My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 157KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  147. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  148. // M406 - Turn off Filament Sensor extrusion control
  149. // M407 - Displays measured filament diameter
  150. // M500 - stores parameters in EEPROM
  151. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  152. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  153. // M503 - print the current settings (from memory not from EEPROM)
  154. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  155. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  156. // M665 - set delta configurations
  157. // M666 - set delta endstop adjustment
  158. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  159. // M907 - Set digital trimpot motor current using axis codes.
  160. // M908 - Control digital trimpot directly.
  161. // M350 - Set microstepping mode.
  162. // M351 - Toggle MS1 MS2 pins directly.
  163. // ************ SCARA Specific - This can change to suit future G-code regulations
  164. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  165. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  166. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  167. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  168. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  169. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  170. //************* SCARA End ***************
  171. // M928 - Start SD logging (M928 filename.g) - ended by M29
  172. // M999 - Restart after being stopped by error
  173. //Stepper Movement Variables
  174. //===========================================================================
  175. //=============================imported variables============================
  176. //===========================================================================
  177. //===========================================================================
  178. //=============================public variables=============================
  179. //===========================================================================
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  185. int feedmultiply=100; //100->1 200->2
  186. int saved_feedmultiply;
  187. int extrudemultiply=100; //100->1 200->2
  188. int extruder_multiply[EXTRUDERS] = {100
  189. #if EXTRUDERS > 1
  190. , 100
  191. #if EXTRUDERS > 2
  192. , 100
  193. #if EXTRUDERS > 3
  194. , 100
  195. #endif
  196. #endif
  197. #endif
  198. };
  199. bool volumetric_enabled = false;
  200. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  201. #if EXTRUDERS > 1
  202. , DEFAULT_NOMINAL_FILAMENT_DIA
  203. #if EXTRUDERS > 2
  204. , DEFAULT_NOMINAL_FILAMENT_DIA
  205. #if EXTRUDERS > 3
  206. , DEFAULT_NOMINAL_FILAMENT_DIA
  207. #endif
  208. #endif
  209. #endif
  210. };
  211. float volumetric_multiplier[EXTRUDERS] = {1.0
  212. #if EXTRUDERS > 1
  213. , 1.0
  214. #if EXTRUDERS > 2
  215. , 1.0
  216. #if EXTRUDERS > 3
  217. , 1.0
  218. #endif
  219. #endif
  220. #endif
  221. };
  222. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  223. float add_homing[3]={0,0,0};
  224. #ifdef DELTA
  225. float endstop_adj[3]={0,0,0};
  226. #endif
  227. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  228. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  229. bool axis_known_position[3] = {false, false, false};
  230. float zprobe_zoffset;
  231. // Extruder offset
  232. #if EXTRUDERS > 1
  233. #ifndef DUAL_X_CARRIAGE
  234. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  235. #else
  236. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  237. #endif
  238. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  239. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  240. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  241. #endif
  242. };
  243. #endif
  244. uint8_t active_extruder = 0;
  245. int fanSpeed=0;
  246. #ifdef SERVO_ENDSTOPS
  247. int servo_endstops[] = SERVO_ENDSTOPS;
  248. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  249. #endif
  250. #ifdef BARICUDA
  251. int ValvePressure=0;
  252. int EtoPPressure=0;
  253. #endif
  254. #ifdef FWRETRACT
  255. bool autoretract_enabled=false;
  256. bool retracted[EXTRUDERS]={false
  257. #if EXTRUDERS > 1
  258. , false
  259. #if EXTRUDERS > 2
  260. , false
  261. #if EXTRUDERS > 3
  262. , false
  263. #endif
  264. #endif
  265. #endif
  266. };
  267. bool retracted_swap[EXTRUDERS]={false
  268. #if EXTRUDERS > 1
  269. , false
  270. #if EXTRUDERS > 2
  271. , false
  272. #if EXTRUDERS > 3
  273. , false
  274. #endif
  275. #endif
  276. #endif
  277. };
  278. float retract_length = RETRACT_LENGTH;
  279. float retract_length_swap = RETRACT_LENGTH_SWAP;
  280. float retract_feedrate = RETRACT_FEEDRATE;
  281. float retract_zlift = RETRACT_ZLIFT;
  282. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  283. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  284. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  285. #endif // FWRETRACT
  286. #ifdef ULTIPANEL
  287. #ifdef PS_DEFAULT_OFF
  288. bool powersupply = false;
  289. #else
  290. bool powersupply = true;
  291. #endif
  292. #endif
  293. #ifdef DELTA
  294. float delta[3] = {0.0, 0.0, 0.0};
  295. #define SIN_60 0.8660254037844386
  296. #define COS_60 0.5
  297. // these are the default values, can be overriden with M665
  298. float delta_radius= DELTA_RADIUS;
  299. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  300. float delta_tower1_y= -COS_60*delta_radius;
  301. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  302. float delta_tower2_y= -COS_60*delta_radius;
  303. float delta_tower3_x= 0.0; // back middle tower
  304. float delta_tower3_y= delta_radius;
  305. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  306. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  307. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  308. #endif
  309. #ifdef SCARA // Build size scaling
  310. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  311. #endif
  312. bool cancel_heatup = false ;
  313. #ifdef FILAMENT_SENSOR
  314. //Variables for Filament Sensor input
  315. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  316. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  317. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  318. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  319. int delay_index1=0; //index into ring buffer
  320. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  321. float delay_dist=0; //delay distance counter
  322. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  323. #endif
  324. const char errormagic[] PROGMEM = "Error:";
  325. const char echomagic[] PROGMEM = "echo:";
  326. //===========================================================================
  327. //=============================Private Variables=============================
  328. //===========================================================================
  329. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  330. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  331. #ifndef DELTA
  332. static float delta[3] = {0.0, 0.0, 0.0};
  333. #endif
  334. static float offset[3] = {0.0, 0.0, 0.0};
  335. static bool home_all_axis = true;
  336. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  337. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  338. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  339. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  340. static bool fromsd[BUFSIZE];
  341. static int bufindr = 0;
  342. static int bufindw = 0;
  343. static int buflen = 0;
  344. //static int i = 0;
  345. static char serial_char;
  346. static int serial_count = 0;
  347. static boolean comment_mode = false;
  348. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  349. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  350. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  351. //static float tt = 0;
  352. //static float bt = 0;
  353. //Inactivity shutdown variables
  354. static unsigned long previous_millis_cmd = 0;
  355. static unsigned long max_inactive_time = 0;
  356. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  357. unsigned long starttime=0;
  358. unsigned long stoptime=0;
  359. static uint8_t tmp_extruder;
  360. bool Stopped=false;
  361. #if NUM_SERVOS > 0
  362. Servo servos[NUM_SERVOS];
  363. #endif
  364. bool CooldownNoWait = true;
  365. bool target_direction;
  366. //Insert variables if CHDK is defined
  367. #ifdef CHDK
  368. unsigned long chdkHigh = 0;
  369. boolean chdkActive = false;
  370. #endif
  371. //===========================================================================
  372. //=============================Routines======================================
  373. //===========================================================================
  374. void get_arc_coordinates();
  375. bool setTargetedHotend(int code);
  376. void serial_echopair_P(const char *s_P, float v)
  377. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  378. void serial_echopair_P(const char *s_P, double v)
  379. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  380. void serial_echopair_P(const char *s_P, unsigned long v)
  381. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. #ifdef SDSUPPORT
  383. #include "SdFatUtil.h"
  384. int freeMemory() { return SdFatUtil::FreeRam(); }
  385. #else
  386. extern "C" {
  387. extern unsigned int __bss_end;
  388. extern unsigned int __heap_start;
  389. extern void *__brkval;
  390. int freeMemory() {
  391. int free_memory;
  392. if ((int)__brkval == 0)
  393. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  394. else
  395. free_memory = ((int)&free_memory) - ((int)__brkval);
  396. return free_memory;
  397. }
  398. }
  399. #endif //!SDSUPPORT
  400. //Injects the next command from the pending sequence of commands, when possible
  401. //Return false if and only if no command was pending
  402. static bool drain_queued_commands_P()
  403. {
  404. char cmd[30];
  405. if(!queued_commands_P)
  406. return false;
  407. // Get the next 30 chars from the sequence of gcodes to run
  408. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  409. cmd[sizeof(cmd)-1]= 0;
  410. // Look for the end of line, or the end of sequence
  411. size_t i= 0;
  412. char c;
  413. while( (c= cmd[i]) && c!='\n' )
  414. ++i; // look for the end of this gcode command
  415. cmd[i]= 0;
  416. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  417. {
  418. if(c)
  419. queued_commands_P+= i+1; // move to next command
  420. else
  421. queued_commands_P= NULL; // will have no more commands in the sequence
  422. }
  423. return true;
  424. }
  425. //Record one or many commands to run from program memory.
  426. //Aborts the current queue, if any.
  427. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  428. void enquecommands_P(const char* pgcode)
  429. {
  430. queued_commands_P= pgcode;
  431. drain_queued_commands_P(); // first command exectuted asap (when possible)
  432. }
  433. //adds a single command to the main command buffer, from RAM
  434. //that is really done in a non-safe way.
  435. //needs overworking someday
  436. //Returns false if it failed to do so
  437. bool enquecommand(const char *cmd)
  438. {
  439. if(*cmd==';')
  440. return false;
  441. if(buflen >= BUFSIZE)
  442. return false;
  443. //this is dangerous if a mixing of serial and this happens
  444. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  445. SERIAL_ECHO_START;
  446. SERIAL_ECHOPGM(MSG_Enqueing);
  447. SERIAL_ECHO(cmdbuffer[bufindw]);
  448. SERIAL_ECHOLNPGM("\"");
  449. bufindw= (bufindw + 1)%BUFSIZE;
  450. buflen += 1;
  451. return true;
  452. }
  453. void setup_killpin()
  454. {
  455. #if defined(KILL_PIN) && KILL_PIN > -1
  456. SET_INPUT(KILL_PIN);
  457. WRITE(KILL_PIN,HIGH);
  458. #endif
  459. }
  460. // Set home pin
  461. void setup_homepin(void)
  462. {
  463. #if defined(HOME_PIN) && HOME_PIN > -1
  464. SET_INPUT(HOME_PIN);
  465. WRITE(HOME_PIN,HIGH);
  466. #endif
  467. }
  468. void setup_photpin()
  469. {
  470. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  471. SET_OUTPUT(PHOTOGRAPH_PIN);
  472. WRITE(PHOTOGRAPH_PIN, LOW);
  473. #endif
  474. }
  475. void setup_powerhold()
  476. {
  477. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  478. SET_OUTPUT(SUICIDE_PIN);
  479. WRITE(SUICIDE_PIN, HIGH);
  480. #endif
  481. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  482. SET_OUTPUT(PS_ON_PIN);
  483. #if defined(PS_DEFAULT_OFF)
  484. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  485. #else
  486. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  487. #endif
  488. #endif
  489. }
  490. void suicide()
  491. {
  492. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  493. SET_OUTPUT(SUICIDE_PIN);
  494. WRITE(SUICIDE_PIN, LOW);
  495. #endif
  496. }
  497. void servo_init()
  498. {
  499. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  500. servos[0].attach(SERVO0_PIN);
  501. #endif
  502. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  503. servos[1].attach(SERVO1_PIN);
  504. #endif
  505. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  506. servos[2].attach(SERVO2_PIN);
  507. #endif
  508. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  509. servos[3].attach(SERVO3_PIN);
  510. #endif
  511. #if (NUM_SERVOS >= 5)
  512. #error "TODO: enter initalisation code for more servos"
  513. #endif
  514. // Set position of Servo Endstops that are defined
  515. #ifdef SERVO_ENDSTOPS
  516. for(int8_t i = 0; i < 3; i++)
  517. {
  518. if(servo_endstops[i] > -1) {
  519. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  520. }
  521. }
  522. #endif
  523. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  524. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  525. servos[servo_endstops[Z_AXIS]].detach();
  526. #endif
  527. }
  528. void setup()
  529. {
  530. setup_killpin();
  531. setup_powerhold();
  532. MYSERIAL.begin(BAUDRATE);
  533. SERIAL_PROTOCOLLNPGM("start");
  534. SERIAL_ECHO_START;
  535. // Check startup - does nothing if bootloader sets MCUSR to 0
  536. byte mcu = MCUSR;
  537. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  538. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  539. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  540. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  541. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  542. MCUSR=0;
  543. SERIAL_ECHOPGM(MSG_MARLIN);
  544. SERIAL_ECHOLNPGM(VERSION_STRING);
  545. #ifdef STRING_VERSION_CONFIG_H
  546. #ifdef STRING_CONFIG_H_AUTHOR
  547. SERIAL_ECHO_START;
  548. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  549. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  550. SERIAL_ECHOPGM(MSG_AUTHOR);
  551. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  552. SERIAL_ECHOPGM("Compiled: ");
  553. SERIAL_ECHOLNPGM(__DATE__);
  554. #endif // STRING_CONFIG_H_AUTHOR
  555. #endif // STRING_VERSION_CONFIG_H
  556. SERIAL_ECHO_START;
  557. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  558. SERIAL_ECHO(freeMemory());
  559. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  560. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  561. for(int8_t i = 0; i < BUFSIZE; i++)
  562. {
  563. fromsd[i] = false;
  564. }
  565. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  566. Config_RetrieveSettings();
  567. tp_init(); // Initialize temperature loop
  568. plan_init(); // Initialize planner;
  569. watchdog_init();
  570. st_init(); // Initialize stepper, this enables interrupts!
