My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 120KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores parameters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from EEPROM)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M665 - set delta configurations
  149. // M666 - set delta endstop adjustment
  150. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  151. // M907 - Set digital trimpot motor current using axis codes.
  152. // M908 - Control digital trimpot directly.
  153. // M350 - Set microstepping mode.
  154. // M351 - Toggle MS1 MS2 pins directly.
  155. // M928 - Start SD logging (M928 filename.g) - ended by M29
  156. // M999 - Restart after being stopped by error
  157. //Stepper Movement Variables
  158. //===========================================================================
  159. //=============================imported variables============================
  160. //===========================================================================
  161. //===========================================================================
  162. //=============================public variables=============================
  163. //===========================================================================
  164. #ifdef SDSUPPORT
  165. CardReader card;
  166. #endif
  167. float homing_feedrate[] = HOMING_FEEDRATE;
  168. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  169. int feedmultiply=100; //100->1 200->2
  170. int saved_feedmultiply;
  171. int extrudemultiply=100; //100->1 200->2
  172. int extruder_multiply[EXTRUDERS] = {100
  173. #if EXTRUDERS > 1
  174. , 100
  175. #if EXTRUDERS > 2
  176. , 100
  177. #endif
  178. #endif
  179. };
  180. float volumetric_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. float add_homeing[3]={0,0,0};
  190. #ifdef DELTA
  191. float endstop_adj[3]={0,0,0};
  192. #endif
  193. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  194. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  195. bool axis_known_position[3] = {false, false, false};
  196. float zprobe_zoffset;
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #ifndef DUAL_X_CARRIAGE
  200. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  201. #else
  202. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  203. #endif
  204. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  205. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  206. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  207. #endif
  208. };
  209. #endif
  210. uint8_t active_extruder = 0;
  211. int fanSpeed=0;
  212. #ifdef SERVO_ENDSTOPS
  213. int servo_endstops[] = SERVO_ENDSTOPS;
  214. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  215. #endif
  216. #ifdef BARICUDA
  217. int ValvePressure=0;
  218. int EtoPPressure=0;
  219. #endif
  220. #ifdef FWRETRACT
  221. bool autoretract_enabled=false;
  222. bool retracted=false;
  223. float retract_length = RETRACT_LENGTH;
  224. float retract_feedrate = RETRACT_FEEDRATE;
  225. float retract_zlift = RETRACT_ZLIFT;
  226. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  227. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  228. #endif
  229. #ifdef ULTIPANEL
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. #endif
  236. #ifdef DELTA
  237. float delta[3] = {0.0, 0.0, 0.0};
  238. #define SIN_60 0.8660254037844386
  239. #define COS_60 0.5
  240. // these are the default values, can be overriden with M665
  241. float delta_radius= DELTA_RADIUS;
  242. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  243. float delta_tower1_y= -COS_60*delta_radius;
  244. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  245. float delta_tower2_y= -COS_60*delta_radius;
  246. float delta_tower3_x= 0.0; // back middle tower
  247. float delta_tower3_y= delta_radius;
  248. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  249. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  250. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  251. #endif
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  257. static float offset[3] = {0.0, 0.0, 0.0};
  258. static bool home_all_axis = true;
  259. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  260. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  261. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  262. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  263. static bool fromsd[BUFSIZE];
  264. static int bufindr = 0;
  265. static int bufindw = 0;
  266. static int buflen = 0;
  267. //static int i = 0;
  268. static char serial_char;
  269. static int serial_count = 0;
  270. static boolean comment_mode = false;
  271. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  272. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  273. //static float tt = 0;
  274. //static float bt = 0;
  275. //Inactivity shutdown variables
  276. static unsigned long previous_millis_cmd = 0;
  277. static unsigned long max_inactive_time = 0;
  278. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  279. unsigned long starttime=0;
  280. unsigned long stoptime=0;
  281. static uint8_t tmp_extruder;
  282. bool Stopped=false;
  283. #if NUM_SERVOS > 0
  284. Servo servos[NUM_SERVOS];
  285. #endif
  286. bool CooldownNoWait = true;
  287. bool target_direction;
  288. //Insert variables if CHDK is defined
  289. #ifdef CHDK
  290. unsigned long chdkHigh = 0;
  291. boolean chdkActive = false;
  292. #endif
  293. //===========================================================================
  294. //=============================Routines======================================
  295. //===========================================================================
  296. void get_arc_coordinates();
  297. bool setTargetedHotend(int code);
  298. void serial_echopair_P(const char *s_P, float v)
  299. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  300. void serial_echopair_P(const char *s_P, double v)
  301. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  302. void serial_echopair_P(const char *s_P, unsigned long v)
  303. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  304. extern "C"{
  305. extern unsigned int __bss_end;
  306. extern unsigned int __heap_start;
  307. extern void *__brkval;
  308. int freeMemory() {
  309. int free_memory;
  310. if((int)__brkval == 0)
  311. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  312. else
  313. free_memory = ((int)&free_memory) - ((int)__brkval);
  314. return free_memory;
  315. }
  316. }
  317. //adds an command to the main command buffer
  318. //thats really done in a non-safe way.
  319. //needs overworking someday
  320. void enquecommand(const char *cmd)
  321. {
  322. if(buflen < BUFSIZE)
  323. {
  324. //this is dangerous if a mixing of serial and this happens
  325. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  326. SERIAL_ECHO_START;
  327. SERIAL_ECHOPGM("enqueing \"");
  328. SERIAL_ECHO(cmdbuffer[bufindw]);
  329. SERIAL_ECHOLNPGM("\"");
  330. bufindw= (bufindw + 1)%BUFSIZE;
  331. buflen += 1;
  332. }
  333. }
  334. void enquecommand_P(const char *cmd)
  335. {
  336. if(buflen < BUFSIZE)
  337. {
  338. //this is dangerous if a mixing of serial and this happens
  339. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  340. SERIAL_ECHO_START;
  341. SERIAL_ECHOPGM("enqueing \"");
  342. SERIAL_ECHO(cmdbuffer[bufindw]);
  343. SERIAL_ECHOLNPGM("\"");
  344. bufindw= (bufindw + 1)%BUFSIZE;
  345. buflen += 1;
  346. }
  347. }
  348. void setup_killpin()
  349. {
  350. #if defined(KILL_PIN) && KILL_PIN > -1
  351. pinMode(KILL_PIN,INPUT);
  352. WRITE(KILL_PIN,HIGH);
  353. #endif
  354. }
  355. void setup_photpin()
  356. {
  357. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  358. SET_OUTPUT(PHOTOGRAPH_PIN);
  359. WRITE(PHOTOGRAPH_PIN, LOW);
  360. #endif
  361. }
  362. void setup_powerhold()
  363. {
  364. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  365. SET_OUTPUT(SUICIDE_PIN);
  366. WRITE(SUICIDE_PIN, HIGH);
  367. #endif
  368. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  369. SET_OUTPUT(PS_ON_PIN);
  370. #if defined(PS_DEFAULT_OFF)
  371. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  372. #else
  373. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  374. #endif
  375. #endif
  376. }
  377. void suicide()
  378. {
  379. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  380. SET_OUTPUT(SUICIDE_PIN);
  381. WRITE(SUICIDE_PIN, LOW);
  382. #endif
  383. }
  384. void servo_init()
  385. {
  386. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  387. servos[0].attach(SERVO0_PIN);
  388. #endif
  389. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  390. servos[1].attach(SERVO1_PIN);
  391. #endif
  392. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  393. servos[2].attach(SERVO2_PIN);
  394. #endif
  395. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  396. servos[3].attach(SERVO3_PIN);
  397. #endif
  398. #if (NUM_SERVOS >= 5)
  399. #error "TODO: enter initalisation code for more servos"
  400. #endif
  401. // Set position of Servo Endstops that are defined
  402. #ifdef SERVO_ENDSTOPS
  403. for(int8_t i = 0; i < 3; i++)
  404. {
  405. if(servo_endstops[i] > -1) {
  406. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  407. }
  408. }
  409. #endif
  410. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  411. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  412. servos[servo_endstops[Z_AXIS]].detach();
  413. #endif
  414. }
  415. void setup()
  416. {
  417. setup_killpin();
  418. setup_powerhold();
  419. MYSERIAL.begin(BAUDRATE);
  420. SERIAL_PROTOCOLLNPGM("start");
  421. SERIAL_ECHO_START;
  422. // Check startup - does nothing if bootloader sets MCUSR to 0
  423. byte mcu = MCUSR;
  424. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  425. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  426. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  427. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  428. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  429. MCUSR=0;
  430. SERIAL_ECHOPGM(MSG_MARLIN);
  431. SERIAL_ECHOLNPGM(VERSION_STRING);
  432. #ifdef STRING_VERSION_CONFIG_H
  433. #ifdef STRING_CONFIG_H_AUTHOR
  434. SERIAL_ECHO_START;
  435. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  436. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  437. SERIAL_ECHOPGM(MSG_AUTHOR);
  438. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  439. SERIAL_ECHOPGM("Compiled: ");
  440. SERIAL_ECHOLNPGM(__DATE__);
  441. #endif
  442. #endif
  443. SERIAL_ECHO_START;
  444. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  445. SERIAL_ECHO(freeMemory());
  446. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  447. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  448. for(int8_t i = 0; i < BUFSIZE; i++)
  449. {
  450. fromsd[i] = false;
  451. }
  452. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  453. Config_RetrieveSettings();
  454. tp_init(); // Initialize temperature loop
  455. plan_init(); // Initialize planner;
  456. watchdog_init();
  457. st_init(); // Initialize stepper, this enables interrupts!
