My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 145KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M500 - stores parameters in EEPROM
  147. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  148. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  149. // M503 - print the current settings (from memory not from EEPROM)
  150. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  151. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  152. // M665 - set delta configurations
  153. // M666 - set delta endstop adjustment
  154. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  155. // M907 - Set digital trimpot motor current using axis codes.
  156. // M908 - Control digital trimpot directly.
  157. // M350 - Set microstepping mode.
  158. // M351 - Toggle MS1 MS2 pins directly.
  159. // ************ SCARA Specific - This can change to suit future G-code regulations
  160. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  161. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  162. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  163. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  164. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  165. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  166. //************* SCARA End ***************
  167. // M928 - Start SD logging (M928 filename.g) - ended by M29
  168. // M999 - Restart after being stopped by error
  169. //Stepper Movement Variables
  170. //===========================================================================
  171. //=============================imported variables============================
  172. //===========================================================================
  173. //===========================================================================
  174. //=============================public variables=============================
  175. //===========================================================================
  176. #ifdef SDSUPPORT
  177. CardReader card;
  178. #endif
  179. float homing_feedrate[] = HOMING_FEEDRATE;
  180. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  181. int feedmultiply=100; //100->1 200->2
  182. int saved_feedmultiply;
  183. int extrudemultiply=100; //100->1 200->2
  184. int extruder_multiply[EXTRUDERS] = {100
  185. #if EXTRUDERS > 1
  186. , 100
  187. #if EXTRUDERS > 2
  188. , 100
  189. #endif
  190. #endif
  191. };
  192. float volumetric_multiplier[EXTRUDERS] = {1.0
  193. #if EXTRUDERS > 1
  194. , 1.0
  195. #if EXTRUDERS > 2
  196. , 1.0
  197. #endif
  198. #endif
  199. };
  200. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  201. float add_homeing[3]={0,0,0};
  202. #ifdef DELTA
  203. float endstop_adj[3]={0,0,0};
  204. #endif
  205. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  206. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  207. bool axis_known_position[3] = {false, false, false};
  208. float zprobe_zoffset;
  209. // Extruder offset
  210. #if EXTRUDERS > 1
  211. #ifndef DUAL_X_CARRIAGE
  212. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  213. #else
  214. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  215. #endif
  216. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  217. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  218. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  219. #endif
  220. };
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed=0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure=0;
  230. int EtoPPressure=0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled=false;
  234. bool retracted[EXTRUDERS]={false
  235. #if EXTRUDERS > 1
  236. , false
  237. #if EXTRUDERS > 2
  238. , false
  239. #endif
  240. #endif
  241. };
  242. bool retracted_swap[EXTRUDERS]={false
  243. #if EXTRUDERS > 1
  244. , false
  245. #if EXTRUDERS > 2
  246. , false
  247. #endif
  248. #endif
  249. };
  250. float retract_length = RETRACT_LENGTH;
  251. float retract_length_swap = RETRACT_LENGTH_SWAP;
  252. float retract_feedrate = RETRACT_FEEDRATE;
  253. float retract_zlift = RETRACT_ZLIFT;
  254. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  255. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  256. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  257. #endif
  258. #ifdef ULTIPANEL
  259. #ifdef PS_DEFAULT_OFF
  260. bool powersupply = false;
  261. #else
  262. bool powersupply = true;
  263. #endif
  264. #endif
  265. #ifdef DELTA
  266. float delta[3] = {0.0, 0.0, 0.0};
  267. #define SIN_60 0.8660254037844386
  268. #define COS_60 0.5
  269. // these are the default values, can be overriden with M665
  270. float delta_radius= DELTA_RADIUS;
  271. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  272. float delta_tower1_y= -COS_60*delta_radius;
  273. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  274. float delta_tower2_y= -COS_60*delta_radius;
  275. float delta_tower3_x= 0.0; // back middle tower
  276. float delta_tower3_y= delta_radius;
  277. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  278. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  279. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  280. #endif
  281. #ifdef SCARA // Build size scaling
  282. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  283. #endif
  284. bool cancel_heatup = false ;
  285. //===========================================================================
  286. //=============================Private Variables=============================
  287. //===========================================================================
  288. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  289. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  290. static float delta[3] = {0.0, 0.0, 0.0};
  291. #endif
  292. static float offset[3] = {0.0, 0.0, 0.0};
  293. static bool home_all_axis = true;
  294. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  295. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  296. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  297. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  298. static bool fromsd[BUFSIZE];
  299. static int bufindr = 0;
  300. static int bufindw = 0;
  301. static int buflen = 0;
  302. //static int i = 0;
  303. static char serial_char;
  304. static int serial_count = 0;
  305. static boolean comment_mode = false;
  306. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  307. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  308. //static float tt = 0;
  309. //static float bt = 0;
  310. //Inactivity shutdown variables
  311. static unsigned long previous_millis_cmd = 0;
  312. static unsigned long max_inactive_time = 0;
  313. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  314. unsigned long starttime=0;
  315. unsigned long stoptime=0;
  316. static uint8_t tmp_extruder;
  317. bool Stopped=false;
  318. #if NUM_SERVOS > 0
  319. Servo servos[NUM_SERVOS];
  320. #endif
  321. bool CooldownNoWait = true;
  322. bool target_direction;
  323. //Insert variables if CHDK is defined
  324. #ifdef CHDK
  325. unsigned long chdkHigh = 0;
  326. boolean chdkActive = false;
  327. #endif
  328. //===========================================================================
  329. //=============================Routines======================================
  330. //===========================================================================
  331. void get_arc_coordinates();
  332. bool setTargetedHotend(int code);
  333. void serial_echopair_P(const char *s_P, float v)
  334. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  335. void serial_echopair_P(const char *s_P, double v)
  336. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  337. void serial_echopair_P(const char *s_P, unsigned long v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. extern "C"{
  340. extern unsigned int __bss_end;
  341. extern unsigned int __heap_start;
  342. extern void *__brkval;
  343. int freeMemory() {
  344. int free_memory;
  345. if((int)__brkval == 0)
  346. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  347. else
  348. free_memory = ((int)&free_memory) - ((int)__brkval);
  349. return free_memory;
  350. }
  351. }
  352. //adds an command to the main command buffer
  353. //thats really done in a non-safe way.
