My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 281KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[XYZ] = { false };
  269. bool axis_homed[XYZ] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. const float homing_feedrate_mm_s[] = {
  288. #if ENABLED(DELTA)
  289. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  290. #else
  291. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  292. #endif
  293. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  294. };
  295. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[XYZ] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[XYZ] = { 0 };
  307. // Software Endstops are based on the configured limits.
  308. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  309. bool soft_endstops_enabled = true;
  310. #endif
  311. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  312. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  313. #if FAN_COUNT > 0
  314. int fanSpeeds[FAN_COUNT] = { 0 };
  315. #endif
  316. // The active extruder (tool). Set with T<extruder> command.
  317. uint8_t active_extruder = 0;
  318. // Relative Mode. Enable with G91, disable with G90.
  319. static bool relative_mode = false;
  320. volatile bool wait_for_heatup = true;
  321. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  322. volatile bool wait_for_user = false;
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  327. static int serial_count = 0;
  328. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  329. static char* seen_pointer;
  330. // Next Immediate GCode Command pointer. NULL if none.
  331. const char* queued_commands_P = NULL;
  332. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  333. // Inactivity shutdown
  334. millis_t previous_cmd_ms = 0;
  335. static millis_t max_inactive_time = 0;
  336. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  337. // Print Job Timer
  338. #if ENABLED(PRINTCOUNTER)
  339. PrintCounter print_job_timer = PrintCounter();
  340. #else
  341. Stopwatch print_job_timer = Stopwatch();
  342. #endif
  343. // Buzzer - I2C on the LCD or a BEEPER_PIN
  344. #if ENABLED(LCD_USE_I2C_BUZZER)
  345. #define BUZZ(d,f) lcd_buzz(d, f)
  346. #elif HAS_BUZZER
  347. Buzzer buzzer;
  348. #define BUZZ(d,f) buzzer.tone(d, f)
  349. #else
  350. #define BUZZ(d,f) NOOP
  351. #endif
  352. static uint8_t target_extruder;
  353. #if HAS_BED_PROBE
  354. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  355. #endif
  356. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  357. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  358. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  359. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  360. #elif defined(XY_PROBE_SPEED)
  361. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  362. #else
  363. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  364. #endif
  365. #if ENABLED(Z_DUAL_ENDSTOPS)
  366. float z_endstop_adj = 0;
  367. #endif
  368. // Extruder offsets
  369. #if HOTENDS > 1
  370. float hotend_offset[][HOTENDS] = {
  371. HOTEND_OFFSET_X,
  372. HOTEND_OFFSET_Y
  373. #ifdef HOTEND_OFFSET_Z
  374. , HOTEND_OFFSET_Z
  375. #endif
  376. };
  377. #endif
  378. #if HAS_Z_SERVO_ENDSTOP
  379. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  380. #endif
  381. #if ENABLED(BARICUDA)
  382. int baricuda_valve_pressure = 0;
  383. int baricuda_e_to_p_pressure = 0;
  384. #endif
  385. #if ENABLED(FWRETRACT)
  386. bool autoretract_enabled = false;
  387. bool retracted[EXTRUDERS] = { false };
  388. bool retracted_swap[EXTRUDERS] = { false };
  389. float retract_length = RETRACT_LENGTH;
  390. float retract_length_swap = RETRACT_LENGTH_SWAP;
  391. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  392. float retract_zlift = RETRACT_ZLIFT;
  393. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  394. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  395. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  396. #endif // FWRETRACT
  397. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  398. bool powersupply =
  399. #if ENABLED(PS_DEFAULT_OFF)
  400. false
  401. #else
  402. true
  403. #endif
  404. ;
  405. #endif
  406. #if ENABLED(DELTA)
  407. #define SIN_60 0.8660254037844386
  408. #define COS_60 0.5
  409. float delta[ABC],
  410. endstop_adj[ABC] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS,
  413. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  414. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  415. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  416. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  417. delta_tower3_x = 0, // back middle tower
  418. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  419. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  420. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  421. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  422. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  423. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  424. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  425. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  426. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  427. delta_clip_start_height = Z_MAX_POS;
  428. float delta_safe_distance_from_top();
  429. #else
  430. static bool home_all_axis = true;
  431. #endif
  432. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  433. int nonlinear_grid_spacing[2] = { 0 };
  434. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  435. #endif
  436. #if IS_SCARA
  437. // Float constants for SCARA calculations
  438. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  439. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  440. L2_2 = sq(float(L2));
  441. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  442. delta[ABC];
  443. #endif
  444. float cartes[XYZ] = { 0 };
  445. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  446. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  447. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  448. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  449. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  450. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  451. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  452. #endif
  453. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  454. static bool filament_ran_out = false;
  455. #endif
  456. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  457. FilamentChangeMenuResponse filament_change_menu_response;
  458. #endif
  459. #if ENABLED(MIXING_EXTRUDER)
  460. float mixing_factor[MIXING_STEPPERS];
  461. #if MIXING_VIRTUAL_TOOLS > 1
  462. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  463. #endif
  464. #endif
  465. static bool send_ok[BUFSIZE];
  466. #if HAS_SERVOS
  467. Servo servo[NUM_SERVOS];
  468. #define MOVE_SERVO(I, P) servo[I].move(P)
  469. #if HAS_Z_SERVO_ENDSTOP
  470. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  471. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  472. #endif
  473. #endif
  474. #ifdef CHDK
  475. millis_t chdkHigh = 0;
  476. boolean chdkActive = false;
  477. #endif
  478. #if ENABLED(PID_EXTRUSION_SCALING)
  479. int lpq_len = 20;
  480. #endif
  481. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  482. static MarlinBusyState busy_state = NOT_BUSY;
  483. static millis_t next_busy_signal_ms = 0;
  484. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  485. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  486. #else
  487. #define host_keepalive() ;
  488. #define KEEPALIVE_STATE(n) ;
  489. #endif // HOST_KEEPALIVE_FEATURE
  490. #define DEFINE_PGM_READ_ANY(type, reader) \
  491. static inline type pgm_read_any(const type *p) \
  492. { return pgm_read_##reader##_near(p); }
  493. DEFINE_PGM_READ_ANY(float, float);
  494. DEFINE_PGM_READ_ANY(signed char, byte);
  495. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  496. static const PROGMEM type array##_P[XYZ] = \
  497. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  498. static inline type array(int axis) \
  499. { return pgm_read_any(&array##_P[axis]); }
  500. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  501. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  502. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  503. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  504. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  505. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  506. /**
  507. * ***************************************************************************
  508. * ******************************** FUNCTIONS ********************************
  509. * ***************************************************************************
  510. */
  511. void stop();
  512. void get_available_commands();
  513. void process_next_command();
  514. void prepare_move_to_destination();
  515. void get_cartesian_from_steppers();
  516. void set_current_from_steppers_for_axis(const AxisEnum axis);
  517. #if ENABLED(ARC_SUPPORT)
  518. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  519. #endif
  520. #if ENABLED(BEZIER_CURVE_SUPPORT)
  521. void plan_cubic_move(const float offset[4]);
  522. #endif
  523. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  524. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  525. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  526. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  528. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  531. static void report_current_position();
  532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  533. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  534. serialprintPGM(prefix);
  535. SERIAL_ECHOPAIR("(", x);
  536. SERIAL_ECHOPAIR(", ", y);
  537. SERIAL_ECHOPAIR(", ", z);
  538. SERIAL_ECHOPGM(")");
  539. if (suffix) serialprintPGM(suffix);
  540. else SERIAL_EOL;
  541. }
  542. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  543. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  544. }
  545. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  546. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  547. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  548. }
  549. #endif
  550. #define DEBUG_POS(SUFFIX,VAR) do { \
  551. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  552. #endif
  553. /**
  554. * sync_plan_position
  555. *
  556. * Set the planner/stepper positions directly from current_position with
  557. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  558. */
  559. inline void sync_plan_position() {
  560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  561. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  562. #endif
  563. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  564. }
  565. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  566. #if IS_KINEMATIC
  567. inline void sync_plan_position_kinematic() {
  568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  569. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  570. #endif
  571. inverse_kinematics(current_position);
  572. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  573. }
  574. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  575. #else
  576. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  577. #endif
  578. #if ENABLED(SDSUPPORT)
  579. #include "SdFatUtil.h"
  580. int freeMemory() { return SdFatUtil::FreeRam(); }
  581. #else
  582. extern "C" {
  583. extern unsigned int __bss_end;
  584. extern unsigned int __heap_start;
  585. extern void* __brkval;
  586. int freeMemory() {
  587. int free_memory;
  588. if ((int)__brkval == 0)
  589. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  590. else
  591. free_memory = ((int)&free_memory) - ((int)__brkval);
  592. return free_memory;
  593. }
  594. }
  595. #endif //!SDSUPPORT
  596. #if ENABLED(DIGIPOT_I2C)
  597. extern void digipot_i2c_set_current(int channel, float current);
  598. extern void digipot_i2c_init();
  599. #endif
  600. /**
  601. * Inject the next "immediate" command, when possible.
  602. * Return true if any immediate commands remain to inject.
  603. */
  604. static bool drain_queued_commands_P() {
  605. if (queued_commands_P != NULL) {
  606. size_t i = 0;
  607. char c, cmd[30];
  608. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  609. cmd[sizeof(cmd) - 1] = '\0';
  610. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  611. cmd[i] = '\0';
  612. if (enqueue_and_echo_command(cmd)) { // success?
  613. if (c) // newline char?
  614. queued_commands_P += i + 1; // advance to the next command
  615. else
  616. queued_commands_P = NULL; // nul char? no more commands
  617. }
  618. }
  619. return (queued_commands_P != NULL); // return whether any more remain
  620. }
  621. /**
  622. * Record one or many commands to run from program memory.
  623. * Aborts the current queue, if any.
  624. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  625. */
  626. void enqueue_and_echo_commands_P(const char* pgcode) {
  627. queued_commands_P = pgcode;
  628. drain_queued_commands_P(); // first command executed asap (when possible)
  629. }
  630. void clear_command_queue() {
  631. cmd_queue_index_r = cmd_queue_index_w;
  632. commands_in_queue = 0;
  633. }
  634. /**
  635. * Once a new command is in the ring buffer, call this to commit it
  636. */
  637. inline void _commit_command(bool say_ok) {
  638. send_ok[cmd_queue_index_w] = say_ok;
  639. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  640. commands_in_queue++;
  641. }
  642. /**
  643. * Copy a command directly into the main command buffer, from RAM.
  644. * Returns true if successfully adds the command
  645. */
  646. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  647. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  648. strcpy(command_queue[cmd_queue_index_w], cmd);
  649. _commit_command(say_ok);
  650. return true;
  651. }
  652. void enqueue_and_echo_command_now(const char* cmd) {
  653. while (!enqueue_and_echo_command(cmd)) idle();
  654. }
  655. /**
  656. * Enqueue with Serial Echo
  657. */
  658. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  659. if (_enqueuecommand(cmd, say_ok)) {
  660. SERIAL_ECHO_START;
  661. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  662. SERIAL_ECHOLNPGM("\"");
  663. return true;
  664. }
  665. return false;
  666. }
  667. void setup_killpin() {
  668. #if HAS_KILL
  669. SET_INPUT(KILL_PIN);
  670. WRITE(KILL_PIN, HIGH);
  671. #endif
  672. }
  673. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  674. void setup_filrunoutpin() {
  675. pinMode(FIL_RUNOUT_PIN, INPUT);
  676. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  677. WRITE(FIL_RUNOUT_PIN, HIGH);
  678. #endif
  679. }
  680. #endif
  681. // Set home pin
  682. void setup_homepin(void) {
  683. #if HAS_HOME
  684. SET_INPUT(HOME_PIN);
  685. WRITE(HOME_PIN, HIGH);
  686. #endif
  687. }
  688. void setup_photpin() {
  689. #if HAS_PHOTOGRAPH
  690. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  691. #endif
  692. }
  693. void setup_powerhold() {
  694. #if HAS_SUICIDE
  695. OUT_WRITE(SUICIDE_PIN, HIGH);
  696. #endif
  697. #if HAS_POWER_SWITCH
  698. #if ENABLED(PS_DEFAULT_OFF)
  699. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  700. #else
  701. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  702. #endif
  703. #endif
  704. }
  705. void suicide() {
  706. #if HAS_SUICIDE
  707. OUT_WRITE(SUICIDE_PIN, LOW);
  708. #endif
  709. }
  710. void servo_init() {
  711. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  712. servo[0].attach(SERVO0_PIN);
  713. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  714. #endif
  715. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  716. servo[1].attach(SERVO1_PIN);
  717. servo[1].detach();
  718. #endif
  719. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  720. servo[2].attach(SERVO2_PIN);
  721. servo[2].detach();
  722. #endif
  723. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  724. servo[3].attach(SERVO3_PIN);
  725. servo[3].detach();
  726. #endif
  727. #if HAS_Z_SERVO_ENDSTOP
  728. /**
  729. * Set position of Z Servo Endstop
  730. *
  731. * The servo might be deployed and positioned too low to stow
  732. * when starting up the machine or rebooting the board.
  733. * There's no way to know where the nozzle is positioned until
  734. * homing has been done - no homing with z-probe without init!
  735. *
  736. */
  737. STOW_Z_SERVO();
  738. #endif
  739. }
  740. /**
  741. * Stepper Reset (RigidBoard, et.al.)
  742. */
  743. #if HAS_STEPPER_RESET
  744. void disableStepperDrivers() {
  745. pinMode(STEPPER_RESET_PIN, OUTPUT);
  746. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  747. }
  748. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  749. #endif
  750. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  751. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  752. i2c.receive(bytes);
  753. }
  754. void i2c_on_request() { // just send dummy data for now
  755. i2c.reply("Hello World!\n");
  756. }
  757. #endif
  758. void gcode_line_error(const char* err, bool doFlush = true) {
  759. SERIAL_ERROR_START;
  760. serialprintPGM(err);
  761. SERIAL_ERRORLN(gcode_LastN);
  762. //Serial.println(gcode_N);
  763. if (doFlush) FlushSerialRequestResend();
  764. serial_count = 0;
  765. }
  766. inline void get_serial_commands() {
  767. static char serial_line_buffer[MAX_CMD_SIZE];
  768. static boolean serial_comment_mode = false;
  769. // If the command buffer is empty for too long,
  770. // send "wait" to indicate Marlin is still waiting.
  771. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  772. static millis_t last_command_time = 0;
  773. millis_t ms = millis();
  774. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  775. SERIAL_ECHOLNPGM(MSG_WAIT);
  776. last_command_time = ms;
  777. }
  778. #endif
  779. /**
  780. * Loop while serial characters are incoming and the queue is not full
  781. */
  782. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  783. char serial_char = MYSERIAL.read();
  784. /**
  785. * If the character ends the line
  786. */
  787. if (serial_char == '\n' || serial_char == '\r') {
  788. serial_comment_mode = false; // end of line == end of comment
  789. if (!serial_count) continue; // skip empty lines
  790. serial_line_buffer[serial_count] = 0; // terminate string
  791. serial_count = 0; //reset buffer
  792. char* command = serial_line_buffer;
  793. while (*command == ' ') command++; // skip any leading spaces
  794. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  795. char* apos = strchr(command, '*');
  796. if (npos) {
  797. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  798. if (M110) {
  799. char* n2pos = strchr(command + 4, 'N');
  800. if (n2pos) npos = n2pos;
  801. }
  802. gcode_N = strtol(npos + 1, NULL, 10);
  803. if (gcode_N != gcode_LastN + 1 && !M110) {
  804. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  805. return;
  806. }
  807. if (apos) {
  808. byte checksum = 0, count = 0;
  809. while (command[count] != '*') checksum ^= command[count++];
  810. if (strtol(apos + 1, NULL, 10) != checksum) {
  811. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  812. return;
  813. }
  814. // if no errors, continue parsing
  815. }
  816. else {
  817. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  818. return;
  819. }
  820. gcode_LastN = gcode_N;
  821. // if no errors, continue parsing
  822. }
  823. else if (apos) { // No '*' without 'N'
  824. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  825. return;
  826. }
  827. // Movement commands alert when stopped
  828. if (IsStopped()) {
  829. char* gpos = strchr(command, 'G');
  830. if (gpos) {
  831. int codenum = strtol(gpos + 1, NULL, 10);
  832. switch (codenum) {
  833. case 0:
  834. case 1:
  835. case 2:
  836. case 3:
  837. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  838. LCD_MESSAGEPGM(MSG_STOPPED);
  839. break;
  840. }
  841. }
  842. }
  843. #if DISABLED(EMERGENCY_PARSER)
  844. // If command was e-stop process now
  845. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  846. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  847. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  848. #endif
  849. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  850. last_command_time = ms;
  851. #endif
  852. // Add the command to the queue
  853. _enqueuecommand(serial_line_buffer, true);
  854. }
  855. else if (serial_count >= MAX_CMD_SIZE - 1) {
  856. // Keep fetching, but ignore normal characters beyond the max length
  857. // The command will be injected when EOL is reached
  858. }
  859. else if (serial_char == '\\') { // Handle escapes
  860. if (MYSERIAL.available() > 0) {
  861. // if we have one more character, copy it over
  862. serial_char = MYSERIAL.read();
  863. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  864. }
  865. // otherwise do nothing
  866. }
  867. else { // it's not a newline, carriage return or escape char
  868. if (serial_char == ';') serial_comment_mode = true;
  869. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  870. }
  871. } // queue has space, serial has data
  872. }
  873. #if ENABLED(SDSUPPORT)
  874. inline void get_sdcard_commands() {
  875. static bool stop_buffering = false,
  876. sd_comment_mode = false;
  877. if (!card.sdprinting) return;
  878. /**
  879. * '#' stops reading from SD to the buffer prematurely, so procedural
  880. * macro calls are possible. If it occurs, stop_buffering is triggered
  881. * and the buffer is run dry; this character _can_ occur in serial com
  882. * due to checksums, however, no checksums are used in SD printing.
  883. */
  884. if (commands_in_queue == 0) stop_buffering = false;
  885. uint16_t sd_count = 0;
  886. bool card_eof = card.eof();
  887. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  888. int16_t n = card.get();
  889. char sd_char = (char)n;
  890. card_eof = card.eof();
  891. if (card_eof || n == -1
  892. || sd_char == '\n' || sd_char == '\r'
  893. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  894. ) {
  895. if (card_eof) {
  896. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  897. card.printingHasFinished();
  898. card.checkautostart(true);
  899. }
  900. else if (n == -1) {
  901. SERIAL_ERROR_START;
  902. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  903. }
  904. if (sd_char == '#') stop_buffering = true;
  905. sd_comment_mode = false; //for new command
  906. if (!sd_count) continue; //skip empty lines
  907. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  908. sd_count = 0; //clear buffer
  909. _commit_command(false);
  910. }
  911. else if (sd_count >= MAX_CMD_SIZE - 1) {
  912. /**
  913. * Keep fetching, but ignore normal characters beyond the max length
  914. * The command will be injected when EOL is reached
  915. */
  916. }
  917. else {
  918. if (sd_char == ';') sd_comment_mode = true;
  919. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  920. }
  921. }
  922. }
  923. #endif // SDSUPPORT
  924. /**
  925. * Add to the circular command queue the next command from:
  926. * - The command-injection queue (queued_commands_P)
  927. * - The active serial input (usually USB)
  928. * - The SD card file being actively printed
  929. */
  930. void get_available_commands() {
  931. // if any immediate commands remain, don't get other commands yet
  932. if (drain_queued_commands_P()) return;
  933. get_serial_commands();
  934. #if ENABLED(SDSUPPORT)
  935. get_sdcard_commands();
  936. #endif
  937. }
  938. inline bool code_has_value() {
  939. int i = 1;
  940. char c = seen_pointer[i];
  941. while (c == ' ') c = seen_pointer[++i];
  942. if (c == '-' || c == '+') c = seen_pointer[++i];
  943. if (c == '.') c = seen_pointer[++i];
  944. return NUMERIC(c);
  945. }
  946. inline float code_value_float() {
  947. float ret;
  948. char* e = strchr(seen_pointer, 'E');
  949. if (e) {
  950. *e = 0;
  951. ret = strtod(seen_pointer + 1, NULL);
  952. *e = 'E';
  953. }
  954. else
  955. ret = strtod(seen_pointer + 1, NULL);
  956. return ret;
  957. }
  958. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  959. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  960. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  961. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  962. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  963. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  964. #if ENABLED(INCH_MODE_SUPPORT)
  965. inline void set_input_linear_units(LinearUnit units) {
  966. switch (units) {
  967. case LINEARUNIT_INCH:
  968. linear_unit_factor = 25.4;
  969. break;
  970. case LINEARUNIT_MM:
  971. default:
  972. linear_unit_factor = 1.0;
  973. break;
  974. }
  975. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  976. }
  977. inline float axis_unit_factor(int axis) {
  978. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  979. }
  980. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  981. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  982. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  983. #else
  984. inline float code_value_linear_units() { return code_value_float(); }
  985. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  986. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  987. #endif
  988. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  989. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  990. float code_value_temp_abs() {
  991. switch (input_temp_units) {
  992. case TEMPUNIT_C:
  993. return code_value_float();
  994. case TEMPUNIT_F:
  995. return (code_value_float() - 32) * 0.5555555556;
  996. case TEMPUNIT_K:
  997. return code_value_float() - 272.15;
  998. default:
  999. return code_value_float();
  1000. }
  1001. }
  1002. float code_value_temp_diff() {
  1003. switch (input_temp_units) {
  1004. case TEMPUNIT_C:
  1005. case TEMPUNIT_K:
  1006. return code_value_float();
  1007. case TEMPUNIT_F:
  1008. return code_value_float() * 0.5555555556;
  1009. default:
  1010. return code_value_float();
  1011. }
  1012. }
  1013. #else
  1014. float code_value_temp_abs() { return code_value_float(); }
  1015. float code_value_temp_diff() { return code_value_float(); }
  1016. #endif
  1017. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1018. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1019. bool code_seen(char code) {
  1020. seen_pointer = strchr(current_command_args, code);
  1021. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1022. }
  1023. /**
  1024. * Set target_extruder from the T parameter or the active_extruder
  1025. *
  1026. * Returns TRUE if the target is invalid
  1027. */
  1028. bool get_target_extruder_from_command(int code) {
  1029. if (code_seen('T')) {
  1030. if (code_value_byte() >= EXTRUDERS) {
  1031. SERIAL_ECHO_START;
  1032. SERIAL_CHAR('M');
  1033. SERIAL_ECHO(code);
  1034. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1035. return true;
  1036. }
  1037. target_extruder = code_value_byte();
  1038. }
  1039. else
  1040. target_extruder = active_extruder;
  1041. return false;
  1042. }
  1043. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1044. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1045. #endif
  1046. #if ENABLED(DUAL_X_CARRIAGE)
  1047. #define DXC_FULL_CONTROL_MODE 0
  1048. #define DXC_AUTO_PARK_MODE 1
  1049. #define DXC_DUPLICATION_MODE 2
  1050. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1051. static float x_home_pos(int extruder) {
  1052. if (extruder == 0)
  1053. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1054. else
  1055. /**
  1056. * In dual carriage mode the extruder offset provides an override of the
  1057. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1058. * This allow soft recalibration of the second extruder offset position
  1059. * without firmware reflash (through the M218 command).
  1060. */
  1061. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1062. }
  1063. static int x_home_dir(int extruder) {
  1064. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1065. }
  1066. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1067. static bool active_extruder_parked = false; // used in mode 1 & 2
  1068. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1069. static millis_t delayed_move_time = 0; // used in mode 1
  1070. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1071. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1072. #endif //DUAL_X_CARRIAGE
  1073. /**
  1074. * Software endstops can be used to monitor the open end of
  1075. * an axis that has a hardware endstop on the other end. Or
  1076. * they can prevent axes from moving past endstops and grinding.
  1077. *
  1078. * To keep doing their job as the coordinate system changes,
  1079. * the software endstop positions must be refreshed to remain
  1080. * at the same positions relative to the machine.
  1081. */
  1082. void update_software_endstops(AxisEnum axis) {
  1083. float offs = LOGICAL_POSITION(0, axis);
  1084. #if ENABLED(DUAL_X_CARRIAGE)
  1085. if (axis == X_AXIS) {
  1086. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1087. if (active_extruder != 0) {
  1088. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1089. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1090. return;
  1091. }
  1092. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1093. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1094. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1095. return;
  1096. }
  1097. }
  1098. else
  1099. #endif
  1100. {
  1101. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1102. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1103. }
  1104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1105. if (DEBUGGING(LEVELING)) {
  1106. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1107. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1108. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1109. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1110. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1111. }
  1112. #endif
  1113. #if ENABLED(DELTA)
  1114. if (axis == Z_AXIS)
  1115. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1116. #endif
  1117. }
  1118. /**
  1119. * Change the home offset for an axis, update the current
  1120. * position and the software endstops to retain the same
  1121. * relative distance to the new home.
  1122. *
  1123. * Since this changes the current_position, code should
  1124. * call sync_plan_position soon after this.
  1125. */
  1126. static void set_home_offset(AxisEnum axis, float v) {
  1127. current_position[axis] += v - home_offset[axis];
  1128. home_offset[axis] = v;
  1129. update_software_endstops(axis);
  1130. }
  1131. /**
  1132. * Set an axis' current position to its home position (after homing).
  1133. *
  1134. * For Core and Cartesian robots this applies one-to-one when an
  1135. * individual axis has been homed.
  1136. *
  1137. * DELTA should wait until all homing is done before setting the XYZ
  1138. * current_position to home, because homing is a single operation.
  1139. * In the case where the axis positions are already known and previously
  1140. * homed, DELTA could home to X or Y individually by moving either one
  1141. * to the center. However, homing Z always homes XY and Z.
  1142. *
  1143. * SCARA should wait until all XY homing is done before setting the XY
  1144. * current_position to home, because neither X nor Y is at home until
  1145. * both are at home. Z can however be homed individually.
  1146. *
  1147. */
  1148. static void set_axis_is_at_home(AxisEnum axis) {
  1149. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1150. if (DEBUGGING(LEVELING)) {
  1151. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1152. SERIAL_ECHOLNPGM(")");
  1153. }
  1154. #endif
  1155. position_shift[axis] = 0;
  1156. #if ENABLED(DUAL_X_CARRIAGE)
  1157. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1158. if (active_extruder != 0)
  1159. current_position[X_AXIS] = x_home_pos(active_extruder);
  1160. else
  1161. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1162. update_software_endstops(X_AXIS);
  1163. return;
  1164. }
  1165. #endif
  1166. #if ENABLED(MORGAN_SCARA)
  1167. if (axis == X_AXIS || axis == Y_AXIS) {
  1168. float homeposition[XYZ];
  1169. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1170. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1171. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1172. /**
  1173. * Get Home position SCARA arm angles using inverse kinematics,
  1174. * and calculate homing offset using forward kinematics
  1175. */
  1176. inverse_kinematics(homeposition);
  1177. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1178. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1179. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1180. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1181. /**
  1182. * SCARA home positions are based on configuration since the actual
  1183. * limits are determined by the inverse kinematic transform.
  1184. */
  1185. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1186. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1187. }
  1188. else
  1189. #endif
  1190. {
  1191. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1192. update_software_endstops(axis);
  1193. if (axis == Z_AXIS) {
  1194. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1195. #if HOMING_Z_WITH_PROBE
  1196. current_position[Z_AXIS] -= zprobe_zoffset;
  1197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1198. if (DEBUGGING(LEVELING)) {
  1199. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1200. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1201. }
  1202. #endif
  1203. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1204. if (DEBUGGING(LEVELING))
  1205. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1206. #endif
  1207. #endif
  1208. }
  1209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1210. if (DEBUGGING(LEVELING)) {
  1211. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1212. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1213. DEBUG_POS("", current_position);
  1214. }
  1215. #endif
  1216. }
  1217. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1218. if (DEBUGGING(LEVELING)) {
  1219. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1220. SERIAL_ECHOLNPGM(")");
  1221. }
  1222. #endif
  1223. axis_known_position[axis] = axis_homed[axis] = true;
  1224. }
  1225. /**
  1226. * Some planner shorthand inline functions
  1227. */
  1228. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1229. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1230. int hbd = homing_bump_divisor[axis];
  1231. if (hbd < 1) {
  1232. hbd = 10;
  1233. SERIAL_ECHO_START;
  1234. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1235. }
  1236. return homing_feedrate_mm_s[axis] / hbd;
  1237. }
  1238. //
  1239. // line_to_current_position
  1240. // Move the planner to the current position from wherever it last moved
  1241. // (or from wherever it has been told it is located).