  458. setup_photpin();
  459. servo_init();
  460. lcd_init();
  461. _delay_ms(1000); // wait 1sec to display the splash screen
  462. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  463. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  464. #endif
  465. #ifdef DIGIPOT_I2C
  466. digipot_i2c_init();
  467. #endif
  468. }
  469. void loop()
  470. {
  471. if(buflen < (BUFSIZE-1))
  472. get_command();
  473. #ifdef SDSUPPORT
  474. card.checkautostart(false);
  475. #endif
  476. if(buflen)
  477. {
  478. #ifdef SDSUPPORT
  479. if(card.saving)
  480. {
  481. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  482. {
  483. card.write_command(cmdbuffer[bufindr]);
  484. if(card.logging)
  485. {
  486. process_commands();
  487. }
  488. else
  489. {
  490. SERIAL_PROTOCOLLNPGM(MSG_OK);
  491. }
  492. }
  493. else
  494. {
  495. card.closefile();
  496. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  497. }
  498. }
  499. else
  500. {
  501. process_commands();
  502. }
  503. #else
  504. process_commands();
  505. #endif //SDSUPPORT
  506. buflen = (buflen-1);
  507. bufindr = (bufindr + 1)%BUFSIZE;
  508. }
  509. //check heater every n milliseconds
  510. manage_heater();
  511. manage_inactivity();
  512. checkHitEndstops();
  513. lcd_update();
  514. }
  515. void get_command()
  516. {
  517. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  518. serial_char = MYSERIAL.read();
  519. if(serial_char == '\n' ||
  520. serial_char == '\r' ||
  521. (serial_char == ':' && comment_mode == false) ||
  522. serial_count >= (MAX_CMD_SIZE - 1) )
  523. {
  524. if(!serial_count) { //if empty line
  525. comment_mode = false; //for new command
  526. return;
  527. }
  528. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  529. if(!comment_mode){
  530. comment_mode = false; //for new command
  531. fromsd[bufindw] = false;
  532. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  533. {
  534. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  535. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  536. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  537. SERIAL_ERROR_START;
  538. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  539. SERIAL_ERRORLN(gcode_LastN);
  540. //Serial.println(gcode_N);
  541. FlushSerialRequestResend();
  542. serial_count = 0;
  543. return;
  544. }
  545. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  546. {
  547. byte checksum = 0;
  548. byte count = 0;
  549. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  550. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  551. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  552. SERIAL_ERROR_START;
  553. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  554. SERIAL_ERRORLN(gcode_LastN);
  555. FlushSerialRequestResend();
  556. serial_count = 0;
  557. return;
  558. }
  559. //if no errors, continue parsing
  560. }
  561. else
  562. {
  563. SERIAL_ERROR_START;
  564. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  565. SERIAL_ERRORLN(gcode_LastN);
  566. FlushSerialRequestResend();
  567. serial_count = 0;
  568. return;
  569. }
  570. gcode_LastN = gcode_N;
  571. //if no errors, continue parsing
  572. }
  573. else // if we don't receive 'N' but still see '*'
  574. {
  575. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  576. {
  577. SERIAL_ERROR_START;
  578. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  579. SERIAL_ERRORLN(gcode_LastN);
  580. serial_count = 0;
  581. return;
  582. }
  583. }
  584. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  585. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  586. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  587. case 0:
  588. case 1:
  589. case 2:
  590. case 3:
  591. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  592. #ifdef SDSUPPORT
  593. if(card.saving)
  594. break;
  595. #endif //SDSUPPORT
  596. SERIAL_PROTOCOLLNPGM(MSG_OK);
  597. }
  598. else {
  599. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  600. LCD_MESSAGEPGM(MSG_STOPPED);
  601. }
  602. break;
  603. default:
  604. break;
  605. }
  606. }
  607. bufindw = (bufindw + 1)%BUFSIZE;
  608. buflen += 1;
  609. }
  610. serial_count = 0; //clear buffer
  611. }
  612. else
  613. {
  614. if(serial_char == ';') comment_mode = true;
  615. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  616. }
  617. }
  618. #ifdef SDSUPPORT
  619. if(!card.sdprinting || serial_count!=0){
  620. return;
  621. }
  622. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  623. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  624. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  625. static bool stop_buffering=false;
  626. if(buflen==0) stop_buffering=false;
  627. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  628. int16_t n=card.get();
  629. serial_char = (char)n;
  630. if(serial_char == '\n' ||
  631. serial_char == '\r' ||
  632. (serial_char == '#' && comment_mode == false) ||
  633. (serial_char == ':' && comment_mode == false) ||
  634. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  635. {
  636. if(card.eof()){
  637. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  638. stoptime=millis();
  639. char time[30];
  640. unsigned long t=(stoptime-starttime)/1000;
  641. int hours, minutes;
  642. minutes=(t/60)%60;
  643. hours=t/60/60;
  644. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  645. SERIAL_ECHO_START;
  646. SERIAL_ECHOLN(time);
  647. lcd_setstatus(time);
  648. card.printingHasFinished();
  649. card.checkautostart(true);
  650. }
  651. if(serial_char=='#')
  652. stop_buffering=true;
  653. if(!serial_count)
  654. {
  655. comment_mode = false; //for new command
  656. return; //if empty line
  657. }
  658. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  659. // if(!comment_mode){
  660. fromsd[bufindw] = true;
  661. buflen += 1;
  662. bufindw = (bufindw + 1)%BUFSIZE;
  663. // }
  664. comment_mode = false; //for new command
  665. serial_count = 0; //clear buffer
  666. }
  667. else
  668. {
  669. if(serial_char == ';') comment_mode = true;
  670. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  671. }
  672. }
  673. #endif //SDSUPPORT
  674. }
  675. float code_value()
  676. {
  677. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  678. }
  679. long code_value_long()
  680. {
  681. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  682. }
  683. bool code_seen(char code)
  684. {
  685. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  686. return (strchr_pointer != NULL); //Return True if a character was found
  687. }
  688. #define DEFINE_PGM_READ_ANY(type, reader) \
  689. static inline type pgm_read_any(const type *p) \
  690. { return pgm_read_##reader##_near(p); }
  691. DEFINE_PGM_READ_ANY(float, float);
  692. DEFINE_PGM_READ_ANY(signed char, byte);
  693. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  694. static const PROGMEM type array##_P[3] = \
  695. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  696. static inline type array(int axis) \
  697. { return pgm_read_any(&array##_P[axis]); }
  698. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  699. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  700. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  701. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  702. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  703. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  704. #ifdef DUAL_X_CARRIAGE
  705. #if EXTRUDERS == 1 || defined(COREXY) \
  706. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  707. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  708. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  709. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  710. #endif
  711. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  712. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  713. #endif
  714. #define DXC_FULL_CONTROL_MODE 0
  715. #define DXC_AUTO_PARK_MODE 1
  716. #define DXC_DUPLICATION_MODE 2
  717. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  718. static float x_home_pos(int extruder) {
  719. if (extruder == 0)
  720. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  721. else
  722. // In dual carriage mode the extruder offset provides an override of the
  723. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  724. // This allow soft recalibration of the second extruder offset position without firmware reflash
  725. // (through the M218 command).
  726. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  727. }
  728. static int x_home_dir(int extruder) {
  729. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  730. }
  731. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  732. static bool active_extruder_parked = false; // used in mode 1 & 2
  733. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  734. static unsigned long delayed_move_time = 0; // used in mode 1
  735. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  736. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  737. bool extruder_duplication_enabled = false; // used in mode 2
  738. #endif //DUAL_X_CARRIAGE
  739. static void axis_is_at_home(int axis) {
  740. #ifdef DUAL_X_CARRIAGE
  741. if (axis == X_AXIS) {
  742. if (active_extruder != 0) {
  743. current_position[X_AXIS] = x_home_pos(active_extruder);
  744. min_pos[X_AXIS] = X2_MIN_POS;
  745. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  746. return;
  747. }
  748. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  749. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  750. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  751. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  752. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  753. return;
  754. }
  755. }
  756. #endif
  757. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  758. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  759. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  760. }
  761. #ifdef ENABLE_AUTO_BED_LEVELING
  762. #ifdef AUTO_BED_LEVELING_GRID
  763. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  764. {
  765. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  766. planeNormal.debug("planeNormal");
  767. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  768. //bedLevel.debug("bedLevel");
  769. //plan_bed_level_matrix.debug("bed level before");
  770. //vector_3 uncorrected_position = plan_get_position_mm();
  771. //uncorrected_position.debug("position before");
  772. vector_3 corrected_position = plan_get_position();
  773. // corrected_position.debug("position after");
  774. current_position[X_AXIS] = corrected_position.x;
  775. current_position[Y_AXIS] = corrected_position.y;
  776. current_position[Z_AXIS] = corrected_position.z;
  777. // but the bed at 0 so we don't go below it.
  778. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  779. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  780. }
  781. #else // not AUTO_BED_LEVELING_GRID
  782. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  783. plan_bed_level_matrix.set_to_identity();
  784. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  785. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  786. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  787. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  788. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  789. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  790. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  791. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  792. vector_3 corrected_position = plan_get_position();
  793. current_position[X_AXIS] = corrected_position.x;
  794. current_position[Y_AXIS] = corrected_position.y;
  795. current_position[Z_AXIS] = corrected_position.z;
  796. // put the bed at 0 so we don't go below it.
  797. current_position[Z_AXIS] = zprobe_zoffset;
  798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  799. }
  800. #endif // AUTO_BED_LEVELING_GRID
  801. static void run_z_probe() {
  802. plan_bed_level_matrix.set_to_identity();
  803. feedrate = homing_feedrate[Z_AXIS];
  804. // move down until you find the bed
  805. float zPosition = -10;
  806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  807. st_synchronize();
  808. // we have to let the planner know where we are right now as it is not where we said to go.
  809. zPosition = st_get_position_mm(Z_AXIS);
  810. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  811. // move up the retract distance
  812. zPosition += home_retract_mm(Z_AXIS);
  813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  814. st_synchronize();
  815. // move back down slowly to find bed
  816. feedrate = homing_feedrate[Z_AXIS]/4;
  817. zPosition -= home_retract_mm(Z_AXIS) * 2;
  818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  819. st_synchronize();
  820. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  821. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  822. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  823. }
  824. static void do_blocking_move_to(float x, float y, float z) {
  825. float oldFeedRate = feedrate;
  826. feedrate = XY_TRAVEL_SPEED;
  827. current_position[X_AXIS] = x;
  828. current_position[Y_AXIS] = y;
  829. current_position[Z_AXIS] = z;
  830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  831. st_synchronize();
  832. feedrate = oldFeedRate;
  833. }
  834. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  835. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  836. }
  837. static void setup_for_endstop_move() {
  838. saved_feedrate = feedrate;
  839. saved_feedmultiply = feedmultiply;
  840. feedmultiply = 100;
  841. previous_millis_cmd = millis();
  842. enable_endstops(true);
  843. }
  844. static void clean_up_after_endstop_move() {
  845. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  846. enable_endstops(false);
  847. #endif
  848. feedrate = saved_feedrate;
  849. feedmultiply = saved_feedmultiply;
  850. previous_millis_cmd = millis();
  851. }
  852. static void engage_z_probe() {
  853. // Engage Z Servo endstop if enabled
  854. #ifdef SERVO_ENDSTOPS
  855. if (servo_endstops[Z_AXIS] > -1) {
  856. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  857. servos[servo_endstops[Z_AXIS]].attach(0);
  858. #endif
  859. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  860. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  861. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  862. servos[servo_endstops[Z_AXIS]].detach();
  863. #endif
  864. }
  865. #endif
  866. }
  867. static void retract_z_probe() {
  868. // Retract Z Servo endstop if enabled
  869. #ifdef SERVO_ENDSTOPS
  870. if (servo_endstops[Z_AXIS] > -1) {
  871. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  872. servos[servo_endstops[Z_AXIS]].attach(0);
  873. #endif
  874. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  875. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  876. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  877. servos[servo_endstops[Z_AXIS]].detach();
  878. #endif
  879. }
  880. #endif
  881. }
  882. /// Probe bed height at position (x,y), returns the measured z value
  883. static float probe_pt(float x, float y, float z_before) {
  884. // move to right place
  885. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  886. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  887. engage_z_probe(); // Engage Z Servo endstop if available
  888. run_z_probe();
  889. float measured_z = current_position[Z_AXIS];
  890. retract_z_probe();
  891. SERIAL_PROTOCOLPGM(MSG_BED);
  892. SERIAL_PROTOCOLPGM(" x: ");
  893. SERIAL_PROTOCOL(x);
  894. SERIAL_PROTOCOLPGM(" y: ");
  895. SERIAL_PROTOCOL(y);
  896. SERIAL_PROTOCOLPGM(" z: ");
  897. SERIAL_PROTOCOL(measured_z);
  898. SERIAL_PROTOCOLPGM("\n");
  899. return measured_z;
  900. }
  901. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  902. static void homeaxis(int axis) {
  903. #define HOMEAXIS_DO(LETTER) \
  904. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  905. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  906. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  907. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  908. 0) {
  909. int axis_home_dir = home_dir(axis);
  910. #ifdef DUAL_X_CARRIAGE
  911. if (axis == X_AXIS)
  912. axis_home_dir = x_home_dir(active_extruder);
  913. #endif
  914. current_position[axis] = 0;
  915. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  916. // Engage Servo endstop if enabled
