My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 90KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V62"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #if ADD_PORT_ARG
  45. #define PORTARG_SOLO const int8_t port
  46. #define PORTARG_AFTER ,const int8_t port
  47. #define PORTVAR_SOLO port
  48. #else
  49. #define PORTARG_SOLO
  50. #define PORTARG_AFTER
  51. #define PORTVAR_SOLO
  52. #endif
  53. #include "endstops.h"
  54. #include "planner.h"
  55. #include "stepper.h"
  56. #include "temperature.h"
  57. #include "../lcd/ultralcd.h"
  58. #include "../core/language.h"
  59. #include "../libs/vector_3.h"
  60. #include "../gcode/gcode.h"
  61. #include "../Marlin.h"
  62. #if HAS_LEVELING
  63. #include "../feature/bedlevel/bedlevel.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #else
  68. #undef NUM_SERVOS
  69. #define NUM_SERVOS NUM_SERVO_PLUGS
  70. #endif
  71. #if HAS_BED_PROBE
  72. #include "../module/probe.h"
  73. #endif
  74. #include "../feature/fwretract.h"
  75. #include "../feature/pause.h"
  76. #if EXTRUDERS > 1
  77. #include "tool_change.h"
  78. void M217_report(const bool eeprom);
  79. #endif
  80. #if HAS_TRINAMIC
  81. #include "stepper_indirection.h"
  82. #include "../feature/tmc_util.h"
  83. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  84. #endif
  85. #pragma pack(push, 1) // No padding between variables
  86. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  87. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  88. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  89. // Limit an index to an array size
  90. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  91. /**
  92. * Current EEPROM Layout
  93. *
  94. * Keep this data structure up to date so
  95. * EEPROM size is known at compile time!
  96. */
  97. typedef struct SettingsDataStruct {
  98. char version[4]; // Vnn\0
  99. uint16_t crc; // Data Checksum
  100. //
  101. // DISTINCT_E_FACTORS
  102. //
  103. uint8_t esteppers; // XYZE_N - XYZ
  104. planner_settings_t planner_settings;
  105. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  106. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  107. float home_offset[XYZ]; // M206 XYZ / M665 TPZ
  108. #if HAS_HOTEND_OFFSET
  109. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  110. #endif
  111. //
  112. // ENABLE_LEVELING_FADE_HEIGHT
  113. //
  114. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  115. //
  116. // MESH_BED_LEVELING
  117. //
  118. float mbl_z_offset; // mbl.z_offset
  119. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  120. #if ENABLED(MESH_BED_LEVELING)
  121. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  122. #else
  123. float mbl_z_values[3][3];
  124. #endif
  125. //
  126. // HAS_BED_PROBE
  127. //
  128. float zprobe_zoffset;
  129. //
  130. // ABL_PLANAR
  131. //
  132. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  133. //
  134. // AUTO_BED_LEVELING_BILINEAR
  135. //
  136. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  137. int bilinear_grid_spacing[2],
  138. bilinear_start[2]; // G29 L F
  139. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  140. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  141. #else
  142. float z_values[3][3];
  143. #endif
  144. //
  145. // AUTO_BED_LEVELING_UBL
  146. //
  147. bool planner_leveling_active; // M420 S planner.leveling_active
  148. int8_t ubl_storage_slot; // ubl.storage_slot
  149. //
  150. // SERVO_ANGLES
  151. //
  152. uint16_t servo_angles[NUM_SERVOS][2]; // M281 P L U
  153. //
  154. // DELTA / [XYZ]_DUAL_ENDSTOPS
  155. //
  156. #if ENABLED(DELTA)
  157. float delta_height, // M666 H
  158. delta_endstop_adj[ABC], // M666 XYZ
  159. delta_radius, // M665 R
  160. delta_diagonal_rod, // M665 L
  161. delta_segments_per_second, // M665 S
  162. delta_calibration_radius, // M665 B
  163. delta_tower_angle_trim[ABC]; // M665 XYZ
  164. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  165. float x2_endstop_adj, // M666 X
  166. y2_endstop_adj, // M666 Y
  167. z2_endstop_adj, // M666 Z (S2)
  168. z3_endstop_adj; // M666 Z (S3)
  169. #endif
  170. //
  171. // ULTIPANEL
  172. //
  173. int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
  174. lcd_preheat_bed_temp[2]; // M145 S0 B
  175. uint8_t lcd_preheat_fan_speed[2]; // M145 S0 F
  176. //
  177. // PIDTEMP
  178. //
  179. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  180. int16_t lpq_len; // M301 L
  181. //
  182. // PIDTEMPBED
  183. //
  184. PID_t bedPID; // M304 PID / M303 E-1 U
  185. //
  186. // HAS_LCD_CONTRAST
  187. //
  188. int16_t lcd_contrast; // M250 C
  189. //
  190. // FWRETRACT
  191. //
  192. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  193. bool autoretract_enabled; // M209 S
  194. //
  195. // !NO_VOLUMETRIC
  196. //
  197. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  198. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  199. //
  200. // HAS_TRINAMIC
  201. //
  202. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  203. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  204. tmc_sgt_t tmc_sgt; // M914 X Y Z
  205. //
  206. // LIN_ADVANCE
  207. //
  208. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  209. //
  210. // HAS_MOTOR_CURRENT_PWM
  211. //
  212. uint32_t motor_current_setting[3]; // M907 X Z E
  213. //
  214. // CNC_COORDINATE_SYSTEMS
  215. //
  216. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  217. //
  218. // SKEW_CORRECTION
  219. //
  220. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  221. //
  222. // ADVANCED_PAUSE_FEATURE
  223. //
  224. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  225. //
  226. // SINGLENOZZLE toolchange values
  227. //
  228. #if EXTRUDERS > 1
  229. toolchange_settings_t toolchange_settings; // M217 S P R
  230. #endif
  231. } SettingsData;
  232. MarlinSettings settings;
  233. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  234. /**
  235. * Post-process after Retrieve or Reset
  236. */
  237. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  238. float new_z_fade_height;
  239. #endif
  240. void MarlinSettings::postprocess() {
  241. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  242. // steps per s2 needs to be updated to agree with units per s2
  243. planner.reset_acceleration_rates();
  244. // Make sure delta kinematics are updated before refreshing the
  245. // planner position so the stepper counts will be set correctly.
  246. #if ENABLED(DELTA)
  247. recalc_delta_settings();
  248. #endif
  249. #if ENABLED(PIDTEMP)
  250. thermalManager.updatePID();
  251. #endif
  252. #if DISABLED(NO_VOLUMETRICS)
  253. planner.calculate_volumetric_multipliers();
  254. #else
  255. for (uint8_t i = COUNT(planner.e_factor); i--;)
  256. planner.refresh_e_factor(i);
  257. #endif
  258. // Software endstops depend on home_offset
  259. LOOP_XYZ(i) {
  260. update_workspace_offset((AxisEnum)i);
  261. update_software_endstops((AxisEnum)i);
  262. }
  263. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  264. set_z_fade_height(new_z_fade_height, false); // false = no report
  265. #endif
  266. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  267. refresh_bed_level();
  268. #endif
  269. #if HAS_MOTOR_CURRENT_PWM
  270. stepper.refresh_motor_power();
  271. #endif
  272. #if ENABLED(FWRETRACT)
  273. fwretract.refresh_autoretract();
  274. #endif
  275. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  276. planner.recalculate_max_e_jerk();
  277. #endif
  278. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  279. // and init stepper.count[], planner.position[] with current_position
  280. planner.refresh_positioning();
  281. // Various factors can change the current position
  282. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  283. report_current_position();
  284. }
  285. #if ENABLED(SD_FIRMWARE_UPDATE)
  286. #if ENABLED(EEPROM_SETTINGS)
  287. static_assert(
  288. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  289. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  290. );
  291. #endif
  292. bool MarlinSettings::sd_update_status() {
  293. uint8_t val;
  294. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  295. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  296. }
  297. bool MarlinSettings::set_sd_update_status(const bool enable) {
  298. if (enable != sd_update_status())
  299. persistentStore.write_data(
  300. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  301. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  302. );
  303. return true;
  304. }
  305. #endif // SD_FIRMWARE_UPDATE
  306. #if ENABLED(EEPROM_SETTINGS)
  307. #include "../HAL/shared/persistent_store_api.h"
  308. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  309. #define EEPROM_FINISH() persistentStore.access_finish()
  310. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  311. #define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  312. #define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
  313. #define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  314. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; } }while(0)
  315. #if ENABLED(DEBUG_EEPROM_READWRITE)
  316. #define _FIELD_TEST(FIELD) \
  317. EEPROM_ASSERT( \
  318. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  319. "Field " STRINGIFY(FIELD) " mismatch." \
  320. )
  321. #else
  322. #define _FIELD_TEST(FIELD) NOOP
  323. #endif
  324. const char version[4] = EEPROM_VERSION;
  325. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  326. bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) {
  327. if (size != datasize()) {
  328. #if ENABLED(EEPROM_CHITCHAT)
  329. SERIAL_ERROR_START_P(port);
  330. SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error.");
  331. #endif
  332. return true;
  333. }
  334. return false;
  335. }
  336. /**
  337. * M500 - Store Configuration
  338. */
  339. bool MarlinSettings::save(PORTARG_SOLO) {
  340. float dummy = 0;
  341. char ver[4] = "ERR";
  342. uint16_t working_crc = 0;
  343. EEPROM_START();
  344. eeprom_error = false;
  345. #if ENABLED(FLASH_EEPROM_EMULATION)
  346. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  347. #else
  348. EEPROM_WRITE(ver); // invalidate data first
  349. #endif
  350. EEPROM_SKIP(working_crc); // Skip the checksum slot
  351. working_crc = 0; // clear before first "real data"
  352. _FIELD_TEST(esteppers);
  353. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  354. EEPROM_WRITE(esteppers);
  355. EEPROM_WRITE(planner.settings);
  356. #if HAS_CLASSIC_JERK
  357. EEPROM_WRITE(planner.max_jerk);
  358. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  359. dummy = float(DEFAULT_EJERK);
  360. EEPROM_WRITE(dummy);
  361. #endif
  362. #else
  363. const float planner_max_jerk[XYZE] = { float(DEFAULT_XJERK), float(DEFAULT_YJERK), float(DEFAULT_ZJERK), float(DEFAULT_EJERK) };
  364. EEPROM_WRITE(planner_max_jerk);
  365. #endif
  366. #if ENABLED(JUNCTION_DEVIATION)
  367. EEPROM_WRITE(planner.junction_deviation_mm);
  368. #else
  369. dummy = 0.02f;
  370. EEPROM_WRITE(dummy);
  371. #endif
  372. _FIELD_TEST(home_offset);
  373. #if HAS_SCARA_OFFSET
  374. EEPROM_WRITE(scara_home_offset);
  375. #else
  376. #if !HAS_HOME_OFFSET
  377. const float home_offset[XYZ] = { 0 };
  378. #endif
  379. EEPROM_WRITE(home_offset);
  380. #endif
  381. #if HAS_HOTEND_OFFSET
  382. // Skip hotend 0 which must be 0
  383. for (uint8_t e = 1; e < HOTENDS; e++)
  384. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  385. #endif
  386. //
  387. // Global Leveling
  388. //
  389. const float zfh = (
  390. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  391. planner.z_fade_height
  392. #else
  393. 10.0
  394. #endif
  395. );
  396. EEPROM_WRITE(zfh);
  397. //
  398. // Mesh Bed Leveling
  399. //
  400. #if ENABLED(MESH_BED_LEVELING)
  401. // Compile time test that sizeof(mbl.z_values) is as expected
  402. static_assert(
  403. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  404. "MBL Z array is the wrong size."
