');
  783. SERIAL_PROTOCOL_F(z_tmp, 7);
  784. SERIAL_ECHOLNPGM("]");
  785. safe_delay(55);
  786. }
  787. #endif
  788. z_values[i][j] += z_tmp - d;
  789. }
  790. }
  791. }
  792. #endif // HAS_BED_PROBE
  793. #if ENABLED(NEWPANEL)
  794. float unified_bed_leveling::measure_point_with_encoder() {
  795. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  796. delay(50); // debounce
  797. KEEPALIVE_STATE(PAUSED_FOR_USER);
  798. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  799. idle();
  800. if (encoder_diff) {
  801. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
  802. encoder_diff = 0;
  803. }
  804. }
  805. KEEPALIVE_STATE(IN_HANDLER);
  806. return current_position[Z_AXIS];
  807. }
  808. static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
  809. float unified_bed_leveling::measure_business_card_thickness(float in_height) {
  810. lcd_external_control = true;
  811. save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  812. do_blocking_move_to(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y)), in_height);
  813. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  814. stepper.synchronize();
  815. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  816. LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
  817. lcd_return_to_status();
  818. echo_and_take_a_measurement();
  819. const float z1 = measure_point_with_encoder();
  820. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  821. stepper.synchronize();
  822. SERIAL_PROTOCOLPGM("Remove shim");
  823. LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
  824. echo_and_take_a_measurement();
  825. const float z2 = measure_point_with_encoder();
  826. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  827. const float thickness = abs(z1 - z2);
  828. if (g29_verbose_level > 1) {
  829. SERIAL_PROTOCOLPGM("Business Card is ");
  830. SERIAL_PROTOCOL_F(thickness, 4);
  831. SERIAL_PROTOCOLLNPGM("mm thick.");
  832. }
  833. in_height = current_position[Z_AXIS]; // do manual probing at lower height
  834. lcd_external_control = false;
  835. restore_ubl_active_state_and_leave();
  836. return thickness;
  837. }
  838. void unified_bed_leveling::manually_probe_remaining_mesh(const float &rx, const float &ry, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
  839. lcd_external_control = true;
  840. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  841. do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES);
  842. lcd_return_to_status();
  843. mesh_index_pair location;
  844. do {
  845. location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_NOZZLE_AS_REFERENCE, NULL);
  846. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  847. if (location.x_index < 0 && location.y_index < 0) continue;
  848. const float xProbe = mesh_index_to_xpos(location.x_index),
  849. yProbe = mesh_index_to_ypos(location.y_index);
  850. if (!position_is_reachable(xProbe, yProbe)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  851. LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
  852. do_blocking_move_to(xProbe, yProbe, Z_CLEARANCE_BETWEEN_PROBES);
  853. do_blocking_move_to_z(z_clearance);
  854. KEEPALIVE_STATE(PAUSED_FOR_USER);
  855. lcd_external_control = true;
  856. if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
  857. serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2));
  858. const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
  859. //const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click
  860. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  861. delay(50); // debounce
  862. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  863. idle();
  864. if (encoder_diff) {
  865. do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step);
  866. encoder_diff = 0;
  867. }
  868. }
  869. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  870. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  871. // should be redone and compressed.