  354. //needs overworking someday
  355. void enquecommand(const char *cmd)
  356. {
  357. if(buflen < BUFSIZE)
  358. {
  359. //this is dangerous if a mixing of serial and this happens
  360. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  361. SERIAL_ECHO_START;
  362. SERIAL_ECHOPGM("enqueing \"");
  363. SERIAL_ECHO(cmdbuffer[bufindw]);
  364. SERIAL_ECHOLNPGM("\"");
  365. bufindw= (bufindw + 1)%BUFSIZE;
  366. buflen += 1;
  367. }
  368. }
  369. void enquecommand_P(const char *cmd)
  370. {
  371. if(buflen < BUFSIZE)
  372. {
  373. //this is dangerous if a mixing of serial and this happens
  374. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  375. SERIAL_ECHO_START;
  376. SERIAL_ECHOPGM("enqueing \"");
  377. SERIAL_ECHO(cmdbuffer[bufindw]);
  378. SERIAL_ECHOLNPGM("\"");
  379. bufindw= (bufindw + 1)%BUFSIZE;
  380. buflen += 1;
  381. }
  382. }
  383. void setup_killpin()
  384. {
  385. #if defined(KILL_PIN) && KILL_PIN > -1
  386. pinMode(KILL_PIN,INPUT);
  387. WRITE(KILL_PIN,HIGH);
  388. #endif
  389. }
  390. void setup_photpin()
  391. {
  392. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  393. SET_OUTPUT(PHOTOGRAPH_PIN);
  394. WRITE(PHOTOGRAPH_PIN, LOW);
  395. #endif
  396. }
  397. void setup_powerhold()
  398. {
  399. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  400. SET_OUTPUT(SUICIDE_PIN);
  401. WRITE(SUICIDE_PIN, HIGH);
  402. #endif
  403. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  404. SET_OUTPUT(PS_ON_PIN);
  405. #if defined(PS_DEFAULT_OFF)
  406. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  407. #else
  408. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  409. #endif
  410. #endif
  411. }
  412. void suicide()
  413. {
  414. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  415. SET_OUTPUT(SUICIDE_PIN);
  416. WRITE(SUICIDE_PIN, LOW);
  417. #endif
  418. }
  419. void servo_init()
  420. {
  421. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  422. servos[0].attach(SERVO0_PIN);
  423. #endif
  424. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  425. servos[1].attach(SERVO1_PIN);
  426. #endif
  427. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  428. servos[2].attach(SERVO2_PIN);
  429. #endif
  430. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  431. servos[3].attach(SERVO3_PIN);
  432. #endif
  433. #if (NUM_SERVOS >= 5)
  434. #error "TODO: enter initalisation code for more servos"
  435. #endif
  436. // Set position of Servo Endstops that are defined
  437. #ifdef SERVO_ENDSTOPS
  438. for(int8_t i = 0; i < 3; i++)
  439. {
  440. if(servo_endstops[i] > -1) {
  441. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  442. }
  443. }
  444. #endif
  445. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  446. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  447. servos[servo_endstops[Z_AXIS]].detach();
  448. #endif
  449. }
  450. void setup()
  451. {
  452. setup_killpin();
  453. setup_powerhold();
  454. MYSERIAL.begin(BAUDRATE);
  455. SERIAL_PROTOCOLLNPGM("start");
  456. SERIAL_ECHO_START;
  457. // Check startup - does nothing if bootloader sets MCUSR to 0
  458. byte mcu = MCUSR;
  459. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  460. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  461. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  462. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  463. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  464. MCUSR=0;
  465. SERIAL_ECHOPGM(MSG_MARLIN);
  466. SERIAL_ECHOLNPGM(VERSION_STRING);
  467. #ifdef STRING_VERSION_CONFIG_H
  468. #ifdef STRING_CONFIG_H_AUTHOR
  469. SERIAL_ECHO_START;
  470. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  471. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  472. SERIAL_ECHOPGM(MSG_AUTHOR);
  473. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  474. SERIAL_ECHOPGM("Compiled: ");
  475. SERIAL_ECHOLNPGM(__DATE__);
  476. #endif
  477. #endif
  478. SERIAL_ECHO_START;
  479. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  480. SERIAL_ECHO(freeMemory());
  481. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  482. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  483. for(int8_t i = 0; i < BUFSIZE; i++)
  484. {
  485. fromsd[i] = false;
  486. }
  487. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  488. Config_RetrieveSettings();
  489. tp_init(); // Initialize temperature loop
  490. plan_init(); // Initialize planner;
  491. watchdog_init();
  492. st_init(); // Initialize stepper, this enables interrupts!