  405. );
  406. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  407. EEPROM_WRITE(mbl.z_offset);
  408. EEPROM_WRITE(mesh_num_x);
  409. EEPROM_WRITE(mesh_num_y);
  410. EEPROM_WRITE(mbl.z_values);
  411. #else // For disabled MBL write a default mesh
  412. dummy = 0;
  413. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  414. EEPROM_WRITE(dummy); // z_offset
  415. EEPROM_WRITE(mesh_num_x);
  416. EEPROM_WRITE(mesh_num_y);
  417. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  418. #endif // MESH_BED_LEVELING
  419. _FIELD_TEST(zprobe_zoffset);
  420. #if !HAS_BED_PROBE
  421. const float zprobe_zoffset = 0;
  422. #endif
  423. EEPROM_WRITE(zprobe_zoffset);
  424. //
  425. // Planar Bed Leveling matrix
  426. //
  427. #if ABL_PLANAR
  428. EEPROM_WRITE(planner.bed_level_matrix);
  429. #else
  430. dummy = 0;
  431. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  432. #endif
  433. //
  434. // Bilinear Auto Bed Leveling
  435. //
  436. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  437. // Compile time test that sizeof(z_values) is as expected
  438. static_assert(
  439. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  440. "Bilinear Z array is the wrong size."
  441. );
  442. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  443. EEPROM_WRITE(grid_max_x); // 1 byte
  444. EEPROM_WRITE(grid_max_y); // 1 byte
  445. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  446. EEPROM_WRITE(bilinear_start); // 2 ints
  447. EEPROM_WRITE(z_values); // 9-256 floats
  448. #else
  449. // For disabled Bilinear Grid write an empty 3x3 grid
  450. const uint8_t grid_max_x = 3, grid_max_y = 3;
  451. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  452. dummy = 0;
  453. EEPROM_WRITE(grid_max_x);
  454. EEPROM_WRITE(grid_max_y);
  455. EEPROM_WRITE(bilinear_grid_spacing);
  456. EEPROM_WRITE(bilinear_start);
  457. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  458. #endif // AUTO_BED_LEVELING_BILINEAR
  459. _FIELD_TEST(planner_leveling_active);
  460. #if ENABLED(AUTO_BED_LEVELING_UBL)
  461. EEPROM_WRITE(planner.leveling_active);
  462. EEPROM_WRITE(ubl.storage_slot);
  463. #else
  464. const bool ubl_active = false;
  465. const int8_t storage_slot = -1;
  466. EEPROM_WRITE(ubl_active);
  467. EEPROM_WRITE(storage_slot);
  468. #endif // AUTO_BED_LEVELING_UBL
  469. #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES)
  470. #if ENABLED(SWITCHING_EXTRUDER)
  471. constexpr uint16_t sesa[][2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  472. #endif
  473. constexpr uint16_t servo_angles[NUM_SERVOS][2] = {
  474. #if ENABLED(SWITCHING_EXTRUDER)
  475. [SWITCHING_EXTRUDER_SERVO_NR] = { sesa[0][0], sesa[0][1] }
  476. #if EXTRUDERS > 3
  477. , [SWITCHING_EXTRUDER_E23_SERVO_NR] = { sesa[1][0], sesa[1][1] }
  478. #endif
  479. #elif ENABLED(SWITCHING_NOZZLE)
  480. [SWITCHING_NOZZLE_SERVO_NR] = SWITCHING_NOZZLE_SERVO_ANGLES
  481. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  482. [Z_PROBE_SERVO_NR] = Z_SERVO_ANGLES
  483. #endif
  484. };
  485. #endif
  486. EEPROM_WRITE(servo_angles);
  487. // 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
  488. #if ENABLED(DELTA)
  489. _FIELD_TEST(delta_height);
  490. EEPROM_WRITE(delta_height); // 1 float
  491. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  492. EEPROM_WRITE(delta_radius); // 1 float
  493. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  494. EEPROM_WRITE(delta_segments_per_second); // 1 float
  495. EEPROM_WRITE(delta_calibration_radius); // 1 float
  496. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  497. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  498. _FIELD_TEST(x2_endstop_adj);
  499. // Write dual endstops in X, Y, Z order. Unused = 0.0
  500. dummy = 0;
  501. #if ENABLED(X_DUAL_ENDSTOPS)
  502. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  503. #else
  504. EEPROM_WRITE(dummy);
  505. #endif
  506. #if ENABLED(Y_DUAL_ENDSTOPS)
  507. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  508. #else
  509. EEPROM_WRITE(dummy);
  510. #endif
  511. #if Z_MULTI_ENDSTOPS
  512. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  513. #else
  514. EEPROM_WRITE(dummy);
  515. #endif
  516. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  517. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  518. #else
  519. EEPROM_WRITE(dummy);
  520. #endif
  521. #endif
  522. _FIELD_TEST(lcd_preheat_hotend_temp);
  523. #if DISABLED(ULTIPANEL)
  524. constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  525. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  526. constexpr uint8_t lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  527. #endif
  528. EEPROM_WRITE(lcd_preheat_hotend_temp);
  529. EEPROM_WRITE(lcd_preheat_bed_temp);
  530. EEPROM_WRITE(lcd_preheat_fan_speed);
  531. //
  532. // PIDTEMP
  533. //
  534. {
  535. _FIELD_TEST(hotendPID);
  536. HOTEND_LOOP() {
  537. PIDC_t pidc = {
  538. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  539. };
  540. EEPROM_WRITE(pidc);
  541. }
  542. _FIELD_TEST(lpq_len);
  543. #if ENABLED(PID_EXTRUSION_SCALING)
  544. EEPROM_WRITE(thermalManager.lpq_len);
  545. #else
  546. const int16_t lpq_len = 20;
  547. EEPROM_WRITE(lpq_len);
  548. #endif
  549. }
  550. //
  551. // PIDTEMPBED
  552. //
  553. {
  554. _FIELD_TEST(bedPID);
  555. #if DISABLED(PIDTEMPBED)
  556. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  557. EEPROM_WRITE(bed_pid);
  558. #else
  559. EEPROM_WRITE(thermalManager.bed_pid);
  560. #endif
  561. }
  562. //
  563. // LCD Contrast
  564. //
  565. _FIELD_TEST(lcd_contrast);
  566. #if !HAS_LCD_CONTRAST
  567. const int16_t lcd_contrast = 32;
  568. #endif
  569. EEPROM_WRITE(lcd_contrast);
  570. //
  571. // Firmware Retraction
  572. //
  573. {
  574. _FIELD_TEST(fwretract_settings);
  575. #if ENABLED(FWRETRACT)
  576. EEPROM_WRITE(fwretract.settings);
  577. #else
  578. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  579. EEPROM_WRITE(autoretract_defaults);
  580. #endif
  581. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  582. EEPROM_WRITE(fwretract.autoretract_enabled);
  583. #else
  584. const bool autoretract_enabled = false;
  585. EEPROM_WRITE(autoretract_enabled);
  586. #endif
  587. }
  588. //
  589. // Volumetric & Filament Size
  590. //
  591. {
  592. _FIELD_TEST(parser_volumetric_enabled);
  593. #if DISABLED(NO_VOLUMETRICS)
  594. EEPROM_WRITE(parser.volumetric_enabled);
  595. EEPROM_WRITE(planner.filament_size);
  596. #else
  597. const bool volumetric_enabled = false;
  598. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  599. EEPROM_WRITE(volumetric_enabled);
  600. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  601. #endif
  602. }
  603. //
  604. // TMC Configuration
  605. //
  606. {
  607. _FIELD_TEST(tmc_stepper_current);
  608. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  609. #if HAS_TRINAMIC
  610. #if AXIS_IS_TMC(X)
  611. tmc_stepper_current.X = stepperX.getMilliamps();
  612. #endif
  613. #if AXIS_IS_TMC(Y)
  614. tmc_stepper_current.Y = stepperY.getMilliamps();
  615. #endif
  616. #if AXIS_IS_TMC(Z)
  617. tmc_stepper_current.Z = stepperZ.getMilliamps();
  618. #endif
  619. #if AXIS_IS_TMC(X2)
  620. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  621. #endif
  622. #if AXIS_IS_TMC(Y2)
  623. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  624. #endif
  625. #if AXIS_IS_TMC(Z2)
  626. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  627. #endif
  628. #if AXIS_IS_TMC(Z3)
  629. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  630. #endif
  631. #if MAX_EXTRUDERS
  632. #if AXIS_IS_TMC(E0)
  633. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  634. #endif
  635. #if MAX_EXTRUDERS > 1
  636. #if AXIS_IS_TMC(E1)
  637. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  638. #endif
  639. #if MAX_EXTRUDERS > 2
  640. #if AXIS_IS_TMC(E2)
  641. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  642. #endif
  643. #if MAX_EXTRUDERS > 3
  644. #if AXIS_IS_TMC(E3)
  645. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  646. #endif
  647. #if MAX_EXTRUDERS > 4
  648. #if AXIS_IS_TMC(E4)
  649. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  650. #endif
  651. #if MAX_EXTRUDERS > 5
  652. #if AXIS_IS_TMC(E5)
  653. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  654. #endif
  655. #endif // MAX_EXTRUDERS > 5
  656. #endif // MAX_EXTRUDERS > 4
  657. #endif // MAX_EXTRUDERS > 3
  658. #endif // MAX_EXTRUDERS > 2
  659. #endif // MAX_EXTRUDERS > 1
  660. #endif // MAX_EXTRUDERS
  661. #endif
  662. EEPROM_WRITE(tmc_stepper_current);
  663. }
  664. //
  665. // TMC Hybrid Threshold, and placeholder values
  666. //
  667. {
  668. _FIELD_TEST(tmc_hybrid_threshold);
  669. #if ENABLED(HYBRID_THRESHOLD)