  1242. //
  1243. inline void line_to_current_position() {
  1244. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1245. }
  1246. inline void line_to_z(float zPosition) {
  1247. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1248. }
  1249. //
  1250. // line_to_destination
  1251. // Move the planner, not necessarily synced with current_position
  1252. //
  1253. inline void line_to_destination(float fr_mm_s) {
  1254. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1255. }
  1256. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1257. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1258. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1259. #if ENABLED(DELTA)
  1260. /**
  1261. * Calculate delta, start a line, and set current_position to destination
  1262. */
  1263. void prepare_move_to_destination_raw() {
  1264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1265. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1266. #endif
  1267. refresh_cmd_timeout();
  1268. inverse_kinematics(destination);
  1269. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1270. set_current_to_destination();
  1271. }
  1272. #endif
  1273. /**
  1274. * Plan a move to (X, Y, Z) and set the current_position
  1275. * The final current_position may not be the one that was requested
  1276. */
  1277. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1278. float old_feedrate_mm_s = feedrate_mm_s;
  1279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1280. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1281. #endif
  1282. #if ENABLED(DELTA)
  1283. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1284. set_destination_to_current(); // sync destination at the start
  1285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1286. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1287. #endif
  1288. // when in the danger zone
  1289. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1290. if (z > delta_clip_start_height) { // staying in the danger zone
  1291. destination[X_AXIS] = x; // move directly (uninterpolated)
  1292. destination[Y_AXIS] = y;
  1293. destination[Z_AXIS] = z;
  1294. prepare_move_to_destination_raw(); // set_current_to_destination
  1295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1296. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1297. #endif
  1298. return;
  1299. }
  1300. else {
  1301. destination[Z_AXIS] = delta_clip_start_height;
  1302. prepare_move_to_destination_raw(); // set_current_to_destination
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1305. #endif
  1306. }
  1307. }
  1308. if (z > current_position[Z_AXIS]) { // raising?
  1309. destination[Z_AXIS] = z;
  1310. prepare_move_to_destination_raw(); // set_current_to_destination
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1313. #endif
  1314. }
  1315. destination[X_AXIS] = x;
  1316. destination[Y_AXIS] = y;
  1317. prepare_move_to_destination(); // set_current_to_destination
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1320. #endif
  1321. if (z < current_position[Z_AXIS]) { // lowering?
  1322. destination[Z_AXIS] = z;
  1323. prepare_move_to_destination_raw(); // set_current_to_destination
  1324. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1325. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1326. #endif
  1327. }
  1328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1329. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1330. #endif
  1331. #else
  1332. // If Z needs to raise, do it before moving XY
  1333. if (current_position[Z_AXIS] < z) {
  1334. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1335. current_position[Z_AXIS] = z;
  1336. line_to_current_position();
  1337. }
  1338. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1339. current_position[X_AXIS] = x;
  1340. current_position[Y_AXIS] = y;
  1341. line_to_current_position();
  1342. // If Z needs to lower, do it after moving XY
  1343. if (current_position[Z_AXIS] > z) {
  1344. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1345. current_position[Z_AXIS] = z;
  1346. line_to_current_position();
  1347. }
  1348. #endif
  1349. stepper.synchronize();
  1350. feedrate_mm_s = old_feedrate_mm_s;
  1351. }
  1352. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1353. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1354. }
  1355. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1356. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1357. }
  1358. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1359. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1360. }
  1361. //
  1362. // Prepare to do endstop or probe moves
  1363. // with custom feedrates.
  1364. //
  1365. // - Save current feedrates
  1366. // - Reset the rate multiplier
  1367. // - Reset the command timeout
  1368. // - Enable the endstops (for endstop moves)
  1369. //
  1370. static void setup_for_endstop_or_probe_move() {
  1371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1372. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1373. #endif
  1374. saved_feedrate_mm_s = feedrate_mm_s;
  1375. saved_feedrate_percentage = feedrate_percentage;
  1376. feedrate_percentage = 100;
  1377. refresh_cmd_timeout();
  1378. }
  1379. static void clean_up_after_endstop_or_probe_move() {
  1380. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1381. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1382. #endif
  1383. feedrate_mm_s = saved_feedrate_mm_s;
  1384. feedrate_percentage = saved_feedrate_percentage;
  1385. refresh_cmd_timeout();
  1386. }
  1387. #if HAS_BED_PROBE
  1388. /**
  1389. * Raise Z to a minimum height to make room for a probe to move
  1390. */
  1391. inline void do_probe_raise(float z_raise) {
  1392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1393. if (DEBUGGING(LEVELING)) {
  1394. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1395. SERIAL_ECHOLNPGM(")");
  1396. }
  1397. #endif
  1398. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1399. if (z_dest > current_position[Z_AXIS])
  1400. do_blocking_move_to_z(z_dest);
  1401. }
  1402. #endif //HAS_BED_PROBE
  1403. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1404. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1405. const bool xx = x && !axis_homed[X_AXIS],
  1406. yy = y && !axis_homed[Y_AXIS],
  1407. zz = z && !axis_homed[Z_AXIS];
  1408. if (xx || yy || zz) {
  1409. SERIAL_ECHO_START;
  1410. SERIAL_ECHOPGM(MSG_HOME " ");
  1411. if (xx) SERIAL_ECHOPGM(MSG_X);
  1412. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1413. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1414. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1415. #if ENABLED(ULTRA_LCD)
  1416. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1417. strcat_P(message, PSTR(MSG_HOME " "));
  1418. if (xx) strcat_P(message, PSTR(MSG_X));
  1419. if (yy) strcat_P(message, PSTR(MSG_Y));
  1420. if (zz) strcat_P(message, PSTR(MSG_Z));
  1421. strcat_P(message, PSTR(" " MSG_FIRST));
  1422. lcd_setstatus(message);
  1423. #endif
  1424. return true;
  1425. }
  1426. return false;
  1427. }
  1428. #endif
  1429. #if ENABLED(Z_PROBE_SLED)
  1430. #ifndef SLED_DOCKING_OFFSET
  1431. #define SLED_DOCKING_OFFSET 0
  1432. #endif
  1433. /**
  1434. * Method to dock/undock a sled designed by Charles Bell.
  1435. *
  1436. * stow[in] If false, move to MAX_X and engage the solenoid
  1437. * If true, move to MAX_X and release the solenoid
  1438. */
  1439. static void dock_sled(bool stow) {
  1440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1441. if (DEBUGGING(LEVELING)) {
  1442. SERIAL_ECHOPAIR("dock_sled(", stow);
  1443. SERIAL_ECHOLNPGM(")");
  1444. }
  1445. #endif
  1446. // Dock sled a bit closer to ensure proper capturing
  1447. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1448. #if PIN_EXISTS(SLED)
  1449. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1450. #endif
  1451. }
  1452. #endif // Z_PROBE_SLED
  1453. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1454. void run_deploy_moves_script() {
  1455. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1456. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1457. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1458. #endif
  1459. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1460. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1461. #endif
  1462. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1463. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1464. #endif
  1465. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1466. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1467. #endif
  1468. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1469. #endif
  1470. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1471. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1472. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1473. #endif
  1474. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1475. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1476. #endif
  1477. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1478. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1479. #endif
  1480. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1481. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1482. #endif
  1483. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1484. #endif
  1485. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1486. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1487. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1488. #endif
  1489. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1490. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1491. #endif
  1492. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1493. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1494. #endif
  1495. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1496. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1497. #endif
  1498. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1499. #endif
  1500. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1501. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1502. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1503. #endif
  1504. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1505. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1506. #endif
  1507. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1508. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1509. #endif
  1510. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1511. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1512. #endif
  1513. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1514. #endif
  1515. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1516. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1517. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1518. #endif
  1519. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1520. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1521. #endif
  1522. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1523. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1524. #endif
  1525. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1526. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1527. #endif
  1528. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1529. #endif
  1530. }
  1531. void run_stow_moves_script() {
  1532. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1533. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1534. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1535. #endif
  1536. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1537. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1538. #endif
  1539. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1540. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1541. #endif
  1542. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1543. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1544. #endif
  1545. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1546. #endif
  1547. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1548. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1549. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1550. #endif
  1551. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1552. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1553. #endif
  1554. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1555. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1558. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1559. #endif
  1560. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1561. #endif
  1562. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1563. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1564. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1565. #endif
  1566. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1567. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1568. #endif
  1569. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1570. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1573. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1574. #endif
  1575. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1576. #endif
  1577. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1578. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1579. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1580. #endif
  1581. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1582. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1583. #endif
  1584. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1585. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1588. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1589. #endif
  1590. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1591. #endif
  1592. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1593. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1594. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1595. #endif
  1596. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1597. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1600. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1603. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1604. #endif
  1605. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1606. #endif
  1607. }
  1608. #endif
  1609. #if HAS_BED_PROBE
  1610. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1611. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1612. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1613. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1614. #else
  1615. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1616. #endif
  1617. #endif
  1618. #define DEPLOY_PROBE() set_probe_deployed(true)
  1619. #define STOW_PROBE() set_probe_deployed(false)
  1620. #if ENABLED(BLTOUCH)
  1621. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1622. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1623. }
  1624. #endif
  1625. // returns false for ok and true for failure
  1626. static bool set_probe_deployed(bool deploy) {
  1627. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1628. if (DEBUGGING(LEVELING)) {
  1629. DEBUG_POS("set_probe_deployed", current_position);
  1630. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1631. }
  1632. #endif
  1633. if (endstops.z_probe_enabled == deploy) return false;
  1634. // Make room for probe
  1635. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1636. // When deploying make sure BLTOUCH is not already triggered
  1637. #if ENABLED(BLTOUCH)
  1638. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1639. #endif
  1640. #if ENABLED(Z_PROBE_SLED)
  1641. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1642. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1643. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1644. #endif
  1645. float oldXpos = current_position[X_AXIS],
  1646. oldYpos = current_position[Y_AXIS];
  1647. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1648. // If endstop is already false, the Z probe is deployed
  1649. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1650. // Would a goto be less ugly?
  1651. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1652. // for a triggered when stowed manual probe.
  1653. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1654. // otherwise an Allen-Key probe can't be stowed.
  1655. #endif
  1656. #if ENABLED(Z_PROBE_SLED)
  1657. dock_sled(!deploy);
  1658. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1659. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1660. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1661. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1662. #endif
  1663. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1664. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1665. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1666. if (IsRunning()) {
  1667. SERIAL_ERROR_START;
  1668. SERIAL_ERRORLNPGM("Z-Probe failed");
  1669. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1670. }
  1671. stop();
  1672. return true;
  1673. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1674. #endif
  1675. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1676. endstops.enable_z_probe(deploy);
  1677. return false;
  1678. }
  1679. static void do_probe_move(float z, float fr_mm_m) {
  1680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1681. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1682. #endif
  1683. // Deploy BLTouch at the start of any probe
  1684. #if ENABLED(BLTOUCH)
  1685. set_bltouch_deployed(true);
  1686. #endif
  1687. // Move down until probe triggered
  1688. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1689. // Retract BLTouch immediately after a probe
  1690. #if ENABLED(BLTOUCH)
  1691. set_bltouch_deployed(false);
  1692. #endif
  1693. // Clear endstop flags
  1694. endstops.hit_on_purpose();
  1695. // Get Z where the steppers were interrupted
  1696. set_current_from_steppers_for_axis(Z_AXIS);
  1697. // Tell the planner where we actually are
  1698. SYNC_PLAN_POSITION_KINEMATIC();
  1699. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1700. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1701. #endif
  1702. }
  1703. // Do a single Z probe and return with current_position[Z_AXIS]
  1704. // at the height where the probe triggered.
  1705. static float run_z_probe() {
  1706. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1707. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1708. #endif
  1709. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1710. refresh_cmd_timeout();
  1711. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1712. // Do a first probe at the fast speed
  1713. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1714. // move up by the bump distance
  1715. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1716. #else
  1717. // If the nozzle is above the travel height then
  1718. // move down quickly before doing the slow probe
  1719. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1720. if (z < current_position[Z_AXIS])
  1721. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1722. #endif
  1723. // move down slowly to find bed
  1724. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1726. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1727. #endif
  1728. return current_position[Z_AXIS];
  1729. }
  1730. //
  1731. // - Move to the given XY
  1732. // - Deploy the probe, if not already deployed
  1733. // - Probe the bed, get the Z position
  1734. // - Depending on the 'stow' flag
  1735. // - Stow the probe, or
  1736. // - Raise to the BETWEEN height
  1737. // - Return the probed Z position
  1738. //
  1739. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1740. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1741. if (DEBUGGING(LEVELING)) {
  1742. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1743. SERIAL_ECHOPAIR(", ", y);
  1744. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1745. SERIAL_ECHOLNPGM(")");
  1746. DEBUG_POS("", current_position);
  1747. }
  1748. #endif
  1749. float old_feedrate_mm_s = feedrate_mm_s;
  1750. // Ensure a minimum height before moving the probe
  1751. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1752. // Move to the XY where we shall probe
  1753. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1754. if (DEBUGGING(LEVELING)) {
  1755. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1756. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1757. SERIAL_ECHOLNPGM(")");
  1758. }
  1759. #endif
  1760. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1761. // Move the probe to the given XY
  1762. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1763. if (DEPLOY_PROBE()) return NAN;
  1764. float measured_z = run_z_probe();
  1765. if (stow) {
  1766. if (STOW_PROBE()) return NAN;
  1767. }
  1768. else {
  1769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1770. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1771. #endif
  1772. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1773. }
  1774. if (verbose_level > 2) {
  1775. SERIAL_PROTOCOLPGM("Bed X: ");
  1776. SERIAL_PROTOCOL_F(x, 3);
  1777. SERIAL_PROTOCOLPGM(" Y: ");
  1778. SERIAL_PROTOCOL_F(y, 3);
  1779. SERIAL_PROTOCOLPGM(" Z: ");
  1780. SERIAL_PROTOCOL_F(measured_z, 3);
  1781. SERIAL_EOL;
  1782. }
  1783. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1784. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1785. #endif
  1786. feedrate_mm_s = old_feedrate_mm_s;
  1787. return measured_z;
  1788. }
  1789. #endif // HAS_BED_PROBE
  1790. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1791. /**
  1792. * Reset calibration results to zero.
  1793. */
  1794. void reset_bed_level() {
  1795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1796. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1797. #endif
  1798. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1799. planner.bed_level_matrix.set_to_identity();
  1800. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1801. memset(bed_level_grid, 0, sizeof(bed_level_grid));
  1802. nonlinear_grid_spacing[X_AXIS] = nonlinear_grid_spacing[Y_AXIS] = 0;
  1803. #endif
  1804. }
  1805. #endif // AUTO_BED_LEVELING_FEATURE
  1806. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1807. /**
  1808. * Get the stepper positions, apply the rotation matrix
  1809. * using the home XY and Z0 position as the fulcrum.
  1810. */
  1811. vector_3 untilted_stepper_position() {
  1812. get_cartesian_from_steppers();
  1813. vector_3 pos = vector_3(
  1814. cartes[X_AXIS] - X_TILT_FULCRUM,
  1815. cartes[Y_AXIS] - Y_TILT_FULCRUM,
  1816. cartes[Z_AXIS]
  1817. );
  1818. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  1819. //pos.debug("untilted_stepper_position offset");
  1820. //bed_level_matrix.debug("untilted_stepper_position");
  1821. //inverse.debug("in untilted_stepper_position");
  1822. pos.apply_rotation(inverse);
  1823. pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
  1824. pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
  1825. pos.z = LOGICAL_Z_POSITION(pos.z);
  1826. //pos.debug("after rotation and reorientation");
  1827. return pos;
  1828. }
  1829. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1830. /**
  1831. * Extrapolate a single point from its neighbors
  1832. */
  1833. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1834. if (bed_level_grid[x][y]) return; // Don't overwrite good values.
  1835. float a = 2 * bed_level_grid[x + xdir][y] - bed_level_grid[x + xdir * 2][y], // Left to right.
  1836. b = 2 * bed_level_grid[x][y + ydir] - bed_level_grid[x][y + ydir * 2], // Front to back.
  1837. c = 2 * bed_level_grid[x + xdir][y + ydir] - bed_level_grid[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1838. // Median is robust (ignores outliers).
  1839. bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1840. : ((c < b) ? b : (a < c) ? a : c);
  1841. }
  1842. /**
  1843. * Fill in the unprobed points (corners of circular print surface)
  1844. * using linear extrapolation, away from the center.
  1845. */
  1846. static void extrapolate_unprobed_bed_level() {
  1847. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  1848. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  1849. for (uint8_t y = 0; y <= half_y; y++) {
  1850. for (uint8_t x = 0; x <= half_x; x++) {
  1851. if (x + y < 3) continue;
  1852. extrapolate_one_point(half_x - x, half_y - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1853. extrapolate_one_point(half_x + x, half_y - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1854. extrapolate_one_point(half_x - x, half_y + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1855. extrapolate_one_point(half_x + x, half_y + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1856. }
  1857. }
  1858. }
  1859. /**
  1860. * Print calibration results for plotting or manual frame adjustment.
  1861. */
  1862. static void print_bed_level() {
  1863. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1864. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1865. SERIAL_PROTOCOL_F(bed_level_grid[x][y], 2);
  1866. SERIAL_PROTOCOLCHAR(' ');
  1867. }
  1868. SERIAL_EOL;
  1869. }
  1870. }
  1871. #endif // AUTO_BED_LEVELING_NONLINEAR
  1872. /**
  1873. * Home an individual linear axis
  1874. */
  1875. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  1876. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1877. set_bltouch_deployed(true);
  1878. #endif
  1879. current_position[axis] = 0;
  1880. sync_plan_position();
  1881. current_position[axis] = where;
  1882. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1883. stepper.synchronize();
  1884. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  1885. set_bltouch_deployed(false);
  1886. #endif
  1887. endstops.hit_on_purpose();
  1888. }
  1889. /**
  1890. * Home an individual "raw axis" to its endstop.
  1891. * This applies to XYZ on Cartesian and Core robots, and
  1892. * to the individual ABC steppers on DELTA and SCARA.
  1893. *
  1894. * At the end of the procedure the axis is marked as
  1895. * homed and the current position of that axis is updated.
  1896. * Kinematic robots should wait till all axes are homed
  1897. * before updating the current position.
  1898. */
  1899. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1900. static void homeaxis(AxisEnum axis) {
  1901. #define CAN_HOME(A) \
  1902. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1903. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1904. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1905. if (DEBUGGING(LEVELING)) {
  1906. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1907. SERIAL_ECHOLNPGM(")");
  1908. }
  1909. #endif
  1910. int axis_home_dir =
  1911. #if ENABLED(DUAL_X_CARRIAGE)
  1912. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1913. #endif
  1914. home_dir(axis);
  1915. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1916. #if HOMING_Z_WITH_PROBE
  1917. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  1918. #endif
  1919. // Set a flag for Z motor locking
  1920. #if ENABLED(Z_DUAL_ENDSTOPS)
  1921. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1922. #endif
  1923. // Move towards the endstop until an endstop is triggered
  1924. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1926. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home ", current_position[axis]);
  1927. #endif
  1928. // Move away from the endstop by the axis HOME_BUMP_MM
  1929. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  1930. // Move slowly towards the endstop until triggered
  1931. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  1932. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1933. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home ", current_position[axis]);
  1934. #endif
  1935. #if ENABLED(Z_DUAL_ENDSTOPS)
  1936. if (axis == Z_AXIS) {
  1937. float adj = fabs(z_endstop_adj);
  1938. bool lockZ1;
  1939. if (axis_home_dir > 0) {
  1940. adj = -adj;
  1941. lockZ1 = (z_endstop_adj > 0);
  1942. }
  1943. else
  1944. lockZ1 = (z_endstop_adj < 0);
  1945. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1946. // Move to the adjusted endstop height
  1947. do_homing_move(axis, adj);
  1948. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1949. stepper.set_homing_flag(false);
  1950. } // Z_AXIS
  1951. #endif
  1952. // Delta has already moved all three towers up in G28
  1953. // so here it re-homes each tower in turn.
  1954. // Delta homing treats the axes as normal linear axes.
  1955. #if ENABLED(DELTA)
  1956. // retrace by the amount specified in endstop_adj
  1957. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1959. if (DEBUGGING(LEVELING)) {
  1960. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1961. DEBUG_POS("", current_position);
  1962. }
  1963. #endif
  1964. do_homing_move(axis, endstop_adj[axis]);
  1965. }
  1966. #else
  1967. // Set the axis position to its home position (plus home offsets)
  1968. set_axis_is_at_home(axis);
  1969. sync_plan_position();
  1970. destination[axis] = current_position[axis];
  1971. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1972. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1973. #endif
  1974. #endif
  1975. // Put away the Z probe
  1976. #if HOMING_Z_WITH_PROBE
  1977. if (axis == Z_AXIS && STOW_PROBE()) return;
  1978. #endif
  1979. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1980. if (DEBUGGING(LEVELING)) {
  1981. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1982. SERIAL_ECHOLNPGM(")");
  1983. }
  1984. #endif
  1985. } // homeaxis()
  1986. #if ENABLED(FWRETRACT)
  1987. void retract(bool retracting, bool swapping = false) {
  1988. if (retracting == retracted[active_extruder]) return;
  1989. float old_feedrate_mm_s = feedrate_mm_s;
  1990. set_destination_to_current();
  1991. if (retracting) {
  1992. feedrate_mm_s = retract_feedrate_mm_s;
  1993. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1994. sync_plan_position_e();
  1995. prepare_move_to_destination();
  1996. if (retract_zlift > 0.01) {
  1997. current_position[Z_AXIS] -= retract_zlift;
  1998. SYNC_PLAN_POSITION_KINEMATIC();
  1999. prepare_move_to_destination();
  2000. }
  2001. }
  2002. else {
  2003. if (retract_zlift > 0.01) {
  2004. current_position[Z_AXIS] += retract_zlift;
  2005. SYNC_PLAN_POSITION_KINEMATIC();
  2006. }
  2007. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2008. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2009. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2010. sync_plan_position_e();
  2011. prepare_move_to_destination();
  2012. }
  2013. feedrate_mm_s = old_feedrate_mm_s;
  2014. retracted[active_extruder] = retracting;
  2015. } // retract()
  2016. #endif // FWRETRACT
  2017. #if ENABLED(MIXING_EXTRUDER)
  2018. void normalize_mix() {
  2019. float mix_total = 0.0;
  2020. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2021. float v = mixing_factor[i];
  2022. if (v < 0) v = mixing_factor[i] = 0;
  2023. mix_total += v;
  2024. }
  2025. // Scale all values if they don't add up to ~1.0
  2026. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2027. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2028. float mix_scale = 1.0 / mix_total;
  2029. for (int i = 0; i < MIXING_STEPPERS; i++)
  2030. mixing_factor[i] *= mix_scale;
  2031. }
  2032. }
  2033. #if ENABLED(DIRECT_MIXING_IN_G1)
  2034. // Get mixing parameters from the GCode
  2035. // Factors that are left out are set to 0
  2036. // The total "must" be 1.0 (but it will be normalized)
  2037. void gcode_get_mix() {
  2038. const char* mixing_codes = "ABCDHI";
  2039. for (int i = 0; i < MIXING_STEPPERS; i++)
  2040. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2041. normalize_mix();
  2042. }
  2043. #endif
  2044. #endif
  2045. /**
  2046. * ***************************************************************************
  2047. * ***************************** G-CODE HANDLING *****************************
  2048. * ***************************************************************************
  2049. */
  2050. /**
  2051. * Set XYZE destination and feedrate from the current GCode command
  2052. *
  2053. * - Set destination from included axis codes
  2054. * - Set to current for missing axis codes
  2055. * - Set the feedrate, if included
  2056. */
  2057. void gcode_get_destination() {
  2058. LOOP_XYZE(i) {
  2059. if (code_seen(axis_codes[i]))
  2060. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2061. else
  2062. destination[i] = current_position[i];
  2063. }
  2064. if (code_seen('F') && code_value_linear_units() > 0.0)
  2065. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2066. #if ENABLED(PRINTCOUNTER)
  2067. if (!DEBUGGING(DRYRUN))
  2068. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2069. #endif
  2070. // Get ABCDHI mixing factors
  2071. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2072. gcode_get_mix();
  2073. #endif
  2074. }
  2075. void unknown_command_error() {
  2076. SERIAL_ECHO_START;
  2077. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2078. SERIAL_ECHOLNPGM("\"");
  2079. }
  2080. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2081. /**
  2082. * Output a "busy" message at regular intervals
  2083. * while the machine is not accepting commands.
  2084. */
  2085. void host_keepalive() {
  2086. millis_t ms = millis();
  2087. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2088. if (PENDING(ms, next_busy_signal_ms)) return;
  2089. switch (busy_state) {
  2090. case IN_HANDLER:
  2091. case IN_PROCESS:
  2092. SERIAL_ECHO_START;
  2093. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2094. break;
  2095. case PAUSED_FOR_USER:
  2096. SERIAL_ECHO_START;
  2097. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2098. break;
  2099. case PAUSED_FOR_INPUT:
  2100. SERIAL_ECHO_START;
  2101. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2102. break;
  2103. default:
  2104. break;
  2105. }
  2106. }
  2107. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2108. }
  2109. #endif //HOST_KEEPALIVE_FEATURE
  2110. bool position_is_reachable(float target[XYZ]) {
  2111. float dx = RAW_X_POSITION(target[X_AXIS]),
  2112. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2113. #if ENABLED(DELTA)
  2114. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2115. #else
  2116. float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2117. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2118. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2119. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2120. #endif
  2121. }
  2122. /**************************************************
  2123. ***************** GCode Handlers *****************
  2124. **************************************************/
  2125. /**
  2126. * G0, G1: Coordinated movement of X Y Z E axes
  2127. */
  2128. inline void gcode_G0_G1() {
  2129. if (IsRunning()) {
  2130. gcode_get_destination(); // For X Y Z E F
  2131. #if ENABLED(FWRETRACT)
  2132. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2133. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2134. // Is this move an attempt to retract or recover?
  2135. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2136. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2137. sync_plan_position_e(); // AND from the planner
  2138. retract(!retracted[active_extruder]);
  2139. return;
  2140. }
  2141. }
  2142. #endif //FWRETRACT
  2143. prepare_move_to_destination();
  2144. }
  2145. }
  2146. /**
  2147. * G2: Clockwise Arc
  2148. * G3: Counterclockwise Arc
  2149. */
  2150. #if ENABLED(ARC_SUPPORT)
  2151. inline void gcode_G2_G3(bool clockwise) {
  2152. if (IsRunning()) {
  2153. #if ENABLED(SF_ARC_FIX)
  2154. bool relative_mode_backup = relative_mode;
  2155. relative_mode = true;
  2156. #endif
  2157. gcode_get_destination();
  2158. #if ENABLED(SF_ARC_FIX)
  2159. relative_mode = relative_mode_backup;
  2160. #endif
  2161. // Center of arc as offset from current_position
  2162. float arc_offset[2] = {
  2163. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2164. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2165. };
  2166. // Send an arc to the planner
  2167. plan_arc(destination, arc_offset, clockwise);
  2168. refresh_cmd_timeout();
  2169. }
  2170. }
  2171. #endif
  2172. /**
  2173. * G4: Dwell S<seconds> or P<milliseconds>
  2174. */
  2175. inline void gcode_G4() {
  2176. millis_t dwell_ms = 0;
  2177. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2178. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2179. stepper.synchronize();
  2180. refresh_cmd_timeout();
  2181. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2182. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2183. while (PENDING(millis(), dwell_ms)) idle();
  2184. }
  2185. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2186. /**
  2187. * Parameters interpreted according to:
  2188. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2189. * However I, J omission is not supported at this point; all
  2190. * parameters can be omitted and default to zero.