  917. #ifdef SERVO_ENDSTOPS
  918. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  919. if (axis==Z_AXIS) {
  920. engage_z_probe();
  921. }
  922. else
  923. #endif
  924. if (servo_endstops[axis] > -1) {
  925. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  926. }
  927. #endif
  928. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  929. feedrate = homing_feedrate[axis];
  930. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  931. st_synchronize();
  932. current_position[axis] = 0;
  933. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  934. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  936. st_synchronize();
  937. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  938. #ifdef DELTA
  939. feedrate = homing_feedrate[axis]/10;
  940. #else
  941. feedrate = homing_feedrate[axis]/2 ;
  942. #endif
  943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  944. st_synchronize();
  945. #ifdef DELTA
  946. // retrace by the amount specified in endstop_adj
  947. if (endstop_adj[axis] * axis_home_dir < 0) {
  948. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  949. destination[axis] = endstop_adj[axis];
  950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  951. st_synchronize();
  952. }
  953. #endif
  954. axis_is_at_home(axis);
  955. destination[axis] = current_position[axis];
  956. feedrate = 0.0;
  957. endstops_hit_on_purpose();
  958. axis_known_position[axis] = true;
  959. // Retract Servo endstop if enabled
  960. #ifdef SERVO_ENDSTOPS
  961. if (servo_endstops[axis] > -1) {
  962. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  963. }
  964. #endif
  965. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  966. if (axis==Z_AXIS) retract_z_probe();
  967. #endif
  968. }
  969. }
  970. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  971. void refresh_cmd_timeout(void)
  972. {
  973. previous_millis_cmd = millis();
  974. }
  975. #ifdef FWRETRACT
  976. void retract(bool retracting) {
  977. if(retracting && !retracted) {
  978. destination[X_AXIS]=current_position[X_AXIS];
  979. destination[Y_AXIS]=current_position[Y_AXIS];
  980. destination[Z_AXIS]=current_position[Z_AXIS];
  981. destination[E_AXIS]=current_position[E_AXIS];
  982. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  983. plan_set_e_position(current_position[E_AXIS]);
  984. float oldFeedrate = feedrate;
  985. feedrate=retract_feedrate;
  986. retracted=true;
  987. prepare_move();
  988. current_position[Z_AXIS]-=retract_zlift;
  989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  990. prepare_move();
  991. feedrate = oldFeedrate;
  992. } else if(!retracting && retracted) {
  993. destination[X_AXIS]=current_position[X_AXIS];
  994. destination[Y_AXIS]=current_position[Y_AXIS];
  995. destination[Z_AXIS]=current_position[Z_AXIS];
  996. destination[E_AXIS]=current_position[E_AXIS];
  997. current_position[Z_AXIS]+=retract_zlift;
  998. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  999. //prepare_move();
  1000. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1001. plan_set_e_position(current_position[E_AXIS]);
  1002. float oldFeedrate = feedrate;
  1003. feedrate=retract_recover_feedrate;
  1004. retracted=false;
  1005. prepare_move();
  1006. feedrate = oldFeedrate;
  1007. }
  1008. } //retract
  1009. #endif //FWRETRACT
  1010. void process_commands()
  1011. {
  1012. unsigned long codenum; //throw away variable
  1013. char *starpos = NULL;
  1014. #ifdef ENABLE_AUTO_BED_LEVELING
  1015. float x_tmp, y_tmp, z_tmp, real_z;
  1016. #endif
  1017. if(code_seen('G'))
  1018. {
  1019. switch((int)code_value())
  1020. {
  1021. case 0: // G0 -> G1
  1022. case 1: // G1
  1023. if(Stopped == false) {
  1024. get_coordinates(); // For X Y Z E F
  1025. #ifdef FWRETRACT
  1026. if(autoretract_enabled)
  1027. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1028. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1029. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1030. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1031. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1032. retract(!retracted);
  1033. return;
  1034. }
  1035. }
  1036. #endif //FWRETRACT
  1037. prepare_move();
  1038. //ClearToSend();
  1039. return;
  1040. }
  1041. //break;
  1042. case 2: // G2 - CW ARC
  1043. if(Stopped == false) {
  1044. get_arc_coordinates();
  1045. prepare_arc_move(true);
  1046. return;
  1047. }
  1048. case 3: // G3 - CCW ARC
  1049. if(Stopped == false) {
  1050. get_arc_coordinates();
  1051. prepare_arc_move(false);
  1052. return;
  1053. }
  1054. case 4: // G4 dwell
  1055. LCD_MESSAGEPGM(MSG_DWELL);
  1056. codenum = 0;
  1057. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1058. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1059. st_synchronize();
  1060. codenum += millis(); // keep track of when we started waiting
  1061. previous_millis_cmd = millis();
  1062. while(millis() < codenum ){
  1063. manage_heater();
  1064. manage_inactivity();
  1065. lcd_update();
  1066. }
  1067. break;
  1068. #ifdef FWRETRACT
  1069. case 10: // G10 retract
  1070. retract(true);
  1071. break;
  1072. case 11: // G11 retract_recover
  1073. retract(false);
  1074. break;
  1075. #endif //FWRETRACT
  1076. case 28: //G28 Home all Axis one at a time
  1077. #ifdef ENABLE_AUTO_BED_LEVELING
  1078. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1079. #endif //ENABLE_AUTO_BED_LEVELING
  1080. saved_feedrate = feedrate;
  1081. saved_feedmultiply = feedmultiply;
  1082. feedmultiply = 100;
  1083. previous_millis_cmd = millis();
  1084. enable_endstops(true);
  1085. for(int8_t i=0; i < NUM_AXIS; i++) {
  1086. destination[i] = current_position[i];
  1087. }
  1088. feedrate = 0.0;
  1089. #ifdef DELTA
  1090. // A delta can only safely home all axis at the same time
  1091. // all axis have to home at the same time
  1092. // Move all carriages up together until the first endstop is hit.
  1093. current_position[X_AXIS] = 0;
  1094. current_position[Y_AXIS] = 0;
  1095. current_position[Z_AXIS] = 0;
  1096. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1097. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1098. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1099. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1100. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1101. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1102. st_synchronize();
  1103. endstops_hit_on_purpose();
  1104. current_position[X_AXIS] = destination[X_AXIS];
  1105. current_position[Y_AXIS] = destination[Y_AXIS];
  1106. current_position[Z_AXIS] = destination[Z_AXIS];
  1107. // take care of back off and rehome now we are all at the top
  1108. HOMEAXIS(X);
  1109. HOMEAXIS(Y);
  1110. HOMEAXIS(Z);
  1111. calculate_delta(current_position);
  1112. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1113. #else // NOT DELTA
  1114. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1115. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1116. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1117. HOMEAXIS(Z);
  1118. }
  1119. #endif
  1120. #ifdef QUICK_HOME
  1121. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1122. {
  1123. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1124. #ifndef DUAL_X_CARRIAGE
  1125. int x_axis_home_dir = home_dir(X_AXIS);
  1126. #else
  1127. int x_axis_home_dir = x_home_dir(active_extruder);
  1128. extruder_duplication_enabled = false;
  1129. #endif
  1130. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1131. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1132. feedrate = homing_feedrate[X_AXIS];
  1133. if(homing_feedrate[Y_AXIS]<feedrate)
  1134. feedrate =homing_feedrate[Y_AXIS];
  1135. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1136. st_synchronize();
  1137. axis_is_at_home(X_AXIS);
  1138. axis_is_at_home(Y_AXIS);
  1139. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1140. destination[X_AXIS] = current_position[X_AXIS];
  1141. destination[Y_AXIS] = current_position[Y_AXIS];
  1142. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1143. feedrate = 0.0;
  1144. st_synchronize();
  1145. endstops_hit_on_purpose();
  1146. current_position[X_AXIS] = destination[X_AXIS];
  1147. current_position[Y_AXIS] = destination[Y_AXIS];
  1148. current_position[Z_AXIS] = destination[Z_AXIS];
  1149. }
  1150. #endif
  1151. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1152. {
  1153. #ifdef DUAL_X_CARRIAGE
  1154. int tmp_extruder = active_extruder;
  1155. extruder_duplication_enabled = false;
  1156. active_extruder = !active_extruder;
  1157. HOMEAXIS(X);
  1158. inactive_extruder_x_pos = current_position[X_AXIS];
  1159. active_extruder = tmp_extruder;
  1160. HOMEAXIS(X);
  1161. // reset state used by the different modes
  1162. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1163. delayed_move_time = 0;
  1164. active_extruder_parked = true;
  1165. #else
  1166. HOMEAXIS(X);
  1167. #endif
  1168. }
  1169. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1170. HOMEAXIS(Y);
  1171. }
  1172. if(code_seen(axis_codes[X_AXIS]))
  1173. {
  1174. if(code_value_long() != 0) {
  1175. current_position[X_AXIS]=code_value()+add_homeing[0];
  1176. }
  1177. }
  1178. if(code_seen(axis_codes[Y_AXIS])) {
  1179. if(code_value_long() != 0) {
  1180. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1181. }
  1182. }
  1183. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1184. #ifndef Z_SAFE_HOMING
  1185. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1186. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1187. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1188. feedrate = max_feedrate[Z_AXIS];
  1189. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1190. st_synchronize();
  1191. #endif
  1192. HOMEAXIS(Z);
  1193. }
  1194. #else // Z Safe mode activated.
  1195. if(home_all_axis) {
  1196. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1197. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1198. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1199. feedrate = XY_TRAVEL_SPEED;
  1200. current_position[Z_AXIS] = 0;
  1201. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1202. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1203. st_synchronize();
  1204. current_position[X_AXIS] = destination[X_AXIS];
  1205. current_position[Y_AXIS] = destination[Y_AXIS];
  1206. HOMEAXIS(Z);
  1207. }
  1208. // Let's see if X and Y are homed and probe is inside bed area.
  1209. if(code_seen(axis_codes[Z_AXIS])) {
  1210. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1211. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1212. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1213. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1214. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1215. current_position[Z_AXIS] = 0;
  1216. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1217. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1218. feedrate = max_feedrate[Z_AXIS];
  1219. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1220. st_synchronize();
  1221. HOMEAXIS(Z);
  1222. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1223. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1224. SERIAL_ECHO_START;
  1225. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1226. } else {
  1227. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1228. SERIAL_ECHO_START;
  1229. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1230. }
  1231. }
  1232. #endif
  1233. #endif
  1234. if(code_seen(axis_codes[Z_AXIS])) {
  1235. if(code_value_long() != 0) {
  1236. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1237. }
  1238. }
  1239. #ifdef ENABLE_AUTO_BED_LEVELING
  1240. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1241. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1242. }
  1243. #endif
  1244. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1245. #endif // else DELTA
  1246. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1247. enable_endstops(false);
  1248. #endif
  1249. feedrate = saved_feedrate;
  1250. feedmultiply = saved_feedmultiply;
  1251. previous_millis_cmd = millis();
  1252. endstops_hit_on_purpose();
  1253. break;
  1254. #ifdef ENABLE_AUTO_BED_LEVELING
  1255. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1256. {
  1257. #if Z_MIN_PIN == -1
  1258. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1259. #endif
  1260. // Prevent user from running a G29 without first homing in X and Y
  1261. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1262. {
  1263. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1264. SERIAL_ECHO_START;
  1265. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1266. break; // abort G29, since we don't know where we are
  1267. }
  1268. st_synchronize();
  1269. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1270. //vector_3 corrected_position = plan_get_position_mm();
  1271. //corrected_position.debug("position before G29");
  1272. plan_bed_level_matrix.set_to_identity();
  1273. vector_3 uncorrected_position = plan_get_position();
  1274. //uncorrected_position.debug("position durring G29");
  1275. current_position[X_AXIS] = uncorrected_position.x;
  1276. current_position[Y_AXIS] = uncorrected_position.y;
  1277. current_position[Z_AXIS] = uncorrected_position.z;
  1278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1279. setup_for_endstop_move();
  1280. feedrate = homing_feedrate[Z_AXIS];
  1281. #ifdef AUTO_BED_LEVELING_GRID
  1282. // probe at the points of a lattice grid
  1283. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1284. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1285. // solve the plane equation ax + by + d = z
  1286. // A is the matrix with rows [x y 1] for all the probed points
  1287. // B is the vector of the Z positions
  1288. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1289. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1290. // "A" matrix of the linear system of equations
  1291. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1292. // "B" vector of Z points
  1293. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1294. int probePointCounter = 0;
  1295. bool zig = true;
  1296. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1297. {
  1298. int xProbe, xInc;
  1299. if (zig)
  1300. {
  1301. xProbe = LEFT_PROBE_BED_POSITION;
  1302. //xEnd = RIGHT_PROBE_BED_POSITION;
  1303. xInc = xGridSpacing;
  1304. zig = false;
  1305. } else // zag
  1306. {
  1307. xProbe = RIGHT_PROBE_BED_POSITION;
  1308. //xEnd = LEFT_PROBE_BED_POSITION;
  1309. xInc = -xGridSpacing;
  1310. zig = true;
  1311. }
  1312. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1313. {
  1314. float z_before;
  1315. if (probePointCounter == 0)
  1316. {
  1317. // raise before probing
  1318. z_before = Z_RAISE_BEFORE_PROBING;
  1319. } else
  1320. {
  1321. // raise extruder
  1322. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1323. }
  1324. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1325. eqnBVector[probePointCounter] = measured_z;
  1326. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1327. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1328. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1329. probePointCounter++;
  1330. xProbe += xInc;
  1331. }
  1332. }
  1333. clean_up_after_endstop_move();
  1334. // solve lsq problem
  1335. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1336. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1337. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1338. SERIAL_PROTOCOLPGM(" b: ");
  1339. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1340. SERIAL_PROTOCOLPGM(" d: ");
  1341. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1342. set_bed_level_equation_lsq(plane_equation_coefficients);
  1343. free(plane_equation_coefficients);
  1344. #else // AUTO_BED_LEVELING_GRID not defined
  1345. // Probe at 3 arbitrary points
  1346. // probe 1
  1347. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1348. // probe 2
  1349. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1350. // probe 3
  1351. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1352. clean_up_after_endstop_move();
  1353. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1354. #endif // AUTO_BED_LEVELING_GRID
  1355. st_synchronize();
  1356. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1357. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1358. // When the bed is uneven, this height must be corrected.