  670. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  671. #if AXIS_HAS_STEALTHCHOP(X)
  672. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  673. #endif
  674. #if AXIS_HAS_STEALTHCHOP(Y)
  675. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  676. #endif
  677. #if AXIS_HAS_STEALTHCHOP(Z)
  678. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  679. #endif
  680. #if AXIS_HAS_STEALTHCHOP(X2)
  681. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  682. #endif
  683. #if AXIS_HAS_STEALTHCHOP(Y2)
  684. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  685. #endif
  686. #if AXIS_HAS_STEALTHCHOP(Z2)
  687. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  688. #endif
  689. #if AXIS_HAS_STEALTHCHOP(Z3)
  690. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  691. #endif
  692. #if MAX_EXTRUDERS
  693. #if AXIS_HAS_STEALTHCHOP(E0)
  694. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  695. #endif
  696. #if MAX_EXTRUDERS > 1
  697. #if AXIS_HAS_STEALTHCHOP(E1)
  698. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  699. #endif
  700. #if MAX_EXTRUDERS > 2
  701. #if AXIS_HAS_STEALTHCHOP(E2)
  702. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  703. #endif
  704. #if MAX_EXTRUDERS > 3
  705. #if AXIS_HAS_STEALTHCHOP(E3)
  706. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  707. #endif
  708. #if MAX_EXTRUDERS > 4
  709. #if AXIS_HAS_STEALTHCHOP(E4)
  710. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  711. #endif
  712. #if MAX_EXTRUDERS > 5
  713. #if AXIS_HAS_STEALTHCHOP(E5)
  714. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  715. #endif
  716. #endif // MAX_EXTRUDERS > 5
  717. #endif // MAX_EXTRUDERS > 4
  718. #endif // MAX_EXTRUDERS > 3
  719. #endif // MAX_EXTRUDERS > 2
  720. #endif // MAX_EXTRUDERS > 1
  721. #endif // MAX_EXTRUDERS
  722. #else
  723. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  724. .X = 100, .Y = 100, .Z = 3,
  725. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  726. .E0 = 30, .E1 = 30, .E2 = 30,
  727. .E3 = 30, .E4 = 30, .E5 = 30
  728. };
  729. #endif
  730. EEPROM_WRITE(tmc_hybrid_threshold);
  731. }
  732. //
  733. // TMC StallGuard threshold
  734. //
  735. {
  736. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  737. #if USE_SENSORLESS
  738. #if X_SENSORLESS
  739. tmc_sgt.X = stepperX.sgt();
  740. #endif
  741. #if Y_SENSORLESS
  742. tmc_sgt.Y = stepperY.sgt();
  743. #endif
  744. #if Z_SENSORLESS
  745. tmc_sgt.Z = stepperZ.sgt();
  746. #endif
  747. #endif
  748. EEPROM_WRITE(tmc_sgt);
  749. }
  750. //
  751. // Linear Advance
  752. //
  753. {
  754. _FIELD_TEST(planner_extruder_advance_K);
  755. #if ENABLED(LIN_ADVANCE)
  756. EEPROM_WRITE(planner.extruder_advance_K);
  757. #else
  758. dummy = 0;
  759. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  760. #endif
  761. }
  762. //
  763. // Motor Current PWM
  764. //
  765. {
  766. _FIELD_TEST(motor_current_setting);
  767. #if HAS_MOTOR_CURRENT_PWM
  768. EEPROM_WRITE(stepper.motor_current_setting);
  769. #else
  770. const uint32_t dummyui32[XYZ] = { 0 };
  771. EEPROM_WRITE(dummyui32);
  772. #endif
  773. }
  774. //
  775. // CNC Coordinate Systems
  776. //
  777. _FIELD_TEST(coordinate_system);
  778. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  779. EEPROM_WRITE(gcode.coordinate_system);
  780. #else
  781. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  782. EEPROM_WRITE(coordinate_system);
  783. #endif
  784. //
  785. // Skew correction factors
  786. //
  787. _FIELD_TEST(planner_skew_factor);
  788. EEPROM_WRITE(planner.skew_factor);
  789. //
  790. // Advanced Pause filament load & unload lengths
  791. //
  792. {
  793. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  794. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  795. #endif
  796. _FIELD_TEST(fc_settings);
  797. EEPROM_WRITE(fc_settings);
  798. }
  799. //
  800. // SINGLENOZZLE
  801. //
  802. #if EXTRUDERS > 1
  803. _FIELD_TEST(toolchange_settings);
  804. EEPROM_WRITE(toolchange_settings);
  805. #endif
  806. //
  807. // Validate CRC and Data Size
  808. //
  809. if (!eeprom_error) {
  810. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  811. final_crc = working_crc;
  812. // Write the EEPROM header
  813. eeprom_index = EEPROM_OFFSET;
  814. EEPROM_WRITE(version);
  815. EEPROM_WRITE(final_crc);
  816. // Report storage size
  817. #if ENABLED(EEPROM_CHITCHAT)
  818. SERIAL_ECHO_START_P(port);
  819. SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
  820. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
  821. SERIAL_ECHOLNPGM_P(port, ")");
  822. #endif
  823. eeprom_error |= size_error(eeprom_size);
  824. }
  825. EEPROM_FINISH();
  826. //
  827. // UBL Mesh
  828. //
  829. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  830. if (ubl.storage_slot >= 0)
  831. store_mesh(ubl.storage_slot);
  832. #endif
  833. return !eeprom_error;
  834. }
  835. /**
  836. * M501 - Retrieve Configuration
  837. */
  838. bool MarlinSettings::_load(PORTARG_SOLO) {
  839. uint16_t working_crc = 0;
  840. EEPROM_START();
  841. char stored_ver[4];
  842. EEPROM_READ_ALWAYS(stored_ver);
  843. uint16_t stored_crc;
  844. EEPROM_READ_ALWAYS(stored_crc);
  845. // Version has to match or defaults are used
  846. if (strncmp(version, stored_ver, 3) != 0) {
  847. if (stored_ver[3] != '\0') {
  848. stored_ver[0] = '?';
  849. stored_ver[1] = '\0';
  850. }
  851. #if ENABLED(EEPROM_CHITCHAT)
  852. SERIAL_ECHO_START_P(port);
  853. SERIAL_ECHOPGM_P(port, "EEPROM version mismatch ");
  854. SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
  855. SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
  856. #endif
  857. eeprom_error = true;
  858. }
  859. else {
  860. float dummy = 0;
  861. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  862. _FIELD_TEST(esteppers);
  863. // Number of esteppers may change
  864. uint8_t esteppers;
  865. EEPROM_READ_ALWAYS(esteppers);
  866. //
  867. // Planner Motion
  868. //
  869. {
  870. // Get only the number of E stepper parameters previously stored
  871. // Any steppers added later are set to their defaults
  872. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  873. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  874. uint32_t tmp1[XYZ + esteppers];
  875. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  876. EEPROM_READ(planner.settings.min_segment_time_us);
  877. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  878. EEPROM_READ(tmp2); // axis_steps_per_mm
  879. EEPROM_READ(tmp3); // max_feedrate_mm_s
  880. if (!validating) LOOP_XYZE_N(i) {
  881. const bool in = (i < esteppers + XYZ);
  882. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  883. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  884. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  885. }
  886. EEPROM_READ(planner.settings.acceleration);
  887. EEPROM_READ(planner.settings.retract_acceleration);
  888. EEPROM_READ(planner.settings.travel_acceleration);
  889. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  890. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  891. #if HAS_CLASSIC_JERK
  892. EEPROM_READ(planner.max_jerk);
  893. #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
  894. EEPROM_READ(dummy);
  895. #endif
  896. #else
  897. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  898. #endif
  899. #if ENABLED(JUNCTION_DEVIATION)
  900. EEPROM_READ(planner.junction_deviation_mm);
  901. #else
  902. EEPROM_READ(dummy);
  903. #endif
  904. }
  905. //
  906. // Home Offset (M206 / M665)
  907. //
  908. {
  909. _FIELD_TEST(home_offset);
  910. #if HAS_SCARA_OFFSET
  911. EEPROM_READ(scara_home_offset);
  912. #else
  913. #if !HAS_HOME_OFFSET
  914. float home_offset[XYZ];
  915. #endif
  916. EEPROM_READ(home_offset);
  917. #endif
  918. }
  919. //
  920. // Hotend Offsets, if any
  921. //
  922. {
  923. #if HAS_HOTEND_OFFSET
  924. // Skip hotend 0 which must be 0
  925. for (uint8_t e = 1; e < HOTENDS; e++)
  926. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  927. #endif
  928. }
  929. //
  930. // Global Leveling
  931. //
  932. {
  933. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  934. EEPROM_READ(new_z_fade_height);
  935. #else
  936. EEPROM_READ(dummy);
  937. #endif
  938. }
  939. //
  940. // Mesh (Manual) Bed Leveling
  941. //
  942. {
  943. uint8_t mesh_num_x, mesh_num_y;
  944. EEPROM_READ(dummy);
  945. EEPROM_READ_ALWAYS(mesh_num_x);
  946. EEPROM_READ_ALWAYS(mesh_num_y);
  947. #if ENABLED(MESH_BED_LEVELING)
  948. if (!validating) mbl.z_offset = dummy;
  949. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  950. // EEPROM data fits the current mesh
  951. EEPROM_READ(mbl.z_values);
  952. }
  953. else {
  954. // EEPROM data is stale
  955. if (!validating) mbl.reset();
  956. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  957. }