  872. const millis_t nxt = millis() + 1500L;
  873. while (ubl_lcd_clicked()) { // debounce and watch for abort
  874. idle();
  875. if (ELAPSED(millis(), nxt)) {
  876. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  877. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  878. #if ENABLED(NEWPANEL)
  879. lcd_quick_feedback();
  880. while (ubl_lcd_clicked()) idle();
  881. lcd_external_control = false;
  882. #endif
  883. KEEPALIVE_STATE(IN_HANDLER);
  884. restore_ubl_active_state_and_leave();
  885. return;
  886. }
  887. }
  888. z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
  889. if (g29_verbose_level > 2) {
  890. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  891. SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
  892. SERIAL_EOL();
  893. }
  894. } while (location.x_index >= 0 && location.y_index >= 0);
  895. if (do_ubl_mesh_map) display_map(g29_map_type);
  896. restore_ubl_active_state_and_leave();
  897. KEEPALIVE_STATE(IN_HANDLER);
  898. do_blocking_move_to(rx, ry, Z_CLEARANCE_DEPLOY_PROBE);
  899. }
  900. #endif // NEWPANEL
  901. bool unified_bed_leveling::g29_parameter_parsing() {
  902. bool err_flag = false;
  903. #if ENABLED(NEWPANEL)
  904. LCD_MESSAGEPGM(MSG_UBL_DOING_G29);
  905. lcd_quick_feedback();
  906. #endif
  907. g29_constant = 0.0;
  908. g29_repetition_cnt = 0;
  909. g29_x_flag = parser.seenval('X');
  910. g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS];
  911. g29_y_flag = parser.seenval('Y');
  912. g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS];
  913. if (parser.seen('R')) {
  914. g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
  915. NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
  916. if (g29_repetition_cnt < 1) {
  917. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  918. return UBL_ERR;
  919. }
  920. }
  921. g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
  922. if (!WITHIN(g29_verbose_level, 0, 4)) {
  923. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  924. err_flag = true;
  925. }
  926. if (parser.seen('P')) {
  927. const int pv = parser.value_int();
  928. #if !HAS_BED_PROBE
  929. if (pv == 1) {
  930. SERIAL_PROTOCOLLNPGM("G29 P1 requires a probe.\n");
  931. err_flag = true;
  932. }
  933. else
  934. #endif
  935. {
  936. g29_phase_value = pv;
  937. if (!WITHIN(g29_phase_value, 0, 6)) {
  938. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  939. err_flag = true;
  940. }
  941. }
  942. }
  943. if (parser.seen('J')) {
  944. #if HAS_BED_PROBE
  945. g29_grid_size = parser.has_value() ? parser.value_int() : 0;
  946. if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
  947. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  948. err_flag = true;
  949. }
  950. #else
  951. SERIAL_PROTOCOLLNPGM("G29 J action requires a probe.\n");
  952. err_flag = true;
  953. #endif
  954. }
  955. if (g29_x_flag != g29_y_flag) {
  956. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  957. err_flag = true;
  958. }
  959. // If X or Y are not valid, use center of the bed values
  960. if (!WITHIN(g29_x_pos, X_MIN_BED, X_MAX_BED)) g29_x_pos = X_CENTER;
  961. if (!WITHIN(g29_y_pos, Y_MIN_BED, Y_MAX_BED)) g29_y_pos = Y_CENTER;
  962. if (err_flag) return UBL_ERR;
  963. /**
  964. * Activate or deactivate UBL
  965. * Note: UBL's G29 restores the state set here when done.
  966. * Leveling is being enabled here with old data, possibly
  967. * none. Error handling should disable for safety...
  968. */
  969. if (parser.seen('A')) {
  970. if (parser.seen('D')) {
  971. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  972. return UBL_ERR;
  973. }
  974. set_bed_leveling_enabled(true);
  975. report_state();
  976. }
  977. else if (parser.seen('D')) {
  978. set_bed_leveling_enabled(false);
  979. report_state();
  980. }
  981. // Set global 'C' flag and its value
  982. if ((g29_c_flag = parser.seen('C')))
  983. g29_constant = parser.value_float();
  984. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  985. if (parser.seenval('F')) {
  986. const float fh = parser.value_float();
  987. if (!WITHIN(fh, 0.0, 100.0)) {
  988. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  989. return UBL_ERR;
  990. }
  991. set_z_fade_height(fh);
  992. }
  993. #endif
  994. g29_map_type = parser.intval('T');
  995. if (!WITHIN(g29_map_type, 0, 2)) {
  996. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  997. return UBL_ERR;
  998. }
  999. return UBL_OK;
  1000. }
  1001. static int ubl_state_at_invocation = 0,
  1002. ubl_state_recursion_chk = 0;
  1003. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  1004. ubl_state_recursion_chk++;
  1005. if (ubl_state_recursion_chk != 1) {
  1006. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  1007. #if ENABLED(NEWPANEL)
  1008. LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR);