  1359. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1360. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1361. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1362. z_tmp = current_position[Z_AXIS];
  1363. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1364. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1365. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1366. }
  1367. break;
  1368. case 30: // G30 Single Z Probe
  1369. {
  1370. engage_z_probe(); // Engage Z Servo endstop if available
  1371. st_synchronize();
  1372. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1373. setup_for_endstop_move();
  1374. feedrate = homing_feedrate[Z_AXIS];
  1375. run_z_probe();
  1376. SERIAL_PROTOCOLPGM(MSG_BED);
  1377. SERIAL_PROTOCOLPGM(" X: ");
  1378. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1379. SERIAL_PROTOCOLPGM(" Y: ");
  1380. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1381. SERIAL_PROTOCOLPGM(" Z: ");
  1382. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1383. SERIAL_PROTOCOLPGM("\n");
  1384. clean_up_after_endstop_move();
  1385. retract_z_probe(); // Retract Z Servo endstop if available
  1386. }
  1387. break;
  1388. #endif // ENABLE_AUTO_BED_LEVELING
  1389. case 90: // G90
  1390. relative_mode = false;
  1391. break;
  1392. case 91: // G91
  1393. relative_mode = true;
  1394. break;
  1395. case 92: // G92
  1396. if(!code_seen(axis_codes[E_AXIS]))
  1397. st_synchronize();
  1398. for(int8_t i=0; i < NUM_AXIS; i++) {
  1399. if(code_seen(axis_codes[i])) {
  1400. if(i == E_AXIS) {
  1401. current_position[i] = code_value();
  1402. plan_set_e_position(current_position[E_AXIS]);
  1403. }
  1404. else {
  1405. current_position[i] = code_value()+add_homeing[i];
  1406. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1407. }
  1408. }
  1409. }
  1410. break;
  1411. }
  1412. }
  1413. else if(code_seen('M'))
  1414. {
  1415. switch( (int)code_value() )
  1416. {
  1417. #ifdef ULTIPANEL
  1418. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1419. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1420. {
  1421. LCD_MESSAGEPGM(MSG_USERWAIT);
  1422. codenum = 0;
  1423. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1424. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1425. st_synchronize();
  1426. previous_millis_cmd = millis();
  1427. if (codenum > 0){
  1428. codenum += millis(); // keep track of when we started waiting
  1429. while(millis() < codenum && !lcd_clicked()){
  1430. manage_heater();
  1431. manage_inactivity();
  1432. lcd_update();
  1433. }
  1434. }else{
  1435. while(!lcd_clicked()){
  1436. manage_heater();
  1437. manage_inactivity();
  1438. lcd_update();
  1439. }
  1440. }
  1441. LCD_MESSAGEPGM(MSG_RESUMING);
  1442. }
  1443. break;
  1444. #endif
  1445. case 17:
  1446. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1447. enable_x();
  1448. enable_y();
  1449. enable_z();
  1450. enable_e0();
  1451. enable_e1();
  1452. enable_e2();
  1453. break;
  1454. #ifdef SDSUPPORT
  1455. case 20: // M20 - list SD card
  1456. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1457. card.ls();
  1458. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1459. break;
  1460. case 21: // M21 - init SD card
  1461. card.initsd();
  1462. break;
  1463. case 22: //M22 - release SD card
  1464. card.release();
  1465. break;
  1466. case 23: //M23 - Select file
  1467. starpos = (strchr(strchr_pointer + 4,'*'));
  1468. if(starpos!=NULL)
  1469. *(starpos-1)='\0';
  1470. card.openFile(strchr_pointer + 4,true);
  1471. break;
  1472. case 24: //M24 - Start SD print
  1473. card.startFileprint();
  1474. starttime=millis();
  1475. break;
  1476. case 25: //M25 - Pause SD print
  1477. card.pauseSDPrint();
  1478. break;
  1479. case 26: //M26 - Set SD index
  1480. if(card.cardOK && code_seen('S')) {
  1481. card.setIndex(code_value_long());
  1482. }
  1483. break;
  1484. case 27: //M27 - Get SD status
  1485. card.getStatus();
  1486. break;
  1487. case 28: //M28 - Start SD write
  1488. starpos = (strchr(strchr_pointer + 4,'*'));
  1489. if(starpos != NULL){
  1490. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1491. strchr_pointer = strchr(npos,' ') + 1;
  1492. *(starpos-1) = '\0';
  1493. }
  1494. card.openFile(strchr_pointer+4,false);
  1495. break;
  1496. case 29: //M29 - Stop SD write
  1497. //processed in write to file routine above
  1498. //card,saving = false;
  1499. break;
  1500. case 30: //M30 <filename> Delete File
  1501. if (card.cardOK){
  1502. card.closefile();
  1503. starpos = (strchr(strchr_pointer + 4,'*'));
  1504. if(starpos != NULL){
  1505. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1506. strchr_pointer = strchr(npos,' ') + 1;
  1507. *(starpos-1) = '\0';
  1508. }
  1509. card.removeFile(strchr_pointer + 4);
  1510. }
  1511. break;
  1512. case 32: //M32 - Select file and start SD print
  1513. {
  1514. if(card.sdprinting) {
  1515. st_synchronize();
  1516. }
  1517. starpos = (strchr(strchr_pointer + 4,'*'));
  1518. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1519. if(namestartpos==NULL)
  1520. {
  1521. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1522. }
  1523. else
  1524. namestartpos++; //to skip the '!'
  1525. if(starpos!=NULL)
  1526. *(starpos-1)='\0';
  1527. bool call_procedure=(code_seen('P'));
  1528. if(strchr_pointer>namestartpos)
  1529. call_procedure=false; //false alert, 'P' found within filename
  1530. if( card.cardOK )
  1531. {
  1532. card.openFile(namestartpos,true,!call_procedure);
  1533. if(code_seen('S'))
  1534. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1535. card.setIndex(code_value_long());
  1536. card.startFileprint();
  1537. if(!call_procedure)
  1538. starttime=millis(); //procedure calls count as normal print time.
  1539. }
  1540. } break;
  1541. case 928: //M928 - Start SD write
  1542. starpos = (strchr(strchr_pointer + 5,'*'));
  1543. if(starpos != NULL){
  1544. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1545. strchr_pointer = strchr(npos,' ') + 1;
  1546. *(starpos-1) = '\0';
  1547. }
  1548. card.openLogFile(strchr_pointer+5);
  1549. break;
  1550. #endif //SDSUPPORT
  1551. case 31: //M31 take time since the start of the SD print or an M109 command
  1552. {
  1553. stoptime=millis();
  1554. char time[30];
  1555. unsigned long t=(stoptime-starttime)/1000;
  1556. int sec,min;
  1557. min=t/60;
  1558. sec=t%60;
  1559. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1560. SERIAL_ECHO_START;
  1561. SERIAL_ECHOLN(time);
  1562. lcd_setstatus(time);
  1563. autotempShutdown();
  1564. }
  1565. break;
  1566. case 42: //M42 -Change pin status via gcode
  1567. if (code_seen('S'))
  1568. {
  1569. int pin_status = code_value();
  1570. int pin_number = LED_PIN;
  1571. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1572. pin_number = code_value();
  1573. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1574. {
  1575. if (sensitive_pins[i] == pin_number)
  1576. {
  1577. pin_number = -1;
  1578. break;
  1579. }
  1580. }
  1581. #if defined(FAN_PIN) && FAN_PIN > -1
  1582. if (pin_number == FAN_PIN)
  1583. fanSpeed = pin_status;
  1584. #endif
  1585. if (pin_number > -1)
  1586. {
  1587. pinMode(pin_number, OUTPUT);
  1588. digitalWrite(pin_number, pin_status);
  1589. analogWrite(pin_number, pin_status);
  1590. }
  1591. }
  1592. break;
  1593. case 104: // M104
  1594. if(setTargetedHotend(104)){
  1595. break;
  1596. }
  1597. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1598. #ifdef DUAL_X_CARRIAGE
  1599. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1600. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1601. #endif
  1602. setWatch();
  1603. break;
  1604. case 140: // M140 set bed temp
  1605. if (code_seen('S')) setTargetBed(code_value());
  1606. break;
  1607. case 105 : // M105
  1608. if(setTargetedHotend(105)){
  1609. break;
  1610. }
  1611. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1612. SERIAL_PROTOCOLPGM("ok T:");
  1613. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1614. SERIAL_PROTOCOLPGM(" /");
  1615. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1616. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1617. SERIAL_PROTOCOLPGM(" B:");
  1618. SERIAL_PROTOCOL_F(degBed(),1);
  1619. SERIAL_PROTOCOLPGM(" /");
  1620. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1621. #endif //TEMP_BED_PIN
  1622. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1623. SERIAL_PROTOCOLPGM(" T");
  1624. SERIAL_PROTOCOL(cur_extruder);
  1625. SERIAL_PROTOCOLPGM(":");
  1626. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1627. SERIAL_PROTOCOLPGM(" /");
  1628. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1629. }
  1630. #else
  1631. SERIAL_ERROR_START;
  1632. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1633. #endif
  1634. SERIAL_PROTOCOLPGM(" @:");
  1635. #ifdef EXTRUDER_WATTS
  1636. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1637. SERIAL_PROTOCOLPGM("W");
  1638. #else
  1639. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1640. #endif
  1641. SERIAL_PROTOCOLPGM(" B@:");
  1642. #ifdef BED_WATTS
  1643. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1644. SERIAL_PROTOCOLPGM("W");
  1645. #else
  1646. SERIAL_PROTOCOL(getHeaterPower(-1));
  1647. #endif
  1648. #ifdef SHOW_TEMP_ADC_VALUES
  1649. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1650. SERIAL_PROTOCOLPGM(" ADC B:");
  1651. SERIAL_PROTOCOL_F(degBed(),1);
  1652. SERIAL_PROTOCOLPGM("C->");
  1653. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1654. #endif
  1655. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1656. SERIAL_PROTOCOLPGM(" T");
  1657. SERIAL_PROTOCOL(cur_extruder);
  1658. SERIAL_PROTOCOLPGM(":");
  1659. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1660. SERIAL_PROTOCOLPGM("C->");
  1661. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1662. }
  1663. #endif
  1664. SERIAL_PROTOCOLLN("");
  1665. return;
  1666. break;
  1667. case 109:
  1668. {// M109 - Wait for extruder heater to reach target.
