My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 247KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M80 - Turn on Power Supply
  129. * M81 - Turn off Power Supply
  130. * M82 - Set E codes absolute (default)
  131. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. * M84 - Disable steppers until next move,
  133. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. * M92 - Set axis_steps_per_unit - same syntax as G92
  136. * M104 - Set extruder target temp
  137. * M105 - Read current temp
  138. * M106 - Fan on
  139. * M107 - Fan off
  140. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. * M110 - Set the current line number
  144. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  145. * M112 - Emergency stop
  146. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. * M114 - Output current position to serial port
  148. * M115 - Capabilities string
  149. * M117 - Display a message on the controller screen
  150. * M119 - Output Endstop status to serial port
  151. * M120 - Enable endstop detection
  152. * M121 - Disable endstop detection
  153. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  154. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  155. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  157. * M140 - Set bed target temp
  158. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  159. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  160. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  161. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  162. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  163. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  164. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  165. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  166. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  167. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  168. * M206 - Set additional homing offset
  169. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  170. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  171. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  172. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  173. * M220 - Set speed factor override percentage: S<factor in percent>
  174. * M221 - Set extrude factor override percentage: S<factor in percent>
  175. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  176. * M240 - Trigger a camera to take a photograph
  177. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  178. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  179. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  180. * M301 - Set PID parameters P I and D
  181. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  182. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  183. * M304 - Set bed PID parameters P I and D
  184. * M380 - Activate solenoid on active extruder
  185. * M381 - Disable all solenoids
  186. * M400 - Finish all moves
  187. * M401 - Lower Z probe if present
  188. * M402 - Raise Z probe if present
  189. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. * M406 - Turn off Filament Sensor extrusion control
  192. * M407 - Display measured filament diameter
  193. * M410 - Quickstop. Abort all the planned moves
  194. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  195. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  196. * M428 - Set the home_offset logically based on the current_position
  197. * M500 - Store parameters in EEPROM
  198. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  199. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  200. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  201. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  202. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  203. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  204. * M666 - Set delta endstop adjustment
  205. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  206. * M907 - Set digital trimpot motor current using axis codes.
  207. * M908 - Control digital trimpot directly.
  208. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  209. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  210. * M350 - Set microstepping mode.
  211. * M351 - Toggle MS1 MS2 pins directly.
  212. *
  213. * ************ SCARA Specific - This can change to suit future G-code regulations
  214. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  215. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  216. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  217. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  218. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  219. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  220. * ************* SCARA End ***************
  221. *
  222. * ************ Custom codes - This can change to suit future G-code regulations
  223. * M100 - Watch Free Memory (For Debugging Only)
  224. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  225. * M928 - Start SD logging (M928 filename.g) - ended by M29
  226. * M999 - Restart after being stopped by error
  227. *
  228. * "T" Codes
  229. *
  230. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  231. *
  232. */
  233. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  234. void gcode_M100();
  235. #endif
  236. #if ENABLED(SDSUPPORT)
  237. CardReader card;
  238. #endif
  239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  240. TWIBus i2c;
  241. #endif
  242. bool Running = true;
  243. uint8_t marlin_debug_flags = DEBUG_NONE;
  244. static float feedrate = 1500.0, saved_feedrate;
  245. float current_position[NUM_AXIS] = { 0.0 };
  246. static float destination[NUM_AXIS] = { 0.0 };
  247. bool axis_known_position[3] = { false };
  248. bool axis_homed[3] = { false };
  249. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  250. static char* current_command, *current_command_args;
  251. static int cmd_queue_index_r = 0;
  252. static int cmd_queue_index_w = 0;
  253. static int commands_in_queue = 0;
  254. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  255. const float homing_feedrate[] = HOMING_FEEDRATE;
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedrate_multiplier = 100; //100->1 200->2
  258. int saved_feedrate_multiplier;
  259. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  260. bool volumetric_enabled = false;
  261. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  262. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  263. float position_shift[3] = { 0 };
  264. float home_offset[3] = { 0 };
  265. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  266. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  267. #if FAN_COUNT > 0
  268. int fanSpeeds[FAN_COUNT] = { 0 };
  269. #endif
  270. uint8_t active_extruder = 0;
  271. bool cancel_heatup = false;
  272. const char errormagic[] PROGMEM = "Error:";
  273. const char echomagic[] PROGMEM = "echo:";
  274. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  275. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  276. static int serial_count = 0;
  277. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  278. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  279. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  280. // Inactivity shutdown
  281. millis_t previous_cmd_ms = 0;
  282. static millis_t max_inactive_time = 0;
  283. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  284. Stopwatch print_job_timer = Stopwatch();
  285. static uint8_t target_extruder;
  286. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  287. int xy_travel_speed = XY_TRAVEL_SPEED;
  288. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  289. #endif
  290. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  291. float z_endstop_adj = 0;
  292. #endif
  293. // Extruder offsets
  294. #if EXTRUDERS > 1
  295. #ifndef EXTRUDER_OFFSET_X
  296. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  297. #endif
  298. #ifndef EXTRUDER_OFFSET_Y
  299. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  300. #endif
  301. float extruder_offset[][EXTRUDERS] = {
  302. EXTRUDER_OFFSET_X,
  303. EXTRUDER_OFFSET_Y
  304. #if ENABLED(DUAL_X_CARRIAGE)
  305. , { 0 } // Z offsets for each extruder
  306. #endif
  307. };
  308. #endif
  309. #if HAS_SERVO_ENDSTOPS
  310. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  311. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  312. #endif
  313. #if ENABLED(BARICUDA)
  314. int ValvePressure = 0;
  315. int EtoPPressure = 0;
  316. #endif
  317. #if ENABLED(FWRETRACT)
  318. bool autoretract_enabled = false;
  319. bool retracted[EXTRUDERS] = { false };
  320. bool retracted_swap[EXTRUDERS] = { false };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif // FWRETRACT
  329. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  330. bool powersupply =
  331. #if ENABLED(PS_DEFAULT_OFF)
  332. false
  333. #else
  334. true
  335. #endif
  336. ;
  337. #endif
  338. #if ENABLED(DELTA)
  339. #define TOWER_1 X_AXIS
  340. #define TOWER_2 Y_AXIS
  341. #define TOWER_3 Z_AXIS
  342. float delta[3] = { 0 };
  343. #define SIN_60 0.8660254037844386
  344. #define COS_60 0.5
  345. float endstop_adj[3] = { 0 };
  346. // these are the default values, can be overriden with M665
  347. float delta_radius = DELTA_RADIUS;
  348. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  349. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  350. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  351. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  352. float delta_tower3_x = 0; // back middle tower
  353. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  354. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  355. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  356. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  357. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  358. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  359. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  360. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  361. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  362. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  363. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  364. int delta_grid_spacing[2] = { 0, 0 };
  365. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  366. #endif
  367. #else
  368. static bool home_all_axis = true;
  369. #endif
  370. #if ENABLED(SCARA)
  371. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  372. static float delta[3] = { 0 };
  373. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  374. #endif
  375. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  376. //Variables for Filament Sensor input
  377. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  378. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  379. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  380. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  381. int filwidth_delay_index1 = 0; //index into ring buffer
  382. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  383. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  384. #endif
  385. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  386. static bool filrunoutEnqueued = false;
  387. #endif
  388. static bool send_ok[BUFSIZE];
  389. #if HAS_SERVOS
  390. Servo servo[NUM_SERVOS];
  391. #endif
  392. #ifdef CHDK
  393. millis_t chdkHigh = 0;
  394. boolean chdkActive = false;
  395. #endif
  396. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  397. int lpq_len = 20;
  398. #endif
  399. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  400. // States for managing Marlin and host communication
  401. // Marlin sends messages if blocked or busy
  402. enum MarlinBusyState {
  403. NOT_BUSY, // Not in a handler
  404. IN_HANDLER, // Processing a GCode
  405. IN_PROCESS, // Known to be blocking command input (as in G29)
  406. PAUSED_FOR_USER, // Blocking pending any input
  407. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  408. };
  409. static MarlinBusyState busy_state = NOT_BUSY;
  410. static millis_t next_busy_signal_ms = 0;
  411. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  412. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  413. #else
  414. #define host_keepalive() ;
  415. #define KEEPALIVE_STATE(n) ;
  416. #endif // HOST_KEEPALIVE_FEATURE
  417. /**
  418. * ***************************************************************************
  419. * ******************************** FUNCTIONS ********************************
  420. * ***************************************************************************
  421. */
  422. void get_available_commands();
  423. void process_next_command();
  424. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  425. bool setTargetedHotend(int code);
  426. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  429. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  431. void gcode_M114();
  432. #if ENABLED(DEBUG_LEVELING_FEATURE)
  433. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  434. SERIAL_ECHO(prefix);
  435. SERIAL_ECHOPAIR(": (", x);
  436. SERIAL_ECHOPAIR(", ", y);
  437. SERIAL_ECHOPAIR(", ", z);
  438. SERIAL_ECHOLNPGM(")");
  439. }
  440. void print_xyz(const char* prefix, const float xyz[]) {
  441. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  442. }
  443. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  444. #endif
  445. #if ENABLED(DELTA) || ENABLED(SCARA)
  446. inline void sync_plan_position_delta() {
  447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  448. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  449. #endif
  450. calculate_delta(current_position);
  451. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  452. }
  453. #endif
  454. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  455. float extrude_min_temp = EXTRUDE_MINTEMP;
  456. #endif
  457. #if ENABLED(HAS_Z_MIN_PROBE)
  458. extern volatile bool z_probe_is_active;
  459. #endif
  460. #if ENABLED(SDSUPPORT)
  461. #include "SdFatUtil.h"
  462. int freeMemory() { return SdFatUtil::FreeRam(); }
  463. #else
  464. extern "C" {
  465. extern unsigned int __bss_end;
  466. extern unsigned int __heap_start;
  467. extern void* __brkval;
  468. int freeMemory() {
  469. int free_memory;
  470. if ((int)__brkval == 0)
  471. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  472. else
  473. free_memory = ((int)&free_memory) - ((int)__brkval);
  474. return free_memory;
  475. }
  476. }
  477. #endif //!SDSUPPORT
  478. /**
  479. * Inject the next "immediate" command, when possible.
  480. * Return true if any immediate commands remain to inject.
  481. */
  482. static bool drain_queued_commands_P() {
  483. if (queued_commands_P != NULL) {
  484. size_t i = 0;
  485. char c, cmd[30];
  486. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  487. cmd[sizeof(cmd) - 1] = '\0';
  488. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  489. cmd[i] = '\0';
  490. if (enqueue_and_echo_command(cmd)) { // success?
  491. if (c) // newline char?
  492. queued_commands_P += i + 1; // advance to the next command
  493. else
  494. queued_commands_P = NULL; // nul char? no more commands
  495. }
  496. }
  497. return (queued_commands_P != NULL); // return whether any more remain
  498. }
  499. /**
  500. * Record one or many commands to run from program memory.
  501. * Aborts the current queue, if any.
  502. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  503. */
  504. void enqueue_and_echo_commands_P(const char* pgcode) {
  505. queued_commands_P = pgcode;
  506. drain_queued_commands_P(); // first command executed asap (when possible)
  507. }
  508. /**
  509. * Once a new command is in the ring buffer, call this to commit it
  510. */
  511. inline void _commit_command(bool say_ok) {
  512. send_ok[cmd_queue_index_w] = say_ok;
  513. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  514. commands_in_queue++;
  515. }
  516. /**
  517. * Copy a command directly into the main command buffer, from RAM.
  518. * Returns true if successfully adds the command
  519. */
  520. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  521. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  522. strcpy(command_queue[cmd_queue_index_w], cmd);
  523. _commit_command(say_ok);
  524. return true;
  525. }
  526. void enqueue_and_echo_command_now(const char* cmd) {
  527. while (!enqueue_and_echo_command(cmd)) idle();
  528. }
  529. /**
  530. * Enqueue with Serial Echo
  531. */
  532. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  533. if (_enqueuecommand(cmd, say_ok)) {
  534. SERIAL_ECHO_START;
  535. SERIAL_ECHOPGM(MSG_Enqueueing);
  536. SERIAL_ECHO(cmd);
  537. SERIAL_ECHOLNPGM("\"");
  538. return true;
  539. }
  540. return false;
  541. }
  542. void setup_killpin() {
  543. #if HAS_KILL
  544. SET_INPUT(KILL_PIN);
  545. WRITE(KILL_PIN, HIGH);
  546. #endif
  547. }
  548. void setup_filrunoutpin() {
  549. #if HAS_FILRUNOUT
  550. pinMode(FILRUNOUT_PIN, INPUT);
  551. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  552. WRITE(FILRUNOUT_PIN, HIGH);
  553. #endif
  554. #endif
  555. }
  556. // Set home pin
  557. void setup_homepin(void) {
  558. #if HAS_HOME
  559. SET_INPUT(HOME_PIN);
  560. WRITE(HOME_PIN, HIGH);
  561. #endif
  562. }
  563. void setup_photpin() {
  564. #if HAS_PHOTOGRAPH
  565. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  566. #endif
  567. }
  568. void setup_powerhold() {
  569. #if HAS_SUICIDE
  570. OUT_WRITE(SUICIDE_PIN, HIGH);
  571. #endif
  572. #if HAS_POWER_SWITCH
  573. #if ENABLED(PS_DEFAULT_OFF)
  574. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  575. #else
  576. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  577. #endif
  578. #endif
  579. }
  580. void suicide() {
  581. #if HAS_SUICIDE
  582. OUT_WRITE(SUICIDE_PIN, LOW);
  583. #endif
  584. }
  585. void servo_init() {
  586. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  587. servo[0].attach(SERVO0_PIN);
  588. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  589. #endif
  590. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  591. servo[1].attach(SERVO1_PIN);
  592. servo[1].detach();
  593. #endif
  594. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  595. servo[2].attach(SERVO2_PIN);
  596. servo[2].detach();
  597. #endif
  598. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  599. servo[3].attach(SERVO3_PIN);
  600. servo[3].detach();
  601. #endif
  602. #if HAS_SERVO_ENDSTOPS
  603. z_probe_is_active = false;
  604. /**
  605. * Set position of all defined Servo Endstops
  606. *
  607. * ** UNSAFE! - NEEDS UPDATE! **
  608. *
  609. * The servo might be deployed and positioned too low to stow
  610. * when starting up the machine or rebooting the board.
  611. * There's no way to know where the nozzle is positioned until
  612. * homing has been done - no homing with z-probe without init!
  613. *
  614. */
  615. for (int i = 0; i < 3; i++)
  616. if (servo_endstop_id[i] >= 0)
  617. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  618. #endif // HAS_SERVO_ENDSTOPS
  619. }
  620. /**
  621. * Stepper Reset (RigidBoard, et.al.)
  622. */
  623. #if HAS_STEPPER_RESET
  624. void disableStepperDrivers() {
  625. pinMode(STEPPER_RESET_PIN, OUTPUT);
  626. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  627. }
  628. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  629. #endif
  630. /**
  631. * Marlin entry-point: Set up before the program loop
  632. * - Set up the kill pin, filament runout, power hold
  633. * - Start the serial port
  634. * - Print startup messages and diagnostics
  635. * - Get EEPROM or default settings
  636. * - Initialize managers for:
  637. * • temperature
  638. * • planner
  639. * • watchdog
  640. * • stepper
  641. * • photo pin
  642. * • servos
  643. * • LCD controller
  644. * • Digipot I2C
  645. * • Z probe sled
  646. * • status LEDs
  647. */
  648. void setup() {
  649. #ifdef DISABLE_JTAG
  650. // Disable JTAG on AT90USB chips to free up pins for IO
  651. MCUCR = 0x80;
  652. MCUCR = 0x80;
  653. #endif
  654. setup_killpin();
  655. setup_filrunoutpin();
  656. setup_powerhold();
  657. #if HAS_STEPPER_RESET
  658. disableStepperDrivers();
  659. #endif
  660. MYSERIAL.begin(BAUDRATE);
  661. SERIAL_PROTOCOLLNPGM("start");
  662. SERIAL_ECHO_START;
  663. // Check startup - does nothing if bootloader sets MCUSR to 0
  664. byte mcu = MCUSR;
  665. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  666. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  667. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  668. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  669. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  670. MCUSR = 0;
  671. SERIAL_ECHOPGM(MSG_MARLIN);
  672. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  673. #ifdef STRING_DISTRIBUTION_DATE
  674. #ifdef STRING_CONFIG_H_AUTHOR
  675. SERIAL_ECHO_START;
  676. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  677. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  678. SERIAL_ECHOPGM(MSG_AUTHOR);
  679. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  680. SERIAL_ECHOPGM("Compiled: ");
  681. SERIAL_ECHOLNPGM(__DATE__);
  682. #endif // STRING_CONFIG_H_AUTHOR
  683. #endif // STRING_DISTRIBUTION_DATE
  684. SERIAL_ECHO_START;
  685. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  686. SERIAL_ECHO(freeMemory());
  687. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  688. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  689. // Send "ok" after commands by default
  690. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  691. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  692. Config_RetrieveSettings();
  693. lcd_init();
  694. tp_init(); // Initialize temperature loop
  695. plan_init(); // Initialize planner;
  696. #if ENABLED(DELTA) || ENABLED(SCARA)
  697. // Vital to init kinematic equivalent for X0 Y0 Z0
  698. sync_plan_position_delta();
  699. #endif
  700. #if ENABLED(USE_WATCHDOG)
  701. watchdog_init();
  702. #endif
  703. st_init(); // Initialize stepper, this enables interrupts!
  704. setup_photpin();
  705. servo_init();
  706. #if HAS_CONTROLLERFAN
  707. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  708. #endif
  709. #if HAS_STEPPER_RESET
  710. enableStepperDrivers();
  711. #endif
  712. #if ENABLED(DIGIPOT_I2C)
  713. digipot_i2c_init();
  714. #endif
  715. #if ENABLED(Z_PROBE_SLED)
  716. pinMode(SLED_PIN, OUTPUT);
  717. digitalWrite(SLED_PIN, LOW); // turn it off
  718. #endif // Z_PROBE_SLED
  719. setup_homepin();
  720. #ifdef STAT_LED_RED
  721. pinMode(STAT_LED_RED, OUTPUT);
  722. digitalWrite(STAT_LED_RED, LOW); // turn it off
  723. #endif
  724. #ifdef STAT_LED_BLUE
  725. pinMode(STAT_LED_BLUE, OUTPUT);
  726. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  727. #endif
  728. }
  729. /**
  730. * The main Marlin program loop
  731. *
  732. * - Save or log commands to SD
  733. * - Process available commands (if not saving)
  734. * - Call heater manager
  735. * - Call inactivity manager
  736. * - Call endstop manager
  737. * - Call LCD update
  738. */
  739. void loop() {
  740. if (commands_in_queue < BUFSIZE) get_available_commands();
  741. #if ENABLED(SDSUPPORT)
  742. card.checkautostart(false);
  743. #endif
  744. if (commands_in_queue) {
  745. #if ENABLED(SDSUPPORT)
  746. if (card.saving) {
  747. char* command = command_queue[cmd_queue_index_r];
  748. if (strstr_P(command, PSTR("M29"))) {
  749. // M29 closes the file
  750. card.closefile();
  751. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  752. ok_to_send();
  753. }
  754. else {
  755. // Write the string from the read buffer to SD
  756. card.write_command(command);
  757. if (card.logging)
  758. process_next_command(); // The card is saving because it's logging
  759. else
  760. ok_to_send();
  761. }
  762. }
  763. else
  764. process_next_command();
  765. #else
  766. process_next_command();
  767. #endif // SDSUPPORT
  768. commands_in_queue--;
  769. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  770. }
  771. checkHitEndstops();
  772. idle();
  773. }
  774. void gcode_line_error(const char* err, bool doFlush = true) {
  775. SERIAL_ERROR_START;
  776. serialprintPGM(err);
  777. SERIAL_ERRORLN(gcode_LastN);
  778. //Serial.println(gcode_N);
  779. if (doFlush) FlushSerialRequestResend();
  780. serial_count = 0;
  781. }
  782. inline void get_serial_commands() {
  783. static char serial_line_buffer[MAX_CMD_SIZE];
  784. static boolean serial_comment_mode = false;
  785. // If the command buffer is empty for too long,
  786. // send "wait" to indicate Marlin is still waiting.
  787. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  788. static millis_t last_command_time = 0;
  789. millis_t ms = millis();
  790. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  791. SERIAL_ECHOLNPGM(MSG_WAIT);
  792. last_command_time = ms;
  793. }
  794. #endif
  795. /**
  796. * Loop while serial characters are incoming and the queue is not full
  797. */
  798. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  799. char serial_char = MYSERIAL.read();
  800. /**
  801. * If the character ends the line
  802. */
  803. if (serial_char == '\n' || serial_char == '\r') {
  804. serial_comment_mode = false; // end of line == end of comment
  805. if (!serial_count) continue; // skip empty lines
  806. serial_line_buffer[serial_count] = 0; // terminate string
  807. serial_count = 0; //reset buffer
  808. char* command = serial_line_buffer;
  809. while (*command == ' ') command++; // skip any leading spaces
  810. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  811. char* apos = strchr(command, '*');
  812. if (npos) {
  813. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  814. if (M110) {
  815. char* n2pos = strchr(command + 4, 'N');
  816. if (n2pos) npos = n2pos;
  817. }
  818. gcode_N = strtol(npos + 1, NULL, 10);
  819. if (gcode_N != gcode_LastN + 1 && !M110) {
  820. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  821. return;
  822. }
  823. if (apos) {
  824. byte checksum = 0, count = 0;
  825. while (command[count] != '*') checksum ^= command[count++];
  826. if (strtol(apos + 1, NULL, 10) != checksum) {
  827. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  828. return;
  829. }
  830. // if no errors, continue parsing
  831. }
  832. else {
  833. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  834. return;
  835. }
  836. gcode_LastN = gcode_N;
  837. // if no errors, continue parsing
  838. }
  839. else if (apos) { // No '*' without 'N'
  840. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  841. return;
  842. }
  843. // Movement commands alert when stopped
  844. if (IsStopped()) {
  845. char* gpos = strchr(command, 'G');
  846. if (gpos) {
  847. int codenum = strtol(gpos + 1, NULL, 10);
  848. switch (codenum) {
  849. case 0:
  850. case 1:
  851. case 2:
  852. case 3:
  853. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  854. LCD_MESSAGEPGM(MSG_STOPPED);
  855. break;
  856. }
  857. }
  858. }
  859. // If command was e-stop process now
  860. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  861. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  862. last_command_time = ms;
  863. #endif
  864. // Add the command to the queue
  865. _enqueuecommand(serial_line_buffer, true);
  866. }
  867. else if (serial_count >= MAX_CMD_SIZE - 1) {
  868. // Keep fetching, but ignore normal characters beyond the max length
  869. // The command will be injected when EOL is reached
  870. }
  871. else if (serial_char == '\\') { // Handle escapes
  872. if (MYSERIAL.available() > 0) {
  873. // if we have one more character, copy it over
  874. serial_char = MYSERIAL.read();
  875. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  876. }
  877. // otherwise do nothing
  878. }
  879. else { // it's not a newline, carriage return or escape char
  880. if (serial_char == ';') serial_comment_mode = true;
  881. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  882. }
  883. } // queue has space, serial has data
  884. }
  885. #if ENABLED(SDSUPPORT)
  886. inline void get_sdcard_commands() {
  887. static bool stop_buffering = false,
  888. sd_comment_mode = false;
  889. if (!card.sdprinting) return;
  890. /**
  891. * '#' stops reading from SD to the buffer prematurely, so procedural
  892. * macro calls are possible. If it occurs, stop_buffering is triggered
  893. * and the buffer is run dry; this character _can_ occur in serial com
  894. * due to checksums, however, no checksums are used in SD printing.