  571. setup_photpin();
  572. servo_init();
  573. lcd_init();
  574. _delay_ms(1000); // wait 1sec to display the splash screen
  575. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  576. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  577. #endif
  578. #ifdef DIGIPOT_I2C
  579. digipot_i2c_init();
  580. #endif
  581. #ifdef Z_PROBE_SLED
  582. pinMode(SERVO0_PIN, OUTPUT);
  583. digitalWrite(SERVO0_PIN, LOW); // turn it off
  584. #endif // Z_PROBE_SLED
  585. setup_homepin();
  586. }
  587. void loop()
  588. {
  589. if(buflen < (BUFSIZE-1))
  590. get_command();
  591. #ifdef SDSUPPORT
  592. card.checkautostart(false);
  593. #endif
  594. if(buflen)
  595. {
  596. #ifdef SDSUPPORT
  597. if(card.saving)
  598. {
  599. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  600. {
  601. card.write_command(cmdbuffer[bufindr]);
  602. if(card.logging)
  603. {
  604. process_commands();
  605. }
  606. else
  607. {
  608. SERIAL_PROTOCOLLNPGM(MSG_OK);
  609. }
  610. }
  611. else
  612. {
  613. card.closefile();
  614. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  615. }
  616. }
  617. else
  618. {
  619. process_commands();
  620. }
  621. #else
  622. process_commands();
  623. #endif //SDSUPPORT
  624. buflen = (buflen-1);
  625. bufindr = (bufindr + 1)%BUFSIZE;
  626. }
  627. //check heater every n milliseconds
  628. manage_heater();
  629. manage_inactivity();
  630. checkHitEndstops();
  631. lcd_update();
  632. }
  633. void get_command()
  634. {
  635. if(drain_queued_commands_P()) // priority is given to non-serial commands
  636. return;
  637. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  638. serial_char = MYSERIAL.read();
  639. if(serial_char == '\n' ||
  640. serial_char == '\r' ||
  641. (serial_char == ':' && comment_mode == false) ||
  642. serial_count >= (MAX_CMD_SIZE - 1) )
  643. {
  644. if(!serial_count) { //if empty line
  645. comment_mode = false; //for new command
  646. return;
  647. }
  648. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  649. if(!comment_mode){
  650. comment_mode = false; //for new command
  651. fromsd[bufindw] = false;
  652. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  653. {
  654. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  655. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  656. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  657. SERIAL_ERROR_START;
  658. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  659. SERIAL_ERRORLN(gcode_LastN);
  660. //Serial.println(gcode_N);
  661. FlushSerialRequestResend();
  662. serial_count = 0;
  663. return;
  664. }
  665. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  666. {
  667. byte checksum = 0;
  668. byte count = 0;
  669. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  670. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  671. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  672. SERIAL_ERROR_START;
  673. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  674. SERIAL_ERRORLN(gcode_LastN);
  675. FlushSerialRequestResend();
  676. serial_count = 0;
  677. return;
  678. }
  679. //if no errors, continue parsing
  680. }
  681. else
  682. {
  683. SERIAL_ERROR_START;
  684. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  685. SERIAL_ERRORLN(gcode_LastN);
  686. FlushSerialRequestResend();
  687. serial_count = 0;
  688. return;
  689. }
  690. gcode_LastN = gcode_N;
  691. //if no errors, continue parsing
  692. }
  693. else // if we don't receive 'N' but still see '*'
  694. {
  695. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  696. {
  697. SERIAL_ERROR_START;
  698. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  699. SERIAL_ERRORLN(gcode_LastN);
  700. serial_count = 0;
  701. return;
  702. }
  703. }
  704. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  705. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  706. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  707. case 0:
  708. case 1:
  709. case 2:
  710. case 3:
  711. if (Stopped == true) {
  712. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  713. LCD_MESSAGEPGM(MSG_STOPPED);
  714. }
  715. break;
  716. default:
  717. break;
  718. }
  719. }
  720. //If command was e-stop process now
  721. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  722. kill();
  723. bufindw = (bufindw + 1)%BUFSIZE;
  724. buflen += 1;
  725. }
  726. serial_count = 0; //clear buffer
  727. }
  728. else
  729. {
  730. if(serial_char == ';') comment_mode = true;
  731. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  732. }
  733. }
  734. #ifdef SDSUPPORT
  735. if(!card.sdprinting || serial_count!=0){
  736. return;
  737. }
  738. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  739. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  740. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  741. static bool stop_buffering=false;
  742. if(buflen==0) stop_buffering=false;
  743. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  744. int16_t n=card.get();
  745. serial_char = (char)n;
  746. if(serial_char == '\n' ||
  747. serial_char == '\r' ||
  748. (serial_char == '#' && comment_mode == false) ||
  749. (serial_char == ':' && comment_mode == false) ||
  750. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  751. {
  752. if(card.eof()){
  753. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  754. stoptime=millis();
  755. char time[30];
  756. unsigned long t=(stoptime-starttime)/1000;
  757. int hours, minutes;
  758. minutes=(t/60)%60;
  759. hours=t/60/60;
  760. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  761. SERIAL_ECHO_START;
  762. SERIAL_ECHOLN(time);
  763. lcd_setstatus(time);
  764. card.printingHasFinished();
  765. card.checkautostart(true);
  766. }
  767. if(serial_char=='#')
  768. stop_buffering=true;
  769. if(!serial_count)
  770. {
  771. comment_mode = false; //for new command
  772. return; //if empty line
  773. }
  774. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  775. // if(!comment_mode){
  776. fromsd[bufindw] = true;
  777. buflen += 1;
  778. bufindw = (bufindw + 1)%BUFSIZE;
  779. // }
  780. comment_mode = false; //for new command
  781. serial_count = 0; //clear buffer
  782. }
  783. else
  784. {
  785. if(serial_char == ';') comment_mode = true;
  786. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  787. }
  788. }
  789. #endif //SDSUPPORT
  790. }
  791. float code_value()
  792. {
  793. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  794. }
  795. long code_value_long()
  796. {
  797. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  798. }
  799. bool code_seen(char code)
  800. {
  801. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  802. return (strchr_pointer != NULL); //Return True if a character was found
  803. }
  804. #define DEFINE_PGM_READ_ANY(type, reader) \
  805. static inline type pgm_read_any(const type *p) \
  806. { return pgm_read_##reader##_near(p); }
  807. DEFINE_PGM_READ_ANY(float, float);
  808. DEFINE_PGM_READ_ANY(signed char, byte);
  809. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  810. static const PROGMEM type array##_P[3] = \
  811. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  812. static inline type array(int axis) \
  813. { return pgm_read_any(&array##_P[axis]); }
  814. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  815. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  816. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  817. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  818. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  819. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  820. #ifdef DUAL_X_CARRIAGE
  821. #if EXTRUDERS == 1 || defined(COREXY) \
  822. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  823. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  824. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  825. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  826. #endif
  827. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  828. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  829. #endif
  830. #define DXC_FULL_CONTROL_MODE 0
  831. #define DXC_AUTO_PARK_MODE 1
  832. #define DXC_DUPLICATION_MODE 2
  833. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  834. static float x_home_pos(int extruder) {
  835. if (extruder == 0)
  836. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  837. else
  838. // In dual carriage mode the extruder offset provides an override of the
  839. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  840. // This allow soft recalibration of the second extruder offset position without firmware reflash
  841. // (through the M218 command).
  842. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  843. }
  844. static int x_home_dir(int extruder) {
  845. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  846. }
  847. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  848. static bool active_extruder_parked = false; // used in mode 1 & 2
  849. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  850. static unsigned long delayed_move_time = 0; // used in mode 1
  851. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  852. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  853. bool extruder_duplication_enabled = false; // used in mode 2
  854. #endif //DUAL_X_CARRIAGE
  855. static void axis_is_at_home(int axis) {
  856. #ifdef DUAL_X_CARRIAGE
  857. if (axis == X_AXIS) {
  858. if (active_extruder != 0) {
  859. current_position[X_AXIS] = x_home_pos(active_extruder);
  860. min_pos[X_AXIS] = X2_MIN_POS;
  861. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  862. return;
  863. }
  864. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  865. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  866. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  867. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  868. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  869. return;
  870. }
  871. }
  872. #endif
  873. #ifdef SCARA
  874. float homeposition[3];
  875. char i;
  876. if (axis < 2)
  877. {
  878. for (i=0; i<3; i++)
  879. {
  880. homeposition[i] = base_home_pos(i);
  881. }
  882. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  883. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  884. // Works out real Homeposition angles using inverse kinematics,
  885. // and calculates homing offset using forward kinematics
  886. calculate_delta(homeposition);
  887. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  888. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  889. for (i=0; i<2; i++)
  890. {
  891. delta[i] -= add_homing[i];
  892. }
  893. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  894. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  895. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  896. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  897. calculate_SCARA_forward_Transform(delta);
  898. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  899. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  900. current_position[axis] = delta[axis];
  901. // SCARA home positions are based on configuration since the actual limits are determined by the
  902. // inverse kinematic transform.
  903. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  904. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  905. }
  906. else
  907. {
  908. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  909. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  910. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  911. }
  912. #else
  913. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  914. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  915. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  916. #endif
  917. }
  918. #ifdef ENABLE_AUTO_BED_LEVELING
  919. #ifdef AUTO_BED_LEVELING_GRID
  920. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  921. {
  922. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  923. planeNormal.debug("planeNormal");
  924. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  925. //bedLevel.debug("bedLevel");
  926. //plan_bed_level_matrix.debug("bed level before");
  927. //vector_3 uncorrected_position = plan_get_position_mm();
  928. //uncorrected_position.debug("position before");
  929. vector_3 corrected_position = plan_get_position();
  930. // corrected_position.debug("position after");
  931. current_position[X_AXIS] = corrected_position.x;
  932. current_position[Y_AXIS] = corrected_position.y;
  933. current_position[Z_AXIS] = corrected_position.z;
  934. // put the bed at 0 so we don't go below it.
  935. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  937. }
  938. #else // not AUTO_BED_LEVELING_GRID
  939. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  940. plan_bed_level_matrix.set_to_identity();
  941. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  942. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  943. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  944. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  945. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  946. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  947. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  948. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  949. vector_3 corrected_position = plan_get_position();
  950. current_position[X_AXIS] = corrected_position.x;
  951. current_position[Y_AXIS] = corrected_position.y;
  952. current_position[Z_AXIS] = corrected_position.z;
  953. // put the bed at 0 so we don't go below it.
  954. current_position[Z_AXIS] = zprobe_zoffset;
  955. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  956. }
  957. #endif // AUTO_BED_LEVELING_GRID
  958. static void run_z_probe() {
  959. plan_bed_level_matrix.set_to_identity();
  960. feedrate = homing_feedrate[Z_AXIS];
  961. // move down until you find the bed
  962. float zPosition = -10;
  963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  964. st_synchronize();
  965. // we have to let the planner know where we are right now as it is not where we said to go.
  966. zPosition = st_get_position_mm(Z_AXIS);
  967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  968. // move up the retract distance
  969. zPosition += home_retract_mm(Z_AXIS);
  970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  971. st_synchronize();
  972. // move back down slowly to find bed
  973. feedrate = homing_feedrate[Z_AXIS]/4;
  974. zPosition -= home_retract_mm(Z_AXIS) * 2;
  975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  976. st_synchronize();
  977. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  978. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  979. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  980. }
  981. static void do_blocking_move_to(float x, float y, float z) {
  982. float oldFeedRate = feedrate;
  983. feedrate = homing_feedrate[Z_AXIS];
  984. current_position[Z_AXIS] = z;
  985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  986. st_synchronize();
  987. feedrate = XY_TRAVEL_SPEED;
  988. current_position[X_AXIS] = x;
  989. current_position[Y_AXIS] = y;
  990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  991. st_synchronize();
  992. feedrate = oldFeedRate;
  993. }
  994. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  995. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  996. }
  997. static void setup_for_endstop_move() {
  998. saved_feedrate = feedrate;
  999. saved_feedmultiply = feedmultiply;
  1000. feedmultiply = 100;
  1001. previous_millis_cmd = millis();
  1002. enable_endstops(true);
  1003. }
  1004. static void clean_up_after_endstop_move() {
  1005. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1006. enable_endstops(false);
  1007. #endif
  1008. feedrate = saved_feedrate;
  1009. feedmultiply = saved_feedmultiply;
  1010. previous_millis_cmd = millis();
  1011. }
  1012. static void engage_z_probe() {
  1013. // Engage Z Servo endstop if enabled
  1014. #ifdef SERVO_ENDSTOPS
  1015. if (servo_endstops[Z_AXIS] > -1) {
  1016. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1017. servos[servo_endstops[Z_AXIS]].attach(0);
  1018. #endif
  1019. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1020. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1021. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1022. servos[servo_endstops[Z_AXIS]].detach();
  1023. #endif
  1024. }
  1025. #endif
  1026. }
  1027. static void retract_z_probe() {
  1028. // Retract Z Servo endstop if enabled
  1029. #ifdef SERVO_ENDSTOPS
  1030. if (servo_endstops[Z_AXIS] > -1) {
  1031. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1032. servos[servo_endstops[Z_AXIS]].attach(0);
  1033. #endif
  1034. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1035. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1036. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1037. servos[servo_endstops[Z_AXIS]].detach();
  1038. #endif
  1039. }
  1040. #endif
  1041. }
  1042. /// Probe bed height at position (x,y), returns the measured z value
  1043. static float probe_pt(float x, float y, float z_before, int retract_action=0) {
  1044. // move to right place
  1045. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1046. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1047. #ifndef Z_PROBE_SLED
  1048. if ((retract_action==0) || (retract_action==1))
  1049. engage_z_probe(); // Engage Z Servo endstop if available
  1050. #endif // Z_PROBE_SLED
  1051. run_z_probe();
  1052. float measured_z = current_position[Z_AXIS];
  1053. #ifndef Z_PROBE_SLED
  1054. if ((retract_action==0) || (retract_action==3))
  1055. retract_z_probe();
  1056. #endif // Z_PROBE_SLED
  1057. SERIAL_PROTOCOLPGM(MSG_BED);
  1058. SERIAL_PROTOCOLPGM(" x: ");
  1059. SERIAL_PROTOCOL(x);
  1060. SERIAL_PROTOCOLPGM(" y: ");
  1061. SERIAL_PROTOCOL(y);
  1062. SERIAL_PROTOCOLPGM(" z: ");
  1063. SERIAL_PROTOCOL(measured_z);
  1064. SERIAL_PROTOCOLPGM("\n");
  1065. return measured_z;
  1066. }
  1067. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1068. static void homeaxis(int axis) {
  1069. #define HOMEAXIS_DO(LETTER) \
  1070. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1071. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1072. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1073. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1074. 0) {
  1075. int axis_home_dir = home_dir(axis);
  1076. #ifdef DUAL_X_CARRIAGE
  1077. if (axis == X_AXIS)
  1078. axis_home_dir = x_home_dir(active_extruder);
  1079. #endif
  1080. current_position[axis] = 0;
  1081. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1082. #ifndef Z_PROBE_SLED
  1083. // Engage Servo endstop if enabled
  1084. #ifdef SERVO_ENDSTOPS
  1085. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1086. if (axis==Z_AXIS) {
  1087. engage_z_probe();
  1088. }
  1089. else
  1090. #endif
  1091. if (servo_endstops[axis] > -1) {
  1092. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1093. }
  1094. #endif
  1095. #endif // Z_PROBE_SLED
  1096. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1097. feedrate = homing_feedrate[axis];
  1098. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1099. st_synchronize();
  1100. current_position[axis] = 0;
  1101. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1102. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1103. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1104. st_synchronize();
  1105. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1106. #ifdef DELTA
  1107. feedrate = homing_feedrate[axis]/10;
  1108. #else
  1109. feedrate = homing_feedrate[axis]/2 ;
  1110. #endif
  1111. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1112. st_synchronize();
  1113. #ifdef DELTA
  1114. // retrace by the amount specified in endstop_adj
  1115. if (endstop_adj[axis] * axis_home_dir < 0) {
  1116. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1117. destination[axis] = endstop_adj[axis];
  1118. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1119. st_synchronize();
  1120. }
  1121. #endif
  1122. axis_is_at_home(axis);
  1123. destination[axis] = current_position[axis];
  1124. feedrate = 0.0;
  1125. endstops_hit_on_purpose();
  1126. axis_known_position[axis] = true;
  1127. // Retract Servo endstop if enabled
  1128. #ifdef SERVO_ENDSTOPS
  1129. if (servo_endstops[axis] > -1) {
  1130. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1131. }
  1132. #endif
  1133. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1134. #ifndef Z_PROBE_SLED
  1135. if (axis==Z_AXIS) retract_z_probe();
  1136. #endif
  1137. #endif
  1138. }
  1139. }
  1140. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1141. void refresh_cmd_timeout(void)
  1142. {
  1143. previous_millis_cmd = millis();
  1144. }
  1145. #ifdef FWRETRACT
  1146. void retract(bool retracting, bool swapretract = false) {
  1147. if(retracting && !retracted[active_extruder]) {
  1148. destination[X_AXIS]=current_position[X_AXIS];
  1149. destination[Y_AXIS]=current_position[Y_AXIS];
  1150. destination[Z_AXIS]=current_position[Z_AXIS];
  1151. destination[E_AXIS]=current_position[E_AXIS];
  1152. if (swapretract) {
  1153. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1154. } else {
  1155. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1156. }
  1157. plan_set_e_position(current_position[E_AXIS]);
  1158. float oldFeedrate = feedrate;
  1159. feedrate=retract_feedrate*60;
  1160. retracted[active_extruder]=true;
  1161. prepare_move();
  1162. if(retract_zlift > 0.01) {
  1163. current_position[Z_AXIS]-=retract_zlift;
  1164. #ifdef DELTA
  1165. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1166. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1167. #else
  1168. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1169. #endif
  1170. prepare_move();
  1171. }
  1172. feedrate = oldFeedrate;
  1173. } else if(!retracting && retracted[active_extruder]) {
  1174. destination[X_AXIS]=current_position[X_AXIS];
  1175. destination[Y_AXIS]=current_position[Y_AXIS];
  1176. destination[Z_AXIS]=current_position[Z_AXIS];
  1177. destination[E_AXIS]=current_position[E_AXIS];
  1178. if(retract_zlift > 0.01) {
  1179. current_position[Z_AXIS]+=retract_zlift;
  1180. #ifdef DELTA
  1181. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1182. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1183. #else
  1184. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1185. #endif
  1186. //prepare_move();
  1187. }
  1188. if (swapretract) {
  1189. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1190. } else {
  1191. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1192. }
  1193. plan_set_e_position(current_position[E_AXIS]);
  1194. float oldFeedrate = feedrate;
  1195. feedrate=retract_recover_feedrate*60;
  1196. retracted[active_extruder]=false;
  1197. prepare_move();
  1198. feedrate = oldFeedrate;
  1199. }
  1200. } //retract
  1201. #endif //FWRETRACT
  1202. #ifdef Z_PROBE_SLED
  1203. //
  1204. // Method to dock/undock a sled designed by Charles Bell.