  493. setup_photpin();
  494. servo_init();
  495. lcd_init();
  496. _delay_ms(1000); // wait 1sec to display the splash screen
  497. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  498. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  499. #endif
  500. #ifdef DIGIPOT_I2C
  501. digipot_i2c_init();
  502. #endif
  503. #ifdef Z_PROBE_SLED
  504. pinMode(SERVO0_PIN, OUTPUT);
  505. digitalWrite(SERVO0_PIN, LOW); // turn it off
  506. #endif // Z_PROBE_SLED
  507. }
  508. void loop()
  509. {
  510. if(buflen < (BUFSIZE-1))
  511. get_command();
  512. #ifdef SDSUPPORT
  513. card.checkautostart(false);
  514. #endif
  515. if(buflen)
  516. {
  517. #ifdef SDSUPPORT
  518. if(card.saving)
  519. {
  520. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  521. {
  522. card.write_command(cmdbuffer[bufindr]);
  523. if(card.logging)
  524. {
  525. process_commands();
  526. }
  527. else
  528. {
  529. SERIAL_PROTOCOLLNPGM(MSG_OK);
  530. }
  531. }
  532. else
  533. {
  534. card.closefile();
  535. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  536. }
  537. }
  538. else
  539. {
  540. process_commands();
  541. }
  542. #else
  543. process_commands();
  544. #endif //SDSUPPORT
  545. buflen = (buflen-1);
  546. bufindr = (bufindr + 1)%BUFSIZE;
  547. }
  548. //check heater every n milliseconds
  549. manage_heater();
  550. manage_inactivity();
  551. checkHitEndstops();
  552. lcd_update();
  553. }
  554. void get_command()
  555. {
  556. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  557. serial_char = MYSERIAL.read();
  558. if(serial_char == '\n' ||
  559. serial_char == '\r' ||
  560. (serial_char == ':' && comment_mode == false) ||
  561. serial_count >= (MAX_CMD_SIZE - 1) )
  562. {
  563. if(!serial_count) { //if empty line
  564. comment_mode = false; //for new command
  565. return;
  566. }
  567. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  568. if(!comment_mode){
  569. comment_mode = false; //for new command
  570. fromsd[bufindw] = false;
  571. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  572. {
  573. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  574. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  575. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  576. SERIAL_ERROR_START;
  577. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  578. SERIAL_ERRORLN(gcode_LastN);
  579. //Serial.println(gcode_N);
  580. FlushSerialRequestResend();
  581. serial_count = 0;
  582. return;
  583. }
  584. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  585. {
  586. byte checksum = 0;
  587. byte count = 0;
  588. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  589. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  590. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  591. SERIAL_ERROR_START;
  592. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  593. SERIAL_ERRORLN(gcode_LastN);
  594. FlushSerialRequestResend();
  595. serial_count = 0;
  596. return;
  597. }
  598. //if no errors, continue parsing
  599. }
  600. else
  601. {
  602. SERIAL_ERROR_START;
  603. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  604. SERIAL_ERRORLN(gcode_LastN);
  605. FlushSerialRequestResend();
  606. serial_count = 0;
  607. return;
  608. }
  609. gcode_LastN = gcode_N;
  610. //if no errors, continue parsing
  611. }
  612. else // if we don't receive 'N' but still see '*'
  613. {
  614. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  615. {
  616. SERIAL_ERROR_START;
  617. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  618. SERIAL_ERRORLN(gcode_LastN);
  619. serial_count = 0;
  620. return;
  621. }
  622. }
  623. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  624. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  625. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  626. case 0:
  627. case 1:
  628. case 2:
  629. case 3:
  630. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  631. #ifdef SDSUPPORT
  632. if(card.saving)
  633. break;
  634. #endif //SDSUPPORT
  635. SERIAL_PROTOCOLLNPGM(MSG_OK);
  636. }
  637. else {
  638. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  639. LCD_MESSAGEPGM(MSG_STOPPED);
  640. }
  641. break;
  642. default:
  643. break;
  644. }
  645. }
  646. //If command was e-stop process now
  647. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  648. kill();
  649. bufindw = (bufindw + 1)%BUFSIZE;
  650. buflen += 1;
  651. }
  652. serial_count = 0; //clear buffer
  653. }
  654. else
  655. {
  656. if(serial_char == ';') comment_mode = true;
  657. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  658. }
  659. }
  660. #ifdef SDSUPPORT
  661. if(!card.sdprinting || serial_count!=0){
  662. return;
  663. }
  664. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  665. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  666. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  667. static bool stop_buffering=false;
  668. if(buflen==0) stop_buffering=false;
  669. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  670. int16_t n=card.get();
  671. serial_char = (char)n;
  672. if(serial_char == '\n' ||
  673. serial_char == '\r' ||
  674. (serial_char == '#' && comment_mode == false) ||
  675. (serial_char == ':' && comment_mode == false) ||
  676. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  677. {
  678. if(card.eof()){
  679. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  680. stoptime=millis();
  681. char time[30];
  682. unsigned long t=(stoptime-starttime)/1000;
  683. int hours, minutes;
  684. minutes=(t/60)%60;
  685. hours=t/60/60;
  686. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  687. SERIAL_ECHO_START;
  688. SERIAL_ECHOLN(time);
  689. lcd_setstatus(time);
  690. card.printingHasFinished();
  691. card.checkautostart(true);
  692. }
  693. if(serial_char=='#')
  694. stop_buffering=true;
  695. if(!serial_count)
  696. {
  697. comment_mode = false; //for new command
  698. return; //if empty line
  699. }
  700. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  701. // if(!comment_mode){
  702. fromsd[bufindw] = true;
  703. buflen += 1;
  704. bufindw = (bufindw + 1)%BUFSIZE;
  705. // }
  706. comment_mode = false; //for new command
  707. serial_count = 0; //clear buffer
  708. }
  709. else
  710. {
  711. if(serial_char == ';') comment_mode = true;
  712. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  713. }
  714. }
  715. #endif //SDSUPPORT
  716. }
  717. float code_value()
  718. {
  719. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  720. }
  721. long code_value_long()
  722. {
  723. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  724. }
  725. bool code_seen(char code)
  726. {
  727. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  728. return (strchr_pointer != NULL); //Return True if a character was found
  729. }
  730. #define DEFINE_PGM_READ_ANY(type, reader) \
  731. static inline type pgm_read_any(const type *p) \
  732. { return pgm_read_##reader##_near(p); }
  733. DEFINE_PGM_READ_ANY(float, float);
  734. DEFINE_PGM_READ_ANY(signed char, byte);
  735. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  736. static const PROGMEM type array##_P[3] = \
  737. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  738. static inline type array(int axis) \
  739. { return pgm_read_any(&array##_P[axis]); }
  740. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  741. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  742. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  743. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  744. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  745. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  746. #ifdef DUAL_X_CARRIAGE
  747. #if EXTRUDERS == 1 || defined(COREXY) \
  748. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  749. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  750. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  751. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  752. #endif
  753. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  754. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  755. #endif
  756. #define DXC_FULL_CONTROL_MODE 0
  757. #define DXC_AUTO_PARK_MODE 1
  758. #define DXC_DUPLICATION_MODE 2
  759. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  760. static float x_home_pos(int extruder) {
  761. if (extruder == 0)
  762. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  763. else
  764. // In dual carriage mode the extruder offset provides an override of the
  765. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  766. // This allow soft recalibration of the second extruder offset position without firmware reflash
  767. // (through the M218 command).