  895. */
  896. if (commands_in_queue == 0) stop_buffering = false;
  897. uint16_t sd_count = 0;
  898. bool card_eof = card.eof();
  899. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  900. int16_t n = card.get();
  901. char sd_char = (char)n;
  902. card_eof = card.eof();
  903. if (card_eof || n == -1
  904. || sd_char == '\n' || sd_char == '\r'
  905. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  906. ) {
  907. if (card_eof) {
  908. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  909. print_job_timer.stop();
  910. char time[30];
  911. millis_t t = print_job_timer.duration();
  912. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  913. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  914. SERIAL_ECHO_START;
  915. SERIAL_ECHOLN(time);
  916. lcd_setstatus(time, true);
  917. card.printingHasFinished();
  918. card.checkautostart(true);
  919. }
  920. if (sd_char == '#') stop_buffering = true;
  921. sd_comment_mode = false; //for new command
  922. if (!sd_count) continue; //skip empty lines
  923. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  924. sd_count = 0; //clear buffer
  925. _commit_command(false);
  926. }
  927. else if (sd_count >= MAX_CMD_SIZE - 1) {
  928. /**
  929. * Keep fetching, but ignore normal characters beyond the max length
  930. * The command will be injected when EOL is reached
  931. */
  932. }
  933. else {
  934. if (sd_char == ';') sd_comment_mode = true;
  935. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  936. }
  937. }
  938. }
  939. #endif // SDSUPPORT
  940. /**
  941. * Add to the circular command queue the next command from:
  942. * - The command-injection queue (queued_commands_P)
  943. * - The active serial input (usually USB)
  944. * - The SD card file being actively printed
  945. */
  946. void get_available_commands() {
  947. // if any immediate commands remain, don't get other commands yet
  948. if (drain_queued_commands_P()) return;
  949. get_serial_commands();
  950. #if ENABLED(SDSUPPORT)
  951. get_sdcard_commands();
  952. #endif
  953. }
  954. bool code_has_value() {
  955. int i = 1;
  956. char c = seen_pointer[i];
  957. while (c == ' ') c = seen_pointer[++i];
  958. if (c == '-' || c == '+') c = seen_pointer[++i];
  959. if (c == '.') c = seen_pointer[++i];
  960. return NUMERIC(c);
  961. }
  962. float code_value() {
  963. float ret;
  964. char* e = strchr(seen_pointer, 'E');
  965. if (e) {
  966. *e = 0;
  967. ret = strtod(seen_pointer + 1, NULL);
  968. *e = 'E';
  969. }
  970. else
  971. ret = strtod(seen_pointer + 1, NULL);
  972. return ret;
  973. }
  974. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  975. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  976. bool code_seen(char code) {
  977. seen_pointer = strchr(current_command_args, code);
  978. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  979. }
  980. #define DEFINE_PGM_READ_ANY(type, reader) \
  981. static inline type pgm_read_any(const type *p) \
  982. { return pgm_read_##reader##_near(p); }
  983. DEFINE_PGM_READ_ANY(float, float);
  984. DEFINE_PGM_READ_ANY(signed char, byte);
  985. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  986. static const PROGMEM type array##_P[3] = \
  987. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  988. static inline type array(int axis) \
  989. { return pgm_read_any(&array##_P[axis]); }
  990. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  991. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  992. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  993. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  994. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  995. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  996. #if ENABLED(DUAL_X_CARRIAGE)
  997. #define DXC_FULL_CONTROL_MODE 0
  998. #define DXC_AUTO_PARK_MODE 1
  999. #define DXC_DUPLICATION_MODE 2
  1000. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1001. static float x_home_pos(int extruder) {
  1002. if (extruder == 0)
  1003. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1004. else
  1005. /**
  1006. * In dual carriage mode the extruder offset provides an override of the
  1007. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1008. * This allow soft recalibration of the second extruder offset position
  1009. * without firmware reflash (through the M218 command).
  1010. */
  1011. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1012. }
  1013. static int x_home_dir(int extruder) {
  1014. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1015. }
  1016. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1017. static bool active_extruder_parked = false; // used in mode 1 & 2
  1018. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1019. static millis_t delayed_move_time = 0; // used in mode 1
  1020. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1021. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1022. bool extruder_duplication_enabled = false; // used in mode 2
  1023. #endif //DUAL_X_CARRIAGE
  1024. /**
  1025. * Software endstops can be used to monitor the open end of
  1026. * an axis that has a hardware endstop on the other end. Or
  1027. * they can prevent axes from moving past endstops and grinding.
  1028. *
  1029. * To keep doing their job as the coordinate system changes,
  1030. * the software endstop positions must be refreshed to remain
  1031. * at the same positions relative to the machine.
  1032. */
  1033. static void update_software_endstops(AxisEnum axis) {
  1034. float offs = home_offset[axis] + position_shift[axis];
  1035. #if ENABLED(DUAL_X_CARRIAGE)
  1036. if (axis == X_AXIS) {
  1037. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1038. if (active_extruder != 0) {
  1039. min_pos[X_AXIS] = X2_MIN_POS + offs;
  1040. max_pos[X_AXIS] = dual_max_x + offs;
  1041. return;
  1042. }
  1043. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1044. min_pos[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1045. max_pos[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1046. return;
  1047. }
  1048. }
  1049. else
  1050. #endif
  1051. {
  1052. min_pos[axis] = base_min_pos(axis) + offs;
  1053. max_pos[axis] = base_max_pos(axis) + offs;
  1054. }
  1055. }
  1056. static void set_home_offset(AxisEnum axis, float v) {
  1057. current_position[axis] += v - home_offset[axis];
  1058. home_offset[axis] = v;
  1059. update_software_endstops(axis);
  1060. }
  1061. static void set_axis_is_at_home(AxisEnum axis) {
  1062. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1063. if (DEBUGGING(LEVELING)) {
  1064. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1065. SERIAL_ECHOLNPGM(") >>>");
  1066. }
  1067. #endif
  1068. position_shift[axis] = 0;
  1069. #if ENABLED(DUAL_X_CARRIAGE)
  1070. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1071. if (active_extruder != 0)
  1072. current_position[X_AXIS] = x_home_pos(active_extruder);
  1073. else
  1074. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1075. update_software_endstops(X_AXIS);
  1076. return;
  1077. }
  1078. #endif
  1079. #if ENABLED(SCARA)
  1080. if (axis == X_AXIS || axis == Y_AXIS) {
  1081. float homeposition[3];
  1082. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1083. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1084. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1085. /**
  1086. * Works out real Homeposition angles using inverse kinematics,
  1087. * and calculates homing offset using forward kinematics
  1088. */
  1089. calculate_delta(homeposition);
  1090. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1091. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1092. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1093. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1094. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1095. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1096. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1097. calculate_SCARA_forward_Transform(delta);
  1098. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1099. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1100. current_position[axis] = delta[axis];
  1101. /**
  1102. * SCARA home positions are based on configuration since the actual
  1103. * limits are determined by the inverse kinematic transform.
  1104. */
  1105. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1106. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1107. }
  1108. else
  1109. #endif
  1110. {
  1111. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1112. update_software_endstops(axis);
  1113. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1114. if (axis == Z_AXIS) {
  1115. current_position[Z_AXIS] -= zprobe_zoffset;
  1116. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1117. if (DEBUGGING(LEVELING)) {
  1118. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1119. SERIAL_EOL;
  1120. }
  1121. #endif
  1122. }
  1123. #endif
  1124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1125. if (DEBUGGING(LEVELING)) {
  1126. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1127. DEBUG_POS("", current_position);
  1128. }
  1129. #endif
  1130. }
  1131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1132. if (DEBUGGING(LEVELING)) {
  1133. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1134. SERIAL_ECHOLNPGM(")");
  1135. }
  1136. #endif
  1137. }
  1138. /**
  1139. * Some planner shorthand inline functions
  1140. */
  1141. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1142. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1143. int hbd = homing_bump_divisor[axis];
  1144. if (hbd < 1) {
  1145. hbd = 10;
  1146. SERIAL_ECHO_START;
  1147. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1148. }
  1149. feedrate = homing_feedrate[axis] / hbd;
  1150. }
  1151. //
  1152. // line_to_current_position
  1153. // Move the planner to the current position from wherever it last moved
  1154. // (or from wherever it has been told it is located).
  1155. //
  1156. inline void line_to_current_position() {
  1157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1158. }
  1159. inline void line_to_z(float zPosition) {
  1160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1161. }
  1162. //
  1163. // line_to_destination
  1164. // Move the planner, not necessarily synced with current_position
  1165. //
  1166. inline void line_to_destination(float mm_m) {
  1167. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1168. }
  1169. inline void line_to_destination() {
  1170. line_to_destination(feedrate);
  1171. }
  1172. /**
  1173. * sync_plan_position
  1174. * Set planner / stepper positions to the cartesian current_position.
  1175. * The stepper code translates these coordinates into step units.
  1176. * Allows translation between steps and units (mm) for cartesian & core robots
  1177. */
  1178. inline void sync_plan_position() {
  1179. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1180. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1181. #endif
  1182. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1183. }
  1184. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1185. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1186. static void setup_for_endstop_move() {
  1187. saved_feedrate = feedrate;
  1188. saved_feedrate_multiplier = feedrate_multiplier;
  1189. feedrate_multiplier = 100;
  1190. refresh_cmd_timeout();
  1191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1192. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1193. #endif
  1194. enable_endstops(true);
  1195. }
  1196. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1197. #if ENABLED(DELTA)
  1198. /**
  1199. * Calculate delta, start a line, and set current_position to destination
  1200. */
  1201. void prepare_move_raw() {
  1202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1203. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1204. #endif
  1205. refresh_cmd_timeout();
  1206. calculate_delta(destination);
  1207. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1208. set_current_to_destination();
  1209. }
  1210. #endif
  1211. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1212. #if DISABLED(DELTA)
  1213. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1214. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1215. plan_bed_level_matrix.set_to_identity();
  1216. if (DEBUGGING(LEVELING)) {
  1217. vector_3 uncorrected_position = plan_get_position();
  1218. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1219. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1220. }
  1221. #endif
  1222. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1223. // planeNormal.debug("planeNormal");
  1224. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1225. //bedLevel.debug("bedLevel");
  1226. //plan_bed_level_matrix.debug("bed level before");
  1227. //vector_3 uncorrected_position = plan_get_position();
  1228. //uncorrected_position.debug("position before");
  1229. vector_3 corrected_position = plan_get_position();
  1230. //corrected_position.debug("position after");
  1231. current_position[X_AXIS] = corrected_position.x;
  1232. current_position[Y_AXIS] = corrected_position.y;
  1233. current_position[Z_AXIS] = corrected_position.z;
  1234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1235. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", current_position);
  1236. #endif
  1237. sync_plan_position();
  1238. }
  1239. #endif // !DELTA
  1240. #else // !AUTO_BED_LEVELING_GRID
  1241. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1242. plan_bed_level_matrix.set_to_identity();
  1243. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1244. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1245. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1246. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1247. if (planeNormal.z < 0) {
  1248. planeNormal.x = -planeNormal.x;
  1249. planeNormal.y = -planeNormal.y;
  1250. planeNormal.z = -planeNormal.z;
  1251. }
  1252. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1253. vector_3 corrected_position = plan_get_position();
  1254. current_position[X_AXIS] = corrected_position.x;
  1255. current_position[Y_AXIS] = corrected_position.y;
  1256. current_position[Z_AXIS] = corrected_position.z;
  1257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1258. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position);
  1259. #endif
  1260. sync_plan_position();
  1261. }
  1262. #endif // !AUTO_BED_LEVELING_GRID
  1263. static void run_z_probe() {
  1264. /**
  1265. * To prevent stepper_inactive_time from running out and
  1266. * EXTRUDER_RUNOUT_PREVENT from extruding
  1267. */
  1268. refresh_cmd_timeout();
  1269. #if ENABLED(DELTA)
  1270. float start_z = current_position[Z_AXIS];
  1271. long start_steps = st_get_position(Z_AXIS);
  1272. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1273. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1274. #endif
  1275. // move down slowly until you find the bed
  1276. feedrate = homing_feedrate[Z_AXIS] / 4;
  1277. destination[Z_AXIS] = -10;
  1278. prepare_move_raw(); // this will also set_current_to_destination
  1279. st_synchronize();
  1280. endstops_hit_on_purpose(); // clear endstop hit flags
  1281. /**
  1282. * We have to let the planner know where we are right now as it
  1283. * is not where we said to go.
  1284. */
  1285. long stop_steps = st_get_position(Z_AXIS);
  1286. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1287. current_position[Z_AXIS] = mm;
  1288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1289. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1290. #endif
  1291. sync_plan_position_delta();
  1292. #else // !DELTA
  1293. plan_bed_level_matrix.set_to_identity();
  1294. feedrate = homing_feedrate[Z_AXIS];
  1295. // Move down until the Z probe (or endstop?) is triggered
  1296. float zPosition = -(Z_MAX_LENGTH + 10);
  1297. line_to_z(zPosition);
  1298. st_synchronize();
  1299. // Tell the planner where we ended up - Get this from the stepper handler
  1300. zPosition = st_get_axis_position_mm(Z_AXIS);
  1301. plan_set_position(
  1302. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1303. current_position[E_AXIS]
  1304. );
  1305. // move up the retract distance
  1306. zPosition += home_bump_mm(Z_AXIS);
  1307. line_to_z(zPosition);
  1308. st_synchronize();
  1309. endstops_hit_on_purpose(); // clear endstop hit flags
  1310. // move back down slowly to find bed
  1311. set_homing_bump_feedrate(Z_AXIS);
  1312. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1313. line_to_z(zPosition);
  1314. st_synchronize();
  1315. endstops_hit_on_purpose(); // clear endstop hit flags
  1316. // Get the current stepper position after bumping an endstop
  1317. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1318. sync_plan_position();
  1319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1320. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1321. #endif
  1322. #endif // !DELTA
  1323. }
  1324. /**
  1325. * Plan a move to (X, Y, Z) and set the current_position
  1326. * The final current_position may not be the one that was requested
  1327. */
  1328. static void do_blocking_move_to(float x, float y, float z) {
  1329. float oldFeedRate = feedrate;
  1330. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1331. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1332. #endif
  1333. #if ENABLED(DELTA)
  1334. feedrate = XY_TRAVEL_SPEED;
  1335. destination[X_AXIS] = x;
  1336. destination[Y_AXIS] = y;
  1337. destination[Z_AXIS] = z;
  1338. prepare_move_raw(); // this will also set_current_to_destination
  1339. st_synchronize();
  1340. #else
  1341. feedrate = homing_feedrate[Z_AXIS];
  1342. current_position[Z_AXIS] = z;
  1343. line_to_current_position();
  1344. st_synchronize();
  1345. feedrate = xy_travel_speed;
  1346. current_position[X_AXIS] = x;
  1347. current_position[Y_AXIS] = y;
  1348. line_to_current_position();
  1349. st_synchronize();
  1350. #endif
  1351. feedrate = oldFeedRate;
  1352. }
  1353. inline void do_blocking_move_to_xy(float x, float y) {
  1354. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1355. }
  1356. inline void do_blocking_move_to_x(float x) {
  1357. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1358. }
  1359. inline void do_blocking_move_to_z(float z) {
  1360. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1361. }
  1362. inline void raise_z_after_probing() {
  1363. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1364. }
  1365. static void clean_up_after_endstop_move() {
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1368. #endif
  1369. endstops_not_homing();
  1370. feedrate = saved_feedrate;
  1371. feedrate_multiplier = saved_feedrate_multiplier;
  1372. refresh_cmd_timeout();
  1373. }
  1374. #if ENABLED(HAS_Z_MIN_PROBE)
  1375. static void deploy_z_probe() {
  1376. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1377. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1378. #endif
  1379. if (z_probe_is_active) return;
  1380. #if HAS_SERVO_ENDSTOPS
  1381. // Engage Z Servo endstop if enabled
  1382. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1383. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1384. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1385. // If endstop is already false, the Z probe is deployed
  1386. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1387. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1388. if (z_probe_endstop)
  1389. #else
  1390. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1391. if (z_min_endstop)
  1392. #endif
  1393. {
  1394. // Move to the start position to initiate deployment
  1395. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1396. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1397. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1398. prepare_move_raw(); // this will also set_current_to_destination
  1399. // Move to engage deployment
  1400. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1401. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1402. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1403. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1404. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1405. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1406. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1407. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1408. prepare_move_raw();
  1409. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1410. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1411. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1412. // Move to trigger deployment
  1413. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1414. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1415. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1416. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1417. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1418. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1419. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1420. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1421. prepare_move_raw();
  1422. #endif
  1423. }
  1424. // Partially Home X,Y for safety
  1425. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1426. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1427. prepare_move_raw(); // this will also set_current_to_destination
  1428. st_synchronize();
  1429. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1430. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1431. if (z_probe_endstop)
  1432. #else
  1433. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1434. if (z_min_endstop)
  1435. #endif
  1436. {
  1437. if (IsRunning()) {
  1438. SERIAL_ERROR_START;
  1439. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1440. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1441. }
  1442. Stop();
  1443. }
  1444. #endif // Z_PROBE_ALLEN_KEY
  1445. #if ENABLED(FIX_MOUNTED_PROBE)
  1446. // Noting to be done. Just set z_probe_is_active
  1447. #endif
  1448. z_probe_is_active = true;
  1449. }
  1450. static void stow_z_probe(bool doRaise = true) {
  1451. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1452. UNUSED(doRaise);
  1453. #endif
  1454. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1455. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1456. #endif
  1457. if (!z_probe_is_active) return;
  1458. #if HAS_SERVO_ENDSTOPS
  1459. // Retract Z Servo endstop if enabled
  1460. if (servo_endstop_id[Z_AXIS] >= 0) {
  1461. #if Z_RAISE_AFTER_PROBING > 0
  1462. if (doRaise) {
  1463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1464. if (DEBUGGING(LEVELING)) {
  1465. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1466. SERIAL_EOL;
  1467. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1468. SERIAL_EOL;
  1469. }
  1470. #endif
  1471. raise_z_after_probing(); // this also updates current_position
  1472. st_synchronize();
  1473. }
  1474. #endif
  1475. // Change the Z servo angle
  1476. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1477. }
  1478. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1479. // Move up for safety
  1480. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1481. #if Z_RAISE_AFTER_PROBING > 0
  1482. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1483. prepare_move_raw(); // this will also set_current_to_destination
  1484. #endif
  1485. // Move to the start position to initiate retraction
  1486. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1487. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1488. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1489. prepare_move_raw();
  1490. // Move the nozzle down to push the Z probe into retracted position
  1491. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1492. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1493. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1494. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1495. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1496. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1497. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1498. prepare_move_raw();
  1499. // Move up for safety
  1500. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1501. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1502. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1503. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1504. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1505. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1506. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1507. prepare_move_raw();
  1508. // Home XY for safety
  1509. feedrate = homing_feedrate[X_AXIS] / 2;
  1510. destination[X_AXIS] = 0;
  1511. destination[Y_AXIS] = 0;
  1512. prepare_move_raw(); // this will also set_current_to_destination
  1513. st_synchronize();
  1514. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1515. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1516. if (!z_probe_endstop)
  1517. #else
  1518. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1519. if (!z_min_endstop)
  1520. #endif
  1521. {
  1522. if (IsRunning()) {
  1523. SERIAL_ERROR_START;
  1524. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1525. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1526. }
  1527. Stop();
  1528. }
  1529. #endif // Z_PROBE_ALLEN_KEY
  1530. #if ENABLED(FIX_MOUNTED_PROBE)
  1531. // Nothing to do here. Just clear z_probe_is_active
  1532. #endif
  1533. z_probe_is_active = false;
  1534. }
  1535. #endif // HAS_Z_MIN_PROBE
  1536. enum ProbeAction {
  1537. ProbeStay = 0,
  1538. ProbeDeploy = _BV(0),
  1539. ProbeStow = _BV(1),
  1540. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1541. };
  1542. // Probe bed height at position (x,y), returns the measured z value
  1543. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1544. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1545. if (DEBUGGING(LEVELING)) {
  1546. SERIAL_ECHOLNPGM("probe_pt >>>");
  1547. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1548. SERIAL_EOL;
  1549. DEBUG_POS("", current_position);
  1550. }
  1551. #endif
  1552. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1553. if (DEBUGGING(LEVELING)) {
  1554. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1555. SERIAL_EOL;
  1556. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1557. SERIAL_EOL;
  1558. }
  1559. #endif
  1560. // Move Z up to the z_before height, then move the Z probe to the given XY
  1561. do_blocking_move_to_z(z_before); // this also updates current_position
  1562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1563. if (DEBUGGING(LEVELING)) {
  1564. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1565. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1566. SERIAL_EOL;
  1567. }
  1568. #endif
  1569. // this also updates current_position
  1570. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1571. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1572. if (probe_action & ProbeDeploy) {
  1573. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1574. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1575. #endif
  1576. deploy_z_probe();
  1577. }
  1578. #endif
  1579. run_z_probe();
  1580. float measured_z = current_position[Z_AXIS];
  1581. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1582. if (probe_action & ProbeStow) {
  1583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1584. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1585. #endif
  1586. stow_z_probe();
  1587. }
  1588. #endif
  1589. if (verbose_level > 2) {
  1590. SERIAL_PROTOCOLPGM("Bed X: ");
  1591. SERIAL_PROTOCOL_F(x, 3);
  1592. SERIAL_PROTOCOLPGM(" Y: ");
  1593. SERIAL_PROTOCOL_F(y, 3);
  1594. SERIAL_PROTOCOLPGM(" Z: ");
  1595. SERIAL_PROTOCOL_F(measured_z, 3);
  1596. SERIAL_EOL;
  1597. }
  1598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1599. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1600. #endif
  1601. return measured_z;
  1602. }
  1603. #if ENABLED(DELTA)
  1604. /**
  1605. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1606. */
  1607. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1608. if (bed_level[x][y] != 0.0) {
  1609. return; // Don't overwrite good values.
  1610. }
  1611. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1612. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1613. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1614. float median = c; // Median is robust (ignores outliers).
  1615. if (a < b) {
  1616. if (b < c) median = b;
  1617. if (c < a) median = a;
  1618. }
  1619. else { // b <= a
  1620. if (c < b) median = b;
  1621. if (a < c) median = a;
  1622. }
  1623. bed_level[x][y] = median;
  1624. }
  1625. /**
  1626. * Fill in the unprobed points (corners of circular print surface)
  1627. * using linear extrapolation, away from the center.
  1628. */
  1629. static void extrapolate_unprobed_bed_level() {
  1630. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1631. for (int y = 0; y <= half; y++) {
  1632. for (int x = 0; x <= half; x++) {
  1633. if (x + y < 3) continue;
  1634. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1635. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1636. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1637. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1638. }
  1639. }
  1640. }
  1641. /**
  1642. * Print calibration results for plotting or manual frame adjustment.
  1643. */
  1644. static void print_bed_level() {
  1645. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1646. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1647. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1648. SERIAL_PROTOCOLCHAR(' ');
  1649. }
  1650. SERIAL_EOL;
  1651. }
  1652. }
  1653. /**
  1654. * Reset calibration results to zero.
  1655. */
  1656. void reset_bed_level() {
  1657. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1658. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1659. #endif
  1660. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1661. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1662. bed_level[x][y] = 0.0;
  1663. }
  1664. }
  1665. }
  1666. #endif // DELTA
  1667. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1668. void raise_z_for_servo() {
  1669. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1670. /**
  1671. * The zprobe_zoffset is negative any switch below the nozzle, so
  1672. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1673. */
  1674. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1675. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1676. }
  1677. #endif
  1678. #endif // AUTO_BED_LEVELING_FEATURE
  1679. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1680. static void axis_unhomed_error() {
  1681. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1682. SERIAL_ECHO_START;
  1683. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1684. }
  1685. #endif
  1686. #if ENABLED(Z_PROBE_SLED)
  1687. #ifndef SLED_DOCKING_OFFSET
  1688. #define SLED_DOCKING_OFFSET 0
  1689. #endif
  1690. /**
  1691. * Method to dock/undock a sled designed by Charles Bell.
  1692. *
  1693. * dock[in] If true, move to MAX_X and engage the electromagnet
  1694. * offset[in] The additional distance to move to adjust docking location
  1695. */
  1696. static void dock_sled(bool dock, int offset = 0) {
  1697. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1698. if (DEBUGGING(LEVELING)) {
  1699. SERIAL_ECHOPAIR("dock_sled(", dock);
  1700. SERIAL_ECHOLNPGM(")");
  1701. }
  1702. #endif
  1703. if (z_probe_is_active == dock) return;
  1704. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1705. axis_unhomed_error();
  1706. return;
  1707. }
  1708. float oldXpos = current_position[X_AXIS]; // save x position
  1709. if (dock) {
  1710. #if Z_RAISE_AFTER_PROBING > 0
  1711. raise_z_after_probing(); // raise Z
  1712. #endif
  1713. // Dock sled a bit closer to ensure proper capturing
  1714. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1715. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1716. }
  1717. else {
  1718. float z_loc = current_position[Z_AXIS];
  1719. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1720. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1721. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1722. }
  1723. do_blocking_move_to_x(oldXpos); // return to position before docking
  1724. z_probe_is_active = dock;
  1725. }
  1726. #endif // Z_PROBE_SLED
  1727. /**
  1728. * Home an individual axis
  1729. */
  1730. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1731. static void homeaxis(AxisEnum axis) {
  1732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1733. if (DEBUGGING(LEVELING)) {
  1734. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1735. SERIAL_ECHOLNPGM(")");
  1736. }
  1737. #endif
  1738. #define HOMEAXIS_DO(LETTER) \
  1739. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1740. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1741. int axis_home_dir =
  1742. #if ENABLED(DUAL_X_CARRIAGE)
  1743. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1744. #endif
  1745. home_dir(axis);
  1746. // Set the axis position as setup for the move
  1747. current_position[axis] = 0;
  1748. sync_plan_position();
  1749. #if ENABLED(Z_PROBE_SLED)
  1750. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1751. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1752. #define _Z_DEPLOY (dock_sled(false))
  1753. #define _Z_STOW (dock_sled(true))
  1754. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1755. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1756. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1757. #define _Z_DEPLOY (deploy_z_probe())
  1758. #define _Z_STOW (stow_z_probe())
  1759. #elif HAS_SERVO_ENDSTOPS
  1760. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1761. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1762. #endif
  1763. if (axis == Z_AXIS) {
  1764. // If there's a Z probe that needs deployment...
  1765. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1766. // ...and homing Z towards the bed? Deploy it.