  1669. if(setTargetedHotend(109)){
  1670. break;
  1671. }
  1672. LCD_MESSAGEPGM(MSG_HEATING);
  1673. #ifdef AUTOTEMP
  1674. autotemp_enabled=false;
  1675. #endif
  1676. if (code_seen('S')) {
  1677. setTargetHotend(code_value(), tmp_extruder);
  1678. #ifdef DUAL_X_CARRIAGE
  1679. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1680. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1681. #endif
  1682. CooldownNoWait = true;
  1683. } else if (code_seen('R')) {
  1684. setTargetHotend(code_value(), tmp_extruder);
  1685. #ifdef DUAL_X_CARRIAGE
  1686. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1687. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1688. #endif
  1689. CooldownNoWait = false;
  1690. }
  1691. #ifdef AUTOTEMP
  1692. if (code_seen('S')) autotemp_min=code_value();
  1693. if (code_seen('B')) autotemp_max=code_value();
  1694. if (code_seen('F'))
  1695. {
  1696. autotemp_factor=code_value();
  1697. autotemp_enabled=true;
  1698. }
  1699. #endif
  1700. setWatch();
  1701. codenum = millis();
  1702. /* See if we are heating up or cooling down */
  1703. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1704. #ifdef TEMP_RESIDENCY_TIME
  1705. long residencyStart;
  1706. residencyStart = -1;
  1707. /* continue to loop until we have reached the target temp
  1708. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1709. while((residencyStart == -1) ||
  1710. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1711. #else
  1712. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1713. #endif //TEMP_RESIDENCY_TIME
  1714. if( (millis() - codenum) > 1000UL )
  1715. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1716. SERIAL_PROTOCOLPGM("T:");
  1717. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1718. SERIAL_PROTOCOLPGM(" E:");
  1719. SERIAL_PROTOCOL((int)tmp_extruder);
  1720. #ifdef TEMP_RESIDENCY_TIME
  1721. SERIAL_PROTOCOLPGM(" W:");
  1722. if(residencyStart > -1)
  1723. {
  1724. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1725. SERIAL_PROTOCOLLN( codenum );
  1726. }
  1727. else
  1728. {
  1729. SERIAL_PROTOCOLLN( "?" );
  1730. }
  1731. #else
  1732. SERIAL_PROTOCOLLN("");
  1733. #endif
  1734. codenum = millis();
  1735. }
  1736. manage_heater();
  1737. manage_inactivity();
  1738. lcd_update();
  1739. #ifdef TEMP_RESIDENCY_TIME
  1740. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1741. or when current temp falls outside the hysteresis after target temp was reached */
  1742. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1743. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1744. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1745. {
  1746. residencyStart = millis();
  1747. }
  1748. #endif //TEMP_RESIDENCY_TIME
  1749. }
  1750. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1751. starttime=millis();
  1752. previous_millis_cmd = millis();
  1753. }
  1754. break;
  1755. case 190: // M190 - Wait for bed heater to reach target.
  1756. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1757. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1758. if (code_seen('S')) {
  1759. setTargetBed(code_value());
  1760. CooldownNoWait = true;
  1761. } else if (code_seen('R')) {
  1762. setTargetBed(code_value());
  1763. CooldownNoWait = false;
  1764. }
  1765. codenum = millis();
  1766. target_direction = isHeatingBed(); // true if heating, false if cooling
  1767. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1768. {
  1769. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1770. {
  1771. float tt=degHotend(active_extruder);
  1772. SERIAL_PROTOCOLPGM("T:");
  1773. SERIAL_PROTOCOL(tt);
  1774. SERIAL_PROTOCOLPGM(" E:");
  1775. SERIAL_PROTOCOL((int)active_extruder);
  1776. SERIAL_PROTOCOLPGM(" B:");
  1777. SERIAL_PROTOCOL_F(degBed(),1);
  1778. SERIAL_PROTOCOLLN("");
  1779. codenum = millis();
  1780. }
  1781. manage_heater();
  1782. manage_inactivity();
  1783. lcd_update();
  1784. }
  1785. LCD_MESSAGEPGM(MSG_BED_DONE);
  1786. previous_millis_cmd = millis();
  1787. #endif
  1788. break;
  1789. #if defined(FAN_PIN) && FAN_PIN > -1
  1790. case 106: //M106 Fan On
  1791. if (code_seen('S')){
  1792. fanSpeed=constrain(code_value(),0,255);
  1793. }
  1794. else {
  1795. fanSpeed=255;
  1796. }
  1797. break;
  1798. case 107: //M107 Fan Off
  1799. fanSpeed = 0;
  1800. break;
  1801. #endif //FAN_PIN
  1802. #ifdef BARICUDA
  1803. // PWM for HEATER_1_PIN
  1804. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1805. case 126: //M126 valve open
  1806. if (code_seen('S')){
  1807. ValvePressure=constrain(code_value(),0,255);
  1808. }
  1809. else {
  1810. ValvePressure=255;
  1811. }
  1812. break;
  1813. case 127: //M127 valve closed
  1814. ValvePressure = 0;
  1815. break;
  1816. #endif //HEATER_1_PIN
  1817. // PWM for HEATER_2_PIN
  1818. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1819. case 128: //M128 valve open
  1820. if (code_seen('S')){
  1821. EtoPPressure=constrain(code_value(),0,255);
  1822. }
  1823. else {
  1824. EtoPPressure=255;
  1825. }
  1826. break;
  1827. case 129: //M129 valve closed
  1828. EtoPPressure = 0;
  1829. break;
  1830. #endif //HEATER_2_PIN
  1831. #endif
  1832. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1833. case 80: // M80 - Turn on Power Supply
  1834. SET_OUTPUT(PS_ON_PIN); //GND
  1835. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1836. // If you have a switch on suicide pin, this is useful
  1837. // if you want to start another print with suicide feature after
  1838. // a print without suicide...
  1839. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1840. SET_OUTPUT(SUICIDE_PIN);
  1841. WRITE(SUICIDE_PIN, HIGH);
  1842. #endif
  1843. #ifdef ULTIPANEL
  1844. powersupply = true;
  1845. LCD_MESSAGEPGM(WELCOME_MSG);
  1846. lcd_update();
  1847. #endif
  1848. break;
  1849. #endif
  1850. case 81: // M81 - Turn off Power Supply
  1851. disable_heater();
  1852. st_synchronize();
  1853. disable_e0();
  1854. disable_e1();
  1855. disable_e2();
  1856. finishAndDisableSteppers();
  1857. fanSpeed = 0;
  1858. delay(1000); // Wait a little before to switch off
  1859. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1860. st_synchronize();
  1861. suicide();
  1862. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1863. SET_OUTPUT(PS_ON_PIN);
  1864. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1865. #endif
  1866. #ifdef ULTIPANEL
  1867. powersupply = false;
  1868. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1869. lcd_update();
  1870. #endif
  1871. break;
  1872. case 82:
  1873. axis_relative_modes[3] = false;
  1874. break;
  1875. case 83:
  1876. axis_relative_modes[3] = true;
  1877. break;
  1878. case 18: //compatibility
  1879. case 84: // M84
  1880. if(code_seen('S')){
  1881. stepper_inactive_time = code_value() * 1000;
  1882. }
  1883. else
  1884. {
  1885. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1886. if(all_axis)
  1887. {
  1888. st_synchronize();
  1889. disable_e0();
  1890. disable_e1();
  1891. disable_e2();
  1892. finishAndDisableSteppers();
  1893. }
  1894. else
  1895. {
  1896. st_synchronize();
  1897. if(code_seen('X')) disable_x();
  1898. if(code_seen('Y')) disable_y();
  1899. if(code_seen('Z')) disable_z();
  1900. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1901. if(code_seen('E')) {
  1902. disable_e0();
  1903. disable_e1();
  1904. disable_e2();
  1905. }
  1906. #endif
  1907. }
  1908. }
  1909. break;
  1910. case 85: // M85
  1911. code_seen('S');
  1912. max_inactive_time = code_value() * 1000;
  1913. break;
  1914. case 92: // M92
  1915. for(int8_t i=0; i < NUM_AXIS; i++)
  1916. {
  1917. if(code_seen(axis_codes[i]))
  1918. {
  1919. if(i == 3) { // E
  1920. float value = code_value();
  1921. if(value < 20.0) {
  1922. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1923. max_e_jerk *= factor;
  1924. max_feedrate[i] *= factor;
  1925. axis_steps_per_sqr_second[i] *= factor;
  1926. }
  1927. axis_steps_per_unit[i] = value;
  1928. }
  1929. else {
  1930. axis_steps_per_unit[i] = code_value();
  1931. }
  1932. }
  1933. }
  1934. break;
  1935. case 115: // M115
  1936. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1937. break;
  1938. case 117: // M117 display message
  1939. starpos = (strchr(strchr_pointer + 5,'*'));
  1940. if(starpos!=NULL)
  1941. *(starpos-1)='\0';
  1942. lcd_setstatus(strchr_pointer + 5);
  1943. break;
  1944. case 114: // M114
  1945. SERIAL_PROTOCOLPGM("X:");
  1946. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1947. SERIAL_PROTOCOLPGM(" Y:");
  1948. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1949. SERIAL_PROTOCOLPGM(" Z:");
  1950. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1951. SERIAL_PROTOCOLPGM(" E:");
  1952. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1953. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1954. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1955. SERIAL_PROTOCOLPGM(" Y:");
  1956. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1957. SERIAL_PROTOCOLPGM(" Z:");
  1958. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1959. SERIAL_PROTOCOLLN("");
  1960. break;
  1961. case 120: // M120
  1962. enable_endstops(false) ;
  1963. break;
  1964. case 121: // M121
  1965. enable_endstops(true) ;
  1966. break;
  1967. case 119: // M119
  1968. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1969. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1970. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1971. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1972. #endif
  1973. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1974. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1975. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1976. #endif
  1977. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1978. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1979. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1980. #endif
  1981. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1982. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1983. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1984. #endif
  1985. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1986. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1987. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1988. #endif
  1989. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1990. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1991. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1992. #endif
  1993. break;
  1994. //TODO: update for all axis, use for loop
  1995. #ifdef BLINKM
  1996. case 150: // M150
  1997. {
  1998. byte red;
  1999. byte grn;
  2000. byte blu;
  2001. if(code_seen('R')) red = code_value();
  2002. if(code_seen('U')) grn = code_value();
  2003. if(code_seen('B')) blu = code_value();
  2004. SendColors(red,grn,blu);
  2005. }
  2006. break;
  2007. #endif //BLINKM
  2008. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2009. {
  2010. float area = .0;
  2011. float radius = .0;
  2012. if(code_seen('D')) {
  2013. radius = (float)code_value() * .5;
  2014. if(radius == 0) {
  2015. area = 1;
  2016. } else {
  2017. area = M_PI * pow(radius, 2);
  2018. }
  2019. } else {
  2020. //reserved for setting filament diameter via UFID or filament measuring device
  2021. break;
  2022. }
  2023. tmp_extruder = active_extruder;
  2024. if(code_seen('T')) {
  2025. tmp_extruder = code_value();
  2026. if(tmp_extruder >= EXTRUDERS) {
  2027. SERIAL_ECHO_START;
  2028. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2029. }
  2030. SERIAL_ECHOLN(tmp_extruder);
  2031. break;
  2032. }
  2033. volumetric_multiplier[tmp_extruder] = 1 / area;
  2034. }
  2035. break;
  2036. case 201: // M201
  2037. for(int8_t i=0; i < NUM_AXIS; i++)
  2038. {
  2039. if(code_seen(axis_codes[i]))
  2040. {
  2041. max_acceleration_units_per_sq_second[i] = code_value();
  2042. }
  2043. }
  2044. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2045. reset_acceleration_rates();
  2046. break;