  1205. //
  1206. // dock[in] If true, move to MAX_X and engage the electromagnet
  1207. // offset[in] The additional distance to move to adjust docking location
  1208. //
  1209. static void dock_sled(bool dock, int offset=0) {
  1210. int z_loc;
  1211. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1212. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1213. SERIAL_ECHO_START;
  1214. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1215. return;
  1216. }
  1217. if (dock) {
  1218. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1219. current_position[Y_AXIS],
  1220. current_position[Z_AXIS]);
  1221. // turn off magnet
  1222. digitalWrite(SERVO0_PIN, LOW);
  1223. } else {
  1224. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1225. z_loc = Z_RAISE_BEFORE_PROBING;
  1226. else
  1227. z_loc = current_position[Z_AXIS];
  1228. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1229. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1230. // turn on magnet
  1231. digitalWrite(SERVO0_PIN, HIGH);
  1232. }
  1233. }
  1234. #endif
  1235. void process_commands()
  1236. {
  1237. unsigned long codenum; //throw away variable
  1238. char *starpos = NULL;
  1239. #ifdef ENABLE_AUTO_BED_LEVELING
  1240. float x_tmp, y_tmp, z_tmp, real_z;
  1241. #endif
  1242. if(code_seen('G'))
  1243. {
  1244. switch((int)code_value())
  1245. {
  1246. case 0: // G0 -> G1
  1247. case 1: // G1
  1248. if(Stopped == false) {
  1249. get_coordinates(); // For X Y Z E F
  1250. #ifdef FWRETRACT
  1251. if(autoretract_enabled)
  1252. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1253. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1254. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1255. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1256. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1257. retract(!retracted);
  1258. return;
  1259. }
  1260. }
  1261. #endif //FWRETRACT
  1262. prepare_move();
  1263. //ClearToSend();
  1264. }
  1265. break;
  1266. #ifndef SCARA //disable arc support
  1267. case 2: // G2 - CW ARC
  1268. if(Stopped == false) {
  1269. get_arc_coordinates();
  1270. prepare_arc_move(true);
  1271. }
  1272. break;
  1273. case 3: // G3 - CCW ARC
  1274. if(Stopped == false) {
  1275. get_arc_coordinates();
  1276. prepare_arc_move(false);
  1277. }
  1278. break;
  1279. #endif
  1280. case 4: // G4 dwell
  1281. LCD_MESSAGEPGM(MSG_DWELL);
  1282. codenum = 0;
  1283. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1284. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1285. st_synchronize();
  1286. codenum += millis(); // keep track of when we started waiting
  1287. previous_millis_cmd = millis();
  1288. while(millis() < codenum) {
  1289. manage_heater();
  1290. manage_inactivity();
  1291. lcd_update();
  1292. }
  1293. break;
  1294. #ifdef FWRETRACT
  1295. case 10: // G10 retract
  1296. #if EXTRUDERS > 1
  1297. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1298. retract(true,retracted_swap[active_extruder]);
  1299. #else
  1300. retract(true);
  1301. #endif
  1302. break;
  1303. case 11: // G11 retract_recover
  1304. #if EXTRUDERS > 1
  1305. retract(false,retracted_swap[active_extruder]);
  1306. #else
  1307. retract(false);
  1308. #endif
  1309. break;
  1310. #endif //FWRETRACT
  1311. case 28: //G28 Home all Axis one at a time
  1312. #ifdef ENABLE_AUTO_BED_LEVELING
  1313. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1314. #endif //ENABLE_AUTO_BED_LEVELING
  1315. saved_feedrate = feedrate;
  1316. saved_feedmultiply = feedmultiply;
  1317. feedmultiply = 100;
  1318. previous_millis_cmd = millis();
  1319. enable_endstops(true);
  1320. for(int8_t i=0; i < NUM_AXIS; i++) {
  1321. destination[i] = current_position[i];
  1322. }
  1323. feedrate = 0.0;
  1324. #ifdef DELTA
  1325. // A delta can only safely home all axis at the same time
  1326. // all axis have to home at the same time
  1327. // Move all carriages up together until the first endstop is hit.
  1328. current_position[X_AXIS] = 0;
  1329. current_position[Y_AXIS] = 0;
  1330. current_position[Z_AXIS] = 0;
  1331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1332. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1333. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1334. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1335. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1337. st_synchronize();
  1338. endstops_hit_on_purpose();
  1339. current_position[X_AXIS] = destination[X_AXIS];
  1340. current_position[Y_AXIS] = destination[Y_AXIS];
  1341. current_position[Z_AXIS] = destination[Z_AXIS];
  1342. // take care of back off and rehome now we are all at the top
  1343. HOMEAXIS(X);
  1344. HOMEAXIS(Y);
  1345. HOMEAXIS(Z);
  1346. calculate_delta(current_position);
  1347. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1348. #else // NOT DELTA
  1349. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1350. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1351. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1352. HOMEAXIS(Z);
  1353. }
  1354. #endif
  1355. #ifdef QUICK_HOME
  1356. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1357. {
  1358. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1359. #ifndef DUAL_X_CARRIAGE
  1360. int x_axis_home_dir = home_dir(X_AXIS);
  1361. #else
  1362. int x_axis_home_dir = x_home_dir(active_extruder);
  1363. extruder_duplication_enabled = false;
  1364. #endif
  1365. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1366. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1367. feedrate = homing_feedrate[X_AXIS];
  1368. if(homing_feedrate[Y_AXIS]<feedrate)
  1369. feedrate = homing_feedrate[Y_AXIS];
  1370. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1371. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1372. } else {
  1373. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1374. }
  1375. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1376. st_synchronize();
  1377. axis_is_at_home(X_AXIS);
  1378. axis_is_at_home(Y_AXIS);
  1379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1380. destination[X_AXIS] = current_position[X_AXIS];
  1381. destination[Y_AXIS] = current_position[Y_AXIS];
  1382. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1383. feedrate = 0.0;
  1384. st_synchronize();
  1385. endstops_hit_on_purpose();
  1386. current_position[X_AXIS] = destination[X_AXIS];
  1387. current_position[Y_AXIS] = destination[Y_AXIS];
  1388. #ifndef SCARA
  1389. current_position[Z_AXIS] = destination[Z_AXIS];
  1390. #endif
  1391. }
  1392. #endif
  1393. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1394. {
  1395. #ifdef DUAL_X_CARRIAGE
  1396. int tmp_extruder = active_extruder;
  1397. extruder_duplication_enabled = false;
  1398. active_extruder = !active_extruder;
  1399. HOMEAXIS(X);
  1400. inactive_extruder_x_pos = current_position[X_AXIS];
  1401. active_extruder = tmp_extruder;
  1402. HOMEAXIS(X);
  1403. // reset state used by the different modes
  1404. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1405. delayed_move_time = 0;
  1406. active_extruder_parked = true;
  1407. #else
  1408. HOMEAXIS(X);
  1409. #endif
  1410. }
  1411. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1412. HOMEAXIS(Y);
  1413. }
  1414. if(code_seen(axis_codes[X_AXIS]))
  1415. {
  1416. if(code_value_long() != 0) {
  1417. #ifdef SCARA
  1418. current_position[X_AXIS]=code_value();
  1419. #else
  1420. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1421. #endif
  1422. }
  1423. }
  1424. if(code_seen(axis_codes[Y_AXIS])) {
  1425. if(code_value_long() != 0) {
  1426. #ifdef SCARA
  1427. current_position[Y_AXIS]=code_value();
  1428. #else
  1429. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1430. #endif
  1431. }
  1432. }
  1433. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1434. #ifndef Z_SAFE_HOMING
  1435. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1436. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1437. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1438. feedrate = max_feedrate[Z_AXIS];
  1439. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1440. st_synchronize();
  1441. #endif
  1442. HOMEAXIS(Z);
  1443. }
  1444. #else // Z Safe mode activated.
  1445. if(home_all_axis) {
  1446. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1447. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1448. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1449. feedrate = XY_TRAVEL_SPEED/60;
  1450. current_position[Z_AXIS] = 0;
  1451. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1452. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1453. st_synchronize();
  1454. current_position[X_AXIS] = destination[X_AXIS];
  1455. current_position[Y_AXIS] = destination[Y_AXIS];
  1456. HOMEAXIS(Z);
  1457. }
  1458. // Let's see if X and Y are homed and probe is inside bed area.
  1459. if(code_seen(axis_codes[Z_AXIS])) {
  1460. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1461. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1462. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1463. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1464. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1465. current_position[Z_AXIS] = 0;
  1466. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1467. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1468. feedrate = max_feedrate[Z_AXIS];
  1469. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1470. st_synchronize();
  1471. HOMEAXIS(Z);
  1472. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1473. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1474. SERIAL_ECHO_START;
  1475. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1476. } else {
  1477. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1478. SERIAL_ECHO_START;
  1479. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1480. }
  1481. }
  1482. #endif
  1483. #endif
  1484. if(code_seen(axis_codes[Z_AXIS])) {
  1485. if(code_value_long() != 0) {
  1486. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1487. }
  1488. }
  1489. #ifdef ENABLE_AUTO_BED_LEVELING
  1490. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1491. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1492. }
  1493. #endif
  1494. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1495. #endif // else DELTA
  1496. #ifdef SCARA
  1497. calculate_delta(current_position);
  1498. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1499. #endif // SCARA
  1500. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1501. enable_endstops(false);
  1502. #endif
  1503. feedrate = saved_feedrate;
  1504. feedmultiply = saved_feedmultiply;
  1505. previous_millis_cmd = millis();
  1506. endstops_hit_on_purpose();
  1507. break;
  1508. #ifdef ENABLE_AUTO_BED_LEVELING
  1509. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1510. {
  1511. #if Z_MIN_PIN == -1
  1512. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1513. #endif
  1514. // Prevent user from running a G29 without first homing in X and Y
  1515. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1516. {
  1517. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1518. SERIAL_ECHO_START;
  1519. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1520. break; // abort G29, since we don't know where we are
  1521. }
  1522. #ifdef Z_PROBE_SLED
  1523. dock_sled(false);
  1524. #endif // Z_PROBE_SLED
  1525. st_synchronize();
  1526. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1527. //vector_3 corrected_position = plan_get_position_mm();
  1528. //corrected_position.debug("position before G29");
  1529. plan_bed_level_matrix.set_to_identity();
  1530. vector_3 uncorrected_position = plan_get_position();
  1531. //uncorrected_position.debug("position durring G29");
  1532. current_position[X_AXIS] = uncorrected_position.x;
  1533. current_position[Y_AXIS] = uncorrected_position.y;
  1534. current_position[Z_AXIS] = uncorrected_position.z;
  1535. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1536. setup_for_endstop_move();
  1537. feedrate = homing_feedrate[Z_AXIS];
  1538. #ifdef AUTO_BED_LEVELING_GRID
  1539. // probe at the points of a lattice grid
  1540. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1541. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1542. // solve the plane equation ax + by + d = z
  1543. // A is the matrix with rows [x y 1] for all the probed points
  1544. // B is the vector of the Z positions
  1545. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1546. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1547. // "A" matrix of the linear system of equations
  1548. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1549. // "B" vector of Z points
  1550. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1551. int probePointCounter = 0;
  1552. bool zig = true;
  1553. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1554. {
  1555. int xProbe, xInc;
  1556. if (zig)
  1557. {
  1558. xProbe = LEFT_PROBE_BED_POSITION;
  1559. //xEnd = RIGHT_PROBE_BED_POSITION;
  1560. xInc = xGridSpacing;
  1561. zig = false;
  1562. } else // zag
  1563. {
  1564. xProbe = RIGHT_PROBE_BED_POSITION;
  1565. //xEnd = LEFT_PROBE_BED_POSITION;
  1566. xInc = -xGridSpacing;
  1567. zig = true;
  1568. }
  1569. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1570. {
  1571. float z_before;
  1572. if (probePointCounter == 0)
  1573. {
  1574. // raise before probing
  1575. z_before = Z_RAISE_BEFORE_PROBING;
  1576. } else
  1577. {
  1578. // raise extruder
  1579. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1580. }
  1581. float measured_z;
  1582. //Enhanced G29 - Do not retract servo between probes
  1583. if (code_seen('E') || code_seen('e') )
  1584. {
  1585. if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
  1586. {
  1587. measured_z = probe_pt(xProbe, yProbe, z_before,1);
  1588. } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
  1589. {
  1590. measured_z = probe_pt(xProbe, yProbe, z_before,3);
  1591. } else {
  1592. measured_z = probe_pt(xProbe, yProbe, z_before,2);
  1593. }
  1594. } else {
  1595. measured_z = probe_pt(xProbe, yProbe, z_before);
  1596. }
  1597. eqnBVector[probePointCounter] = measured_z;
  1598. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1599. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1600. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1601. probePointCounter++;
  1602. xProbe += xInc;
  1603. }
  1604. }
  1605. clean_up_after_endstop_move();
  1606. // solve lsq problem
  1607. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1608. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1609. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1610. SERIAL_PROTOCOLPGM(" b: ");
  1611. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1612. SERIAL_PROTOCOLPGM(" d: ");
  1613. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1614. set_bed_level_equation_lsq(plane_equation_coefficients);
  1615. free(plane_equation_coefficients);
  1616. #else // AUTO_BED_LEVELING_GRID not defined
  1617. // Probe at 3 arbitrary points
  1618. // Enhanced G29
  1619. float z_at_pt_1,z_at_pt_2,z_at_pt_3;
  1620. if (code_seen('E') || code_seen('e') )
  1621. {
  1622. // probe 1
  1623. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
  1624. // probe 2
  1625. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
  1626. // probe 3
  1627. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
  1628. }
  1629. else
  1630. {
  1631. // probe 1
  1632. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1633. // probe 2
  1634. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1635. // probe 3
  1636. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1637. }
  1638. clean_up_after_endstop_move();
  1639. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1640. #endif // AUTO_BED_LEVELING_GRID
  1641. st_synchronize();
  1642. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1643. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1644. // When the bed is uneven, this height must be corrected.