  1767. if (axis_home_dir < 0) _Z_DEPLOY;
  1768. #endif
  1769. }
  1770. #if HAS_SERVO_ENDSTOPS
  1771. // Engage an X or Y Servo endstop if enabled
  1772. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1773. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1774. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1775. }
  1776. #endif
  1777. // Set a flag for Z motor locking
  1778. #if ENABLED(Z_DUAL_ENDSTOPS)
  1779. if (axis == Z_AXIS) In_Homing_Process(true);
  1780. #endif
  1781. // Move towards the endstop until an endstop is triggered
  1782. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1783. feedrate = homing_feedrate[axis];
  1784. line_to_destination();
  1785. st_synchronize();
  1786. // Set the axis position as setup for the move
  1787. current_position[axis] = 0;
  1788. sync_plan_position();
  1789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1790. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1791. #endif
  1792. enable_endstops(false); // Disable endstops while moving away
  1793. // Move away from the endstop by the axis HOME_BUMP_MM
  1794. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1795. line_to_destination();
  1796. st_synchronize();
  1797. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1798. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1799. #endif
  1800. enable_endstops(true); // Enable endstops for next homing move
  1801. // Slow down the feedrate for the next move
  1802. set_homing_bump_feedrate(axis);
  1803. // Move slowly towards the endstop until triggered
  1804. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1805. line_to_destination();
  1806. st_synchronize();
  1807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1808. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1809. #endif
  1810. #if ENABLED(Z_DUAL_ENDSTOPS)
  1811. if (axis == Z_AXIS) {
  1812. float adj = fabs(z_endstop_adj);
  1813. bool lockZ1;
  1814. if (axis_home_dir > 0) {
  1815. adj = -adj;
  1816. lockZ1 = (z_endstop_adj > 0);
  1817. }
  1818. else
  1819. lockZ1 = (z_endstop_adj < 0);
  1820. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1821. sync_plan_position();
  1822. // Move to the adjusted endstop height
  1823. feedrate = homing_feedrate[axis];
  1824. destination[Z_AXIS] = adj;
  1825. line_to_destination();
  1826. st_synchronize();
  1827. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1828. In_Homing_Process(false);
  1829. } // Z_AXIS
  1830. #endif
  1831. #if ENABLED(DELTA)
  1832. // retrace by the amount specified in endstop_adj
  1833. if (endstop_adj[axis] * axis_home_dir < 0) {
  1834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1835. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1836. #endif
  1837. enable_endstops(false); // Disable endstops while moving away
  1838. sync_plan_position();
  1839. destination[axis] = endstop_adj[axis];
  1840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1841. if (DEBUGGING(LEVELING)) {
  1842. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1843. DEBUG_POS("", destination);
  1844. }
  1845. #endif
  1846. line_to_destination();
  1847. st_synchronize();
  1848. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1849. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1850. #endif
  1851. enable_endstops(true); // Enable endstops for next homing move
  1852. }
  1853. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1854. else {
  1855. if (DEBUGGING(LEVELING)) {
  1856. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1857. SERIAL_EOL;
  1858. }
  1859. }
  1860. #endif
  1861. #endif
  1862. // Set the axis position to its home position (plus home offsets)
  1863. set_axis_is_at_home(axis);
  1864. sync_plan_position();
  1865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1866. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1867. #endif
  1868. destination[axis] = current_position[axis];
  1869. feedrate = 0.0;
  1870. endstops_hit_on_purpose(); // clear endstop hit flags
  1871. axis_known_position[axis] = true;
  1872. axis_homed[axis] = true;
  1873. // Put away the Z probe
  1874. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1875. if (axis == Z_AXIS && axis_home_dir < 0) {
  1876. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1877. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1878. #endif
  1879. _Z_STOW;
  1880. }
  1881. #endif
  1882. // Retract Servo endstop if enabled
  1883. #if HAS_SERVO_ENDSTOPS
  1884. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1887. #endif
  1888. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1889. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1890. }
  1891. #endif
  1892. }
  1893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1894. if (DEBUGGING(LEVELING)) {
  1895. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1896. SERIAL_ECHOLNPGM(")");
  1897. }
  1898. #endif
  1899. }
  1900. #if ENABLED(FWRETRACT)
  1901. void retract(bool retracting, bool swapping = false) {
  1902. if (retracting == retracted[active_extruder]) return;
  1903. float oldFeedrate = feedrate;
  1904. set_destination_to_current();
  1905. if (retracting) {
  1906. feedrate = retract_feedrate * 60;
  1907. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1908. plan_set_e_position(current_position[E_AXIS]);
  1909. prepare_move();
  1910. if (retract_zlift > 0.01) {
  1911. current_position[Z_AXIS] -= retract_zlift;
  1912. #if ENABLED(DELTA)
  1913. sync_plan_position_delta();
  1914. #else
  1915. sync_plan_position();
  1916. #endif
  1917. prepare_move();
  1918. }
  1919. }
  1920. else {
  1921. if (retract_zlift > 0.01) {
  1922. current_position[Z_AXIS] += retract_zlift;
  1923. #if ENABLED(DELTA)
  1924. sync_plan_position_delta();
  1925. #else
  1926. sync_plan_position();
  1927. #endif
  1928. //prepare_move();
  1929. }
  1930. feedrate = retract_recover_feedrate * 60;
  1931. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1932. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1933. plan_set_e_position(current_position[E_AXIS]);
  1934. prepare_move();
  1935. }
  1936. feedrate = oldFeedrate;
  1937. retracted[active_extruder] = retracting;
  1938. } // retract()
  1939. #endif // FWRETRACT
  1940. /**
  1941. * ***************************************************************************
  1942. * ***************************** G-CODE HANDLING *****************************
  1943. * ***************************************************************************
  1944. */
  1945. /**
  1946. * Set XYZE destination and feedrate from the current GCode command
  1947. *
  1948. * - Set destination from included axis codes
  1949. * - Set to current for missing axis codes
  1950. * - Set the feedrate, if included
  1951. */
  1952. void gcode_get_destination() {
  1953. for (int i = 0; i < NUM_AXIS; i++) {
  1954. if (code_seen(axis_codes[i]))
  1955. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1956. else
  1957. destination[i] = current_position[i];
  1958. }
  1959. if (code_seen('F')) {
  1960. float next_feedrate = code_value();
  1961. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1962. }
  1963. }
  1964. void unknown_command_error() {
  1965. SERIAL_ECHO_START;
  1966. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1967. SERIAL_ECHO(current_command);
  1968. SERIAL_ECHOPGM("\"\n");
  1969. }
  1970. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1971. /**
  1972. * Output a "busy" message at regular intervals
  1973. * while the machine is not accepting commands.
  1974. */
  1975. void host_keepalive() {
  1976. millis_t ms = millis();
  1977. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1978. if (PENDING(ms, next_busy_signal_ms)) return;
  1979. switch (busy_state) {
  1980. case IN_HANDLER:
  1981. case IN_PROCESS:
  1982. SERIAL_ECHO_START;
  1983. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1984. break;
  1985. case PAUSED_FOR_USER:
  1986. SERIAL_ECHO_START;
  1987. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1988. break;
  1989. case PAUSED_FOR_INPUT:
  1990. SERIAL_ECHO_START;
  1991. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1992. break;
  1993. default:
  1994. break;
  1995. }
  1996. }
  1997. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  1998. }
  1999. #endif //HOST_KEEPALIVE_FEATURE
  2000. /**
  2001. * G0, G1: Coordinated movement of X Y Z E axes
  2002. */
  2003. inline void gcode_G0_G1() {
  2004. if (IsRunning()) {
  2005. gcode_get_destination(); // For X Y Z E F
  2006. #if ENABLED(FWRETRACT)
  2007. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2008. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2009. // Is this move an attempt to retract or recover?
  2010. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2011. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2012. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  2013. retract(!retracted[active_extruder]);
  2014. return;
  2015. }
  2016. }
  2017. #endif //FWRETRACT
  2018. prepare_move();
  2019. }
  2020. }
  2021. /**
  2022. * G2: Clockwise Arc
  2023. * G3: Counterclockwise Arc
  2024. */
  2025. inline void gcode_G2_G3(bool clockwise) {
  2026. if (IsRunning()) {
  2027. #if ENABLED(SF_ARC_FIX)
  2028. bool relative_mode_backup = relative_mode;
  2029. relative_mode = true;
  2030. #endif
  2031. gcode_get_destination();
  2032. #if ENABLED(SF_ARC_FIX)
  2033. relative_mode = relative_mode_backup;
  2034. #endif
  2035. // Center of arc as offset from current_position
  2036. float arc_offset[2] = {
  2037. code_seen('I') ? code_value() : 0,
  2038. code_seen('J') ? code_value() : 0
  2039. };
  2040. // Send an arc to the planner
  2041. plan_arc(destination, arc_offset, clockwise);
  2042. refresh_cmd_timeout();
  2043. }
  2044. }
  2045. /**
  2046. * G4: Dwell S<seconds> or P<milliseconds>
  2047. */
  2048. inline void gcode_G4() {
  2049. millis_t codenum = 0;
  2050. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2051. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2052. st_synchronize();
  2053. refresh_cmd_timeout();
  2054. codenum += previous_cmd_ms; // keep track of when we started waiting
  2055. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2056. while (PENDING(millis(), codenum)) idle();
  2057. }
  2058. #if ENABLED(FWRETRACT)
  2059. /**
  2060. * G10 - Retract filament according to settings of M207
  2061. * G11 - Recover filament according to settings of M208
  2062. */
  2063. inline void gcode_G10_G11(bool doRetract=false) {
  2064. #if EXTRUDERS > 1
  2065. if (doRetract) {
  2066. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2067. }
  2068. #endif
  2069. retract(doRetract
  2070. #if EXTRUDERS > 1
  2071. , retracted_swap[active_extruder]
  2072. #endif
  2073. );
  2074. }
  2075. #endif //FWRETRACT
  2076. /**
  2077. * G28: Home all axes according to settings
  2078. *
  2079. * Parameters
  2080. *
  2081. * None Home to all axes with no parameters.
  2082. * With QUICK_HOME enabled XY will home together, then Z.
  2083. *
  2084. * Cartesian parameters
  2085. *
  2086. * X Home to the X endstop
  2087. * Y Home to the Y endstop
  2088. * Z Home to the Z endstop
  2089. *
  2090. */
  2091. inline void gcode_G28() {
  2092. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2093. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2094. #endif
  2095. // Wait for planner moves to finish!
  2096. st_synchronize();
  2097. // For auto bed leveling, clear the level matrix
  2098. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2099. plan_bed_level_matrix.set_to_identity();
  2100. #if ENABLED(DELTA)
  2101. reset_bed_level();
  2102. #endif
  2103. #endif
  2104. /**
  2105. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2106. * on again when homing all axis
  2107. */
  2108. #if ENABLED(MESH_BED_LEVELING)
  2109. uint8_t mbl_was_active = mbl.active;
  2110. mbl.active = false;
  2111. #endif
  2112. setup_for_endstop_move();
  2113. /**
  2114. * Directly after a reset this is all 0. Later we get a hint if we have
  2115. * to raise z or not.
  2116. */
  2117. set_destination_to_current();
  2118. feedrate = 0.0;
  2119. #if ENABLED(DELTA)
  2120. /**
  2121. * A delta can only safely home all axis at the same time
  2122. * all axis have to home at the same time
  2123. */
  2124. // Pretend the current position is 0,0,0
  2125. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2126. sync_plan_position();
  2127. // Move all carriages up together until the first endstop is hit.
  2128. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2129. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2130. line_to_destination();
  2131. st_synchronize();
  2132. endstops_hit_on_purpose(); // clear endstop hit flags
  2133. // Destination reached
  2134. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2135. // take care of back off and rehome now we are all at the top
  2136. HOMEAXIS(X);
  2137. HOMEAXIS(Y);
  2138. HOMEAXIS(Z);
  2139. sync_plan_position_delta();
  2140. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2141. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2142. #endif
  2143. #else // NOT DELTA
  2144. bool homeX = code_seen(axis_codes[X_AXIS]),
  2145. homeY = code_seen(axis_codes[Y_AXIS]),
  2146. homeZ = code_seen(axis_codes[Z_AXIS]);
  2147. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2148. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2149. if (home_all_axis || homeZ) {
  2150. HOMEAXIS(Z);
  2151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2152. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2153. #endif
  2154. }
  2155. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2156. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2157. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2158. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2159. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2160. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2161. if (DEBUGGING(LEVELING)) {
  2162. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2163. SERIAL_EOL;
  2164. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2165. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2166. }
  2167. #endif
  2168. line_to_destination();
  2169. st_synchronize();
  2170. /**
  2171. * Update the current Z position even if it currently not real from
  2172. * Z-home otherwise each call to line_to_destination() will want to
  2173. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2174. */
  2175. current_position[Z_AXIS] = destination[Z_AXIS];
  2176. }
  2177. #endif
  2178. #if ENABLED(QUICK_HOME)
  2179. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2180. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2181. #if ENABLED(DUAL_X_CARRIAGE)
  2182. int x_axis_home_dir = x_home_dir(active_extruder);
  2183. extruder_duplication_enabled = false;
  2184. #else
  2185. int x_axis_home_dir = home_dir(X_AXIS);
  2186. #endif
  2187. sync_plan_position();
  2188. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2189. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2190. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2191. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2192. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2193. line_to_destination();
  2194. st_synchronize();
  2195. set_axis_is_at_home(X_AXIS);
  2196. set_axis_is_at_home(Y_AXIS);
  2197. sync_plan_position();
  2198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2199. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2200. #endif
  2201. destination[X_AXIS] = current_position[X_AXIS];
  2202. destination[Y_AXIS] = current_position[Y_AXIS];
  2203. line_to_destination();
  2204. feedrate = 0.0;
  2205. st_synchronize();
  2206. endstops_hit_on_purpose(); // clear endstop hit flags
  2207. current_position[X_AXIS] = destination[X_AXIS];
  2208. current_position[Y_AXIS] = destination[Y_AXIS];
  2209. #if DISABLED(SCARA)
  2210. current_position[Z_AXIS] = destination[Z_AXIS];
  2211. #endif
  2212. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2213. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2214. #endif
  2215. }
  2216. #endif // QUICK_HOME
  2217. #if ENABLED(HOME_Y_BEFORE_X)
  2218. // Home Y
  2219. if (home_all_axis || homeY) HOMEAXIS(Y);
  2220. #endif
  2221. // Home X
  2222. if (home_all_axis || homeX) {
  2223. #if ENABLED(DUAL_X_CARRIAGE)
  2224. int tmp_extruder = active_extruder;
  2225. extruder_duplication_enabled = false;
  2226. active_extruder = !active_extruder;
  2227. HOMEAXIS(X);
  2228. inactive_extruder_x_pos = current_position[X_AXIS];
  2229. active_extruder = tmp_extruder;
  2230. HOMEAXIS(X);
  2231. // reset state used by the different modes
  2232. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2233. delayed_move_time = 0;
  2234. active_extruder_parked = true;
  2235. #else
  2236. HOMEAXIS(X);
  2237. #endif
  2238. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2239. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2240. #endif
  2241. }
  2242. #if DISABLED(HOME_Y_BEFORE_X)
  2243. // Home Y
  2244. if (home_all_axis || homeY) {
  2245. HOMEAXIS(Y);
  2246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2247. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2248. #endif
  2249. }
  2250. #endif
  2251. // Home Z last if homing towards the bed
  2252. #if Z_HOME_DIR < 0
  2253. if (home_all_axis || homeZ) {
  2254. #if ENABLED(Z_SAFE_HOMING)
  2255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2256. if (DEBUGGING(LEVELING)) {
  2257. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2258. }
  2259. #endif
  2260. if (home_all_axis) {
  2261. /**
  2262. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2263. * No need to move Z any more as this height should already be safe
  2264. * enough to reach Z_SAFE_HOMING XY positions.
  2265. * Just make sure the planner is in sync.
  2266. */
  2267. sync_plan_position();
  2268. /**
  2269. * Set the Z probe (or just the nozzle) destination to the safe
  2270. * homing point
  2271. */
  2272. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2273. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2274. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2275. feedrate = XY_TRAVEL_SPEED;
  2276. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2277. if (DEBUGGING(LEVELING)) {
  2278. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2279. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2280. }
  2281. #endif
  2282. // Move in the XY plane
  2283. line_to_destination();
  2284. st_synchronize();
  2285. /**
  2286. * Update the current positions for XY, Z is still at least at
  2287. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2288. */
  2289. current_position[X_AXIS] = destination[X_AXIS];
  2290. current_position[Y_AXIS] = destination[Y_AXIS];
  2291. // Home the Z axis
  2292. HOMEAXIS(Z);
  2293. }
  2294. else if (homeZ) { // Don't need to Home Z twice
  2295. // Let's see if X and Y are homed
  2296. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2297. /**
  2298. * Make sure the Z probe is within the physical limits
  2299. * NOTE: This doesn't necessarily ensure the Z probe is also
  2300. * within the bed!
  2301. */
  2302. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2303. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2304. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2305. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2306. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2307. // Home the Z axis
  2308. HOMEAXIS(Z);
  2309. }
  2310. else {
  2311. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2312. SERIAL_ECHO_START;
  2313. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2314. }
  2315. }
  2316. else {
  2317. axis_unhomed_error();
  2318. }
  2319. } // !home_all_axes && homeZ
  2320. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2321. if (DEBUGGING(LEVELING)) {
  2322. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2323. }
  2324. #endif
  2325. #else // !Z_SAFE_HOMING
  2326. HOMEAXIS(Z);
  2327. #endif // !Z_SAFE_HOMING
  2328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2329. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2330. #endif
  2331. } // home_all_axis || homeZ
  2332. #endif // Z_HOME_DIR < 0
  2333. sync_plan_position();
  2334. #endif // else DELTA
  2335. #if ENABLED(SCARA)
  2336. sync_plan_position_delta();
  2337. #endif
  2338. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2339. enable_endstops(false);
  2340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2341. if (DEBUGGING(LEVELING)) {
  2342. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2343. }
  2344. #endif
  2345. #endif
  2346. // For mesh leveling move back to Z=0
  2347. #if ENABLED(MESH_BED_LEVELING)
  2348. if (mbl_was_active && home_all_axis) {
  2349. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2350. sync_plan_position();
  2351. mbl.active = 1;
  2352. current_position[Z_AXIS] = 0.0;
  2353. set_destination_to_current();
  2354. feedrate = homing_feedrate[Z_AXIS];
  2355. line_to_destination();
  2356. st_synchronize();
  2357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2358. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2359. #endif
  2360. }
  2361. #endif
  2362. feedrate = saved_feedrate;
  2363. feedrate_multiplier = saved_feedrate_multiplier;
  2364. refresh_cmd_timeout();
  2365. endstops_hit_on_purpose(); // clear endstop hit flags
  2366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2367. if (DEBUGGING(LEVELING)) {
  2368. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2369. }
  2370. #endif
  2371. gcode_M114(); // Send end position to RepetierHost
  2372. }
  2373. #if ENABLED(MESH_BED_LEVELING)
  2374. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2375. inline void _mbl_goto_xy(float x, float y) {
  2376. saved_feedrate = feedrate;
  2377. feedrate = homing_feedrate[X_AXIS];
  2378. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2379. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + MIN_Z_HEIGHT_FOR_HOMING;
  2380. line_to_current_position();
  2381. #endif
  2382. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2383. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2384. line_to_current_position();
  2385. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2386. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2387. line_to_current_position();
  2388. #endif
  2389. feedrate = saved_feedrate;
  2390. st_synchronize();
  2391. }
  2392. /**
  2393. * G29: Mesh-based Z probe, probes a grid and produces a
  2394. * mesh to compensate for variable bed height
  2395. *
  2396. * Parameters With MESH_BED_LEVELING:
  2397. *
  2398. * S0 Produce a mesh report
  2399. * S1 Start probing mesh points
  2400. * S2 Probe the next mesh point
  2401. * S3 Xn Yn Zn.nn Manually modify a single point
  2402. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2403. *
  2404. * The S0 report the points as below
  2405. *
  2406. * +----> X-axis 1-n
  2407. * |
  2408. * |
  2409. * v Y-axis 1-n
  2410. *
  2411. */
  2412. inline void gcode_G29() {
  2413. static int probe_point = -1;
  2414. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2415. if (state < 0 || state > 4) {
  2416. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2417. return;
  2418. }
  2419. int ix, iy;
  2420. float z;
  2421. switch (state) {
  2422. case MeshReport:
  2423. if (mbl.active) {
  2424. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2425. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2426. SERIAL_PROTOCOLCHAR(',');
  2427. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2428. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2429. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2430. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2431. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2432. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2433. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2434. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2435. SERIAL_PROTOCOLPGM(" ");
  2436. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2437. }
  2438. SERIAL_EOL;
  2439. }
  2440. }
  2441. else
  2442. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2443. break;
  2444. case MeshStart:
  2445. mbl.reset();
  2446. probe_point = 0;
  2447. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2448. break;
  2449. case MeshNext:
  2450. if (probe_point < 0) {
  2451. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2452. return;
  2453. }
  2454. // For each G29 S2...
  2455. if (probe_point == 0) {
  2456. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2457. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2458. sync_plan_position();
  2459. }
  2460. else {
  2461. // For G29 S2 after adjusting Z.
  2462. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2463. }
  2464. // If there's another point to sample, move there with optional lift.
  2465. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2466. mbl.zigzag(probe_point, ix, iy);
  2467. _mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
  2468. probe_point++;
  2469. }
  2470. else {
  2471. // One last "return to the bed" (as originally coded) at completion
  2472. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2473. line_to_current_position();
  2474. st_synchronize();
  2475. // After recording the last point, activate the mbl and home
  2476. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2477. probe_point = -1;
  2478. mbl.active = true;
  2479. enqueue_and_echo_commands_P(PSTR("G28"));
  2480. }
  2481. break;
  2482. case MeshSet:
  2483. if (code_seen('X')) {
  2484. ix = code_value_long() - 1;
  2485. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2486. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2487. return;
  2488. }
  2489. }
  2490. else {
  2491. SERIAL_PROTOCOLPGM("X not entered.\n");
  2492. return;
  2493. }
  2494. if (code_seen('Y')) {
  2495. iy = code_value_long() - 1;
  2496. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2497. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2498. return;
  2499. }
  2500. }
  2501. else {
  2502. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2503. return;
  2504. }
  2505. if (code_seen('Z')) {
  2506. z = code_value();
  2507. }
  2508. else {
  2509. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2510. return;
  2511. }
  2512. mbl.z_values[iy][ix] = z;
  2513. break;
  2514. case MeshSetZOffset:
  2515. if (code_seen('Z')) {
  2516. z = code_value();
  2517. }
  2518. else {
  2519. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2520. return;
  2521. }
  2522. mbl.z_offset = z;
  2523. } // switch(state)
  2524. }
  2525. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2526. void out_of_range_error(const char* p_edge) {
  2527. SERIAL_PROTOCOLPGM("?Probe ");
  2528. serialprintPGM(p_edge);
  2529. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2530. }
  2531. /**
  2532. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2533. * Will fail if the printer has not been homed with G28.
  2534. *
  2535. * Enhanced G29 Auto Bed Leveling Probe Routine
  2536. *
  2537. * Parameters With AUTO_BED_LEVELING_GRID:
  2538. *
  2539. * P Set the size of the grid that will be probed (P x P points).
  2540. * Not supported by non-linear delta printer bed leveling.
  2541. * Example: "G29 P4"
  2542. *
  2543. * S Set the XY travel speed between probe points (in mm/min)
  2544. *
  2545. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2546. * or clean the rotation Matrix. Useful to check the topology
  2547. * after a first run of G29.
  2548. *
  2549. * V Set the verbose level (0-4). Example: "G29 V3"
  2550. *
  2551. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2552. * This is useful for manual bed leveling and finding flaws in the bed (to
  2553. * assist with part placement).
  2554. * Not supported by non-linear delta printer bed leveling.
  2555. *
  2556. * F Set the Front limit of the probing grid
  2557. * B Set the Back limit of the probing grid
  2558. * L Set the Left limit of the probing grid
  2559. * R Set the Right limit of the probing grid
  2560. *
  2561. * Global Parameters:
  2562. *
  2563. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2564. * Include "E" to engage/disengage the Z probe for each sample.
  2565. * There's no extra effect if you have a fixed Z probe.