  2047. #if 0 // Not used for Sprinter/grbl gen6
  2048. case 202: // M202
  2049. for(int8_t i=0; i < NUM_AXIS; i++) {
  2050. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2051. }
  2052. break;
  2053. #endif
  2054. case 203: // M203 max feedrate mm/sec
  2055. for(int8_t i=0; i < NUM_AXIS; i++) {
  2056. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2057. }
  2058. break;
  2059. case 204: // M204 acclereration S normal moves T filmanent only moves
  2060. {
  2061. if(code_seen('S')) acceleration = code_value() ;
  2062. if(code_seen('T')) retract_acceleration = code_value() ;
  2063. }
  2064. break;
  2065. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2066. {
  2067. if(code_seen('S')) minimumfeedrate = code_value();
  2068. if(code_seen('T')) mintravelfeedrate = code_value();
  2069. if(code_seen('B')) minsegmenttime = code_value() ;
  2070. if(code_seen('X')) max_xy_jerk = code_value() ;
  2071. if(code_seen('Z')) max_z_jerk = code_value() ;
  2072. if(code_seen('E')) max_e_jerk = code_value() ;
  2073. }
  2074. break;
  2075. case 206: // M206 additional homeing offset
  2076. for(int8_t i=0; i < 3; i++)
  2077. {
  2078. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2079. }
  2080. break;
  2081. #ifdef DELTA
  2082. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2083. if(code_seen('L')) {
  2084. delta_diagonal_rod= code_value();
  2085. }
  2086. if(code_seen('R')) {
  2087. delta_radius= code_value();
  2088. }
  2089. if(code_seen('S')) {
  2090. delta_segments_per_second= code_value();
  2091. }
  2092. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2093. break;
  2094. case 666: // M666 set delta endstop adjustemnt
  2095. for(int8_t i=0; i < 3; i++)
  2096. {
  2097. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2098. }
  2099. break;
  2100. #endif
  2101. #ifdef FWRETRACT
  2102. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2103. {
  2104. if(code_seen('S'))
  2105. {
  2106. retract_length = code_value() ;
  2107. }
  2108. if(code_seen('F'))
  2109. {
  2110. retract_feedrate = code_value() ;
  2111. }
  2112. if(code_seen('Z'))
  2113. {
  2114. retract_zlift = code_value() ;
  2115. }
  2116. }break;
  2117. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2118. {
  2119. if(code_seen('S'))
  2120. {
  2121. retract_recover_length = code_value() ;
  2122. }
  2123. if(code_seen('F'))
  2124. {
  2125. retract_recover_feedrate = code_value() ;
  2126. }
  2127. }break;
  2128. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2129. {
  2130. if(code_seen('S'))
  2131. {
  2132. int t= code_value() ;
  2133. switch(t)
  2134. {
  2135. case 0: autoretract_enabled=false;retracted=false;break;
  2136. case 1: autoretract_enabled=true;retracted=false;break;
  2137. default:
  2138. SERIAL_ECHO_START;
  2139. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2140. SERIAL_ECHO(cmdbuffer[bufindr]);
  2141. SERIAL_ECHOLNPGM("\"");
  2142. }
  2143. }
  2144. }break;
  2145. #endif // FWRETRACT
  2146. #if EXTRUDERS > 1
  2147. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2148. {
  2149. if(setTargetedHotend(218)){
  2150. break;
  2151. }
  2152. if(code_seen('X'))
  2153. {
  2154. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2155. }
  2156. if(code_seen('Y'))
  2157. {
  2158. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2159. }
  2160. #ifdef DUAL_X_CARRIAGE
  2161. if(code_seen('Z'))
  2162. {
  2163. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2164. }
  2165. #endif
  2166. SERIAL_ECHO_START;
  2167. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2168. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2169. {
  2170. SERIAL_ECHO(" ");
  2171. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2172. SERIAL_ECHO(",");
  2173. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2174. #ifdef DUAL_X_CARRIAGE
  2175. SERIAL_ECHO(",");
  2176. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2177. #endif
  2178. }
  2179. SERIAL_ECHOLN("");
  2180. }break;
  2181. #endif
  2182. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2183. {
  2184. if(code_seen('S'))
  2185. {
  2186. feedmultiply = code_value() ;
  2187. }
  2188. }
  2189. break;
  2190. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2191. {
  2192. if(code_seen('S'))
  2193. {
  2194. int tmp_code = code_value();
  2195. if (code_seen('T'))
  2196. {
  2197. if(setTargetedHotend(221)){
  2198. break;
  2199. }
  2200. extruder_multiply[tmp_extruder] = tmp_code;
  2201. }
  2202. else
  2203. {
  2204. extrudemultiply = tmp_code ;
  2205. }
  2206. }
  2207. }
  2208. break;
  2209. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2210. {
  2211. if(code_seen('P')){
  2212. int pin_number = code_value(); // pin number
  2213. int pin_state = -1; // required pin state - default is inverted
  2214. if(code_seen('S')) pin_state = code_value(); // required pin state
  2215. if(pin_state >= -1 && pin_state <= 1){
  2216. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2217. {
  2218. if (sensitive_pins[i] == pin_number)
  2219. {
  2220. pin_number = -1;
  2221. break;
  2222. }
  2223. }
  2224. if (pin_number > -1)
  2225. {
  2226. st_synchronize();
  2227. pinMode(pin_number, INPUT);
  2228. int target;
  2229. switch(pin_state){
  2230. case 1:
  2231. target = HIGH;
  2232. break;
  2233. case 0:
  2234. target = LOW;
  2235. break;
  2236. case -1:
  2237. target = !digitalRead(pin_number);
  2238. break;
  2239. }
  2240. while(digitalRead(pin_number) != target){
  2241. manage_heater();
  2242. manage_inactivity();
  2243. lcd_update();
  2244. }
  2245. }
  2246. }
  2247. }
  2248. }
  2249. break;
  2250. #if NUM_SERVOS > 0
  2251. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2252. {
  2253. int servo_index = -1;
  2254. int servo_position = 0;
  2255. if (code_seen('P'))
  2256. servo_index = code_value();
  2257. if (code_seen('S')) {
  2258. servo_position = code_value();
  2259. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2260. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2261. servos[servo_index].attach(0);
  2262. #endif
  2263. servos[servo_index].write(servo_position);
  2264. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2265. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2266. servos[servo_index].detach();
  2267. #endif
  2268. }
  2269. else {
  2270. SERIAL_ECHO_START;
  2271. SERIAL_ECHO("Servo ");
  2272. SERIAL_ECHO(servo_index);
  2273. SERIAL_ECHOLN(" out of range");
  2274. }
  2275. }
  2276. else if (servo_index >= 0) {
  2277. SERIAL_PROTOCOL(MSG_OK);
  2278. SERIAL_PROTOCOL(" Servo ");
  2279. SERIAL_PROTOCOL(servo_index);
  2280. SERIAL_PROTOCOL(": ");
  2281. SERIAL_PROTOCOL(servos[servo_index].read());
  2282. SERIAL_PROTOCOLLN("");
  2283. }
  2284. }
  2285. break;
  2286. #endif // NUM_SERVOS > 0
  2287. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2288. case 300: // M300
  2289. {
  2290. int beepS = code_seen('S') ? code_value() : 110;
  2291. int beepP = code_seen('P') ? code_value() : 1000;
  2292. if (beepS > 0)
  2293. {
  2294. #if BEEPER > 0
  2295. tone(BEEPER, beepS);
  2296. delay(beepP);
  2297. noTone(BEEPER);
  2298. #elif defined(ULTRALCD)
  2299. lcd_buzz(beepS, beepP);
  2300. #elif defined(LCD_USE_I2C_BUZZER)
  2301. lcd_buzz(beepP, beepS);
  2302. #endif
  2303. }
  2304. else
  2305. {
  2306. delay(beepP);
  2307. }
  2308. }
  2309. break;
  2310. #endif // M300
  2311. #ifdef PIDTEMP
  2312. case 301: // M301
  2313. {
  2314. if(code_seen('P')) Kp = code_value();
  2315. if(code_seen('I')) Ki = scalePID_i(code_value());
  2316. if(code_seen('D')) Kd = scalePID_d(code_value());
  2317. #ifdef PID_ADD_EXTRUSION_RATE
  2318. if(code_seen('C')) Kc = code_value();
  2319. #endif
  2320. updatePID();
  2321. SERIAL_PROTOCOL(MSG_OK);
  2322. SERIAL_PROTOCOL(" p:");
  2323. SERIAL_PROTOCOL(Kp);
  2324. SERIAL_PROTOCOL(" i:");
  2325. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2326. SERIAL_PROTOCOL(" d:");
  2327. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2328. #ifdef PID_ADD_EXTRUSION_RATE
  2329. SERIAL_PROTOCOL(" c:");
  2330. //Kc does not have scaling applied above, or in resetting defaults
  2331. SERIAL_PROTOCOL(Kc);
  2332. #endif
  2333. SERIAL_PROTOCOLLN("");
  2334. }
  2335. break;
  2336. #endif //PIDTEMP
  2337. #ifdef PIDTEMPBED
  2338. case 304: // M304
  2339. {
  2340. if(code_seen('P')) bedKp = code_value();
  2341. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2342. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2343. updatePID();
  2344. SERIAL_PROTOCOL(MSG_OK);
  2345. SERIAL_PROTOCOL(" p:");
  2346. SERIAL_PROTOCOL(bedKp);
  2347. SERIAL_PROTOCOL(" i:");
  2348. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2349. SERIAL_PROTOCOL(" d:");
  2350. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2351. SERIAL_PROTOCOLLN("");
  2352. }
  2353. break;
  2354. #endif //PIDTEMP
  2355. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2356. {
  2357. #ifdef CHDK
  2358. SET_OUTPUT(CHDK);
  2359. WRITE(CHDK, HIGH);
  2360. chdkHigh = millis();
  2361. chdkActive = true;
  2362. #else
  2363. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2364. const uint8_t NUM_PULSES=16;
  2365. const float PULSE_LENGTH=0.01524;
  2366. for(int i=0; i < NUM_PULSES; i++) {
  2367. WRITE(PHOTOGRAPH_PIN, HIGH);
  2368. _delay_ms(PULSE_LENGTH);
  2369. WRITE(PHOTOGRAPH_PIN, LOW);
  2370. _delay_ms(PULSE_LENGTH);
  2371. }
  2372. delay(7.33);
  2373. for(int i=0; i < NUM_PULSES; i++) {
  2374. WRITE(PHOTOGRAPH_PIN, HIGH);
  2375. _delay_ms(PULSE_LENGTH);
  2376. WRITE(PHOTOGRAPH_PIN, LOW);
  2377. _delay_ms(PULSE_LENGTH);
  2378. }
  2379. #endif
  2380. #endif //chdk end if
  2381. }
  2382. break;
  2383. #ifdef DOGLCD
  2384. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2385. {
  2386. if (code_seen('C')) {
  2387. lcd_setcontrast( ((int)code_value())&63 );
  2388. }
  2389. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2390. SERIAL_PROTOCOL(lcd_contrast);
  2391. SERIAL_PROTOCOLLN("");
  2392. }
  2393. break;
  2394. #endif
  2395. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2396. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2397. {
  2398. float temp = .0;
  2399. if (code_seen('S')) temp=code_value();
  2400. set_extrude_min_temp(temp);
  2401. }
  2402. break;
  2403. #endif
  2404. case 303: // M303 PID autotune
  2405. {
  2406. float temp = 150.0;
  2407. int e=0;
  2408. int c=5;
  2409. if (code_seen('E')) e=code_value();
  2410. if (e<0)
  2411. temp=70;
  2412. if (code_seen('S')) temp=code_value();
  2413. if (code_seen('C')) c=code_value();
  2414. PID_autotune(temp, e, c);
  2415. }
  2416. break;
  2417. case 400: // M400 finish all moves
  2418. {
  2419. st_synchronize();
  2420. }
  2421. break;
  2422. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2423. case 401:
  2424. {
  2425. engage_z_probe(); // Engage Z Servo endstop if available
  2426. }
  2427. break;
  2428. case 402:
  2429. {
  2430. retract_z_probe(); // Retract Z Servo endstop if enabled
  2431. }
  2432. break;
  2433. #endif
  2434. case 500: // M500 Store settings in EEPROM
  2435. {
  2436. Config_StoreSettings();
  2437. }
  2438. break;
  2439. case 501: // M501 Read settings from EEPROM
  2440. {
  2441. Config_RetrieveSettings();
  2442. }
  2443. break;
  2444. case 502: // M502 Revert to default settings
  2445. {
  2446. Config_ResetDefault();
  2447. }
  2448. break;
  2449. case 503: // M503 print settings currently in memory
  2450. {
  2451. Config_PrintSettings();
  2452. }
  2453. break;
  2454. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2455. case 540:
  2456. {
  2457. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2458. }
  2459. break;
  2460. #endif
  2461. #ifdef FILAMENTCHANGEENABLE
  2462. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2463. {
  2464. float target[4];
  2465. float lastpos[4];
  2466. target[X_AXIS]=current_position[X_AXIS];
  2467. target[Y_AXIS]=current_position[Y_AXIS];
  2468. target[Z_AXIS]=current_position[Z_AXIS];
  2469. target[E_AXIS]=current_position[E_AXIS];