  768. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  769. }
  770. static int x_home_dir(int extruder) {
  771. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  772. }
  773. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  774. static bool active_extruder_parked = false; // used in mode 1 & 2
  775. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  776. static unsigned long delayed_move_time = 0; // used in mode 1
  777. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  778. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  779. bool extruder_duplication_enabled = false; // used in mode 2
  780. #endif //DUAL_X_CARRIAGE
  781. static void axis_is_at_home(int axis) {
  782. #ifdef DUAL_X_CARRIAGE
  783. if (axis == X_AXIS) {
  784. if (active_extruder != 0) {
  785. current_position[X_AXIS] = x_home_pos(active_extruder);
  786. min_pos[X_AXIS] = X2_MIN_POS;
  787. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  788. return;
  789. }
  790. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  791. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  792. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  793. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  794. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  795. return;
  796. }
  797. }
  798. #endif
  799. #ifdef SCARA
  800. float homeposition[3];
  801. char i;
  802. if (axis < 2)
  803. {
  804. for (i=0; i<3; i++)
  805. {
  806. homeposition[i] = base_home_pos(i);
  807. }
  808. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  809. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  810. // Works out real Homeposition angles using inverse kinematics,
  811. // and calculates homing offset using forward kinematics
  812. calculate_delta(homeposition);
  813. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  814. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  815. for (i=0; i<2; i++)
  816. {
  817. delta[i] -= add_homeing[i];
  818. }
  819. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homeing[X_AXIS]);
  820. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homeing[Y_AXIS]);
  821. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  822. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  823. calculate_SCARA_forward_Transform(delta);
  824. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  825. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  826. current_position[axis] = delta[axis];
  827. // SCARA home positions are based on configuration since the actual limits are determined by the
  828. // inverse kinematic transform.
  829. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  830. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  831. }
  832. else
  833. {
  834. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  835. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  836. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  837. }
  838. #else
  839. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  840. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  841. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  842. #endif
  843. }
  844. #ifdef ENABLE_AUTO_BED_LEVELING
  845. #ifdef AUTO_BED_LEVELING_GRID
  846. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  847. {
  848. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  849. planeNormal.debug("planeNormal");
  850. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  851. //bedLevel.debug("bedLevel");
  852. //plan_bed_level_matrix.debug("bed level before");
  853. //vector_3 uncorrected_position = plan_get_position_mm();
  854. //uncorrected_position.debug("position before");
  855. vector_3 corrected_position = plan_get_position();
  856. // corrected_position.debug("position after");
  857. current_position[X_AXIS] = corrected_position.x;
  858. current_position[Y_AXIS] = corrected_position.y;
  859. current_position[Z_AXIS] = corrected_position.z;
  860. // put the bed at 0 so we don't go below it.
  861. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  862. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  863. }
  864. #else // not AUTO_BED_LEVELING_GRID
  865. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  866. plan_bed_level_matrix.set_to_identity();
  867. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  868. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  869. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  870. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  871. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  872. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  873. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  874. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  875. vector_3 corrected_position = plan_get_position();
  876. current_position[X_AXIS] = corrected_position.x;
  877. current_position[Y_AXIS] = corrected_position.y;
  878. current_position[Z_AXIS] = corrected_position.z;
  879. // put the bed at 0 so we don't go below it.
  880. current_position[Z_AXIS] = zprobe_zoffset;
  881. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  882. }
  883. #endif // AUTO_BED_LEVELING_GRID
  884. static void run_z_probe() {
  885. plan_bed_level_matrix.set_to_identity();
  886. feedrate = homing_feedrate[Z_AXIS];
  887. // move down until you find the bed
  888. float zPosition = -10;
  889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  890. st_synchronize();
  891. // we have to let the planner know where we are right now as it is not where we said to go.
  892. zPosition = st_get_position_mm(Z_AXIS);
  893. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  894. // move up the retract distance
  895. zPosition += home_retract_mm(Z_AXIS);
  896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  897. st_synchronize();
  898. // move back down slowly to find bed
  899. feedrate = homing_feedrate[Z_AXIS]/4;
  900. zPosition -= home_retract_mm(Z_AXIS) * 2;
  901. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  902. st_synchronize();
  903. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  904. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  906. }
  907. static void do_blocking_move_to(float x, float y, float z) {
  908. float oldFeedRate = feedrate;
  909. feedrate = XY_TRAVEL_SPEED;
  910. current_position[X_AXIS] = x;
  911. current_position[Y_AXIS] = y;
  912. current_position[Z_AXIS] = z;
  913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  914. st_synchronize();
  915. feedrate = oldFeedRate;
  916. }
  917. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  918. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  919. }
  920. static void setup_for_endstop_move() {
  921. saved_feedrate = feedrate;
  922. saved_feedmultiply = feedmultiply;
  923. feedmultiply = 100;
  924. previous_millis_cmd = millis();
  925. enable_endstops(true);
  926. }
  927. static void clean_up_after_endstop_move() {
  928. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  929. enable_endstops(false);
  930. #endif