  2566. * Usage: "G29 E" or "G29 e"
  2567. *
  2568. */
  2569. inline void gcode_G29() {
  2570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2571. if (DEBUGGING(LEVELING)) {
  2572. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2573. DEBUG_POS("", current_position);
  2574. }
  2575. #endif
  2576. // Don't allow auto-leveling without homing first
  2577. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2578. axis_unhomed_error();
  2579. return;
  2580. }
  2581. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2582. if (verbose_level < 0 || verbose_level > 4) {
  2583. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2584. return;
  2585. }
  2586. bool dryrun = code_seen('D'),
  2587. deploy_probe_for_each_reading = code_seen('E');
  2588. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2589. #if DISABLED(DELTA)
  2590. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2591. #endif
  2592. if (verbose_level > 0) {
  2593. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2594. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2595. }
  2596. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2597. #if DISABLED(DELTA)
  2598. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2599. if (auto_bed_leveling_grid_points < 2) {
  2600. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2601. return;
  2602. }
  2603. #endif
  2604. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2605. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2606. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2607. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2608. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2609. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2610. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2611. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2612. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2613. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2614. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2615. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2616. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2617. if (left_out || right_out || front_out || back_out) {
  2618. if (left_out) {
  2619. out_of_range_error(PSTR("(L)eft"));
  2620. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2621. }
  2622. if (right_out) {
  2623. out_of_range_error(PSTR("(R)ight"));
  2624. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2625. }
  2626. if (front_out) {
  2627. out_of_range_error(PSTR("(F)ront"));
  2628. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2629. }
  2630. if (back_out) {
  2631. out_of_range_error(PSTR("(B)ack"));
  2632. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2633. }
  2634. return;
  2635. }
  2636. #endif // AUTO_BED_LEVELING_GRID
  2637. if (!dryrun) {
  2638. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2639. plan_bed_level_matrix.set_to_identity();
  2640. #if ENABLED(DELTA)
  2641. reset_bed_level();
  2642. #else //!DELTA
  2643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2644. if (DEBUGGING(LEVELING)) {
  2645. vector_3 corrected_position = plan_get_position();
  2646. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2647. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2648. }
  2649. #endif
  2650. //vector_3 corrected_position = plan_get_position();
  2651. //corrected_position.debug("position before G29");
  2652. vector_3 uncorrected_position = plan_get_position();
  2653. //uncorrected_position.debug("position during G29");
  2654. current_position[X_AXIS] = uncorrected_position.x;
  2655. current_position[Y_AXIS] = uncorrected_position.y;
  2656. current_position[Z_AXIS] = uncorrected_position.z;
  2657. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2658. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2659. #endif
  2660. sync_plan_position();
  2661. #endif // !DELTA
  2662. }
  2663. #if ENABLED(Z_PROBE_SLED)
  2664. dock_sled(false); // engage (un-dock) the Z probe
  2665. #elif ENABLED(MECHANICAL_PROBE) || (ENABLED(DELTA) && SERVO_LEVELING)
  2666. deploy_z_probe();
  2667. #endif
  2668. st_synchronize();
  2669. setup_for_endstop_move();
  2670. feedrate = homing_feedrate[Z_AXIS];
  2671. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2672. // probe at the points of a lattice grid
  2673. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2674. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2675. #if ENABLED(DELTA)
  2676. delta_grid_spacing[0] = xGridSpacing;
  2677. delta_grid_spacing[1] = yGridSpacing;
  2678. float zoffset = zprobe_zoffset;
  2679. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2680. #else // !DELTA
  2681. /**
  2682. * solve the plane equation ax + by + d = z
  2683. * A is the matrix with rows [x y 1] for all the probed points
  2684. * B is the vector of the Z positions
  2685. * the normal vector to the plane is formed by the coefficients of the
  2686. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2687. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2688. */
  2689. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2690. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2691. eqnBVector[abl2], // "B" vector of Z points
  2692. mean = 0.0;
  2693. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2694. #endif // !DELTA
  2695. int probePointCounter = 0;
  2696. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2697. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2698. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2699. int xStart, xStop, xInc;
  2700. if (zig) {
  2701. xStart = 0;
  2702. xStop = auto_bed_leveling_grid_points;
  2703. xInc = 1;
  2704. }
  2705. else {
  2706. xStart = auto_bed_leveling_grid_points - 1;
  2707. xStop = -1;
  2708. xInc = -1;
  2709. }
  2710. zig = !zig;
  2711. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2712. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2713. // raise extruder
  2714. float measured_z,
  2715. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2716. if (probePointCounter) {
  2717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2718. if (DEBUGGING(LEVELING)) {
  2719. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2720. SERIAL_EOL;
  2721. }
  2722. #endif
  2723. }
  2724. else {
  2725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2726. if (DEBUGGING(LEVELING)) {
  2727. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2728. SERIAL_EOL;
  2729. }
  2730. #endif
  2731. }
  2732. #if ENABLED(DELTA)
  2733. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2734. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2735. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2736. #endif //DELTA
  2737. ProbeAction act;
  2738. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2739. act = ProbeDeployAndStow;
  2740. else if (yCount == 0 && xCount == xStart)
  2741. act = ProbeDeploy;
  2742. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2743. act = ProbeStow;
  2744. else
  2745. act = ProbeStay;
  2746. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2747. #if DISABLED(DELTA)
  2748. mean += measured_z;
  2749. eqnBVector[probePointCounter] = measured_z;
  2750. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2751. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2752. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2753. indexIntoAB[xCount][yCount] = probePointCounter;
  2754. #else
  2755. bed_level[xCount][yCount] = measured_z + zoffset;
  2756. #endif
  2757. probePointCounter++;
  2758. idle();
  2759. } //xProbe
  2760. } //yProbe
  2761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2762. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2763. #endif
  2764. clean_up_after_endstop_move();
  2765. #if ENABLED(DELTA)
  2766. if (!dryrun) extrapolate_unprobed_bed_level();
  2767. print_bed_level();
  2768. #else // !DELTA
  2769. // solve lsq problem
  2770. double plane_equation_coefficients[3];
  2771. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2772. mean /= abl2;
  2773. if (verbose_level) {
  2774. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2775. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2776. SERIAL_PROTOCOLPGM(" b: ");
  2777. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2778. SERIAL_PROTOCOLPGM(" d: ");
  2779. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2780. SERIAL_EOL;
  2781. if (verbose_level > 2) {
  2782. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2783. SERIAL_PROTOCOL_F(mean, 8);
  2784. SERIAL_EOL;
  2785. }
  2786. }
  2787. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2788. // Show the Topography map if enabled
  2789. if (do_topography_map) {
  2790. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2791. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2792. SERIAL_PROTOCOLPGM(" | |\n");
  2793. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2794. SERIAL_PROTOCOLPGM(" E | | I\n");
  2795. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2796. SERIAL_PROTOCOLPGM(" T | | H\n");
  2797. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2798. SERIAL_PROTOCOLPGM(" | |\n");
  2799. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2800. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2801. float min_diff = 999;
  2802. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2803. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2804. int ind = indexIntoAB[xx][yy];
  2805. float diff = eqnBVector[ind] - mean;
  2806. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2807. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2808. z_tmp = 0;
  2809. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2810. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2811. if (diff >= 0.0)
  2812. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2813. else
  2814. SERIAL_PROTOCOLCHAR(' ');
  2815. SERIAL_PROTOCOL_F(diff, 5);
  2816. } // xx
  2817. SERIAL_EOL;
  2818. } // yy
  2819. SERIAL_EOL;
  2820. if (verbose_level > 3) {
  2821. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2822. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2823. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2824. int ind = indexIntoAB[xx][yy];
  2825. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2826. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2827. z_tmp = 0;
  2828. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2829. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2830. if (diff >= 0.0)
  2831. SERIAL_PROTOCOLPGM(" +");
  2832. // Include + for column alignment
  2833. else
  2834. SERIAL_PROTOCOLCHAR(' ');
  2835. SERIAL_PROTOCOL_F(diff, 5);
  2836. } // xx
  2837. SERIAL_EOL;
  2838. } // yy
  2839. SERIAL_EOL;
  2840. }
  2841. } //do_topography_map
  2842. #endif //!DELTA
  2843. #else // !AUTO_BED_LEVELING_GRID
  2844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2845. if (DEBUGGING(LEVELING)) {
  2846. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2847. }
  2848. #endif
  2849. // Actions for each probe
  2850. ProbeAction p1, p2, p3;
  2851. if (deploy_probe_for_each_reading)
  2852. p1 = p2 = p3 = ProbeDeployAndStow;
  2853. else
  2854. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2855. // Probe at 3 arbitrary points
  2856. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2857. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2858. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2859. p1, verbose_level),
  2860. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2861. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2862. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2863. p2, verbose_level),
  2864. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2865. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2866. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2867. p3, verbose_level);
  2868. clean_up_after_endstop_move();
  2869. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2870. #endif // !AUTO_BED_LEVELING_GRID
  2871. #if ENABLED(DELTA)
  2872. // Allen Key Probe for Delta
  2873. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2874. stow_z_probe();
  2875. #elif Z_RAISE_AFTER_PROBING > 0
  2876. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2877. #endif
  2878. #else // !DELTA
  2879. if (verbose_level > 0)
  2880. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2881. if (!dryrun) {
  2882. /**
  2883. * Correct the Z height difference from Z probe position and nozzle tip position.
  2884. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2885. * from the nozzle. When the bed is uneven, this height must be corrected.
  2886. */
  2887. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2888. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2889. z_tmp = current_position[Z_AXIS],
  2890. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2892. if (DEBUGGING(LEVELING)) {
  2893. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2894. SERIAL_EOL;
  2895. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2896. SERIAL_EOL;
  2897. }
  2898. #endif
  2899. // Apply the correction sending the Z probe offset
  2900. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2901. /*
  2902. * Get the current Z position and send it to the planner.
  2903. *
  2904. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2905. * (most recent plan_set_position/sync_plan_position)
  2906. *
  2907. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2908. * (set by default, M851, EEPROM, or Menu)
  2909. *
  2910. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2911. * after the last probe
  2912. *
  2913. * >> Should home_offset[Z_AXIS] be included?
  2914. *
  2915. *
  2916. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2917. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2918. * not actually "homing" Z... then perhaps it should not be included
  2919. * here. The purpose of home_offset[] is to adjust for inaccurate
  2920. * endstops, not for reasonably accurate probes. If it were added
  2921. * here, it could be seen as a compensating factor for the Z probe.
  2922. */
  2923. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2924. if (DEBUGGING(LEVELING)) {
  2925. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2926. SERIAL_EOL;
  2927. }
  2928. #endif
  2929. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2930. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2931. + Z_RAISE_AFTER_PROBING
  2932. #endif
  2933. ;
  2934. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2935. sync_plan_position();
  2936. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2937. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2938. #endif
  2939. }
  2940. // Sled assembly for Cartesian bots
  2941. #if ENABLED(Z_PROBE_SLED)
  2942. dock_sled(true); // dock the sled
  2943. #elif Z_RAISE_AFTER_PROBING > 0
  2944. // Raise Z axis for non-delta and non servo based probes
  2945. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2946. raise_z_after_probing();
  2947. #endif
  2948. #endif
  2949. #endif // !DELTA
  2950. #ifdef Z_PROBE_END_SCRIPT
  2951. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2952. if (DEBUGGING(LEVELING)) {
  2953. SERIAL_ECHO("Z Probe End Script: ");
  2954. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2955. }
  2956. #endif
  2957. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2958. #if ENABLED(HAS_Z_MIN_PROBE)
  2959. z_probe_is_active = false;
  2960. #endif
  2961. st_synchronize();
  2962. #endif
  2963. KEEPALIVE_STATE(IN_HANDLER);
  2964. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2965. if (DEBUGGING(LEVELING)) {
  2966. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2967. }
  2968. #endif
  2969. gcode_M114(); // Send end position to RepetierHost
  2970. }
  2971. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2972. /**
  2973. * G30: Do a single Z probe at the current XY
  2974. */
  2975. inline void gcode_G30() {
  2976. #if HAS_SERVO_ENDSTOPS
  2977. raise_z_for_servo();
  2978. #endif
  2979. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2980. st_synchronize();
  2981. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2982. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2983. feedrate = homing_feedrate[Z_AXIS];
  2984. run_z_probe();
  2985. SERIAL_PROTOCOLPGM("Bed X: ");
  2986. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2987. SERIAL_PROTOCOLPGM(" Y: ");
  2988. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2989. SERIAL_PROTOCOLPGM(" Z: ");
  2990. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2991. SERIAL_EOL;
  2992. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2993. #if HAS_SERVO_ENDSTOPS
  2994. raise_z_for_servo();
  2995. #endif
  2996. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2997. gcode_M114(); // Send end position to RepetierHost
  2998. }
  2999. #endif //!Z_PROBE_SLED
  3000. #endif //AUTO_BED_LEVELING_FEATURE
  3001. /**
  3002. * G92: Set current position to given X Y Z E
  3003. */
  3004. inline void gcode_G92() {
  3005. if (!code_seen(axis_codes[E_AXIS]))
  3006. st_synchronize();
  3007. bool didXYZ = false;
  3008. for (int i = 0; i < NUM_AXIS; i++) {
  3009. if (code_seen(axis_codes[i])) {
  3010. float p = current_position[i],
  3011. v = code_value();
  3012. current_position[i] = v;
  3013. position_shift[i] += v - p; // Offset the coordinate space
  3014. update_software_endstops((AxisEnum)i);
  3015. if (i == E_AXIS)
  3016. plan_set_e_position(v);
  3017. else
  3018. didXYZ = true;
  3019. }
  3020. }
  3021. if (didXYZ) {
  3022. #if ENABLED(DELTA) || ENABLED(SCARA)
  3023. sync_plan_position_delta();
  3024. #else
  3025. sync_plan_position();
  3026. #endif
  3027. }
  3028. }
  3029. #if ENABLED(ULTIPANEL)
  3030. /**
  3031. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3032. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3033. */
  3034. inline void gcode_M0_M1() {
  3035. char* args = current_command_args;
  3036. uint8_t test_value = 12;
  3037. SERIAL_ECHOPAIR("TEST", test_value);
  3038. millis_t codenum = 0;
  3039. bool hasP = false, hasS = false;
  3040. if (code_seen('P')) {
  3041. codenum = code_value_short(); // milliseconds to wait
  3042. hasP = codenum > 0;
  3043. }
  3044. if (code_seen('S')) {
  3045. codenum = code_value() * 1000UL; // seconds to wait
  3046. hasS = codenum > 0;
  3047. }
  3048. if (!hasP && !hasS && *args != '\0')
  3049. lcd_setstatus(args, true);
  3050. else {
  3051. LCD_MESSAGEPGM(MSG_USERWAIT);
  3052. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3053. dontExpireStatus();
  3054. #endif
  3055. }
  3056. lcd_ignore_click();
  3057. st_synchronize();
  3058. refresh_cmd_timeout();
  3059. if (codenum > 0) {
  3060. codenum += previous_cmd_ms; // wait until this time for a click
  3061. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3062. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3063. KEEPALIVE_STATE(IN_HANDLER);
  3064. lcd_ignore_click(false);
  3065. }
  3066. else {
  3067. if (!lcd_detected()) return;
  3068. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3069. while (!lcd_clicked()) idle();
  3070. KEEPALIVE_STATE(IN_HANDLER);
  3071. }
  3072. if (IS_SD_PRINTING)
  3073. LCD_MESSAGEPGM(MSG_RESUMING);
  3074. else
  3075. LCD_MESSAGEPGM(WELCOME_MSG);
  3076. }
  3077. #endif // ULTIPANEL
  3078. /**
  3079. * M17: Enable power on all stepper motors
  3080. */
  3081. inline void gcode_M17() {
  3082. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3083. enable_all_steppers();
  3084. }
  3085. #if ENABLED(SDSUPPORT)
  3086. /**
  3087. * M20: List SD card to serial output
  3088. */
  3089. inline void gcode_M20() {
  3090. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3091. card.ls();
  3092. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3093. }
  3094. /**
  3095. * M21: Init SD Card
  3096. */
  3097. inline void gcode_M21() {
  3098. card.initsd();
  3099. }
  3100. /**
  3101. * M22: Release SD Card
  3102. */
  3103. inline void gcode_M22() {
  3104. card.release();
  3105. }
  3106. /**
  3107. * M23: Open a file
  3108. */
  3109. inline void gcode_M23() {
  3110. card.openFile(current_command_args, true);
  3111. }
  3112. /**
  3113. * M24: Start SD Print
  3114. */
  3115. inline void gcode_M24() {
  3116. card.startFileprint();
  3117. print_job_timer.start();
  3118. }
  3119. /**
  3120. * M25: Pause SD Print
  3121. */
  3122. inline void gcode_M25() {
  3123. card.pauseSDPrint();
  3124. }
  3125. /**
  3126. * M26: Set SD Card file index
  3127. */
  3128. inline void gcode_M26() {
  3129. if (card.cardOK && code_seen('S'))
  3130. card.setIndex(code_value_short());
  3131. }
  3132. /**
  3133. * M27: Get SD Card status
  3134. */
  3135. inline void gcode_M27() {
  3136. card.getStatus();
  3137. }
  3138. /**
  3139. * M28: Start SD Write
  3140. */
  3141. inline void gcode_M28() {
  3142. card.openFile(current_command_args, false);
  3143. }
  3144. /**
  3145. * M29: Stop SD Write
  3146. * Processed in write to file routine above
  3147. */
  3148. inline void gcode_M29() {
  3149. // card.saving = false;
  3150. }
  3151. /**
  3152. * M30 <filename>: Delete SD Card file
  3153. */
  3154. inline void gcode_M30() {
  3155. if (card.cardOK) {
  3156. card.closefile();
  3157. card.removeFile(current_command_args);
  3158. }
  3159. }
  3160. #endif //SDSUPPORT
  3161. /**
  3162. * M31: Get the time since the start of SD Print (or last M109)
  3163. */
  3164. inline void gcode_M31() {
  3165. millis_t t = print_job_timer.duration();
  3166. int min = t / 60, sec = t % 60;
  3167. char time[30];
  3168. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3169. SERIAL_ECHO_START;
  3170. SERIAL_ECHOLN(time);
  3171. lcd_setstatus(time);
  3172. autotempShutdown();
  3173. }
  3174. #if ENABLED(SDSUPPORT)
  3175. /**
  3176. * M32: Select file and start SD Print
  3177. */
  3178. inline void gcode_M32() {
  3179. if (card.sdprinting)
  3180. st_synchronize();
  3181. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3182. if (!namestartpos)
  3183. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3184. else
  3185. namestartpos++; //to skip the '!'
  3186. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3187. if (card.cardOK) {
  3188. card.openFile(namestartpos, true, call_procedure);
  3189. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3190. card.setIndex(code_value_short());
  3191. card.startFileprint();
  3192. // Procedure calls count as normal print time.
  3193. if (!call_procedure) print_job_timer.start();
  3194. }
  3195. }
  3196. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3197. /**
  3198. * M33: Get the long full path of a file or folder
  3199. *
  3200. * Parameters:
  3201. * <dospath> Case-insensitive DOS-style path to a file or folder
  3202. *
  3203. * Example:
  3204. * M33 miscel~1/armchair/armcha~1.gco
  3205. *
  3206. * Output:
  3207. * /Miscellaneous/Armchair/Armchair.gcode
  3208. */
  3209. inline void gcode_M33() {
  3210. card.printLongPath(current_command_args);
  3211. }
  3212. #endif
  3213. /**
  3214. * M928: Start SD Write
  3215. */
  3216. inline void gcode_M928() {
  3217. card.openLogFile(current_command_args);
  3218. }
  3219. #endif // SDSUPPORT
  3220. /**
  3221. * M42: Change pin status via GCode
  3222. *
  3223. * P<pin> Pin number (LED if omitted)
  3224. * S<byte> Pin status from 0 - 255
  3225. */
  3226. inline void gcode_M42() {
  3227. if (code_seen('S')) {
  3228. int pin_status = code_value_short();
  3229. if (pin_status < 0 || pin_status > 255) return;
  3230. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3231. if (pin_number < 0) return;
  3232. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3233. if (pin_number == sensitive_pins[i]) return;
  3234. pinMode(pin_number, OUTPUT);
  3235. digitalWrite(pin_number, pin_status);
  3236. analogWrite(pin_number, pin_status);
  3237. #if FAN_COUNT > 0
  3238. switch (pin_number) {
  3239. #if HAS_FAN0
  3240. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3241. #endif
  3242. #if HAS_FAN1
  3243. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3244. #endif
  3245. #if HAS_FAN2
  3246. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3247. #endif
  3248. }
  3249. #endif
  3250. } // code_seen('S')
  3251. }
  3252. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3253. /**
  3254. * This is redundant since the SanityCheck.h already checks for a valid
  3255. * Z_MIN_PROBE_PIN, but here for clarity.
  3256. */
  3257. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3258. #if !HAS_Z_PROBE
  3259. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3260. #endif
  3261. #elif !HAS_Z_MIN
  3262. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3263. #endif
  3264. /**
  3265. * M48: Z probe repeatability measurement function.
  3266. *
  3267. * Usage:
  3268. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3269. * P = Number of sampled points (4-50, default 10)
  3270. * X = Sample X position
  3271. * Y = Sample Y position
  3272. * V = Verbose level (0-4, default=1)
  3273. * E = Engage Z probe for each reading
  3274. * L = Number of legs of movement before probe
  3275. * S = Schizoid (Or Star if you prefer)
  3276. *
  3277. * This function assumes the bed has been homed. Specifically, that a G28 command
  3278. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3279. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3280. * regenerated.
  3281. */
  3282. inline void gcode_M48() {
  3283. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3284. axis_unhomed_error();
  3285. return;
  3286. }
  3287. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3288. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3289. if (code_seen('V')) {
  3290. verbose_level = code_value_short();
  3291. if (verbose_level < 0 || verbose_level > 4) {
  3292. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3293. return;
  3294. }
  3295. }
  3296. if (verbose_level > 0)
  3297. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3298. if (code_seen('P')) {
  3299. n_samples = code_value_short();
  3300. if (n_samples < 4 || n_samples > 50) {
  3301. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3302. return;
  3303. }
  3304. }
  3305. float X_current = current_position[X_AXIS],
  3306. Y_current = current_position[Y_AXIS],
  3307. Z_current = current_position[Z_AXIS],
  3308. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3309. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3310. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3311. bool deploy_probe_for_each_reading = code_seen('E');
  3312. if (code_seen('X')) {
  3313. X_probe_location = code_value();
  3314. #if DISABLED(DELTA)
  3315. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3316. out_of_range_error(PSTR("X"));
  3317. return;
  3318. }
  3319. #endif
  3320. }
  3321. if (code_seen('Y')) {
  3322. Y_probe_location = code_value();
  3323. #if DISABLED(DELTA)
  3324. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3325. out_of_range_error(PSTR("Y"));
  3326. return;
  3327. }
  3328. #endif
  3329. }
  3330. #if ENABLED(DELTA)
  3331. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3332. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3333. return;
  3334. }
  3335. #endif
  3336. bool seen_L = code_seen('L');
  3337. if (seen_L) {
  3338. n_legs = code_value_short();
  3339. if (n_legs < 0 || n_legs > 15) {
  3340. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3341. return;
  3342. }
  3343. if (n_legs == 1) n_legs = 2;
  3344. }
  3345. if (code_seen('S')) {
  3346. schizoid_flag++;
  3347. if (!seen_L) n_legs = 7;
  3348. }
  3349. /**
  3350. * Now get everything to the specified probe point So we can safely do a
  3351. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3352. * we don't want to use that as a starting point for each probe.
  3353. */
  3354. if (verbose_level > 2)
  3355. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3356. #if ENABLED(DELTA)
  3357. // we don't do bed level correction in M48 because we want the raw data when we probe
  3358. reset_bed_level();
  3359. #else
  3360. // we don't do bed level correction in M48 because we want the raw data when we probe
  3361. plan_bed_level_matrix.set_to_identity();
  3362. #endif
  3363. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3364. do_blocking_move_to_z(Z_start_location);
  3365. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3366. /**
  3367. * OK, do the initial probe to get us close to the bed.
  3368. * Then retrace the right amount and use that in subsequent probes
  3369. */
  3370. setup_for_endstop_move();
  3371. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3372. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3373. verbose_level);
  3374. raise_z_after_probing();
  3375. for (uint8_t n = 0; n < n_samples; n++) {
  3376. randomSeed(millis());
  3377. delay(500);
  3378. if (n_legs) {
  3379. float radius, angle = random(0.0, 360.0);
  3380. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3381. radius = random(
  3382. #if ENABLED(DELTA)
  3383. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3384. #else
  3385. 5, X_MAX_LENGTH / 8
  3386. #endif
  3387. );
  3388. if (verbose_level > 3) {
  3389. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3390. SERIAL_ECHOPAIR(" angle: ", angle);
  3391. delay(100);
  3392. if (dir > 0)
  3393. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3394. else
  3395. SERIAL_ECHO(" Direction: Clockwise \n");
  3396. delay(100);
  3397. }
  3398. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3399. double delta_angle;
  3400. if (schizoid_flag)
  3401. // The points of a 5 point star are 72 degrees apart. We need to
  3402. // skip a point and go to the next one on the star.
  3403. delta_angle = dir * 2.0 * 72.0;
  3404. else
  3405. // If we do this line, we are just trying to move further
  3406. // around the circle.
  3407. delta_angle = dir * (float) random(25, 45);
  3408. angle += delta_angle;
  3409. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3410. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3411. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3412. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3413. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3414. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3415. #if DISABLED(DELTA)
  3416. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3417. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3418. #else
  3419. // If we have gone out too far, we can do a simple fix and scale the numbers
  3420. // back in closer to the origin.
  3421. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3422. X_current /= 1.25;
  3423. Y_current /= 1.25;
  3424. if (verbose_level > 3) {
  3425. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3426. SERIAL_ECHOPAIR(", ", Y_current);
  3427. SERIAL_EOL;
  3428. delay(50);
  3429. }
  3430. }
  3431. #endif
  3432. if (verbose_level > 3) {
  3433. SERIAL_PROTOCOL("Going to:");
  3434. SERIAL_ECHOPAIR("x: ", X_current);
  3435. SERIAL_ECHOPAIR("y: ", Y_current);
  3436. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3437. SERIAL_EOL;
  3438. delay(55);
  3439. }
  3440. do_blocking_move_to_xy(X_current, Y_current);
  3441. } // n_legs loop
  3442. } // n_legs
  3443. /**
  3444. * We don't really have to do this move, but if we don't we can see a
  3445. * funny shift in the Z Height because the user might not have the
  3446. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3447. * height. This gets us back to the probe location at the same height that
  3448. * we have been running around the circle at.