  2470. lastpos[X_AXIS]=current_position[X_AXIS];
  2471. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2472. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2473. lastpos[E_AXIS]=current_position[E_AXIS];
  2474. //retract by E
  2475. if(code_seen('E'))
  2476. {
  2477. target[E_AXIS]+= code_value();
  2478. }
  2479. else
  2480. {
  2481. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2482. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2483. #endif
  2484. }
  2485. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2486. //lift Z
  2487. if(code_seen('Z'))
  2488. {
  2489. target[Z_AXIS]+= code_value();
  2490. }
  2491. else
  2492. {
  2493. #ifdef FILAMENTCHANGE_ZADD
  2494. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2495. #endif
  2496. }
  2497. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2498. //move xy
  2499. if(code_seen('X'))
  2500. {
  2501. target[X_AXIS]+= code_value();
  2502. }
  2503. else
  2504. {
  2505. #ifdef FILAMENTCHANGE_XPOS
  2506. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2507. #endif
  2508. }
  2509. if(code_seen('Y'))
  2510. {
  2511. target[Y_AXIS]= code_value();
  2512. }
  2513. else
  2514. {
  2515. #ifdef FILAMENTCHANGE_YPOS
  2516. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2517. #endif
  2518. }
  2519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2520. if(code_seen('L'))
  2521. {
  2522. target[E_AXIS]+= code_value();
  2523. }
  2524. else
  2525. {
  2526. #ifdef FILAMENTCHANGE_FINALRETRACT
  2527. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2528. #endif
  2529. }
  2530. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2531. //finish moves
  2532. st_synchronize();
  2533. //disable extruder steppers so filament can be removed
  2534. disable_e0();
  2535. disable_e1();
  2536. disable_e2();
  2537. delay(100);
  2538. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2539. uint8_t cnt=0;
  2540. while(!lcd_clicked()){
  2541. cnt++;
  2542. manage_heater();
  2543. manage_inactivity();
  2544. lcd_update();
  2545. if(cnt==0)
  2546. {
  2547. #if BEEPER > 0
  2548. SET_OUTPUT(BEEPER);
  2549. WRITE(BEEPER,HIGH);
  2550. delay(3);
  2551. WRITE(BEEPER,LOW);
  2552. delay(3);
  2553. #else
  2554. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2555. lcd_buzz(1000/6,100);
  2556. #else
  2557. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2558. #endif
  2559. #endif
  2560. }
  2561. }
  2562. //return to normal
  2563. if(code_seen('L'))
  2564. {
  2565. target[E_AXIS]+= -code_value();
  2566. }
  2567. else
  2568. {
  2569. #ifdef FILAMENTCHANGE_FINALRETRACT
  2570. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2571. #endif
  2572. }
  2573. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2574. plan_set_e_position(current_position[E_AXIS]);
  2575. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2576. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2577. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2578. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2579. }
  2580. break;
  2581. #endif //FILAMENTCHANGEENABLE
  2582. #ifdef DUAL_X_CARRIAGE
  2583. case 605: // Set dual x-carriage movement mode:
  2584. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2585. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2586. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2587. // millimeters x-offset and an optional differential hotend temperature of
  2588. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2589. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2590. //
  2591. // Note: the X axis should be homed after changing dual x-carriage mode.
  2592. {
  2593. st_synchronize();
  2594. if (code_seen('S'))
  2595. dual_x_carriage_mode = code_value();
  2596. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2597. {
  2598. if (code_seen('X'))
  2599. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2600. if (code_seen('R'))
  2601. duplicate_extruder_temp_offset = code_value();
  2602. SERIAL_ECHO_START;
  2603. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2604. SERIAL_ECHO(" ");
  2605. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2606. SERIAL_ECHO(",");
  2607. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2608. SERIAL_ECHO(" ");
  2609. SERIAL_ECHO(duplicate_extruder_x_offset);
  2610. SERIAL_ECHO(",");
  2611. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2612. }
  2613. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2614. {
  2615. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2616. }
  2617. active_extruder_parked = false;
  2618. extruder_duplication_enabled = false;
  2619. delayed_move_time = 0;
  2620. }
  2621. break;
  2622. #endif //DUAL_X_CARRIAGE
  2623. case 907: // M907 Set digital trimpot motor current using axis codes.
  2624. {
  2625. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2626. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2627. if(code_seen('B')) digipot_current(4,code_value());
  2628. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2629. #endif
  2630. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2631. if(code_seen('X')) digipot_current(0, code_value());
  2632. #endif
  2633. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2634. if(code_seen('Z')) digipot_current(1, code_value());
  2635. #endif
  2636. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2637. if(code_seen('E')) digipot_current(2, code_value());
  2638. #endif
  2639. #ifdef DIGIPOT_I2C
  2640. // this one uses actual amps in floating point
  2641. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2642. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2643. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2644. #endif
  2645. }
  2646. break;
  2647. case 908: // M908 Control digital trimpot directly.
  2648. {
  2649. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2650. uint8_t channel,current;
  2651. if(code_seen('P')) channel=code_value();
  2652. if(code_seen('S')) current=code_value();
  2653. digitalPotWrite(channel, current);
  2654. #endif
  2655. }
  2656. break;
  2657. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2658. {
  2659. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2660. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2661. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2662. if(code_seen('B')) microstep_mode(4,code_value());
  2663. microstep_readings();
  2664. #endif
  2665. }
  2666. break;
  2667. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2668. {
  2669. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2670. if(code_seen('S')) switch((int)code_value())
  2671. {
  2672. case 1:
  2673. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2674. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2675. break;
  2676. case 2:
  2677. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2678. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2679. break;
  2680. }
  2681. microstep_readings();
  2682. #endif
  2683. }
  2684. break;
  2685. case 999: // M999: Restart after being stopped
  2686. Stopped = false;
  2687. lcd_reset_alert_level();
  2688. gcode_LastN = Stopped_gcode_LastN;
  2689. FlushSerialRequestResend();
  2690. break;
  2691. }
  2692. }
  2693. else if(code_seen('T'))
  2694. {
  2695. tmp_extruder = code_value();
  2696. if(tmp_extruder >= EXTRUDERS) {
  2697. SERIAL_ECHO_START;
  2698. SERIAL_ECHO("T");
  2699. SERIAL_ECHO(tmp_extruder);
  2700. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2701. }
  2702. else {
  2703. boolean make_move = false;
  2704. if(code_seen('F')) {
  2705. make_move = true;
  2706. next_feedrate = code_value();
  2707. if(next_feedrate > 0.0) {
  2708. feedrate = next_feedrate;
  2709. }
  2710. }
  2711. #if EXTRUDERS > 1
  2712. if(tmp_extruder != active_extruder) {
  2713. // Save current position to return to after applying extruder offset
  2714. memcpy(destination, current_position, sizeof(destination));
  2715. #ifdef DUAL_X_CARRIAGE
  2716. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2717. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2718. {
  2719. // Park old head: 1) raise 2) move to park position 3) lower
  2720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2721. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2722. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2723. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2724. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2725. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2726. st_synchronize();
  2727. }
  2728. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2729. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2730. extruder_offset[Y_AXIS][active_extruder] +
  2731. extruder_offset[Y_AXIS][tmp_extruder];
  2732. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2733. extruder_offset[Z_AXIS][active_extruder] +
  2734. extruder_offset[Z_AXIS][tmp_extruder];
  2735. active_extruder = tmp_extruder;
  2736. // This function resets the max/min values - the current position may be overwritten below.
  2737. axis_is_at_home(X_AXIS);
  2738. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2739. {
  2740. current_position[X_AXIS] = inactive_extruder_x_pos;
  2741. inactive_extruder_x_pos = destination[X_AXIS];
  2742. }
  2743. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2744. {
  2745. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2746. if (active_extruder == 0 || active_extruder_parked)
  2747. current_position[X_AXIS] = inactive_extruder_x_pos;
  2748. else
  2749. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2750. inactive_extruder_x_pos = destination[X_AXIS];
  2751. extruder_duplication_enabled = false;
  2752. }
  2753. else
  2754. {
  2755. // record raised toolhead position for use by unpark
  2756. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2757. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2758. active_extruder_parked = true;
  2759. delayed_move_time = 0;
  2760. }
  2761. #else
  2762. // Offset extruder (only by XY)
  2763. int i;
  2764. for(i = 0; i < 2; i++) {
  2765. current_position[i] = current_position[i] -
  2766. extruder_offset[i][active_extruder] +
  2767. extruder_offset[i][tmp_extruder];
  2768. }
  2769. // Set the new active extruder and position
  2770. active_extruder = tmp_extruder;
  2771. #endif //else DUAL_X_CARRIAGE
  2772. #ifdef DELTA
  2773. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  2774. //sent position to plan_set_position();
  2775. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  2776. #else
  2777. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2778. #endif
  2779. // Move to the old position if 'F' was in the parameters
  2780. if(make_move && Stopped == false) {
  2781. prepare_move();
  2782. }
  2783. }
  2784. #endif
  2785. SERIAL_ECHO_START;
  2786. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2787. SERIAL_PROTOCOLLN((int)active_extruder);
  2788. }
  2789. }
  2790. else
  2791. {
  2792. SERIAL_ECHO_START;
  2793. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2794. SERIAL_ECHO(cmdbuffer[bufindr]);
  2795. SERIAL_ECHOLNPGM("\"");
  2796. }
  2797. ClearToSend();
  2798. }
  2799. void FlushSerialRequestResend()
  2800. {
  2801. //char cmdbuffer[bufindr][100]="Resend:";
  2802. MYSERIAL.flush();
  2803. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2804. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2805. ClearToSend();
  2806. }
  2807. void ClearToSend()
  2808. {
  2809. previous_millis_cmd = millis();
  2810. #ifdef SDSUPPORT
  2811. if(fromsd[bufindr])
  2812. return;
  2813. #endif //SDSUPPORT
  2814. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2815. }
  2816. void get_coordinates()
  2817. {
  2818. bool seen[4]={false,false,false,false};
  2819. for(int8_t i=0; i < NUM_AXIS; i++) {
  2820. if(code_seen(axis_codes[i]))
  2821. {
  2822. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2823. seen[i]=true;
  2824. }
  2825. else destination[i] = current_position[i]; //Are these else lines really needed?