  1645. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1646. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1647. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1648. z_tmp = current_position[Z_AXIS];
  1649. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1650. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1651. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1652. #ifdef Z_PROBE_SLED
  1653. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1654. #endif // Z_PROBE_SLED
  1655. }
  1656. break;
  1657. #ifndef Z_PROBE_SLED
  1658. case 30: // G30 Single Z Probe
  1659. {
  1660. engage_z_probe(); // Engage Z Servo endstop if available
  1661. st_synchronize();
  1662. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1663. setup_for_endstop_move();
  1664. feedrate = homing_feedrate[Z_AXIS];
  1665. run_z_probe();
  1666. SERIAL_PROTOCOLPGM(MSG_BED);
  1667. SERIAL_PROTOCOLPGM(" X: ");
  1668. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1669. SERIAL_PROTOCOLPGM(" Y: ");
  1670. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1671. SERIAL_PROTOCOLPGM(" Z: ");
  1672. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1673. SERIAL_PROTOCOLPGM("\n");
  1674. clean_up_after_endstop_move();
  1675. retract_z_probe(); // Retract Z Servo endstop if available
  1676. }
  1677. break;
  1678. #else
  1679. case 31: // dock the sled
  1680. dock_sled(true);
  1681. break;
  1682. case 32: // undock the sled
  1683. dock_sled(false);
  1684. break;
  1685. #endif // Z_PROBE_SLED
  1686. #endif // ENABLE_AUTO_BED_LEVELING
  1687. case 90: // G90
  1688. relative_mode = false;
  1689. break;
  1690. case 91: // G91
  1691. relative_mode = true;
  1692. break;
  1693. case 92: // G92
  1694. if(!code_seen(axis_codes[E_AXIS]))
  1695. st_synchronize();
  1696. for(int8_t i=0; i < NUM_AXIS; i++) {
  1697. if(code_seen(axis_codes[i])) {
  1698. if(i == E_AXIS) {
  1699. current_position[i] = code_value();
  1700. plan_set_e_position(current_position[E_AXIS]);
  1701. }
  1702. else {
  1703. #ifdef SCARA
  1704. if (i == X_AXIS || i == Y_AXIS) {
  1705. current_position[i] = code_value();
  1706. }
  1707. else {
  1708. current_position[i] = code_value()+add_homing[i];
  1709. }
  1710. #else
  1711. current_position[i] = code_value()+add_homing[i];
  1712. #endif
  1713. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1714. }
  1715. }
  1716. }
  1717. break;
  1718. }
  1719. }
  1720. else if(code_seen('M'))
  1721. {
  1722. switch( (int)code_value() )
  1723. {
  1724. #ifdef ULTIPANEL
  1725. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1726. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1727. {
  1728. char *src = strchr_pointer + 2;
  1729. codenum = 0;
  1730. bool hasP = false, hasS = false;
  1731. if (code_seen('P')) {
  1732. codenum = code_value(); // milliseconds to wait
  1733. hasP = codenum > 0;
  1734. }
  1735. if (code_seen('S')) {
  1736. codenum = code_value() * 1000; // seconds to wait
  1737. hasS = codenum > 0;
  1738. }
  1739. starpos = strchr(src, '*');
  1740. if (starpos != NULL) *(starpos) = '\0';
  1741. while (*src == ' ') ++src;
  1742. if (!hasP && !hasS && *src != '\0') {
  1743. lcd_setstatus(src);
  1744. } else {
  1745. LCD_MESSAGEPGM(MSG_USERWAIT);
  1746. }
  1747. lcd_ignore_click();
  1748. st_synchronize();
  1749. previous_millis_cmd = millis();
  1750. if (codenum > 0){
  1751. codenum += millis(); // keep track of when we started waiting
  1752. while(millis() < codenum && !lcd_clicked()){
  1753. manage_heater();
  1754. manage_inactivity();
  1755. lcd_update();
  1756. }
  1757. lcd_ignore_click(false);
  1758. }else{
  1759. if (!lcd_detected())
  1760. break;
  1761. while(!lcd_clicked()){
  1762. manage_heater();
  1763. manage_inactivity();
  1764. lcd_update();
  1765. }
  1766. }
  1767. if (IS_SD_PRINTING)
  1768. LCD_MESSAGEPGM(MSG_RESUMING);
  1769. else
  1770. LCD_MESSAGEPGM(WELCOME_MSG);
  1771. }
  1772. break;
  1773. #endif
  1774. case 17:
  1775. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1776. enable_x();
  1777. enable_y();
  1778. enable_z();
  1779. enable_e0();
  1780. enable_e1();
  1781. enable_e2();
  1782. break;
  1783. #ifdef SDSUPPORT
  1784. case 20: // M20 - list SD card
  1785. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1786. card.ls();
  1787. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1788. break;
  1789. case 21: // M21 - init SD card
  1790. card.initsd();
  1791. break;
  1792. case 22: //M22 - release SD card
  1793. card.release();
  1794. break;
  1795. case 23: //M23 - Select file
  1796. starpos = (strchr(strchr_pointer + 4,'*'));
  1797. if(starpos!=NULL)
  1798. *(starpos)='\0';
  1799. card.openFile(strchr_pointer + 4,true);
  1800. break;
  1801. case 24: //M24 - Start SD print
  1802. card.startFileprint();
  1803. starttime=millis();
  1804. break;
  1805. case 25: //M25 - Pause SD print
  1806. card.pauseSDPrint();
  1807. break;
  1808. case 26: //M26 - Set SD index
  1809. if(card.cardOK && code_seen('S')) {
  1810. card.setIndex(code_value_long());
  1811. }
  1812. break;
  1813. case 27: //M27 - Get SD status
  1814. card.getStatus();
  1815. break;
  1816. case 28: //M28 - Start SD write
  1817. starpos = (strchr(strchr_pointer + 4,'*'));
  1818. if(starpos != NULL){
  1819. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1820. strchr_pointer = strchr(npos,' ') + 1;
  1821. *(starpos) = '\0';
  1822. }
  1823. card.openFile(strchr_pointer+4,false);
  1824. break;
  1825. case 29: //M29 - Stop SD write
  1826. //processed in write to file routine above
  1827. //card,saving = false;
  1828. break;
  1829. case 30: //M30 <filename> Delete File
  1830. if (card.cardOK){
  1831. card.closefile();
  1832. starpos = (strchr(strchr_pointer + 4,'*'));
  1833. if(starpos != NULL){
  1834. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1835. strchr_pointer = strchr(npos,' ') + 1;
  1836. *(starpos) = '\0';
  1837. }
  1838. card.removeFile(strchr_pointer + 4);
  1839. }
  1840. break;
  1841. case 32: //M32 - Select file and start SD print
  1842. {
  1843. if(card.sdprinting) {
  1844. st_synchronize();
  1845. }
  1846. starpos = (strchr(strchr_pointer + 4,'*'));
  1847. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1848. if(namestartpos==NULL)
  1849. {
  1850. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1851. }
  1852. else
  1853. namestartpos++; //to skip the '!'
  1854. if(starpos!=NULL)
  1855. *(starpos)='\0';
  1856. bool call_procedure=(code_seen('P'));
  1857. if(strchr_pointer>namestartpos)
  1858. call_procedure=false; //false alert, 'P' found within filename
  1859. if( card.cardOK )
  1860. {
  1861. card.openFile(namestartpos,true,!call_procedure);
  1862. if(code_seen('S'))
  1863. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1864. card.setIndex(code_value_long());
  1865. card.startFileprint();
  1866. if(!call_procedure)
  1867. starttime=millis(); //procedure calls count as normal print time.
  1868. }
  1869. } break;
  1870. case 928: //M928 - Start SD write
  1871. starpos = (strchr(strchr_pointer + 5,'*'));
  1872. if(starpos != NULL){
  1873. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1874. strchr_pointer = strchr(npos,' ') + 1;
  1875. *(starpos) = '\0';
  1876. }
  1877. card.openLogFile(strchr_pointer+5);
  1878. break;
  1879. #endif //SDSUPPORT
  1880. case 31: //M31 take time since the start of the SD print or an M109 command
  1881. {
  1882. stoptime=millis();
  1883. char time[30];
  1884. unsigned long t=(stoptime-starttime)/1000;
  1885. int sec,min;
  1886. min=t/60;
  1887. sec=t%60;
  1888. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1889. SERIAL_ECHO_START;
  1890. SERIAL_ECHOLN(time);
  1891. lcd_setstatus(time);
  1892. autotempShutdown();
  1893. }
  1894. break;
  1895. case 42: //M42 -Change pin status via gcode
  1896. if (code_seen('S'))
  1897. {
  1898. int pin_status = code_value();
  1899. int pin_number = LED_PIN;
  1900. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1901. pin_number = code_value();
  1902. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1903. {
  1904. if (sensitive_pins[i] == pin_number)
  1905. {
  1906. pin_number = -1;
  1907. break;
  1908. }
  1909. }
  1910. #if defined(FAN_PIN) && FAN_PIN > -1
  1911. if (pin_number == FAN_PIN)
  1912. fanSpeed = pin_status;
  1913. #endif
  1914. if (pin_number > -1)
  1915. {
  1916. pinMode(pin_number, OUTPUT);
  1917. digitalWrite(pin_number, pin_status);
  1918. analogWrite(pin_number, pin_status);
  1919. }
  1920. }
  1921. break;
  1922. // M48 Z-Probe repeatability measurement function.
  1923. //
  1924. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1925. //
  1926. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1927. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1928. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1929. // regenerated.
  1930. //
  1931. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1932. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1933. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1934. //
  1935. #ifdef ENABLE_AUTO_BED_LEVELING
  1936. #ifdef Z_PROBE_REPEATABILITY_TEST
  1937. case 48: // M48 Z-Probe repeatability
  1938. {
  1939. #if Z_MIN_PIN == -1
  1940. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1941. #endif
  1942. double sum=0.0;
  1943. double mean=0.0;
  1944. double sigma=0.0;
  1945. double sample_set[50];
  1946. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1947. double X_current, Y_current, Z_current;
  1948. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1949. if (code_seen('V') || code_seen('v')) {
  1950. verbose_level = code_value();
  1951. if (verbose_level<0 || verbose_level>4 ) {
  1952. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1953. goto Sigma_Exit;
  1954. }
  1955. }
  1956. if (verbose_level > 0) {
  1957. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1958. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1959. }
  1960. if (code_seen('n')) {
  1961. n_samples = code_value();
  1962. if (n_samples<4 || n_samples>50 ) {
  1963. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1964. goto Sigma_Exit;
  1965. }
  1966. }
  1967. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1968. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1969. Z_current = st_get_position_mm(Z_AXIS);
  1970. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1971. ext_position = st_get_position_mm(E_AXIS);
  1972. if (code_seen('E') || code_seen('e') )
  1973. engage_probe_for_each_reading++;
  1974. if (code_seen('X') || code_seen('x') ) {
  1975. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1976. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1977. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1978. goto Sigma_Exit;
  1979. }
  1980. }
  1981. if (code_seen('Y') || code_seen('y') ) {
  1982. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1983. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1984. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1985. goto Sigma_Exit;
  1986. }
  1987. }
  1988. if (code_seen('L') || code_seen('l') ) {
  1989. n_legs = code_value();
  1990. if ( n_legs==1 )
  1991. n_legs = 2;
  1992. if ( n_legs<0 || n_legs>15 ) {
  1993. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1994. goto Sigma_Exit;
  1995. }
  1996. }
  1997. //
  1998. // Do all the preliminary setup work. First raise the probe.
  1999. //
  2000. st_synchronize();
  2001. plan_bed_level_matrix.set_to_identity();
  2002. plan_buffer_line( X_current, Y_current, Z_start_location,
  2003. ext_position,
  2004. homing_feedrate[Z_AXIS]/60,
  2005. active_extruder);
  2006. st_synchronize();
  2007. //
  2008. // Now get everything to the specified probe point So we can safely do a probe to
  2009. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2010. // use that as a starting point for each probe.
  2011. //
  2012. if (verbose_level > 2)
  2013. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2014. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2015. ext_position,
  2016. homing_feedrate[X_AXIS]/60,
  2017. active_extruder);
  2018. st_synchronize();
  2019. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2020. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2021. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2022. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2023. //
  2024. // OK, do the inital probe to get us close to the bed.
  2025. // Then retrace the right amount and use that in subsequent probes
  2026. //
  2027. engage_z_probe();
  2028. setup_for_endstop_move();
  2029. run_z_probe();
  2030. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2031. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2032. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2033. ext_position,
  2034. homing_feedrate[X_AXIS]/60,
  2035. active_extruder);
  2036. st_synchronize();
  2037. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2038. if (engage_probe_for_each_reading)
  2039. retract_z_probe();
  2040. for( n=0; n<n_samples; n++) {
  2041. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2042. if ( n_legs) {
  2043. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2044. int rotational_direction, l;
  2045. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2046. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2047. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2048. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2049. //SERIAL_ECHOPAIR(" theta: ",theta);
  2050. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2051. //SERIAL_PROTOCOLLNPGM("");
  2052. for( l=0; l<n_legs-1; l++) {
  2053. if (rotational_direction==1)
  2054. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2055. else
  2056. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2057. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2058. if ( radius<0.0 )
  2059. radius = -radius;
  2060. X_current = X_probe_location + cos(theta) * radius;
  2061. Y_current = Y_probe_location + sin(theta) * radius;
  2062. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2063. X_current = X_MIN_POS;
  2064. if ( X_current>X_MAX_POS)
  2065. X_current = X_MAX_POS;
  2066. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2067. Y_current = Y_MIN_POS;
  2068. if ( Y_current>Y_MAX_POS)
  2069. Y_current = Y_MAX_POS;
  2070. if (verbose_level>3 ) {
  2071. SERIAL_ECHOPAIR("x: ", X_current);
  2072. SERIAL_ECHOPAIR("y: ", Y_current);
  2073. SERIAL_PROTOCOLLNPGM("");
  2074. }
  2075. do_blocking_move_to( X_current, Y_current, Z_current );
  2076. }
  2077. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2078. }
  2079. if (engage_probe_for_each_reading) {
  2080. engage_z_probe();
  2081. delay(1000);
  2082. }
  2083. setup_for_endstop_move();
  2084. run_z_probe();
  2085. sample_set[n] = current_position[Z_AXIS];
  2086. //
  2087. // Get the current mean for the data points we have so far
  2088. //
  2089. sum=0.0;
  2090. for( j=0; j<=n; j++) {
  2091. sum = sum + sample_set[j];
  2092. }
  2093. mean = sum / (double (n+1));
  2094. //
  2095. // Now, use that mean to calculate the standard deviation for the
  2096. // data points we have so far
  2097. //
  2098. sum=0.0;
  2099. for( j=0; j<=n; j++) {
  2100. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2101. }
  2102. sigma = sqrt( sum / (double (n+1)) );
  2103. if (verbose_level > 1) {
  2104. SERIAL_PROTOCOL(n+1);
  2105. SERIAL_PROTOCOL(" of ");
  2106. SERIAL_PROTOCOL(n_samples);
  2107. SERIAL_PROTOCOLPGM(" z: ");
  2108. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2109. }
  2110. if (verbose_level > 2) {
  2111. SERIAL_PROTOCOL(" mean: ");
  2112. SERIAL_PROTOCOL_F(mean,6);
  2113. SERIAL_PROTOCOL(" sigma: ");
  2114. SERIAL_PROTOCOL_F(sigma,6);
  2115. }
  2116. if (verbose_level > 0)
  2117. SERIAL_PROTOCOLPGM("\n");
  2118. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2119. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2120. st_synchronize();
  2121. if (engage_probe_for_each_reading) {
  2122. retract_z_probe();
  2123. delay(1000);
  2124. }
  2125. }
  2126. retract_z_probe();
  2127. delay(1000);
  2128. clean_up_after_endstop_move();
  2129. // enable_endstops(true);
  2130. if (verbose_level > 0) {
  2131. SERIAL_PROTOCOLPGM("Mean: ");
  2132. SERIAL_PROTOCOL_F(mean, 6);
  2133. SERIAL_PROTOCOLPGM("\n");
  2134. }
  2135. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2136. SERIAL_PROTOCOL_F(sigma, 6);
  2137. SERIAL_PROTOCOLPGM("\n\n");
  2138. Sigma_Exit:
  2139. break;
  2140. }
  2141. #endif // Z_PROBE_REPEATABILITY_TEST
  2142. #endif // ENABLE_AUTO_BED_LEVELING
  2143. case 104: // M104
  2144. if(setTargetedHotend(104)){
  2145. break;
  2146. }
  2147. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2148. #ifdef DUAL_X_CARRIAGE
  2149. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2150. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2151. #endif
  2152. setWatch();
  2153. break;
  2154. case 112: // M112 -Emergency Stop
  2155. kill();
  2156. break;
  2157. case 140: // M140 set bed temp
  2158. if (code_seen('S')) setTargetBed(code_value());
  2159. break;
  2160. case 105 : // M105
  2161. if(setTargetedHotend(105)){
  2162. break;
  2163. }
  2164. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2165. SERIAL_PROTOCOLPGM("ok T:");
  2166. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2167. SERIAL_PROTOCOLPGM(" /");
  2168. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2169. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2170. SERIAL_PROTOCOLPGM(" B:");
  2171. SERIAL_PROTOCOL_F(degBed(),1);
  2172. SERIAL_PROTOCOLPGM(" /");
  2173. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2174. #endif //TEMP_BED_PIN
  2175. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2176. SERIAL_PROTOCOLPGM(" T");
  2177. SERIAL_PROTOCOL(cur_extruder);
  2178. SERIAL_PROTOCOLPGM(":");
  2179. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2180. SERIAL_PROTOCOLPGM(" /");
  2181. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2182. }
  2183. #else
  2184. SERIAL_ERROR_START;
  2185. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2186. #endif
  2187. SERIAL_PROTOCOLPGM(" @:");
  2188. #ifdef EXTRUDER_WATTS
  2189. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2190. SERIAL_PROTOCOLPGM("W");
  2191. #else
  2192. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2193. #endif
  2194. SERIAL_PROTOCOLPGM(" B@:");
  2195. #ifdef BED_WATTS
  2196. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2197. SERIAL_PROTOCOLPGM("W");
  2198. #else
  2199. SERIAL_PROTOCOL(getHeaterPower(-1));
  2200. #endif
  2201. #ifdef SHOW_TEMP_ADC_VALUES
  2202. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2203. SERIAL_PROTOCOLPGM(" ADC B:");
  2204. SERIAL_PROTOCOL_F(degBed(),1);
  2205. SERIAL_PROTOCOLPGM("C->");
  2206. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2207. #endif
  2208. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2209. SERIAL_PROTOCOLPGM(" T");
  2210. SERIAL_PROTOCOL(cur_extruder);
  2211. SERIAL_PROTOCOLPGM(":");
  2212. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2213. SERIAL_PROTOCOLPGM("C->");
  2214. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2215. }
  2216. #endif
  2217. SERIAL_PROTOCOLLN("");
  2218. return;
  2219. break;
  2220. case 109:
  2221. {// M109 - Wait for extruder heater to reach target.