  931. feedrate = saved_feedrate;
  932. feedmultiply = saved_feedmultiply;
  933. previous_millis_cmd = millis();
  934. }
  935. static void engage_z_probe() {
  936. // Engage Z Servo endstop if enabled
  937. #ifdef SERVO_ENDSTOPS
  938. if (servo_endstops[Z_AXIS] > -1) {
  939. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  940. servos[servo_endstops[Z_AXIS]].attach(0);
  941. #endif
  942. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  943. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  944. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  945. servos[servo_endstops[Z_AXIS]].detach();
  946. #endif
  947. }
  948. #endif
  949. }
  950. static void retract_z_probe() {
  951. // Retract Z Servo endstop if enabled
  952. #ifdef SERVO_ENDSTOPS
  953. if (servo_endstops[Z_AXIS] > -1) {
  954. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  955. servos[servo_endstops[Z_AXIS]].attach(0);
  956. #endif
  957. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  958. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  959. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  960. servos[servo_endstops[Z_AXIS]].detach();
  961. #endif
  962. }
  963. #endif
  964. }
  965. /// Probe bed height at position (x,y), returns the measured z value
  966. static float probe_pt(float x, float y, float z_before) {
  967. // move to right place
  968. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  969. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  970. #ifndef Z_PROBE_SLED
  971. engage_z_probe(); // Engage Z Servo endstop if available
  972. #endif // Z_PROBE_SLED
  973. run_z_probe();
  974. float measured_z = current_position[Z_AXIS];
  975. #ifndef Z_PROBE_SLED
  976. retract_z_probe();
  977. #endif // Z_PROBE_SLED
  978. SERIAL_PROTOCOLPGM(MSG_BED);
  979. SERIAL_PROTOCOLPGM(" x: ");
  980. SERIAL_PROTOCOL(x);
  981. SERIAL_PROTOCOLPGM(" y: ");
  982. SERIAL_PROTOCOL(y);
  983. SERIAL_PROTOCOLPGM(" z: ");
  984. SERIAL_PROTOCOL(measured_z);
  985. SERIAL_PROTOCOLPGM("\n");
  986. return measured_z;
  987. }
  988. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  989. static void homeaxis(int axis) {
  990. #define HOMEAXIS_DO(LETTER) \
  991. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  992. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  993. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  994. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  995. 0) {
  996. int axis_home_dir = home_dir(axis);
  997. #ifdef DUAL_X_CARRIAGE
  998. if (axis == X_AXIS)
  999. axis_home_dir = x_home_dir(active_extruder);
  1000. #endif
  1001. current_position[axis] = 0;
  1002. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1003. #ifndef Z_PROBE_SLED
  1004. // Engage Servo endstop if enabled
  1005. #ifdef SERVO_ENDSTOPS
  1006. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1007. if (axis==Z_AXIS) {
  1008. engage_z_probe();
  1009. }
  1010. else
  1011. #endif
  1012. if (servo_endstops[axis] > -1) {
  1013. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1014. }
  1015. #endif
  1016. #endif // Z_PROBE_SLED
  1017. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1018. feedrate = homing_feedrate[axis];
  1019. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1020. st_synchronize();
  1021. current_position[axis] = 0;
  1022. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1023. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1024. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1025. st_synchronize();
  1026. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1027. #ifdef DELTA
  1028. feedrate = homing_feedrate[axis]/10;
  1029. #else
  1030. feedrate = homing_feedrate[axis]/2 ;
  1031. #endif
  1032. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1033. st_synchronize();
  1034. #ifdef DELTA
  1035. // retrace by the amount specified in endstop_adj
  1036. if (endstop_adj[axis] * axis_home_dir < 0) {
  1037. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1038. destination[axis] = endstop_adj[axis];
  1039. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1040. st_synchronize();
  1041. }
  1042. #endif
  1043. axis_is_at_home(axis);
  1044. destination[axis] = current_position[axis];
  1045. feedrate = 0.0;
  1046. endstops_hit_on_purpose();
  1047. axis_known_position[axis] = true;
  1048. // Retract Servo endstop if enabled
  1049. #ifdef SERVO_ENDSTOPS
  1050. if (servo_endstops[axis] > -1) {
  1051. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1052. }
  1053. #endif
  1054. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1055. // if (axis==Z_AXIS) retract_z_probe();
  1056. #endif
  1057. }
  1058. }
  1059. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1060. void refresh_cmd_timeout(void)
  1061. {
  1062. previous_millis_cmd = millis();
  1063. }
  1064. #ifdef FWRETRACT
  1065. void retract(bool retracting, bool swapretract = false) {
  1066. if(retracting && !retracted[active_extruder]) {
  1067. destination[X_AXIS]=current_position[X_AXIS];
  1068. destination[Y_AXIS]=current_position[Y_AXIS];
  1069. destination[Z_AXIS]=current_position[Z_AXIS];
  1070. destination[E_AXIS]=current_position[E_AXIS];
  1071. if (swapretract) {
  1072. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1073. } else {
  1074. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1075. }
  1076. plan_set_e_position(current_position[E_AXIS]);
  1077. float oldFeedrate = feedrate;
  1078. feedrate=retract_feedrate*60;
  1079. retracted[active_extruder]=true;
  1080. prepare_move();
  1081. current_position[Z_AXIS]-=retract_zlift;
  1082. #ifdef DELTA
  1083. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1084. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1085. #else
  1086. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1087. #endif
  1088. prepare_move();
  1089. feedrate = oldFeedrate;
  1090. } else if(!retracting && retracted[active_extruder]) {
  1091. destination[X_AXIS]=current_position[X_AXIS];
  1092. destination[Y_AXIS]=current_position[Y_AXIS];
  1093. destination[Z_AXIS]=current_position[Z_AXIS];
  1094. destination[E_AXIS]=current_position[E_AXIS];
  1095. current_position[Z_AXIS]+=retract_zlift;
  1096. #ifdef DELTA
  1097. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1098. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1099. #else
  1100. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1101. #endif
  1102. //prepare_move();
  1103. if (swapretract) {
  1104. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1105. } else {
  1106. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1107. }
  1108. plan_set_e_position(current_position[E_AXIS]);
  1109. float oldFeedrate = feedrate;
  1110. feedrate=retract_recover_feedrate*60;
  1111. retracted[active_extruder]=false;
  1112. prepare_move();
  1113. feedrate = oldFeedrate;
  1114. }
  1115. } //retract
  1116. #endif //FWRETRACT
  1117. #ifdef ENABLE_AUTO_BED_LEVELING
  1118. //
  1119. // Method to dock/undock a sled designed by Charles Bell.