  3449. */
  3450. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3451. if (deploy_probe_for_each_reading)
  3452. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3453. else {
  3454. if (n == n_samples - 1)
  3455. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3456. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3457. }
  3458. /**
  3459. * Get the current mean for the data points we have so far
  3460. */
  3461. sum = 0.0;
  3462. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3463. mean = sum / (n + 1);
  3464. /**
  3465. * Now, use that mean to calculate the standard deviation for the
  3466. * data points we have so far
  3467. */
  3468. sum = 0.0;
  3469. for (uint8_t j = 0; j <= n; j++) {
  3470. float ss = sample_set[j] - mean;
  3471. sum += ss * ss;
  3472. }
  3473. sigma = sqrt(sum / (n + 1));
  3474. if (verbose_level > 1) {
  3475. SERIAL_PROTOCOL(n + 1);
  3476. SERIAL_PROTOCOLPGM(" of ");
  3477. SERIAL_PROTOCOL((int)n_samples);
  3478. SERIAL_PROTOCOLPGM(" z: ");
  3479. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3480. delay(50);
  3481. if (verbose_level > 2) {
  3482. SERIAL_PROTOCOLPGM(" mean: ");
  3483. SERIAL_PROTOCOL_F(mean, 6);
  3484. SERIAL_PROTOCOLPGM(" sigma: ");
  3485. SERIAL_PROTOCOL_F(sigma, 6);
  3486. }
  3487. }
  3488. if (verbose_level > 0) SERIAL_EOL;
  3489. delay(50);
  3490. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3491. } // End of probe loop code
  3492. // raise_z_after_probing();
  3493. if (verbose_level > 0) {
  3494. SERIAL_PROTOCOLPGM("Mean: ");
  3495. SERIAL_PROTOCOL_F(mean, 6);
  3496. SERIAL_EOL;
  3497. delay(25);
  3498. }
  3499. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3500. SERIAL_PROTOCOL_F(sigma, 6);
  3501. SERIAL_EOL; SERIAL_EOL;
  3502. delay(25);
  3503. clean_up_after_endstop_move();
  3504. gcode_M114(); // Send end position to RepetierHost
  3505. }
  3506. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3507. /**
  3508. * M75: Start print timer
  3509. */
  3510. inline void gcode_M75() {
  3511. print_job_timer.start();
  3512. }
  3513. /**
  3514. * M76: Pause print timer
  3515. */
  3516. inline void gcode_M76() {
  3517. print_job_timer.pause();
  3518. }
  3519. /**
  3520. * M77: Stop print timer
  3521. */
  3522. inline void gcode_M77() {
  3523. print_job_timer.stop();
  3524. }
  3525. /**
  3526. * M104: Set hot end temperature
  3527. */
  3528. inline void gcode_M104() {
  3529. if (setTargetedHotend(104)) return;
  3530. if (DEBUGGING(DRYRUN)) return;
  3531. if (code_seen('S')) {
  3532. float temp = code_value();
  3533. setTargetHotend(temp, target_extruder);
  3534. #if ENABLED(DUAL_X_CARRIAGE)
  3535. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3536. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3537. #endif
  3538. /**
  3539. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3540. * stand by mode, for instance in a dual extruder setup, without affecting
  3541. * the running print timer.
  3542. */
  3543. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3544. print_job_timer.stop();
  3545. LCD_MESSAGEPGM(WELCOME_MSG);
  3546. }
  3547. /**
  3548. * We do not check if the timer is already running because this check will
  3549. * be done for us inside the Stopwatch::start() method thus a running timer
  3550. * will not restart.
  3551. */
  3552. else print_job_timer.start();
  3553. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3554. }
  3555. }
  3556. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3557. void print_heaterstates() {
  3558. #if HAS_TEMP_HOTEND
  3559. SERIAL_PROTOCOLPGM(" T:");
  3560. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3561. SERIAL_PROTOCOLPGM(" /");
  3562. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3563. #endif
  3564. #if HAS_TEMP_BED
  3565. SERIAL_PROTOCOLPGM(" B:");
  3566. SERIAL_PROTOCOL_F(degBed(), 1);
  3567. SERIAL_PROTOCOLPGM(" /");
  3568. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3569. #endif
  3570. #if EXTRUDERS > 1
  3571. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3572. SERIAL_PROTOCOLPGM(" T");
  3573. SERIAL_PROTOCOL(e);
  3574. SERIAL_PROTOCOLCHAR(':');
  3575. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3576. SERIAL_PROTOCOLPGM(" /");
  3577. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3578. }
  3579. #endif
  3580. #if HAS_TEMP_BED
  3581. SERIAL_PROTOCOLPGM(" B@:");
  3582. #ifdef BED_WATTS
  3583. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3584. SERIAL_PROTOCOLCHAR('W');
  3585. #else
  3586. SERIAL_PROTOCOL(getHeaterPower(-1));
  3587. #endif
  3588. #endif
  3589. SERIAL_PROTOCOLPGM(" @:");
  3590. #ifdef EXTRUDER_WATTS
  3591. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3592. SERIAL_PROTOCOLCHAR('W');
  3593. #else
  3594. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3595. #endif
  3596. #if EXTRUDERS > 1
  3597. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3598. SERIAL_PROTOCOLPGM(" @");
  3599. SERIAL_PROTOCOL(e);
  3600. SERIAL_PROTOCOLCHAR(':');
  3601. #ifdef EXTRUDER_WATTS
  3602. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3603. SERIAL_PROTOCOLCHAR('W');
  3604. #else
  3605. SERIAL_PROTOCOL(getHeaterPower(e));
  3606. #endif
  3607. }
  3608. #endif
  3609. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3610. #if HAS_TEMP_BED
  3611. SERIAL_PROTOCOLPGM(" ADC B:");
  3612. SERIAL_PROTOCOL_F(degBed(), 1);
  3613. SERIAL_PROTOCOLPGM("C->");
  3614. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3615. #endif
  3616. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3617. SERIAL_PROTOCOLPGM(" T");
  3618. SERIAL_PROTOCOL(cur_extruder);
  3619. SERIAL_PROTOCOLCHAR(':');
  3620. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3621. SERIAL_PROTOCOLPGM("C->");
  3622. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3623. }
  3624. #endif
  3625. }
  3626. #endif
  3627. /**
  3628. * M105: Read hot end and bed temperature
  3629. */
  3630. inline void gcode_M105() {
  3631. if (setTargetedHotend(105)) return;
  3632. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3633. SERIAL_PROTOCOLPGM(MSG_OK);
  3634. print_heaterstates();
  3635. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3636. SERIAL_ERROR_START;
  3637. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3638. #endif
  3639. SERIAL_EOL;
  3640. }
  3641. #if FAN_COUNT > 0
  3642. /**
  3643. * M106: Set Fan Speed
  3644. *
  3645. * S<int> Speed between 0-255
  3646. * P<index> Fan index, if more than one fan
  3647. */
  3648. inline void gcode_M106() {
  3649. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3650. p = code_seen('P') ? code_value_short() : 0;
  3651. NOMORE(s, 255);
  3652. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3653. }
  3654. /**
  3655. * M107: Fan Off
  3656. */
  3657. inline void gcode_M107() {
  3658. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3659. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3660. }
  3661. #endif // FAN_COUNT > 0
  3662. /**
  3663. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3664. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3665. */
  3666. inline void gcode_M109() {
  3667. if (setTargetedHotend(109)) return;
  3668. if (DEBUGGING(DRYRUN)) return;
  3669. bool no_wait_for_cooling = code_seen('S');
  3670. if (no_wait_for_cooling || code_seen('R')) {
  3671. float temp = code_value();
  3672. setTargetHotend(temp, target_extruder);
  3673. #if ENABLED(DUAL_X_CARRIAGE)
  3674. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3675. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3676. #endif
  3677. /**
  3678. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3679. * stand by mode, for instance in a dual extruder setup, without affecting
  3680. * the running print timer.
  3681. */
  3682. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3683. print_job_timer.stop();
  3684. LCD_MESSAGEPGM(WELCOME_MSG);
  3685. }
  3686. /**
  3687. * We do not check if the timer is already running because this check will
  3688. * be done for us inside the Stopwatch::start() method thus a running timer
  3689. * will not restart.
  3690. */
  3691. else print_job_timer.start();
  3692. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3693. }
  3694. #if ENABLED(AUTOTEMP)
  3695. autotemp_enabled = code_seen('F');
  3696. if (autotemp_enabled) autotemp_factor = code_value();
  3697. if (code_seen('S')) autotemp_min = code_value();
  3698. if (code_seen('B')) autotemp_max = code_value();
  3699. #endif
  3700. bool wants_to_cool = isCoolingHotend(target_extruder);
  3701. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3702. if (no_wait_for_cooling && wants_to_cool) return;
  3703. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3704. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3705. if (wants_to_cool && degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3706. #ifdef TEMP_RESIDENCY_TIME
  3707. millis_t residency_start_ms = 0;
  3708. // Loop until the temperature has stabilized
  3709. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3710. #else
  3711. // Loop until the temperature is very close target
  3712. #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
  3713. #endif //TEMP_RESIDENCY_TIME
  3714. cancel_heatup = false;
  3715. millis_t now, next_temp_ms = 0;
  3716. do {
  3717. now = millis();
  3718. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3719. next_temp_ms = now + 1000UL;
  3720. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3721. print_heaterstates();
  3722. #endif
  3723. #ifdef TEMP_RESIDENCY_TIME
  3724. SERIAL_PROTOCOLPGM(" W:");
  3725. if (residency_start_ms) {
  3726. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3727. SERIAL_PROTOCOLLN(rem);
  3728. }
  3729. else {
  3730. SERIAL_PROTOCOLLNPGM("?");
  3731. }
  3732. #else
  3733. SERIAL_EOL;
  3734. #endif
  3735. }
  3736. idle();
  3737. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3738. #ifdef TEMP_RESIDENCY_TIME
  3739. float temp_diff = fabs(degTargetHotend(target_extruder) - degHotend(target_extruder));
  3740. if (!residency_start_ms) {
  3741. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3742. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3743. }
  3744. else if (temp_diff > TEMP_HYSTERESIS) {
  3745. // Restart the timer whenever the temperature falls outside the hysteresis.
  3746. residency_start_ms = millis();
  3747. }
  3748. #endif //TEMP_RESIDENCY_TIME
  3749. } while (!cancel_heatup && TEMP_CONDITIONS);
  3750. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3751. }
  3752. #if HAS_TEMP_BED
  3753. /**
  3754. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3755. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3756. */
  3757. inline void gcode_M190() {
  3758. if (DEBUGGING(DRYRUN)) return;
  3759. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3760. bool no_wait_for_cooling = code_seen('S');
  3761. if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value());
  3762. bool wants_to_cool = isCoolingBed();
  3763. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3764. if (no_wait_for_cooling && wants_to_cool) return;
  3765. cancel_heatup = false;
  3766. millis_t next_temp_ms = 0;
  3767. // Wait for temperature to come close enough
  3768. do {
  3769. millis_t now = millis();
  3770. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3771. next_temp_ms = now + 1000UL;
  3772. print_heaterstates();
  3773. SERIAL_EOL;
  3774. }
  3775. idle();
  3776. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3777. } while (!cancel_heatup && (wants_to_cool ? isCoolingBed() : isHeatingBed()));
  3778. LCD_MESSAGEPGM(MSG_BED_DONE);
  3779. }
  3780. #endif // HAS_TEMP_BED
  3781. /**
  3782. * M110: Set Current Line Number
  3783. */
  3784. inline void gcode_M110() {
  3785. if (code_seen('N')) gcode_N = code_value_long();
  3786. }
  3787. /**
  3788. * M111: Set the debug level
  3789. */
  3790. inline void gcode_M111() {
  3791. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3792. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3793. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3794. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3795. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3796. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3797. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3798. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3799. #endif
  3800. const static char* const debug_strings[] PROGMEM = {
  3801. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3802. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3803. str_debug_32
  3804. #endif
  3805. };
  3806. SERIAL_ECHO_START;
  3807. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3808. if (marlin_debug_flags) {
  3809. uint8_t comma = 0;
  3810. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3811. if (TEST(marlin_debug_flags, i)) {
  3812. if (comma++) SERIAL_CHAR(',');
  3813. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3814. }
  3815. }
  3816. }
  3817. else {
  3818. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3819. }
  3820. SERIAL_EOL;
  3821. }
  3822. /**
  3823. * M112: Emergency Stop
  3824. */
  3825. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3826. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3827. /**
  3828. * M113: Get or set Host Keepalive interval (0 to disable)
  3829. *
  3830. * S<seconds> Optional. Set the keepalive interval.
  3831. */
  3832. inline void gcode_M113() {
  3833. if (code_seen('S')) {
  3834. host_keepalive_interval = (uint8_t)code_value_short();
  3835. NOMORE(host_keepalive_interval, 60);
  3836. }
  3837. else {
  3838. SERIAL_ECHO_START;
  3839. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3840. SERIAL_EOL;
  3841. }
  3842. }
  3843. #endif
  3844. #if ENABLED(BARICUDA)
  3845. #if HAS_HEATER_1
  3846. /**
  3847. * M126: Heater 1 valve open
  3848. */
  3849. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3850. /**
  3851. * M127: Heater 1 valve close
  3852. */
  3853. inline void gcode_M127() { ValvePressure = 0; }
  3854. #endif
  3855. #if HAS_HEATER_2
  3856. /**
  3857. * M128: Heater 2 valve open
  3858. */
  3859. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3860. /**
  3861. * M129: Heater 2 valve close
  3862. */
  3863. inline void gcode_M129() { EtoPPressure = 0; }
  3864. #endif
  3865. #endif //BARICUDA
  3866. /**
  3867. * M140: Set bed temperature
  3868. */
  3869. inline void gcode_M140() {
  3870. if (DEBUGGING(DRYRUN)) return;
  3871. if (code_seen('S')) setTargetBed(code_value());
  3872. }
  3873. #if ENABLED(ULTIPANEL)
  3874. /**
  3875. * M145: Set the heatup state for a material in the LCD menu
  3876. * S<material> (0=PLA, 1=ABS)
  3877. * H<hotend temp>
  3878. * B<bed temp>
  3879. * F<fan speed>
  3880. */
  3881. inline void gcode_M145() {
  3882. int8_t material = code_seen('S') ? code_value_short() : 0;
  3883. if (material < 0 || material > 1) {
  3884. SERIAL_ERROR_START;
  3885. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3886. }
  3887. else {
  3888. int v;
  3889. switch (material) {
  3890. case 0:
  3891. if (code_seen('H')) {
  3892. v = code_value_short();
  3893. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3894. }
  3895. if (code_seen('F')) {
  3896. v = code_value_short();
  3897. plaPreheatFanSpeed = constrain(v, 0, 255);
  3898. }
  3899. #if TEMP_SENSOR_BED != 0
  3900. if (code_seen('B')) {
  3901. v = code_value_short();
  3902. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3903. }
  3904. #endif
  3905. break;
  3906. case 1:
  3907. if (code_seen('H')) {
  3908. v = code_value_short();
  3909. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3910. }
  3911. if (code_seen('F')) {
  3912. v = code_value_short();
  3913. absPreheatFanSpeed = constrain(v, 0, 255);
  3914. }
  3915. #if TEMP_SENSOR_BED != 0
  3916. if (code_seen('B')) {
  3917. v = code_value_short();
  3918. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3919. }
  3920. #endif
  3921. break;
  3922. }
  3923. }
  3924. }
  3925. #endif
  3926. #if HAS_POWER_SWITCH
  3927. /**
  3928. * M80: Turn on Power Supply
  3929. */
  3930. inline void gcode_M80() {
  3931. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3932. /**
  3933. * If you have a switch on suicide pin, this is useful
  3934. * if you want to start another print with suicide feature after
  3935. * a print without suicide...
  3936. */
  3937. #if HAS_SUICIDE
  3938. OUT_WRITE(SUICIDE_PIN, HIGH);
  3939. #endif
  3940. #if ENABLED(ULTIPANEL)
  3941. powersupply = true;
  3942. LCD_MESSAGEPGM(WELCOME_MSG);
  3943. lcd_update();
  3944. #endif
  3945. }
  3946. #endif // HAS_POWER_SWITCH
  3947. /**
  3948. * M81: Turn off Power, including Power Supply, if there is one.
  3949. *
  3950. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3951. */
  3952. inline void gcode_M81() {
  3953. disable_all_heaters();
  3954. finishAndDisableSteppers();
  3955. #if FAN_COUNT > 0
  3956. #if FAN_COUNT > 1
  3957. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3958. #else
  3959. fanSpeeds[0] = 0;
  3960. #endif
  3961. #endif
  3962. delay(1000); // Wait 1 second before switching off
  3963. #if HAS_SUICIDE
  3964. st_synchronize();
  3965. suicide();
  3966. #elif HAS_POWER_SWITCH
  3967. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3968. #endif
  3969. #if ENABLED(ULTIPANEL)
  3970. #if HAS_POWER_SWITCH
  3971. powersupply = false;
  3972. #endif
  3973. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3974. lcd_update();
  3975. #endif
  3976. }
  3977. /**
  3978. * M82: Set E codes absolute (default)
  3979. */
  3980. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3981. /**
  3982. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3983. */
  3984. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3985. /**
  3986. * M18, M84: Disable all stepper motors
  3987. */
  3988. inline void gcode_M18_M84() {
  3989. if (code_seen('S')) {
  3990. stepper_inactive_time = code_value() * 1000UL;
  3991. }
  3992. else {
  3993. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3994. if (all_axis) {
  3995. finishAndDisableSteppers();
  3996. }
  3997. else {
  3998. st_synchronize();
  3999. if (code_seen('X')) disable_x();
  4000. if (code_seen('Y')) disable_y();
  4001. if (code_seen('Z')) disable_z();
  4002. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4003. if (code_seen('E')) {
  4004. disable_e0();
  4005. disable_e1();
  4006. disable_e2();
  4007. disable_e3();
  4008. }
  4009. #endif
  4010. }
  4011. }
  4012. }
  4013. /**
  4014. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4015. */
  4016. inline void gcode_M85() {
  4017. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4018. }
  4019. /**
  4020. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4021. * (Follows the same syntax as G92)
  4022. */
  4023. inline void gcode_M92() {
  4024. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4025. if (code_seen(axis_codes[i])) {
  4026. if (i == E_AXIS) {
  4027. float value = code_value();
  4028. if (value < 20.0) {
  4029. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4030. max_e_jerk *= factor;
  4031. max_feedrate[i] *= factor;
  4032. axis_steps_per_sqr_second[i] *= factor;
  4033. }
  4034. axis_steps_per_unit[i] = value;
  4035. }
  4036. else {
  4037. axis_steps_per_unit[i] = code_value();
  4038. }
  4039. }
  4040. }
  4041. }
  4042. /**
  4043. * M114: Output current position to serial port
  4044. */
  4045. inline void gcode_M114() {
  4046. SERIAL_PROTOCOLPGM("X:");
  4047. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4048. SERIAL_PROTOCOLPGM(" Y:");
  4049. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4050. SERIAL_PROTOCOLPGM(" Z:");
  4051. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4052. SERIAL_PROTOCOLPGM(" E:");
  4053. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4054. CRITICAL_SECTION_START;
  4055. extern volatile long count_position[NUM_AXIS];
  4056. long xpos = count_position[X_AXIS],
  4057. ypos = count_position[Y_AXIS],
  4058. zpos = count_position[Z_AXIS];
  4059. CRITICAL_SECTION_END;
  4060. #if ENABLED(COREXY) || ENABLED(COREXZ)
  4061. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  4062. #else
  4063. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  4064. #endif
  4065. SERIAL_PROTOCOL(xpos);
  4066. #if ENABLED(COREXY)
  4067. SERIAL_PROTOCOLPGM(" B:");
  4068. #else
  4069. SERIAL_PROTOCOLPGM(" Y:");
  4070. #endif
  4071. SERIAL_PROTOCOL(ypos);
  4072. #if ENABLED(COREXZ)
  4073. SERIAL_PROTOCOLPGM(" C:");
  4074. #else
  4075. SERIAL_PROTOCOLPGM(" Z:");
  4076. #endif
  4077. SERIAL_PROTOCOL(zpos);
  4078. SERIAL_EOL;
  4079. #if ENABLED(SCARA)
  4080. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4081. SERIAL_PROTOCOL(delta[X_AXIS]);
  4082. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4083. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4084. SERIAL_EOL;
  4085. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4086. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4087. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4088. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4089. SERIAL_EOL;
  4090. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4091. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  4092. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4093. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  4094. SERIAL_EOL; SERIAL_EOL;
  4095. #endif
  4096. }
  4097. /**
  4098. * M115: Capabilities string
  4099. */
  4100. inline void gcode_M115() {
  4101. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4102. }
  4103. /**
  4104. * M117: Set LCD Status Message
  4105. */
  4106. inline void gcode_M117() {
  4107. lcd_setstatus(current_command_args);
  4108. }
  4109. /**
  4110. * M119: Output endstop states to serial output
  4111. */
  4112. inline void gcode_M119() {
  4113. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4114. #if HAS_X_MIN
  4115. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4116. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4117. #endif
  4118. #if HAS_X_MAX
  4119. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4120. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4121. #endif
  4122. #if HAS_Y_MIN
  4123. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4124. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4125. #endif
  4126. #if HAS_Y_MAX
  4127. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4128. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4129. #endif
  4130. #if HAS_Z_MIN
  4131. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4132. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4133. #endif
  4134. #if HAS_Z_MAX
  4135. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4136. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4137. #endif
  4138. #if HAS_Z2_MAX
  4139. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4140. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4141. #endif
  4142. #if HAS_Z_PROBE
  4143. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4144. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4145. #endif
  4146. }
  4147. /**
  4148. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4149. */
  4150. inline void gcode_M120() { enable_endstops_globally(true); }
  4151. /**
  4152. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4153. */
  4154. inline void gcode_M121() { enable_endstops_globally(false); }
  4155. #if ENABLED(BLINKM)
  4156. /**
  4157. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4158. */
  4159. inline void gcode_M150() {
  4160. SendColors(
  4161. code_seen('R') ? (byte)code_value_short() : 0,
  4162. code_seen('U') ? (byte)code_value_short() : 0,
  4163. code_seen('B') ? (byte)code_value_short() : 0
  4164. );
  4165. }
  4166. #endif // BLINKM
  4167. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4168. /**
  4169. * M155: Send data to a I2C slave device
  4170. *
  4171. * This is a PoC, the formating and arguments for the GCODE will
  4172. * change to be more compatible, the current proposal is:
  4173. *
  4174. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4175. *
  4176. * M155 B<byte-1 value in base 10>
  4177. * M155 B<byte-2 value in base 10>
  4178. * M155 B<byte-3 value in base 10>
  4179. *
  4180. * M155 S1 ; Send the buffered data and reset the buffer
  4181. * M155 R1 ; Reset the buffer without sending data
  4182. *
  4183. */
  4184. inline void gcode_M155() {
  4185. // Set the target address
  4186. if (code_seen('A'))
  4187. i2c.address((uint8_t) code_value_short());
  4188. // Add a new byte to the buffer
  4189. else if (code_seen('B'))
  4190. i2c.addbyte((int) code_value_short());
  4191. // Flush the buffer to the bus
  4192. else if (code_seen('S')) i2c.send();
  4193. // Reset and rewind the buffer
  4194. else if (code_seen('R')) i2c.reset();
  4195. }
  4196. /**
  4197. * M156: Request X bytes from I2C slave device
  4198. *
  4199. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4200. */
  4201. inline void gcode_M156() {
  4202. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4203. int bytes = code_seen('B') ? code_value_short() : 0;
  4204. if (addr && bytes) {
  4205. i2c.address(addr);
  4206. i2c.reqbytes(bytes);
  4207. }
  4208. }
  4209. #endif //EXPERIMENTAL_I2CBUS
  4210. /**
  4211. * M200: Set filament diameter and set E axis units to cubic millimeters
  4212. *
  4213. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4214. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4215. */
  4216. inline void gcode_M200() {
  4217. if (setTargetedHotend(200)) return;
  4218. if (code_seen('D')) {
  4219. float diameter = code_value();
  4220. // setting any extruder filament size disables volumetric on the assumption that
  4221. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4222. // for all extruders
  4223. volumetric_enabled = (diameter != 0.0);
  4224. if (volumetric_enabled) {
  4225. filament_size[target_extruder] = diameter;
  4226. // make sure all extruders have some sane value for the filament size
  4227. for (int i = 0; i < EXTRUDERS; i++)
  4228. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4229. }
  4230. }
  4231. else {
  4232. //reserved for setting filament diameter via UFID or filament measuring device
  4233. return;
  4234. }
  4235. calculate_volumetric_multipliers();
  4236. }
  4237. /**
  4238. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4239. */
  4240. inline void gcode_M201() {
  4241. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4242. if (code_seen(axis_codes[i])) {
  4243. max_acceleration_units_per_sq_second[i] = code_value();
  4244. }
  4245. }
  4246. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4247. reset_acceleration_rates();
  4248. }
  4249. #if 0 // Not used for Sprinter/grbl gen6
  4250. inline void gcode_M202() {
  4251. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4252. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4253. }
  4254. }
  4255. #endif
  4256. /**
  4257. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4258. */
  4259. inline void gcode_M203() {
  4260. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4261. if (code_seen(axis_codes[i])) {
  4262. max_feedrate[i] = code_value();
  4263. }
  4264. }
  4265. }
  4266. /**
  4267. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4268. *
  4269. * P = Printing moves
  4270. * R = Retract only (no X, Y, Z) moves
  4271. * T = Travel (non printing) moves
  4272. *
  4273. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4274. */
  4275. inline void gcode_M204() {
  4276. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4277. travel_acceleration = acceleration = code_value();
  4278. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4279. SERIAL_EOL;
  4280. }
  4281. if (code_seen('P')) {
  4282. acceleration = code_value();
  4283. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4284. SERIAL_EOL;
  4285. }
  4286. if (code_seen('R')) {
  4287. retract_acceleration = code_value();
  4288. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4289. SERIAL_EOL;
  4290. }
  4291. if (code_seen('T')) {