  1009. lcd_quick_feedback();
  1010. #endif
  1011. return;
  1012. }
  1013. ubl_state_at_invocation = planner.leveling_active;
  1014. set_bed_leveling_enabled(false);
  1015. }
  1016. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  1017. if (--ubl_state_recursion_chk) {
  1018. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  1019. #if ENABLED(NEWPANEL)
  1020. LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR);
  1021. lcd_quick_feedback();
  1022. #endif
  1023. return;
  1024. }
  1025. set_bed_leveling_enabled(ubl_state_at_invocation);
  1026. }
  1027. /**
  1028. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1029. * good to have the extra information. Soon... we prune this to just a few items
  1030. */
  1031. void unified_bed_leveling::g29_what_command() {
  1032. report_state();
  1033. if (storage_slot == -1)
  1034. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1035. else {
  1036. SERIAL_PROTOCOLPAIR("Mesh ", storage_slot);
  1037. SERIAL_PROTOCOLPGM(" Loaded.");
  1038. }
  1039. SERIAL_EOL();
  1040. safe_delay(50);
  1041. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1042. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1043. SERIAL_PROTOCOL("planner.z_fade_height : ");
  1044. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  1045. SERIAL_EOL();
  1046. #endif
  1047. find_mean_mesh_height();
  1048. #if HAS_BED_PROBE
  1049. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1050. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1051. SERIAL_EOL();
  1052. #endif
  1053. SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X);
  1054. SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y);
  1055. safe_delay(25);
  1056. SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X);
  1057. SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y);
  1058. safe_delay(25);
  1059. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1060. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1061. safe_delay(25);
  1062. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1063. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1064. safe_delay(25);
  1065. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1066. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1067. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
  1068. SERIAL_PROTOCOLPGM(" ");
  1069. safe_delay(25);
  1070. }
  1071. SERIAL_EOL();
  1072. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1073. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1074. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
  1075. SERIAL_PROTOCOLPGM(" ");
  1076. safe_delay(25);
  1077. }
  1078. SERIAL_EOL();
  1079. #if HAS_KILL
  1080. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1081. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1082. #endif
  1083. SERIAL_EOL();
  1084. safe_delay(50);
  1085. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1086. SERIAL_EOL();
  1087. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1088. SERIAL_EOL();
  1089. safe_delay(50);
  1090. SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.get_start_of_meshes()));
  1091. SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.get_end_of_meshes()));
  1092. safe_delay(50);
  1093. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1094. SERIAL_EOL();
  1095. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  1096. SERIAL_EOL();
  1097. safe_delay(25);
  1098. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.get_end_of_meshes() - settings.get_start_of_meshes())));
  1099. safe_delay(50);
  1100. SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
  1101. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1102. safe_delay(25);
  1103. if (!sanity_check()) {
  1104. echo_name();
  1105. SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
  1106. }
  1107. }
  1108. /**
  1109. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1110. * right now, it is good to have the extra information. Soon... we prune this.
  1111. */
  1112. void unified_bed_leveling::g29_eeprom_dump() {
  1113. unsigned char cccc;
  1114. unsigned int kkkk; // Needs to be of unspecfied size to compile clean on all platforms
  1115. SERIAL_ECHO_START();
  1116. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1117. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1118. if (!(i & 0x3)) idle();
  1119. print_hex_word(i);
  1120. SERIAL_ECHOPGM(": ");
  1121. for (uint16_t j = 0; j < 16; j++) {
  1122. kkkk = i + j;
  1123. eeprom_read_block(&cccc, (const void *) kkkk, sizeof(unsigned char));
  1124. print_hex_byte(cccc);
  1125. SERIAL_ECHO(' ');
  1126. }
  1127. SERIAL_EOL();
  1128. }
  1129. SERIAL_EOL();
  1130. }
  1131. /**
  1132. * When we are fully debugged, this may go away. But there are some valid
  1133. * use cases for the users. So we can wait and see what to do with it.