  2222. if(setTargetedHotend(109)){
  2223. break;
  2224. }
  2225. LCD_MESSAGEPGM(MSG_HEATING);
  2226. #ifdef AUTOTEMP
  2227. autotemp_enabled=false;
  2228. #endif
  2229. if (code_seen('S')) {
  2230. setTargetHotend(code_value(), tmp_extruder);
  2231. #ifdef DUAL_X_CARRIAGE
  2232. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2233. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2234. #endif
  2235. CooldownNoWait = true;
  2236. } else if (code_seen('R')) {
  2237. setTargetHotend(code_value(), tmp_extruder);
  2238. #ifdef DUAL_X_CARRIAGE
  2239. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2240. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2241. #endif
  2242. CooldownNoWait = false;
  2243. }
  2244. #ifdef AUTOTEMP
  2245. if (code_seen('S')) autotemp_min=code_value();
  2246. if (code_seen('B')) autotemp_max=code_value();
  2247. if (code_seen('F'))
  2248. {
  2249. autotemp_factor=code_value();
  2250. autotemp_enabled=true;
  2251. }
  2252. #endif
  2253. setWatch();
  2254. codenum = millis();
  2255. /* See if we are heating up or cooling down */
  2256. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2257. cancel_heatup = false;
  2258. #ifdef TEMP_RESIDENCY_TIME
  2259. long residencyStart;
  2260. residencyStart = -1;
  2261. /* continue to loop until we have reached the target temp
  2262. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2263. while((!cancel_heatup)&&((residencyStart == -1) ||
  2264. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2265. #else
  2266. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2267. #endif //TEMP_RESIDENCY_TIME
  2268. if( (millis() - codenum) > 1000UL )
  2269. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2270. SERIAL_PROTOCOLPGM("T:");
  2271. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2272. SERIAL_PROTOCOLPGM(" E:");
  2273. SERIAL_PROTOCOL((int)tmp_extruder);
  2274. #ifdef TEMP_RESIDENCY_TIME
  2275. SERIAL_PROTOCOLPGM(" W:");
  2276. if(residencyStart > -1)
  2277. {
  2278. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2279. SERIAL_PROTOCOLLN( codenum );
  2280. }
  2281. else
  2282. {
  2283. SERIAL_PROTOCOLLN( "?" );
  2284. }
  2285. #else
  2286. SERIAL_PROTOCOLLN("");
  2287. #endif
  2288. codenum = millis();
  2289. }
  2290. manage_heater();
  2291. manage_inactivity();
  2292. lcd_update();
  2293. #ifdef TEMP_RESIDENCY_TIME
  2294. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2295. or when current temp falls outside the hysteresis after target temp was reached */
  2296. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2297. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2298. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2299. {
  2300. residencyStart = millis();
  2301. }
  2302. #endif //TEMP_RESIDENCY_TIME
  2303. }
  2304. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2305. starttime=millis();
  2306. previous_millis_cmd = millis();
  2307. }
  2308. break;
  2309. case 190: // M190 - Wait for bed heater to reach target.
  2310. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2311. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2312. if (code_seen('S')) {
  2313. setTargetBed(code_value());
  2314. CooldownNoWait = true;
  2315. } else if (code_seen('R')) {
  2316. setTargetBed(code_value());
  2317. CooldownNoWait = false;
  2318. }
  2319. codenum = millis();
  2320. cancel_heatup = false;
  2321. target_direction = isHeatingBed(); // true if heating, false if cooling
  2322. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2323. {
  2324. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2325. {
  2326. float tt=degHotend(active_extruder);
  2327. SERIAL_PROTOCOLPGM("T:");
  2328. SERIAL_PROTOCOL(tt);
  2329. SERIAL_PROTOCOLPGM(" E:");
  2330. SERIAL_PROTOCOL((int)active_extruder);
  2331. SERIAL_PROTOCOLPGM(" B:");
  2332. SERIAL_PROTOCOL_F(degBed(),1);
  2333. SERIAL_PROTOCOLLN("");
  2334. codenum = millis();
  2335. }
  2336. manage_heater();
  2337. manage_inactivity();
  2338. lcd_update();
  2339. }
  2340. LCD_MESSAGEPGM(MSG_BED_DONE);
  2341. previous_millis_cmd = millis();
  2342. #endif
  2343. break;
  2344. #if defined(FAN_PIN) && FAN_PIN > -1
  2345. case 106: //M106 Fan On
  2346. if (code_seen('S')){
  2347. fanSpeed=constrain(code_value(),0,255);
  2348. }
  2349. else {
  2350. fanSpeed=255;
  2351. }
  2352. break;
  2353. case 107: //M107 Fan Off
  2354. fanSpeed = 0;
  2355. break;
  2356. #endif //FAN_PIN
  2357. #ifdef BARICUDA
  2358. // PWM for HEATER_1_PIN
  2359. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2360. case 126: //M126 valve open
  2361. if (code_seen('S')){
  2362. ValvePressure=constrain(code_value(),0,255);
  2363. }
  2364. else {
  2365. ValvePressure=255;
  2366. }
  2367. break;
  2368. case 127: //M127 valve closed
  2369. ValvePressure = 0;
  2370. break;
  2371. #endif //HEATER_1_PIN
  2372. // PWM for HEATER_2_PIN
  2373. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2374. case 128: //M128 valve open
  2375. if (code_seen('S')){
  2376. EtoPPressure=constrain(code_value(),0,255);
  2377. }
  2378. else {
  2379. EtoPPressure=255;
  2380. }
  2381. break;
  2382. case 129: //M129 valve closed
  2383. EtoPPressure = 0;
  2384. break;
  2385. #endif //HEATER_2_PIN
  2386. #endif
  2387. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2388. case 80: // M80 - Turn on Power Supply
  2389. SET_OUTPUT(PS_ON_PIN); //GND
  2390. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2391. // If you have a switch on suicide pin, this is useful
  2392. // if you want to start another print with suicide feature after
  2393. // a print without suicide...
  2394. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2395. SET_OUTPUT(SUICIDE_PIN);
  2396. WRITE(SUICIDE_PIN, HIGH);
  2397. #endif
  2398. #ifdef ULTIPANEL
  2399. powersupply = true;
  2400. LCD_MESSAGEPGM(WELCOME_MSG);
  2401. lcd_update();
  2402. #endif
  2403. break;
  2404. #endif
  2405. case 81: // M81 - Turn off Power Supply
  2406. disable_heater();
  2407. st_synchronize();
  2408. disable_e0();
  2409. disable_e1();
  2410. disable_e2();
  2411. finishAndDisableSteppers();
  2412. fanSpeed = 0;
  2413. delay(1000); // Wait a little before to switch off
  2414. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2415. st_synchronize();
  2416. suicide();
  2417. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2418. SET_OUTPUT(PS_ON_PIN);
  2419. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2420. #endif
  2421. #ifdef ULTIPANEL
  2422. powersupply = false;
  2423. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2424. lcd_update();
  2425. #endif
  2426. break;
  2427. case 82:
  2428. axis_relative_modes[3] = false;
  2429. break;
  2430. case 83:
  2431. axis_relative_modes[3] = true;
  2432. break;
  2433. case 18: //compatibility
  2434. case 84: // M84
  2435. if(code_seen('S')){
  2436. stepper_inactive_time = code_value() * 1000;
  2437. }
  2438. else
  2439. {
  2440. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2441. if(all_axis)
  2442. {
  2443. st_synchronize();
  2444. disable_e0();
  2445. disable_e1();
  2446. disable_e2();
  2447. finishAndDisableSteppers();
  2448. }
  2449. else
  2450. {
  2451. st_synchronize();
  2452. if(code_seen('X')) disable_x();
  2453. if(code_seen('Y')) disable_y();
  2454. if(code_seen('Z')) disable_z();
  2455. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2456. if(code_seen('E')) {
  2457. disable_e0();
  2458. disable_e1();
  2459. disable_e2();
  2460. }
  2461. #endif
  2462. }
  2463. }
  2464. break;
  2465. case 85: // M85
  2466. if(code_seen('S')) {
  2467. max_inactive_time = code_value() * 1000;
  2468. }
  2469. break;
  2470. case 92: // M92
  2471. for(int8_t i=0; i < NUM_AXIS; i++)
  2472. {
  2473. if(code_seen(axis_codes[i]))
  2474. {
  2475. if(i == 3) { // E
  2476. float value = code_value();
  2477. if(value < 20.0) {
  2478. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2479. max_e_jerk *= factor;
  2480. max_feedrate[i] *= factor;
  2481. axis_steps_per_sqr_second[i] *= factor;
  2482. }
  2483. axis_steps_per_unit[i] = value;
  2484. }
  2485. else {
  2486. axis_steps_per_unit[i] = code_value();
  2487. }
  2488. }
  2489. }
  2490. break;
  2491. case 115: // M115
  2492. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2493. break;
  2494. case 117: // M117 display message
  2495. starpos = (strchr(strchr_pointer + 5,'*'));
  2496. if(starpos!=NULL)
  2497. *(starpos)='\0';
  2498. lcd_setstatus(strchr_pointer + 5);
  2499. break;
  2500. case 114: // M114
  2501. SERIAL_PROTOCOLPGM("X:");
  2502. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2503. SERIAL_PROTOCOLPGM(" Y:");
  2504. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2505. SERIAL_PROTOCOLPGM(" Z:");
  2506. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2507. SERIAL_PROTOCOLPGM(" E:");
  2508. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2509. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2510. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2511. SERIAL_PROTOCOLPGM(" Y:");
  2512. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2513. SERIAL_PROTOCOLPGM(" Z:");
  2514. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2515. SERIAL_PROTOCOLLN("");
  2516. #ifdef SCARA
  2517. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2518. SERIAL_PROTOCOL(delta[X_AXIS]);
  2519. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2520. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2521. SERIAL_PROTOCOLLN("");
  2522. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2523. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2524. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2525. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2526. SERIAL_PROTOCOLLN("");
  2527. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2528. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2529. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2530. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2531. SERIAL_PROTOCOLLN("");
  2532. SERIAL_PROTOCOLLN("");
  2533. #endif
  2534. break;
  2535. case 120: // M120
  2536. enable_endstops(false) ;
  2537. break;
  2538. case 121: // M121
  2539. enable_endstops(true) ;
  2540. break;
  2541. case 119: // M119
  2542. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2543. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2544. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2545. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2546. #endif
  2547. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2548. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2549. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2550. #endif
  2551. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2552. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2553. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2554. #endif
  2555. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2556. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2557. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2558. #endif
  2559. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2560. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2561. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2562. #endif
  2563. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2564. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2565. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2566. #endif
  2567. break;
  2568. //TODO: update for all axis, use for loop
  2569. #ifdef BLINKM
  2570. case 150: // M150
  2571. {
  2572. byte red;
  2573. byte grn;
  2574. byte blu;
  2575. if(code_seen('R')) red = code_value();
  2576. if(code_seen('U')) grn = code_value();
  2577. if(code_seen('B')) blu = code_value();
  2578. SendColors(red,grn,blu);
  2579. }
  2580. break;
  2581. #endif //BLINKM
  2582. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2583. {
  2584. tmp_extruder = active_extruder;
  2585. if(code_seen('T')) {
  2586. tmp_extruder = code_value();
  2587. if(tmp_extruder >= EXTRUDERS) {
  2588. SERIAL_ECHO_START;
  2589. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2590. break;
  2591. }
  2592. }
  2593. float area = .0;
  2594. if(code_seen('D')) {
  2595. float diameter = (float)code_value();
  2596. if (diameter == 0.0) {
  2597. // setting any extruder filament size disables volumetric on the assumption that
  2598. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2599. // for all extruders
  2600. volumetric_enabled = false;
  2601. } else {
  2602. filament_size[tmp_extruder] = (float)code_value();
  2603. // make sure all extruders have some sane value for the filament size
  2604. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2605. #if EXTRUDERS > 1
  2606. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2607. #if EXTRUDERS > 2
  2608. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2609. #if EXTRUDERS > 3
  2610. filament_size[3] = (filament_size[3] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[3]);
  2611. #endif //EXTRUDERS > 3
  2612. #endif //EXTRUDERS > 2
  2613. #endif //EXTRUDERS > 1
  2614. volumetric_enabled = true;
  2615. }
  2616. } else {
  2617. //reserved for setting filament diameter via UFID or filament measuring device
  2618. break;
  2619. }
  2620. calculate_volumetric_multipliers();
  2621. }
  2622. break;
  2623. case 201: // M201
  2624. for(int8_t i=0; i < NUM_AXIS; i++)
  2625. {
  2626. if(code_seen(axis_codes[i]))
  2627. {
  2628. max_acceleration_units_per_sq_second[i] = code_value();
  2629. }
  2630. }
  2631. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2632. reset_acceleration_rates();
  2633. break;
  2634. #if 0 // Not used for Sprinter/grbl gen6
  2635. case 202: // M202
  2636. for(int8_t i=0; i < NUM_AXIS; i++) {
  2637. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2638. }
  2639. break;
  2640. #endif
  2641. case 203: // M203 max feedrate mm/sec
  2642. for(int8_t i=0; i < NUM_AXIS; i++) {
  2643. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2644. }
  2645. break;
  2646. case 204: // M204 acclereration S normal moves T filmanent only moves
  2647. {
  2648. if(code_seen('S')) acceleration = code_value() ;
  2649. if(code_seen('T')) retract_acceleration = code_value() ;
  2650. }
  2651. break;
  2652. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2653. {
  2654. if(code_seen('S')) minimumfeedrate = code_value();
  2655. if(code_seen('T')) mintravelfeedrate = code_value();
  2656. if(code_seen('B')) minsegmenttime = code_value() ;
  2657. if(code_seen('X')) max_xy_jerk = code_value() ;
  2658. if(code_seen('Z')) max_z_jerk = code_value() ;
  2659. if(code_seen('E')) max_e_jerk = code_value() ;
  2660. }
  2661. break;
  2662. case 206: // M206 additional homing offset
  2663. for(int8_t i=0; i < 3; i++)
  2664. {
  2665. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2666. }
  2667. #ifdef SCARA
  2668. if(code_seen('T')) // Theta
  2669. {
  2670. add_homing[X_AXIS] = code_value() ;
  2671. }
  2672. if(code_seen('P')) // Psi