  2191. */
  2192. /**
  2193. * G5: Cubic B-spline
  2194. */
  2195. inline void gcode_G5() {
  2196. if (IsRunning()) {
  2197. gcode_get_destination();
  2198. float offset[] = {
  2199. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2200. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2201. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2202. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2203. };
  2204. plan_cubic_move(offset);
  2205. }
  2206. }
  2207. #endif // BEZIER_CURVE_SUPPORT
  2208. #if ENABLED(FWRETRACT)
  2209. /**
  2210. * G10 - Retract filament according to settings of M207
  2211. * G11 - Recover filament according to settings of M208
  2212. */
  2213. inline void gcode_G10_G11(bool doRetract=false) {
  2214. #if EXTRUDERS > 1
  2215. if (doRetract) {
  2216. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2217. }
  2218. #endif
  2219. retract(doRetract
  2220. #if EXTRUDERS > 1
  2221. , retracted_swap[active_extruder]
  2222. #endif
  2223. );
  2224. }
  2225. #endif //FWRETRACT
  2226. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2227. /**
  2228. * G12: Clean the nozzle
  2229. */
  2230. inline void gcode_G12() {
  2231. // Don't allow nozzle cleaning without homing first
  2232. if (axis_unhomed_error(true, true, true)) { return; }
  2233. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2234. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2235. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2236. Nozzle::clean(pattern, strokes, objects);
  2237. }
  2238. #endif
  2239. #if ENABLED(INCH_MODE_SUPPORT)
  2240. /**
  2241. * G20: Set input mode to inches
  2242. */
  2243. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2244. /**
  2245. * G21: Set input mode to millimeters
  2246. */
  2247. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2248. #endif
  2249. #if ENABLED(NOZZLE_PARK_FEATURE)
  2250. /**
  2251. * G27: Park the nozzle
  2252. */
  2253. inline void gcode_G27() {
  2254. // Don't allow nozzle parking without homing first
  2255. if (axis_unhomed_error(true, true, true)) { return; }
  2256. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2257. Nozzle::park(z_action);
  2258. }
  2259. #endif // NOZZLE_PARK_FEATURE
  2260. #if ENABLED(QUICK_HOME)
  2261. static void quick_home_xy() {
  2262. // Pretend the current position is 0,0
  2263. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2264. sync_plan_position();
  2265. int x_axis_home_dir =
  2266. #if ENABLED(DUAL_X_CARRIAGE)
  2267. x_home_dir(active_extruder)
  2268. #else
  2269. home_dir(X_AXIS)
  2270. #endif
  2271. ;
  2272. float mlx = max_length(X_AXIS),
  2273. mly = max_length(Y_AXIS),
  2274. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2275. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2276. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2277. endstops.hit_on_purpose(); // clear endstop hit flags
  2278. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2279. }
  2280. #endif // QUICK_HOME
  2281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2282. void log_machine_info() {
  2283. SERIAL_ECHOPGM("Machine Type: ");
  2284. #if ENABLED(DELTA)
  2285. SERIAL_ECHOLNPGM("Delta");
  2286. #elif IS_SCARA
  2287. SERIAL_ECHOLNPGM("SCARA");
  2288. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2289. SERIAL_ECHOLNPGM("Core");
  2290. #else
  2291. SERIAL_ECHOLNPGM("Cartesian");
  2292. #endif
  2293. SERIAL_ECHOPGM("Probe: ");
  2294. #if ENABLED(FIX_MOUNTED_PROBE)
  2295. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2296. #elif HAS_Z_SERVO_ENDSTOP
  2297. SERIAL_ECHOLNPGM("SERVO PROBE");
  2298. #elif ENABLED(BLTOUCH)
  2299. SERIAL_ECHOLNPGM("BLTOUCH");
  2300. #elif ENABLED(Z_PROBE_SLED)
  2301. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2302. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2303. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2304. #else
  2305. SERIAL_ECHOLNPGM("NONE");
  2306. #endif
  2307. #if HAS_BED_PROBE
  2308. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2309. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2310. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2311. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2312. SERIAL_ECHOPGM(" (Right");
  2313. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2314. SERIAL_ECHOPGM(" (Left");
  2315. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2316. SERIAL_ECHOPGM(" (Middle");
  2317. #else
  2318. SERIAL_ECHOPGM(" (Aligned With");
  2319. #endif
  2320. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2321. SERIAL_ECHOPGM("-Back");
  2322. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2323. SERIAL_ECHOPGM("-Front");
  2324. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2325. SERIAL_ECHOPGM("-Center");
  2326. #endif
  2327. if (zprobe_zoffset < 0)
  2328. SERIAL_ECHOPGM(" & Below");
  2329. else if (zprobe_zoffset > 0)
  2330. SERIAL_ECHOPGM(" & Above");
  2331. else
  2332. SERIAL_ECHOPGM(" & Same Z as");
  2333. SERIAL_ECHOLNPGM(" Nozzle)");
  2334. #endif
  2335. }
  2336. #endif // DEBUG_LEVELING_FEATURE
  2337. #if ENABLED(DELTA)
  2338. /**
  2339. * A delta can only safely home all axes at the same time
  2340. * This is like quick_home_xy() but for 3 towers.
  2341. */
  2342. inline void home_delta() {
  2343. // Init the current position of all carriages to 0,0,0
  2344. memset(current_position, 0, sizeof(current_position));
  2345. sync_plan_position();
  2346. // Move all carriages together linearly until an endstop is hit.
  2347. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2348. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2349. line_to_current_position();
  2350. stepper.synchronize();
  2351. endstops.hit_on_purpose(); // clear endstop hit flags
  2352. // Probably not needed. Double-check this line:
  2353. memset(current_position, 0, sizeof(current_position));
  2354. // At least one carriage has reached the top.
  2355. // Now back off and re-home each carriage separately.
  2356. HOMEAXIS(A);
  2357. HOMEAXIS(B);
  2358. HOMEAXIS(C);
  2359. // Set all carriages to their home positions
  2360. // Do this here all at once for Delta, because
  2361. // XYZ isn't ABC. Applying this per-tower would
  2362. // give the impression that they are the same.
  2363. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2364. SYNC_PLAN_POSITION_KINEMATIC();
  2365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2366. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2367. #endif
  2368. }
  2369. #endif // DELTA
  2370. #if ENABLED(Z_SAFE_HOMING)
  2371. inline void home_z_safely() {
  2372. // Disallow Z homing if X or Y are unknown
  2373. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2374. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2375. SERIAL_ECHO_START;
  2376. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2377. return;
  2378. }
  2379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2380. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2381. #endif
  2382. SYNC_PLAN_POSITION_KINEMATIC();
  2383. /**
  2384. * Move the Z probe (or just the nozzle) to the safe homing point
  2385. */
  2386. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2387. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2388. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2389. #if HAS_BED_PROBE
  2390. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2391. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2392. #endif
  2393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2394. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2395. #endif
  2396. if (position_is_reachable(destination)) {
  2397. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2398. HOMEAXIS(Z);
  2399. }
  2400. else {
  2401. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2402. SERIAL_ECHO_START;
  2403. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2404. }
  2405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2406. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2407. #endif
  2408. }
  2409. #endif // Z_SAFE_HOMING
  2410. /**
  2411. * G28: Home all axes according to settings
  2412. *
  2413. * Parameters
  2414. *
  2415. * None Home to all axes with no parameters.
  2416. * With QUICK_HOME enabled XY will home together, then Z.
  2417. *
  2418. * Cartesian parameters
  2419. *
  2420. * X Home to the X endstop
  2421. * Y Home to the Y endstop
  2422. * Z Home to the Z endstop
  2423. *
  2424. */
  2425. inline void gcode_G28() {
  2426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2427. if (DEBUGGING(LEVELING)) {
  2428. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2429. log_machine_info();
  2430. }
  2431. #endif
  2432. // Wait for planner moves to finish!
  2433. stepper.synchronize();
  2434. // For auto bed leveling, clear the level matrix
  2435. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2436. reset_bed_level();
  2437. #endif
  2438. // Always home with tool 0 active
  2439. #if HOTENDS > 1
  2440. uint8_t old_tool_index = active_extruder;
  2441. tool_change(0, 0, true);
  2442. #endif
  2443. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2444. extruder_duplication_enabled = false;
  2445. #endif
  2446. /**
  2447. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2448. * on again when homing all axis
  2449. */
  2450. #if ENABLED(MESH_BED_LEVELING)
  2451. float pre_home_z = MESH_HOME_SEARCH_Z;
  2452. if (mbl.active()) {
  2453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2454. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2455. #endif
  2456. // Save known Z position if already homed
  2457. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2458. pre_home_z = current_position[Z_AXIS];
  2459. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2460. }
  2461. mbl.set_active(false);
  2462. current_position[Z_AXIS] = pre_home_z;
  2463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2464. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2465. #endif
  2466. }
  2467. #endif
  2468. setup_for_endstop_or_probe_move();
  2469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2470. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2471. #endif
  2472. endstops.enable(true); // Enable endstops for next homing move
  2473. #if ENABLED(DELTA)
  2474. home_delta();
  2475. #else // NOT DELTA
  2476. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2477. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2478. set_destination_to_current();
  2479. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2480. if (home_all_axis || homeZ) {
  2481. HOMEAXIS(Z);
  2482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2483. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2484. #endif
  2485. }
  2486. #else
  2487. if (home_all_axis || homeX || homeY) {
  2488. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2489. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2490. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2492. if (DEBUGGING(LEVELING))
  2493. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2494. #endif
  2495. do_blocking_move_to_z(destination[Z_AXIS]);
  2496. }
  2497. }
  2498. #endif
  2499. #if ENABLED(QUICK_HOME)
  2500. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2501. #endif
  2502. #if ENABLED(HOME_Y_BEFORE_X)
  2503. // Home Y
  2504. if (home_all_axis || homeY) {
  2505. HOMEAXIS(Y);
  2506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2507. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2508. #endif
  2509. }
  2510. #endif
  2511. // Home X
  2512. if (home_all_axis || homeX) {
  2513. #if ENABLED(DUAL_X_CARRIAGE)
  2514. int tmp_extruder = active_extruder;
  2515. active_extruder = !active_extruder;
  2516. HOMEAXIS(X);
  2517. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2518. active_extruder = tmp_extruder;
  2519. HOMEAXIS(X);
  2520. // reset state used by the different modes
  2521. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2522. delayed_move_time = 0;
  2523. active_extruder_parked = true;
  2524. #else
  2525. HOMEAXIS(X);
  2526. #endif
  2527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2528. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2529. #endif
  2530. }
  2531. #if DISABLED(HOME_Y_BEFORE_X)
  2532. // Home Y
  2533. if (home_all_axis || homeY) {
  2534. HOMEAXIS(Y);
  2535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2536. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2537. #endif
  2538. }
  2539. #endif
  2540. // Home Z last if homing towards the bed
  2541. #if Z_HOME_DIR < 0
  2542. if (home_all_axis || homeZ) {
  2543. #if ENABLED(Z_SAFE_HOMING)
  2544. home_z_safely();
  2545. #else
  2546. HOMEAXIS(Z);
  2547. #endif
  2548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2549. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2550. #endif
  2551. } // home_all_axis || homeZ
  2552. #endif // Z_HOME_DIR < 0
  2553. SYNC_PLAN_POSITION_KINEMATIC();
  2554. #endif // !DELTA (gcode_G28)
  2555. endstops.not_homing();
  2556. // Enable mesh leveling again
  2557. #if ENABLED(MESH_BED_LEVELING)
  2558. if (mbl.has_mesh()) {
  2559. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2560. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2561. #endif
  2562. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2564. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2565. #endif
  2566. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2567. #if Z_HOME_DIR > 0
  2568. + Z_MAX_POS
  2569. #endif
  2570. ;
  2571. SYNC_PLAN_POSITION_KINEMATIC();
  2572. mbl.set_active(true);
  2573. #if ENABLED(MESH_G28_REST_ORIGIN)
  2574. current_position[Z_AXIS] = 0.0;
  2575. set_destination_to_current();
  2576. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2577. line_to_destination();
  2578. stepper.synchronize();
  2579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2580. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2581. #endif
  2582. #else
  2583. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2584. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2585. #if Z_HOME_DIR > 0
  2586. + Z_MAX_POS
  2587. #endif
  2588. ;
  2589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2590. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2591. #endif
  2592. #endif
  2593. }
  2594. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2595. current_position[Z_AXIS] = pre_home_z;
  2596. SYNC_PLAN_POSITION_KINEMATIC();
  2597. mbl.set_active(true);
  2598. current_position[Z_AXIS] = pre_home_z -
  2599. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2601. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2602. #endif
  2603. }
  2604. }
  2605. #endif
  2606. #if ENABLED(DELTA)
  2607. // move to a height where we can use the full xy-area
  2608. do_blocking_move_to_z(delta_clip_start_height);
  2609. #endif
  2610. clean_up_after_endstop_or_probe_move();
  2611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2612. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2613. #endif
  2614. // Restore the active tool after homing
  2615. #if HOTENDS > 1
  2616. tool_change(old_tool_index, 0, true);
  2617. #endif
  2618. report_current_position();
  2619. }
  2620. #if HAS_PROBING_PROCEDURE
  2621. void out_of_range_error(const char* p_edge) {
  2622. SERIAL_PROTOCOLPGM("?Probe ");
  2623. serialprintPGM(p_edge);
  2624. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2625. }
  2626. #endif
  2627. #if ENABLED(MESH_BED_LEVELING)
  2628. inline void _mbl_goto_xy(float x, float y) {
  2629. float old_feedrate_mm_s = feedrate_mm_s;
  2630. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2631. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2632. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2633. + Z_PROBE_TRAVEL_HEIGHT
  2634. #elif Z_HOMING_HEIGHT > 0
  2635. + Z_HOMING_HEIGHT
  2636. #endif
  2637. ;
  2638. line_to_current_position();
  2639. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2640. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2641. line_to_current_position();
  2642. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2643. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2644. line_to_current_position();
  2645. #endif
  2646. feedrate_mm_s = old_feedrate_mm_s;
  2647. stepper.synchronize();
  2648. }
  2649. /**
  2650. * G29: Mesh-based Z probe, probes a grid and produces a
  2651. * mesh to compensate for variable bed height
  2652. *
  2653. * Parameters With MESH_BED_LEVELING:
  2654. *
  2655. * S0 Produce a mesh report
  2656. * S1 Start probing mesh points
  2657. * S2 Probe the next mesh point
  2658. * S3 Xn Yn Zn.nn Manually modify a single point
  2659. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2660. * S5 Reset and disable mesh
  2661. *
  2662. * The S0 report the points as below
  2663. *
  2664. * +----> X-axis 1-n
  2665. * |
  2666. * |
  2667. * v Y-axis 1-n
  2668. *
  2669. */
  2670. inline void gcode_G29() {
  2671. static int probe_point = -1;
  2672. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2673. if (state < 0 || state > 5) {
  2674. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2675. return;
  2676. }
  2677. int8_t px, py;
  2678. switch (state) {
  2679. case MeshReport:
  2680. if (mbl.has_mesh()) {
  2681. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2682. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2683. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2684. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2685. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2686. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2687. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2688. SERIAL_PROTOCOLPGM(" ");
  2689. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2690. }
  2691. SERIAL_EOL;
  2692. }
  2693. }
  2694. else
  2695. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2696. break;
  2697. case MeshStart:
  2698. mbl.reset();
  2699. probe_point = 0;
  2700. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2701. break;
  2702. case MeshNext:
  2703. if (probe_point < 0) {
  2704. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2705. return;
  2706. }
  2707. // For each G29 S2...
  2708. if (probe_point == 0) {
  2709. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2710. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2711. #if Z_HOME_DIR > 0
  2712. + Z_MAX_POS
  2713. #endif
  2714. ;
  2715. SYNC_PLAN_POSITION_KINEMATIC();
  2716. }
  2717. else {
  2718. // For G29 S2 after adjusting Z.
  2719. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2720. }
  2721. // If there's another point to sample, move there with optional lift.
  2722. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2723. mbl.zigzag(probe_point, px, py);
  2724. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2725. probe_point++;
  2726. }
  2727. else {
  2728. // One last "return to the bed" (as originally coded) at completion
  2729. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2730. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2731. + Z_PROBE_TRAVEL_HEIGHT
  2732. #elif Z_HOMING_HEIGHT > 0
  2733. + Z_HOMING_HEIGHT
  2734. #endif
  2735. ;
  2736. line_to_current_position();
  2737. stepper.synchronize();
  2738. // After recording the last point, activate the mbl and home
  2739. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2740. probe_point = -1;
  2741. mbl.set_has_mesh(true);
  2742. enqueue_and_echo_commands_P(PSTR("G28"));
  2743. }
  2744. break;
  2745. case MeshSet:
  2746. if (code_seen('X')) {
  2747. px = code_value_int() - 1;
  2748. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2749. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2750. return;
  2751. }
  2752. }
  2753. else {
  2754. SERIAL_PROTOCOLLNPGM("X not entered.");
  2755. return;
  2756. }
  2757. if (code_seen('Y')) {
  2758. py = code_value_int() - 1;
  2759. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2760. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2761. return;
  2762. }
  2763. }
  2764. else {
  2765. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2766. return;
  2767. }
  2768. if (code_seen('Z')) {
  2769. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2770. }
  2771. else {
  2772. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2773. return;
  2774. }
  2775. break;
  2776. case MeshSetZOffset:
  2777. if (code_seen('Z')) {
  2778. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2779. }
  2780. else {
  2781. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2782. return;
  2783. }
  2784. break;
  2785. case MeshReset:
  2786. if (mbl.active()) {
  2787. current_position[Z_AXIS] +=
  2788. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2789. mbl.reset();
  2790. SYNC_PLAN_POSITION_KINEMATIC();
  2791. }
  2792. else
  2793. mbl.reset();
  2794. } // switch(state)
  2795. report_current_position();
  2796. }
  2797. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2798. /**
  2799. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2800. * Will fail if the printer has not been homed with G28.
  2801. *
  2802. * Enhanced G29 Auto Bed Leveling Probe Routine
  2803. *
  2804. * Parameters With AUTO_BED_LEVELING_GRID:
  2805. *
  2806. * P Set the size of the grid that will be probed (P x P points).
  2807. * Not supported by non-linear delta printer bed leveling.
  2808. * Example: "G29 P4"
  2809. *
  2810. * S Set the XY travel speed between probe points (in units/min)
  2811. *
  2812. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2813. * or clean the rotation Matrix. Useful to check the topology
  2814. * after a first run of G29.
  2815. *
  2816. * V Set the verbose level (0-4). Example: "G29 V3"
  2817. *
  2818. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2819. * This is useful for manual bed leveling and finding flaws in the bed (to
  2820. * assist with part placement).
  2821. * Not supported by non-linear delta printer bed leveling.
  2822. *
  2823. * F Set the Front limit of the probing grid
  2824. * B Set the Back limit of the probing grid
  2825. * L Set the Left limit of the probing grid
  2826. * R Set the Right limit of the probing grid
  2827. *
  2828. * Global Parameters:
  2829. *
  2830. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2831. * Include "E" to engage/disengage the Z probe for each sample.
  2832. * There's no extra effect if you have a fixed Z probe.
  2833. * Usage: "G29 E" or "G29 e"
  2834. *
  2835. */
  2836. inline void gcode_G29() {
  2837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2838. if (DEBUGGING(LEVELING)) {
  2839. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2840. DEBUG_POS("", current_position);
  2841. log_machine_info();
  2842. }
  2843. #endif
  2844. // Don't allow auto-leveling without homing first
  2845. if (axis_unhomed_error(true, true, true)) return;
  2846. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2847. if (verbose_level < 0 || verbose_level > 4) {
  2848. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2849. return;
  2850. }
  2851. bool dryrun = code_seen('D'),
  2852. stow_probe_after_each = code_seen('E');
  2853. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2854. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2855. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2856. #endif
  2857. if (verbose_level > 0) {
  2858. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2859. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2860. }
  2861. int abl_grid_points_x = ABL_GRID_POINTS_X,
  2862. abl_grid_points_y = ABL_GRID_POINTS_Y;
  2863. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2864. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  2865. if (abl_grid_points_x < 2) {
  2866. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2867. return;
  2868. }
  2869. #endif
  2870. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2871. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2872. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2873. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2874. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2875. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2876. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2877. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2878. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2879. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2880. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2881. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2882. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2883. if (left_out || right_out || front_out || back_out) {
  2884. if (left_out) {
  2885. out_of_range_error(PSTR("(L)eft"));
  2886. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2887. }
  2888. if (right_out) {
  2889. out_of_range_error(PSTR("(R)ight"));
  2890. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2891. }
  2892. if (front_out) {
  2893. out_of_range_error(PSTR("(F)ront"));
  2894. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2895. }
  2896. if (back_out) {
  2897. out_of_range_error(PSTR("(B)ack"));
  2898. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2899. }
  2900. return;
  2901. }
  2902. #endif // AUTO_BED_LEVELING_GRID
  2903. stepper.synchronize();
  2904. if (!dryrun) {
  2905. // Reset the bed_level_matrix because leveling
  2906. // needs to be done without leveling enabled.
  2907. reset_bed_level();
  2908. //
  2909. // Re-orient the current position without leveling
  2910. // based on where the steppers are positioned.
  2911. //
  2912. #if IS_KINEMATIC
  2913. // For DELTA/SCARA we need to apply forward kinematics.
  2914. // This returns raw positions and we remap to the space.
  2915. get_cartesian_from_steppers();
  2916. LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartes[i], i);
  2917. #else
  2918. // For cartesian/core the steppers are already mapped to
  2919. // the coordinate space by design.
  2920. LOOP_XYZ(i) current_position[i] = stepper.get_axis_position_mm((AxisEnum)i);
  2921. #endif // !DELTA
  2922. // Inform the planner about the new coordinates
  2923. SYNC_PLAN_POSITION_KINEMATIC();
  2924. }
  2925. setup_for_endstop_or_probe_move();
  2926. // Deploy the probe. Probe will raise if needed.
  2927. if (DEPLOY_PROBE()) return;
  2928. float xProbe, yProbe, measured_z = 0;
  2929. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2930. // probe at the points of a lattice grid
  2931. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  2932. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  2933. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2934. nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
  2935. nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
  2936. float zoffset = zprobe_zoffset;
  2937. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2938. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  2939. /**
  2940. * solve the plane equation ax + by + d = z
  2941. * A is the matrix with rows [x y 1] for all the probed points
  2942. * B is the vector of the Z positions
  2943. * the normal vector to the plane is formed by the coefficients of the
  2944. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2945. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2946. */
  2947. int abl2 = abl_grid_points_x * abl_grid_points_y;
  2948. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2949. eqnBVector[abl2], // "B" vector of Z points
  2950. mean = 0.0;
  2951. int indexIntoAB[abl_grid_points_x][abl_grid_points_y];
  2952. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  2953. int probePointCounter = 0;
  2954. bool zig = abl_grid_points_y & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2955. for (uint8_t yCount = 0; yCount < abl_grid_points_y; yCount++) {
  2956. float yBase = front_probe_bed_position + yGridSpacing * yCount;
  2957. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  2958. int8_t xStart, xStop, xInc;
  2959. if (zig) {
  2960. xStart = 0;
  2961. xStop = abl_grid_points_x;
  2962. xInc = 1;
  2963. }
  2964. else {
  2965. xStart = abl_grid_points_x - 1;
  2966. xStop = -1;
  2967. xInc = -1;
  2968. }
  2969. zig = !zig;
  2970. for (int8_t xCount = xStart; xCount != xStop; xCount += xInc) {
  2971. float xBase = left_probe_bed_position + xGridSpacing * xCount;
  2972. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  2973. #if ENABLED(DELTA)
  2974. // Avoid probing outside the round or hexagonal area of a delta printer
  2975. if (HYPOT2(xProbe, yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
  2976. #endif
  2977. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2978. #if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  2979. mean += measured_z;
  2980. eqnBVector[probePointCounter] = measured_z;
  2981. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2982. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2983. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2984. indexIntoAB[xCount][yCount] = probePointCounter;
  2985. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2986. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  2987. #endif
  2988. probePointCounter++;
  2989. idle();
  2990. } //xProbe
  2991. } //yProbe
  2992. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2993. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2994. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2995. #endif
  2996. // Probe at 3 arbitrary points
  2997. vector_3 points[3] = {
  2998. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  2999. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3000. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3001. };
  3002. for (uint8_t i = 0; i < 3; ++i) {
  3003. // Retain the last probe position
  3004. xProbe = LOGICAL_X_POSITION(points[i].x);
  3005. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3006. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3007. }
  3008. if (!dryrun) {
  3009. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3010. if (planeNormal.z < 0) {
  3011. planeNormal.x *= -1;
  3012. planeNormal.y *= -1;
  3013. planeNormal.z *= -1;
  3014. }
  3015. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3016. }
  3017. #endif // AUTO_BED_LEVELING_3POINT
  3018. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3019. if (STOW_PROBE()) return;
  3020. // Restore state after probing
  3021. clean_up_after_endstop_or_probe_move();
  3022. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3023. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3024. #endif
  3025. // Calculate leveling, print reports, correct the position
  3026. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3027. if (!dryrun) extrapolate_unprobed_bed_level();
  3028. print_bed_level();
  3029. #elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
  3030. // For LINEAR leveling calculate matrix, print reports, correct the position
  3031. // solve lsq problem
  3032. double plane_equation_coefficients[3];
  3033. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3034. mean /= abl2;
  3035. if (verbose_level) {
  3036. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3037. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3038. SERIAL_PROTOCOLPGM(" b: ");
  3039. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3040. SERIAL_PROTOCOLPGM(" d: ");
  3041. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3042. SERIAL_EOL;
  3043. if (verbose_level > 2) {
  3044. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3045. SERIAL_PROTOCOL_F(mean, 8);
  3046. SERIAL_EOL;
  3047. }
  3048. }
  3049. // Create the matrix but don't correct the position yet
  3050. if (!dryrun) {
  3051. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3052. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3053. );
  3054. }
  3055. // Show the Topography map if enabled
  3056. if (do_topography_map) {
  3057. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3058. " +--- BACK --+\n"
  3059. " | |\n"
  3060. " L | (+) | R\n"
  3061. " E | | I\n"
  3062. " F | (-) N (+) | G\n"
  3063. " T | | H\n"
  3064. " | (-) | T\n"
  3065. " | |\n"
  3066. " O-- FRONT --+\n"
  3067. " (0,0)");
  3068. float min_diff = 999;
  3069. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3070. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3071. int ind = indexIntoAB[xx][yy];
  3072. float diff = eqnBVector[ind] - mean,
  3073. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3074. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3075. z_tmp = 0;
  3076. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3077. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3078. if (diff >= 0.0)
  3079. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3080. else
  3081. SERIAL_PROTOCOLCHAR(' ');
  3082. SERIAL_PROTOCOL_F(diff, 5);
  3083. } // xx
  3084. SERIAL_EOL;
  3085. } // yy
  3086. SERIAL_EOL;
  3087. if (verbose_level > 3) {
  3088. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3089. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3090. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3091. int ind = indexIntoAB[xx][yy];
  3092. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3093. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3094. z_tmp = 0;
  3095. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3096. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3097. if (diff >= 0.0)
  3098. SERIAL_PROTOCOLPGM(" +");
  3099. // Include + for column alignment
  3100. else
  3101. SERIAL_PROTOCOLCHAR(' ');
  3102. SERIAL_PROTOCOL_F(diff, 5);
  3103. } // xx
  3104. SERIAL_EOL;
  3105. } // yy
  3106. SERIAL_EOL;
  3107. }
  3108. } //do_topography_map
  3109. #endif // AUTO_BED_LEVELING_LINEAR_GRID
  3110. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3111. // For LINEAR and 3POINT leveling correct the current position
  3112. if (verbose_level > 0)
  3113. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3114. if (!dryrun) {
  3115. //
  3116. // Correct the current XYZ position based on the tilted plane.
  3117. //
  3118. // 1. Get the distance from the current position to the reference point.
  3119. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3120. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3121. z_real = RAW_CURRENT_POSITION(Z_AXIS),
  3122. z_zero = 0;
  3123. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3124. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3125. #endif
  3126. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3127. // 2. Apply the inverse matrix to the distance
  3128. // from the reference point to X, Y, and zero.
  3129. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3130. // 3. Get the matrix-based corrected Z.
  3131. // (Even if not used, get it for comparison.)