  4292. travel_acceleration = code_value();
  4293. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4294. SERIAL_EOL;
  4295. }
  4296. }
  4297. /**
  4298. * M205: Set Advanced Settings
  4299. *
  4300. * S = Min Feed Rate (mm/s)
  4301. * T = Min Travel Feed Rate (mm/s)
  4302. * B = Min Segment Time (µs)
  4303. * X = Max XY Jerk (mm/s/s)
  4304. * Z = Max Z Jerk (mm/s/s)
  4305. * E = Max E Jerk (mm/s/s)
  4306. */
  4307. inline void gcode_M205() {
  4308. if (code_seen('S')) minimumfeedrate = code_value();
  4309. if (code_seen('T')) mintravelfeedrate = code_value();
  4310. if (code_seen('B')) minsegmenttime = code_value();
  4311. if (code_seen('X')) max_xy_jerk = code_value();
  4312. if (code_seen('Z')) max_z_jerk = code_value();
  4313. if (code_seen('E')) max_e_jerk = code_value();
  4314. }
  4315. /**
  4316. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4317. */
  4318. inline void gcode_M206() {
  4319. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4320. if (code_seen(axis_codes[i]))
  4321. set_home_offset((AxisEnum)i, code_value());
  4322. #if ENABLED(SCARA)
  4323. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4324. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4325. #endif
  4326. sync_plan_position();
  4327. }
  4328. #if ENABLED(DELTA)
  4329. /**
  4330. * M665: Set delta configurations
  4331. *
  4332. * L = diagonal rod
  4333. * R = delta radius
  4334. * S = segments per second
  4335. * A = Alpha (Tower 1) diagonal rod trim
  4336. * B = Beta (Tower 2) diagonal rod trim
  4337. * C = Gamma (Tower 3) diagonal rod trim
  4338. */
  4339. inline void gcode_M665() {
  4340. if (code_seen('L')) delta_diagonal_rod = code_value();
  4341. if (code_seen('R')) delta_radius = code_value();
  4342. if (code_seen('S')) delta_segments_per_second = code_value();
  4343. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4344. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4345. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4346. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4347. }
  4348. /**
  4349. * M666: Set delta endstop adjustment
  4350. */
  4351. inline void gcode_M666() {
  4352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4353. if (DEBUGGING(LEVELING)) {
  4354. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4355. }
  4356. #endif
  4357. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4358. if (code_seen(axis_codes[i])) {
  4359. endstop_adj[i] = code_value();
  4360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4361. if (DEBUGGING(LEVELING)) {
  4362. SERIAL_ECHOPGM("endstop_adj[");
  4363. SERIAL_ECHO(axis_codes[i]);
  4364. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4365. SERIAL_EOL;
  4366. }
  4367. #endif
  4368. }
  4369. }
  4370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4371. if (DEBUGGING(LEVELING)) {
  4372. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4373. }
  4374. #endif
  4375. }
  4376. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4377. /**
  4378. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4379. */
  4380. inline void gcode_M666() {
  4381. if (code_seen('Z')) z_endstop_adj = code_value();
  4382. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4383. SERIAL_EOL;
  4384. }
  4385. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4386. #if ENABLED(FWRETRACT)
  4387. /**
  4388. * M207: Set firmware retraction values
  4389. *
  4390. * S[+mm] retract_length
  4391. * W[+mm] retract_length_swap (multi-extruder)
  4392. * F[mm/min] retract_feedrate
  4393. * Z[mm] retract_zlift
  4394. */
  4395. inline void gcode_M207() {
  4396. if (code_seen('S')) retract_length = code_value();
  4397. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4398. if (code_seen('Z')) retract_zlift = code_value();
  4399. #if EXTRUDERS > 1
  4400. if (code_seen('W')) retract_length_swap = code_value();
  4401. #endif
  4402. }
  4403. /**
  4404. * M208: Set firmware un-retraction values
  4405. *
  4406. * S[+mm] retract_recover_length (in addition to M207 S*)
  4407. * W[+mm] retract_recover_length_swap (multi-extruder)
  4408. * F[mm/min] retract_recover_feedrate
  4409. */
  4410. inline void gcode_M208() {
  4411. if (code_seen('S')) retract_recover_length = code_value();
  4412. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4413. #if EXTRUDERS > 1
  4414. if (code_seen('W')) retract_recover_length_swap = code_value();
  4415. #endif
  4416. }
  4417. /**
  4418. * M209: Enable automatic retract (M209 S1)
  4419. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4420. */
  4421. inline void gcode_M209() {
  4422. if (code_seen('S')) {
  4423. int t = code_value_short();
  4424. switch (t) {
  4425. case 0:
  4426. autoretract_enabled = false;
  4427. break;
  4428. case 1:
  4429. autoretract_enabled = true;
  4430. break;
  4431. default:
  4432. unknown_command_error();
  4433. return;
  4434. }
  4435. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4436. }
  4437. }
  4438. #endif // FWRETRACT
  4439. #if EXTRUDERS > 1
  4440. /**
  4441. * M218 - set hotend offset (in mm)
  4442. *
  4443. * T<tool>
  4444. * X<xoffset>
  4445. * Y<yoffset>
  4446. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4447. */
  4448. inline void gcode_M218() {
  4449. if (setTargetedHotend(218)) return;
  4450. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4451. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4452. #if ENABLED(DUAL_X_CARRIAGE)
  4453. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4454. #endif
  4455. SERIAL_ECHO_START;
  4456. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4457. for (int e = 0; e < EXTRUDERS; e++) {
  4458. SERIAL_CHAR(' ');
  4459. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4460. SERIAL_CHAR(',');
  4461. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4462. #if ENABLED(DUAL_X_CARRIAGE)
  4463. SERIAL_CHAR(',');
  4464. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4465. #endif
  4466. }
  4467. SERIAL_EOL;
  4468. }
  4469. #endif // EXTRUDERS > 1
  4470. /**
  4471. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4472. */
  4473. inline void gcode_M220() {
  4474. if (code_seen('S')) feedrate_multiplier = code_value();
  4475. }
  4476. /**
  4477. * M221: Set extrusion percentage (M221 T0 S95)
  4478. */
  4479. inline void gcode_M221() {
  4480. if (code_seen('S')) {
  4481. int sval = code_value();
  4482. if (setTargetedHotend(221)) return;
  4483. extruder_multiplier[target_extruder] = sval;
  4484. }
  4485. }
  4486. /**
  4487. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4488. */
  4489. inline void gcode_M226() {
  4490. if (code_seen('P')) {
  4491. int pin_number = code_value();
  4492. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4493. if (pin_state >= -1 && pin_state <= 1) {
  4494. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4495. if (sensitive_pins[i] == pin_number) {
  4496. pin_number = -1;
  4497. break;
  4498. }
  4499. }
  4500. if (pin_number > -1) {
  4501. int target = LOW;
  4502. st_synchronize();
  4503. pinMode(pin_number, INPUT);
  4504. switch (pin_state) {
  4505. case 1:
  4506. target = HIGH;
  4507. break;
  4508. case 0:
  4509. target = LOW;
  4510. break;
  4511. case -1:
  4512. target = !digitalRead(pin_number);
  4513. break;
  4514. }
  4515. while (digitalRead(pin_number) != target) idle();
  4516. } // pin_number > -1
  4517. } // pin_state -1 0 1
  4518. } // code_seen('P')
  4519. }
  4520. #if HAS_SERVOS
  4521. /**
  4522. * M280: Get or set servo position. P<index> S<angle>
  4523. */
  4524. inline void gcode_M280() {
  4525. int servo_index = code_seen('P') ? code_value_short() : -1;
  4526. int servo_position = 0;
  4527. if (code_seen('S')) {
  4528. servo_position = code_value_short();
  4529. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4530. servo[servo_index].move(servo_position);
  4531. else {
  4532. SERIAL_ERROR_START;
  4533. SERIAL_ERROR("Servo ");
  4534. SERIAL_ERROR(servo_index);
  4535. SERIAL_ERRORLN(" out of range");
  4536. }
  4537. }
  4538. else if (servo_index >= 0) {
  4539. SERIAL_ECHO_START;
  4540. SERIAL_ECHO(" Servo ");
  4541. SERIAL_ECHO(servo_index);
  4542. SERIAL_ECHO(": ");
  4543. SERIAL_ECHOLN(servo[servo_index].read());
  4544. }
  4545. }
  4546. #endif // HAS_SERVOS
  4547. #if HAS_BUZZER
  4548. /**
  4549. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4550. */
  4551. inline void gcode_M300() {
  4552. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4553. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4554. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4555. buzz(beepP, beepS);
  4556. }
  4557. #endif // HAS_BUZZER
  4558. #if ENABLED(PIDTEMP)
  4559. /**
  4560. * M301: Set PID parameters P I D (and optionally C, L)
  4561. *
  4562. * P[float] Kp term
  4563. * I[float] Ki term (unscaled)
  4564. * D[float] Kd term (unscaled)
  4565. *
  4566. * With PID_ADD_EXTRUSION_RATE:
  4567. *
  4568. * C[float] Kc term
  4569. * L[float] LPQ length
  4570. */
  4571. inline void gcode_M301() {
  4572. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4573. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4574. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4575. if (e < EXTRUDERS) { // catch bad input value
  4576. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4577. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4578. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4579. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4580. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4581. if (code_seen('L')) lpq_len = code_value();
  4582. NOMORE(lpq_len, LPQ_MAX_LEN);
  4583. #endif
  4584. updatePID();
  4585. SERIAL_ECHO_START;
  4586. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4587. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4588. SERIAL_ECHO(e);
  4589. #endif // PID_PARAMS_PER_EXTRUDER
  4590. SERIAL_ECHO(" p:");
  4591. SERIAL_ECHO(PID_PARAM(Kp, e));
  4592. SERIAL_ECHO(" i:");
  4593. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4594. SERIAL_ECHO(" d:");
  4595. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4596. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4597. SERIAL_ECHO(" c:");
  4598. //Kc does not have scaling applied above, or in resetting defaults
  4599. SERIAL_ECHO(PID_PARAM(Kc, e));
  4600. #endif
  4601. SERIAL_EOL;
  4602. }
  4603. else {
  4604. SERIAL_ERROR_START;
  4605. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4606. }
  4607. }
  4608. #endif // PIDTEMP
  4609. #if ENABLED(PIDTEMPBED)
  4610. inline void gcode_M304() {
  4611. if (code_seen('P')) bedKp = code_value();
  4612. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4613. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4614. updatePID();
  4615. SERIAL_ECHO_START;
  4616. SERIAL_ECHO(" p:");
  4617. SERIAL_ECHO(bedKp);
  4618. SERIAL_ECHO(" i:");
  4619. SERIAL_ECHO(unscalePID_i(bedKi));
  4620. SERIAL_ECHO(" d:");
  4621. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4622. }
  4623. #endif // PIDTEMPBED
  4624. #if defined(CHDK) || HAS_PHOTOGRAPH
  4625. /**
  4626. * M240: Trigger a camera by emulating a Canon RC-1
  4627. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4628. */
  4629. inline void gcode_M240() {
  4630. #ifdef CHDK
  4631. OUT_WRITE(CHDK, HIGH);
  4632. chdkHigh = millis();
  4633. chdkActive = true;
  4634. #elif HAS_PHOTOGRAPH
  4635. const uint8_t NUM_PULSES = 16;
  4636. const float PULSE_LENGTH = 0.01524;
  4637. for (int i = 0; i < NUM_PULSES; i++) {
  4638. WRITE(PHOTOGRAPH_PIN, HIGH);
  4639. _delay_ms(PULSE_LENGTH);
  4640. WRITE(PHOTOGRAPH_PIN, LOW);
  4641. _delay_ms(PULSE_LENGTH);
  4642. }
  4643. delay(7.33);
  4644. for (int i = 0; i < NUM_PULSES; i++) {
  4645. WRITE(PHOTOGRAPH_PIN, HIGH);
  4646. _delay_ms(PULSE_LENGTH);
  4647. WRITE(PHOTOGRAPH_PIN, LOW);
  4648. _delay_ms(PULSE_LENGTH);
  4649. }
  4650. #endif // !CHDK && HAS_PHOTOGRAPH
  4651. }
  4652. #endif // CHDK || PHOTOGRAPH_PIN
  4653. #if ENABLED(HAS_LCD_CONTRAST)
  4654. /**
  4655. * M250: Read and optionally set the LCD contrast
  4656. */
  4657. inline void gcode_M250() {
  4658. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4659. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4660. SERIAL_PROTOCOL(lcd_contrast);
  4661. SERIAL_EOL;
  4662. }
  4663. #endif // HAS_LCD_CONTRAST
  4664. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4665. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4666. /**
  4667. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4668. */
  4669. inline void gcode_M302() {
  4670. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4671. }
  4672. #endif // PREVENT_DANGEROUS_EXTRUDE
  4673. /**
  4674. * M303: PID relay autotune
  4675. *
  4676. * S<temperature> sets the target temperature. (default 150C)
  4677. * E<extruder> (-1 for the bed) (default 0)
  4678. * C<cycles>
  4679. * U<bool> with a non-zero value will apply the result to current settings
  4680. */
  4681. inline void gcode_M303() {
  4682. int e = code_seen('E') ? code_value_short() : 0;
  4683. int c = code_seen('C') ? code_value_short() : 5;
  4684. bool u = code_seen('U') && code_value_short() != 0;
  4685. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4686. if (e >= 0 && e < EXTRUDERS)
  4687. target_extruder = e;
  4688. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4689. PID_autotune(temp, e, c, u);
  4690. KEEPALIVE_STATE(IN_HANDLER);
  4691. }
  4692. #if ENABLED(SCARA)
  4693. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4694. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4695. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4696. if (IsRunning()) {
  4697. //gcode_get_destination(); // For X Y Z E F
  4698. delta[X_AXIS] = delta_x;
  4699. delta[Y_AXIS] = delta_y;
  4700. calculate_SCARA_forward_Transform(delta);
  4701. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4702. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4703. prepare_move();
  4704. //ok_to_send();
  4705. return true;
  4706. }
  4707. return false;
  4708. }
  4709. /**
  4710. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4711. */
  4712. inline bool gcode_M360() {
  4713. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4714. return SCARA_move_to_cal(0, 120);
  4715. }
  4716. /**
  4717. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4718. */
  4719. inline bool gcode_M361() {
  4720. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4721. return SCARA_move_to_cal(90, 130);
  4722. }
  4723. /**
  4724. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4725. */
  4726. inline bool gcode_M362() {
  4727. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4728. return SCARA_move_to_cal(60, 180);
  4729. }
  4730. /**
  4731. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4732. */
  4733. inline bool gcode_M363() {
  4734. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4735. return SCARA_move_to_cal(50, 90);
  4736. }
  4737. /**
  4738. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4739. */
  4740. inline bool gcode_M364() {
  4741. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4742. return SCARA_move_to_cal(45, 135);
  4743. }
  4744. /**
  4745. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4746. */
  4747. inline void gcode_M365() {
  4748. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4749. if (code_seen(axis_codes[i])) {
  4750. axis_scaling[i] = code_value();
  4751. }
  4752. }
  4753. }
  4754. #endif // SCARA
  4755. #if ENABLED(EXT_SOLENOID)
  4756. void enable_solenoid(uint8_t num) {
  4757. switch (num) {
  4758. case 0:
  4759. OUT_WRITE(SOL0_PIN, HIGH);
  4760. break;
  4761. #if HAS_SOLENOID_1
  4762. case 1:
  4763. OUT_WRITE(SOL1_PIN, HIGH);
  4764. break;
  4765. #endif
  4766. #if HAS_SOLENOID_2
  4767. case 2:
  4768. OUT_WRITE(SOL2_PIN, HIGH);
  4769. break;
  4770. #endif
  4771. #if HAS_SOLENOID_3
  4772. case 3:
  4773. OUT_WRITE(SOL3_PIN, HIGH);
  4774. break;
  4775. #endif
  4776. default:
  4777. SERIAL_ECHO_START;
  4778. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4779. break;
  4780. }
  4781. }
  4782. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4783. void disable_all_solenoids() {
  4784. OUT_WRITE(SOL0_PIN, LOW);
  4785. OUT_WRITE(SOL1_PIN, LOW);
  4786. OUT_WRITE(SOL2_PIN, LOW);
  4787. OUT_WRITE(SOL3_PIN, LOW);
  4788. }
  4789. /**
  4790. * M380: Enable solenoid on the active extruder
  4791. */
  4792. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4793. /**
  4794. * M381: Disable all solenoids
  4795. */
  4796. inline void gcode_M381() { disable_all_solenoids(); }
  4797. #endif // EXT_SOLENOID
  4798. /**
  4799. * M400: Finish all moves
  4800. */
  4801. inline void gcode_M400() { st_synchronize(); }
  4802. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4803. /**
  4804. * M401: Engage Z Servo endstop if available
  4805. */
  4806. inline void gcode_M401() {
  4807. #if HAS_SERVO_ENDSTOPS
  4808. raise_z_for_servo();
  4809. #endif
  4810. deploy_z_probe();
  4811. }
  4812. /**
  4813. * M402: Retract Z Servo endstop if enabled
  4814. */
  4815. inline void gcode_M402() {
  4816. #if HAS_SERVO_ENDSTOPS
  4817. raise_z_for_servo();
  4818. #endif
  4819. stow_z_probe(false);
  4820. }
  4821. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4822. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4823. /**
  4824. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4825. */
  4826. inline void gcode_M404() {
  4827. if (code_seen('W')) {
  4828. filament_width_nominal = code_value();
  4829. }
  4830. else {
  4831. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4832. SERIAL_PROTOCOLLN(filament_width_nominal);
  4833. }
  4834. }
  4835. /**
  4836. * M405: Turn on filament sensor for control
  4837. */
  4838. inline void gcode_M405() {
  4839. if (code_seen('D')) meas_delay_cm = code_value();
  4840. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4841. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4842. int temp_ratio = widthFil_to_size_ratio();
  4843. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4844. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4845. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4846. }
  4847. filament_sensor = true;
  4848. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4849. //SERIAL_PROTOCOL(filament_width_meas);
  4850. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4851. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4852. }
  4853. /**
  4854. * M406: Turn off filament sensor for control
  4855. */
  4856. inline void gcode_M406() { filament_sensor = false; }
  4857. /**
  4858. * M407: Get measured filament diameter on serial output
  4859. */
  4860. inline void gcode_M407() {
  4861. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4862. SERIAL_PROTOCOLLN(filament_width_meas);
  4863. }
  4864. #endif // FILAMENT_WIDTH_SENSOR
  4865. /**
  4866. * M410: Quickstop - Abort all planned moves
  4867. *
  4868. * This will stop the carriages mid-move, so most likely they
  4869. * will be out of sync with the stepper position after this.
  4870. */
  4871. inline void gcode_M410() { quickStop(); }
  4872. #if ENABLED(MESH_BED_LEVELING)
  4873. /**
  4874. * M420: Enable/Disable Mesh Bed Leveling
  4875. */
  4876. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4877. /**
  4878. * M421: Set a single Mesh Bed Leveling Z coordinate
  4879. */
  4880. inline void gcode_M421() {
  4881. float x = 0, y = 0, z = 0;
  4882. bool err = false, hasX, hasY, hasZ;
  4883. if ((hasX = code_seen('X'))) x = code_value();
  4884. if ((hasY = code_seen('Y'))) y = code_value();
  4885. if ((hasZ = code_seen('Z'))) z = code_value();
  4886. if (!hasX || !hasY || !hasZ) {
  4887. SERIAL_ERROR_START;
  4888. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4889. err = true;
  4890. }
  4891. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4892. SERIAL_ERROR_START;
  4893. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4894. err = true;
  4895. }
  4896. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4897. }
  4898. #endif
  4899. /**
  4900. * M428: Set home_offset based on the distance between the
  4901. * current_position and the nearest "reference point."
  4902. * If an axis is past center its endstop position
  4903. * is the reference-point. Otherwise it uses 0. This allows
  4904. * the Z offset to be set near the bed when using a max endstop.
  4905. *
  4906. * M428 can't be used more than 2cm away from 0 or an endstop.
  4907. *
  4908. * Use M206 to set these values directly.
  4909. */
  4910. inline void gcode_M428() {
  4911. bool err = false;
  4912. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4913. if (axis_homed[i]) {
  4914. float base = (current_position[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4915. diff = current_position[i] - base;
  4916. if (diff > -20 && diff < 20) {
  4917. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  4918. }
  4919. else {
  4920. SERIAL_ERROR_START;
  4921. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4922. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4923. #if HAS_BUZZER
  4924. buzz(200, 40);
  4925. #endif
  4926. err = true;
  4927. break;
  4928. }
  4929. }
  4930. }
  4931. if (!err) {
  4932. sync_plan_position();
  4933. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4934. #if HAS_BUZZER
  4935. buzz(200, 659);
  4936. buzz(200, 698);
  4937. #endif
  4938. }
  4939. }
  4940. /**
  4941. * M500: Store settings in EEPROM
  4942. */
  4943. inline void gcode_M500() {
  4944. Config_StoreSettings();
  4945. }
  4946. /**
  4947. * M501: Read settings from EEPROM
  4948. */
  4949. inline void gcode_M501() {
  4950. Config_RetrieveSettings();
  4951. }
  4952. /**
  4953. * M502: Revert to default settings
  4954. */
  4955. inline void gcode_M502() {
  4956. Config_ResetDefault();
  4957. }
  4958. /**
  4959. * M503: print settings currently in memory
  4960. */
  4961. inline void gcode_M503() {
  4962. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4963. }
  4964. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4965. /**
  4966. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4967. */
  4968. inline void gcode_M540() {
  4969. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4970. }
  4971. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4972. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4973. inline void gcode_SET_Z_PROBE_OFFSET() {
  4974. SERIAL_ECHO_START;
  4975. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4976. SERIAL_CHAR(' ');
  4977. if (code_seen('Z')) {
  4978. float value = code_value();
  4979. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4980. zprobe_zoffset = value;
  4981. SERIAL_ECHO(zprobe_zoffset);
  4982. }
  4983. else {
  4984. SERIAL_ECHOPGM(MSG_Z_MIN);
  4985. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4986. SERIAL_ECHOPGM(MSG_Z_MAX);
  4987. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4988. }
  4989. }
  4990. else {
  4991. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4992. }
  4993. SERIAL_EOL;
  4994. }
  4995. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4996. #if ENABLED(FILAMENTCHANGEENABLE)
  4997. /**
  4998. * M600: Pause for filament change
  4999. *
  5000. * E[distance] - Retract the filament this far (negative value)
  5001. * Z[distance] - Move the Z axis by this distance
  5002. * X[position] - Move to this X position, with Y
  5003. * Y[position] - Move to this Y position, with X
  5004. * L[distance] - Retract distance for removal (manual reload)
  5005. *
  5006. * Default values are used for omitted arguments.
  5007. *
  5008. */
  5009. inline void gcode_M600() {
  5010. if (degHotend(active_extruder) < extrude_min_temp) {
  5011. SERIAL_ERROR_START;
  5012. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5013. return;
  5014. }
  5015. float lastpos[NUM_AXIS];
  5016. #if ENABLED(DELTA)
  5017. float fr60 = feedrate / 60;
  5018. #endif
  5019. for (int i = 0; i < NUM_AXIS; i++)
  5020. lastpos[i] = destination[i] = current_position[i];
  5021. #if ENABLED(DELTA)
  5022. #define RUNPLAN calculate_delta(destination); \
  5023. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5024. #else
  5025. #define RUNPLAN line_to_destination();
  5026. #endif
  5027. //retract by E
  5028. if (code_seen('E')) destination[E_AXIS] += code_value();
  5029. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5030. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5031. #endif
  5032. RUNPLAN;
  5033. //lift Z
  5034. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5035. #ifdef FILAMENTCHANGE_ZADD
  5036. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5037. #endif
  5038. RUNPLAN;
  5039. //move xy
  5040. if (code_seen('X')) destination[X_AXIS] = code_value();
  5041. #ifdef FILAMENTCHANGE_XPOS
  5042. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5043. #endif
  5044. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5045. #ifdef FILAMENTCHANGE_YPOS
  5046. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5047. #endif
  5048. RUNPLAN;
  5049. if (code_seen('L')) destination[E_AXIS] += code_value();
  5050. #ifdef FILAMENTCHANGE_FINALRETRACT
  5051. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5052. #endif
  5053. RUNPLAN;
  5054. //finish moves
  5055. st_synchronize();
  5056. //disable extruder steppers so filament can be removed
  5057. disable_e0();
  5058. disable_e1();
  5059. disable_e2();
  5060. disable_e3();
  5061. delay(100);
  5062. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5063. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5064. millis_t next_tick = 0;
  5065. #endif
  5066. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5067. while (!lcd_clicked()) {
  5068. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5069. millis_t ms = millis();
  5070. if (ELAPSED(ms, next_tick)) {
  5071. lcd_quick_feedback();
  5072. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5073. }
  5074. idle(true);
  5075. #else
  5076. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5077. destination[E_AXIS] = current_position[E_AXIS];
  5078. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5079. st_synchronize();
  5080. #endif
  5081. } // while(!lcd_clicked)
  5082. KEEPALIVE_STATE(IN_HANDLER);
  5083. lcd_quick_feedback(); // click sound feedback
  5084. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5085. current_position[E_AXIS] = 0;
  5086. st_synchronize();
  5087. #endif
  5088. //return to normal
  5089. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5090. #ifdef FILAMENTCHANGE_FINALRETRACT
  5091. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5092. #endif
  5093. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5094. plan_set_e_position(current_position[E_AXIS]);
  5095. RUNPLAN; //should do nothing
  5096. lcd_reset_alert_level();
  5097. #if ENABLED(DELTA)
  5098. // Move XYZ to starting position, then E
  5099. calculate_delta(lastpos);
  5100. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5101. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5102. #else
  5103. // Move XY to starting position, then Z, then E
  5104. destination[X_AXIS] = lastpos[X_AXIS];
  5105. destination[Y_AXIS] = lastpos[Y_AXIS];
  5106. line_to_destination();
  5107. destination[Z_AXIS] = lastpos[Z_AXIS];
  5108. line_to_destination();
  5109. destination[E_AXIS] = lastpos[E_AXIS];
  5110. line_to_destination();
  5111. #endif
  5112. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5113. filrunoutEnqueued = false;
  5114. #endif
  5115. }
  5116. #endif // FILAMENTCHANGEENABLE
  5117. #if ENABLED(DUAL_X_CARRIAGE)
  5118. /**
  5119. * M605: Set dual x-carriage movement mode
  5120. *
  5121. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5122. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5123. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5124. * millimeters x-offset and an optional differential hotend temperature of
  5125. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5126. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5127. *
  5128. * Note: the X axis should be homed after changing dual x-carriage mode.