  1120. //
  1121. // dock[in] If true, move to MAX_X and engage the electromagnet
  1122. // offset[in] The additional distance to move to adjust docking location
  1123. //
  1124. static void dock_sled(bool dock, int offset=0) {
  1125. int z_loc;
  1126. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1127. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1128. SERIAL_ECHO_START;
  1129. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1130. return;
  1131. }
  1132. if (dock) {
  1133. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1134. current_position[Y_AXIS],
  1135. current_position[Z_AXIS]);
  1136. // turn off magnet
  1137. digitalWrite(SERVO0_PIN, LOW);
  1138. } else {
  1139. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1140. z_loc = Z_RAISE_BEFORE_PROBING;
  1141. else
  1142. z_loc = current_position[Z_AXIS];
  1143. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1144. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1145. // turn on magnet
  1146. digitalWrite(SERVO0_PIN, HIGH);
  1147. }
  1148. }
  1149. #endif
  1150. void process_commands()
  1151. {
  1152. unsigned long codenum; //throw away variable
  1153. char *starpos = NULL;
  1154. #ifdef ENABLE_AUTO_BED_LEVELING
  1155. float x_tmp, y_tmp, z_tmp, real_z;
  1156. #endif
  1157. if(code_seen('G'))
  1158. {
  1159. switch((int)code_value())
  1160. {
  1161. case 0: // G0 -> G1
  1162. case 1: // G1
  1163. if(Stopped == false) {
  1164. get_coordinates(); // For X Y Z E F
  1165. #ifdef FWRETRACT
  1166. if(autoretract_enabled)
  1167. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1168. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1169. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1170. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1171. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1172. retract(!retracted);
  1173. return;
  1174. }
  1175. }
  1176. #endif //FWRETRACT
  1177. prepare_move();
  1178. //ClearToSend();
  1179. return;
  1180. }
  1181. break;
  1182. #ifndef SCARA //disable arc support
  1183. case 2: // G2 - CW ARC
  1184. if(Stopped == false) {
  1185. get_arc_coordinates();
  1186. prepare_arc_move(true);
  1187. return;
  1188. }
  1189. break;
  1190. case 3: // G3 - CCW ARC
  1191. if(Stopped == false) {
  1192. get_arc_coordinates();
  1193. prepare_arc_move(false);
  1194. return;
  1195. }
  1196. break;
  1197. #endif
  1198. case 4: // G4 dwell
  1199. LCD_MESSAGEPGM(MSG_DWELL);
  1200. codenum = 0;
  1201. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1202. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1203. st_synchronize();
  1204. codenum += millis(); // keep track of when we started waiting
  1205. previous_millis_cmd = millis();
  1206. while(millis() < codenum ){
  1207. manage_heater();
  1208. manage_inactivity();
  1209. lcd_update();
  1210. }
  1211. break;
  1212. #ifdef FWRETRACT
  1213. case 10: // G10 retract
  1214. #if EXTRUDERS > 1
  1215. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1216. retract(true,retracted_swap[active_extruder]);
  1217. #else
  1218. retract(true);
  1219. #endif
  1220. break;
  1221. case 11: // G11 retract_recover
  1222. #if EXTRUDERS > 1
  1223. retract(false,retracted_swap[active_extruder]);
  1224. #else
  1225. retract(false);
  1226. #endif
  1227. break;
  1228. #endif //FWRETRACT
  1229. case 28: //G28 Home all Axis one at a time
  1230. #ifdef ENABLE_AUTO_BED_LEVELING
  1231. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1232. #endif //ENABLE_AUTO_BED_LEVELING
  1233. saved_feedrate = feedrate;
  1234. saved_feedmultiply = feedmultiply;
  1235. feedmultiply = 100;
  1236. previous_millis_cmd = millis();
  1237. enable_endstops(true);
  1238. for(int8_t i=0; i < NUM_AXIS; i++) {
  1239. destination[i] = current_position[i];
  1240. }
  1241. feedrate = 0.0;
  1242. #ifdef DELTA
  1243. // A delta can only safely home all axis at the same time
  1244. // all axis have to home at the same time
  1245. // Move all carriages up together until the first endstop is hit.