  958. #else
  959. // MBL is disabled - skip the stored data
  960. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  961. #endif // MESH_BED_LEVELING
  962. }
  963. //
  964. // Probe Z Offset
  965. //
  966. {
  967. _FIELD_TEST(zprobe_zoffset);
  968. #if !HAS_BED_PROBE
  969. float zprobe_zoffset;
  970. #endif
  971. EEPROM_READ(zprobe_zoffset);
  972. }
  973. //
  974. // Planar Bed Leveling matrix
  975. //
  976. {
  977. #if ABL_PLANAR
  978. EEPROM_READ(planner.bed_level_matrix);
  979. #else
  980. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  981. #endif
  982. }
  983. //
  984. // Bilinear Auto Bed Leveling
  985. //
  986. {
  987. uint8_t grid_max_x, grid_max_y;
  988. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  989. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  990. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  991. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  992. if (!validating) set_bed_leveling_enabled(false);
  993. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  994. EEPROM_READ(bilinear_start); // 2 ints
  995. EEPROM_READ(z_values); // 9 to 256 floats
  996. }
  997. else // EEPROM data is stale
  998. #endif // AUTO_BED_LEVELING_BILINEAR
  999. {
  1000. // Skip past disabled (or stale) Bilinear Grid data
  1001. int bgs[2], bs[2];
  1002. EEPROM_READ(bgs);
  1003. EEPROM_READ(bs);
  1004. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1005. }
  1006. }
  1007. //
  1008. // Unified Bed Leveling active state
  1009. //
  1010. {
  1011. _FIELD_TEST(planner_leveling_active);
  1012. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1013. EEPROM_READ(planner.leveling_active);
  1014. EEPROM_READ(ubl.storage_slot);
  1015. #else
  1016. bool planner_leveling_active;
  1017. uint8_t ubl_storage_slot;
  1018. EEPROM_READ(planner_leveling_active);
  1019. EEPROM_READ(ubl_storage_slot);
  1020. #endif
  1021. }
  1022. //
  1023. // SERVO_ANGLES
  1024. //
  1025. {
  1026. #if !HAS_SERVOS || DISABLED(EDITABLE_SERVO_ANGLES)
  1027. uint16_t servo_angles[NUM_SERVOS][2];
  1028. #endif
  1029. EEPROM_READ(servo_angles);
  1030. }
  1031. //
  1032. // DELTA Geometry or Dual Endstops offsets
  1033. //
  1034. {
  1035. #if ENABLED(DELTA)
  1036. _FIELD_TEST(delta_height);
  1037. EEPROM_READ(delta_height); // 1 float
  1038. EEPROM_READ(delta_endstop_adj); // 3 floats
  1039. EEPROM_READ(delta_radius); // 1 float
  1040. EEPROM_READ(delta_diagonal_rod); // 1 float
  1041. EEPROM_READ(delta_segments_per_second); // 1 float
  1042. EEPROM_READ(delta_calibration_radius); // 1 float
  1043. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1044. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1045. _FIELD_TEST(x2_endstop_adj);
  1046. #if ENABLED(X_DUAL_ENDSTOPS)
  1047. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1048. #else
  1049. EEPROM_READ(dummy);
  1050. #endif
  1051. #if ENABLED(Y_DUAL_ENDSTOPS)
  1052. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1053. #else
  1054. EEPROM_READ(dummy);
  1055. #endif
  1056. #if Z_MULTI_ENDSTOPS
  1057. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1058. #else
  1059. EEPROM_READ(dummy);
  1060. #endif
  1061. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1062. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1063. #else
  1064. EEPROM_READ(dummy);
  1065. #endif
  1066. #endif
  1067. }
  1068. //
  1069. // LCD Preheat settings
  1070. //
  1071. {
  1072. _FIELD_TEST(lcd_preheat_hotend_temp);
  1073. #if DISABLED(ULTIPANEL)
  1074. int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2];
  1075. uint8_t lcd_preheat_fan_speed[2];
  1076. #endif
  1077. EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
  1078. EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
  1079. EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
  1080. }
  1081. //
  1082. // Hotend PID
  1083. //
  1084. {
  1085. HOTEND_LOOP() {
  1086. PIDC_t pidc;
  1087. EEPROM_READ(pidc);
  1088. #if ENABLED(PIDTEMP)
  1089. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1090. // No need to scale PID values since EEPROM values are scaled
  1091. PID_PARAM(Kp, e) = pidc.Kp;
  1092. PID_PARAM(Ki, e) = pidc.Ki;
  1093. PID_PARAM(Kd, e) = pidc.Kd;
  1094. #if ENABLED(PID_EXTRUSION_SCALING)
  1095. PID_PARAM(Kc, e) = pidc.Kc;
  1096. #endif
  1097. }
  1098. #endif
  1099. }
  1100. }
  1101. //
  1102. // PID Extrusion Scaling
  1103. //
  1104. {
  1105. _FIELD_TEST(lpq_len);
  1106. #if ENABLED(PID_EXTRUSION_SCALING)
  1107. EEPROM_READ(thermalManager.lpq_len);
  1108. #else
  1109. int16_t lpq_len;
  1110. EEPROM_READ(lpq_len);
  1111. #endif
  1112. }
  1113. //
  1114. // Heated Bed PID
  1115. //
  1116. {
  1117. PID_t pid;
  1118. EEPROM_READ(pid);
  1119. #if ENABLED(PIDTEMPBED)
  1120. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1121. memcpy(&thermalManager.bed_pid, &pid, sizeof(pid));
  1122. #endif
  1123. }
  1124. //
  1125. // LCD Contrast
  1126. //
  1127. {
  1128. _FIELD_TEST(lcd_contrast);
  1129. #if !HAS_LCD_CONTRAST
  1130. int16_t lcd_contrast;
  1131. #endif
  1132. EEPROM_READ(lcd_contrast);
  1133. }
  1134. //
  1135. // Firmware Retraction
  1136. //
  1137. {
  1138. _FIELD_TEST(fwretract_settings);
  1139. #if ENABLED(FWRETRACT)
  1140. EEPROM_READ(fwretract.settings);
  1141. #else
  1142. fwretract_settings_t fwretract_settings;
  1143. EEPROM_READ(fwretract_settings);
  1144. #endif
  1145. #if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
  1146. EEPROM_READ(fwretract.autoretract_enabled);
  1147. #else
  1148. bool autoretract_enabled;
  1149. EEPROM_READ(autoretract_enabled);
  1150. #endif
  1151. }
  1152. //
  1153. // Volumetric & Filament Size
  1154. //
  1155. {
  1156. struct {
  1157. bool volumetric_enabled;
  1158. float filament_size[EXTRUDERS];
  1159. } storage;
  1160. _FIELD_TEST(parser_volumetric_enabled);
  1161. EEPROM_READ(storage);
  1162. #if DISABLED(NO_VOLUMETRICS)
  1163. if (!validating) {
  1164. parser.volumetric_enabled = storage.volumetric_enabled;
  1165. COPY(planner.filament_size, storage.filament_size);
  1166. }
  1167. #endif
  1168. }
  1169. //
  1170. // TMC Stepper Settings
  1171. //
  1172. if (!validating) reset_stepper_drivers();
  1173. // TMC Stepper Current
  1174. {
  1175. _FIELD_TEST(tmc_stepper_current);
  1176. tmc_stepper_current_t currents;
  1177. EEPROM_READ(currents);
  1178. #if HAS_TRINAMIC
  1179. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1180. if (!validating) {
  1181. #if AXIS_IS_TMC(X)
  1182. SET_CURR(X);
  1183. #endif
  1184. #if AXIS_IS_TMC(Y)
  1185. SET_CURR(Y);
  1186. #endif
  1187. #if AXIS_IS_TMC(Z)
  1188. SET_CURR(Z);
  1189. #endif
  1190. #if AXIS_IS_TMC(X2)
  1191. SET_CURR(X2);
  1192. #endif
  1193. #if AXIS_IS_TMC(Y2)
  1194. SET_CURR(Y2);
  1195. #endif
  1196. #if AXIS_IS_TMC(Z2)
  1197. SET_CURR(Z2);
  1198. #endif
  1199. #if AXIS_IS_TMC(Z3)
  1200. SET_CURR(Z3);
  1201. #endif
  1202. #if AXIS_IS_TMC(E0)
  1203. SET_CURR(E0);
  1204. #endif
  1205. #if AXIS_IS_TMC(E1)
  1206. SET_CURR(E1);
  1207. #endif
  1208. #if AXIS_IS_TMC(E2)
  1209. SET_CURR(E2);
  1210. #endif
  1211. #if AXIS_IS_TMC(E3)
  1212. SET_CURR(E3);
  1213. #endif
  1214. #if AXIS_IS_TMC(E4)
  1215. SET_CURR(E4);
  1216. #endif
  1217. #if AXIS_IS_TMC(E5)
  1218. SET_CURR(E5);
  1219. #endif
  1220. }
  1221. #endif
  1222. }
  1223. // TMC Hybrid Threshold
  1224. {
  1225. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1226. _FIELD_TEST(tmc_hybrid_threshold);
  1227. EEPROM_READ(tmc_hybrid_threshold);
  1228. #if ENABLED(HYBRID_THRESHOLD)
  1229. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1230. if (!validating) {
  1231. #if AXIS_HAS_STEALTHCHOP(X)
  1232. TMC_SET_PWMTHRS(X, X);
  1233. #endif
  1234. #if AXIS_HAS_STEALTHCHOP(Y)
  1235. TMC_SET_PWMTHRS(Y, Y);
  1236. #endif
  1237. #if AXIS_HAS_STEALTHCHOP(Z)
  1238. TMC_SET_PWMTHRS(Z, Z);
  1239. #endif
  1240. #if AXIS_HAS_STEALTHCHOP(X2)
  1241. TMC_SET_PWMTHRS(X, X2);
  1242. #endif
  1243. #if AXIS_HAS_STEALTHCHOP(Y2)
  1244. TMC_SET_PWMTHRS(Y, Y2);
  1245. #endif
  1246. #if AXIS_HAS_STEALTHCHOP(Z2)
  1247. TMC_SET_PWMTHRS(Z, Z2);
  1248. #endif
  1249. #if AXIS_HAS_STEALTHCHOP(Z3)
  1250. TMC_SET_PWMTHRS(Z, Z3);
  1251. #endif
  1252. #if AXIS_HAS_STEALTHCHOP(E0)
  1253. TMC_SET_PWMTHRS(E, E0);
  1254. #endif
  1255. #if AXIS_HAS_STEALTHCHOP(E1)
  1256. TMC_SET_PWMTHRS(E, E1);
  1257. #endif
  1258. #if AXIS_HAS_STEALTHCHOP(E2)
  1259. TMC_SET_PWMTHRS(E, E2);
  1260. #endif
  1261. #if AXIS_HAS_STEALTHCHOP(E3)
  1262. TMC_SET_PWMTHRS(E, E3);
  1263. #endif
  1264. #if AXIS_HAS_STEALTHCHOP(E4)
  1265. TMC_SET_PWMTHRS(E, E4);
  1266. #endif
  1267. #if AXIS_HAS_STEALTHCHOP(E5)
  1268. TMC_SET_PWMTHRS(E, E5);
  1269. #endif
  1270. }
  1271. #endif
  1272. }
  1273. //
  1274. // TMC StallGuard threshold.