  2673. {
  2674. add_homing[Y_AXIS] = code_value() ;
  2675. }
  2676. #endif
  2677. break;
  2678. #ifdef DELTA
  2679. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2680. if(code_seen('L')) {
  2681. delta_diagonal_rod= code_value();
  2682. }
  2683. if(code_seen('R')) {
  2684. delta_radius= code_value();
  2685. }
  2686. if(code_seen('S')) {
  2687. delta_segments_per_second= code_value();
  2688. }
  2689. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2690. break;
  2691. case 666: // M666 set delta endstop adjustemnt
  2692. for(int8_t i=0; i < 3; i++)
  2693. {
  2694. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2695. }
  2696. break;
  2697. #endif
  2698. #ifdef FWRETRACT
  2699. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2700. {
  2701. if(code_seen('S'))
  2702. {
  2703. retract_length = code_value() ;
  2704. }
  2705. if(code_seen('F'))
  2706. {
  2707. retract_feedrate = code_value()/60 ;
  2708. }
  2709. if(code_seen('Z'))
  2710. {
  2711. retract_zlift = code_value() ;
  2712. }
  2713. }break;
  2714. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2715. {
  2716. if(code_seen('S'))
  2717. {
  2718. retract_recover_length = code_value() ;
  2719. }
  2720. if(code_seen('F'))
  2721. {
  2722. retract_recover_feedrate = code_value()/60 ;
  2723. }
  2724. }break;
  2725. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2726. {
  2727. if(code_seen('S'))
  2728. {
  2729. int t= code_value() ;
  2730. switch(t)
  2731. {
  2732. case 0:
  2733. {
  2734. autoretract_enabled=false;
  2735. retracted[0]=false;
  2736. #if EXTRUDERS > 1
  2737. retracted[1]=false;
  2738. #endif
  2739. #if EXTRUDERS > 2
  2740. retracted[2]=false;
  2741. #endif
  2742. #if EXTRUDERS > 3
  2743. retracted[3]=false;
  2744. #endif
  2745. }break;
  2746. case 1:
  2747. {
  2748. autoretract_enabled=true;
  2749. retracted[0]=false;
  2750. #if EXTRUDERS > 1
  2751. retracted[1]=false;
  2752. #endif
  2753. #if EXTRUDERS > 2
  2754. retracted[2]=false;
  2755. #endif
  2756. #if EXTRUDERS > 3
  2757. retracted[3]=false;
  2758. #endif
  2759. }break;
  2760. default:
  2761. SERIAL_ECHO_START;
  2762. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2763. SERIAL_ECHO(cmdbuffer[bufindr]);
  2764. SERIAL_ECHOLNPGM("\"");
  2765. }
  2766. }
  2767. }break;
  2768. #endif // FWRETRACT
  2769. #if EXTRUDERS > 1
  2770. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2771. {
  2772. if(setTargetedHotend(218)){
  2773. break;
  2774. }
  2775. if(code_seen('X'))
  2776. {
  2777. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2778. }
  2779. if(code_seen('Y'))
  2780. {
  2781. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2782. }
  2783. #ifdef DUAL_X_CARRIAGE
  2784. if(code_seen('Z'))
  2785. {
  2786. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2787. }
  2788. #endif
  2789. SERIAL_ECHO_START;
  2790. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2791. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2792. {
  2793. SERIAL_ECHO(" ");
  2794. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2795. SERIAL_ECHO(",");
  2796. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2797. #ifdef DUAL_X_CARRIAGE
  2798. SERIAL_ECHO(",");
  2799. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2800. #endif
  2801. }
  2802. SERIAL_ECHOLN("");
  2803. }break;
  2804. #endif
  2805. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2806. {
  2807. if(code_seen('S'))
  2808. {
  2809. feedmultiply = code_value() ;
  2810. }
  2811. }
  2812. break;
  2813. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2814. {
  2815. if(code_seen('S'))
  2816. {
  2817. int tmp_code = code_value();
  2818. if (code_seen('T'))
  2819. {
  2820. if(setTargetedHotend(221)){
  2821. break;
  2822. }
  2823. extruder_multiply[tmp_extruder] = tmp_code;
  2824. }
  2825. else
  2826. {
  2827. extrudemultiply = tmp_code ;
  2828. }
  2829. }
  2830. }
  2831. break;
  2832. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2833. {
  2834. if(code_seen('P')){
  2835. int pin_number = code_value(); // pin number
  2836. int pin_state = -1; // required pin state - default is inverted
  2837. if(code_seen('S')) pin_state = code_value(); // required pin state
  2838. if(pin_state >= -1 && pin_state <= 1){
  2839. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2840. {
  2841. if (sensitive_pins[i] == pin_number)
  2842. {
  2843. pin_number = -1;
  2844. break;
  2845. }
  2846. }
  2847. if (pin_number > -1)
  2848. {
  2849. int target = LOW;
  2850. st_synchronize();
  2851. pinMode(pin_number, INPUT);
  2852. switch(pin_state){
  2853. case 1:
  2854. target = HIGH;
  2855. break;
  2856. case 0:
  2857. target = LOW;
  2858. break;
  2859. case -1:
  2860. target = !digitalRead(pin_number);
  2861. break;
  2862. }
  2863. while(digitalRead(pin_number) != target){
  2864. manage_heater();
  2865. manage_inactivity();
  2866. lcd_update();
  2867. }
  2868. }
  2869. }
  2870. }
  2871. }
  2872. break;
  2873. #if NUM_SERVOS > 0
  2874. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2875. {
  2876. int servo_index = -1;
  2877. int servo_position = 0;
  2878. if (code_seen('P'))
  2879. servo_index = code_value();
  2880. if (code_seen('S')) {
  2881. servo_position = code_value();
  2882. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2883. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2884. servos[servo_index].attach(0);
  2885. #endif
  2886. servos[servo_index].write(servo_position);
  2887. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2888. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2889. servos[servo_index].detach();
  2890. #endif
  2891. }
  2892. else {
  2893. SERIAL_ECHO_START;
  2894. SERIAL_ECHO("Servo ");
  2895. SERIAL_ECHO(servo_index);
  2896. SERIAL_ECHOLN(" out of range");
  2897. }
  2898. }
  2899. else if (servo_index >= 0) {
  2900. SERIAL_PROTOCOL(MSG_OK);
  2901. SERIAL_PROTOCOL(" Servo ");
  2902. SERIAL_PROTOCOL(servo_index);
  2903. SERIAL_PROTOCOL(": ");
  2904. SERIAL_PROTOCOL(servos[servo_index].read());
  2905. SERIAL_PROTOCOLLN("");
  2906. }
  2907. }
  2908. break;
  2909. #endif // NUM_SERVOS > 0
  2910. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2911. case 300: // M300
  2912. {
  2913. int beepS = code_seen('S') ? code_value() : 110;
  2914. int beepP = code_seen('P') ? code_value() : 1000;
  2915. if (beepS > 0)
  2916. {
  2917. #if BEEPER > 0
  2918. tone(BEEPER, beepS);
  2919. delay(beepP);
  2920. noTone(BEEPER);
  2921. #elif defined(ULTRALCD)
  2922. lcd_buzz(beepS, beepP);
  2923. #elif defined(LCD_USE_I2C_BUZZER)
  2924. lcd_buzz(beepP, beepS);
  2925. #endif
  2926. }
  2927. else
  2928. {
  2929. delay(beepP);
  2930. }
  2931. }
  2932. break;
  2933. #endif // M300
  2934. #ifdef PIDTEMP
  2935. case 301: // M301
  2936. {
  2937. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  2938. // default behaviour (omitting E parameter) is to update for extruder 0 only
  2939. int e = 0; // extruder being updated
  2940. if (code_seen('E'))
  2941. {
  2942. e = (int)code_value();
  2943. }
  2944. if (e < EXTRUDERS) // catch bad input value
  2945. {
  2946. if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
  2947. if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
  2948. if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
  2949. #ifdef PID_ADD_EXTRUSION_RATE
  2950. if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
  2951. #endif
  2952. updatePID();
  2953. SERIAL_PROTOCOL(MSG_OK);
  2954. #ifdef PID_PARAMS_PER_EXTRUDER
  2955. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  2956. SERIAL_PROTOCOL(e);
  2957. #endif // PID_PARAMS_PER_EXTRUDER
  2958. SERIAL_PROTOCOL(" p:");
  2959. SERIAL_PROTOCOL(PID_PARAM(Kp,e));
  2960. SERIAL_PROTOCOL(" i:");
  2961. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
  2962. SERIAL_PROTOCOL(" d:");
  2963. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
  2964. #ifdef PID_ADD_EXTRUSION_RATE
  2965. SERIAL_PROTOCOL(" c:");
  2966. //Kc does not have scaling applied above, or in resetting defaults
  2967. SERIAL_PROTOCOL(PID_PARAM(Kc,e));
  2968. #endif
  2969. SERIAL_PROTOCOLLN("");
  2970. }
  2971. else
  2972. {
  2973. SERIAL_ECHO_START;
  2974. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2975. }
  2976. }
  2977. break;
  2978. #endif //PIDTEMP
  2979. #ifdef PIDTEMPBED
  2980. case 304: // M304
  2981. {
  2982. if(code_seen('P')) bedKp = code_value();
  2983. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2984. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2985. updatePID();
  2986. SERIAL_PROTOCOL(MSG_OK);
  2987. SERIAL_PROTOCOL(" p:");
  2988. SERIAL_PROTOCOL(bedKp);
  2989. SERIAL_PROTOCOL(" i:");
  2990. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2991. SERIAL_PROTOCOL(" d:");
  2992. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2993. SERIAL_PROTOCOLLN("");
  2994. }
  2995. break;
  2996. #endif //PIDTEMP
  2997. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2998. {
  2999. #ifdef CHDK
  3000. SET_OUTPUT(CHDK);
  3001. WRITE(CHDK, HIGH);
  3002. chdkHigh = millis();
  3003. chdkActive = true;
  3004. #else
  3005. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3006. const uint8_t NUM_PULSES=16;
  3007. const float PULSE_LENGTH=0.01524;
  3008. for(int i=0; i < NUM_PULSES; i++) {
  3009. WRITE(PHOTOGRAPH_PIN, HIGH);
  3010. _delay_ms(PULSE_LENGTH);
  3011. WRITE(PHOTOGRAPH_PIN, LOW);
  3012. _delay_ms(PULSE_LENGTH);
  3013. }
  3014. delay(7.33);
  3015. for(int i=0; i < NUM_PULSES; i++) {
  3016. WRITE(PHOTOGRAPH_PIN, HIGH);
  3017. _delay_ms(PULSE_LENGTH);
  3018. WRITE(PHOTOGRAPH_PIN, LOW);
  3019. _delay_ms(PULSE_LENGTH);
  3020. }
  3021. #endif
  3022. #endif //chdk end if
  3023. }
  3024. break;
  3025. #ifdef DOGLCD
  3026. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3027. {
  3028. if (code_seen('C')) {
  3029. lcd_setcontrast( ((int)code_value())&63 );
  3030. }
  3031. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3032. SERIAL_PROTOCOL(lcd_contrast);
  3033. SERIAL_PROTOCOLLN("");
  3034. }
  3035. break;
  3036. #endif
  3037. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3038. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3039. {
  3040. float temp = .0;
  3041. if (code_seen('S')) temp=code_value();
  3042. set_extrude_min_temp(temp);
  3043. }
  3044. break;
  3045. #endif
  3046. case 303: // M303 PID autotune
  3047. {
  3048. float temp = 150.0;
  3049. int e=0;
  3050. int c=5;
  3051. if (code_seen('E')) e=code_value();
  3052. if (e<0)
  3053. temp=70;
  3054. if (code_seen('S')) temp=code_value();
  3055. if (code_seen('C')) c=code_value();
  3056. PID_autotune(temp, e, c);
  3057. }
  3058. break;
  3059. #ifdef SCARA
  3060. case 360: // M360 SCARA Theta pos1
  3061. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3062. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3063. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3064. if(Stopped == false) {
  3065. //get_coordinates(); // For X Y Z E F
  3066. delta[X_AXIS] = 0;
  3067. delta[Y_AXIS] = 120;
  3068. calculate_SCARA_forward_Transform(delta);
  3069. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3070. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3071. prepare_move();
  3072. //ClearToSend();
  3073. return;
  3074. }
  3075. break;
  3076. case 361: // SCARA Theta pos2
  3077. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3078. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3079. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3080. if(Stopped == false) {
  3081. //get_coordinates(); // For X Y Z E F
  3082. delta[X_AXIS] = 90;
  3083. delta[Y_AXIS] = 130;
  3084. calculate_SCARA_forward_Transform(delta);
  3085. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3086. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3087. prepare_move();
  3088. //ClearToSend();
  3089. return;
  3090. }
  3091. break;
  3092. case 362: // SCARA Psi pos1
  3093. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3094. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3095. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3096. if(Stopped == false) {
  3097. //get_coordinates(); // For X Y Z E F
  3098. delta[X_AXIS] = 60;
  3099. delta[Y_AXIS] = 180;
  3100. calculate_SCARA_forward_Transform(delta);
  3101. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3102. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3103. prepare_move();
  3104. //ClearToSend();
  3105. return;
  3106. }
  3107. break;
  3108. case 363: // SCARA Psi pos2
  3109. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3110. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3111. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3112. if(Stopped == false) {
  3113. //get_coordinates(); // For X Y Z E F
  3114. delta[X_AXIS] = 50;
  3115. delta[Y_AXIS] = 90;
  3116. calculate_SCARA_forward_Transform(delta);
  3117. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3118. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3119. prepare_move();
  3120. //ClearToSend();
  3121. return;
  3122. }
  3123. break;
  3124. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3125. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3126. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3127. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3128. if(Stopped == false) {
  3129. //get_coordinates(); // For X Y Z E F
  3130. delta[X_AXIS] = 45;
  3131. delta[Y_AXIS] = 135;
  3132. calculate_SCARA_forward_Transform(delta);
  3133. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3134. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3135. prepare_move();
  3136. //ClearToSend();
  3137. return;
  3138. }
  3139. break;
  3140. case 365: // M364 Set SCARA scaling for X Y Z
  3141. for(int8_t i=0; i < 3; i++)
  3142. {
  3143. if(code_seen(axis_codes[i]))
  3144. {
  3145. axis_scaling[i] = code_value();
  3146. }
  3147. }
  3148. break;
  3149. #endif
  3150. case 400: // M400 finish all moves
  3151. {
  3152. st_synchronize();
  3153. }
  3154. break;
  3155. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3156. case 401:
  3157. {
  3158. engage_z_probe(); // Engage Z Servo endstop if available
  3159. }
  3160. break;
  3161. case 402:
  3162. {
  3163. retract_z_probe(); // Retract Z Servo endstop if enabled
  3164. }
  3165. break;
  3166. #endif
  3167. #ifdef FILAMENT_SENSOR
  3168. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3169. {
  3170. #if (FILWIDTH_PIN > -1)
  3171. if(code_seen('N')) filament_width_nominal=code_value();
  3172. else{
  3173. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3174. SERIAL_PROTOCOLLN(filament_width_nominal);
  3175. }
  3176. #endif
  3177. }
  3178. break;
  3179. case 405: //M405 Turn on filament sensor for control
  3180. {
  3181. if(code_seen('D')) meas_delay_cm=code_value();
  3182. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3183. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3184. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3185. {