  1134. */
  1135. void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
  1136. int16_t a = settings.calc_num_meshes();
  1137. if (!a) {
  1138. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  1139. return;
  1140. }
  1141. if (!parser.has_value()) {
  1142. SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
  1143. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1144. return;
  1145. }
  1146. g29_storage_slot = parser.value_int();
  1147. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  1148. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  1149. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1150. return;
  1151. }
  1152. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1153. settings.load_mesh(g29_storage_slot, &tmp_z_values);
  1154. SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
  1155. SERIAL_PROTOCOLLNPGM(" from current mesh.");
  1156. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1157. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1158. z_values[x][y] -= tmp_z_values[x][y];
  1159. }
  1160. mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() {
  1161. bool found_a_NAN = false;
  1162. bool found_a_real = false;
  1163. mesh_index_pair out_mesh;
  1164. out_mesh.x_index = out_mesh.y_index = -1;
  1165. out_mesh.distance = -99999.99;
  1166. for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1167. for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1168. if ( isnan(z_values[i][j])) { // Check to see if this location holds an invalid mesh point
  1169. const float mx = mesh_index_to_xpos(i),
  1170. my = mesh_index_to_ypos(j);
  1171. if ( !position_is_reachable_by_probe(mx, my)) // make sure the probe can get to the mesh point
  1172. continue;
  1173. found_a_NAN = true;
  1174. int8_t closest_x=-1, closest_y=-1;
  1175. float d1, d2 = 99999.9;
  1176. for (int8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1177. for (int8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1178. if (!isnan(z_values[k][l])) {
  1179. found_a_real = true;
  1180. // Add in a random weighting factor that scrambles the probing of the
  1181. // last half of the mesh (when every unprobed mesh point is one index
  1182. // from a probed location).
  1183. d1 = HYPOT(i - k, j - l) + (1.0 / ((millis() % 47) + 13));
  1184. if (d1 < d2) { // found a closer distance from invalid mesh point at (i,j) to defined mesh point at (k,l)
  1185. d2 = d1; // found a closer location with
  1186. closest_x = i; // an assigned mesh point value
  1187. closest_y = j;
  1188. }
  1189. }
  1190. }
  1191. }
  1192. //
  1193. // at this point d2 should have the closest defined mesh point to invalid mesh point (i,j)
  1194. //
  1195. if (found_a_real && (closest_x >= 0) && (d2 > out_mesh.distance)) {
  1196. out_mesh.distance = d2; // found an invalid location with a greater distance
  1197. out_mesh.x_index = closest_x; // to a defined mesh point
  1198. out_mesh.y_index = closest_y;
  1199. }
  1200. }
  1201. } // for j
  1202. } // for i
  1203. if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
  1204. out_mesh.x_index = GRID_MAX_POINTS_X / 2;
  1205. out_mesh.y_index = GRID_MAX_POINTS_Y / 2;
  1206. out_mesh.distance = 1.0;
  1207. }
  1208. return out_mesh;
  1209. }
  1210. mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &rx, const float &ry, const bool probe_as_reference, uint16_t bits[16]) {
  1211. mesh_index_pair out_mesh;
  1212. out_mesh.x_index = out_mesh.y_index = -1;
  1213. out_mesh.distance = -99999.9;
  1214. // Get our reference position. Either the nozzle or probe location.
  1215. const float px = rx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1216. py = ry - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1217. float best_so_far = 99999.99;
  1218. for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1219. for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1220. if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
  1221. || (type == REAL && !isnan(z_values[i][j]))
  1222. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1223. ) {
  1224. // We only get here if we found a Mesh Point of the specified type
  1225. const float mx = mesh_index_to_xpos(i),
  1226. my = mesh_index_to_ypos(j);
  1227. // If using the probe as the reference there are some unreachable locations.
  1228. // Also for round beds, there are grid points outside the bed the nozzle can't reach.
  1229. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1230. if (probe_as_reference ? !position_is_reachable_by_probe(mx, my) : !position_is_reachable(mx, my))
  1231. continue;
  1232. // Reachable. Check if it's the best_so_far location to the nozzle.
  1233. float distance = HYPOT(px - mx, py - my);
  1234. // factor in the distance from the current location for the normal case
  1235. // so the nozzle isn't running all over the bed.
  1236. distance += HYPOT(current_position[X_AXIS] - mx, current_position[Y_AXIS] - my) * 0.1;
  1237. if (distance < best_so_far) {
  1238. best_so_far = distance; // We found a closer location with
  1239. out_mesh.x_index = i; // the specified type of mesh value.