  1275. // X and X2 use the same value
  1276. // Y and Y2 use the same value
  1277. // Z, Z2 and Z3 use the same value
  1278. //
  1279. {
  1280. tmc_sgt_t tmc_sgt;
  1281. _FIELD_TEST(tmc_sgt);
  1282. EEPROM_READ(tmc_sgt);
  1283. #if USE_SENSORLESS
  1284. if (!validating) {
  1285. #ifdef X_STALL_SENSITIVITY
  1286. #if AXIS_HAS_STALLGUARD(X)
  1287. stepperX.sgt(tmc_sgt.X);
  1288. #endif
  1289. #if AXIS_HAS_STALLGUARD(X2)
  1290. stepperX2.sgt(tmc_sgt.X);
  1291. #endif
  1292. #endif
  1293. #ifdef Y_STALL_SENSITIVITY
  1294. #if AXIS_HAS_STALLGUARD(Y)
  1295. stepperY.sgt(tmc_sgt.Y);
  1296. #endif
  1297. #if AXIS_HAS_STALLGUARD(Y2)
  1298. stepperY2.sgt(tmc_sgt.Y);
  1299. #endif
  1300. #endif
  1301. #ifdef Z_STALL_SENSITIVITY
  1302. #if AXIS_HAS_STALLGUARD(Z)
  1303. stepperZ.sgt(tmc_sgt.Z);
  1304. #endif
  1305. #if AXIS_HAS_STALLGUARD(Z2)
  1306. stepperZ2.sgt(tmc_sgt.Z);
  1307. #endif
  1308. #if AXIS_HAS_STALLGUARD(Z3)
  1309. stepperZ3.sgt(tmc_sgt.Z);
  1310. #endif
  1311. #endif
  1312. }
  1313. #endif
  1314. }
  1315. //
  1316. // Linear Advance
  1317. //
  1318. {
  1319. float extruder_advance_K[EXTRUDERS];
  1320. _FIELD_TEST(planner_extruder_advance_K);
  1321. EEPROM_READ(extruder_advance_K);
  1322. #if ENABLED(LIN_ADVANCE)
  1323. if (!validating)
  1324. COPY(planner.extruder_advance_K, extruder_advance_K);
  1325. #endif
  1326. }
  1327. //
  1328. // Motor Current PWM
  1329. //
  1330. {
  1331. uint32_t motor_current_setting[3];
  1332. _FIELD_TEST(motor_current_setting);
  1333. EEPROM_READ(motor_current_setting);
  1334. #if HAS_MOTOR_CURRENT_PWM
  1335. if (!validating)
  1336. COPY(stepper.motor_current_setting, motor_current_setting);
  1337. #endif
  1338. }
  1339. //
  1340. // CNC Coordinate System
  1341. //
  1342. {
  1343. _FIELD_TEST(coordinate_system);
  1344. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1345. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1346. EEPROM_READ(gcode.coordinate_system);
  1347. #else
  1348. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1349. EEPROM_READ(coordinate_system);
  1350. #endif
  1351. }
  1352. //
  1353. // Skew correction factors
  1354. //
  1355. {
  1356. skew_factor_t skew_factor;
  1357. _FIELD_TEST(planner_skew_factor);
  1358. EEPROM_READ(skew_factor);
  1359. #if ENABLED(SKEW_CORRECTION_GCODE)
  1360. if (!validating) {
  1361. planner.skew_factor.xy = skew_factor.xy;
  1362. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1363. planner.skew_factor.xz = skew_factor.xz;
  1364. planner.skew_factor.yz = skew_factor.yz;
  1365. #endif
  1366. }
  1367. #endif
  1368. }
  1369. //
  1370. // Advanced Pause filament load & unload lengths
  1371. //
  1372. {
  1373. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1374. fil_change_settings_t fc_settings[EXTRUDERS];
  1375. #endif
  1376. _FIELD_TEST(fc_settings);
  1377. EEPROM_READ(fc_settings);
  1378. }
  1379. //
  1380. // SINGLENOZZLE toolchange values
  1381. //
  1382. #if EXTRUDERS > 1
  1383. _FIELD_TEST(toolchange_settings);
  1384. EEPROM_READ(toolchange_settings);
  1385. #endif
  1386. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1387. if (eeprom_error) {
  1388. #if ENABLED(EEPROM_CHITCHAT)
  1389. SERIAL_ECHO_START_P(port);
  1390. SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
  1391. SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize());
  1392. #endif
  1393. }
  1394. else if (working_crc != stored_crc) {
  1395. eeprom_error = true;
  1396. #if ENABLED(EEPROM_CHITCHAT)
  1397. SERIAL_ERROR_START_P(port);
  1398. SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) ");
  1399. SERIAL_ERROR_P(port, stored_crc);
  1400. SERIAL_ERRORPGM_P(port, " != ");
  1401. SERIAL_ERROR_P(port, working_crc);
  1402. SERIAL_ERRORLNPGM_P(port, " (calculated)!");
  1403. #endif
  1404. }
  1405. else if (!validating) {
  1406. #if ENABLED(EEPROM_CHITCHAT)
  1407. SERIAL_ECHO_START_P(port);
  1408. SERIAL_ECHO_P(port, version);
  1409. SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  1410. SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
  1411. SERIAL_ECHOLNPGM_P(port, ")");
  1412. #endif
  1413. }
  1414. if (!validating && !eeprom_error) postprocess();
  1415. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1416. if (!validating) {
  1417. ubl.report_state();
  1418. if (!ubl.sanity_check()) {
  1419. SERIAL_EOL_P(port);
  1420. #if ENABLED(EEPROM_CHITCHAT)
  1421. ubl.echo_name();
  1422. SERIAL_ECHOLNPGM_P(port, " initialized.\n");
  1423. #endif
  1424. }
  1425. else {
  1426. eeprom_error = true;
  1427. #if ENABLED(EEPROM_CHITCHAT)
  1428. SERIAL_PROTOCOLPGM_P(port, "?Can't enable ");
  1429. ubl.echo_name();
  1430. SERIAL_PROTOCOLLNPGM_P(port, ".");
  1431. #endif
  1432. ubl.reset();
  1433. }
  1434. if (ubl.storage_slot >= 0) {
  1435. load_mesh(ubl.storage_slot);
  1436. #if ENABLED(EEPROM_CHITCHAT)
  1437. SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
  1438. SERIAL_ECHOLNPGM_P(port, " loaded from storage.");
  1439. #endif
  1440. }
  1441. else {
  1442. ubl.reset();
  1443. #if ENABLED(EEPROM_CHITCHAT)
  1444. SERIAL_ECHOLNPGM_P(port, "UBL System reset()");
  1445. #endif
  1446. }
  1447. }
  1448. #endif
  1449. }
  1450. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1451. if (!validating) report(PORTVAR_SOLO);
  1452. #endif
  1453. EEPROM_FINISH();
  1454. return !eeprom_error;
  1455. }
  1456. bool MarlinSettings::validate(PORTARG_SOLO) {
  1457. validating = true;
  1458. const bool success = _load(PORTVAR_SOLO);
  1459. validating = false;
  1460. return success;
  1461. }
  1462. bool MarlinSettings::load(PORTARG_SOLO) {
  1463. if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO);
  1464. reset();
  1465. return true;
  1466. }
  1467. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1468. #if ENABLED(EEPROM_CHITCHAT)
  1469. void ubl_invalid_slot(const int s) {
  1470. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  1471. SERIAL_PROTOCOL(s);
  1472. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  1473. }
  1474. #endif
  1475. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1476. // is a placeholder for the size of the MAT; the MAT will always
  1477. // live at the very end of the eeprom
  1478. uint16_t MarlinSettings::meshes_start_index() {
  1479. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1480. // or down a little bit without disrupting the mesh data
  1481. }
  1482. uint16_t MarlinSettings::calc_num_meshes() {
  1483. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1484. }
  1485. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1486. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1487. }
  1488. void MarlinSettings::store_mesh(const int8_t slot) {
  1489. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1490. const int16_t a = calc_num_meshes();
  1491. if (!WITHIN(slot, 0, a - 1)) {
  1492. #if ENABLED(EEPROM_CHITCHAT)
  1493. ubl_invalid_slot(a);
  1494. SERIAL_PROTOCOLPAIR("E2END=", persistentStore.capacity() - 1);
  1495. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  1496. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  1497. SERIAL_EOL();
  1498. #endif
  1499. return;
  1500. }
  1501. int pos = mesh_slot_offset(slot);
  1502. uint16_t crc = 0;
  1503. persistentStore.access_start();
  1504. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1505. persistentStore.access_finish();
  1506. if (status)
  1507. SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n");
  1508. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1509. #if ENABLED(EEPROM_CHITCHAT)
  1510. if (!status)
  1511. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  1512. #endif
  1513. #else
  1514. // Other mesh types
  1515. #endif
  1516. }
  1517. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1518. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1519. const int16_t a = settings.calc_num_meshes();
  1520. if (!WITHIN(slot, 0, a - 1)) {
  1521. #if ENABLED(EEPROM_CHITCHAT)
  1522. ubl_invalid_slot(a);
  1523. #endif
  1524. return;
  1525. }
  1526. int pos = mesh_slot_offset(slot);
  1527. uint16_t crc = 0;
  1528. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1529. persistentStore.access_start();
  1530. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1531. persistentStore.access_finish();
  1532. if (status)
  1533. SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n");
  1534. #if ENABLED(EEPROM_CHITCHAT)
  1535. else
  1536. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1537. #endif
  1538. EEPROM_FINISH();
  1539. #else
  1540. // Other mesh types
  1541. #endif
  1542. }
  1543. //void MarlinSettings::delete_mesh() { return; }
  1544. //void MarlinSettings::defrag_meshes() { return; }
  1545. #endif // AUTO_BED_LEVELING_UBL
  1546. #else // !EEPROM_SETTINGS
  1547. bool MarlinSettings::save(PORTARG_SOLO) {
  1548. #if ENABLED(EEPROM_CHITCHAT)
  1549. SERIAL_ERROR_START_P(port);
  1550. SERIAL_ERRORLNPGM_P(port, "EEPROM disabled");
  1551. #endif
  1552. return false;
  1553. }
  1554. #endif // !EEPROM_SETTINGS
  1555. /**
  1556. * M502 - Reset Configuration
  1557. */
  1558. void MarlinSettings::reset(PORTARG_SOLO) {
  1559. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1560. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1561. LOOP_XYZE_N(i) {
  1562. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1563. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1564. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
  1565. }
  1566. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1567. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1568. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1569. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1570. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1571. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1572. #if HAS_CLASSIC_JERK
  1573. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1574. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1575. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1576. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1577. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1578. #endif
  1579. #endif
  1580. #if ENABLED(JUNCTION_DEVIATION)
  1581. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1582. #endif
  1583. #if HAS_SCARA_OFFSET
  1584. ZERO(scara_home_offset);
  1585. #elif HAS_HOME_OFFSET
  1586. ZERO(home_offset);
  1587. #endif
  1588. #if HAS_HOTEND_OFFSET
  1589. constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
  1590. static_assert(
  1591. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1592. "Offsets for the first hotend must be 0.0."