  3132. float new_z = z_real + z_zero;
  3133. // 4. Use the last measured distance to the bed, if possible
  3134. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3135. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3136. ) {
  3137. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3138. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3139. if (DEBUGGING(LEVELING)) {
  3140. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3141. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3142. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3143. }
  3144. #endif
  3145. new_z = simple_z;
  3146. }
  3147. // 5. The rotated XY and corrected Z are now current_position
  3148. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3149. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3150. current_position[Z_AXIS] = LOGICAL_Z_POSITION(new_z);
  3151. SYNC_PLAN_POSITION_KINEMATIC();
  3152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3153. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3154. #endif
  3155. }
  3156. #endif // AUTO_BED_LEVELING_LINEAR
  3157. #ifdef Z_PROBE_END_SCRIPT
  3158. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3159. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3160. #endif
  3161. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3162. stepper.synchronize();
  3163. #endif
  3164. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3165. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3166. #endif
  3167. report_current_position();
  3168. KEEPALIVE_STATE(IN_HANDLER);
  3169. }
  3170. #endif // AUTO_BED_LEVELING_FEATURE
  3171. #if HAS_BED_PROBE
  3172. /**
  3173. * G30: Do a single Z probe at the current XY
  3174. */
  3175. inline void gcode_G30() {
  3176. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3177. reset_bed_level();
  3178. #endif
  3179. setup_for_endstop_or_probe_move();
  3180. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3181. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3182. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3183. true, 1);
  3184. SERIAL_PROTOCOLPGM("Bed X: ");
  3185. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3186. SERIAL_PROTOCOLPGM(" Y: ");
  3187. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3188. SERIAL_PROTOCOLPGM(" Z: ");
  3189. SERIAL_PROTOCOL(measured_z + 0.0001);
  3190. SERIAL_EOL;
  3191. clean_up_after_endstop_or_probe_move();
  3192. report_current_position();
  3193. }
  3194. #if ENABLED(Z_PROBE_SLED)
  3195. /**
  3196. * G31: Deploy the Z probe
  3197. */
  3198. inline void gcode_G31() { DEPLOY_PROBE(); }
  3199. /**
  3200. * G32: Stow the Z probe
  3201. */
  3202. inline void gcode_G32() { STOW_PROBE(); }
  3203. #endif // Z_PROBE_SLED
  3204. #endif // HAS_BED_PROBE
  3205. /**
  3206. * G92: Set current position to given X Y Z E
  3207. */
  3208. inline void gcode_G92() {
  3209. bool didXYZ = false,
  3210. didE = code_seen('E');
  3211. if (!didE) stepper.synchronize();
  3212. LOOP_XYZE(i) {
  3213. if (code_seen(axis_codes[i])) {
  3214. float p = current_position[i],
  3215. v = code_value_axis_units(i);
  3216. current_position[i] = v;
  3217. if (i != E_AXIS) {
  3218. position_shift[i] += v - p; // Offset the coordinate space
  3219. update_software_endstops((AxisEnum)i);
  3220. didXYZ = true;
  3221. }
  3222. }
  3223. }
  3224. if (didXYZ)
  3225. SYNC_PLAN_POSITION_KINEMATIC();
  3226. else if (didE)
  3227. sync_plan_position_e();
  3228. }
  3229. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3230. /**
  3231. * M0: Unconditional stop - Wait for user button press on LCD
  3232. * M1: Conditional stop - Wait for user button press on LCD
  3233. */
  3234. inline void gcode_M0_M1() {
  3235. char* args = current_command_args;
  3236. millis_t codenum = 0;
  3237. bool hasP = false, hasS = false;
  3238. if (code_seen('P')) {
  3239. codenum = code_value_millis(); // milliseconds to wait
  3240. hasP = codenum > 0;
  3241. }
  3242. if (code_seen('S')) {
  3243. codenum = code_value_millis_from_seconds(); // seconds to wait
  3244. hasS = codenum > 0;
  3245. }
  3246. #if ENABLED(ULTIPANEL)
  3247. if (!hasP && !hasS && *args != '\0')
  3248. lcd_setstatus(args, true);
  3249. else {
  3250. LCD_MESSAGEPGM(MSG_USERWAIT);
  3251. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3252. dontExpireStatus();
  3253. #endif
  3254. }
  3255. lcd_ignore_click();
  3256. #else
  3257. if (!hasP && !hasS && *args != '\0') {
  3258. SERIAL_ECHO_START;
  3259. SERIAL_ECHOLN(args);
  3260. }
  3261. #endif
  3262. stepper.synchronize();
  3263. refresh_cmd_timeout();
  3264. #if ENABLED(ULTIPANEL)
  3265. if (codenum > 0) {
  3266. codenum += previous_cmd_ms; // wait until this time for a click
  3267. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3268. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3269. lcd_ignore_click(false);
  3270. }
  3271. else if (lcd_detected()) {
  3272. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3273. while (!lcd_clicked()) idle();
  3274. }
  3275. else return;
  3276. if (IS_SD_PRINTING)
  3277. LCD_MESSAGEPGM(MSG_RESUMING);
  3278. else
  3279. LCD_MESSAGEPGM(WELCOME_MSG);
  3280. #else
  3281. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3282. wait_for_user = true;
  3283. if (codenum > 0) {
  3284. codenum += previous_cmd_ms; // wait until this time for an M108
  3285. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3286. }
  3287. else while (wait_for_user) idle();
  3288. wait_for_user = false;
  3289. #endif
  3290. KEEPALIVE_STATE(IN_HANDLER);
  3291. }
  3292. #endif // ULTIPANEL || EMERGENCY_PARSER
  3293. /**
  3294. * M17: Enable power on all stepper motors
  3295. */
  3296. inline void gcode_M17() {
  3297. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3298. enable_all_steppers();
  3299. }
  3300. #if ENABLED(SDSUPPORT)
  3301. /**
  3302. * M20: List SD card to serial output
  3303. */
  3304. inline void gcode_M20() {
  3305. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3306. card.ls();
  3307. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3308. }
  3309. /**
  3310. * M21: Init SD Card
  3311. */
  3312. inline void gcode_M21() { card.initsd(); }
  3313. /**
  3314. * M22: Release SD Card
  3315. */
  3316. inline void gcode_M22() { card.release(); }
  3317. /**
  3318. * M23: Open a file
  3319. */
  3320. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3321. /**
  3322. * M24: Start SD Print
  3323. */
  3324. inline void gcode_M24() {
  3325. card.startFileprint();
  3326. print_job_timer.start();
  3327. }
  3328. /**
  3329. * M25: Pause SD Print
  3330. */
  3331. inline void gcode_M25() { card.pauseSDPrint(); }
  3332. /**
  3333. * M26: Set SD Card file index
  3334. */
  3335. inline void gcode_M26() {
  3336. if (card.cardOK && code_seen('S'))
  3337. card.setIndex(code_value_long());
  3338. }
  3339. /**
  3340. * M27: Get SD Card status
  3341. */
  3342. inline void gcode_M27() { card.getStatus(); }
  3343. /**
  3344. * M28: Start SD Write
  3345. */
  3346. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3347. /**
  3348. * M29: Stop SD Write
  3349. * Processed in write to file routine above
  3350. */
  3351. inline void gcode_M29() {
  3352. // card.saving = false;
  3353. }
  3354. /**
  3355. * M30 <filename>: Delete SD Card file
  3356. */
  3357. inline void gcode_M30() {
  3358. if (card.cardOK) {
  3359. card.closefile();
  3360. card.removeFile(current_command_args);
  3361. }
  3362. }
  3363. #endif // SDSUPPORT
  3364. /**
  3365. * M31: Get the time since the start of SD Print (or last M109)
  3366. */
  3367. inline void gcode_M31() {
  3368. char buffer[21];
  3369. duration_t elapsed = print_job_timer.duration();
  3370. elapsed.toString(buffer);
  3371. lcd_setstatus(buffer);
  3372. SERIAL_ECHO_START;
  3373. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3374. thermalManager.autotempShutdown();
  3375. }
  3376. #if ENABLED(SDSUPPORT)
  3377. /**
  3378. * M32: Select file and start SD Print
  3379. */
  3380. inline void gcode_M32() {
  3381. if (card.sdprinting)
  3382. stepper.synchronize();
  3383. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3384. if (!namestartpos)
  3385. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3386. else
  3387. namestartpos++; //to skip the '!'
  3388. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3389. if (card.cardOK) {
  3390. card.openFile(namestartpos, true, call_procedure);
  3391. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3392. card.setIndex(code_value_long());
  3393. card.startFileprint();
  3394. // Procedure calls count as normal print time.
  3395. if (!call_procedure) print_job_timer.start();
  3396. }
  3397. }
  3398. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3399. /**
  3400. * M33: Get the long full path of a file or folder
  3401. *
  3402. * Parameters:
  3403. * <dospath> Case-insensitive DOS-style path to a file or folder
  3404. *
  3405. * Example:
  3406. * M33 miscel~1/armchair/armcha~1.gco
  3407. *
  3408. * Output:
  3409. * /Miscellaneous/Armchair/Armchair.gcode
  3410. */
  3411. inline void gcode_M33() {
  3412. card.printLongPath(current_command_args);
  3413. }
  3414. #endif
  3415. /**
  3416. * M928: Start SD Write
  3417. */
  3418. inline void gcode_M928() {
  3419. card.openLogFile(current_command_args);
  3420. }
  3421. #endif // SDSUPPORT
  3422. /**
  3423. * M42: Change pin status via GCode
  3424. *
  3425. * P<pin> Pin number (LED if omitted)
  3426. * S<byte> Pin status from 0 - 255
  3427. */
  3428. inline void gcode_M42() {
  3429. if (!code_seen('S')) return;
  3430. int pin_status = code_value_int();
  3431. if (pin_status < 0 || pin_status > 255) return;
  3432. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3433. if (pin_number < 0) return;
  3434. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3435. if (pin_number == sensitive_pins[i]) return;
  3436. pinMode(pin_number, OUTPUT);
  3437. digitalWrite(pin_number, pin_status);
  3438. analogWrite(pin_number, pin_status);
  3439. #if FAN_COUNT > 0
  3440. switch (pin_number) {
  3441. #if HAS_FAN0
  3442. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3443. #endif
  3444. #if HAS_FAN1
  3445. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3446. #endif
  3447. #if HAS_FAN2
  3448. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3449. #endif
  3450. }
  3451. #endif
  3452. }
  3453. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3454. /**
  3455. * M48: Z probe repeatability measurement function.
  3456. *
  3457. * Usage:
  3458. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3459. * P = Number of sampled points (4-50, default 10)
  3460. * X = Sample X position
  3461. * Y = Sample Y position
  3462. * V = Verbose level (0-4, default=1)
  3463. * E = Engage Z probe for each reading
  3464. * L = Number of legs of movement before probe
  3465. * S = Schizoid (Or Star if you prefer)
  3466. *
  3467. * This function assumes the bed has been homed. Specifically, that a G28 command
  3468. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3469. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3470. * regenerated.
  3471. */
  3472. inline void gcode_M48() {
  3473. if (axis_unhomed_error(true, true, true)) return;
  3474. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3475. if (verbose_level < 0 || verbose_level > 4) {
  3476. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3477. return;
  3478. }
  3479. if (verbose_level > 0)
  3480. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3481. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3482. if (n_samples < 4 || n_samples > 50) {
  3483. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3484. return;
  3485. }
  3486. float X_current = current_position[X_AXIS],
  3487. Y_current = current_position[Y_AXIS];
  3488. bool stow_probe_after_each = code_seen('E');
  3489. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3490. #if DISABLED(DELTA)
  3491. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3492. out_of_range_error(PSTR("X"));
  3493. return;
  3494. }
  3495. #endif
  3496. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3497. #if DISABLED(DELTA)
  3498. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3499. out_of_range_error(PSTR("Y"));
  3500. return;
  3501. }
  3502. #else
  3503. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3504. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3505. return;
  3506. }
  3507. #endif
  3508. bool seen_L = code_seen('L');
  3509. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3510. if (n_legs > 15) {
  3511. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3512. return;
  3513. }
  3514. if (n_legs == 1) n_legs = 2;
  3515. bool schizoid_flag = code_seen('S');
  3516. if (schizoid_flag && !seen_L) n_legs = 7;
  3517. /**
  3518. * Now get everything to the specified probe point So we can safely do a
  3519. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3520. * we don't want to use that as a starting point for each probe.
  3521. */
  3522. if (verbose_level > 2)
  3523. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3524. // Disable bed level correction in M48 because we want the raw data when we probe
  3525. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  3526. reset_bed_level();
  3527. #endif
  3528. setup_for_endstop_or_probe_move();
  3529. // Move to the first point, deploy, and probe
  3530. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3531. randomSeed(millis());
  3532. double mean = 0, sigma = 0, sample_set[n_samples];
  3533. for (uint8_t n = 0; n < n_samples; n++) {
  3534. if (n_legs) {
  3535. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3536. float angle = random(0.0, 360.0),
  3537. radius = random(
  3538. #if ENABLED(DELTA)
  3539. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3540. #else
  3541. 5, X_MAX_LENGTH / 8
  3542. #endif
  3543. );
  3544. if (verbose_level > 3) {
  3545. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3546. SERIAL_ECHOPAIR(" angle: ", angle);
  3547. SERIAL_ECHOPGM(" Direction: ");
  3548. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3549. SERIAL_ECHOLNPGM("Clockwise");
  3550. }
  3551. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3552. double delta_angle;
  3553. if (schizoid_flag)
  3554. // The points of a 5 point star are 72 degrees apart. We need to
  3555. // skip a point and go to the next one on the star.
  3556. delta_angle = dir * 2.0 * 72.0;
  3557. else
  3558. // If we do this line, we are just trying to move further
  3559. // around the circle.
  3560. delta_angle = dir * (float) random(25, 45);
  3561. angle += delta_angle;
  3562. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3563. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3564. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3565. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3566. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3567. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3568. #if DISABLED(DELTA)
  3569. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3570. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3571. #else
  3572. // If we have gone out too far, we can do a simple fix and scale the numbers
  3573. // back in closer to the origin.
  3574. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3575. X_current /= 1.25;
  3576. Y_current /= 1.25;
  3577. if (verbose_level > 3) {
  3578. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3579. SERIAL_ECHOLNPAIR(", ", Y_current);
  3580. }
  3581. }
  3582. #endif
  3583. if (verbose_level > 3) {
  3584. SERIAL_PROTOCOLPGM("Going to:");
  3585. SERIAL_ECHOPAIR(" X", X_current);
  3586. SERIAL_ECHOPAIR(" Y", Y_current);
  3587. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3588. }
  3589. do_blocking_move_to_xy(X_current, Y_current);
  3590. } // n_legs loop
  3591. } // n_legs
  3592. // Probe a single point
  3593. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3594. /**
  3595. * Get the current mean for the data points we have so far
  3596. */
  3597. double sum = 0.0;
  3598. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3599. mean = sum / (n + 1);
  3600. /**
  3601. * Now, use that mean to calculate the standard deviation for the
  3602. * data points we have so far
  3603. */
  3604. sum = 0.0;
  3605. for (uint8_t j = 0; j <= n; j++)
  3606. sum += sq(sample_set[j] - mean);
  3607. sigma = sqrt(sum / (n + 1));
  3608. if (verbose_level > 0) {
  3609. if (verbose_level > 1) {
  3610. SERIAL_PROTOCOL(n + 1);
  3611. SERIAL_PROTOCOLPGM(" of ");
  3612. SERIAL_PROTOCOL((int)n_samples);
  3613. SERIAL_PROTOCOLPGM(" z: ");
  3614. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3615. if (verbose_level > 2) {
  3616. SERIAL_PROTOCOLPGM(" mean: ");
  3617. SERIAL_PROTOCOL_F(mean, 6);
  3618. SERIAL_PROTOCOLPGM(" sigma: ");
  3619. SERIAL_PROTOCOL_F(sigma, 6);
  3620. }
  3621. }
  3622. SERIAL_EOL;
  3623. }
  3624. } // End of probe loop
  3625. if (STOW_PROBE()) return;
  3626. if (verbose_level > 0) {
  3627. SERIAL_PROTOCOLPGM("Mean: ");
  3628. SERIAL_PROTOCOL_F(mean, 6);
  3629. SERIAL_EOL;
  3630. }
  3631. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3632. SERIAL_PROTOCOL_F(sigma, 6);
  3633. SERIAL_EOL; SERIAL_EOL;
  3634. clean_up_after_endstop_or_probe_move();
  3635. report_current_position();
  3636. }
  3637. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3638. /**
  3639. * M75: Start print timer
  3640. */
  3641. inline void gcode_M75() { print_job_timer.start(); }
  3642. /**
  3643. * M76: Pause print timer
  3644. */
  3645. inline void gcode_M76() { print_job_timer.pause(); }
  3646. /**
  3647. * M77: Stop print timer
  3648. */
  3649. inline void gcode_M77() { print_job_timer.stop(); }
  3650. #if ENABLED(PRINTCOUNTER)
  3651. /**
  3652. * M78: Show print statistics
  3653. */
  3654. inline void gcode_M78() {
  3655. // "M78 S78" will reset the statistics
  3656. if (code_seen('S') && code_value_int() == 78)
  3657. print_job_timer.initStats();
  3658. else
  3659. print_job_timer.showStats();
  3660. }
  3661. #endif
  3662. /**
  3663. * M104: Set hot end temperature
  3664. */
  3665. inline void gcode_M104() {
  3666. if (get_target_extruder_from_command(104)) return;
  3667. if (DEBUGGING(DRYRUN)) return;
  3668. #if ENABLED(SINGLENOZZLE)
  3669. if (target_extruder != active_extruder) return;
  3670. #endif
  3671. if (code_seen('S')) {
  3672. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3673. #if ENABLED(DUAL_X_CARRIAGE)
  3674. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3675. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3676. #endif
  3677. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3678. /**
  3679. * Stop the timer at the end of print, starting is managed by
  3680. * 'heat and wait' M109.
  3681. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3682. * stand by mode, for instance in a dual extruder setup, without affecting
  3683. * the running print timer.
  3684. */
  3685. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3686. print_job_timer.stop();
  3687. LCD_MESSAGEPGM(WELCOME_MSG);
  3688. }
  3689. #endif
  3690. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3691. }
  3692. }
  3693. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3694. void print_heaterstates() {
  3695. #if HAS_TEMP_HOTEND
  3696. SERIAL_PROTOCOLPGM(" T:");
  3697. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3698. SERIAL_PROTOCOLPGM(" /");
  3699. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3700. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3701. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3702. SERIAL_CHAR(')');
  3703. #endif
  3704. #endif
  3705. #if HAS_TEMP_BED
  3706. SERIAL_PROTOCOLPGM(" B:");
  3707. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3708. SERIAL_PROTOCOLPGM(" /");
  3709. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3710. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3711. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3712. SERIAL_CHAR(')');
  3713. #endif
  3714. #endif
  3715. #if HOTENDS > 1
  3716. HOTEND_LOOP() {
  3717. SERIAL_PROTOCOLPAIR(" T", e);
  3718. SERIAL_PROTOCOLCHAR(':');
  3719. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3720. SERIAL_PROTOCOLPGM(" /");
  3721. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3722. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3723. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3724. SERIAL_CHAR(')');
  3725. #endif
  3726. }
  3727. #endif
  3728. SERIAL_PROTOCOLPGM(" @:");
  3729. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3730. #if HAS_TEMP_BED
  3731. SERIAL_PROTOCOLPGM(" B@:");
  3732. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3733. #endif
  3734. #if HOTENDS > 1
  3735. HOTEND_LOOP() {
  3736. SERIAL_PROTOCOLPAIR(" @", e);
  3737. SERIAL_PROTOCOLCHAR(':');
  3738. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3739. }
  3740. #endif
  3741. }
  3742. #endif
  3743. /**
  3744. * M105: Read hot end and bed temperature
  3745. */
  3746. inline void gcode_M105() {
  3747. if (get_target_extruder_from_command(105)) return;
  3748. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3749. SERIAL_PROTOCOLPGM(MSG_OK);
  3750. print_heaterstates();
  3751. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3752. SERIAL_ERROR_START;
  3753. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3754. #endif
  3755. SERIAL_EOL;
  3756. }
  3757. #if FAN_COUNT > 0
  3758. /**
  3759. * M106: Set Fan Speed
  3760. *
  3761. * S<int> Speed between 0-255
  3762. * P<index> Fan index, if more than one fan
  3763. */
  3764. inline void gcode_M106() {
  3765. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3766. p = code_seen('P') ? code_value_ushort() : 0;
  3767. NOMORE(s, 255);
  3768. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3769. }
  3770. /**
  3771. * M107: Fan Off
  3772. */
  3773. inline void gcode_M107() {
  3774. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3775. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3776. }
  3777. #endif // FAN_COUNT > 0
  3778. #if DISABLED(EMERGENCY_PARSER)
  3779. /**
  3780. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3781. */
  3782. inline void gcode_M108() { wait_for_heatup = false; }
  3783. /**
  3784. * M112: Emergency Stop
  3785. */
  3786. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3787. /**
  3788. * M410: Quickstop - Abort all planned moves
  3789. *
  3790. * This will stop the carriages mid-move, so most likely they
  3791. * will be out of sync with the stepper position after this.
  3792. */
  3793. inline void gcode_M410() { quickstop_stepper(); }
  3794. #endif
  3795. #ifndef MIN_COOLING_SLOPE_DEG
  3796. #define MIN_COOLING_SLOPE_DEG 1.50
  3797. #endif
  3798. #ifndef MIN_COOLING_SLOPE_TIME
  3799. #define MIN_COOLING_SLOPE_TIME 60
  3800. #endif
  3801. /**
  3802. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3803. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3804. */
  3805. inline void gcode_M109() {
  3806. if (get_target_extruder_from_command(109)) return;
  3807. if (DEBUGGING(DRYRUN)) return;
  3808. #if ENABLED(SINGLENOZZLE)
  3809. if (target_extruder != active_extruder) return;
  3810. #endif
  3811. bool no_wait_for_cooling = code_seen('S');
  3812. if (no_wait_for_cooling || code_seen('R')) {
  3813. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3814. #if ENABLED(DUAL_X_CARRIAGE)
  3815. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3816. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3817. #endif
  3818. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3819. /**
  3820. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3821. * stand by mode, for instance in a dual extruder setup, without affecting
  3822. * the running print timer.
  3823. */
  3824. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3825. print_job_timer.stop();
  3826. LCD_MESSAGEPGM(WELCOME_MSG);
  3827. }
  3828. /**
  3829. * We do not check if the timer is already running because this check will
  3830. * be done for us inside the Stopwatch::start() method thus a running timer
  3831. * will not restart.
  3832. */
  3833. else print_job_timer.start();
  3834. #endif
  3835. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3836. }
  3837. #if ENABLED(AUTOTEMP)
  3838. planner.autotemp_M109();
  3839. #endif
  3840. #if TEMP_RESIDENCY_TIME > 0
  3841. millis_t residency_start_ms = 0;
  3842. // Loop until the temperature has stabilized
  3843. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3844. #else
  3845. // Loop until the temperature is very close target
  3846. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3847. #endif //TEMP_RESIDENCY_TIME > 0
  3848. float theTarget = -1.0, old_temp = 9999.0;
  3849. bool wants_to_cool = false;
  3850. wait_for_heatup = true;
  3851. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3852. KEEPALIVE_STATE(NOT_BUSY);
  3853. do {
  3854. // Target temperature might be changed during the loop
  3855. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3856. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3857. theTarget = thermalManager.degTargetHotend(target_extruder);
  3858. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3859. if (no_wait_for_cooling && wants_to_cool) break;
  3860. }
  3861. now = millis();
  3862. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3863. next_temp_ms = now + 1000UL;
  3864. print_heaterstates();
  3865. #if TEMP_RESIDENCY_TIME > 0
  3866. SERIAL_PROTOCOLPGM(" W:");
  3867. if (residency_start_ms) {
  3868. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3869. SERIAL_PROTOCOLLN(rem);
  3870. }
  3871. else {
  3872. SERIAL_PROTOCOLLNPGM("?");
  3873. }
  3874. #else
  3875. SERIAL_EOL;
  3876. #endif
  3877. }
  3878. idle();
  3879. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3880. float temp = thermalManager.degHotend(target_extruder);
  3881. #if TEMP_RESIDENCY_TIME > 0
  3882. float temp_diff = fabs(theTarget - temp);
  3883. if (!residency_start_ms) {
  3884. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3885. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3886. }
  3887. else if (temp_diff > TEMP_HYSTERESIS) {
  3888. // Restart the timer whenever the temperature falls outside the hysteresis.
  3889. residency_start_ms = now;
  3890. }
  3891. #endif //TEMP_RESIDENCY_TIME > 0
  3892. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3893. if (wants_to_cool) {
  3894. // break after MIN_COOLING_SLOPE_TIME seconds
  3895. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3896. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3897. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3898. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3899. old_temp = temp;
  3900. }
  3901. }
  3902. } while (wait_for_heatup && TEMP_CONDITIONS);
  3903. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3904. KEEPALIVE_STATE(IN_HANDLER);
  3905. }
  3906. #if HAS_TEMP_BED
  3907. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3908. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3909. #endif
  3910. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3911. #define MIN_COOLING_SLOPE_TIME_BED 60
  3912. #endif
  3913. /**
  3914. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3915. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3916. */
  3917. inline void gcode_M190() {
  3918. if (DEBUGGING(DRYRUN)) return;
  3919. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3920. bool no_wait_for_cooling = code_seen('S');
  3921. if (no_wait_for_cooling || code_seen('R')) {
  3922. thermalManager.setTargetBed(code_value_temp_abs());
  3923. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3924. if (code_value_temp_abs() > BED_MINTEMP) {
  3925. /**
  3926. * We start the timer when 'heating and waiting' command arrives, LCD
  3927. * functions never wait. Cooling down managed by extruders.
  3928. *
  3929. * We do not check if the timer is already running because this check will
  3930. * be done for us inside the Stopwatch::start() method thus a running timer
  3931. * will not restart.
  3932. */
  3933. print_job_timer.start();
  3934. }
  3935. #endif
  3936. }
  3937. #if TEMP_BED_RESIDENCY_TIME > 0
  3938. millis_t residency_start_ms = 0;
  3939. // Loop until the temperature has stabilized
  3940. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3941. #else
  3942. // Loop until the temperature is very close target
  3943. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3944. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3945. float theTarget = -1.0, old_temp = 9999.0;
  3946. bool wants_to_cool = false;
  3947. wait_for_heatup = true;
  3948. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3949. KEEPALIVE_STATE(NOT_BUSY);
  3950. target_extruder = active_extruder; // for print_heaterstates
  3951. do {
  3952. // Target temperature might be changed during the loop
  3953. if (theTarget != thermalManager.degTargetBed()) {
  3954. wants_to_cool = thermalManager.isCoolingBed();
  3955. theTarget = thermalManager.degTargetBed();
  3956. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3957. if (no_wait_for_cooling && wants_to_cool) break;
  3958. }
  3959. now = millis();
  3960. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3961. next_temp_ms = now + 1000UL;
  3962. print_heaterstates();
  3963. #if TEMP_BED_RESIDENCY_TIME > 0
  3964. SERIAL_PROTOCOLPGM(" W:");
  3965. if (residency_start_ms) {
  3966. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3967. SERIAL_PROTOCOLLN(rem);
  3968. }
  3969. else {
  3970. SERIAL_PROTOCOLLNPGM("?");
  3971. }
  3972. #else
  3973. SERIAL_EOL;
  3974. #endif
  3975. }
  3976. idle();
  3977. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3978. float temp = thermalManager.degBed();
  3979. #if TEMP_BED_RESIDENCY_TIME > 0
  3980. float temp_diff = fabs(theTarget - temp);
  3981. if (!residency_start_ms) {
  3982. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3983. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3984. }
  3985. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3986. // Restart the timer whenever the temperature falls outside the hysteresis.