  1240. out_mesh.y_index = j;
  1241. out_mesh.distance = best_so_far;
  1242. }
  1243. }
  1244. } // for j
  1245. } // for i
  1246. return out_mesh;
  1247. }
  1248. #if ENABLED(NEWPANEL)
  1249. void unified_bed_leveling::fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) {
  1250. if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
  1251. g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
  1252. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1253. const bool is_offset = parser.seen('H');
  1254. const float h_offset = is_offset ? parser.value_linear_units() : Z_CLEARANCE_BETWEEN_PROBES;
  1255. if (is_offset && !WITHIN(h_offset, 0, 10)) {
  1256. SERIAL_PROTOCOLLNPGM("Offset out of bounds. (0 to 10mm)\n");
  1257. return;
  1258. }
  1259. #endif
  1260. mesh_index_pair location;
  1261. if (!position_is_reachable(rx, ry)) {
  1262. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1263. return;
  1264. }
  1265. save_ubl_active_state_and_disable();
  1266. LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
  1267. do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES);
  1268. uint16_t not_done[16];
  1269. memset(not_done, 0xFF, sizeof(not_done));
  1270. do {
  1271. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, rx, ry, USE_NOZZLE_AS_REFERENCE, not_done);
  1272. if (location.x_index < 0) break; // stop when we can't find any more reachable points.
  1273. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1274. // different location the next time through the loop
  1275. const float rawx = mesh_index_to_xpos(location.x_index),
  1276. rawy = mesh_index_to_ypos(location.y_index);
  1277. if (!position_is_reachable(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1278. break;
  1279. float new_z = z_values[location.x_index][location.y_index];
  1280. if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
  1281. new_z = 0.0;
  1282. do_blocking_move_to(rawx, rawy, Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to the edit point
  1283. new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
  1284. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1285. lcd_external_control = true;
  1286. if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
  1287. lcd_refresh();
  1288. lcd_mesh_edit_setup(new_z);
  1289. do {
  1290. new_z = lcd_mesh_edit();
  1291. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1292. do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited
  1293. #endif
  1294. idle();
  1295. } while (!ubl_lcd_clicked());
  1296. if (!lcd_map_control) lcd_return_to_status();
  1297. // The technique used here generates a race condition for the encoder click.
  1298. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
  1299. // Let's work on specifying a proper API for the LCD ASAP, OK?
  1300. lcd_external_control = true;
  1301. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  1302. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  1303. // should be redone and compressed.
  1304. const millis_t nxt = millis() + 1500UL;
  1305. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1306. idle();
  1307. if (ELAPSED(millis(), nxt)) {
  1308. lcd_return_to_status();
  1309. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1310. LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
  1311. while (ubl_lcd_clicked()) idle();
  1312. goto FINE_TUNE_EXIT;
  1313. }
  1314. }
  1315. safe_delay(20); // We don't want any switch noise.
  1316. z_values[location.x_index][location.y_index] = new_z;
  1317. lcd_refresh();
  1318. } while (location.x_index >= 0 && --g29_repetition_cnt > 0);
  1319. FINE_TUNE_EXIT:
  1320. lcd_external_control = false;
  1321. KEEPALIVE_STATE(IN_HANDLER);
  1322. if (do_ubl_mesh_map) display_map(g29_map_type);
  1323. restore_ubl_active_state_and_leave();
  1324. do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES);
  1325. LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
  1326. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1327. if (lcd_map_control)
  1328. lcd_goto_screen(_lcd_ubl_output_map_lcd);
  1329. else
  1330. lcd_return_to_status();
  1331. }
  1332. #endif // NEWPANEL
  1333. /**
  1334. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1335. * If an invalid location is found, use the next two points (if valid) to
  1336. * calculate a 'reasonable' value for the unprobed mesh point.
  1337. */
  1338. bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1339. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1340. y1 = y + ydir, y2 = y1 + ydir;
  1341. // A NAN next to a pair of real values?