  1593. );
  1594. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1595. #if ENABLED(DUAL_X_CARRIAGE)
  1596. hotend_offset[X_AXIS][1] = MAX(X2_HOME_POS, X2_MAX_POS);
  1597. #endif
  1598. #endif
  1599. #if EXTRUDERS > 1
  1600. #if ENABLED(SINGLENOZZLE)
  1601. toolchange_settings.swap_length = SINGLENOZZLE_SWAP_LENGTH;
  1602. toolchange_settings.prime_speed = SINGLENOZZLE_SWAP_PRIME_SPEED;
  1603. toolchange_settings.retract_speed = SINGLENOZZLE_SWAP_RETRACT_SPEED;
  1604. #if ENABLED(SINGLENOZZLE_SWAP_PARK)
  1605. toolchange_settings.change_point = SINGLENOZZLE_TOOLCHANGE_XY;
  1606. #endif
  1607. #endif
  1608. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  1609. #endif
  1610. //
  1611. // Global Leveling
  1612. //
  1613. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1614. new_z_fade_height = 0.0;
  1615. #endif
  1616. #if HAS_LEVELING
  1617. reset_bed_level();
  1618. #endif
  1619. #if HAS_BED_PROBE
  1620. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1621. #endif
  1622. //
  1623. // Servo Angles
  1624. //
  1625. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  1626. #if ENABLED(SWITCHING_EXTRUDER)
  1627. #if EXTRUDERS > 3
  1628. #define REQ_ANGLES 4
  1629. #else
  1630. #define REQ_ANGLES 2
  1631. #endif
  1632. constexpr uint16_t extruder_angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  1633. static_assert(COUNT(extruder_angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  1634. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = extruder_angles[0];
  1635. servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = extruder_angles[1];
  1636. #if EXTRUDERS > 3
  1637. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = extruder_angles[2];
  1638. servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = extruder_angles[3];
  1639. #endif
  1640. #elif ENABLED(SWITCHING_NOZZLE)
  1641. constexpr uint16_t nozzle_angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  1642. servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = nozzle_angles[0];
  1643. servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = nozzle_angles[1];
  1644. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  1645. constexpr uint16_t z_probe_angles[2] = Z_SERVO_ANGLES;
  1646. servo_angles[Z_PROBE_SERVO_NR][0] = z_probe_angles[0];
  1647. servo_angles[Z_PROBE_SERVO_NR][1] = z_probe_angles[1];
  1648. #endif
  1649. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  1650. #if ENABLED(DELTA)
  1651. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1652. delta_height = DELTA_HEIGHT;
  1653. COPY(delta_endstop_adj, adj);
  1654. delta_radius = DELTA_RADIUS;
  1655. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1656. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1657. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1658. COPY(delta_tower_angle_trim, dta);
  1659. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1660. #if ENABLED(X_DUAL_ENDSTOPS)
  1661. endstops.x2_endstop_adj = (
  1662. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1663. X_DUAL_ENDSTOPS_ADJUSTMENT
  1664. #else
  1665. 0
  1666. #endif
  1667. );
  1668. #endif
  1669. #if ENABLED(Y_DUAL_ENDSTOPS)
  1670. endstops.y2_endstop_adj = (
  1671. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1672. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1673. #else
  1674. 0
  1675. #endif
  1676. );
  1677. #endif
  1678. #if ENABLED(Z_DUAL_ENDSTOPS)
  1679. endstops.z2_endstop_adj = (
  1680. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1681. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1682. #else
  1683. 0
  1684. #endif
  1685. );
  1686. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  1687. endstops.z2_endstop_adj = (
  1688. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1689. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1690. #else
  1691. 0
  1692. #endif
  1693. );
  1694. endstops.z3_endstop_adj = (
  1695. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1696. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1697. #else
  1698. 0
  1699. #endif
  1700. );
  1701. #endif
  1702. #endif
  1703. #if ENABLED(ULTIPANEL)
  1704. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1705. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1706. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1707. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1708. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1709. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1710. #endif
  1711. #if ENABLED(PIDTEMP)
  1712. HOTEND_LOOP() {
  1713. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  1714. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1715. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1716. #if ENABLED(PID_EXTRUSION_SCALING)
  1717. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1718. #endif
  1719. }
  1720. #if ENABLED(PID_EXTRUSION_SCALING)
  1721. thermalManager.lpq_len = 20; // default last-position-queue size
  1722. #endif
  1723. #endif // PIDTEMP
  1724. #if ENABLED(PIDTEMPBED)
  1725. thermalManager.bed_pid.Kp = DEFAULT_bedKp;
  1726. thermalManager.bed_pid.Ki = scalePID_i(DEFAULT_bedKi);
  1727. thermalManager.bed_pid.Kd = scalePID_d(DEFAULT_bedKd);
  1728. #endif
  1729. #if HAS_LCD_CONTRAST
  1730. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1731. #endif
  1732. #if ENABLED(FWRETRACT)
  1733. fwretract.reset();
  1734. #endif
  1735. #if DISABLED(NO_VOLUMETRICS)
  1736. parser.volumetric_enabled =
  1737. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1738. true
  1739. #else
  1740. false
  1741. #endif
  1742. ;
  1743. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1744. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1745. #endif
  1746. endstops.enable_globally(
  1747. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1748. true
  1749. #else
  1750. false
  1751. #endif
  1752. );
  1753. reset_stepper_drivers();
  1754. #if ENABLED(LIN_ADVANCE)
  1755. LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  1756. #endif
  1757. #if HAS_MOTOR_CURRENT_PWM
  1758. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1759. for (uint8_t q = 3; q--;)
  1760. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1761. #endif
  1762. #if ENABLED(SKEW_CORRECTION_GCODE)
  1763. planner.skew_factor.xy = XY_SKEW_FACTOR;
  1764. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1765. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  1766. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  1767. #endif
  1768. #endif
  1769. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1770. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  1771. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1772. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  1773. }
  1774. #endif
  1775. postprocess();
  1776. #if ENABLED(EEPROM_CHITCHAT)
  1777. SERIAL_ECHO_START_P(port);
  1778. SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
  1779. #endif
  1780. }
  1781. #if DISABLED(DISABLE_M503)
  1782. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
  1783. #if HAS_TRINAMIC
  1784. void say_M906(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M906"); }
  1785. #if ENABLED(HYBRID_THRESHOLD)
  1786. void say_M913(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M913"); }
  1787. #endif
  1788. #if USE_SENSORLESS
  1789. void say_M914(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M914"); }
  1790. #endif
  1791. #endif
  1792. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1793. void say_M603(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M603 "); }
  1794. #endif
  1795. inline void say_units(
  1796. #if NUM_SERIAL > 1
  1797. const int8_t port,
  1798. #endif
  1799. const bool colon
  1800. ) {
  1801. serialprintPGM_P(port,
  1802. #if ENABLED(INCH_MODE_SUPPORT)
  1803. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  1804. #endif
  1805. PSTR(" (mm)")
  1806. );
  1807. if (colon) SERIAL_ECHOLNPGM_P(port, ":");
  1808. }
  1809. #if NUM_SERIAL > 1
  1810. #define SAY_UNITS_P(PORT, COLON) say_units(PORT, COLON)
  1811. #else
  1812. #define SAY_UNITS_P(PORT, COLON) say_units(COLON)
  1813. #endif
  1814. /**
  1815. * M503 - Report current settings in RAM
  1816. *
  1817. * Unless specifically disabled, M503 is available even without EEPROM
  1818. */
  1819. void MarlinSettings::report(const bool forReplay
  1820. #if NUM_SERIAL > 1
  1821. , const int8_t port/*=-1*/
  1822. #endif
  1823. ) {
  1824. /**
  1825. * Announce current units, in case inches are being displayed
  1826. */
  1827. CONFIG_ECHO_START;
  1828. #if ENABLED(INCH_MODE_SUPPORT)
  1829. SERIAL_ECHOPGM_P(port, " G2");
  1830. SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
  1831. SERIAL_ECHOPGM_P(port, " ;");
  1832. SAY_UNITS_P(port, false);
  1833. #else
  1834. SERIAL_ECHOPGM_P(port, " G21 ; Units in mm");
  1835. SAY_UNITS_P(port, false);
  1836. #endif
  1837. SERIAL_EOL_P(port);
  1838. #if ENABLED(ULTIPANEL)
  1839. // Temperature units - for Ultipanel temperature options
  1840. CONFIG_ECHO_START;
  1841. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1842. SERIAL_ECHOPGM_P(port, " M149 ");
  1843. SERIAL_CHAR_P(port, parser.temp_units_code());
  1844. SERIAL_ECHOPGM_P(port, " ; Units in ");
  1845. serialprintPGM_P(port, parser.temp_units_name());
  1846. #else
  1847. SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
  1848. #endif
  1849. #endif
  1850. SERIAL_EOL_P(port);
  1851. #if DISABLED(NO_VOLUMETRICS)
  1852. /**
  1853. * Volumetric extrusion M200
  1854. */
  1855. if (!forReplay) {
  1856. CONFIG_ECHO_START;
  1857. SERIAL_ECHOPGM_P(port, "Filament settings:");
  1858. if (parser.volumetric_enabled)
  1859. SERIAL_EOL_P(port);
  1860. else
  1861. SERIAL_ECHOLNPGM_P(port, " Disabled");
  1862. }
  1863. CONFIG_ECHO_START;
  1864. SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
  1865. SERIAL_EOL_P(port);
  1866. #if EXTRUDERS > 1
  1867. CONFIG_ECHO_START;
  1868. SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  1869. SERIAL_EOL_P(port);
  1870. #if EXTRUDERS > 2
  1871. CONFIG_ECHO_START;
  1872. SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  1873. SERIAL_EOL_P(port);
  1874. #if EXTRUDERS > 3
  1875. CONFIG_ECHO_START;
  1876. SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  1877. SERIAL_EOL_P(port);
  1878. #if EXTRUDERS > 4
  1879. CONFIG_ECHO_START;
  1880. SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  1881. SERIAL_EOL_P(port);
  1882. #if EXTRUDERS > 5
  1883. CONFIG_ECHO_START;
  1884. SERIAL_ECHOPAIR_P(port, " M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  1885. SERIAL_EOL_P(port);
  1886. #endif // EXTRUDERS > 5
  1887. #endif // EXTRUDERS > 4
  1888. #endif // EXTRUDERS > 3
  1889. #endif // EXTRUDERS > 2
  1890. #endif // EXTRUDERS > 1
  1891. if (!parser.volumetric_enabled) {
  1892. CONFIG_ECHO_START;
  1893. SERIAL_ECHOLNPGM_P(port, " M200 D0");
  1894. }
  1895. #endif // !NO_VOLUMETRICS
  1896. if (!forReplay) {
  1897. CONFIG_ECHO_START;
  1898. SERIAL_ECHOLNPGM_P(port, "Steps per unit:");
  1899. }
  1900. CONFIG_ECHO_START;
  1901. SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]));
  1902. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]));
  1903. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]));
  1904. #if DISABLED(DISTINCT_E_FACTORS)
  1905. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
  1906. #endif
  1907. SERIAL_EOL_P(port);
  1908. #if ENABLED(DISTINCT_E_FACTORS)
  1909. CONFIG_ECHO_START;
  1910. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1911. SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
  1912. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS + i]));
  1913. }
  1914. #endif
  1915. if (!forReplay) {
  1916. CONFIG_ECHO_START;
  1917. SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):");
  1918. }
  1919. CONFIG_ECHO_START;
  1920. SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]));
  1921. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]));
  1922. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]));
  1923. #if DISABLED(DISTINCT_E_FACTORS)
  1924. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS]));
  1925. #endif
  1926. SERIAL_EOL_P(port);
  1927. #if ENABLED(DISTINCT_E_FACTORS)
  1928. CONFIG_ECHO_START;
  1929. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1930. SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
  1931. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS + i]));
  1932. }
  1933. #endif
  1934. if (!forReplay) {
  1935. CONFIG_ECHO_START;
  1936. SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):");
  1937. }
  1938. CONFIG_ECHO_START;
  1939. SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]));
  1940. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]));
  1941. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]));
  1942. #if DISABLED(DISTINCT_E_FACTORS)
  1943. SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS]));
  1944. #endif
  1945. SERIAL_EOL_P(port);
  1946. #if ENABLED(DISTINCT_E_FACTORS)
  1947. CONFIG_ECHO_START;
  1948. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1949. SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
  1950. SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS + i]));
  1951. }
  1952. #endif
  1953. if (!forReplay) {
  1954. CONFIG_ECHO_START;
  1955. SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1956. }
  1957. CONFIG_ECHO_START;
  1958. SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.settings.acceleration));
  1959. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.settings.retract_acceleration));
  1960. SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.settings.travel_acceleration));
  1961. if (!forReplay) {
  1962. CONFIG_ECHO_START;
  1963. SERIAL_ECHOPGM_P(port, "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  1964. #if ENABLED(JUNCTION_DEVIATION)
  1965. SERIAL_ECHOPGM_P(port, " J<junc_dev>");
  1966. #endif
  1967. #if HAS_CLASSIC_JERK
  1968. SERIAL_ECHOPGM_P(port, " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  1969. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1970. SERIAL_ECHOPGM_P(port, " E<max_e_jerk>");
  1971. #endif
  1972. #endif
  1973. SERIAL_EOL_P(port);
  1974. }
  1975. CONFIG_ECHO_START;
  1976. SERIAL_ECHOPAIR_P(port, " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us));
  1977. SERIAL_ECHOPAIR_P(port, " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s));
  1978. SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s));
  1979. #if ENABLED(JUNCTION_DEVIATION)
  1980. SERIAL_ECHOPAIR_P(port, " J", LINEAR_UNIT(planner.junction_deviation_mm));
  1981. #endif
  1982. #if HAS_CLASSIC_JERK
  1983. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1984. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1985. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1986. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1987. SERIAL_ECHOPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1988. #endif
  1989. #endif
  1990. SERIAL_EOL_P(port);
  1991. #if HAS_M206_COMMAND
  1992. if (!forReplay) {
  1993. CONFIG_ECHO_START;
  1994. SERIAL_ECHOLNPGM_P(port, "Home offset:");
  1995. }
  1996. CONFIG_ECHO_START;
  1997. SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1998. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1999. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  2000. #endif
  2001. #if HAS_HOTEND_OFFSET
  2002. if (!forReplay) {
  2003. CONFIG_ECHO_START;
  2004. SERIAL_ECHOLNPGM_P(port, "Hotend offsets:");
  2005. }
  2006. CONFIG_ECHO_START;
  2007. for (uint8_t e = 1; e < HOTENDS; e++) {
  2008. SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
  2009. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  2010. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  2011. SERIAL_ECHO_P(port, " Z");
  2012. SERIAL_ECHO_F_P(port, LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2013. SERIAL_EOL_P(port);
  2014. }
  2015. #endif
  2016. /**
  2017. * Bed Leveling
  2018. */
  2019. #if HAS_LEVELING
  2020. #if ENABLED(MESH_BED_LEVELING)
  2021. if (!forReplay) {
  2022. CONFIG_ECHO_START;
  2023. SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:");
  2024. }
  2025. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2026. if (!forReplay) {
  2027. CONFIG_ECHO_START;
  2028. ubl.echo_name();
  2029. SERIAL_ECHOLNPGM_P(port, ":");
  2030. }
  2031. #elif HAS_ABL
  2032. if (!forReplay) {
  2033. CONFIG_ECHO_START;
  2034. SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:");
  2035. }
  2036. #endif
  2037. CONFIG_ECHO_START;
  2038. SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
  2039. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2040. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
  2041. #endif
  2042. SERIAL_EOL_P(port);
  2043. #if ENABLED(MESH_BED_LEVELING)
  2044. if (leveling_is_valid()) {
  2045. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2046. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2047. CONFIG_ECHO_START;
  2048. SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
  2049. SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
  2050. SERIAL_ECHOPGM_P(port, " Z");
  2051. SERIAL_ECHO_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2052. SERIAL_EOL_P(port);
  2053. }
  2054. }
  2055. }
  2056. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2057. if (!forReplay) {
  2058. SERIAL_EOL_P(port);
  2059. ubl.report_state();
  2060. SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
  2061. SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
  2062. SERIAL_ECHOLNPGM_P(port, " meshes.\n");
  2063. }
  2064. // ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large mesh's. A better (more terse)
  2065. // solution needs to be found.