  3987. residency_start_ms = now;
  3988. }
  3989. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3990. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3991. if (wants_to_cool) {
  3992. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  3993. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  3994. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3995. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  3996. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  3997. old_temp = temp;
  3998. }
  3999. }
  4000. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4001. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4002. KEEPALIVE_STATE(IN_HANDLER);
  4003. }
  4004. #endif // HAS_TEMP_BED
  4005. /**
  4006. * M110: Set Current Line Number
  4007. */
  4008. inline void gcode_M110() {
  4009. if (code_seen('N')) gcode_N = code_value_long();
  4010. }
  4011. /**
  4012. * M111: Set the debug level
  4013. */
  4014. inline void gcode_M111() {
  4015. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4016. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4017. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4018. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4019. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4020. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4021. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4022. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4023. #endif
  4024. const static char* const debug_strings[] PROGMEM = {
  4025. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4026. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4027. str_debug_32
  4028. #endif
  4029. };
  4030. SERIAL_ECHO_START;
  4031. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4032. if (marlin_debug_flags) {
  4033. uint8_t comma = 0;
  4034. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4035. if (TEST(marlin_debug_flags, i)) {
  4036. if (comma++) SERIAL_CHAR(',');
  4037. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4038. }
  4039. }
  4040. }
  4041. else {
  4042. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4043. }
  4044. SERIAL_EOL;
  4045. }
  4046. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4047. /**
  4048. * M113: Get or set Host Keepalive interval (0 to disable)
  4049. *
  4050. * S<seconds> Optional. Set the keepalive interval.
  4051. */
  4052. inline void gcode_M113() {
  4053. if (code_seen('S')) {
  4054. host_keepalive_interval = code_value_byte();
  4055. NOMORE(host_keepalive_interval, 60);
  4056. }
  4057. else {
  4058. SERIAL_ECHO_START;
  4059. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4060. }
  4061. }
  4062. #endif
  4063. #if ENABLED(BARICUDA)
  4064. #if HAS_HEATER_1
  4065. /**
  4066. * M126: Heater 1 valve open
  4067. */
  4068. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4069. /**
  4070. * M127: Heater 1 valve close
  4071. */
  4072. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4073. #endif
  4074. #if HAS_HEATER_2
  4075. /**
  4076. * M128: Heater 2 valve open
  4077. */
  4078. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4079. /**
  4080. * M129: Heater 2 valve close
  4081. */
  4082. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4083. #endif
  4084. #endif //BARICUDA
  4085. /**
  4086. * M140: Set bed temperature
  4087. */
  4088. inline void gcode_M140() {
  4089. if (DEBUGGING(DRYRUN)) return;
  4090. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4091. }
  4092. #if ENABLED(ULTIPANEL)
  4093. /**
  4094. * M145: Set the heatup state for a material in the LCD menu
  4095. * S<material> (0=PLA, 1=ABS)
  4096. * H<hotend temp>
  4097. * B<bed temp>
  4098. * F<fan speed>
  4099. */
  4100. inline void gcode_M145() {
  4101. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4102. if (material < 0 || material > 1) {
  4103. SERIAL_ERROR_START;
  4104. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4105. }
  4106. else {
  4107. int v;
  4108. switch (material) {
  4109. case 0:
  4110. if (code_seen('H')) {
  4111. v = code_value_int();
  4112. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4113. }
  4114. if (code_seen('F')) {
  4115. v = code_value_int();
  4116. preheatFanSpeed1 = constrain(v, 0, 255);
  4117. }
  4118. #if TEMP_SENSOR_BED != 0
  4119. if (code_seen('B')) {
  4120. v = code_value_int();
  4121. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4122. }
  4123. #endif
  4124. break;
  4125. case 1:
  4126. if (code_seen('H')) {
  4127. v = code_value_int();
  4128. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4129. }
  4130. if (code_seen('F')) {
  4131. v = code_value_int();
  4132. preheatFanSpeed2 = constrain(v, 0, 255);
  4133. }
  4134. #if TEMP_SENSOR_BED != 0
  4135. if (code_seen('B')) {
  4136. v = code_value_int();
  4137. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4138. }
  4139. #endif
  4140. break;
  4141. }
  4142. }
  4143. }
  4144. #endif // ULTIPANEL
  4145. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4146. /**
  4147. * M149: Set temperature units
  4148. */
  4149. inline void gcode_M149() {
  4150. if (code_seen('C')) {
  4151. set_input_temp_units(TEMPUNIT_C);
  4152. } else if (code_seen('K')) {
  4153. set_input_temp_units(TEMPUNIT_K);
  4154. } else if (code_seen('F')) {
  4155. set_input_temp_units(TEMPUNIT_F);
  4156. }
  4157. }
  4158. #endif
  4159. #if HAS_POWER_SWITCH
  4160. /**
  4161. * M80: Turn on Power Supply
  4162. */
  4163. inline void gcode_M80() {
  4164. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4165. /**
  4166. * If you have a switch on suicide pin, this is useful
  4167. * if you want to start another print with suicide feature after
  4168. * a print without suicide...
  4169. */
  4170. #if HAS_SUICIDE
  4171. OUT_WRITE(SUICIDE_PIN, HIGH);
  4172. #endif
  4173. #if ENABLED(ULTIPANEL)
  4174. powersupply = true;
  4175. LCD_MESSAGEPGM(WELCOME_MSG);
  4176. lcd_update();
  4177. #endif
  4178. }
  4179. #endif // HAS_POWER_SWITCH
  4180. /**
  4181. * M81: Turn off Power, including Power Supply, if there is one.
  4182. *
  4183. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4184. */
  4185. inline void gcode_M81() {
  4186. thermalManager.disable_all_heaters();
  4187. stepper.finish_and_disable();
  4188. #if FAN_COUNT > 0
  4189. #if FAN_COUNT > 1
  4190. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4191. #else
  4192. fanSpeeds[0] = 0;
  4193. #endif
  4194. #endif
  4195. delay(1000); // Wait 1 second before switching off
  4196. #if HAS_SUICIDE
  4197. stepper.synchronize();
  4198. suicide();
  4199. #elif HAS_POWER_SWITCH
  4200. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4201. #endif
  4202. #if ENABLED(ULTIPANEL)
  4203. #if HAS_POWER_SWITCH
  4204. powersupply = false;
  4205. #endif
  4206. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4207. lcd_update();
  4208. #endif
  4209. }
  4210. /**
  4211. * M82: Set E codes absolute (default)
  4212. */
  4213. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4214. /**
  4215. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4216. */
  4217. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4218. /**
  4219. * M18, M84: Disable all stepper motors
  4220. */
  4221. inline void gcode_M18_M84() {
  4222. if (code_seen('S')) {
  4223. stepper_inactive_time = code_value_millis_from_seconds();
  4224. }
  4225. else {
  4226. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4227. if (all_axis) {
  4228. stepper.finish_and_disable();
  4229. }
  4230. else {
  4231. stepper.synchronize();
  4232. if (code_seen('X')) disable_x();
  4233. if (code_seen('Y')) disable_y();
  4234. if (code_seen('Z')) disable_z();
  4235. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4236. if (code_seen('E')) {
  4237. disable_e0();
  4238. disable_e1();
  4239. disable_e2();
  4240. disable_e3();
  4241. }
  4242. #endif
  4243. }
  4244. }
  4245. }
  4246. /**
  4247. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4248. */
  4249. inline void gcode_M85() {
  4250. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4251. }
  4252. /**
  4253. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4254. * (Follows the same syntax as G92)
  4255. */
  4256. inline void gcode_M92() {
  4257. LOOP_XYZE(i) {
  4258. if (code_seen(axis_codes[i])) {
  4259. if (i == E_AXIS) {
  4260. float value = code_value_per_axis_unit(i);
  4261. if (value < 20.0) {
  4262. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4263. planner.max_e_jerk *= factor;
  4264. planner.max_feedrate_mm_s[i] *= factor;
  4265. planner.max_acceleration_steps_per_s2[i] *= factor;
  4266. }
  4267. planner.axis_steps_per_mm[i] = value;
  4268. }
  4269. else {
  4270. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4271. }
  4272. }
  4273. }
  4274. planner.refresh_positioning();
  4275. }
  4276. /**
  4277. * Output the current position to serial
  4278. */
  4279. static void report_current_position() {
  4280. SERIAL_PROTOCOLPGM("X:");
  4281. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4282. SERIAL_PROTOCOLPGM(" Y:");
  4283. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4284. SERIAL_PROTOCOLPGM(" Z:");
  4285. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4286. SERIAL_PROTOCOLPGM(" E:");
  4287. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4288. stepper.report_positions();
  4289. #if IS_SCARA
  4290. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4291. SERIAL_PROTOCOL(delta[A_AXIS]);
  4292. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4293. SERIAL_PROTOCOLLN(delta[B_AXIS]);
  4294. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4295. SERIAL_PROTOCOL(delta[A_AXIS]);
  4296. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4297. SERIAL_PROTOCOLLN(delta[B_AXIS] - delta[A_AXIS] - 90);
  4298. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4299. SERIAL_PROTOCOL(delta[A_AXIS] / 90 * planner.axis_steps_per_mm[A_AXIS]);
  4300. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4301. SERIAL_PROTOCOLLN((delta[B_AXIS] - delta[A_AXIS]) / 90 * planner.axis_steps_per_mm[A_AXIS]);
  4302. SERIAL_EOL;
  4303. #endif
  4304. }
  4305. /**
  4306. * M114: Output current position to serial port
  4307. */
  4308. inline void gcode_M114() { report_current_position(); }
  4309. /**
  4310. * M115: Capabilities string
  4311. */
  4312. inline void gcode_M115() {
  4313. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4314. }
  4315. /**
  4316. * M117: Set LCD Status Message
  4317. */
  4318. inline void gcode_M117() {
  4319. lcd_setstatus(current_command_args);
  4320. }
  4321. /**
  4322. * M119: Output endstop states to serial output
  4323. */
  4324. inline void gcode_M119() { endstops.M119(); }
  4325. /**
  4326. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4327. */
  4328. inline void gcode_M120() { endstops.enable_globally(true); }
  4329. /**
  4330. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4331. */
  4332. inline void gcode_M121() { endstops.enable_globally(false); }
  4333. #if ENABLED(BLINKM)
  4334. /**
  4335. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4336. */
  4337. inline void gcode_M150() {
  4338. SendColors(
  4339. code_seen('R') ? code_value_byte() : 0,
  4340. code_seen('U') ? code_value_byte() : 0,
  4341. code_seen('B') ? code_value_byte() : 0
  4342. );
  4343. }
  4344. #endif // BLINKM
  4345. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4346. /**
  4347. * M155: Send data to a I2C slave device
  4348. *
  4349. * This is a PoC, the formating and arguments for the GCODE will
  4350. * change to be more compatible, the current proposal is:
  4351. *
  4352. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4353. *
  4354. * M155 B<byte-1 value in base 10>
  4355. * M155 B<byte-2 value in base 10>
  4356. * M155 B<byte-3 value in base 10>
  4357. *
  4358. * M155 S1 ; Send the buffered data and reset the buffer
  4359. * M155 R1 ; Reset the buffer without sending data
  4360. *
  4361. */
  4362. inline void gcode_M155() {
  4363. // Set the target address
  4364. if (code_seen('A')) i2c.address(code_value_byte());
  4365. // Add a new byte to the buffer
  4366. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4367. // Flush the buffer to the bus
  4368. if (code_seen('S')) i2c.send();
  4369. // Reset and rewind the buffer
  4370. else if (code_seen('R')) i2c.reset();
  4371. }
  4372. /**
  4373. * M156: Request X bytes from I2C slave device
  4374. *
  4375. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4376. */
  4377. inline void gcode_M156() {
  4378. if (code_seen('A')) i2c.address(code_value_byte());
  4379. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4380. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4381. i2c.relay(bytes);
  4382. }
  4383. else {
  4384. SERIAL_ERROR_START;
  4385. SERIAL_ERRORLN("Bad i2c request");
  4386. }
  4387. }
  4388. #endif // EXPERIMENTAL_I2CBUS
  4389. /**
  4390. * M200: Set filament diameter and set E axis units to cubic units
  4391. *
  4392. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4393. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4394. */
  4395. inline void gcode_M200() {
  4396. if (get_target_extruder_from_command(200)) return;
  4397. if (code_seen('D')) {
  4398. // setting any extruder filament size disables volumetric on the assumption that
  4399. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4400. // for all extruders
  4401. volumetric_enabled = (code_value_linear_units() != 0.0);
  4402. if (volumetric_enabled) {
  4403. filament_size[target_extruder] = code_value_linear_units();
  4404. // make sure all extruders have some sane value for the filament size
  4405. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4406. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4407. }
  4408. }
  4409. else {
  4410. //reserved for setting filament diameter via UFID or filament measuring device
  4411. return;
  4412. }
  4413. calculate_volumetric_multipliers();
  4414. }
  4415. /**
  4416. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4417. */
  4418. inline void gcode_M201() {
  4419. LOOP_XYZE(i) {
  4420. if (code_seen(axis_codes[i])) {
  4421. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4422. }
  4423. }
  4424. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4425. planner.reset_acceleration_rates();
  4426. }
  4427. #if 0 // Not used for Sprinter/grbl gen6
  4428. inline void gcode_M202() {
  4429. LOOP_XYZE(i) {
  4430. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4431. }
  4432. }
  4433. #endif
  4434. /**
  4435. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4436. */
  4437. inline void gcode_M203() {
  4438. LOOP_XYZE(i)
  4439. if (code_seen(axis_codes[i]))
  4440. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4441. }
  4442. /**
  4443. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4444. *
  4445. * P = Printing moves
  4446. * R = Retract only (no X, Y, Z) moves
  4447. * T = Travel (non printing) moves
  4448. *
  4449. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4450. */
  4451. inline void gcode_M204() {
  4452. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4453. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4454. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4455. }
  4456. if (code_seen('P')) {
  4457. planner.acceleration = code_value_linear_units();
  4458. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4459. }
  4460. if (code_seen('R')) {
  4461. planner.retract_acceleration = code_value_linear_units();
  4462. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4463. }
  4464. if (code_seen('T')) {
  4465. planner.travel_acceleration = code_value_linear_units();
  4466. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4467. }
  4468. }
  4469. /**
  4470. * M205: Set Advanced Settings
  4471. *
  4472. * S = Min Feed Rate (units/s)
  4473. * T = Min Travel Feed Rate (units/s)
  4474. * B = Min Segment Time (µs)
  4475. * X = Max XY Jerk (units/sec^2)
  4476. * Z = Max Z Jerk (units/sec^2)
  4477. * E = Max E Jerk (units/sec^2)
  4478. */
  4479. inline void gcode_M205() {
  4480. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4481. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4482. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4483. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4484. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4485. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4486. }
  4487. /**
  4488. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4489. */
  4490. inline void gcode_M206() {
  4491. LOOP_XYZ(i)
  4492. if (code_seen(axis_codes[i]))
  4493. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4494. #if IS_SCARA
  4495. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4496. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4497. #endif
  4498. SYNC_PLAN_POSITION_KINEMATIC();
  4499. report_current_position();
  4500. }
  4501. #if ENABLED(DELTA)
  4502. /**
  4503. * M665: Set delta configurations
  4504. *
  4505. * L = diagonal rod
  4506. * R = delta radius
  4507. * S = segments per second
  4508. * A = Alpha (Tower 1) diagonal rod trim
  4509. * B = Beta (Tower 2) diagonal rod trim
  4510. * C = Gamma (Tower 3) diagonal rod trim
  4511. */
  4512. inline void gcode_M665() {
  4513. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4514. if (code_seen('R')) delta_radius = code_value_linear_units();
  4515. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4516. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4517. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4518. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4519. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4520. }
  4521. /**
  4522. * M666: Set delta endstop adjustment
  4523. */
  4524. inline void gcode_M666() {
  4525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4526. if (DEBUGGING(LEVELING)) {
  4527. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4528. }
  4529. #endif
  4530. LOOP_XYZ(i) {
  4531. if (code_seen(axis_codes[i])) {
  4532. endstop_adj[i] = code_value_axis_units(i);
  4533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4534. if (DEBUGGING(LEVELING)) {
  4535. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4536. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4537. }
  4538. #endif
  4539. }
  4540. }
  4541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4542. if (DEBUGGING(LEVELING)) {
  4543. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4544. }
  4545. #endif
  4546. }
  4547. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4548. /**
  4549. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4550. */
  4551. inline void gcode_M666() {
  4552. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4553. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4554. }
  4555. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4556. #if ENABLED(FWRETRACT)
  4557. /**
  4558. * M207: Set firmware retraction values
  4559. *
  4560. * S[+units] retract_length
  4561. * W[+units] retract_length_swap (multi-extruder)
  4562. * F[units/min] retract_feedrate_mm_s
  4563. * Z[units] retract_zlift
  4564. */
  4565. inline void gcode_M207() {
  4566. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4567. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4568. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4569. #if EXTRUDERS > 1
  4570. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4571. #endif
  4572. }
  4573. /**
  4574. * M208: Set firmware un-retraction values
  4575. *
  4576. * S[+units] retract_recover_length (in addition to M207 S*)
  4577. * W[+units] retract_recover_length_swap (multi-extruder)
  4578. * F[units/min] retract_recover_feedrate_mm_s
  4579. */
  4580. inline void gcode_M208() {
  4581. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4582. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4583. #if EXTRUDERS > 1
  4584. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4585. #endif
  4586. }
  4587. /**
  4588. * M209: Enable automatic retract (M209 S1)
  4589. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4590. */
  4591. inline void gcode_M209() {
  4592. if (code_seen('S')) {
  4593. autoretract_enabled = code_value_bool();
  4594. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4595. }
  4596. }
  4597. #endif // FWRETRACT
  4598. /**
  4599. * M211: Enable, Disable, and/or Report software endstops
  4600. *
  4601. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4602. */
  4603. inline void gcode_M211() {
  4604. SERIAL_ECHO_START;
  4605. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4606. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4607. #endif
  4608. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4609. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4610. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4611. #else
  4612. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  4613. SERIAL_ECHOPGM(MSG_OFF);
  4614. #endif
  4615. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  4616. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4617. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4618. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4619. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  4620. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4621. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4622. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4623. }
  4624. #if HOTENDS > 1
  4625. /**
  4626. * M218 - set hotend offset (in linear units)
  4627. *
  4628. * T<tool>
  4629. * X<xoffset>
  4630. * Y<yoffset>
  4631. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4632. */
  4633. inline void gcode_M218() {
  4634. if (get_target_extruder_from_command(218)) return;
  4635. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4636. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4637. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4638. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4639. #endif
  4640. SERIAL_ECHO_START;
  4641. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4642. HOTEND_LOOP() {
  4643. SERIAL_CHAR(' ');
  4644. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4645. SERIAL_CHAR(',');
  4646. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4647. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4648. SERIAL_CHAR(',');
  4649. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4650. #endif
  4651. }
  4652. SERIAL_EOL;
  4653. }
  4654. #endif // HOTENDS > 1
  4655. /**
  4656. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4657. */
  4658. inline void gcode_M220() {
  4659. if (code_seen('S')) feedrate_percentage = code_value_int();
  4660. }
  4661. /**
  4662. * M221: Set extrusion percentage (M221 T0 S95)
  4663. */
  4664. inline void gcode_M221() {
  4665. if (get_target_extruder_from_command(221)) return;
  4666. if (code_seen('S'))
  4667. flow_percentage[target_extruder] = code_value_int();
  4668. }
  4669. /**
  4670. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4671. */
  4672. inline void gcode_M226() {
  4673. if (code_seen('P')) {
  4674. int pin_number = code_value_int();
  4675. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4676. if (pin_state >= -1 && pin_state <= 1) {
  4677. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4678. if (sensitive_pins[i] == pin_number) {
  4679. pin_number = -1;
  4680. break;
  4681. }
  4682. }
  4683. if (pin_number > -1) {
  4684. int target = LOW;
  4685. stepper.synchronize();
  4686. pinMode(pin_number, INPUT);
  4687. switch (pin_state) {
  4688. case 1:
  4689. target = HIGH;
  4690. break;
  4691. case 0:
  4692. target = LOW;
  4693. break;
  4694. case -1:
  4695. target = !digitalRead(pin_number);
  4696. break;
  4697. }
  4698. while (digitalRead(pin_number) != target) idle();
  4699. } // pin_number > -1
  4700. } // pin_state -1 0 1
  4701. } // code_seen('P')
  4702. }
  4703. #if HAS_SERVOS
  4704. /**
  4705. * M280: Get or set servo position. P<index> [S<angle>]
  4706. */
  4707. inline void gcode_M280() {
  4708. if (!code_seen('P')) return;
  4709. int servo_index = code_value_int();
  4710. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4711. if (code_seen('S'))
  4712. MOVE_SERVO(servo_index, code_value_int());
  4713. else {
  4714. SERIAL_ECHO_START;
  4715. SERIAL_ECHOPAIR(" Servo ", servo_index);
  4716. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  4717. }
  4718. }
  4719. else {
  4720. SERIAL_ERROR_START;
  4721. SERIAL_ECHOPAIR("Servo ", servo_index);
  4722. SERIAL_ECHOLNPGM(" out of range");
  4723. }
  4724. }
  4725. #endif // HAS_SERVOS
  4726. #if HAS_BUZZER
  4727. /**
  4728. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4729. */
  4730. inline void gcode_M300() {
  4731. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4732. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4733. // Limits the tone duration to 0-5 seconds.
  4734. NOMORE(duration, 5000);
  4735. BUZZ(duration, frequency);
  4736. }
  4737. #endif // HAS_BUZZER
  4738. #if ENABLED(PIDTEMP)
  4739. /**
  4740. * M301: Set PID parameters P I D (and optionally C, L)
  4741. *
  4742. * P[float] Kp term
  4743. * I[float] Ki term (unscaled)
  4744. * D[float] Kd term (unscaled)
  4745. *
  4746. * With PID_EXTRUSION_SCALING:
  4747. *
  4748. * C[float] Kc term
  4749. * L[float] LPQ length
  4750. */
  4751. inline void gcode_M301() {
  4752. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4753. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4754. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4755. if (e < HOTENDS) { // catch bad input value
  4756. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4757. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4758. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4759. #if ENABLED(PID_EXTRUSION_SCALING)
  4760. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4761. if (code_seen('L')) lpq_len = code_value_float();
  4762. NOMORE(lpq_len, LPQ_MAX_LEN);
  4763. #endif
  4764. thermalManager.updatePID();
  4765. SERIAL_ECHO_START;
  4766. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4767. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  4768. #endif // PID_PARAMS_PER_HOTEND
  4769. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  4770. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  4771. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  4772. #if ENABLED(PID_EXTRUSION_SCALING)
  4773. //Kc does not have scaling applied above, or in resetting defaults
  4774. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  4775. #endif
  4776. SERIAL_EOL;
  4777. }
  4778. else {
  4779. SERIAL_ERROR_START;
  4780. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4781. }
  4782. }
  4783. #endif // PIDTEMP
  4784. #if ENABLED(PIDTEMPBED)
  4785. inline void gcode_M304() {
  4786. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4787. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4788. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4789. thermalManager.updatePID();
  4790. SERIAL_ECHO_START;
  4791. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  4792. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  4793. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  4794. }
  4795. #endif // PIDTEMPBED
  4796. #if defined(CHDK) || HAS_PHOTOGRAPH
  4797. /**
  4798. * M240: Trigger a camera by emulating a Canon RC-1
  4799. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4800. */
  4801. inline void gcode_M240() {
  4802. #ifdef CHDK
  4803. OUT_WRITE(CHDK, HIGH);
  4804. chdkHigh = millis();
  4805. chdkActive = true;
  4806. #elif HAS_PHOTOGRAPH
  4807. const uint8_t NUM_PULSES = 16;
  4808. const float PULSE_LENGTH = 0.01524;
  4809. for (int i = 0; i < NUM_PULSES; i++) {
  4810. WRITE(PHOTOGRAPH_PIN, HIGH);
  4811. _delay_ms(PULSE_LENGTH);
  4812. WRITE(PHOTOGRAPH_PIN, LOW);
  4813. _delay_ms(PULSE_LENGTH);
  4814. }
  4815. delay(7.33);
  4816. for (int i = 0; i < NUM_PULSES; i++) {
  4817. WRITE(PHOTOGRAPH_PIN, HIGH);
  4818. _delay_ms(PULSE_LENGTH);
  4819. WRITE(PHOTOGRAPH_PIN, LOW);
  4820. _delay_ms(PULSE_LENGTH);
  4821. }
  4822. #endif // !CHDK && HAS_PHOTOGRAPH
  4823. }
  4824. #endif // CHDK || PHOTOGRAPH_PIN
  4825. #if HAS_LCD_CONTRAST
  4826. /**
  4827. * M250: Read and optionally set the LCD contrast
  4828. */
  4829. inline void gcode_M250() {
  4830. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4831. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4832. SERIAL_PROTOCOL(lcd_contrast);
  4833. SERIAL_EOL;
  4834. }
  4835. #endif // HAS_LCD_CONTRAST
  4836. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4837. /**
  4838. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4839. *
  4840. * S<temperature> sets the minimum extrude temperature
  4841. * P<bool> enables (1) or disables (0) cold extrusion
  4842. *
  4843. * Examples:
  4844. *
  4845. * M302 ; report current cold extrusion state
  4846. * M302 P0 ; enable cold extrusion checking
  4847. * M302 P1 ; disables cold extrusion checking
  4848. * M302 S0 ; always allow extrusion (disables checking)
  4849. * M302 S170 ; only allow extrusion above 170
  4850. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4851. */
  4852. inline void gcode_M302() {
  4853. bool seen_S = code_seen('S');
  4854. if (seen_S) {
  4855. thermalManager.extrude_min_temp = code_value_temp_abs();
  4856. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4857. }
  4858. if (code_seen('P'))
  4859. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4860. else if (!seen_S) {
  4861. // Report current state
  4862. SERIAL_ECHO_START;
  4863. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4864. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4865. SERIAL_ECHOLNPGM("C)");
  4866. }
  4867. }
  4868. #endif // PREVENT_COLD_EXTRUSION
  4869. /**
  4870. * M303: PID relay autotune
  4871. *
  4872. * S<temperature> sets the target temperature. (default 150C)
  4873. * E<extruder> (-1 for the bed) (default 0)
  4874. * C<cycles>
  4875. * U<bool> with a non-zero value will apply the result to current settings
  4876. */
  4877. inline void gcode_M303() {
  4878. #if HAS_PID_HEATING
  4879. int e = code_seen('E') ? code_value_int() : 0;
  4880. int c = code_seen('C') ? code_value_int() : 5;
  4881. bool u = code_seen('U') && code_value_bool();
  4882. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4883. if (e >= 0 && e < HOTENDS)
  4884. target_extruder = e;
  4885. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4886. thermalManager.PID_autotune(temp, e, c, u);
  4887. KEEPALIVE_STATE(IN_HANDLER);
  4888. #else
  4889. SERIAL_ERROR_START;
  4890. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4891. #endif
  4892. }
  4893. #if ENABLED(MORGAN_SCARA)
  4894. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  4895. if (IsRunning()) {
  4896. //gcode_get_destination(); // For X Y Z E F
  4897. forward_kinematics_SCARA(delta_a, delta_b);
  4898. destination[X_AXIS] = cartes[X_AXIS];
  4899. destination[Y_AXIS] = cartes[Y_AXIS];
  4900. destination[Z_AXIS] = current_position[Z_AXIS];
  4901. prepare_move_to_destination();
  4902. return true;
  4903. }
  4904. return false;
  4905. }
  4906. /**
  4907. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4908. */
  4909. inline bool gcode_M360() {
  4910. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4911. return SCARA_move_to_cal(0, 120);
  4912. }
  4913. /**
  4914. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4915. */
  4916. inline bool gcode_M361() {
  4917. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4918. return SCARA_move_to_cal(90, 130);
  4919. }
  4920. /**
  4921. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4922. */
  4923. inline bool gcode_M362() {
  4924. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4925. return SCARA_move_to_cal(60, 180);
  4926. }
  4927. /**
  4928. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4929. */
  4930. inline bool gcode_M363() {
  4931. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4932. return SCARA_move_to_cal(50, 90);
  4933. }
  4934. /**
  4935. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4936. */
  4937. inline bool gcode_M364() {
  4938. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4939. return SCARA_move_to_cal(45, 135);
  4940. }
  4941. #endif // SCARA
  4942. #if ENABLED(EXT_SOLENOID)
  4943. void enable_solenoid(uint8_t num) {
  4944. switch (num) {
  4945. case 0:
  4946. OUT_WRITE(SOL0_PIN, HIGH);
  4947. break;
  4948. #if HAS_SOLENOID_1
  4949. case 1:
  4950. OUT_WRITE(SOL1_PIN, HIGH);
  4951. break;
  4952. #endif
  4953. #if HAS_SOLENOID_2
  4954. case 2:
  4955. OUT_WRITE(SOL2_PIN, HIGH);
  4956. break;
  4957. #endif
  4958. #if HAS_SOLENOID_3
  4959. case 3:
  4960. OUT_WRITE(SOL3_PIN, HIGH);
  4961. break;
  4962. #endif
  4963. default:
  4964. SERIAL_ECHO_START;
  4965. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4966. break;
  4967. }
  4968. }
  4969. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4970. void disable_all_solenoids() {
  4971. OUT_WRITE(SOL0_PIN, LOW);
  4972. OUT_WRITE(SOL1_PIN, LOW);
  4973. OUT_WRITE(SOL2_PIN, LOW);
  4974. OUT_WRITE(SOL3_PIN, LOW);
  4975. }
  4976. /**
  4977. * M380: Enable solenoid on the active extruder
  4978. */
  4979. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4980. /**
  4981. * M381: Disable all solenoids
  4982. */
  4983. inline void gcode_M381() { disable_all_solenoids(); }
  4984. #endif // EXT_SOLENOID
  4985. /**
  4986. * M400: Finish all moves
  4987. */
  4988. inline void gcode_M400() { stepper.synchronize(); }
  4989. #if HAS_BED_PROBE
  4990. /**
  4991. * M401: Engage Z Servo endstop if available
  4992. */
  4993. inline void gcode_M401() { DEPLOY_PROBE(); }
  4994. /**
  4995. * M402: Retract Z Servo endstop if enabled
  4996. */
  4997. inline void gcode_M402() { STOW_PROBE(); }
  4998. #endif // HAS_BED_PROBE
  4999. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5000. /**
  5001. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5002. */
  5003. inline void gcode_M404() {
  5004. if (code_seen('W')) {
  5005. filament_width_nominal = code_value_linear_units();
  5006. }
  5007. else {
  5008. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5009. SERIAL_PROTOCOLLN(filament_width_nominal);
  5010. }
  5011. }
  5012. /**
  5013. * M405: Turn on filament sensor for control
  5014. */
  5015. inline void gcode_M405() {
  5016. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5017. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5018. if (code_seen('D')) meas_delay_cm = code_value_int();
  5019. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5020. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5021. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5022. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5023. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5024. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5025. }
  5026. filament_sensor = true;
  5027. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5028. //SERIAL_PROTOCOL(filament_width_meas);
  5029. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5030. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5031. }
  5032. /**
  5033. * M406: Turn off filament sensor for control
  5034. */
  5035. inline void gcode_M406() { filament_sensor = false; }
  5036. /**
  5037. * M407: Get measured filament diameter on serial output
  5038. */
  5039. inline void gcode_M407() {
  5040. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5041. SERIAL_PROTOCOLLN(filament_width_meas);
  5042. }
  5043. #endif // FILAMENT_WIDTH_SENSOR
  5044. void quickstop_stepper() {
  5045. stepper.quick_stop();
  5046. #if DISABLED(SCARA)
  5047. stepper.synchronize();
  5048. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5049. SYNC_PLAN_POSITION_KINEMATIC();
  5050. #endif
  5051. }
  5052. #if ENABLED(MESH_BED_LEVELING)
  5053. /**
  5054. * M420: Enable/Disable Mesh Bed Leveling
  5055. */
  5056. inline void gcode_M420() { if (code_seen('S')) mbl.set_has_mesh(code_value_bool()); }
  5057. /**
  5058. * M421: Set a single Mesh Bed Leveling Z coordinate
  5059. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5060. */
  5061. inline void gcode_M421() {
  5062. int8_t px = 0, py = 0;
  5063. float z = 0;
  5064. bool hasX, hasY, hasZ, hasI, hasJ;
  5065. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5066. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5067. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5068. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5069. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5070. if (hasX && hasY && hasZ) {
  5071. if (px >= 0 && py >= 0)
  5072. mbl.set_z(px, py, z);
  5073. else {
  5074. SERIAL_ERROR_START;
  5075. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5076. }
  5077. }
  5078. else if (hasI && hasJ && hasZ) {
  5079. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5080. mbl.set_z(px, py, z);
  5081. else {
  5082. SERIAL_ERROR_START;
  5083. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5084. }
  5085. }
  5086. else {
  5087. SERIAL_ERROR_START;
  5088. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5089. }
  5090. }
  5091. #endif
  5092. /**
  5093. * M428: Set home_offset based on the distance between the
  5094. * current_position and the nearest "reference point."