  1342. if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
  1343. if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
  1344. z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1345. else
  1346. z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
  1347. return true;
  1348. }
  1349. return false;
  1350. }
  1351. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1352. void unified_bed_leveling::smart_fill_mesh() {
  1353. static const smart_fill_info
  1354. info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1355. info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1356. info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1357. info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
  1358. static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
  1359. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1360. const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
  1361. const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy),
  1362. ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey);
  1363. if (pgm_read_byte(&f->yfirst)) {
  1364. const int8_t dir = ex > sx ? 1 : -1;
  1365. for (uint8_t y = sy; y != ey; ++y)
  1366. for (uint8_t x = sx; x != ex; x += dir)
  1367. if (smart_fill_one(x, y, dir, 0)) break;
  1368. }
  1369. else {
  1370. const int8_t dir = ey > sy ? 1 : -1;
  1371. for (uint8_t x = sx; x != ex; ++x)
  1372. for (uint8_t y = sy; y != ey; y += dir)
  1373. if (smart_fill_one(x, y, 0, dir)) break;
  1374. }
  1375. }
  1376. }
  1377. #if HAS_BED_PROBE
  1378. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1379. constexpr int16_t x_min = max(MIN_PROBE_X, MESH_MIN_X),
  1380. x_max = min(MAX_PROBE_X, MESH_MAX_X),
  1381. y_min = max(MIN_PROBE_Y, MESH_MIN_Y),
  1382. y_max = min(MAX_PROBE_Y, MESH_MAX_Y);
  1383. const float dx = float(x_max - x_min) / (g29_grid_size - 1.0),
  1384. dy = float(y_max - y_min) / (g29_grid_size - 1.0);
  1385. struct linear_fit_data lsf_results;
  1386. incremental_LSF_reset(&lsf_results);
  1387. bool zig_zag = false;
  1388. for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
  1389. const float rx = float(x_min) + ix * dx;
  1390. for (int8_t iy = 0; iy < g29_grid_size; iy++) {
  1391. const float ry = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
  1392. float measured_z = probe_pt(rx, ry, parser.seen('E'), g29_verbose_level); // TODO: Needs error handling
  1393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1394. if (DEBUGGING(LEVELING)) {
  1395. SERIAL_CHAR('(');
  1396. SERIAL_PROTOCOL_F(rx, 7);
  1397. SERIAL_CHAR(',');
  1398. SERIAL_PROTOCOL_F(ry, 7);
  1399. SERIAL_ECHOPGM(") logical: ");
  1400. SERIAL_CHAR('(');
  1401. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 7);
  1402. SERIAL_CHAR(',');
  1403. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 7);
  1404. SERIAL_ECHOPGM(") measured: ");
  1405. SERIAL_PROTOCOL_F(measured_z, 7);
  1406. SERIAL_ECHOPGM(" correction: ");
  1407. SERIAL_PROTOCOL_F(get_z_correction(rx, ry), 7);
  1408. }
  1409. #endif
  1410. measured_z -= get_z_correction(rx, ry) /* + zprobe_zoffset */ ;
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) {
  1413. SERIAL_ECHOPGM(" final >>>---> ");
  1414. SERIAL_PROTOCOL_F(measured_z, 7);
  1415. SERIAL_EOL();
  1416. }
  1417. #endif
  1418. incremental_LSF(&lsf_results, rx, ry, measured_z);
  1419. }
  1420. zig_zag ^= true;
  1421. }
  1422. if (finish_incremental_LSF(&lsf_results)) {
  1423. SERIAL_ECHOPGM("Could not complete LSF!");
  1424. return;
  1425. }
  1426. if (g29_verbose_level > 3) {
  1427. SERIAL_ECHOPGM("LSF Results A=");
  1428. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1429. SERIAL_ECHOPGM(" B=");
  1430. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1431. SERIAL_ECHOPGM(" D=");
  1432. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1433. SERIAL_EOL();
  1434. }
  1435. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1436. if (g29_verbose_level > 2) {
  1437. SERIAL_ECHOPGM("bed plane normal = [");
  1438. SERIAL_PROTOCOL_F(normal.x, 7);
  1439. SERIAL_PROTOCOLCHAR(',');
  1440. SERIAL_PROTOCOL_F(normal.y, 7);
  1441. SERIAL_PROTOCOLCHAR(',');
  1442. SERIAL_PROTOCOL_F(normal.z, 7);