  2826. }
  2827. if(code_seen('F')) {
  2828. next_feedrate = code_value();
  2829. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2830. }
  2831. }
  2832. void get_arc_coordinates()
  2833. {
  2834. #ifdef SF_ARC_FIX
  2835. bool relative_mode_backup = relative_mode;
  2836. relative_mode = true;
  2837. #endif
  2838. get_coordinates();
  2839. #ifdef SF_ARC_FIX
  2840. relative_mode=relative_mode_backup;
  2841. #endif
  2842. if(code_seen('I')) {
  2843. offset[0] = code_value();
  2844. }
  2845. else {
  2846. offset[0] = 0.0;
  2847. }
  2848. if(code_seen('J')) {
  2849. offset[1] = code_value();
  2850. }
  2851. else {
  2852. offset[1] = 0.0;
  2853. }
  2854. }
  2855. void clamp_to_software_endstops(float target[3])
  2856. {
  2857. if (min_software_endstops) {
  2858. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2859. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2860. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2861. }
  2862. if (max_software_endstops) {
  2863. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2864. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2865. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2866. }
  2867. }
  2868. #ifdef DELTA
  2869. void recalc_delta_settings(float radius, float diagonal_rod)
  2870. {
  2871. delta_tower1_x= -SIN_60*radius; // front left tower
  2872. delta_tower1_y= -COS_60*radius;
  2873. delta_tower2_x= SIN_60*radius; // front right tower
  2874. delta_tower2_y= -COS_60*radius;
  2875. delta_tower3_x= 0.0; // back middle tower
  2876. delta_tower3_y= radius;
  2877. delta_diagonal_rod_2= sq(diagonal_rod);
  2878. }
  2879. void calculate_delta(float cartesian[3])
  2880. {
  2881. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2882. - sq(delta_tower1_x-cartesian[X_AXIS])
  2883. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2884. ) + cartesian[Z_AXIS];
  2885. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2886. - sq(delta_tower2_x-cartesian[X_AXIS])
  2887. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2888. ) + cartesian[Z_AXIS];
  2889. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2890. - sq(delta_tower3_x-cartesian[X_AXIS])
  2891. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2892. ) + cartesian[Z_AXIS];
  2893. /*
  2894. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2895. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2896. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2897. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2898. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2899. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2900. */
  2901. }
  2902. #endif
  2903. void prepare_move()
  2904. {
  2905. clamp_to_software_endstops(destination);
  2906. previous_millis_cmd = millis();
  2907. #ifdef DELTA
  2908. float difference[NUM_AXIS];
  2909. for (int8_t i=0; i < NUM_AXIS; i++) {
  2910. difference[i] = destination[i] - current_position[i];
  2911. }
  2912. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2913. sq(difference[Y_AXIS]) +
  2914. sq(difference[Z_AXIS]));
  2915. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2916. if (cartesian_mm < 0.000001) { return; }
  2917. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2918. int steps = max(1, int(delta_segments_per_second * seconds));
  2919. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2920. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2921. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2922. for (int s = 1; s <= steps; s++) {
  2923. float fraction = float(s) / float(steps);
  2924. for(int8_t i=0; i < NUM_AXIS; i++) {
  2925. destination[i] = current_position[i] + difference[i] * fraction;
  2926. }
  2927. calculate_delta(destination);
  2928. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2929. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2930. active_extruder);
  2931. }
  2932. #else
  2933. #ifdef DUAL_X_CARRIAGE
  2934. if (active_extruder_parked)
  2935. {
  2936. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2937. {
  2938. // move duplicate extruder into correct duplication position.
  2939. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2940. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2941. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2942. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2943. st_synchronize();
  2944. extruder_duplication_enabled = true;
  2945. active_extruder_parked = false;
  2946. }
  2947. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2948. {
  2949. if (current_position[E_AXIS] == destination[E_AXIS])
  2950. {
  2951. // this is a travel move - skit it but keep track of current position (so that it can later
  2952. // be used as start of first non-travel move)
  2953. if (delayed_move_time != 0xFFFFFFFFUL)
  2954. {
  2955. memcpy(current_position, destination, sizeof(current_position));
  2956. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2957. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2958. delayed_move_time = millis();
  2959. return;
  2960. }
  2961. }
  2962. delayed_move_time = 0;
  2963. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2964. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2966. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2968. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2969. active_extruder_parked = false;
  2970. }
  2971. }
  2972. #endif //DUAL_X_CARRIAGE
  2973. // Do not use feedmultiply for E or Z only moves
  2974. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2975. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2976. }
  2977. else {
  2978. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2979. }
  2980. #endif //else DELTA
  2981. for(int8_t i=0; i < NUM_AXIS; i++) {
  2982. current_position[i] = destination[i];
  2983. }
  2984. }
  2985. void prepare_arc_move(char isclockwise) {
  2986. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2987. // Trace the arc
  2988. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2989. // As far as the parser is concerned, the position is now == target. In reality the
  2990. // motion control system might still be processing the action and the real tool position
  2991. // in any intermediate location.
  2992. for(int8_t i=0; i < NUM_AXIS; i++) {
  2993. current_position[i] = destination[i];
  2994. }
  2995. previous_millis_cmd = millis();
  2996. }
  2997. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2998. #if defined(FAN_PIN)
  2999. #if CONTROLLERFAN_PIN == FAN_PIN
  3000. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3001. #endif
  3002. #endif
  3003. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3004. unsigned long lastMotorCheck = 0;
  3005. void controllerFan()
  3006. {
  3007. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3008. {
  3009. lastMotorCheck = millis();
  3010. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3011. #if EXTRUDERS > 2
  3012. || !READ(E2_ENABLE_PIN)
  3013. #endif
  3014. #if EXTRUDER > 1
  3015. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3016. || !READ(X2_ENABLE_PIN)
  3017. #endif
  3018. || !READ(E1_ENABLE_PIN)
  3019. #endif
  3020. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3021. {
  3022. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3023. }
  3024. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3025. {
  3026. digitalWrite(CONTROLLERFAN_PIN, 0);
  3027. analogWrite(CONTROLLERFAN_PIN, 0);
  3028. }
  3029. else
  3030. {
  3031. // allows digital or PWM fan output to be used (see M42 handling)
  3032. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3033. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3034. }
  3035. }
  3036. }
  3037. #endif
  3038. #ifdef TEMP_STAT_LEDS
  3039. static bool blue_led = false;
  3040. static bool red_led = false;
  3041. static uint32_t stat_update = 0;
  3042. void handle_status_leds(void) {
  3043. float max_temp = 0.0;
  3044. if(millis() > stat_update) {
  3045. stat_update += 500; // Update every 0.5s
  3046. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3047. max_temp = max(max_temp, degHotend(cur_extruder));
  3048. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3049. }
  3050. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3051. max_temp = max(max_temp, degTargetBed());
  3052. max_temp = max(max_temp, degBed());
  3053. #endif
  3054. if((max_temp > 55.0) && (red_led == false)) {
  3055. digitalWrite(STAT_LED_RED, 1);
  3056. digitalWrite(STAT_LED_BLUE, 0);
  3057. red_led = true;
  3058. blue_led = false;
  3059. }
  3060. if((max_temp < 54.0) && (blue_led == false)) {
  3061. digitalWrite(STAT_LED_RED, 0);
  3062. digitalWrite(STAT_LED_BLUE, 1);
  3063. red_led = false;
  3064. blue_led = true;
  3065. }
  3066. }
  3067. }
  3068. #endif
  3069. void manage_inactivity()
  3070. {
  3071. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3072. if(max_inactive_time)
  3073. kill();
  3074. if(stepper_inactive_time) {
  3075. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3076. {
  3077. if(blocks_queued() == false) {
  3078. disable_x();
  3079. disable_y();
  3080. disable_z();
  3081. disable_e0();
  3082. disable_e1();
  3083. disable_e2();
  3084. }
  3085. }
  3086. }
  3087. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3088. if (chdkActive)
  3089. {
  3090. chdkActive = false;
  3091. if (millis()-chdkHigh < CHDK_DELAY) return;
  3092. WRITE(CHDK, LOW);
  3093. }
  3094. #endif
  3095. #if defined(KILL_PIN) && KILL_PIN > -1
  3096. if( 0 == READ(KILL_PIN) )
  3097. kill();
  3098. #endif
  3099. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3100. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3101. #endif
  3102. #ifdef EXTRUDER_RUNOUT_PREVENT
  3103. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3104. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3105. {
  3106. bool oldstatus=READ(E0_ENABLE_PIN);
  3107. enable_e0();
  3108. float oldepos=current_position[E_AXIS];
  3109. float oldedes=destination[E_AXIS];
  3110. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3111. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3112. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3113. current_position[E_AXIS]=oldepos;
  3114. destination[E_AXIS]=oldedes;
  3115. plan_set_e_position(oldepos);
  3116. previous_millis_cmd=millis();
  3117. st_synchronize();
  3118. WRITE(E0_ENABLE_PIN,oldstatus);
  3119. }
  3120. #endif
  3121. #if defined(DUAL_X_CARRIAGE)
  3122. // handle delayed move timeout
  3123. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3124. {
  3125. // travel moves have been received so enact them
  3126. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3127. memcpy(destination,current_position,sizeof(destination));
  3128. prepare_move();
  3129. }
  3130. #endif
  3131. #ifdef TEMP_STAT_LEDS
  3132. handle_status_leds();
  3133. #endif
  3134. check_axes_activity();
  3135. }
  3136. void kill()
  3137. {
  3138. cli(); // Stop interrupts
  3139. disable_heater();
  3140. disable_x();
  3141. disable_y();
  3142. disable_z();
  3143. disable_e0();
  3144. disable_e1();
  3145. disable_e2();
  3146. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3147. pinMode(PS_ON_PIN,INPUT);
  3148. #endif
  3149. SERIAL_ERROR_START;
  3150. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3151. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3152. suicide();
  3153. while(1) { /* Intentionally left empty */ } // Wait for reset
  3154. }
  3155. void Stop()
  3156. {
  3157. disable_heater();
  3158. if(Stopped == false) {
  3159. Stopped = true;
  3160. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3161. SERIAL_ERROR_START;
  3162. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3163. LCD_MESSAGEPGM(MSG_STOPPED);
  3164. }
  3165. }
  3166. bool IsStopped() { return Stopped; };
  3167. #ifdef FAST_PWM_FAN
  3168. void setPwmFrequency(uint8_t pin, int val)
  3169. {
  3170. val &= 0x07;
  3171. switch(digitalPinToTimer(pin))
  3172. {
  3173. #if defined(TCCR0A)
  3174. case TIMER0A:
  3175. case TIMER0B:
  3176. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3177. // TCCR0B |= val;
  3178. break;
  3179. #endif
  3180. #if defined(TCCR1A)
  3181. case TIMER1A:
  3182. case TIMER1B:
  3183. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3184. // TCCR1B |= val;
  3185. break;
  3186. #endif
  3187. #if defined(TCCR2)
  3188. case TIMER2:
  3189. case TIMER2:
  3190. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3191. TCCR2 |= val;
  3192. break;
  3193. #endif
  3194. #if defined(TCCR2A)
  3195. case TIMER2A:
  3196. case TIMER2B:
  3197. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3198. TCCR2B |= val;
  3199. break;
  3200. #endif
  3201. #if defined(TCCR3A)
  3202. case TIMER3A:
  3203. case TIMER3B:
  3204. case TIMER3C:
  3205. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3206. TCCR3B |= val;
  3207. break;
  3208. #endif
  3209. #if defined(TCCR4A)
  3210. case TIMER4A:
  3211. case TIMER4B:
  3212. case TIMER4C:
  3213. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3214. TCCR4B |= val;
  3215. break;
  3216. #endif
  3217. #if defined(TCCR5A)
  3218. case TIMER5A:
  3219. case TIMER5B:
  3220. case TIMER5C:
  3221. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3222. TCCR5B |= val;
  3223. break;
  3224. #endif
  3225. }
  3226. }
  3227. #endif //FAST_PWM_FAN
  3228. bool setTargetedHotend(int code){
  3229. tmp_extruder = active_extruder;
  3230. if(code_seen('T')) {
  3231. tmp_extruder = code_value();
  3232. if(tmp_extruder >= EXTRUDERS) {
  3233. SERIAL_ECHO_START;
  3234. switch(code){
  3235. case 104:
  3236. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3237. break;
  3238. case 105:
  3239. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3240. break;
  3241. case 109:
  3242. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3243. break;
  3244. case 218:
  3245. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3246. break;
  3247. case 221:
  3248. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3249. break;
  3250. }
  3251. SERIAL_ECHOLN(tmp_extruder);
  3252. return true;
  3253. }
  3254. }
  3255. return false;
  3256. }