  5095. * If an axis is past center its endstop position
  5096. * is the reference-point. Otherwise it uses 0. This allows
  5097. * the Z offset to be set near the bed when using a max endstop.
  5098. *
  5099. * M428 can't be used more than 2cm away from 0 or an endstop.
  5100. *
  5101. * Use M206 to set these values directly.
  5102. */
  5103. inline void gcode_M428() {
  5104. bool err = false;
  5105. LOOP_XYZ(i) {
  5106. if (axis_homed[i]) {
  5107. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5108. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5109. if (diff > -20 && diff < 20) {
  5110. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5111. }
  5112. else {
  5113. SERIAL_ERROR_START;
  5114. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5115. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5116. BUZZ(200, 40);
  5117. err = true;
  5118. break;
  5119. }
  5120. }
  5121. }
  5122. if (!err) {
  5123. SYNC_PLAN_POSITION_KINEMATIC();
  5124. report_current_position();
  5125. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5126. BUZZ(200, 659);
  5127. BUZZ(200, 698);
  5128. }
  5129. }
  5130. /**
  5131. * M500: Store settings in EEPROM
  5132. */
  5133. inline void gcode_M500() {
  5134. Config_StoreSettings();
  5135. }
  5136. /**
  5137. * M501: Read settings from EEPROM
  5138. */
  5139. inline void gcode_M501() {
  5140. Config_RetrieveSettings();
  5141. }
  5142. /**
  5143. * M502: Revert to default settings
  5144. */
  5145. inline void gcode_M502() {
  5146. Config_ResetDefault();
  5147. }
  5148. /**
  5149. * M503: print settings currently in memory
  5150. */
  5151. inline void gcode_M503() {
  5152. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5153. }
  5154. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5155. /**
  5156. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5157. */
  5158. inline void gcode_M540() {
  5159. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5160. }
  5161. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5162. #if HAS_BED_PROBE
  5163. inline void gcode_M851() {
  5164. SERIAL_ECHO_START;
  5165. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5166. SERIAL_CHAR(' ');
  5167. if (code_seen('Z')) {
  5168. float value = code_value_axis_units(Z_AXIS);
  5169. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5170. zprobe_zoffset = value;
  5171. SERIAL_ECHO(zprobe_zoffset);
  5172. }
  5173. else {
  5174. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5175. SERIAL_CHAR(' ');
  5176. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5177. }
  5178. }
  5179. else {
  5180. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5181. }
  5182. SERIAL_EOL;
  5183. }
  5184. #endif // HAS_BED_PROBE
  5185. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5186. /**
  5187. * M600: Pause for filament change
  5188. *
  5189. * E[distance] - Retract the filament this far (negative value)
  5190. * Z[distance] - Move the Z axis by this distance
  5191. * X[position] - Move to this X position, with Y
  5192. * Y[position] - Move to this Y position, with X
  5193. * L[distance] - Retract distance for removal (manual reload)
  5194. *
  5195. * Default values are used for omitted arguments.
  5196. *
  5197. */
  5198. inline void gcode_M600() {
  5199. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5200. SERIAL_ERROR_START;
  5201. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5202. return;
  5203. }
  5204. // Show initial message and wait for synchronize steppers
  5205. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5206. stepper.synchronize();
  5207. float lastpos[NUM_AXIS];
  5208. // Save current position of all axes
  5209. LOOP_XYZE(i)
  5210. lastpos[i] = destination[i] = current_position[i];
  5211. // Define runplan for move axes
  5212. #if IS_KINEMATIC
  5213. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5214. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5215. #else
  5216. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5217. #endif
  5218. KEEPALIVE_STATE(IN_HANDLER);
  5219. // Initial retract before move to filament change position
  5220. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5221. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5222. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5223. #endif
  5224. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5225. // Lift Z axis
  5226. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5227. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5228. FILAMENT_CHANGE_Z_ADD
  5229. #else
  5230. 0
  5231. #endif
  5232. ;
  5233. if (z_lift > 0) {
  5234. destination[Z_AXIS] += z_lift;
  5235. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5236. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5237. }
  5238. // Move XY axes to filament exchange position
  5239. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5240. #ifdef FILAMENT_CHANGE_X_POS
  5241. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5242. #endif
  5243. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5244. #ifdef FILAMENT_CHANGE_Y_POS
  5245. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5246. #endif
  5247. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5248. stepper.synchronize();
  5249. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5250. // Unload filament
  5251. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5252. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5253. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5254. #endif
  5255. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5256. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5257. stepper.synchronize();
  5258. disable_e0();
  5259. disable_e1();
  5260. disable_e2();
  5261. disable_e3();
  5262. delay(100);
  5263. #if HAS_BUZZER
  5264. millis_t next_tick = 0;
  5265. #endif
  5266. // Wait for filament insert by user and press button
  5267. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5268. while (!lcd_clicked()) {
  5269. #if HAS_BUZZER
  5270. millis_t ms = millis();
  5271. if (ms >= next_tick) {
  5272. BUZZ(300, 2000);
  5273. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5274. }
  5275. #endif
  5276. idle(true);
  5277. }
  5278. delay(100);
  5279. while (lcd_clicked()) idle(true);
  5280. delay(100);
  5281. // Show load message
  5282. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5283. // Load filament
  5284. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5285. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5286. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5287. #endif
  5288. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5289. stepper.synchronize();
  5290. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5291. do {
  5292. // Extrude filament to get into hotend
  5293. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5294. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5295. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5296. stepper.synchronize();
  5297. // Ask user if more filament should be extruded
  5298. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5299. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5300. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5301. KEEPALIVE_STATE(IN_HANDLER);
  5302. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5303. #endif
  5304. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5305. KEEPALIVE_STATE(IN_HANDLER);
  5306. // Set extruder to saved position
  5307. current_position[E_AXIS] = lastpos[E_AXIS];
  5308. destination[E_AXIS] = lastpos[E_AXIS];
  5309. planner.set_e_position_mm(current_position[E_AXIS]);
  5310. #if IS_KINEMATIC
  5311. // Move XYZ to starting position, then E
  5312. inverse_kinematics(lastpos);
  5313. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5314. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5315. #else
  5316. // Move XY to starting position, then Z, then E
  5317. destination[X_AXIS] = lastpos[X_AXIS];
  5318. destination[Y_AXIS] = lastpos[Y_AXIS];
  5319. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5320. destination[Z_AXIS] = lastpos[Z_AXIS];
  5321. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5322. #endif
  5323. stepper.synchronize();
  5324. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5325. filament_ran_out = false;
  5326. #endif
  5327. // Show status screen
  5328. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5329. }
  5330. #endif // FILAMENT_CHANGE_FEATURE
  5331. #if ENABLED(DUAL_X_CARRIAGE)
  5332. /**
  5333. * M605: Set dual x-carriage movement mode
  5334. *
  5335. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5336. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5337. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5338. * units x-offset and an optional differential hotend temperature of
  5339. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5340. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5341. *
  5342. * Note: the X axis should be homed after changing dual x-carriage mode.
  5343. */
  5344. inline void gcode_M605() {
  5345. stepper.synchronize();
  5346. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5347. switch (dual_x_carriage_mode) {
  5348. case DXC_DUPLICATION_MODE:
  5349. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5350. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5351. SERIAL_ECHO_START;
  5352. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5353. SERIAL_CHAR(' ');
  5354. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5355. SERIAL_CHAR(',');
  5356. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5357. SERIAL_CHAR(' ');
  5358. SERIAL_ECHO(duplicate_extruder_x_offset);
  5359. SERIAL_CHAR(',');
  5360. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5361. break;
  5362. case DXC_FULL_CONTROL_MODE:
  5363. case DXC_AUTO_PARK_MODE:
  5364. break;
  5365. default:
  5366. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5367. break;
  5368. }
  5369. active_extruder_parked = false;
  5370. extruder_duplication_enabled = false;
  5371. delayed_move_time = 0;
  5372. }
  5373. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5374. inline void gcode_M605() {
  5375. stepper.synchronize();
  5376. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5377. SERIAL_ECHO_START;
  5378. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5379. }
  5380. #endif // M605
  5381. #if ENABLED(LIN_ADVANCE)
  5382. /**
  5383. * M905: Set advance factor
  5384. */
  5385. inline void gcode_M905() {
  5386. stepper.synchronize();
  5387. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5388. }
  5389. #endif
  5390. /**
  5391. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5392. */
  5393. inline void gcode_M907() {
  5394. #if HAS_DIGIPOTSS
  5395. LOOP_XYZE(i)
  5396. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5397. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5398. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5399. #endif
  5400. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5401. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5402. #endif
  5403. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5404. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5405. #endif
  5406. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5407. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5408. #endif
  5409. #if ENABLED(DIGIPOT_I2C)
  5410. // this one uses actual amps in floating point
  5411. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5412. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5413. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5414. #endif
  5415. #if ENABLED(DAC_STEPPER_CURRENT)
  5416. if (code_seen('S')) {
  5417. float dac_percent = code_value_float();
  5418. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5419. }
  5420. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5421. #endif
  5422. }
  5423. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5424. /**
  5425. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5426. */
  5427. inline void gcode_M908() {
  5428. #if HAS_DIGIPOTSS
  5429. stepper.digitalPotWrite(
  5430. code_seen('P') ? code_value_int() : 0,
  5431. code_seen('S') ? code_value_int() : 0
  5432. );
  5433. #endif
  5434. #ifdef DAC_STEPPER_CURRENT
  5435. dac_current_raw(
  5436. code_seen('P') ? code_value_byte() : -1,
  5437. code_seen('S') ? code_value_ushort() : 0
  5438. );
  5439. #endif
  5440. }
  5441. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5442. inline void gcode_M909() { dac_print_values(); }
  5443. inline void gcode_M910() { dac_commit_eeprom(); }
  5444. #endif
  5445. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5446. #if HAS_MICROSTEPS
  5447. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5448. inline void gcode_M350() {
  5449. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5450. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5451. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5452. stepper.microstep_readings();
  5453. }
  5454. /**
  5455. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5456. * S# determines MS1 or MS2, X# sets the pin high/low.
  5457. */
  5458. inline void gcode_M351() {
  5459. if (code_seen('S')) switch (code_value_byte()) {
  5460. case 1:
  5461. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5462. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5463. break;
  5464. case 2:
  5465. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5466. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5467. break;
  5468. }
  5469. stepper.microstep_readings();
  5470. }
  5471. #endif // HAS_MICROSTEPS
  5472. #if ENABLED(MIXING_EXTRUDER)
  5473. /**
  5474. * M163: Set a single mix factor for a mixing extruder
  5475. * This is called "weight" by some systems.
  5476. *
  5477. * S[index] The channel index to set
  5478. * P[float] The mix value
  5479. *
  5480. */
  5481. inline void gcode_M163() {
  5482. int mix_index = code_seen('S') ? code_value_int() : 0;
  5483. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5484. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5485. }
  5486. #if MIXING_VIRTUAL_TOOLS > 1
  5487. /**
  5488. * M164: Store the current mix factors as a virtual tool.
  5489. *
  5490. * S[index] The virtual tool to store
  5491. *
  5492. */
  5493. inline void gcode_M164() {
  5494. int tool_index = code_seen('S') ? code_value_int() : 0;
  5495. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5496. normalize_mix();
  5497. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5498. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5499. }
  5500. }
  5501. #endif
  5502. #if ENABLED(DIRECT_MIXING_IN_G1)
  5503. /**
  5504. * M165: Set multiple mix factors for a mixing extruder.
  5505. * Factors that are left out will be set to 0.
  5506. * All factors together must add up to 1.0.
  5507. *
  5508. * A[factor] Mix factor for extruder stepper 1
  5509. * B[factor] Mix factor for extruder stepper 2
  5510. * C[factor] Mix factor for extruder stepper 3
  5511. * D[factor] Mix factor for extruder stepper 4
  5512. * H[factor] Mix factor for extruder stepper 5
  5513. * I[factor] Mix factor for extruder stepper 6
  5514. *
  5515. */
  5516. inline void gcode_M165() { gcode_get_mix(); }
  5517. #endif
  5518. #endif // MIXING_EXTRUDER
  5519. /**
  5520. * M999: Restart after being stopped
  5521. *
  5522. * Default behaviour is to flush the serial buffer and request
  5523. * a resend to the host starting on the last N line received.
  5524. *
  5525. * Sending "M999 S1" will resume printing without flushing the
  5526. * existing command buffer.
  5527. *
  5528. */
  5529. inline void gcode_M999() {
  5530. Running = true;
  5531. lcd_reset_alert_level();
  5532. if (code_seen('S') && code_value_bool()) return;
  5533. // gcode_LastN = Stopped_gcode_LastN;
  5534. FlushSerialRequestResend();
  5535. }
  5536. #if ENABLED(SWITCHING_EXTRUDER)
  5537. inline void move_extruder_servo(uint8_t e) {
  5538. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5539. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5540. }
  5541. #endif
  5542. inline void invalid_extruder_error(const uint8_t &e) {
  5543. SERIAL_ECHO_START;
  5544. SERIAL_CHAR('T');
  5545. SERIAL_PROTOCOL_F(e, DEC);
  5546. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5547. }
  5548. /**
  5549. * Perform a tool-change, which may result in moving the
  5550. * previous tool out of the way and the new tool into place.
  5551. */
  5552. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5553. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5554. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5555. invalid_extruder_error(tmp_extruder);
  5556. return;
  5557. }
  5558. // T0-Tnnn: Switch virtual tool by changing the mix
  5559. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5560. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5561. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5562. #if HOTENDS > 1
  5563. if (tmp_extruder >= EXTRUDERS) {
  5564. invalid_extruder_error(tmp_extruder);
  5565. return;
  5566. }
  5567. float old_feedrate_mm_s = feedrate_mm_s;
  5568. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5569. if (tmp_extruder != active_extruder) {
  5570. if (!no_move && axis_unhomed_error(true, true, true)) {
  5571. SERIAL_ECHOLNPGM("No move on toolchange");
  5572. no_move = true;
  5573. }
  5574. // Save current position to destination, for use later
  5575. set_destination_to_current();
  5576. #if ENABLED(DUAL_X_CARRIAGE)
  5577. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5578. if (DEBUGGING(LEVELING)) {
  5579. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5580. switch (dual_x_carriage_mode) {
  5581. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5582. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5583. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5584. }
  5585. }
  5586. #endif
  5587. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5588. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5589. ) {
  5590. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5591. if (DEBUGGING(LEVELING)) {
  5592. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5593. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5594. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5595. }
  5596. #endif
  5597. // Park old head: 1) raise 2) move to park position 3) lower
  5598. for (uint8_t i = 0; i < 3; i++)
  5599. planner.buffer_line(
  5600. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5601. current_position[Y_AXIS],
  5602. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5603. current_position[E_AXIS],
  5604. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5605. active_extruder
  5606. );
  5607. stepper.synchronize();
  5608. }
  5609. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5610. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5611. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5612. active_extruder = tmp_extruder;
  5613. // This function resets the max/min values - the current position may be overwritten below.
  5614. set_axis_is_at_home(X_AXIS);
  5615. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5616. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5617. #endif
  5618. switch (dual_x_carriage_mode) {
  5619. case DXC_FULL_CONTROL_MODE:
  5620. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5621. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5622. break;
  5623. case DXC_DUPLICATION_MODE:
  5624. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5625. if (active_extruder_parked)
  5626. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5627. else
  5628. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5629. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5630. extruder_duplication_enabled = false;
  5631. break;
  5632. default:
  5633. // record raised toolhead position for use by unpark
  5634. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5635. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5636. active_extruder_parked = true;
  5637. delayed_move_time = 0;
  5638. break;
  5639. }
  5640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5641. if (DEBUGGING(LEVELING)) {
  5642. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5643. DEBUG_POS("New extruder (parked)", current_position);
  5644. }
  5645. #endif
  5646. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5647. #else // !DUAL_X_CARRIAGE
  5648. #if ENABLED(SWITCHING_EXTRUDER)
  5649. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5650. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5651. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5652. // Always raise by some amount
  5653. planner.buffer_line(
  5654. current_position[X_AXIS],
  5655. current_position[Y_AXIS],
  5656. current_position[Z_AXIS] + z_raise,
  5657. current_position[E_AXIS],
  5658. planner.max_feedrate_mm_s[Z_AXIS],
  5659. active_extruder
  5660. );
  5661. stepper.synchronize();
  5662. move_extruder_servo(active_extruder);
  5663. delay(500);
  5664. // Move back down, if needed
  5665. if (z_raise != z_diff) {
  5666. planner.buffer_line(
  5667. current_position[X_AXIS],
  5668. current_position[Y_AXIS],
  5669. current_position[Z_AXIS] + z_diff,
  5670. current_position[E_AXIS],
  5671. planner.max_feedrate_mm_s[Z_AXIS],
  5672. active_extruder
  5673. );
  5674. stepper.synchronize();
  5675. }
  5676. #endif
  5677. /**
  5678. * Set current_position to the position of the new nozzle.
  5679. * Offsets are based on linear distance, so we need to get
  5680. * the resulting position in coordinate space.
  5681. *
  5682. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5683. * - With mesh leveling, update Z for the new position
  5684. * - Otherwise, just use the raw linear distance
  5685. *
  5686. * Software endstops are altered here too. Consider a case where:
  5687. * E0 at X=0 ... E1 at X=10
  5688. * When we switch to E1 now X=10, but E1 can't move left.
  5689. * To express this we apply the change in XY to the software endstops.
  5690. * E1 can move farther right than E0, so the right limit is extended.
  5691. *
  5692. * Note that we don't adjust the Z software endstops. Why not?
  5693. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5694. * because the bed is 1mm lower at the new position. As long as
  5695. * the first nozzle is out of the way, the carriage should be
  5696. * allowed to move 1mm lower. This technically "breaks" the
  5697. * Z software endstop. But this is technically correct (and
  5698. * there is no viable alternative).
  5699. */
  5700. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5701. // Offset extruder, make sure to apply the bed level rotation matrix
  5702. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5703. hotend_offset[Y_AXIS][tmp_extruder],
  5704. 0),
  5705. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5706. hotend_offset[Y_AXIS][active_extruder],
  5707. 0),
  5708. offset_vec = tmp_offset_vec - act_offset_vec;
  5709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5710. if (DEBUGGING(LEVELING)) {
  5711. tmp_offset_vec.debug("tmp_offset_vec");
  5712. act_offset_vec.debug("act_offset_vec");
  5713. offset_vec.debug("offset_vec (BEFORE)");
  5714. }
  5715. #endif
  5716. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5718. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5719. #endif
  5720. // Adjustments to the current position
  5721. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5722. current_position[Z_AXIS] += offset_vec.z;
  5723. #else // !AUTO_BED_LEVELING_LINEAR
  5724. float xydiff[2] = {
  5725. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5726. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5727. };
  5728. #if ENABLED(MESH_BED_LEVELING)
  5729. if (mbl.active()) {
  5730. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5731. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5732. #endif
  5733. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5734. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5735. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5736. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5737. if (DEBUGGING(LEVELING))
  5738. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5739. #endif
  5740. }
  5741. #endif // MESH_BED_LEVELING
  5742. #endif // !AUTO_BED_LEVELING_FEATURE
  5743. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5744. if (DEBUGGING(LEVELING)) {
  5745. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5746. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5747. SERIAL_ECHOLNPGM(" }");
  5748. }
  5749. #endif
  5750. // The newly-selected extruder XY is actually at...
  5751. current_position[X_AXIS] += xydiff[X_AXIS];
  5752. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5753. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5754. position_shift[i] += xydiff[i];
  5755. update_software_endstops((AxisEnum)i);
  5756. }
  5757. // Set the new active extruder
  5758. active_extruder = tmp_extruder;
  5759. #endif // !DUAL_X_CARRIAGE
  5760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5761. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5762. #endif
  5763. // Tell the planner the new "current position"
  5764. SYNC_PLAN_POSITION_KINEMATIC();
  5765. // Move to the "old position" (move the extruder into place)
  5766. if (!no_move && IsRunning()) {
  5767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5768. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5769. #endif
  5770. prepare_move_to_destination();
  5771. }
  5772. } // (tmp_extruder != active_extruder)
  5773. stepper.synchronize();
  5774. #if ENABLED(EXT_SOLENOID)
  5775. disable_all_solenoids();
  5776. enable_solenoid_on_active_extruder();
  5777. #endif // EXT_SOLENOID
  5778. feedrate_mm_s = old_feedrate_mm_s;
  5779. #else // HOTENDS <= 1
  5780. // Set the new active extruder
  5781. active_extruder = tmp_extruder;
  5782. UNUSED(fr_mm_s);
  5783. UNUSED(no_move);
  5784. #endif // HOTENDS <= 1
  5785. SERIAL_ECHO_START;
  5786. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  5787. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5788. }
  5789. /**
  5790. * T0-T3: Switch tool, usually switching extruders
  5791. *
  5792. * F[units/min] Set the movement feedrate
  5793. * S1 Don't move the tool in XY after change
  5794. */
  5795. inline void gcode_T(uint8_t tmp_extruder) {
  5796. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5797. if (DEBUGGING(LEVELING)) {
  5798. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5799. SERIAL_ECHOLNPGM(")");
  5800. DEBUG_POS("BEFORE", current_position);
  5801. }
  5802. #endif
  5803. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5804. tool_change(tmp_extruder);
  5805. #elif HOTENDS > 1
  5806. tool_change(
  5807. tmp_extruder,
  5808. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5809. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5810. );
  5811. #endif
  5812. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5813. if (DEBUGGING(LEVELING)) {
  5814. DEBUG_POS("AFTER", current_position);
  5815. SERIAL_ECHOLNPGM("<<< gcode_T");
  5816. }
  5817. #endif
  5818. }
  5819. /**
  5820. * Process a single command and dispatch it to its handler
  5821. * This is called from the main loop()
  5822. */
  5823. void process_next_command() {
  5824. current_command = command_queue[cmd_queue_index_r];
  5825. if (DEBUGGING(ECHO)) {
  5826. SERIAL_ECHO_START;
  5827. SERIAL_ECHOLN(current_command);
  5828. }
  5829. // Sanitize the current command:
  5830. // - Skip leading spaces
  5831. // - Bypass N[-0-9][0-9]*[ ]*
  5832. // - Overwrite * with nul to mark the end
  5833. while (*current_command == ' ') ++current_command;
  5834. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5835. current_command += 2; // skip N[-0-9]
  5836. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5837. while (*current_command == ' ') ++current_command; // skip [ ]*
  5838. }
  5839. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5840. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5841. char *cmd_ptr = current_command;
  5842. // Get the command code, which must be G, M, or T
  5843. char command_code = *cmd_ptr++;
  5844. // Skip spaces to get the numeric part
  5845. while (*cmd_ptr == ' ') cmd_ptr++;
  5846. uint16_t codenum = 0; // define ahead of goto
  5847. // Bail early if there's no code
  5848. bool code_is_good = NUMERIC(*cmd_ptr);
  5849. if (!code_is_good) goto ExitUnknownCommand;
  5850. // Get and skip the code number
  5851. do {
  5852. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5853. cmd_ptr++;
  5854. } while (NUMERIC(*cmd_ptr));
  5855. // Skip all spaces to get to the first argument, or nul
  5856. while (*cmd_ptr == ' ') cmd_ptr++;
  5857. // The command's arguments (if any) start here, for sure!