  5129. */
  5130. inline void gcode_M605() {
  5131. st_synchronize();
  5132. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5133. switch (dual_x_carriage_mode) {
  5134. case DXC_DUPLICATION_MODE:
  5135. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5136. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5137. SERIAL_ECHO_START;
  5138. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5139. SERIAL_CHAR(' ');
  5140. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5141. SERIAL_CHAR(',');
  5142. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5143. SERIAL_CHAR(' ');
  5144. SERIAL_ECHO(duplicate_extruder_x_offset);
  5145. SERIAL_CHAR(',');
  5146. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5147. break;
  5148. case DXC_FULL_CONTROL_MODE:
  5149. case DXC_AUTO_PARK_MODE:
  5150. break;
  5151. default:
  5152. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5153. break;
  5154. }
  5155. active_extruder_parked = false;
  5156. extruder_duplication_enabled = false;
  5157. delayed_move_time = 0;
  5158. }
  5159. #endif // DUAL_X_CARRIAGE
  5160. /**
  5161. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5162. */
  5163. inline void gcode_M907() {
  5164. #if HAS_DIGIPOTSS
  5165. for (int i = 0; i < NUM_AXIS; i++)
  5166. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5167. if (code_seen('B')) digipot_current(4, code_value());
  5168. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5169. #endif
  5170. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5171. if (code_seen('X')) digipot_current(0, code_value());
  5172. #endif
  5173. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5174. if (code_seen('Z')) digipot_current(1, code_value());
  5175. #endif
  5176. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5177. if (code_seen('E')) digipot_current(2, code_value());
  5178. #endif
  5179. #if ENABLED(DIGIPOT_I2C)
  5180. // this one uses actual amps in floating point
  5181. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5182. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5183. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5184. #endif
  5185. #if ENABLED(DAC_STEPPER_CURRENT)
  5186. if (code_seen('S')) {
  5187. float dac_percent = code_value();
  5188. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5189. }
  5190. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5191. #endif
  5192. }
  5193. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5194. /**
  5195. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5196. */
  5197. inline void gcode_M908() {
  5198. #if HAS_DIGIPOTSS
  5199. digitalPotWrite(
  5200. code_seen('P') ? code_value() : 0,
  5201. code_seen('S') ? code_value() : 0
  5202. );
  5203. #endif
  5204. #ifdef DAC_STEPPER_CURRENT
  5205. dac_current_raw(
  5206. code_seen('P') ? code_value_long() : -1,
  5207. code_seen('S') ? code_value_short() : 0
  5208. );
  5209. #endif
  5210. }
  5211. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5212. inline void gcode_M909() { dac_print_values(); }
  5213. inline void gcode_M910() { dac_commit_eeprom(); }
  5214. #endif
  5215. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5216. #if HAS_MICROSTEPS
  5217. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5218. inline void gcode_M350() {
  5219. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5220. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5221. if (code_seen('B')) microstep_mode(4, code_value());
  5222. microstep_readings();
  5223. }
  5224. /**
  5225. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5226. * S# determines MS1 or MS2, X# sets the pin high/low.
  5227. */
  5228. inline void gcode_M351() {
  5229. if (code_seen('S')) switch (code_value_short()) {
  5230. case 1:
  5231. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5232. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5233. break;
  5234. case 2:
  5235. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5236. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5237. break;
  5238. }
  5239. microstep_readings();
  5240. }
  5241. #endif // HAS_MICROSTEPS
  5242. /**
  5243. * M999: Restart after being stopped
  5244. */
  5245. inline void gcode_M999() {
  5246. Running = true;
  5247. lcd_reset_alert_level();
  5248. // gcode_LastN = Stopped_gcode_LastN;
  5249. FlushSerialRequestResend();
  5250. }
  5251. /**
  5252. * T0-T3: Switch tool, usually switching extruders
  5253. *
  5254. * F[mm/min] Set the movement feedrate
  5255. */
  5256. inline void gcode_T(uint8_t tmp_extruder) {
  5257. if (tmp_extruder >= EXTRUDERS) {
  5258. SERIAL_ECHO_START;
  5259. SERIAL_CHAR('T');
  5260. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5261. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5262. }
  5263. else {
  5264. target_extruder = tmp_extruder;
  5265. #if EXTRUDERS > 1
  5266. bool make_move = false;
  5267. #endif
  5268. if (code_seen('F')) {
  5269. #if EXTRUDERS > 1
  5270. make_move = true;
  5271. #endif
  5272. float next_feedrate = code_value();
  5273. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5274. }
  5275. #if EXTRUDERS > 1
  5276. if (tmp_extruder != active_extruder) {
  5277. // Save current position to return to after applying extruder offset
  5278. set_destination_to_current();
  5279. #if ENABLED(DUAL_X_CARRIAGE)
  5280. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5281. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5282. // Park old head: 1) raise 2) move to park position 3) lower
  5283. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5284. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5285. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5286. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5287. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5288. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5289. st_synchronize();
  5290. }
  5291. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5292. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5293. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5294. active_extruder = tmp_extruder;
  5295. // This function resets the max/min values - the current position may be overwritten below.
  5296. set_axis_is_at_home(X_AXIS);
  5297. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5298. current_position[X_AXIS] = inactive_extruder_x_pos;
  5299. inactive_extruder_x_pos = destination[X_AXIS];
  5300. }
  5301. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5302. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5303. if (active_extruder == 0 || active_extruder_parked)
  5304. current_position[X_AXIS] = inactive_extruder_x_pos;
  5305. else
  5306. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5307. inactive_extruder_x_pos = destination[X_AXIS];
  5308. extruder_duplication_enabled = false;
  5309. }
  5310. else {
  5311. // record raised toolhead position for use by unpark
  5312. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5313. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5314. active_extruder_parked = true;
  5315. delayed_move_time = 0;
  5316. }
  5317. #else // !DUAL_X_CARRIAGE
  5318. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5319. // Offset extruder, make sure to apply the bed level rotation matrix
  5320. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5321. extruder_offset[Y_AXIS][tmp_extruder],
  5322. 0),
  5323. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5324. extruder_offset[Y_AXIS][active_extruder],
  5325. 0),
  5326. offset_vec = tmp_offset_vec - act_offset_vec;
  5327. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5328. if (DEBUGGING(LEVELING)) {
  5329. SERIAL_ECHOLNPGM(">>> gcode_T");
  5330. tmp_offset_vec.debug("tmp_offset_vec");
  5331. act_offset_vec.debug("act_offset_vec");
  5332. offset_vec.debug("offset_vec (BEFORE)");
  5333. DEBUG_POS("BEFORE rotation", current_position);
  5334. }
  5335. #endif
  5336. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5337. current_position[X_AXIS] += offset_vec.x;
  5338. current_position[Y_AXIS] += offset_vec.y;
  5339. current_position[Z_AXIS] += offset_vec.z;
  5340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5341. if (DEBUGGING(LEVELING)) {
  5342. offset_vec.debug("offset_vec (AFTER)");
  5343. DEBUG_POS("AFTER rotation", current_position);
  5344. SERIAL_ECHOLNPGM("<<< gcode_T");
  5345. }
  5346. #endif
  5347. #else // !AUTO_BED_LEVELING_FEATURE
  5348. // Offset extruder (only by XY)
  5349. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5350. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5351. #endif // !AUTO_BED_LEVELING_FEATURE
  5352. // Set the new active extruder and position
  5353. active_extruder = tmp_extruder;
  5354. #endif // !DUAL_X_CARRIAGE
  5355. #if ENABLED(DELTA)
  5356. sync_plan_position_delta();
  5357. #else
  5358. sync_plan_position();
  5359. #endif
  5360. // Move to the old position if 'F' was in the parameters
  5361. if (make_move && IsRunning()) prepare_move();
  5362. }
  5363. #if ENABLED(EXT_SOLENOID)
  5364. st_synchronize();
  5365. disable_all_solenoids();
  5366. enable_solenoid_on_active_extruder();
  5367. #endif // EXT_SOLENOID
  5368. #endif // EXTRUDERS > 1
  5369. SERIAL_ECHO_START;
  5370. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5371. SERIAL_PROTOCOLLN((int)active_extruder);
  5372. }
  5373. }
  5374. /**
  5375. * Process a single command and dispatch it to its handler
  5376. * This is called from the main loop()
  5377. */
  5378. void process_next_command() {
  5379. current_command = command_queue[cmd_queue_index_r];
  5380. if (DEBUGGING(ECHO)) {
  5381. SERIAL_ECHO_START;
  5382. SERIAL_ECHOLN(current_command);
  5383. }
  5384. // Sanitize the current command:
  5385. // - Skip leading spaces
  5386. // - Bypass N[-0-9][0-9]*[ ]*
  5387. // - Overwrite * with nul to mark the end
  5388. while (*current_command == ' ') ++current_command;
  5389. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5390. current_command += 2; // skip N[-0-9]
  5391. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5392. while (*current_command == ' ') ++current_command; // skip [ ]*
  5393. }
  5394. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5395. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5396. char *cmd_ptr = current_command;
  5397. // Get the command code, which must be G, M, or T
  5398. char command_code = *cmd_ptr++;
  5399. // Skip spaces to get the numeric part
  5400. while (*cmd_ptr == ' ') cmd_ptr++;
  5401. uint16_t codenum = 0; // define ahead of goto
  5402. // Bail early if there's no code
  5403. bool code_is_good = NUMERIC(*cmd_ptr);
  5404. if (!code_is_good) goto ExitUnknownCommand;
  5405. // Get and skip the code number
  5406. do {
  5407. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5408. cmd_ptr++;
  5409. } while (NUMERIC(*cmd_ptr));
  5410. // Skip all spaces to get to the first argument, or nul
  5411. while (*cmd_ptr == ' ') cmd_ptr++;
  5412. // The command's arguments (if any) start here, for sure!
  5413. current_command_args = cmd_ptr;
  5414. KEEPALIVE_STATE(IN_HANDLER);
  5415. // Handle a known G, M, or T
  5416. switch (command_code) {
  5417. case 'G': switch (codenum) {
  5418. // G0, G1
  5419. case 0:
  5420. case 1:
  5421. gcode_G0_G1();
  5422. break;
  5423. // G2, G3
  5424. #if DISABLED(SCARA)
  5425. case 2: // G2 - CW ARC
  5426. case 3: // G3 - CCW ARC
  5427. gcode_G2_G3(codenum == 2);
  5428. break;
  5429. #endif
  5430. // G4 Dwell
  5431. case 4:
  5432. gcode_G4();
  5433. break;
  5434. #if ENABLED(FWRETRACT)
  5435. case 10: // G10: retract
  5436. case 11: // G11: retract_recover
  5437. gcode_G10_G11(codenum == 10);
  5438. break;
  5439. #endif //FWRETRACT
  5440. case 28: // G28: Home all axes, one at a time
  5441. gcode_G28();
  5442. break;
  5443. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5444. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5445. gcode_G29();
  5446. break;
  5447. #endif
  5448. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5449. #if DISABLED(Z_PROBE_SLED)
  5450. case 30: // G30 Single Z probe
  5451. gcode_G30();
  5452. break;
  5453. #else // Z_PROBE_SLED
  5454. case 31: // G31: dock the sled
  5455. case 32: // G32: undock the sled
  5456. dock_sled(codenum == 31);
  5457. break;
  5458. #endif // Z_PROBE_SLED
  5459. #endif // AUTO_BED_LEVELING_FEATURE
  5460. case 90: // G90
  5461. relative_mode = false;
  5462. break;
  5463. case 91: // G91
  5464. relative_mode = true;
  5465. break;
  5466. case 92: // G92
  5467. gcode_G92();
  5468. break;
  5469. }
  5470. break;
  5471. case 'M': switch (codenum) {
  5472. #if ENABLED(ULTIPANEL)
  5473. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5474. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5475. gcode_M0_M1();
  5476. break;
  5477. #endif // ULTIPANEL
  5478. case 17:
  5479. gcode_M17();
  5480. break;
  5481. #if ENABLED(SDSUPPORT)
  5482. case 20: // M20 - list SD card
  5483. gcode_M20(); break;
  5484. case 21: // M21 - init SD card
  5485. gcode_M21(); break;
  5486. case 22: //M22 - release SD card
  5487. gcode_M22(); break;
  5488. case 23: //M23 - Select file
  5489. gcode_M23(); break;
  5490. case 24: //M24 - Start SD print
  5491. gcode_M24(); break;
  5492. case 25: //M25 - Pause SD print
  5493. gcode_M25(); break;
  5494. case 26: //M26 - Set SD index
  5495. gcode_M26(); break;
  5496. case 27: //M27 - Get SD status
  5497. gcode_M27(); break;
  5498. case 28: //M28 - Start SD write
  5499. gcode_M28(); break;
  5500. case 29: //M29 - Stop SD write
  5501. gcode_M29(); break;
  5502. case 30: //M30 <filename> Delete File
  5503. gcode_M30(); break;
  5504. case 32: //M32 - Select file and start SD print
  5505. gcode_M32(); break;
  5506. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5507. case 33: //M33 - Get the long full path to a file or folder
  5508. gcode_M33(); break;
  5509. #endif // LONG_FILENAME_HOST_SUPPORT
  5510. case 928: //M928 - Start SD write
  5511. gcode_M928(); break;
  5512. #endif //SDSUPPORT
  5513. case 31: //M31 take time since the start of the SD print or an M109 command
  5514. gcode_M31();
  5515. break;
  5516. case 42: //M42 -Change pin status via gcode
  5517. gcode_M42();
  5518. break;
  5519. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5520. case 48: // M48 Z probe repeatability
  5521. gcode_M48();
  5522. break;
  5523. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5524. case 75: // Start print timer
  5525. gcode_M75();
  5526. break;
  5527. case 76: // Pause print timer
  5528. gcode_M76();
  5529. break;
  5530. case 77: // Stop print timer
  5531. gcode_M77();
  5532. break;
  5533. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5534. case 100:
  5535. gcode_M100();
  5536. break;
  5537. #endif
  5538. case 104: // M104
  5539. gcode_M104();
  5540. break;
  5541. case 110: // M110: Set Current Line Number
  5542. gcode_M110();
  5543. break;
  5544. case 111: // M111: Set debug level
  5545. gcode_M111();
  5546. break;
  5547. case 112: // M112: Emergency Stop
  5548. gcode_M112();
  5549. break;
  5550. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5551. case 113: // M113: Set Host Keepalive interval
  5552. gcode_M113();
  5553. break;
  5554. #endif
  5555. case 140: // M140: Set bed temp
  5556. gcode_M140();
  5557. break;
  5558. case 105: // M105: Read current temperature
  5559. gcode_M105();
  5560. KEEPALIVE_STATE(NOT_BUSY);
  5561. return; // "ok" already printed
  5562. case 109: // M109: Wait for temperature
  5563. gcode_M109();
  5564. break;
  5565. #if HAS_TEMP_BED
  5566. case 190: // M190: Wait for bed heater to reach target
  5567. gcode_M190();
  5568. break;
  5569. #endif // HAS_TEMP_BED
  5570. #if FAN_COUNT > 0
  5571. case 106: // M106: Fan On
  5572. gcode_M106();
  5573. break;
  5574. case 107: // M107: Fan Off
  5575. gcode_M107();
  5576. break;
  5577. #endif // FAN_COUNT > 0
  5578. #if ENABLED(BARICUDA)
  5579. // PWM for HEATER_1_PIN
  5580. #if HAS_HEATER_1
  5581. case 126: // M126: valve open
  5582. gcode_M126();
  5583. break;
  5584. case 127: // M127: valve closed
  5585. gcode_M127();
  5586. break;
  5587. #endif // HAS_HEATER_1
  5588. // PWM for HEATER_2_PIN
  5589. #if HAS_HEATER_2
  5590. case 128: // M128: valve open
  5591. gcode_M128();
  5592. break;
  5593. case 129: // M129: valve closed
  5594. gcode_M129();
  5595. break;
  5596. #endif // HAS_HEATER_2
  5597. #endif // BARICUDA
  5598. #if HAS_POWER_SWITCH
  5599. case 80: // M80: Turn on Power Supply
  5600. gcode_M80();
  5601. break;
  5602. #endif // HAS_POWER_SWITCH
  5603. case 81: // M81: Turn off Power, including Power Supply, if possible
  5604. gcode_M81();
  5605. break;
  5606. case 82:
  5607. gcode_M82();
  5608. break;
  5609. case 83:
  5610. gcode_M83();
  5611. break;
  5612. case 18: // (for compatibility)
  5613. case 84: // M84
  5614. gcode_M18_M84();
  5615. break;
  5616. case 85: // M85
  5617. gcode_M85();
  5618. break;
  5619. case 92: // M92: Set the steps-per-unit for one or more axes
  5620. gcode_M92();
  5621. break;
  5622. case 115: // M115: Report capabilities
  5623. gcode_M115();
  5624. break;
  5625. case 117: // M117: Set LCD message text, if possible
  5626. gcode_M117();
  5627. break;
  5628. case 114: // M114: Report current position
  5629. gcode_M114();
  5630. break;
  5631. case 120: // M120: Enable endstops
  5632. gcode_M120();
  5633. break;
  5634. case 121: // M121: Disable endstops
  5635. gcode_M121();
  5636. break;
  5637. case 119: // M119: Report endstop states
  5638. gcode_M119();
  5639. break;
  5640. #if ENABLED(ULTIPANEL)
  5641. case 145: // M145: Set material heatup parameters
  5642. gcode_M145();
  5643. break;
  5644. #endif
  5645. #if ENABLED(BLINKM)
  5646. case 150: // M150
  5647. gcode_M150();
  5648. break;
  5649. #endif //BLINKM
  5650. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5651. case 155:
  5652. gcode_M155();
  5653. break;
  5654. case 156:
  5655. gcode_M156();
  5656. break;
  5657. #endif //EXPERIMENTAL_I2CBUS
  5658. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5659. gcode_M200();
  5660. break;
  5661. case 201: // M201
  5662. gcode_M201();
  5663. break;
  5664. #if 0 // Not used for Sprinter/grbl gen6
  5665. case 202: // M202
  5666. gcode_M202();
  5667. break;
  5668. #endif
  5669. case 203: // M203 max feedrate mm/sec
  5670. gcode_M203();
  5671. break;
  5672. case 204: // M204 acclereration S normal moves T filmanent only moves
  5673. gcode_M204();
  5674. break;
  5675. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5676. gcode_M205();
  5677. break;
  5678. case 206: // M206 additional homing offset
  5679. gcode_M206();
  5680. break;
  5681. #if ENABLED(DELTA)
  5682. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5683. gcode_M665();
  5684. break;
  5685. #endif
  5686. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5687. case 666: // M666 set delta / dual endstop adjustment
  5688. gcode_M666();
  5689. break;
  5690. #endif
  5691. #if ENABLED(FWRETRACT)
  5692. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5693. gcode_M207();
  5694. break;
  5695. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5696. gcode_M208();
  5697. break;
  5698. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5699. gcode_M209();
  5700. break;
  5701. #endif // FWRETRACT
  5702. #if EXTRUDERS > 1
  5703. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5704. gcode_M218();
  5705. break;
  5706. #endif
  5707. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5708. gcode_M220();
  5709. break;
  5710. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5711. gcode_M221();
  5712. break;
  5713. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5714. gcode_M226();
  5715. break;
  5716. #if HAS_SERVOS
  5717. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5718. gcode_M280();
  5719. break;
  5720. #endif // HAS_SERVOS
  5721. #if HAS_BUZZER
  5722. case 300: // M300 - Play beep tone
  5723. gcode_M300();
  5724. break;
  5725. #endif // HAS_BUZZER
  5726. #if ENABLED(PIDTEMP)
  5727. case 301: // M301
  5728. gcode_M301();
  5729. break;
  5730. #endif // PIDTEMP
  5731. #if ENABLED(PIDTEMPBED)
  5732. case 304: // M304
  5733. gcode_M304();
  5734. break;
  5735. #endif // PIDTEMPBED
  5736. #if defined(CHDK) || HAS_PHOTOGRAPH
  5737. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5738. gcode_M240();
  5739. break;
  5740. #endif // CHDK || PHOTOGRAPH_PIN
  5741. #if ENABLED(HAS_LCD_CONTRAST)
  5742. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5743. gcode_M250();
  5744. break;
  5745. #endif // HAS_LCD_CONTRAST
  5746. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5747. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5748. gcode_M302();
  5749. break;
  5750. #endif // PREVENT_DANGEROUS_EXTRUDE
  5751. case 303: // M303 PID autotune
  5752. gcode_M303();
  5753. break;
  5754. #if ENABLED(SCARA)
  5755. case 360: // M360 SCARA Theta pos1
  5756. if (gcode_M360()) return;
  5757. break;
  5758. case 361: // M361 SCARA Theta pos2
  5759. if (gcode_M361()) return;
  5760. break;
  5761. case 362: // M362 SCARA Psi pos1
  5762. if (gcode_M362()) return;
  5763. break;
  5764. case 363: // M363 SCARA Psi pos2
  5765. if (gcode_M363()) return;
  5766. break;
  5767. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5768. if (gcode_M364()) return;
  5769. break;
  5770. case 365: // M365 Set SCARA scaling for X Y Z
  5771. gcode_M365();
  5772. break;
  5773. #endif // SCARA
  5774. case 400: // M400 finish all moves
  5775. gcode_M400();
  5776. break;
  5777. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5778. case 401:
  5779. gcode_M401();
  5780. break;
  5781. case 402:
  5782. gcode_M402();
  5783. break;
  5784. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5785. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5786. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5787. gcode_M404();
  5788. break;
  5789. case 405: //M405 Turn on filament sensor for control
  5790. gcode_M405();
  5791. break;
  5792. case 406: //M406 Turn off filament sensor for control
  5793. gcode_M406();
  5794. break;
  5795. case 407: //M407 Display measured filament diameter
  5796. gcode_M407();
  5797. break;
  5798. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5799. case 410: // M410 quickstop - Abort all the planned moves.
  5800. gcode_M410();
  5801. break;
  5802. #if ENABLED(MESH_BED_LEVELING)
  5803. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5804. gcode_M420();
  5805. break;
  5806. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5807. gcode_M421();
  5808. break;
  5809. #endif
  5810. case 428: // M428 Apply current_position to home_offset
  5811. gcode_M428();
  5812. break;
  5813. case 500: // M500 Store settings in EEPROM
  5814. gcode_M500();
  5815. break;
  5816. case 501: // M501 Read settings from EEPROM
  5817. gcode_M501();
  5818. break;
  5819. case 502: // M502 Revert to default settings
  5820. gcode_M502();
  5821. break;
  5822. case 503: // M503 print settings currently in memory
  5823. gcode_M503();
  5824. break;
  5825. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5826. case 540:
  5827. gcode_M540();
  5828. break;
  5829. #endif
  5830. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5831. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5832. gcode_SET_Z_PROBE_OFFSET();
  5833. break;
  5834. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5835. #if ENABLED(FILAMENTCHANGEENABLE)
  5836. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5837. gcode_M600();
  5838. break;
  5839. #endif // FILAMENTCHANGEENABLE
  5840. #if ENABLED(DUAL_X_CARRIAGE)
  5841. case 605:
  5842. gcode_M605();
  5843. break;
  5844. #endif // DUAL_X_CARRIAGE
  5845. case 907: // M907 Set digital trimpot motor current using axis codes.
  5846. gcode_M907();
  5847. break;
  5848. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5849. case 908: // M908 Control digital trimpot directly.