  2066. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2067. if (leveling_is_valid()) {
  2068. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2069. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2070. CONFIG_ECHO_START;
  2071. SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px);
  2072. SERIAL_ECHOPAIR_P(port, " J", (int)py);
  2073. SERIAL_ECHOPGM_P(port, " Z");
  2074. SERIAL_ECHO_F_P(port, LINEAR_UNIT(z_values[px][py]), 5);
  2075. SERIAL_EOL_P(port);
  2076. }
  2077. }
  2078. }
  2079. #endif
  2080. #endif // HAS_LEVELING
  2081. #if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
  2082. if (!forReplay) {
  2083. CONFIG_ECHO_START;
  2084. SERIAL_ECHOLNPGM_P(port, "Servo Angles:");
  2085. }
  2086. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2087. switch (i) {
  2088. #if ENABLED(SWITCHING_EXTRUDER)
  2089. case SWITCHING_EXTRUDER_SERVO_NR:
  2090. #if EXTRUDERS > 3
  2091. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2092. #endif
  2093. #elif ENABLED(SWITCHING_NOZZLE)
  2094. case SWITCHING_NOZZLE_SERVO_NR:
  2095. #elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
  2096. case Z_PROBE_SERVO_NR:
  2097. #endif
  2098. CONFIG_ECHO_START;
  2099. SERIAL_ECHOPAIR_P(port, " M281 P", int(i));
  2100. SERIAL_ECHOPAIR_P(port, " L", servo_angles[i][0]);
  2101. SERIAL_ECHOPAIR_P(port, " U", servo_angles[i][1]);
  2102. SERIAL_EOL_P(port);
  2103. default: break;
  2104. }
  2105. }
  2106. #endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
  2107. #if HAS_SCARA_OFFSET
  2108. if (!forReplay) {
  2109. CONFIG_ECHO_START;
  2110. SERIAL_ECHOLNPGM_P(port, "SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2111. }
  2112. CONFIG_ECHO_START;
  2113. SERIAL_ECHOPAIR_P(port, " M665 S", delta_segments_per_second);
  2114. SERIAL_ECHOPAIR_P(port, " P", scara_home_offset[A_AXIS]);
  2115. SERIAL_ECHOPAIR_P(port, " T", scara_home_offset[B_AXIS]);
  2116. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(scara_home_offset[Z_AXIS]));
  2117. SERIAL_EOL_P(port);
  2118. #elif ENABLED(DELTA)
  2119. if (!forReplay) {
  2120. CONFIG_ECHO_START;
  2121. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2122. }
  2123. CONFIG_ECHO_START;
  2124. SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
  2125. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
  2126. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
  2127. if (!forReplay) {
  2128. CONFIG_ECHO_START;
  2129. SERIAL_ECHOLNPGM_P(port, "Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2130. }
  2131. CONFIG_ECHO_START;
  2132. SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
  2133. SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
  2134. SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
  2135. SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
  2136. SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
  2137. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  2138. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  2139. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  2140. SERIAL_EOL_P(port);
  2141. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2142. if (!forReplay) {
  2143. CONFIG_ECHO_START;
  2144. SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
  2145. }
  2146. CONFIG_ECHO_START;
  2147. SERIAL_ECHOPGM_P(port, " M666");
  2148. #if ENABLED(X_DUAL_ENDSTOPS)
  2149. SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2150. #endif
  2151. #if ENABLED(Y_DUAL_ENDSTOPS)
  2152. SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2153. #endif
  2154. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2155. SERIAL_ECHOLNPAIR_P(port, "S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2156. CONFIG_ECHO_START;
  2157. SERIAL_ECHOPAIR_P(port, " M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2158. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2159. SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2160. #endif
  2161. SERIAL_EOL_P(port);
  2162. #endif // [XYZ]_DUAL_ENDSTOPS
  2163. #if ENABLED(ULTIPANEL)
  2164. if (!forReplay) {
  2165. CONFIG_ECHO_START;
  2166. SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:");
  2167. }
  2168. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  2169. CONFIG_ECHO_START;
  2170. SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
  2171. SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  2172. SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  2173. SERIAL_ECHOLNPAIR_P(port, " F", int(lcd_preheat_fan_speed[i]));
  2174. }
  2175. #endif // ULTIPANEL
  2176. #if HAS_PID_HEATING
  2177. if (!forReplay) {
  2178. CONFIG_ECHO_START;
  2179. SERIAL_ECHOLNPGM_P(port, "PID settings:");
  2180. }
  2181. #if ENABLED(PIDTEMP)
  2182. #if HOTENDS > 1
  2183. if (forReplay) {
  2184. HOTEND_LOOP() {
  2185. CONFIG_ECHO_START;
  2186. SERIAL_ECHOPAIR_P(port, " M301 E", e);
  2187. SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
  2188. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
  2189. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
  2190. #if ENABLED(PID_EXTRUSION_SCALING)
  2191. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
  2192. if (e == 0) SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2193. #endif
  2194. SERIAL_EOL_P(port);
  2195. }
  2196. }
  2197. else
  2198. #endif // HOTENDS > 1
  2199. // !forReplay || HOTENDS == 1
  2200. {
  2201. CONFIG_ECHO_START;
  2202. SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  2203. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
  2204. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
  2205. #if ENABLED(PID_EXTRUSION_SCALING)
  2206. SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
  2207. SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
  2208. #endif
  2209. SERIAL_EOL_P(port);
  2210. }
  2211. #endif // PIDTEMP
  2212. #if ENABLED(PIDTEMPBED)
  2213. CONFIG_ECHO_START;
  2214. SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bed_pid.Kp);
  2215. SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bed_pid.Ki));
  2216. SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bed_pid.Kd));
  2217. SERIAL_EOL_P(port);
  2218. #endif
  2219. #endif // PIDTEMP || PIDTEMPBED
  2220. #if HAS_LCD_CONTRAST
  2221. if (!forReplay) {
  2222. CONFIG_ECHO_START;
  2223. SERIAL_ECHOLNPGM_P(port, "LCD Contrast:");
  2224. }
  2225. CONFIG_ECHO_START;
  2226. SERIAL_ECHOLNPAIR_P(port, " M250 C", lcd_contrast);
  2227. #endif
  2228. #if ENABLED(FWRETRACT)
  2229. if (!forReplay) {
  2230. CONFIG_ECHO_START;
  2231. SERIAL_ECHOLNPGM_P(port, "Retract: S<length> F<units/m> Z<lift>");
  2232. }
  2233. CONFIG_ECHO_START;
  2234. SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.settings.retract_length));
  2235. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_length));
  2236. SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s)));
  2237. SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.settings.retract_zraise));
  2238. if (!forReplay) {
  2239. CONFIG_ECHO_START;
  2240. SERIAL_ECHOLNPGM_P(port, "Recover: S<length> F<units/m>");
  2241. }
  2242. CONFIG_ECHO_START;
  2243. SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_length));
  2244. SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_length));
  2245. SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s)));
  2246. #if ENABLED(FWRETRACT_AUTORETRACT)
  2247. if (!forReplay) {
  2248. CONFIG_ECHO_START;
  2249. SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2250. }
  2251. CONFIG_ECHO_START;
  2252. SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2253. #endif // FWRETRACT_AUTORETRACT
  2254. #endif // FWRETRACT
  2255. /**
  2256. * Probe Offset
  2257. */
  2258. #if HAS_BED_PROBE
  2259. if (!forReplay) {
  2260. CONFIG_ECHO_START;
  2261. SERIAL_ECHOPGM_P(port, "Z-Probe Offset (mm):");
  2262. SAY_UNITS_P(port, true);
  2263. }
  2264. CONFIG_ECHO_START;
  2265. SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2266. #endif
  2267. /**
  2268. * Bed Skew Correction
  2269. */
  2270. #if ENABLED(SKEW_CORRECTION_GCODE)
  2271. if (!forReplay) {
  2272. CONFIG_ECHO_START;
  2273. SERIAL_ECHOLNPGM_P(port, "Skew Factor: ");
  2274. }
  2275. CONFIG_ECHO_START;
  2276. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2277. SERIAL_ECHOPGM_P(port, " M852 I");
  2278. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
  2279. SERIAL_ECHOPGM_P(port, " J");
  2280. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xz), 6);
  2281. SERIAL_ECHOPGM_P(port, " K");
  2282. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.yz), 6);
  2283. SERIAL_EOL_P(port);
  2284. #else
  2285. SERIAL_ECHOPGM_P(port, " M852 S");
  2286. SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
  2287. SERIAL_EOL_P(port);
  2288. #endif
  2289. #endif
  2290. #if HAS_TRINAMIC
  2291. /**
  2292. * TMC stepper driver current
  2293. */
  2294. if (!forReplay) {
  2295. CONFIG_ECHO_START;
  2296. SERIAL_ECHOLNPGM_P(port, "Stepper driver current:");
  2297. }
  2298. CONFIG_ECHO_START;
  2299. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2300. say_M906(PORTVAR_SOLO);
  2301. #endif
  2302. #if AXIS_IS_TMC(X)
  2303. SERIAL_ECHOPAIR_P(port, " X", stepperX.getMilliamps());
  2304. #endif
  2305. #if AXIS_IS_TMC(Y)
  2306. SERIAL_ECHOPAIR_P(port, " Y", stepperY.getMilliamps());
  2307. #endif
  2308. #if AXIS_IS_TMC(Z)