  5858. current_command_args = cmd_ptr;
  5859. KEEPALIVE_STATE(IN_HANDLER);
  5860. // Handle a known G, M, or T
  5861. switch (command_code) {
  5862. case 'G': switch (codenum) {
  5863. // G0, G1
  5864. case 0:
  5865. case 1:
  5866. gcode_G0_G1();
  5867. break;
  5868. // G2, G3
  5869. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5870. case 2: // G2 - CW ARC
  5871. case 3: // G3 - CCW ARC
  5872. gcode_G2_G3(codenum == 2);
  5873. break;
  5874. #endif
  5875. // G4 Dwell
  5876. case 4:
  5877. gcode_G4();
  5878. break;
  5879. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5880. // G5
  5881. case 5: // G5 - Cubic B_spline
  5882. gcode_G5();
  5883. break;
  5884. #endif // BEZIER_CURVE_SUPPORT
  5885. #if ENABLED(FWRETRACT)
  5886. case 10: // G10: retract
  5887. case 11: // G11: retract_recover
  5888. gcode_G10_G11(codenum == 10);
  5889. break;
  5890. #endif // FWRETRACT
  5891. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5892. case 12:
  5893. gcode_G12(); // G12: Nozzle Clean
  5894. break;
  5895. #endif // NOZZLE_CLEAN_FEATURE
  5896. #if ENABLED(INCH_MODE_SUPPORT)
  5897. case 20: //G20: Inch Mode
  5898. gcode_G20();
  5899. break;
  5900. case 21: //G21: MM Mode
  5901. gcode_G21();
  5902. break;
  5903. #endif // INCH_MODE_SUPPORT
  5904. #if ENABLED(NOZZLE_PARK_FEATURE)
  5905. case 27: // G27: Nozzle Park
  5906. gcode_G27();
  5907. break;
  5908. #endif // NOZZLE_PARK_FEATURE
  5909. case 28: // G28: Home all axes, one at a time
  5910. gcode_G28();
  5911. break;
  5912. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5913. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5914. gcode_G29();
  5915. break;
  5916. #endif // AUTO_BED_LEVELING_FEATURE
  5917. #if HAS_BED_PROBE
  5918. case 30: // G30 Single Z probe
  5919. gcode_G30();
  5920. break;
  5921. #if ENABLED(Z_PROBE_SLED)
  5922. case 31: // G31: dock the sled
  5923. gcode_G31();
  5924. break;
  5925. case 32: // G32: undock the sled
  5926. gcode_G32();
  5927. break;
  5928. #endif // Z_PROBE_SLED
  5929. #endif // HAS_BED_PROBE
  5930. case 90: // G90
  5931. relative_mode = false;
  5932. break;
  5933. case 91: // G91
  5934. relative_mode = true;
  5935. break;
  5936. case 92: // G92
  5937. gcode_G92();
  5938. break;
  5939. }
  5940. break;
  5941. case 'M': switch (codenum) {
  5942. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  5943. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5944. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5945. gcode_M0_M1();
  5946. break;
  5947. #endif // ULTIPANEL
  5948. case 17:
  5949. gcode_M17();
  5950. break;
  5951. #if ENABLED(SDSUPPORT)
  5952. case 20: // M20 - list SD card
  5953. gcode_M20(); break;
  5954. case 21: // M21 - init SD card
  5955. gcode_M21(); break;
  5956. case 22: //M22 - release SD card
  5957. gcode_M22(); break;
  5958. case 23: //M23 - Select file
  5959. gcode_M23(); break;
  5960. case 24: //M24 - Start SD print
  5961. gcode_M24(); break;
  5962. case 25: //M25 - Pause SD print
  5963. gcode_M25(); break;
  5964. case 26: //M26 - Set SD index
  5965. gcode_M26(); break;
  5966. case 27: //M27 - Get SD status
  5967. gcode_M27(); break;
  5968. case 28: //M28 - Start SD write
  5969. gcode_M28(); break;
  5970. case 29: //M29 - Stop SD write
  5971. gcode_M29(); break;
  5972. case 30: //M30 <filename> Delete File
  5973. gcode_M30(); break;
  5974. case 32: //M32 - Select file and start SD print
  5975. gcode_M32(); break;
  5976. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5977. case 33: //M33 - Get the long full path to a file or folder
  5978. gcode_M33(); break;
  5979. #endif // LONG_FILENAME_HOST_SUPPORT
  5980. case 928: //M928 - Start SD write
  5981. gcode_M928(); break;
  5982. #endif //SDSUPPORT
  5983. case 31: //M31 take time since the start of the SD print or an M109 command
  5984. gcode_M31();
  5985. break;
  5986. case 42: //M42 -Change pin status via gcode
  5987. gcode_M42();
  5988. break;
  5989. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5990. case 48: // M48 Z probe repeatability
  5991. gcode_M48();
  5992. break;
  5993. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5994. case 75: // Start print timer
  5995. gcode_M75();
  5996. break;
  5997. case 76: // Pause print timer
  5998. gcode_M76();
  5999. break;
  6000. case 77: // Stop print timer
  6001. gcode_M77();
  6002. break;
  6003. #if ENABLED(PRINTCOUNTER)
  6004. case 78: // Show print statistics
  6005. gcode_M78();
  6006. break;
  6007. #endif
  6008. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6009. case 100:
  6010. gcode_M100();
  6011. break;
  6012. #endif
  6013. case 104: // M104
  6014. gcode_M104();
  6015. break;
  6016. case 110: // M110: Set Current Line Number
  6017. gcode_M110();
  6018. break;
  6019. case 111: // M111: Set debug level
  6020. gcode_M111();
  6021. break;
  6022. #if DISABLED(EMERGENCY_PARSER)
  6023. case 108: // M108: Cancel Waiting
  6024. gcode_M108();
  6025. break;
  6026. case 112: // M112: Emergency Stop
  6027. gcode_M112();
  6028. break;
  6029. case 410: // M410 quickstop - Abort all the planned moves.
  6030. gcode_M410();
  6031. break;
  6032. #endif
  6033. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6034. case 113: // M113: Set Host Keepalive interval
  6035. gcode_M113();
  6036. break;
  6037. #endif
  6038. case 140: // M140: Set bed temp
  6039. gcode_M140();
  6040. break;
  6041. case 105: // M105: Read current temperature
  6042. gcode_M105();
  6043. KEEPALIVE_STATE(NOT_BUSY);
  6044. return; // "ok" already printed
  6045. case 109: // M109: Wait for temperature
  6046. gcode_M109();
  6047. break;
  6048. #if HAS_TEMP_BED
  6049. case 190: // M190: Wait for bed heater to reach target
  6050. gcode_M190();
  6051. break;
  6052. #endif // HAS_TEMP_BED
  6053. #if FAN_COUNT > 0
  6054. case 106: // M106: Fan On
  6055. gcode_M106();
  6056. break;
  6057. case 107: // M107: Fan Off
  6058. gcode_M107();
  6059. break;
  6060. #endif // FAN_COUNT > 0
  6061. #if ENABLED(BARICUDA)
  6062. // PWM for HEATER_1_PIN
  6063. #if HAS_HEATER_1
  6064. case 126: // M126: valve open
  6065. gcode_M126();
  6066. break;
  6067. case 127: // M127: valve closed
  6068. gcode_M127();
  6069. break;
  6070. #endif // HAS_HEATER_1
  6071. // PWM for HEATER_2_PIN
  6072. #if HAS_HEATER_2
  6073. case 128: // M128: valve open
  6074. gcode_M128();
  6075. break;
  6076. case 129: // M129: valve closed
  6077. gcode_M129();
  6078. break;
  6079. #endif // HAS_HEATER_2
  6080. #endif // BARICUDA
  6081. #if HAS_POWER_SWITCH
  6082. case 80: // M80: Turn on Power Supply
  6083. gcode_M80();
  6084. break;
  6085. #endif // HAS_POWER_SWITCH
  6086. case 81: // M81: Turn off Power, including Power Supply, if possible
  6087. gcode_M81();
  6088. break;
  6089. case 82:
  6090. gcode_M82();
  6091. break;
  6092. case 83:
  6093. gcode_M83();
  6094. break;
  6095. case 18: // (for compatibility)
  6096. case 84: // M84
  6097. gcode_M18_M84();
  6098. break;
  6099. case 85: // M85
  6100. gcode_M85();
  6101. break;
  6102. case 92: // M92: Set the steps-per-unit for one or more axes
  6103. gcode_M92();
  6104. break;
  6105. case 115: // M115: Report capabilities
  6106. gcode_M115();
  6107. break;
  6108. case 117: // M117: Set LCD message text, if possible
  6109. gcode_M117();
  6110. break;
  6111. case 114: // M114: Report current position
  6112. gcode_M114();
  6113. break;
  6114. case 120: // M120: Enable endstops
  6115. gcode_M120();
  6116. break;
  6117. case 121: // M121: Disable endstops
  6118. gcode_M121();
  6119. break;
  6120. case 119: // M119: Report endstop states
  6121. gcode_M119();
  6122. break;
  6123. #if ENABLED(ULTIPANEL)
  6124. case 145: // M145: Set material heatup parameters
  6125. gcode_M145();
  6126. break;
  6127. #endif
  6128. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6129. case 149:
  6130. gcode_M149();
  6131. break;
  6132. #endif
  6133. #if ENABLED(BLINKM)
  6134. case 150: // M150
  6135. gcode_M150();
  6136. break;
  6137. #endif //BLINKM
  6138. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6139. case 155:
  6140. gcode_M155();
  6141. break;
  6142. case 156:
  6143. gcode_M156();
  6144. break;
  6145. #endif //EXPERIMENTAL_I2CBUS
  6146. #if ENABLED(MIXING_EXTRUDER)
  6147. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6148. gcode_M163();
  6149. break;
  6150. #if MIXING_VIRTUAL_TOOLS > 1
  6151. case 164: // M164 S<int> save current mix as a virtual extruder
  6152. gcode_M164();
  6153. break;
  6154. #endif
  6155. #if ENABLED(DIRECT_MIXING_IN_G1)
  6156. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6157. gcode_M165();
  6158. break;
  6159. #endif
  6160. #endif
  6161. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6162. gcode_M200();
  6163. break;
  6164. case 201: // M201
  6165. gcode_M201();
  6166. break;
  6167. #if 0 // Not used for Sprinter/grbl gen6
  6168. case 202: // M202
  6169. gcode_M202();
  6170. break;
  6171. #endif
  6172. case 203: // M203 max feedrate units/sec
  6173. gcode_M203();
  6174. break;
  6175. case 204: // M204 acclereration S normal moves T filmanent only moves
  6176. gcode_M204();
  6177. break;
  6178. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6179. gcode_M205();
  6180. break;
  6181. case 206: // M206 additional homing offset
  6182. gcode_M206();
  6183. break;
  6184. #if ENABLED(DELTA)
  6185. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6186. gcode_M665();
  6187. break;
  6188. #endif
  6189. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6190. case 666: // M666 set delta / dual endstop adjustment
  6191. gcode_M666();
  6192. break;
  6193. #endif
  6194. #if ENABLED(FWRETRACT)
  6195. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6196. gcode_M207();
  6197. break;
  6198. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6199. gcode_M208();
  6200. break;
  6201. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6202. gcode_M209();
  6203. break;
  6204. #endif // FWRETRACT
  6205. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6206. gcode_M211();
  6207. break;
  6208. #if HOTENDS > 1
  6209. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6210. gcode_M218();
  6211. break;
  6212. #endif
  6213. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6214. gcode_M220();
  6215. break;
  6216. case 221: // M221 - Set Flow Percentage: S<percent>
  6217. gcode_M221();
  6218. break;
  6219. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6220. gcode_M226();
  6221. break;
  6222. #if HAS_SERVOS
  6223. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6224. gcode_M280();
  6225. break;
  6226. #endif // HAS_SERVOS
  6227. #if HAS_BUZZER
  6228. case 300: // M300 - Play beep tone
  6229. gcode_M300();
  6230. break;
  6231. #endif // HAS_BUZZER
  6232. #if ENABLED(PIDTEMP)
  6233. case 301: // M301
  6234. gcode_M301();
  6235. break;
  6236. #endif // PIDTEMP
  6237. #if ENABLED(PIDTEMPBED)
  6238. case 304: // M304
  6239. gcode_M304();
  6240. break;
  6241. #endif // PIDTEMPBED
  6242. #if defined(CHDK) || HAS_PHOTOGRAPH
  6243. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6244. gcode_M240();
  6245. break;
  6246. #endif // CHDK || PHOTOGRAPH_PIN
  6247. #if HAS_LCD_CONTRAST
  6248. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6249. gcode_M250();
  6250. break;
  6251. #endif // HAS_LCD_CONTRAST
  6252. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6253. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6254. gcode_M302();
  6255. break;
  6256. #endif // PREVENT_COLD_EXTRUSION
  6257. case 303: // M303 PID autotune
  6258. gcode_M303();
  6259. break;
  6260. #if ENABLED(MORGAN_SCARA)
  6261. case 360: // M360 SCARA Theta pos1
  6262. if (gcode_M360()) return;
  6263. break;
  6264. case 361: // M361 SCARA Theta pos2
  6265. if (gcode_M361()) return;
  6266. break;
  6267. case 362: // M362 SCARA Psi pos1
  6268. if (gcode_M362()) return;
  6269. break;
  6270. case 363: // M363 SCARA Psi pos2
  6271. if (gcode_M363()) return;
  6272. break;
  6273. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6274. if (gcode_M364()) return;
  6275. break;
  6276. #endif // SCARA
  6277. case 400: // M400 finish all moves
  6278. gcode_M400();
  6279. break;
  6280. #if HAS_BED_PROBE
  6281. case 401:
  6282. gcode_M401();
  6283. break;
  6284. case 402:
  6285. gcode_M402();
  6286. break;
  6287. #endif // HAS_BED_PROBE
  6288. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6289. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6290. gcode_M404();
  6291. break;
  6292. case 405: //M405 Turn on filament sensor for control
  6293. gcode_M405();
  6294. break;
  6295. case 406: //M406 Turn off filament sensor for control
  6296. gcode_M406();
  6297. break;
  6298. case 407: //M407 Display measured filament diameter
  6299. gcode_M407();
  6300. break;
  6301. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6302. #if ENABLED(MESH_BED_LEVELING)
  6303. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6304. gcode_M420();
  6305. break;
  6306. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6307. gcode_M421();
  6308. break;
  6309. #endif
  6310. case 428: // M428 Apply current_position to home_offset
  6311. gcode_M428();
  6312. break;
  6313. case 500: // M500 Store settings in EEPROM
  6314. gcode_M500();
  6315. break;
  6316. case 501: // M501 Read settings from EEPROM
  6317. gcode_M501();
  6318. break;
  6319. case 502: // M502 Revert to default settings
  6320. gcode_M502();
  6321. break;
  6322. case 503: // M503 print settings currently in memory
  6323. gcode_M503();
  6324. break;
  6325. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6326. case 540:
  6327. gcode_M540();
  6328. break;
  6329. #endif
  6330. #if HAS_BED_PROBE
  6331. case 851:
  6332. gcode_M851();
  6333. break;
  6334. #endif // HAS_BED_PROBE
  6335. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6336. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6337. gcode_M600();
  6338. break;
  6339. #endif // FILAMENT_CHANGE_FEATURE
  6340. #if ENABLED(DUAL_X_CARRIAGE)
  6341. case 605:
  6342. gcode_M605();
  6343. break;
  6344. #endif // DUAL_X_CARRIAGE
  6345. #if ENABLED(LIN_ADVANCE)
  6346. case 905: // M905 Set advance factor.
  6347. gcode_M905();
  6348. break;
  6349. #endif
  6350. case 907: // M907 Set digital trimpot motor current using axis codes.
  6351. gcode_M907();
  6352. break;
  6353. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6354. case 908: // M908 Control digital trimpot directly.
  6355. gcode_M908();
  6356. break;
  6357. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6358. case 909: // M909 Print digipot/DAC current value
  6359. gcode_M909();
  6360. break;
  6361. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6362. gcode_M910();
  6363. break;
  6364. #endif
  6365. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6366. #if HAS_MICROSTEPS
  6367. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6368. gcode_M350();
  6369. break;
  6370. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6371. gcode_M351();
  6372. break;
  6373. #endif // HAS_MICROSTEPS
  6374. case 999: // M999: Restart after being Stopped
  6375. gcode_M999();
  6376. break;
  6377. }
  6378. break;
  6379. case 'T':
  6380. gcode_T(codenum);
  6381. break;
  6382. default: code_is_good = false;
  6383. }
  6384. KEEPALIVE_STATE(NOT_BUSY);
  6385. ExitUnknownCommand:
  6386. // Still unknown command? Throw an error
  6387. if (!code_is_good) unknown_command_error();
  6388. ok_to_send();
  6389. }
  6390. /**
  6391. * Send a "Resend: nnn" message to the host to
  6392. * indicate that a command needs to be re-sent.
  6393. */
  6394. void FlushSerialRequestResend() {
  6395. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6396. MYSERIAL.flush();
  6397. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6398. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6399. ok_to_send();
  6400. }
  6401. /**
  6402. * Send an "ok" message to the host, indicating
  6403. * that a command was successfully processed.
  6404. *
  6405. * If ADVANCED_OK is enabled also include:
  6406. * N<int> Line number of the command, if any
  6407. * P<int> Planner space remaining
  6408. * B<int> Block queue space remaining
  6409. */
  6410. void ok_to_send() {
  6411. refresh_cmd_timeout();
  6412. if (!send_ok[cmd_queue_index_r]) return;
  6413. SERIAL_PROTOCOLPGM(MSG_OK);
  6414. #if ENABLED(ADVANCED_OK)
  6415. char* p = command_queue[cmd_queue_index_r];
  6416. if (*p == 'N') {
  6417. SERIAL_PROTOCOL(' ');
  6418. SERIAL_ECHO(*p++);
  6419. while (NUMERIC_SIGNED(*p))
  6420. SERIAL_ECHO(*p++);
  6421. }
  6422. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6423. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6424. #endif
  6425. SERIAL_EOL;
  6426. }
  6427. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6428. /**
  6429. * Constrain the given coordinates to the software endstops.
  6430. */
  6431. void clamp_to_software_endstops(float target[XYZ]) {
  6432. #if ENABLED(min_software_endstops)
  6433. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6434. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6435. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6436. #endif
  6437. #if ENABLED(max_software_endstops)
  6438. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6439. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6440. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6441. #endif
  6442. }
  6443. #endif
  6444. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6445. // Get the Z adjustment for non-linear bed leveling
  6446. float nonlinear_z_offset(float cartesian[XYZ]) {
  6447. if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
  6448. int half_x = (ABL_GRID_POINTS_X - 1) / 2,
  6449. half_y = (ABL_GRID_POINTS_Y - 1) / 2;
  6450. float hx2 = half_x - 0.001, hx1 = -hx2,
  6451. hy2 = half_y - 0.001, hy1 = -hy2,
  6452. grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
  6453. grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
  6454. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6455. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6456. z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
  6457. z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
  6458. z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
  6459. z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
  6460. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6461. right = (1 - ratio_y) * z3 + ratio_y * z4;
  6462. /*
  6463. SERIAL_ECHOPAIR("grid_x=", grid_x);
  6464. SERIAL_ECHOPAIR(" grid_y=", grid_y);
  6465. SERIAL_ECHOPAIR(" floor_x=", floor_x);
  6466. SERIAL_ECHOPAIR(" floor_y=", floor_y);
  6467. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6468. SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
  6469. SERIAL_ECHOPAIR(" z1=", z1);
  6470. SERIAL_ECHOPAIR(" z2=", z2);
  6471. SERIAL_ECHOPAIR(" z3=", z3);
  6472. SERIAL_ECHOPAIR(" z4=", z4);
  6473. SERIAL_ECHOPAIR(" left=", left);
  6474. SERIAL_ECHOPAIR(" right=", right);
  6475. SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
  6476. //*/
  6477. return (1 - ratio_x) * left + ratio_x * right;
  6478. }
  6479. #endif // AUTO_BED_LEVELING_NONLINEAR
  6480. #if ENABLED(DELTA)
  6481. /**
  6482. * Recalculate factors used for delta kinematics whenever
  6483. * settings have been changed (e.g., by M665).
  6484. */
  6485. void recalc_delta_settings(float radius, float diagonal_rod) {
  6486. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6487. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6488. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6489. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6490. delta_tower3_x = 0.0; // back middle tower
  6491. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6492. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6493. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6494. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6495. }
  6496. #if ENABLED(DELTA_FAST_SQRT)
  6497. /**
  6498. * Fast inverse sqrt from Quake III Arena
  6499. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6500. */
  6501. float Q_rsqrt(float number) {
  6502. long i;
  6503. float x2, y;
  6504. const float threehalfs = 1.5f;
  6505. x2 = number * 0.5f;
  6506. y = number;
  6507. i = * ( long * ) &y; // evil floating point bit level hacking
  6508. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6509. y = * ( float * ) &i;
  6510. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6511. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6512. return y;
  6513. }
  6514. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6515. #else
  6516. #define _SQRT(n) sqrt(n)
  6517. #endif
  6518. /**
  6519. * Delta Inverse Kinematics
  6520. *
  6521. * Calculate the tower positions for a given logical
  6522. * position, storing the result in the delta[] array.
  6523. *
  6524. * This is an expensive calculation, requiring 3 square
  6525. * roots per segmented linear move, and strains the limits
  6526. * of a Mega2560 with a Graphical Display.
  6527. *
  6528. * Suggested optimizations include:
  6529. *
  6530. * - Disable the home_offset (M206) and/or position_shift (G92)
  6531. * features to remove up to 12 float additions.
  6532. *
  6533. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6534. * (see above)
  6535. */
  6536. void inverse_kinematics(const float logical[XYZ]) {
  6537. const float cartesian[XYZ] = {
  6538. RAW_X_POSITION(logical[X_AXIS]),
  6539. RAW_Y_POSITION(logical[Y_AXIS]),
  6540. RAW_Z_POSITION(logical[Z_AXIS])
  6541. };
  6542. // Macro to obtain the Z position of an individual tower
  6543. #define DELTA_Z(T) cartesian[Z_AXIS] + _SQRT( \
  6544. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6545. delta_tower##T##_x - cartesian[X_AXIS], \
  6546. delta_tower##T##_y - cartesian[Y_AXIS] \
  6547. ) \
  6548. )
  6549. delta[A_AXIS] = DELTA_Z(1);
  6550. delta[B_AXIS] = DELTA_Z(2);
  6551. delta[C_AXIS] = DELTA_Z(3);
  6552. /*
  6553. SERIAL_ECHOPAIR("cartesian X:", cartesian[X_AXIS]);
  6554. SERIAL_ECHOPAIR(" Y:", cartesian[Y_AXIS]);
  6555. SERIAL_ECHOLNPAIR(" Z:", cartesian[Z_AXIS]);
  6556. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]);
  6557. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]);
  6558. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]);
  6559. //*/
  6560. }
  6561. /**
  6562. * Calculate the highest Z position where the
  6563. * effector has the full range of XY motion.
  6564. */
  6565. float delta_safe_distance_from_top() {
  6566. float cartesian[XYZ] = {
  6567. LOGICAL_X_POSITION(0),
  6568. LOGICAL_Y_POSITION(0),
  6569. LOGICAL_Z_POSITION(0)
  6570. };
  6571. inverse_kinematics(cartesian);
  6572. float distance = delta[A_AXIS];
  6573. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6574. inverse_kinematics(cartesian);
  6575. return abs(distance - delta[A_AXIS]);
  6576. }
  6577. /**
  6578. * Delta Forward Kinematics
  6579. *
  6580. * See the Wikipedia article "Trilateration"
  6581. * https://en.wikipedia.org/wiki/Trilateration
  6582. *
  6583. * Establish a new coordinate system in the plane of the
  6584. * three carriage points. This system has its origin at
  6585. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  6586. * plane with a Z component of zero.
  6587. * We will define unit vectors in this coordinate system
  6588. * in our original coordinate system. Then when we calculate
  6589. * the Xnew, Ynew and Znew values, we can translate back into
  6590. * the original system by moving along those unit vectors
  6591. * by the corresponding values.
  6592. *
  6593. * Variable names matched to Marlin, c-version, and avoid the
  6594. * use of any vector library.
  6595. *
  6596. * by Andreas Hardtung 2016-06-07
  6597. * based on a Java function from "Delta Robot Kinematics V3"
  6598. * by Steve Graves
  6599. *
  6600. * The result is stored in the cartes[] array.
  6601. */
  6602. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6603. // Create a vector in old coordinates along x axis of new coordinate
  6604. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6605. // Get the Magnitude of vector.
  6606. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  6607. // Create unit vector by dividing by magnitude.
  6608. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  6609. // Get the vector from the origin of the new system to the third point.
  6610. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6611. // Use the dot product to find the component of this vector on the X axis.
  6612. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  6613. // Create a vector along the x axis that represents the x component of p13.
  6614. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  6615. // Subtract the X component from the original vector leaving only Y. We use the
  6616. // variable that will be the unit vector after we scale it.
  6617. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  6618. // The magnitude of Y component
  6619. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  6620. // Convert to a unit vector
  6621. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6622. // The cross product of the unit x and y is the unit z
  6623. // float[] ez = vectorCrossProd(ex, ey);
  6624. float ez[3] = {
  6625. ex[1] * ey[2] - ex[2] * ey[1],
  6626. ex[2] * ey[0] - ex[0] * ey[2],
  6627. ex[0] * ey[1] - ex[1] * ey[0]
  6628. };
  6629. // We now have the d, i and j values defined in Wikipedia.
  6630. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  6631. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  6632. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  6633. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  6634. // Start from the origin of the old coordinates and add vectors in the
  6635. // old coords that represent the Xnew, Ynew and Znew to find the point
  6636. // in the old system.
  6637. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  6638. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  6639. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  6640. };
  6641. void forward_kinematics_DELTA(float point[ABC]) {
  6642. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6643. }
  6644. #endif // DELTA
  6645. /**
  6646. * Get the stepper positions in the cartes[] array.
  6647. * Forward kinematics are applied for DELTA and SCARA.
  6648. *
  6649. * The result is in the current coordinate space with
  6650. * leveling applied. The coordinates need to be run through
  6651. * unapply_leveling to obtain the "ideal" coordinates
  6652. * suitable for current_position, etc.
  6653. */
  6654. void get_cartesian_from_steppers() {
  6655. #if ENABLED(DELTA)
  6656. forward_kinematics_DELTA(
  6657. stepper.get_axis_position_mm(A_AXIS),
  6658. stepper.get_axis_position_mm(B_AXIS),
  6659. stepper.get_axis_position_mm(C_AXIS)
  6660. );
  6661. #elif IS_SCARA
  6662. forward_kinematics_SCARA(
  6663. stepper.get_axis_position_degrees(A_AXIS),
  6664. stepper.get_axis_position_degrees(B_AXIS)
  6665. );
  6666. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6667. #else
  6668. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  6669. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  6670. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  6671. #endif
  6672. }
  6673. /**
  6674. * Set the current_position for an axis based on
  6675. * the stepper positions, removing any leveling that
  6676. * may have been applied.
  6677. *
  6678. * << INCOMPLETE! Still needs to unapply leveling! >>
  6679. */
  6680. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  6681. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  6682. vector_3 pos = untilted_stepper_position();
  6683. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6684. #elif IS_KINEMATIC
  6685. get_cartesian_from_steppers();
  6686. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  6687. #else
  6688. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6689. #endif
  6690. }
  6691. #if ENABLED(MESH_BED_LEVELING)
  6692. /**
  6693. * Prepare a mesh-leveled linear move in a Cartesian setup,
  6694. * splitting the move where it crosses mesh borders.
  6695. */
  6696. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6697. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6698. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6699. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6700. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6701. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6702. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6703. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6704. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6705. if (cx1 == cx2 && cy1 == cy2) {
  6706. // Start and end on same mesh square
  6707. line_to_destination(fr_mm_s);
  6708. set_current_to_destination();
  6709. return;
  6710. }
  6711. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6712. float normalized_dist, end[NUM_AXIS];
  6713. // Split at the left/front border of the right/top square
  6714. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6715. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6716. memcpy(end, destination, sizeof(end));
  6717. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6718. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6719. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6720. CBI(x_splits, gcx);
  6721. }
  6722. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6723. memcpy(end, destination, sizeof(end));
  6724. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6725. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6726. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6727. CBI(y_splits, gcy);
  6728. }
  6729. else {
  6730. // Already split on a border
  6731. line_to_destination(fr_mm_s);
  6732. set_current_to_destination();
  6733. return;
  6734. }
  6735. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6736. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6737. // Do the split and look for more borders
  6738. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6739. // Restore destination from stack
  6740. memcpy(destination, end, sizeof(end));
  6741. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6742. }
  6743. #endif // MESH_BED_LEVELING
  6744. #if IS_KINEMATIC
  6745. /**
  6746. * Prepare a linear move in a DELTA or SCARA setup.