  1443. SERIAL_ECHOLNPGM("]");
  1444. }
  1445. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1446. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1447. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1448. float x_tmp = mesh_index_to_xpos(i),
  1449. y_tmp = mesh_index_to_ypos(j),
  1450. z_tmp = z_values[i][j];
  1451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1452. if (DEBUGGING(LEVELING)) {
  1453. SERIAL_ECHOPGM("before rotation = [");
  1454. SERIAL_PROTOCOL_F(x_tmp, 7);
  1455. SERIAL_PROTOCOLCHAR(',');
  1456. SERIAL_PROTOCOL_F(y_tmp, 7);
  1457. SERIAL_PROTOCOLCHAR(',');
  1458. SERIAL_PROTOCOL_F(z_tmp, 7);
  1459. SERIAL_ECHOPGM("] ---> ");
  1460. safe_delay(20);
  1461. }
  1462. #endif
  1463. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1465. if (DEBUGGING(LEVELING)) {
  1466. SERIAL_ECHOPGM("after rotation = [");
  1467. SERIAL_PROTOCOL_F(x_tmp, 7);
  1468. SERIAL_PROTOCOLCHAR(',');
  1469. SERIAL_PROTOCOL_F(y_tmp, 7);
  1470. SERIAL_PROTOCOLCHAR(',');
  1471. SERIAL_PROTOCOL_F(z_tmp, 7);
  1472. SERIAL_ECHOLNPGM("]");
  1473. safe_delay(55);
  1474. }
  1475. #endif
  1476. z_values[i][j] += z_tmp - lsf_results.D;
  1477. }
  1478. }
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (DEBUGGING(LEVELING)) {
  1481. rotation.debug(PSTR("rotation matrix:"));
  1482. SERIAL_ECHOPGM("LSF Results A=");
  1483. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1484. SERIAL_ECHOPGM(" B=");
  1485. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1486. SERIAL_ECHOPGM(" D=");
  1487. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1488. SERIAL_EOL();
  1489. safe_delay(55);
  1490. SERIAL_ECHOPGM("bed plane normal = [");
  1491. SERIAL_PROTOCOL_F(normal.x, 7);
  1492. SERIAL_PROTOCOLCHAR(',');
  1493. SERIAL_PROTOCOL_F(normal.y, 7);
  1494. SERIAL_PROTOCOLCHAR(',');
  1495. SERIAL_PROTOCOL_F(normal.z, 7);
  1496. SERIAL_ECHOPGM("]\n");
  1497. SERIAL_EOL();
  1498. }
  1499. #endif
  1500. if (do_ubl_mesh_map) display_map(g29_map_type);
  1501. }
  1502. #endif // HAS_BED_PROBE
  1503. #if ENABLED(UBL_G29_P31)
  1504. void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
  1505. // For each undefined mesh point, compute a distance-weighted least squares fit
  1506. // from all the originally populated mesh points, weighted toward the point
  1507. // being extrapolated so that nearby points will have greater influence on
  1508. // the point being extrapolated. Then extrapolate the mesh point from WLSF.
  1509. static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
  1510. uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
  1511. struct linear_fit_data lsf_results;
  1512. SERIAL_ECHOPGM("Extrapolating mesh...");
  1513. const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST);
  1514. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
  1515. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
  1516. if (!isnan(z_values[jx][jy]))
  1517. SBI(bitmap[jx], jy);
  1518. for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
  1519. const float px = mesh_index_to_xpos(ix);
  1520. for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
  1521. const float py = mesh_index_to_ypos(iy);
  1522. if (isnan(z_values[ix][iy])) {
  1523. // undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
  1524. incremental_LSF_reset(&lsf_results);
  1525. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
  1526. const float rx = mesh_index_to_xpos(jx);
  1527. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
  1528. if (TEST(bitmap[jx], jy)) {
  1529. const float ry = mesh_index_to_ypos(jy),
  1530. rz = z_values[jx][jy],
  1531. w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py));
  1532. incremental_WLSF(&lsf_results, rx, ry, rz, w);
  1533. }
  1534. }
  1535. }
  1536. if (finish_incremental_LSF(&lsf_results)) {
  1537. SERIAL_ECHOLNPGM("Insufficient data");
  1538. return;
  1539. }
  1540. const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
  1541. z_values[ix][iy] = ez;
  1542. idle(); // housekeeping
  1543. }
  1544. }
  1545. }
  1546. SERIAL_ECHOLNPGM("done");
  1547. }
  1548. #endif // UBL_G29_P31
  1549. #endif // AUTO_BED_LEVELING_UBL