  1246. current_position[X_AXIS] = 0;
  1247. current_position[Y_AXIS] = 0;
  1248. current_position[Z_AXIS] = 0;
  1249. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1250. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1251. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1252. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1253. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1254. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1255. st_synchronize();
  1256. endstops_hit_on_purpose();
  1257. current_position[X_AXIS] = destination[X_AXIS];
  1258. current_position[Y_AXIS] = destination[Y_AXIS];
  1259. current_position[Z_AXIS] = destination[Z_AXIS];
  1260. // take care of back off and rehome now we are all at the top
  1261. HOMEAXIS(X);
  1262. HOMEAXIS(Y);
  1263. HOMEAXIS(Z);
  1264. calculate_delta(current_position);
  1265. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1266. #else // NOT DELTA
  1267. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1268. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1269. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1270. HOMEAXIS(Z);
  1271. }
  1272. #endif
  1273. #ifdef QUICK_HOME
  1274. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1275. {
  1276. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1277. #ifndef DUAL_X_CARRIAGE
  1278. int x_axis_home_dir = home_dir(X_AXIS);
  1279. #else
  1280. int x_axis_home_dir = x_home_dir(active_extruder);
  1281. extruder_duplication_enabled = false;
  1282. #endif
  1283. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1284. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1285. feedrate = homing_feedrate[X_AXIS];
  1286. if(homing_feedrate[Y_AXIS]<feedrate)
  1287. feedrate = homing_feedrate[Y_AXIS];
  1288. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1289. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1290. } else {
  1291. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1292. }
  1293. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1294. st_synchronize();
  1295. axis_is_at_home(X_AXIS);
  1296. axis_is_at_home(Y_AXIS);
  1297. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1298. destination[X_AXIS] = current_position[X_AXIS];
  1299. destination[Y_AXIS] = current_position[Y_AXIS];
  1300. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1301. feedrate = 0.0;
  1302. st_synchronize();
  1303. endstops_hit_on_purpose();
  1304. current_position[X_AXIS] = destination[X_AXIS];
  1305. current_position[Y_AXIS] = destination[Y_AXIS];
  1306. #ifndef SCARA
  1307. current_position[Z_AXIS] = destination[Z_AXIS];
  1308. #endif
  1309. }
  1310. #endif
  1311. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1312. {
  1313. #ifdef DUAL_X_CARRIAGE
  1314. int tmp_extruder = active_extruder;
  1315. extruder_duplication_enabled = false;
  1316. active_extruder = !active_extruder;
  1317. HOMEAXIS(X);
  1318. inactive_extruder_x_pos = current_position[X_AXIS];
  1319. active_extruder = tmp_extruder;
  1320. HOMEAXIS(X);
  1321. // reset state used by the different modes
  1322. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1323. delayed_move_time = 0;
  1324. active_extruder_parked = true;
  1325. #else
  1326. HOMEAXIS(X);
  1327. #endif
  1328. }
  1329. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1330. HOMEAXIS(Y);
  1331. }
  1332. if(code_seen(axis_codes[X_AXIS]))
  1333. {
  1334. if(code_value_long() != 0) {
  1335. #ifdef SCARA
  1336. current_position[X_AXIS]=code_value();
  1337. #else
  1338. current_position[X_AXIS]=code_value()+add_homeing[0];
  1339. #endif
  1340. }
  1341. }
  1342. if(code_seen(axis_codes[Y_AXIS])) {
  1343. if(code_value_long() != 0) {
  1344. #ifdef SCARA
  1345. current_position[Y_AXIS]=code_value();
  1346. #else
  1347. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1348. #endif
  1349. }
  1350. }
  1351. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1352. #ifndef Z_SAFE_HOMING
  1353. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1354. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1355. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1356. feedrate = max_feedrate[Z_AXIS];
  1357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1358. st_synchronize();
  1359. #endif
  1360. HOMEAXIS(Z);
  1361. }
  1362. #else // Z Safe mode activated.
  1363. if(home_all_axis) {
  1364. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1365. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1366. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1367. feedrate = XY_TRAVEL_SPEED;
  1368. current_position[Z_AXIS] = 0;
  1369. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1370. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1371. st_synchronize();
  1372. current_position[X_AXIS] = destination[X_AXIS];
  1373. current_position[Y_AXIS] = destination[Y_AXIS];
  1374. HOMEAXIS(Z);
  1375. }
  1376. // Let's see if X and Y are homed and probe is inside bed area.
  1377. if(code_seen(axis_codes[Z_AXIS])) {
  1378. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1379. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1380. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1381. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1382. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1383. current_position[Z_AXIS] = 0;
  1384. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1385. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1386. feedrate = max_feedrate[Z_AXIS];
  1387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1388. st_synchronize();
  1389. HOMEAXIS(Z);
  1390. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1391. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1392. SERIAL_ECHO_START;
  1393. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1394. } else {
  1395. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1396. SERIAL_ECHO_START;
  1397. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1398. }
  1399. }
  1400. #endif
  1401. #endif
  1402. if(code_seen(axis_codes[Z_AXIS])) {
  1403. if(code_value_long() != 0) {
  1404. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1405. }
  1406. }
  1407. #ifdef ENABLE_AUTO_BED_LEVELING
  1408. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1409. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1410. }
  1411. #endif
  1412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1413. #endif // else DELTA
  1414. #ifdef SCARA
  1415. calculate_delta(current_position);
  1416. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1417. #endif SCARA
  1418. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1419. enable_endstops(false);
  1420. #endif
  1421. feedrate = saved_feedrate;
  1422. feedmultiply = saved_feedmultiply;
  1423. previous_millis_cmd = millis();
  1424. endstops_hit_on_purpose();
  1425. break;
  1426. #ifdef ENABLE_AUTO_BED_LEVELING
  1427. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1428. {
  1429. #if Z_MIN_PIN == -1
  1430. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1431. #endif
  1432. // Prevent user from running a G29 without first homing in X and Y
  1433. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1434. {
  1435. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1436. SERIAL_ECHO_START;
  1437. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1438. break; // abort G29, since we don't know where we are
  1439. }
  1440. #ifdef Z_PROBE_SLED
  1441. dock_sled(false);
  1442. #endif // Z_PROBE_SLED
  1443. st_synchronize();
  1444. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1445. //vector_3 corrected_position = plan_get_position_mm();
  1446. //corrected_position.debug("position before G29");
  1447. plan_bed_level_matrix.set_to_identity();
  1448. vector_3 uncorrected_position = plan_get_position();
  1449. //uncorrected_position.debug("position durring G29");
  1450. current_position[X_AXIS] = uncorrected_position.x;
  1451. current_position[Y_AXIS] = uncorrected_position.y;
  1452. current_position[Z_AXIS] = uncorrected_position.z;
  1453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1454. setup_for_endstop_move();
  1455. feedrate = homing_feedrate[Z_AXIS];
  1456. #ifdef AUTO_BED_LEVELING_GRID
  1457. // probe at the points of a lattice grid
  1458. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1459. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1460. // solve the plane equation ax + by + d = z
  1461. // A is the matrix with rows [x y 1] for all the probed points
  1462. // B is the vector of the Z positions
  1463. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1464. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1465. // "A" matrix of the linear system of equations
  1466. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1467. // "B" vector of Z points
  1468. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1469. int probePointCounter = 0;
  1470. bool zig = true;
  1471. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1472. {
  1473. int xProbe, xInc;
  1474. if (zig)
  1475. {
  1476. xProbe = LEFT_PROBE_BED_POSITION;
  1477. //xEnd = RIGHT_PROBE_BED_POSITION;
  1478. xInc = xGridSpacing;
  1479. zig = false;
  1480. } else // zag
  1481. {
  1482. xProbe = RIGHT_PROBE_BED_POSITION;
  1483. //xEnd = LEFT_PROBE_BED_POSITION;
  1484. xInc = -xGridSpacing;
  1485. zig = true;
  1486. }
  1487. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1488. {
  1489. float z_before;
  1490. if (probePointCounter == 0)
  1491. {
  1492. // raise before probing
  1493. z_before = Z_RAISE_BEFORE_PROBING;
  1494. } else
  1495. {
  1496. // raise extruder
  1497. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1498. }
  1499. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1500. eqnBVector[probePointCounter] = measured_z;
  1501. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1502. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1503. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1504. probePointCounter++;
  1505. xProbe += xInc;
  1506. }
  1507. }
  1508. clean_up_after_endstop_move();
  1509. // solve lsq problem
  1510. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1511. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1512. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1513. SERIAL_PROTOCOLPGM(" b: ");
  1514. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1515. SERIAL_PROTOCOLPGM(" d: ");
  1516. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1517. set_bed_level_equation_lsq(plane_equation_coefficients);
  1518. free(plane_equation_coefficients);
  1519. #else // AUTO_BED_LEVELING_GRID not defined
  1520. // Probe at 3 arbitrary points
  1521. // probe 1
  1522. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1523. // probe 2
  1524. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1525. // probe 3
  1526. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1527. clean_up_after_endstop_move();
  1528. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1529. #endif // AUTO_BED_LEVELING_GRID
  1530. st_synchronize();
  1531. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1532. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1533. // When the bed is uneven, this height must be corrected.