  6747. *
  6748. * This calls planner.buffer_line several times, adding
  6749. * small incremental moves for DELTA or SCARA.
  6750. */
  6751. inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
  6752. float difference[NUM_AXIS];
  6753. LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
  6754. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6755. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  6756. if (UNEAR_ZERO(cartesian_mm)) return false;
  6757. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6758. float seconds = cartesian_mm / _feedrate_mm_s;
  6759. int steps = max(1, int(delta_segments_per_second * seconds));
  6760. float inv_steps = 1.0/steps;
  6761. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  6762. // SERIAL_ECHOPAIR(" seconds=", seconds);
  6763. // SERIAL_ECHOLNPAIR(" steps=", steps);
  6764. for (int s = 1; s <= steps; s++) {
  6765. float fraction = float(s) * inv_steps;
  6766. LOOP_XYZE(i)
  6767. logical[i] = current_position[i] + difference[i] * fraction;
  6768. inverse_kinematics(logical);
  6769. //DEBUG_POS("prepare_kinematic_move_to", logical);
  6770. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6771. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  6772. }
  6773. return true;
  6774. }
  6775. #else
  6776. /**
  6777. * Prepare a linear move in a Cartesian setup.
  6778. * If Mesh Bed Leveling is enabled, perform a mesh move.
  6779. */
  6780. inline bool prepare_move_to_destination_cartesian() {
  6781. // Do not use feedrate_percentage for E or Z only moves
  6782. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6783. line_to_destination();
  6784. }
  6785. else {
  6786. #if ENABLED(MESH_BED_LEVELING)
  6787. if (mbl.active()) {
  6788. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6789. return false;
  6790. }
  6791. else
  6792. #endif
  6793. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6794. }
  6795. return true;
  6796. }
  6797. #endif // !IS_KINEMATIC
  6798. #if ENABLED(DUAL_X_CARRIAGE)
  6799. /**
  6800. * Prepare a linear move in a dual X axis setup
  6801. */
  6802. inline bool prepare_move_to_destination_dualx() {
  6803. if (active_extruder_parked) {
  6804. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6805. // move duplicate extruder into correct duplication position.
  6806. planner.set_position_mm(
  6807. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6808. current_position[Y_AXIS],
  6809. current_position[Z_AXIS],
  6810. current_position[E_AXIS]
  6811. );
  6812. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6813. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6814. SYNC_PLAN_POSITION_KINEMATIC();
  6815. stepper.synchronize();
  6816. extruder_duplication_enabled = true;
  6817. active_extruder_parked = false;
  6818. }
  6819. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6820. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6821. // This is a travel move (with no extrusion)
  6822. // Skip it, but keep track of the current position
  6823. // (so it can be used as the start of the next non-travel move)
  6824. if (delayed_move_time != 0xFFFFFFFFUL) {
  6825. set_current_to_destination();
  6826. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6827. delayed_move_time = millis();
  6828. return false;
  6829. }
  6830. }
  6831. delayed_move_time = 0;
  6832. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6833. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6834. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6835. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6836. active_extruder_parked = false;
  6837. }
  6838. }
  6839. return true;
  6840. }
  6841. #endif // DUAL_X_CARRIAGE
  6842. /**
  6843. * Prepare a single move and get ready for the next one
  6844. *
  6845. * This may result in several calls to planner.buffer_line to
  6846. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  6847. */
  6848. void prepare_move_to_destination() {
  6849. clamp_to_software_endstops(destination);
  6850. refresh_cmd_timeout();
  6851. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6852. if (!DEBUGGING(DRYRUN)) {
  6853. if (destination[E_AXIS] != current_position[E_AXIS]) {
  6854. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6855. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6856. SERIAL_ECHO_START;
  6857. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6858. }
  6859. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6860. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  6861. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  6862. SERIAL_ECHO_START;
  6863. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6864. }
  6865. #endif
  6866. }
  6867. }
  6868. #endif
  6869. #if IS_KINEMATIC
  6870. if (!prepare_kinematic_move_to(destination)) return;
  6871. #else
  6872. #if ENABLED(DUAL_X_CARRIAGE)
  6873. if (!prepare_move_to_destination_dualx()) return;
  6874. #endif
  6875. if (!prepare_move_to_destination_cartesian()) return;
  6876. #endif
  6877. set_current_to_destination();
  6878. }
  6879. #if ENABLED(ARC_SUPPORT)
  6880. /**
  6881. * Plan an arc in 2 dimensions
  6882. *
  6883. * The arc is approximated by generating many small linear segments.
  6884. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6885. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6886. * larger segments will tend to be more efficient. Your slicer should have
  6887. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6888. */
  6889. void plan_arc(
  6890. float logical[NUM_AXIS], // Destination position
  6891. float* offset, // Center of rotation relative to current_position
  6892. uint8_t clockwise // Clockwise?
  6893. ) {
  6894. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6895. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6896. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6897. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  6898. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  6899. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6900. r_Y = -offset[Y_AXIS],
  6901. rt_X = logical[X_AXIS] - center_X,
  6902. rt_Y = logical[Y_AXIS] - center_Y;
  6903. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6904. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6905. if (angular_travel < 0) angular_travel += RADIANS(360);
  6906. if (clockwise) angular_travel -= RADIANS(360);
  6907. // Make a circle if the angular rotation is 0
  6908. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  6909. angular_travel += RADIANS(360);
  6910. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6911. if (mm_of_travel < 0.001) return;
  6912. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6913. if (segments == 0) segments = 1;
  6914. float theta_per_segment = angular_travel / segments;
  6915. float linear_per_segment = linear_travel / segments;
  6916. float extruder_per_segment = extruder_travel / segments;
  6917. /**
  6918. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6919. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6920. * r_T = [cos(phi) -sin(phi);
  6921. * sin(phi) cos(phi] * r ;
  6922. *
  6923. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6924. * defined from the circle center to the initial position. Each line segment is formed by successive
  6925. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6926. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6927. * all double numbers are single precision on the Arduino. (True double precision will not have
  6928. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6929. * tool precision in some cases. Therefore, arc path correction is implemented.
  6930. *
  6931. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6932. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6933. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6934. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6935. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6936. * issue for CNC machines with the single precision Arduino calculations.
  6937. *
  6938. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6939. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6940. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6941. * This is important when there are successive arc motions.
  6942. */
  6943. // Vector rotation matrix values
  6944. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6945. float sin_T = theta_per_segment;
  6946. float arc_target[NUM_AXIS];
  6947. float sin_Ti, cos_Ti, r_new_Y;
  6948. uint16_t i;
  6949. int8_t count = 0;
  6950. // Initialize the linear axis
  6951. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6952. // Initialize the extruder axis
  6953. arc_target[E_AXIS] = current_position[E_AXIS];
  6954. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6955. millis_t next_idle_ms = millis() + 200UL;
  6956. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6957. thermalManager.manage_heater();
  6958. millis_t now = millis();
  6959. if (ELAPSED(now, next_idle_ms)) {
  6960. next_idle_ms = now + 200UL;
  6961. idle();
  6962. }
  6963. if (++count < N_ARC_CORRECTION) {
  6964. // Apply vector rotation matrix to previous r_X / 1
  6965. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6966. r_X = r_X * cos_T - r_Y * sin_T;
  6967. r_Y = r_new_Y;
  6968. }
  6969. else {
  6970. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6971. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6972. // To reduce stuttering, the sin and cos could be computed at different times.
  6973. // For now, compute both at the same time.
  6974. cos_Ti = cos(i * theta_per_segment);
  6975. sin_Ti = sin(i * theta_per_segment);
  6976. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6977. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6978. count = 0;
  6979. }
  6980. // Update arc_target location
  6981. arc_target[X_AXIS] = center_X + r_X;
  6982. arc_target[Y_AXIS] = center_Y + r_Y;
  6983. arc_target[Z_AXIS] += linear_per_segment;
  6984. arc_target[E_AXIS] += extruder_per_segment;
  6985. clamp_to_software_endstops(arc_target);
  6986. #if IS_KINEMATIC
  6987. inverse_kinematics(arc_target);
  6988. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6989. #else
  6990. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6991. #endif
  6992. }
  6993. // Ensure last segment arrives at target location.
  6994. #if IS_KINEMATIC
  6995. inverse_kinematics(logical);
  6996. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  6997. #else
  6998. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  6999. #endif
  7000. // As far as the parser is concerned, the position is now == target. In reality the
  7001. // motion control system might still be processing the action and the real tool position
  7002. // in any intermediate location.
  7003. set_current_to_destination();
  7004. }
  7005. #endif
  7006. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7007. void plan_cubic_move(const float offset[4]) {
  7008. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7009. // As far as the parser is concerned, the position is now == destination. In reality the
  7010. // motion control system might still be processing the action and the real tool position
  7011. // in any intermediate location.
  7012. set_current_to_destination();
  7013. }
  7014. #endif // BEZIER_CURVE_SUPPORT
  7015. #if HAS_CONTROLLERFAN
  7016. void controllerFan() {
  7017. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7018. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7019. millis_t ms = millis();
  7020. if (ELAPSED(ms, nextMotorCheck)) {
  7021. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7022. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7023. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7024. #if E_STEPPERS > 1
  7025. || E1_ENABLE_READ == E_ENABLE_ON
  7026. #if HAS_X2_ENABLE
  7027. || X2_ENABLE_READ == X_ENABLE_ON
  7028. #endif
  7029. #if E_STEPPERS > 2
  7030. || E2_ENABLE_READ == E_ENABLE_ON
  7031. #if E_STEPPERS > 3
  7032. || E3_ENABLE_READ == E_ENABLE_ON
  7033. #endif
  7034. #endif
  7035. #endif
  7036. ) {
  7037. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7038. }
  7039. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7040. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7041. // allows digital or PWM fan output to be used (see M42 handling)
  7042. digitalWrite(CONTROLLERFAN_PIN, speed);
  7043. analogWrite(CONTROLLERFAN_PIN, speed);
  7044. }
  7045. }
  7046. #endif // HAS_CONTROLLERFAN
  7047. #if IS_SCARA
  7048. void forward_kinematics_SCARA(const float &a, const float &b) {
  7049. // Perform forward kinematics, and place results in cartes[]
  7050. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7051. float a_sin, a_cos, b_sin, b_cos;
  7052. a_sin = sin(RADIANS(a)) * L1;
  7053. a_cos = cos(RADIANS(a)) * L1;
  7054. b_sin = sin(RADIANS(b)) * L2;
  7055. b_cos = cos(RADIANS(b)) * L2;
  7056. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7057. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7058. /*
  7059. SERIAL_ECHOPAIR("f_delta x=", a);
  7060. SERIAL_ECHOPAIR(" y=", b);
  7061. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7062. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7063. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7064. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7065. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7066. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7067. //*/
  7068. }
  7069. void inverse_kinematics(const float logical[XYZ]) {
  7070. // Inverse kinematics.
  7071. // Perform SCARA IK and place results in delta[].
  7072. // The maths and first version were done by QHARLEY.
  7073. // Integrated, tweaked by Joachim Cerny in June 2014.
  7074. static float C2, S2, SK1, SK2, THETA, PSI;
  7075. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7076. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7077. #if (L1 == L2)
  7078. C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1;
  7079. #else
  7080. C2 = (HYPOT2(sx, sy) - L1_2 - L2_2) / 45000;
  7081. #endif
  7082. S2 = sqrt(1 - sq(C2));
  7083. SK1 = L1 + L2 * C2;
  7084. SK2 = L2 * S2;
  7085. THETA = (atan2(sx, sy) - atan2(SK1, SK2)) * -1;
  7086. PSI = atan2(S2, C2);
  7087. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7088. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7089. delta[C_AXIS] = logical[Z_AXIS];
  7090. /*
  7091. DEBUG_POS("SCARA IK", logical);
  7092. DEBUG_POS("SCARA IK", delta);
  7093. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7094. SERIAL_ECHOPAIR(",", sy);
  7095. SERIAL_ECHOPAIR(" C2=", C2);
  7096. SERIAL_ECHOPAIR(" S2=", S2);
  7097. SERIAL_ECHOPAIR(" Theta=", THETA);
  7098. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7099. //*/
  7100. }
  7101. #endif // IS_SCARA
  7102. #if ENABLED(TEMP_STAT_LEDS)
  7103. static bool red_led = false;
  7104. static millis_t next_status_led_update_ms = 0;
  7105. void handle_status_leds(void) {
  7106. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7107. next_status_led_update_ms += 500; // Update every 0.5s
  7108. float max_temp = 0.0;
  7109. #if HAS_TEMP_BED
  7110. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7111. #endif
  7112. HOTEND_LOOP() {
  7113. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7114. }
  7115. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7116. if (new_led != red_led) {
  7117. red_led = new_led;
  7118. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7119. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7120. }
  7121. }
  7122. }
  7123. #endif
  7124. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7125. void handle_filament_runout() {
  7126. if (!filament_ran_out) {
  7127. filament_ran_out = true;
  7128. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7129. stepper.synchronize();
  7130. }
  7131. }
  7132. #endif // FILAMENT_RUNOUT_SENSOR
  7133. #if ENABLED(FAST_PWM_FAN)
  7134. void setPwmFrequency(uint8_t pin, int val) {
  7135. val &= 0x07;
  7136. switch (digitalPinToTimer(pin)) {
  7137. #if defined(TCCR0A)
  7138. case TIMER0A:
  7139. case TIMER0B:
  7140. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7141. // TCCR0B |= val;
  7142. break;
  7143. #endif
  7144. #if defined(TCCR1A)
  7145. case TIMER1A:
  7146. case TIMER1B:
  7147. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7148. // TCCR1B |= val;
  7149. break;
  7150. #endif
  7151. #if defined(TCCR2)
  7152. case TIMER2:
  7153. case TIMER2:
  7154. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7155. TCCR2 |= val;
  7156. break;
  7157. #endif
  7158. #if defined(TCCR2A)
  7159. case TIMER2A:
  7160. case TIMER2B:
  7161. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7162. TCCR2B |= val;
  7163. break;
  7164. #endif
  7165. #if defined(TCCR3A)
  7166. case TIMER3A:
  7167. case TIMER3B:
  7168. case TIMER3C:
  7169. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7170. TCCR3B |= val;
  7171. break;
  7172. #endif
  7173. #if defined(TCCR4A)
  7174. case TIMER4A:
  7175. case TIMER4B:
  7176. case TIMER4C:
  7177. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7178. TCCR4B |= val;
  7179. break;
  7180. #endif
  7181. #if defined(TCCR5A)
  7182. case TIMER5A:
  7183. case TIMER5B:
  7184. case TIMER5C:
  7185. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7186. TCCR5B |= val;
  7187. break;
  7188. #endif
  7189. }
  7190. }
  7191. #endif // FAST_PWM_FAN
  7192. float calculate_volumetric_multiplier(float diameter) {
  7193. if (!volumetric_enabled || diameter == 0) return 1.0;
  7194. float d2 = diameter * 0.5;
  7195. return 1.0 / (M_PI * d2 * d2);
  7196. }
  7197. void calculate_volumetric_multipliers() {
  7198. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7199. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7200. }
  7201. void enable_all_steppers() {
  7202. enable_x();
  7203. enable_y();
  7204. enable_z();
  7205. enable_e0();
  7206. enable_e1();
  7207. enable_e2();
  7208. enable_e3();
  7209. }
  7210. void disable_all_steppers() {
  7211. disable_x();
  7212. disable_y();
  7213. disable_z();
  7214. disable_e0();
  7215. disable_e1();
  7216. disable_e2();
  7217. disable_e3();
  7218. }
  7219. /**
  7220. * Manage several activities:
  7221. * - Check for Filament Runout
  7222. * - Keep the command buffer full
  7223. * - Check for maximum inactive time between commands
  7224. * - Check for maximum inactive time between stepper commands
  7225. * - Check if pin CHDK needs to go LOW
  7226. * - Check for KILL button held down
  7227. * - Check for HOME button held down
  7228. * - Check if cooling fan needs to be switched on
  7229. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7230. */
  7231. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7232. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7233. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7234. handle_filament_runout();
  7235. #endif
  7236. if (commands_in_queue < BUFSIZE) get_available_commands();
  7237. millis_t ms = millis();
  7238. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7239. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7240. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7241. #if ENABLED(DISABLE_INACTIVE_X)
  7242. disable_x();
  7243. #endif
  7244. #if ENABLED(DISABLE_INACTIVE_Y)
  7245. disable_y();
  7246. #endif
  7247. #if ENABLED(DISABLE_INACTIVE_Z)
  7248. disable_z();
  7249. #endif
  7250. #if ENABLED(DISABLE_INACTIVE_E)
  7251. disable_e0();
  7252. disable_e1();
  7253. disable_e2();
  7254. disable_e3();
  7255. #endif
  7256. }
  7257. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7258. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7259. chdkActive = false;
  7260. WRITE(CHDK, LOW);
  7261. }
  7262. #endif
  7263. #if HAS_KILL
  7264. // Check if the kill button was pressed and wait just in case it was an accidental
  7265. // key kill key press
  7266. // -------------------------------------------------------------------------------
  7267. static int killCount = 0; // make the inactivity button a bit less responsive
  7268. const int KILL_DELAY = 750;
  7269. if (!READ(KILL_PIN))
  7270. killCount++;
  7271. else if (killCount > 0)
  7272. killCount--;
  7273. // Exceeded threshold and we can confirm that it was not accidental
  7274. // KILL the machine
  7275. // ----------------------------------------------------------------
  7276. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7277. #endif
  7278. #if HAS_HOME
  7279. // Check to see if we have to home, use poor man's debouncer
  7280. // ---------------------------------------------------------
  7281. static int homeDebounceCount = 0; // poor man's debouncing count
  7282. const int HOME_DEBOUNCE_DELAY = 2500;
  7283. if (!READ(HOME_PIN)) {
  7284. if (!homeDebounceCount) {
  7285. enqueue_and_echo_commands_P(PSTR("G28"));
  7286. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7287. }
  7288. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7289. homeDebounceCount++;
  7290. else
  7291. homeDebounceCount = 0;
  7292. }
  7293. #endif
  7294. #if HAS_CONTROLLERFAN
  7295. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7296. #endif
  7297. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7298. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7299. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7300. bool oldstatus;
  7301. #if ENABLED(SWITCHING_EXTRUDER)
  7302. oldstatus = E0_ENABLE_READ;
  7303. enable_e0();
  7304. #else // !SWITCHING_EXTRUDER
  7305. switch (active_extruder) {
  7306. case 0:
  7307. oldstatus = E0_ENABLE_READ;
  7308. enable_e0();
  7309. break;
  7310. #if E_STEPPERS > 1
  7311. case 1:
  7312. oldstatus = E1_ENABLE_READ;
  7313. enable_e1();
  7314. break;
  7315. #if E_STEPPERS > 2
  7316. case 2:
  7317. oldstatus = E2_ENABLE_READ;
  7318. enable_e2();
  7319. break;
  7320. #if E_STEPPERS > 3
  7321. case 3:
  7322. oldstatus = E3_ENABLE_READ;
  7323. enable_e3();
  7324. break;
  7325. #endif
  7326. #endif
  7327. #endif
  7328. }
  7329. #endif // !SWITCHING_EXTRUDER
  7330. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7331. planner.buffer_line(
  7332. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7333. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7334. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7335. );
  7336. stepper.synchronize();
  7337. planner.set_e_position_mm(current_position[E_AXIS]);
  7338. #if ENABLED(SWITCHING_EXTRUDER)
  7339. E0_ENABLE_WRITE(oldstatus);
  7340. #else
  7341. switch (active_extruder) {
  7342. case 0:
  7343. E0_ENABLE_WRITE(oldstatus);
  7344. break;
  7345. #if E_STEPPERS > 1
  7346. case 1:
  7347. E1_ENABLE_WRITE(oldstatus);
  7348. break;
  7349. #if E_STEPPERS > 2
  7350. case 2:
  7351. E2_ENABLE_WRITE(oldstatus);
  7352. break;
  7353. #if E_STEPPERS > 3
  7354. case 3:
  7355. E3_ENABLE_WRITE(oldstatus);
  7356. break;
  7357. #endif
  7358. #endif
  7359. #endif
  7360. }
  7361. #endif // !SWITCHING_EXTRUDER
  7362. }
  7363. #endif // EXTRUDER_RUNOUT_PREVENT
  7364. #if ENABLED(DUAL_X_CARRIAGE)
  7365. // handle delayed move timeout
  7366. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7367. // travel moves have been received so enact them
  7368. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7369. set_destination_to_current();
  7370. prepare_move_to_destination();
  7371. }
  7372. #endif
  7373. #if ENABLED(TEMP_STAT_LEDS)
  7374. handle_status_leds();
  7375. #endif
  7376. planner.check_axes_activity();
  7377. }
  7378. /**
  7379. * Standard idle routine keeps the machine alive
  7380. */
  7381. void idle(
  7382. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7383. bool no_stepper_sleep/*=false*/
  7384. #endif
  7385. ) {
  7386. lcd_update();
  7387. host_keepalive();
  7388. manage_inactivity(
  7389. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7390. no_stepper_sleep
  7391. #endif
  7392. );
  7393. thermalManager.manage_heater();
  7394. #if ENABLED(PRINTCOUNTER)
  7395. print_job_timer.tick();
  7396. #endif
  7397. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7398. buzzer.tick();
  7399. #endif
  7400. }
  7401. /**
  7402. * Kill all activity and lock the machine.
  7403. * After this the machine will need to be reset.
  7404. */
  7405. void kill(const char* lcd_msg) {
  7406. SERIAL_ERROR_START;
  7407. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7408. #if ENABLED(ULTRA_LCD)
  7409. kill_screen(lcd_msg);
  7410. #else
  7411. UNUSED(lcd_msg);
  7412. #endif
  7413. delay(500); // Wait a short time
  7414. cli(); // Stop interrupts
  7415. thermalManager.disable_all_heaters();
  7416. disable_all_steppers();
  7417. #if HAS_POWER_SWITCH
  7418. pinMode(PS_ON_PIN, INPUT);
  7419. #endif
  7420. suicide();
  7421. while (1) {
  7422. #if ENABLED(USE_WATCHDOG)
  7423. watchdog_reset();
  7424. #endif
  7425. } // Wait for reset
  7426. }
  7427. /**
  7428. * Turn off heaters and stop the print in progress
  7429. * After a stop the machine may be resumed with M999
  7430. */
  7431. void stop() {
  7432. thermalManager.disable_all_heaters();
  7433. if (IsRunning()) {
  7434. Running = false;
  7435. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7436. SERIAL_ERROR_START;
  7437. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7438. LCD_MESSAGEPGM(MSG_STOPPED);
  7439. }
  7440. }
  7441. /**
  7442. * Marlin entry-point: Set up before the program loop
  7443. * - Set up the kill pin, filament runout, power hold
  7444. * - Start the serial port
  7445. * - Print startup messages and diagnostics
  7446. * - Get EEPROM or default settings
  7447. * - Initialize managers for:
  7448. * • temperature
  7449. * • planner
  7450. * • watchdog
  7451. * • stepper
  7452. * • photo pin
  7453. * • servos
  7454. * • LCD controller
  7455. * • Digipot I2C
  7456. * • Z probe sled
  7457. * • status LEDs
  7458. */
  7459. void setup() {
  7460. #ifdef DISABLE_JTAG
  7461. // Disable JTAG on AT90USB chips to free up pins for IO
  7462. MCUCR = 0x80;
  7463. MCUCR = 0x80;
  7464. #endif
  7465. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7466. setup_filrunoutpin();
  7467. #endif
  7468. setup_killpin();
  7469. setup_powerhold();
  7470. #if HAS_STEPPER_RESET
  7471. disableStepperDrivers();
  7472. #endif
  7473. MYSERIAL.begin(BAUDRATE);
  7474. SERIAL_PROTOCOLLNPGM("start");
  7475. SERIAL_ECHO_START;
  7476. // Check startup - does nothing if bootloader sets MCUSR to 0
  7477. byte mcu = MCUSR;
  7478. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7479. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7480. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7481. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7482. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7483. MCUSR = 0;
  7484. SERIAL_ECHOPGM(MSG_MARLIN);
  7485. SERIAL_CHAR(' ');
  7486. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  7487. SERIAL_EOL;
  7488. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  7489. SERIAL_ECHO_START;
  7490. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7491. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7492. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  7493. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  7494. #endif
  7495. SERIAL_ECHO_START;
  7496. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  7497. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7498. // Send "ok" after commands by default
  7499. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7500. // Load data from EEPROM if available (or use defaults)
  7501. // This also updates variables in the planner, elsewhere
  7502. Config_RetrieveSettings();
  7503. // Initialize current position based on home_offset
  7504. memcpy(current_position, home_offset, sizeof(home_offset));
  7505. // Vital to init stepper/planner equivalent for current_position
  7506. SYNC_PLAN_POSITION_KINEMATIC();
  7507. thermalManager.init(); // Initialize temperature loop
  7508. #if ENABLED(USE_WATCHDOG)
  7509. watchdog_init();
  7510. #endif
  7511. stepper.init(); // Initialize stepper, this enables interrupts!
  7512. setup_photpin();
  7513. servo_init();
  7514. #if HAS_BED_PROBE
  7515. endstops.enable_z_probe(false);
  7516. #endif
  7517. #if HAS_CONTROLLERFAN
  7518. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7519. #endif
  7520. #if HAS_STEPPER_RESET
  7521. enableStepperDrivers();
  7522. #endif
  7523. #if ENABLED(DIGIPOT_I2C)
  7524. digipot_i2c_init();
  7525. #endif
  7526. #if ENABLED(DAC_STEPPER_CURRENT)
  7527. dac_init();
  7528. #endif
  7529. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7530. pinMode(SLED_PIN, OUTPUT);
  7531. digitalWrite(SLED_PIN, LOW); // turn it off
  7532. #endif // Z_PROBE_SLED
  7533. setup_homepin();
  7534. #ifdef STAT_LED_RED
  7535. pinMode(STAT_LED_RED, OUTPUT);
  7536. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7537. #endif
  7538. #ifdef STAT_LED_BLUE
  7539. pinMode(STAT_LED_BLUE, OUTPUT);
  7540. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7541. #endif
  7542. lcd_init();
  7543. #if ENABLED(SHOW_BOOTSCREEN)
  7544. #if ENABLED(DOGLCD)
  7545. safe_delay(BOOTSCREEN_TIMEOUT);
  7546. #elif ENABLED(ULTRA_LCD)
  7547. bootscreen();
  7548. lcd_init();
  7549. #endif
  7550. #endif
  7551. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7552. // Initialize mixing to 100% color 1
  7553. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7554. mixing_factor[i] = (i == 0) ? 1 : 0;
  7555. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7556. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7557. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7558. #endif
  7559. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7560. i2c.onReceive(i2c_on_receive);
  7561. i2c.onRequest(i2c_on_request);
  7562. #endif
  7563. }
  7564. /**
  7565. * The main Marlin program loop
  7566. *
  7567. * - Save or log commands to SD
  7568. * - Process available commands (if not saving)
  7569. * - Call heater manager
  7570. * - Call inactivity manager
  7571. * - Call endstop manager
  7572. * - Call LCD update
  7573. */
  7574. void loop() {
  7575. if (commands_in_queue < BUFSIZE) get_available_commands();
  7576. #if ENABLED(SDSUPPORT)
  7577. card.checkautostart(false);
  7578. #endif
  7579. if (commands_in_queue) {
  7580. #if ENABLED(SDSUPPORT)
  7581. if (card.saving) {
  7582. char* command = command_queue[cmd_queue_index_r];
  7583. if (strstr_P(command, PSTR("M29"))) {
  7584. // M29 closes the file
  7585. card.closefile();
  7586. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7587. ok_to_send();
  7588. }
  7589. else {
  7590. // Write the string from the read buffer to SD
  7591. card.write_command(command);
  7592. if (card.logging)
  7593. process_next_command(); // The card is saving because it's logging
  7594. else
  7595. ok_to_send();
  7596. }
  7597. }
  7598. else
  7599. process_next_command();
  7600. #else
  7601. process_next_command();
  7602. #endif // SDSUPPORT
  7603. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7604. if (commands_in_queue) {
  7605. --commands_in_queue;
  7606. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7607. }
  7608. }
  7609. endstops.report_state();
  7610. idle();
  7611. }