  3186. int temp_ratio = widthFil_to_size_ratio();
  3187. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3188. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3189. }
  3190. delay_index1=0;
  3191. delay_index2=0;
  3192. }
  3193. filament_sensor = true ;
  3194. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3195. //SERIAL_PROTOCOL(filament_width_meas);
  3196. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3197. //SERIAL_PROTOCOL(extrudemultiply);
  3198. }
  3199. break;
  3200. case 406: //M406 Turn off filament sensor for control
  3201. {
  3202. filament_sensor = false ;
  3203. }
  3204. break;
  3205. case 407: //M407 Display measured filament diameter
  3206. {
  3207. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3208. SERIAL_PROTOCOLLN(filament_width_meas);
  3209. }
  3210. break;
  3211. #endif
  3212. case 500: // M500 Store settings in EEPROM
  3213. {
  3214. Config_StoreSettings();
  3215. }
  3216. break;
  3217. case 501: // M501 Read settings from EEPROM
  3218. {
  3219. Config_RetrieveSettings();
  3220. }
  3221. break;
  3222. case 502: // M502 Revert to default settings
  3223. {
  3224. Config_ResetDefault();
  3225. }
  3226. break;
  3227. case 503: // M503 print settings currently in memory
  3228. {
  3229. Config_PrintSettings();
  3230. }
  3231. break;
  3232. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3233. case 540:
  3234. {
  3235. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3236. }
  3237. break;
  3238. #endif
  3239. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3240. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3241. {
  3242. float value;
  3243. if (code_seen('Z'))
  3244. {
  3245. value = code_value();
  3246. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3247. {
  3248. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3249. SERIAL_ECHO_START;
  3250. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3251. SERIAL_PROTOCOLLN("");
  3252. }
  3253. else
  3254. {
  3255. SERIAL_ECHO_START;
  3256. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3257. SERIAL_ECHOPGM(MSG_Z_MIN);
  3258. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3259. SERIAL_ECHOPGM(MSG_Z_MAX);
  3260. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3261. SERIAL_PROTOCOLLN("");
  3262. }
  3263. }
  3264. else
  3265. {
  3266. SERIAL_ECHO_START;
  3267. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3268. SERIAL_ECHO(-zprobe_zoffset);
  3269. SERIAL_PROTOCOLLN("");
  3270. }
  3271. break;
  3272. }
  3273. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3274. #ifdef FILAMENTCHANGEENABLE
  3275. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3276. {
  3277. float target[4];
  3278. float lastpos[4];
  3279. target[X_AXIS]=current_position[X_AXIS];
  3280. target[Y_AXIS]=current_position[Y_AXIS];
  3281. target[Z_AXIS]=current_position[Z_AXIS];
  3282. target[E_AXIS]=current_position[E_AXIS];
  3283. lastpos[X_AXIS]=current_position[X_AXIS];
  3284. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3285. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3286. lastpos[E_AXIS]=current_position[E_AXIS];
  3287. //retract by E
  3288. if(code_seen('E'))
  3289. {
  3290. target[E_AXIS]+= code_value();
  3291. }
  3292. else
  3293. {
  3294. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3295. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3296. #endif
  3297. }
  3298. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3299. //lift Z
  3300. if(code_seen('Z'))
  3301. {
  3302. target[Z_AXIS]+= code_value();
  3303. }
  3304. else
  3305. {
  3306. #ifdef FILAMENTCHANGE_ZADD
  3307. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3308. #endif
  3309. }
  3310. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3311. //move xy
  3312. if(code_seen('X'))
  3313. {
  3314. target[X_AXIS]+= code_value();
  3315. }
  3316. else
  3317. {
  3318. #ifdef FILAMENTCHANGE_XPOS
  3319. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3320. #endif
  3321. }
  3322. if(code_seen('Y'))
  3323. {
  3324. target[Y_AXIS]= code_value();
  3325. }
  3326. else
  3327. {
  3328. #ifdef FILAMENTCHANGE_YPOS
  3329. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3330. #endif
  3331. }
  3332. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3333. if(code_seen('L'))
  3334. {
  3335. target[E_AXIS]+= code_value();
  3336. }
  3337. else
  3338. {
  3339. #ifdef FILAMENTCHANGE_FINALRETRACT
  3340. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3341. #endif
  3342. }
  3343. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3344. //finish moves
  3345. st_synchronize();
  3346. //disable extruder steppers so filament can be removed
  3347. disable_e0();
  3348. disable_e1();
  3349. disable_e2();
  3350. delay(100);
  3351. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3352. uint8_t cnt=0;
  3353. while(!lcd_clicked()){
  3354. cnt++;
  3355. manage_heater();
  3356. manage_inactivity(true);
  3357. lcd_update();
  3358. if(cnt==0)
  3359. {
  3360. #if BEEPER > 0
  3361. SET_OUTPUT(BEEPER);
  3362. WRITE(BEEPER,HIGH);
  3363. delay(3);
  3364. WRITE(BEEPER,LOW);
  3365. delay(3);
  3366. #else
  3367. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3368. lcd_buzz(1000/6,100);
  3369. #else
  3370. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3371. #endif
  3372. #endif
  3373. }
  3374. }
  3375. //return to normal
  3376. if(code_seen('L'))
  3377. {
  3378. target[E_AXIS]+= -code_value();
  3379. }
  3380. else
  3381. {
  3382. #ifdef FILAMENTCHANGE_FINALRETRACT
  3383. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3384. #endif
  3385. }
  3386. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3387. plan_set_e_position(current_position[E_AXIS]);
  3388. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3389. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3390. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3391. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3392. }
  3393. break;
  3394. #endif //FILAMENTCHANGEENABLE
  3395. #ifdef DUAL_X_CARRIAGE
  3396. case 605: // Set dual x-carriage movement mode:
  3397. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3398. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3399. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3400. // millimeters x-offset and an optional differential hotend temperature of
  3401. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3402. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3403. //
  3404. // Note: the X axis should be homed after changing dual x-carriage mode.
  3405. {
  3406. st_synchronize();
  3407. if (code_seen('S'))
  3408. dual_x_carriage_mode = code_value();
  3409. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3410. {
  3411. if (code_seen('X'))
  3412. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3413. if (code_seen('R'))
  3414. duplicate_extruder_temp_offset = code_value();
  3415. SERIAL_ECHO_START;
  3416. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3417. SERIAL_ECHO(" ");
  3418. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3419. SERIAL_ECHO(",");
  3420. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3421. SERIAL_ECHO(" ");
  3422. SERIAL_ECHO(duplicate_extruder_x_offset);
  3423. SERIAL_ECHO(",");
  3424. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3425. }
  3426. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3427. {
  3428. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3429. }
  3430. active_extruder_parked = false;
  3431. extruder_duplication_enabled = false;
  3432. delayed_move_time = 0;
  3433. }
  3434. break;
  3435. #endif //DUAL_X_CARRIAGE
  3436. case 907: // M907 Set digital trimpot motor current using axis codes.
  3437. {
  3438. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3439. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3440. if(code_seen('B')) digipot_current(4,code_value());
  3441. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3442. #endif
  3443. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3444. if(code_seen('X')) digipot_current(0, code_value());
  3445. #endif
  3446. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3447. if(code_seen('Z')) digipot_current(1, code_value());
  3448. #endif
  3449. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3450. if(code_seen('E')) digipot_current(2, code_value());
  3451. #endif
  3452. #ifdef DIGIPOT_I2C
  3453. // this one uses actual amps in floating point
  3454. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3455. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3456. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3457. #endif
  3458. }
  3459. break;
  3460. case 908: // M908 Control digital trimpot directly.
  3461. {
  3462. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3463. uint8_t channel,current;
  3464. if(code_seen('P')) channel=code_value();
  3465. if(code_seen('S')) current=code_value();
  3466. digitalPotWrite(channel, current);
  3467. #endif
  3468. }
  3469. break;
  3470. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3471. {
  3472. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3473. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3474. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3475. if(code_seen('B')) microstep_mode(4,code_value());
  3476. microstep_readings();
  3477. #endif
  3478. }
  3479. break;
  3480. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3481. {
  3482. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3483. if(code_seen('S')) switch((int)code_value())
  3484. {
  3485. case 1:
  3486. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3487. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3488. break;
  3489. case 2:
  3490. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3491. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3492. break;
  3493. }
  3494. microstep_readings();
  3495. #endif
  3496. }
  3497. break;
  3498. case 999: // M999: Restart after being stopped
  3499. Stopped = false;
  3500. lcd_reset_alert_level();
  3501. gcode_LastN = Stopped_gcode_LastN;
  3502. FlushSerialRequestResend();
  3503. break;
  3504. }
  3505. }
  3506. else if(code_seen('T'))
  3507. {
  3508. tmp_extruder = code_value();
  3509. if(tmp_extruder >= EXTRUDERS) {
  3510. SERIAL_ECHO_START;
  3511. SERIAL_ECHO("T");
  3512. SERIAL_ECHO(tmp_extruder);
  3513. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3514. }
  3515. else {
  3516. boolean make_move = false;
  3517. if(code_seen('F')) {
  3518. make_move = true;
  3519. next_feedrate = code_value();
  3520. if(next_feedrate > 0.0) {
  3521. feedrate = next_feedrate;
  3522. }
  3523. }
  3524. #if EXTRUDERS > 1
  3525. if(tmp_extruder != active_extruder) {
  3526. // Save current position to return to after applying extruder offset
  3527. memcpy(destination, current_position, sizeof(destination));
  3528. #ifdef DUAL_X_CARRIAGE
  3529. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3530. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3531. {
  3532. // Park old head: 1) raise 2) move to park position 3) lower
  3533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3534. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3535. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3536. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3537. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3538. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3539. st_synchronize();
  3540. }
  3541. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3542. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3543. extruder_offset[Y_AXIS][active_extruder] +
  3544. extruder_offset[Y_AXIS][tmp_extruder];
  3545. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3546. extruder_offset[Z_AXIS][active_extruder] +
  3547. extruder_offset[Z_AXIS][tmp_extruder];
  3548. active_extruder = tmp_extruder;
  3549. // This function resets the max/min values - the current position may be overwritten below.
  3550. axis_is_at_home(X_AXIS);
  3551. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3552. {
  3553. current_position[X_AXIS] = inactive_extruder_x_pos;
  3554. inactive_extruder_x_pos = destination[X_AXIS];
  3555. }
  3556. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3557. {
  3558. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3559. if (active_extruder == 0 || active_extruder_parked)
  3560. current_position[X_AXIS] = inactive_extruder_x_pos;
  3561. else
  3562. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3563. inactive_extruder_x_pos = destination[X_AXIS];
  3564. extruder_duplication_enabled = false;
  3565. }
  3566. else
  3567. {
  3568. // record raised toolhead position for use by unpark
  3569. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3570. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3571. active_extruder_parked = true;
  3572. delayed_move_time = 0;
  3573. }
  3574. #else
  3575. // Offset extruder (only by XY)
  3576. int i;
  3577. for(i = 0; i < 2; i++) {
  3578. current_position[i] = current_position[i] -
  3579. extruder_offset[i][active_extruder] +
  3580. extruder_offset[i][tmp_extruder];
  3581. }
  3582. // Set the new active extruder and position
  3583. active_extruder = tmp_extruder;
  3584. #endif //else DUAL_X_CARRIAGE
  3585. #ifdef DELTA
  3586. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3587. //sent position to plan_set_position();
  3588. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3589. #else
  3590. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3591. #endif
  3592. // Move to the old position if 'F' was in the parameters
  3593. if(make_move && Stopped == false) {
  3594. prepare_move();
  3595. }
  3596. }
  3597. #endif
  3598. SERIAL_ECHO_START;
  3599. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3600. SERIAL_PROTOCOLLN((int)active_extruder);
  3601. }
  3602. }
  3603. else
  3604. {
  3605. SERIAL_ECHO_START;
  3606. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3607. SERIAL_ECHO(cmdbuffer[bufindr]);
  3608. SERIAL_ECHOLNPGM("\"");
  3609. }
  3610. ClearToSend();
  3611. }
  3612. void FlushSerialRequestResend()
  3613. {
  3614. //char cmdbuffer[bufindr][100]="Resend:";
  3615. MYSERIAL.flush();
  3616. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3617. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3618. ClearToSend();
  3619. }
  3620. void ClearToSend()
  3621. {
  3622. previous_millis_cmd = millis();
  3623. #ifdef SDSUPPORT
  3624. if(fromsd[bufindr])
  3625. return;
  3626. #endif //SDSUPPORT
  3627. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3628. }
  3629. void get_coordinates()
  3630. {
  3631. bool seen[4]={false,false,false,false};
  3632. for(int8_t i=0; i < NUM_AXIS; i++) {
  3633. if(code_seen(axis_codes[i]))
  3634. {
  3635. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3636. seen[i]=true;
  3637. }
  3638. else destination[i] = current_position[i]; //Are these else lines really needed?