  5850. gcode_M908();
  5851. break;
  5852. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5853. case 909: // M909 Print digipot/DAC current value
  5854. gcode_M909();
  5855. break;
  5856. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5857. gcode_M910();
  5858. break;
  5859. #endif
  5860. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5861. #if HAS_MICROSTEPS
  5862. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5863. gcode_M350();
  5864. break;
  5865. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5866. gcode_M351();
  5867. break;
  5868. #endif // HAS_MICROSTEPS
  5869. case 999: // M999: Restart after being Stopped
  5870. gcode_M999();
  5871. break;
  5872. }
  5873. break;
  5874. case 'T':
  5875. gcode_T(codenum);
  5876. break;
  5877. default: code_is_good = false;
  5878. }
  5879. KEEPALIVE_STATE(NOT_BUSY);
  5880. ExitUnknownCommand:
  5881. // Still unknown command? Throw an error
  5882. if (!code_is_good) unknown_command_error();
  5883. ok_to_send();
  5884. }
  5885. void FlushSerialRequestResend() {
  5886. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5887. MYSERIAL.flush();
  5888. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5889. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5890. ok_to_send();
  5891. }
  5892. void ok_to_send() {
  5893. refresh_cmd_timeout();
  5894. if (!send_ok[cmd_queue_index_r]) return;
  5895. SERIAL_PROTOCOLPGM(MSG_OK);
  5896. #if ENABLED(ADVANCED_OK)
  5897. char* p = command_queue[cmd_queue_index_r];
  5898. if (*p == 'N') {
  5899. SERIAL_PROTOCOL(' ');
  5900. SERIAL_ECHO(*p++);
  5901. while (NUMERIC_SIGNED(*p))
  5902. SERIAL_ECHO(*p++);
  5903. }
  5904. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5905. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5906. #endif
  5907. SERIAL_EOL;
  5908. }
  5909. void clamp_to_software_endstops(float target[3]) {
  5910. if (min_software_endstops) {
  5911. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5912. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5913. float negative_z_offset = 0;
  5914. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5915. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5916. if (home_offset[Z_AXIS] < 0) {
  5917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5918. if (DEBUGGING(LEVELING)) {
  5919. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5920. SERIAL_EOL;
  5921. }
  5922. #endif
  5923. negative_z_offset += home_offset[Z_AXIS];
  5924. }
  5925. #endif
  5926. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5927. }
  5928. if (max_software_endstops) {
  5929. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5930. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5931. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5932. }
  5933. }
  5934. #if ENABLED(DELTA)
  5935. void recalc_delta_settings(float radius, float diagonal_rod) {
  5936. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5937. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5938. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5939. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5940. delta_tower3_x = 0.0; // back middle tower
  5941. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5942. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5943. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5944. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5945. }
  5946. void calculate_delta(float cartesian[3]) {
  5947. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5948. - sq(delta_tower1_x - cartesian[X_AXIS])
  5949. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5950. ) + cartesian[Z_AXIS];
  5951. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5952. - sq(delta_tower2_x - cartesian[X_AXIS])
  5953. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5954. ) + cartesian[Z_AXIS];
  5955. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5956. - sq(delta_tower3_x - cartesian[X_AXIS])
  5957. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5958. ) + cartesian[Z_AXIS];
  5959. /**
  5960. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5961. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5962. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5963. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5964. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5965. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5966. */
  5967. }
  5968. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5969. // Adjust print surface height by linear interpolation over the bed_level array.
  5970. void adjust_delta(float cartesian[3]) {
  5971. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5972. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5973. float h1 = 0.001 - half, h2 = half - 0.001,
  5974. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5975. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5976. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5977. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5978. z1 = bed_level[floor_x + half][floor_y + half],
  5979. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5980. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5981. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5982. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5983. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5984. offset = (1 - ratio_x) * left + ratio_x * right;
  5985. delta[X_AXIS] += offset;
  5986. delta[Y_AXIS] += offset;
  5987. delta[Z_AXIS] += offset;
  5988. /**
  5989. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5990. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5991. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5992. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5993. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5994. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5995. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5996. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5997. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5998. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5999. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6000. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6001. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6002. */
  6003. }
  6004. #endif // AUTO_BED_LEVELING_FEATURE
  6005. #endif // DELTA
  6006. #if ENABLED(MESH_BED_LEVELING)
  6007. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6008. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6009. if (!mbl.active) {
  6010. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6011. set_current_to_destination();
  6012. return;
  6013. }
  6014. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  6015. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6016. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  6017. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  6018. pix = min(pix, MESH_NUM_X_POINTS - 2);
  6019. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  6020. ix = min(ix, MESH_NUM_X_POINTS - 2);
  6021. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  6022. if (pix == ix && piy == iy) {
  6023. // Start and end on same mesh square
  6024. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6025. set_current_to_destination();
  6026. return;
  6027. }
  6028. float nx, ny, nz, ne, normalized_dist;
  6029. if (ix > pix && TEST(x_splits, ix)) {
  6030. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  6031. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6032. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6033. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6034. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6035. CBI(x_splits, ix);
  6036. }
  6037. else if (ix < pix && TEST(x_splits, pix)) {
  6038. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  6039. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6040. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6041. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6042. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6043. CBI(x_splits, pix);
  6044. }
  6045. else if (iy > piy && TEST(y_splits, iy)) {
  6046. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6047. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6048. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6049. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6050. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6051. CBI(y_splits, iy);
  6052. }
  6053. else if (iy < piy && TEST(y_splits, piy)) {
  6054. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6055. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6056. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6057. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6058. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6059. CBI(y_splits, piy);
  6060. }
  6061. else {
  6062. // Already split on a border
  6063. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6064. set_current_to_destination();
  6065. return;
  6066. }
  6067. // Do the split and look for more borders
  6068. destination[X_AXIS] = nx;
  6069. destination[Y_AXIS] = ny;
  6070. destination[Z_AXIS] = nz;
  6071. destination[E_AXIS] = ne;
  6072. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6073. destination[X_AXIS] = x;
  6074. destination[Y_AXIS] = y;
  6075. destination[Z_AXIS] = z;
  6076. destination[E_AXIS] = e;
  6077. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6078. }
  6079. #endif // MESH_BED_LEVELING
  6080. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6081. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6082. if (DEBUGGING(DRYRUN)) return;
  6083. float de = dest_e - curr_e;
  6084. if (de) {
  6085. if (degHotend(active_extruder) < extrude_min_temp) {
  6086. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6087. SERIAL_ECHO_START;
  6088. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6089. }
  6090. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6091. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6092. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6093. SERIAL_ECHO_START;
  6094. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6095. }
  6096. #endif
  6097. }
  6098. }
  6099. #endif // PREVENT_DANGEROUS_EXTRUDE
  6100. #if ENABLED(DELTA) || ENABLED(SCARA)
  6101. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6102. float difference[NUM_AXIS];
  6103. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6104. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6105. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6106. if (cartesian_mm < 0.000001) return false;
  6107. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6108. int steps = max(1, int(delta_segments_per_second * seconds));
  6109. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6110. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6111. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6112. for (int s = 1; s <= steps; s++) {
  6113. float fraction = float(s) / float(steps);
  6114. for (int8_t i = 0; i < NUM_AXIS; i++)
  6115. target[i] = current_position[i] + difference[i] * fraction;
  6116. calculate_delta(target);
  6117. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6118. adjust_delta(target);
  6119. #endif
  6120. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  6121. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  6122. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  6123. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  6124. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6125. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6126. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6127. }
  6128. return true;
  6129. }
  6130. #endif // DELTA || SCARA
  6131. #if ENABLED(SCARA)
  6132. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6133. #endif
  6134. #if ENABLED(DUAL_X_CARRIAGE)
  6135. inline bool prepare_move_dual_x_carriage() {
  6136. if (active_extruder_parked) {
  6137. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6138. // move duplicate extruder into correct duplication position.
  6139. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6140. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6141. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6142. sync_plan_position();
  6143. st_synchronize();
  6144. extruder_duplication_enabled = true;
  6145. active_extruder_parked = false;
  6146. }
  6147. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6148. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6149. // This is a travel move (with no extrusion)
  6150. // Skip it, but keep track of the current position
  6151. // (so it can be used as the start of the next non-travel move)
  6152. if (delayed_move_time != 0xFFFFFFFFUL) {
  6153. set_current_to_destination();
  6154. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6155. delayed_move_time = millis();
  6156. return false;
  6157. }
  6158. }
  6159. delayed_move_time = 0;
  6160. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6161. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6164. active_extruder_parked = false;
  6165. }
  6166. }
  6167. return true;
  6168. }
  6169. #endif // DUAL_X_CARRIAGE
  6170. #if DISABLED(DELTA) && DISABLED(SCARA)
  6171. inline bool prepare_move_cartesian() {
  6172. // Do not use feedrate_multiplier for E or Z only moves
  6173. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6174. line_to_destination();
  6175. }
  6176. else {
  6177. #if ENABLED(MESH_BED_LEVELING)
  6178. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6179. return false;
  6180. #else
  6181. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6182. #endif
  6183. }
  6184. return true;
  6185. }
  6186. #endif // !DELTA && !SCARA
  6187. /**
  6188. * Prepare a single move and get ready for the next one
  6189. *
  6190. * (This may call plan_buffer_line several times to put
  6191. * smaller moves into the planner for DELTA or SCARA.)
  6192. */
  6193. void prepare_move() {
  6194. clamp_to_software_endstops(destination);
  6195. refresh_cmd_timeout();
  6196. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6197. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6198. #endif
  6199. #if ENABLED(SCARA)
  6200. if (!prepare_move_scara(destination)) return;
  6201. #elif ENABLED(DELTA)
  6202. if (!prepare_move_delta(destination)) return;
  6203. #endif
  6204. #if ENABLED(DUAL_X_CARRIAGE)
  6205. if (!prepare_move_dual_x_carriage()) return;
  6206. #endif
  6207. #if DISABLED(DELTA) && DISABLED(SCARA)
  6208. if (!prepare_move_cartesian()) return;
  6209. #endif
  6210. set_current_to_destination();
  6211. }
  6212. /**
  6213. * Plan an arc in 2 dimensions
  6214. *
  6215. * The arc is approximated by generating many small linear segments.
  6216. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6217. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6218. * larger segments will tend to be more efficient. Your slicer should have
  6219. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6220. */
  6221. void plan_arc(
  6222. float target[NUM_AXIS], // Destination position
  6223. float* offset, // Center of rotation relative to current_position
  6224. uint8_t clockwise // Clockwise?
  6225. ) {
  6226. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6227. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6228. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6229. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6230. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6231. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6232. r_Y = -offset[Y_AXIS],
  6233. rt_X = target[X_AXIS] - center_X,
  6234. rt_Y = target[Y_AXIS] - center_Y;
  6235. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6236. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6237. if (angular_travel < 0) angular_travel += RADIANS(360);
  6238. if (clockwise) angular_travel -= RADIANS(360);
  6239. // Make a circle if the angular rotation is 0
  6240. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6241. angular_travel == RADIANS(360);
  6242. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6243. if (mm_of_travel < 0.001) return;
  6244. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6245. if (segments == 0) segments = 1;
  6246. float theta_per_segment = angular_travel / segments;
  6247. float linear_per_segment = linear_travel / segments;
  6248. float extruder_per_segment = extruder_travel / segments;
  6249. /**
  6250. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6251. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6252. * r_T = [cos(phi) -sin(phi);
  6253. * sin(phi) cos(phi] * r ;
  6254. *
  6255. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6256. * defined from the circle center to the initial position. Each line segment is formed by successive
  6257. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6258. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6259. * all double numbers are single precision on the Arduino. (True double precision will not have
  6260. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6261. * tool precision in some cases. Therefore, arc path correction is implemented.
  6262. *
  6263. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6264. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6265. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6266. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6267. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6268. * issue for CNC machines with the single precision Arduino calculations.
  6269. *
  6270. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6271. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6272. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6273. * This is important when there are successive arc motions.
  6274. */
  6275. // Vector rotation matrix values
  6276. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6277. float sin_T = theta_per_segment;
  6278. float arc_target[NUM_AXIS];
  6279. float sin_Ti, cos_Ti, r_new_Y;
  6280. uint16_t i;
  6281. int8_t count = 0;
  6282. // Initialize the linear axis
  6283. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6284. // Initialize the extruder axis
  6285. arc_target[E_AXIS] = current_position[E_AXIS];
  6286. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6287. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6288. if (++count < N_ARC_CORRECTION) {
  6289. // Apply vector rotation matrix to previous r_X / 1
  6290. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6291. r_X = r_X * cos_T - r_Y * sin_T;
  6292. r_Y = r_new_Y;
  6293. }
  6294. else {
  6295. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6296. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6297. // To reduce stuttering, the sin and cos could be computed at different times.
  6298. // For now, compute both at the same time.
  6299. cos_Ti = cos(i * theta_per_segment);
  6300. sin_Ti = sin(i * theta_per_segment);
  6301. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6302. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6303. count = 0;
  6304. }
  6305. // Update arc_target location
  6306. arc_target[X_AXIS] = center_X + r_X;
  6307. arc_target[Y_AXIS] = center_Y + r_Y;
  6308. arc_target[Z_AXIS] += linear_per_segment;
  6309. arc_target[E_AXIS] += extruder_per_segment;
  6310. clamp_to_software_endstops(arc_target);
  6311. #if ENABLED(DELTA) || ENABLED(SCARA)
  6312. calculate_delta(arc_target);
  6313. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6314. adjust_delta(arc_target);
  6315. #endif
  6316. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6317. #else
  6318. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6319. #endif
  6320. }
  6321. // Ensure last segment arrives at target location.
  6322. #if ENABLED(DELTA) || ENABLED(SCARA)
  6323. calculate_delta(target);
  6324. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6325. adjust_delta(target);
  6326. #endif
  6327. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6328. #else
  6329. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6330. #endif
  6331. // As far as the parser is concerned, the position is now == target. In reality the
  6332. // motion control system might still be processing the action and the real tool position
  6333. // in any intermediate location.
  6334. set_current_to_destination();
  6335. }
  6336. #if HAS_CONTROLLERFAN
  6337. void controllerFan() {
  6338. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6339. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6340. millis_t ms = millis();
  6341. if (ELAPSED(ms, nextMotorCheck)) {
  6342. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6343. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6344. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6345. #if EXTRUDERS > 1
  6346. || E1_ENABLE_READ == E_ENABLE_ON
  6347. #if HAS_X2_ENABLE
  6348. || X2_ENABLE_READ == X_ENABLE_ON
  6349. #endif
  6350. #if EXTRUDERS > 2
  6351. || E2_ENABLE_READ == E_ENABLE_ON
  6352. #if EXTRUDERS > 3
  6353. || E3_ENABLE_READ == E_ENABLE_ON
  6354. #endif
  6355. #endif
  6356. #endif
  6357. ) {
  6358. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6359. }
  6360. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6361. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6362. // allows digital or PWM fan output to be used (see M42 handling)
  6363. digitalWrite(CONTROLLERFAN_PIN, speed);
  6364. analogWrite(CONTROLLERFAN_PIN, speed);
  6365. }
  6366. }
  6367. #endif // HAS_CONTROLLERFAN
  6368. #if ENABLED(SCARA)
  6369. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6370. // Perform forward kinematics, and place results in delta[3]
  6371. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6372. float x_sin, x_cos, y_sin, y_cos;
  6373. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6374. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6375. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6376. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6377. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6378. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6379. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6380. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6381. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6382. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6383. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6384. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6385. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6386. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6387. }
  6388. void calculate_delta(float cartesian[3]) {
  6389. //reverse kinematics.
  6390. // Perform reversed kinematics, and place results in delta[3]
  6391. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6392. float SCARA_pos[2];
  6393. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6394. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6395. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6396. #if (Linkage_1 == Linkage_2)
  6397. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6398. #else
  6399. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6400. #endif
  6401. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6402. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6403. SCARA_K2 = Linkage_2 * SCARA_S2;
  6404. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6405. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6406. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6407. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6408. delta[Z_AXIS] = cartesian[Z_AXIS];
  6409. /**
  6410. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6411. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6412. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6413. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6414. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6415. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6416. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6417. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6418. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6419. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6420. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6421. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6422. SERIAL_EOL;
  6423. */
  6424. }
  6425. #endif // SCARA
  6426. #if ENABLED(TEMP_STAT_LEDS)
  6427. static bool red_led = false;
  6428. static millis_t next_status_led_update_ms = 0;
  6429. void handle_status_leds(void) {
  6430. float max_temp = 0.0;
  6431. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6432. next_status_led_update_ms += 500; // Update every 0.5s
  6433. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6434. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6435. #if HAS_TEMP_BED
  6436. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6437. #endif
  6438. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6439. if (new_led != red_led) {
  6440. red_led = new_led;
  6441. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6442. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6443. }
  6444. }
  6445. }
  6446. #endif
  6447. void enable_all_steppers() {
  6448. enable_x();
  6449. enable_y();
  6450. enable_z();
  6451. enable_e0();
  6452. enable_e1();
  6453. enable_e2();
  6454. enable_e3();
  6455. }
  6456. void disable_all_steppers() {
  6457. disable_x();
  6458. disable_y();
  6459. disable_z();
  6460. disable_e0();
  6461. disable_e1();
  6462. disable_e2();
  6463. disable_e3();
  6464. }
  6465. /**
  6466. * Standard idle routine keeps the machine alive
  6467. */
  6468. void idle(
  6469. #if ENABLED(FILAMENTCHANGEENABLE)
  6470. bool no_stepper_sleep/*=false*/
  6471. #endif
  6472. ) {
  6473. manage_heater();
  6474. manage_inactivity(
  6475. #if ENABLED(FILAMENTCHANGEENABLE)
  6476. no_stepper_sleep
  6477. #endif
  6478. );
  6479. host_keepalive();
  6480. lcd_update();
  6481. }
  6482. /**
  6483. * Manage several activities:
  6484. * - Check for Filament Runout
  6485. * - Keep the command buffer full
  6486. * - Check for maximum inactive time between commands
  6487. * - Check for maximum inactive time between stepper commands
  6488. * - Check if pin CHDK needs to go LOW
  6489. * - Check for KILL button held down
  6490. * - Check for HOME button held down
  6491. * - Check if cooling fan needs to be switched on
  6492. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6493. */
  6494. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6495. #if HAS_FILRUNOUT
  6496. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6497. filrunout();
  6498. #endif
  6499. if (commands_in_queue < BUFSIZE) get_available_commands();
  6500. millis_t ms = millis();
  6501. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6502. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6503. && !ignore_stepper_queue && !blocks_queued()) {
  6504. #if ENABLED(DISABLE_INACTIVE_X)
  6505. disable_x();
  6506. #endif
  6507. #if ENABLED(DISABLE_INACTIVE_Y)
  6508. disable_y();
  6509. #endif
  6510. #if ENABLED(DISABLE_INACTIVE_Z)
  6511. disable_z();
  6512. #endif
  6513. #if ENABLED(DISABLE_INACTIVE_E)
  6514. disable_e0();
  6515. disable_e1();
  6516. disable_e2();
  6517. disable_e3();
  6518. #endif
  6519. }
  6520. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6521. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6522. chdkActive = false;
  6523. WRITE(CHDK, LOW);
  6524. }
  6525. #endif
  6526. #if HAS_KILL
  6527. // Check if the kill button was pressed and wait just in case it was an accidental
  6528. // key kill key press
  6529. // -------------------------------------------------------------------------------
  6530. static int killCount = 0; // make the inactivity button a bit less responsive
  6531. const int KILL_DELAY = 750;
  6532. if (!READ(KILL_PIN))
  6533. killCount++;
  6534. else if (killCount > 0)
  6535. killCount--;
  6536. // Exceeded threshold and we can confirm that it was not accidental
  6537. // KILL the machine
  6538. // ----------------------------------------------------------------
  6539. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6540. #endif
  6541. #if HAS_HOME
  6542. // Check to see if we have to home, use poor man's debouncer
  6543. // ---------------------------------------------------------
  6544. static int homeDebounceCount = 0; // poor man's debouncing count
  6545. const int HOME_DEBOUNCE_DELAY = 2500;
  6546. if (!READ(HOME_PIN)) {
  6547. if (!homeDebounceCount) {
  6548. enqueue_and_echo_commands_P(PSTR("G28"));
  6549. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6550. }
  6551. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6552. homeDebounceCount++;
  6553. else
  6554. homeDebounceCount = 0;
  6555. }
  6556. #endif
  6557. #if HAS_CONTROLLERFAN
  6558. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6559. #endif
  6560. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6561. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6562. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6563. bool oldstatus;
  6564. switch (active_extruder) {
  6565. case 0:
  6566. oldstatus = E0_ENABLE_READ;
  6567. enable_e0();
  6568. break;
  6569. #if EXTRUDERS > 1
  6570. case 1:
  6571. oldstatus = E1_ENABLE_READ;
  6572. enable_e1();
  6573. break;
  6574. #if EXTRUDERS > 2
  6575. case 2:
  6576. oldstatus = E2_ENABLE_READ;
  6577. enable_e2();
  6578. break;
  6579. #if EXTRUDERS > 3
  6580. case 3:
  6581. oldstatus = E3_ENABLE_READ;
  6582. enable_e3();
  6583. break;
  6584. #endif
  6585. #endif
  6586. #endif
  6587. }
  6588. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6589. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6590. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6591. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6592. current_position[E_AXIS] = oldepos;
  6593. destination[E_AXIS] = oldedes;
  6594. plan_set_e_position(oldepos);
  6595. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6596. st_synchronize();
  6597. switch (active_extruder) {
  6598. case 0:
  6599. E0_ENABLE_WRITE(oldstatus);
  6600. break;
  6601. #if EXTRUDERS > 1
  6602. case 1:
  6603. E1_ENABLE_WRITE(oldstatus);
  6604. break;
  6605. #if EXTRUDERS > 2
  6606. case 2:
  6607. E2_ENABLE_WRITE(oldstatus);
  6608. break;
  6609. #if EXTRUDERS > 3
  6610. case 3:
  6611. E3_ENABLE_WRITE(oldstatus);
  6612. break;
  6613. #endif
  6614. #endif
  6615. #endif
  6616. }
  6617. }
  6618. #endif
  6619. #if ENABLED(DUAL_X_CARRIAGE)
  6620. // handle delayed move timeout
  6621. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6622. // travel moves have been received so enact them
  6623. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6624. set_destination_to_current();
  6625. prepare_move();
  6626. }
  6627. #endif
  6628. #if ENABLED(TEMP_STAT_LEDS)
  6629. handle_status_leds();
  6630. #endif
  6631. check_axes_activity();
  6632. }
  6633. void kill(const char* lcd_msg) {
  6634. #if ENABLED(ULTRA_LCD)
  6635. lcd_setalertstatuspgm(lcd_msg);
  6636. #else
  6637. UNUSED(lcd_msg);
  6638. #endif
  6639. cli(); // Stop interrupts
  6640. disable_all_heaters();
  6641. disable_all_steppers();
  6642. #if HAS_POWER_SWITCH
  6643. pinMode(PS_ON_PIN, INPUT);
  6644. #endif
  6645. SERIAL_ERROR_START;
  6646. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6647. // FMC small patch to update the LCD before ending
  6648. sei(); // enable interrupts
  6649. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6650. cli(); // disable interrupts
  6651. suicide();
  6652. while (1) {
  6653. #if ENABLED(USE_WATCHDOG)
  6654. watchdog_reset();
  6655. #endif
  6656. } // Wait for reset
  6657. }
  6658. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6659. void filrunout() {
  6660. if (!filrunoutEnqueued) {
  6661. filrunoutEnqueued = true;
  6662. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6663. st_synchronize();
  6664. }
  6665. }
  6666. #endif // FILAMENT_RUNOUT_SENSOR
  6667. #if ENABLED(FAST_PWM_FAN)
  6668. void setPwmFrequency(uint8_t pin, int val) {
  6669. val &= 0x07;
  6670. switch (digitalPinToTimer(pin)) {
  6671. #if defined(TCCR0A)
  6672. case TIMER0A:
  6673. case TIMER0B:
  6674. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6675. // TCCR0B |= val;
  6676. break;
  6677. #endif
  6678. #if defined(TCCR1A)
  6679. case TIMER1A:
  6680. case TIMER1B:
  6681. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6682. // TCCR1B |= val;
  6683. break;
  6684. #endif
  6685. #if defined(TCCR2)
  6686. case TIMER2:
  6687. case TIMER2:
  6688. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6689. TCCR2 |= val;
  6690. break;
  6691. #endif
  6692. #if defined(TCCR2A)
  6693. case TIMER2A:
  6694. case TIMER2B:
  6695. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6696. TCCR2B |= val;
  6697. break;
  6698. #endif
  6699. #if defined(TCCR3A)
  6700. case TIMER3A:
  6701. case TIMER3B:
  6702. case TIMER3C:
  6703. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6704. TCCR3B |= val;
  6705. break;
  6706. #endif
  6707. #if defined(TCCR4A)
  6708. case TIMER4A:
  6709. case TIMER4B:
  6710. case TIMER4C:
  6711. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6712. TCCR4B |= val;
  6713. break;
  6714. #endif
  6715. #if defined(TCCR5A)
  6716. case TIMER5A:
  6717. case TIMER5B:
  6718. case TIMER5C:
  6719. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6720. TCCR5B |= val;
  6721. break;
  6722. #endif
  6723. }
  6724. }
  6725. #endif // FAST_PWM_FAN
  6726. void Stop() {
  6727. disable_all_heaters();
  6728. if (IsRunning()) {
  6729. Running = false;
  6730. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6731. SERIAL_ERROR_START;
  6732. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6733. LCD_MESSAGEPGM(MSG_STOPPED);
  6734. }
  6735. }
  6736. /**
  6737. * Set target_extruder from the T parameter or the active_extruder
  6738. *
  6739. * Returns TRUE if the target is invalid
  6740. */
  6741. bool setTargetedHotend(int code) {
  6742. target_extruder = active_extruder;
  6743. if (code_seen('T')) {
  6744. target_extruder = code_value_short();
  6745. if (target_extruder >= EXTRUDERS) {
  6746. SERIAL_ECHO_START;
  6747. SERIAL_CHAR('M');
  6748. SERIAL_ECHO(code);
  6749. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6750. SERIAL_ECHOLN((int)target_extruder);
  6751. return true;
  6752. }
  6753. }
  6754. return false;
  6755. }
  6756. float calculate_volumetric_multiplier(float diameter) {
  6757. if (!volumetric_enabled || diameter == 0) return 1.0;
  6758. float d2 = diameter * 0.5;
  6759. return 1.0 / (M_PI * d2 * d2);
  6760. }
  6761. void calculate_volumetric_multipliers() {
  6762. for (int i = 0; i < EXTRUDERS; i++)
  6763. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6764. }