  2309. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getMilliamps());
  2310. #endif
  2311. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2312. SERIAL_EOL_P(port);
  2313. #endif
  2314. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2315. say_M906(PORTVAR_SOLO);
  2316. SERIAL_ECHOPGM_P(port, " I1");
  2317. #endif
  2318. #if AXIS_IS_TMC(X2)
  2319. SERIAL_ECHOPAIR_P(port, " X", stepperX2.getMilliamps());
  2320. #endif
  2321. #if AXIS_IS_TMC(Y2)
  2322. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getMilliamps());
  2323. #endif
  2324. #if AXIS_IS_TMC(Z2)
  2325. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getMilliamps());
  2326. #endif
  2327. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2328. SERIAL_EOL_P(port);
  2329. #endif
  2330. #if AXIS_IS_TMC(Z3)
  2331. say_M906(PORTVAR_SOLO);
  2332. SERIAL_ECHOLNPAIR_P(port, " I2 Z", stepperZ3.getMilliamps());
  2333. #endif
  2334. #if AXIS_IS_TMC(E0)
  2335. say_M906(PORTVAR_SOLO);
  2336. SERIAL_ECHOLNPAIR_P(port, " T0 E", stepperE0.getMilliamps());
  2337. #endif
  2338. #if AXIS_IS_TMC(E1)
  2339. say_M906(PORTVAR_SOLO);
  2340. SERIAL_ECHOLNPAIR_P(port, " T1 E", stepperE1.getMilliamps());
  2341. #endif
  2342. #if AXIS_IS_TMC(E2)
  2343. say_M906(PORTVAR_SOLO);
  2344. SERIAL_ECHOLNPAIR_P(port, " T2 E", stepperE2.getMilliamps());
  2345. #endif
  2346. #if AXIS_IS_TMC(E3)
  2347. say_M906(PORTVAR_SOLO);
  2348. SERIAL_ECHOLNPAIR_P(port, " T3 E", stepperE3.getMilliamps());
  2349. #endif
  2350. #if AXIS_IS_TMC(E4)
  2351. say_M906(PORTVAR_SOLO);
  2352. SERIAL_ECHOLNPAIR_P(port, " T4 E", stepperE4.getMilliamps());
  2353. #endif
  2354. #if AXIS_IS_TMC(E5)
  2355. say_M906(PORTVAR_SOLO);
  2356. SERIAL_ECHOLNPAIR_P(port, " T5 E", stepperE5.getMilliamps());
  2357. #endif
  2358. SERIAL_EOL_P(port);
  2359. /**
  2360. * TMC Hybrid Threshold
  2361. */
  2362. #if ENABLED(HYBRID_THRESHOLD)
  2363. if (!forReplay) {
  2364. CONFIG_ECHO_START;
  2365. SERIAL_ECHOLNPGM_P(port, "Hybrid Threshold:");
  2366. }
  2367. CONFIG_ECHO_START;
  2368. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2369. say_M913(PORTVAR_SOLO);
  2370. #endif
  2371. #if AXIS_HAS_STEALTHCHOP(X)
  2372. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X));
  2373. #endif
  2374. #if AXIS_HAS_STEALTHCHOP(Y)
  2375. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y));
  2376. #endif
  2377. #if AXIS_HAS_STEALTHCHOP(Z)
  2378. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z));
  2379. #endif
  2380. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2381. SERIAL_EOL_P(port);
  2382. #endif
  2383. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2384. say_M913(PORTVAR_SOLO);
  2385. SERIAL_ECHOPGM_P(port, " I1");
  2386. #endif
  2387. #if AXIS_HAS_STEALTHCHOP(X2)
  2388. SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2));
  2389. #endif
  2390. #if AXIS_HAS_STEALTHCHOP(Y2)
  2391. SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2));
  2392. #endif
  2393. #if AXIS_HAS_STEALTHCHOP(Z2)
  2394. SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2));
  2395. #endif
  2396. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2397. SERIAL_EOL_P(port);
  2398. #endif
  2399. #if AXIS_HAS_STEALTHCHOP(Z3)
  2400. say_M913(PORTVAR_SOLO);
  2401. SERIAL_ECHOPGM_P(port, " I2");
  2402. SERIAL_ECHOLNPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z3));
  2403. #endif
  2404. #if AXIS_HAS_STEALTHCHOP(E0)
  2405. say_M913(PORTVAR_SOLO);
  2406. SERIAL_ECHOLNPAIR_P(port, " T0 E", TMC_GET_PWMTHRS(E, E0));
  2407. #endif
  2408. #if AXIS_HAS_STEALTHCHOP(E1)
  2409. say_M913(PORTVAR_SOLO);
  2410. SERIAL_ECHOLNPAIR_P(port, " T1 E", TMC_GET_PWMTHRS(E, E1));
  2411. #endif
  2412. #if AXIS_HAS_STEALTHCHOP(E2)
  2413. say_M913(PORTVAR_SOLO);
  2414. SERIAL_ECHOLNPAIR_P(port, " T2 E", TMC_GET_PWMTHRS(E, E2));
  2415. #endif
  2416. #if AXIS_HAS_STEALTHCHOP(E3)
  2417. say_M913(PORTVAR_SOLO);
  2418. SERIAL_ECHOLNPAIR_P(port, " T3 E", TMC_GET_PWMTHRS(E, E3));
  2419. #endif
  2420. #if AXIS_HAS_STEALTHCHOP(E4)
  2421. say_M913(PORTVAR_SOLO);
  2422. SERIAL_ECHOLNPAIR_P(port, " T4 E", TMC_GET_PWMTHRS(E, E4));
  2423. #endif
  2424. #if AXIS_HAS_STEALTHCHOP(E5)
  2425. say_M913(PORTVAR_SOLO);
  2426. SERIAL_ECHOLNPAIR_P(port, " T5 E", TMC_GET_PWMTHRS(E, E5));
  2427. #endif
  2428. SERIAL_EOL_P(port);
  2429. #endif // HYBRID_THRESHOLD
  2430. /**
  2431. * TMC Sensorless homing thresholds
  2432. */
  2433. #if USE_SENSORLESS
  2434. if (!forReplay) {
  2435. CONFIG_ECHO_START;
  2436. SERIAL_ECHOLNPGM_P(port, "TMC2130 StallGuard threshold:");
  2437. }
  2438. CONFIG_ECHO_START;
  2439. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2440. say_M914(PORTVAR_SOLO);
  2441. #if X_SENSORLESS
  2442. SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
  2443. #endif
  2444. #if Y_SENSORLESS
  2445. SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
  2446. #endif
  2447. #if Z_SENSORLESS
  2448. SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt());
  2449. #endif
  2450. SERIAL_EOL_P(port);
  2451. #endif
  2452. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2453. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2454. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2455. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2456. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2457. say_M914(PORTVAR_SOLO);
  2458. SERIAL_ECHOPGM_P(port, " I1");
  2459. #if HAS_X2_SENSORLESS
  2460. SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt());
  2461. #endif
  2462. #if HAS_Y2_SENSORLESS
  2463. SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt());
  2464. #endif
  2465. #if HAS_Z2_SENSORLESS
  2466. SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt());
  2467. #endif
  2468. SERIAL_EOL_P(port);
  2469. #endif
  2470. #if HAS_Z3_SENSORLESS
  2471. say_M914(PORTVAR_SOLO);
  2472. SERIAL_ECHOPGM_P(port, " I2");
  2473. SERIAL_ECHOLNPAIR_P(port, " Z", stepperZ3.sgt());
  2474. #endif
  2475. #endif // USE_SENSORLESS
  2476. #endif // HAS_TRINAMIC
  2477. /**
  2478. * Linear Advance
  2479. */
  2480. #if ENABLED(LIN_ADVANCE)
  2481. if (!forReplay) {
  2482. CONFIG_ECHO_START;
  2483. SERIAL_ECHOLNPGM_P(port, "Linear Advance:");
  2484. }
  2485. CONFIG_ECHO_START;
  2486. #if EXTRUDERS < 2
  2487. SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K[0]);
  2488. #else
  2489. LOOP_L_N(i, EXTRUDERS) {
  2490. SERIAL_ECHOPAIR_P(port, " M900 T", int(i));
  2491. SERIAL_ECHOLNPAIR_P(port, " K", planner.extruder_advance_K[i]);
  2492. }
  2493. #endif
  2494. #endif
  2495. #if HAS_MOTOR_CURRENT_PWM
  2496. CONFIG_ECHO_START;
  2497. if (!forReplay) {
  2498. SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:");
  2499. CONFIG_ECHO_START;
  2500. }
  2501. SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
  2502. SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
  2503. SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
  2504. SERIAL_EOL_P(port);
  2505. #endif
  2506. /**
  2507. * Advanced Pause filament load & unload lengths
  2508. */
  2509. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2510. if (!forReplay) {
  2511. CONFIG_ECHO_START;
  2512. SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:");
  2513. }
  2514. CONFIG_ECHO_START;
  2515. #if EXTRUDERS == 1
  2516. say_M603(PORTVAR_SOLO);
  2517. SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(fc_settings[0].load_length));
  2518. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2519. #else
  2520. say_M603(PORTVAR_SOLO);
  2521. SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(fc_settings[0].load_length));
  2522. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2523. CONFIG_ECHO_START;
  2524. say_M603(PORTVAR_SOLO);
  2525. SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(fc_settings[1].load_length));
  2526. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[1].unload_length));
  2527. #if EXTRUDERS > 2
  2528. CONFIG_ECHO_START;
  2529. say_M603(PORTVAR_SOLO);
  2530. SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(fc_settings[2].load_length));
  2531. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[2].unload_length));
  2532. #if EXTRUDERS > 3
  2533. CONFIG_ECHO_START;
  2534. say_M603(PORTVAR_SOLO);
  2535. SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(fc_settings[3].load_length));
  2536. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[3].unload_length));
  2537. #if EXTRUDERS > 4
  2538. CONFIG_ECHO_START;
  2539. say_M603(PORTVAR_SOLO);
  2540. SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(fc_settings[4].load_length));
  2541. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[4].unload_length));
  2542. #if EXTRUDERS > 5
  2543. CONFIG_ECHO_START;
  2544. say_M603(PORTVAR_SOLO);
  2545. SERIAL_ECHOPAIR_P(port, "T5 L", LINEAR_UNIT(fc_settings[5].load_length));
  2546. SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[5].unload_length));
  2547. #endif // EXTRUDERS > 5
  2548. #endif // EXTRUDERS > 4
  2549. #endif // EXTRUDERS > 3
  2550. #endif // EXTRUDERS > 2
  2551. #endif // EXTRUDERS == 1
  2552. #endif // ADVANCED_PAUSE_FEATURE
  2553. #if ENABLED(SINGLENOZZLE)
  2554. CONFIG_ECHO_START;
  2555. if (!forReplay) {
  2556. SERIAL_ECHOLNPGM_P(port, "SINGLENOZZLE:");
  2557. CONFIG_ECHO_START;
  2558. }
  2559. M217_report(true);
  2560. #endif
  2561. }
  2562. #endif // !DISABLE_M503
  2563. #pragma pack(pop)