  3639. }
  3640. if(code_seen('F')) {
  3641. next_feedrate = code_value();
  3642. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3643. }
  3644. }
  3645. void get_arc_coordinates()
  3646. {
  3647. #ifdef SF_ARC_FIX
  3648. bool relative_mode_backup = relative_mode;
  3649. relative_mode = true;
  3650. #endif
  3651. get_coordinates();
  3652. #ifdef SF_ARC_FIX
  3653. relative_mode=relative_mode_backup;
  3654. #endif
  3655. if(code_seen('I')) {
  3656. offset[0] = code_value();
  3657. }
  3658. else {
  3659. offset[0] = 0.0;
  3660. }
  3661. if(code_seen('J')) {
  3662. offset[1] = code_value();
  3663. }
  3664. else {
  3665. offset[1] = 0.0;
  3666. }
  3667. }
  3668. void clamp_to_software_endstops(float target[3])
  3669. {
  3670. if (min_software_endstops) {
  3671. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3672. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3673. float negative_z_offset = 0;
  3674. #ifdef ENABLE_AUTO_BED_LEVELING
  3675. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3676. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3677. #endif
  3678. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3679. }
  3680. if (max_software_endstops) {
  3681. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3682. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3683. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3684. }
  3685. }
  3686. #ifdef DELTA
  3687. void recalc_delta_settings(float radius, float diagonal_rod)
  3688. {
  3689. delta_tower1_x= -SIN_60*radius; // front left tower
  3690. delta_tower1_y= -COS_60*radius;
  3691. delta_tower2_x= SIN_60*radius; // front right tower
  3692. delta_tower2_y= -COS_60*radius;
  3693. delta_tower3_x= 0.0; // back middle tower
  3694. delta_tower3_y= radius;
  3695. delta_diagonal_rod_2= sq(diagonal_rod);
  3696. }
  3697. void calculate_delta(float cartesian[3])
  3698. {
  3699. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3700. - sq(delta_tower1_x-cartesian[X_AXIS])
  3701. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3702. ) + cartesian[Z_AXIS];
  3703. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3704. - sq(delta_tower2_x-cartesian[X_AXIS])
  3705. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3706. ) + cartesian[Z_AXIS];
  3707. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3708. - sq(delta_tower3_x-cartesian[X_AXIS])
  3709. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3710. ) + cartesian[Z_AXIS];
  3711. /*
  3712. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3713. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3714. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3715. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3716. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3717. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3718. */
  3719. }
  3720. #endif
  3721. void prepare_move()
  3722. {
  3723. clamp_to_software_endstops(destination);
  3724. previous_millis_cmd = millis();
  3725. #ifdef SCARA //for now same as delta-code
  3726. float difference[NUM_AXIS];
  3727. for (int8_t i=0; i < NUM_AXIS; i++) {
  3728. difference[i] = destination[i] - current_position[i];
  3729. }
  3730. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3731. sq(difference[Y_AXIS]) +
  3732. sq(difference[Z_AXIS]));
  3733. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3734. if (cartesian_mm < 0.000001) { return; }
  3735. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3736. int steps = max(1, int(scara_segments_per_second * seconds));
  3737. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3738. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3739. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3740. for (int s = 1; s <= steps; s++) {
  3741. float fraction = float(s) / float(steps);
  3742. for(int8_t i=0; i < NUM_AXIS; i++) {
  3743. destination[i] = current_position[i] + difference[i] * fraction;
  3744. }
  3745. calculate_delta(destination);
  3746. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3747. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3748. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3749. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3750. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3751. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3752. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3753. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3754. active_extruder);
  3755. }
  3756. #endif // SCARA
  3757. #ifdef DELTA
  3758. float difference[NUM_AXIS];
  3759. for (int8_t i=0; i < NUM_AXIS; i++) {
  3760. difference[i] = destination[i] - current_position[i];
  3761. }
  3762. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3763. sq(difference[Y_AXIS]) +
  3764. sq(difference[Z_AXIS]));
  3765. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3766. if (cartesian_mm < 0.000001) { return; }
  3767. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3768. int steps = max(1, int(delta_segments_per_second * seconds));
  3769. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3770. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3771. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3772. for (int s = 1; s <= steps; s++) {
  3773. float fraction = float(s) / float(steps);
  3774. for(int8_t i=0; i < NUM_AXIS; i++) {
  3775. destination[i] = current_position[i] + difference[i] * fraction;
  3776. }
  3777. calculate_delta(destination);
  3778. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3779. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3780. active_extruder);
  3781. }
  3782. #endif // DELTA
  3783. #ifdef DUAL_X_CARRIAGE
  3784. if (active_extruder_parked)
  3785. {
  3786. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3787. {
  3788. // move duplicate extruder into correct duplication position.
  3789. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3790. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3791. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3792. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3793. st_synchronize();
  3794. extruder_duplication_enabled = true;
  3795. active_extruder_parked = false;
  3796. }
  3797. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3798. {
  3799. if (current_position[E_AXIS] == destination[E_AXIS])
  3800. {
  3801. // this is a travel move - skit it but keep track of current position (so that it can later
  3802. // be used as start of first non-travel move)
  3803. if (delayed_move_time != 0xFFFFFFFFUL)
  3804. {
  3805. memcpy(current_position, destination, sizeof(current_position));
  3806. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3807. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3808. delayed_move_time = millis();
  3809. return;
  3810. }
  3811. }
  3812. delayed_move_time = 0;
  3813. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3814. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3816. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3817. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3818. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3819. active_extruder_parked = false;
  3820. }
  3821. }
  3822. #endif //DUAL_X_CARRIAGE
  3823. #if ! (defined DELTA || defined SCARA)
  3824. // Do not use feedmultiply for E or Z only moves
  3825. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3826. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3827. }
  3828. else {
  3829. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3830. }
  3831. #endif // !(DELTA || SCARA)
  3832. for(int8_t i=0; i < NUM_AXIS; i++) {
  3833. current_position[i] = destination[i];
  3834. }
  3835. }
  3836. void prepare_arc_move(char isclockwise) {
  3837. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3838. // Trace the arc
  3839. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3840. // As far as the parser is concerned, the position is now == target. In reality the
  3841. // motion control system might still be processing the action and the real tool position
  3842. // in any intermediate location.
  3843. for(int8_t i=0; i < NUM_AXIS; i++) {
  3844. current_position[i] = destination[i];
  3845. }
  3846. previous_millis_cmd = millis();
  3847. }
  3848. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3849. #if defined(FAN_PIN)
  3850. #if CONTROLLERFAN_PIN == FAN_PIN
  3851. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3852. #endif
  3853. #endif
  3854. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3855. unsigned long lastMotorCheck = 0;
  3856. void controllerFan()
  3857. {
  3858. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3859. {
  3860. lastMotorCheck = millis();
  3861. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3862. #if EXTRUDERS > 2
  3863. || !READ(E2_ENABLE_PIN)
  3864. #endif
  3865. #if EXTRUDER > 1
  3866. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3867. || !READ(X2_ENABLE_PIN)
  3868. #endif
  3869. || !READ(E1_ENABLE_PIN)
  3870. #endif
  3871. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3872. {
  3873. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3874. }
  3875. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3876. {
  3877. digitalWrite(CONTROLLERFAN_PIN, 0);
  3878. analogWrite(CONTROLLERFAN_PIN, 0);
  3879. }
  3880. else
  3881. {
  3882. // allows digital or PWM fan output to be used (see M42 handling)
  3883. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3884. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3885. }
  3886. }
  3887. }
  3888. #endif
  3889. #ifdef SCARA
  3890. void calculate_SCARA_forward_Transform(float f_scara[3])
  3891. {
  3892. // Perform forward kinematics, and place results in delta[3]
  3893. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3894. float x_sin, x_cos, y_sin, y_cos;
  3895. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3896. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3897. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3898. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3899. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3900. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3901. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3902. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3903. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3904. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3905. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3906. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3907. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3908. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3909. }
  3910. void calculate_delta(float cartesian[3]){
  3911. //reverse kinematics.
  3912. // Perform reversed kinematics, and place results in delta[3]
  3913. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3914. float SCARA_pos[2];
  3915. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3916. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3917. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3918. #if (Linkage_1 == Linkage_2)
  3919. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3920. #else
  3921. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3922. #endif
  3923. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3924. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3925. SCARA_K2 = Linkage_2 * SCARA_S2;
  3926. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3927. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3928. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3929. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3930. delta[Z_AXIS] = cartesian[Z_AXIS];
  3931. /*
  3932. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3933. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3934. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3935. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3936. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3937. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3938. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3939. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3940. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3941. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3942. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3943. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3944. SERIAL_ECHOLN(" ");*/
  3945. }
  3946. #endif
  3947. #ifdef TEMP_STAT_LEDS
  3948. static bool blue_led = false;
  3949. static bool red_led = false;
  3950. static uint32_t stat_update = 0;
  3951. void handle_status_leds(void) {
  3952. float max_temp = 0.0;
  3953. if(millis() > stat_update) {
  3954. stat_update += 500; // Update every 0.5s
  3955. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3956. max_temp = max(max_temp, degHotend(cur_extruder));
  3957. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3958. }
  3959. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3960. max_temp = max(max_temp, degTargetBed());
  3961. max_temp = max(max_temp, degBed());
  3962. #endif
  3963. if((max_temp > 55.0) && (red_led == false)) {
  3964. digitalWrite(STAT_LED_RED, 1);
  3965. digitalWrite(STAT_LED_BLUE, 0);
  3966. red_led = true;
  3967. blue_led = false;
  3968. }
  3969. if((max_temp < 54.0) && (blue_led == false)) {
  3970. digitalWrite(STAT_LED_RED, 0);
  3971. digitalWrite(STAT_LED_BLUE, 1);
  3972. red_led = false;
  3973. blue_led = true;
  3974. }
  3975. }
  3976. }
  3977. #endif
  3978. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3979. {
  3980. #if defined(KILL_PIN) && KILL_PIN > -1
  3981. static int killCount = 0; // make the inactivity button a bit less responsive
  3982. const int KILL_DELAY = 10000;
  3983. #endif
  3984. #if defined(HOME_PIN) && HOME_PIN > -1
  3985. static int homeDebounceCount = 0; // poor man's debouncing count
  3986. const int HOME_DEBOUNCE_DELAY = 10000;
  3987. #endif
  3988. if(buflen < (BUFSIZE-1))
  3989. get_command();
  3990. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3991. if(max_inactive_time)
  3992. kill();
  3993. if(stepper_inactive_time) {
  3994. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3995. {
  3996. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3997. disable_x();
  3998. disable_y();
  3999. disable_z();
  4000. disable_e0();
  4001. disable_e1();
  4002. disable_e2();
  4003. }
  4004. }
  4005. }
  4006. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4007. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4008. {
  4009. chdkActive = false;
  4010. WRITE(CHDK, LOW);
  4011. }
  4012. #endif
  4013. #if defined(KILL_PIN) && KILL_PIN > -1
  4014. // Check if the kill button was pressed and wait just in case it was an accidental
  4015. // key kill key press
  4016. // -------------------------------------------------------------------------------
  4017. if( 0 == READ(KILL_PIN) )
  4018. {
  4019. killCount++;
  4020. }
  4021. else if (killCount > 0)
  4022. {
  4023. killCount--;
  4024. }
  4025. // Exceeded threshold and we can confirm that it was not accidental
  4026. // KILL the machine
  4027. // ----------------------------------------------------------------
  4028. if ( killCount >= KILL_DELAY)
  4029. {
  4030. kill();
  4031. }
  4032. #endif
  4033. #if defined(HOME_PIN) && HOME_PIN > -1
  4034. // Check to see if we have to home, use poor man's debouncer
  4035. // ---------------------------------------------------------
  4036. if ( 0 == READ(HOME_PIN) )
  4037. {
  4038. if (homeDebounceCount == 0)
  4039. {
  4040. enquecommands_P((PSTR("G28")));
  4041. homeDebounceCount++;
  4042. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4043. }
  4044. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4045. {
  4046. homeDebounceCount++;
  4047. }
  4048. else
  4049. {
  4050. homeDebounceCount = 0;
  4051. }
  4052. }
  4053. #endif
  4054. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4055. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4056. #endif
  4057. #ifdef EXTRUDER_RUNOUT_PREVENT
  4058. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4059. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4060. {
  4061. bool oldstatus=READ(E0_ENABLE_PIN);
  4062. enable_e0();
  4063. float oldepos=current_position[E_AXIS];
  4064. float oldedes=destination[E_AXIS];
  4065. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4066. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4067. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4068. current_position[E_AXIS]=oldepos;
  4069. destination[E_AXIS]=oldedes;
  4070. plan_set_e_position(oldepos);
  4071. previous_millis_cmd=millis();
  4072. st_synchronize();
  4073. WRITE(E0_ENABLE_PIN,oldstatus);
  4074. }
  4075. #endif
  4076. #if defined(DUAL_X_CARRIAGE)
  4077. // handle delayed move timeout
  4078. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4079. {
  4080. // travel moves have been received so enact them
  4081. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4082. memcpy(destination,current_position,sizeof(destination));
  4083. prepare_move();
  4084. }
  4085. #endif
  4086. #ifdef TEMP_STAT_LEDS
  4087. handle_status_leds();
  4088. #endif
  4089. check_axes_activity();
  4090. }
  4091. void kill()
  4092. {
  4093. cli(); // Stop interrupts
  4094. disable_heater();
  4095. disable_x();
  4096. disable_y();
  4097. disable_z();
  4098. disable_e0();
  4099. disable_e1();
  4100. disable_e2();
  4101. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4102. pinMode(PS_ON_PIN,INPUT);
  4103. #endif
  4104. SERIAL_ERROR_START;
  4105. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4106. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4107. // FMC small patch to update the LCD before ending
  4108. sei(); // enable interrupts
  4109. for ( int i=5; i--; lcd_update())
  4110. {
  4111. delay(200);
  4112. }
  4113. cli(); // disable interrupts
  4114. suicide();
  4115. while(1) { /* Intentionally left empty */ } // Wait for reset
  4116. }
  4117. void Stop()
  4118. {
  4119. disable_heater();
  4120. if(Stopped == false) {
  4121. Stopped = true;
  4122. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4123. SERIAL_ERROR_START;
  4124. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4125. LCD_MESSAGEPGM(MSG_STOPPED);
  4126. }
  4127. }
  4128. bool IsStopped() { return Stopped; };
  4129. #ifdef FAST_PWM_FAN
  4130. void setPwmFrequency(uint8_t pin, int val)
  4131. {
  4132. val &= 0x07;
  4133. switch(digitalPinToTimer(pin))
  4134. {
  4135. #if defined(TCCR0A)
  4136. case TIMER0A:
  4137. case TIMER0B:
  4138. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4139. // TCCR0B |= val;
  4140. break;
  4141. #endif
  4142. #if defined(TCCR1A)
  4143. case TIMER1A:
  4144. case TIMER1B:
  4145. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4146. // TCCR1B |= val;
  4147. break;
  4148. #endif
  4149. #if defined(TCCR2)
  4150. case TIMER2:
  4151. case TIMER2:
  4152. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4153. TCCR2 |= val;
  4154. break;
  4155. #endif
  4156. #if defined(TCCR2A)
  4157. case TIMER2A:
  4158. case TIMER2B:
  4159. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4160. TCCR2B |= val;
  4161. break;
  4162. #endif
  4163. #if defined(TCCR3A)
  4164. case TIMER3A:
  4165. case TIMER3B:
  4166. case TIMER3C:
  4167. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4168. TCCR3B |= val;
  4169. break;
  4170. #endif
  4171. #if defined(TCCR4A)
  4172. case TIMER4A:
  4173. case TIMER4B:
  4174. case TIMER4C:
  4175. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4176. TCCR4B |= val;
  4177. break;
  4178. #endif
  4179. #if defined(TCCR5A)
  4180. case TIMER5A:
  4181. case TIMER5B:
  4182. case TIMER5C:
  4183. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4184. TCCR5B |= val;
  4185. break;
  4186. #endif
  4187. }
  4188. }
  4189. #endif //FAST_PWM_FAN
  4190. bool setTargetedHotend(int code){
  4191. tmp_extruder = active_extruder;
  4192. if(code_seen('T')) {
  4193. tmp_extruder = code_value();
  4194. if(tmp_extruder >= EXTRUDERS) {
  4195. SERIAL_ECHO_START;
  4196. switch(code){
  4197. case 104:
  4198. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4199. break;
  4200. case 105:
  4201. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4202. break;
  4203. case 109:
  4204. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4205. break;
  4206. case 218:
  4207. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4208. break;
  4209. case 221:
  4210. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4211. break;
  4212. }
  4213. SERIAL_ECHOLN(tmp_extruder);
  4214. return true;
  4215. }
  4216. }
  4217. return false;
  4218. }
  4219. float calculate_volumetric_multiplier(float diameter) {
  4220. float area = .0;
  4221. float radius = .0;
  4222. radius = diameter * .5;
  4223. if (! volumetric_enabled || radius == 0) {
  4224. area = 1;
  4225. }
  4226. else {
  4227. area = M_PI * pow(radius, 2);
  4228. }
  4229. return 1.0 / area;
  4230. }
  4231. void calculate_volumetric_multipliers() {
  4232. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4233. #if EXTRUDERS > 1
  4234. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4235. #if EXTRUDERS > 2
  4236. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4237. #if EXTRUDERS > 3
  4238. volumetric_multiplier[3] = calculate_volumetric_multiplier(filament_size[3]);
  4239. #endif //EXTRUDERS > 3
  4240. #endif //EXTRUDERS > 2
  4241. #endif //EXTRUDERS > 1
  4242. }