  1534. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1535. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1536. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1537. z_tmp = current_position[Z_AXIS];
  1538. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1539. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1540. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1541. #ifdef Z_PROBE_SLED
  1542. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1543. #endif // Z_PROBE_SLED
  1544. }
  1545. break;
  1546. #ifndef Z_PROBE_SLED
  1547. case 30: // G30 Single Z Probe
  1548. {
  1549. engage_z_probe(); // Engage Z Servo endstop if available
  1550. st_synchronize();
  1551. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1552. setup_for_endstop_move();
  1553. feedrate = homing_feedrate[Z_AXIS];
  1554. run_z_probe();
  1555. SERIAL_PROTOCOLPGM(MSG_BED);
  1556. SERIAL_PROTOCOLPGM(" X: ");
  1557. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1558. SERIAL_PROTOCOLPGM(" Y: ");
  1559. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1560. SERIAL_PROTOCOLPGM(" Z: ");
  1561. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1562. SERIAL_PROTOCOLPGM("\n");
  1563. clean_up_after_endstop_move();
  1564. retract_z_probe(); // Retract Z Servo endstop if available
  1565. }
  1566. break;
  1567. #else
  1568. case 31: // dock the sled
  1569. dock_sled(true);
  1570. break;
  1571. case 32: // undock the sled
  1572. dock_sled(false);
  1573. break;
  1574. #endif // Z_PROBE_SLED
  1575. #endif // ENABLE_AUTO_BED_LEVELING
  1576. case 90: // G90
  1577. relative_mode = false;
  1578. break;
  1579. case 91: // G91
  1580. relative_mode = true;
  1581. break;
  1582. case 92: // G92
  1583. if(!code_seen(axis_codes[E_AXIS]))
  1584. st_synchronize();
  1585. for(int8_t i=0; i < NUM_AXIS; i++) {
  1586. if(code_seen(axis_codes[i])) {
  1587. if(i == E_AXIS) {
  1588. current_position[i] = code_value();
  1589. plan_set_e_position(current_position[E_AXIS]);
  1590. }
  1591. else {
  1592. #ifdef SCARA
  1593. if (i == X_AXIS || i == Y_AXIS) {
  1594. current_position[i] = code_value();
  1595. }
  1596. else {
  1597. current_position[i] = code_value()+add_homeing[i];
  1598. }
  1599. #else
  1600. current_position[i] = code_value()+add_homeing[i];
  1601. #endif
  1602. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1603. }
  1604. }
  1605. }
  1606. break;
  1607. }
  1608. }
  1609. else if(code_seen('M'))
  1610. {
  1611. switch( (int)code_value() )
  1612. {
  1613. #ifdef ULTIPANEL
  1614. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1615. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1616. {
  1617. LCD_MESSAGEPGM(MSG_USERWAIT);
  1618. codenum = 0;
  1619. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1620. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1621. st_synchronize();
  1622. previous_millis_cmd = millis();
  1623. if (codenum > 0){
  1624. codenum += millis(); // keep track of when we started waiting
  1625. while(millis() < codenum && !lcd_clicked()){
  1626. manage_heater();
  1627. manage_inactivity();
  1628. lcd_update();
  1629. }
  1630. }else{
  1631. while(!lcd_clicked()){
  1632. manage_heater();
  1633. manage_inactivity();
  1634. lcd_update();
  1635. }
  1636. }
  1637. LCD_MESSAGEPGM(MSG_RESUMING);
  1638. }
  1639. break;
  1640. #endif
  1641. case 17:
  1642. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1643. enable_x();
  1644. enable_y();
  1645. enable_z();
  1646. enable_e0();
  1647. enable_e1();
  1648. enable_e2();
  1649. break;
  1650. #ifdef SDSUPPORT
  1651. case 20: // M20 - list SD card
  1652. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1653. card.ls();
  1654. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1655. break;
  1656. case 21: // M21 - init SD card
  1657. card.initsd();
  1658. break;
  1659. case 22: //M22 - release SD card
  1660. card.release();
  1661. break;
  1662. case 23: //M23 - Select file
  1663. starpos = (strchr(strchr_pointer + 4,'*'));
  1664. if(starpos!=NULL)
  1665. *(starpos)='\0';
  1666. card.openFile(strchr_pointer + 4,true);
  1667. break;
  1668. case 24: //M24 - Start SD print
  1669. card.startFileprint();
  1670. starttime=millis();
  1671. break;
  1672. case 25: //M25 - Pause SD print
  1673. card.pauseSDPrint();
  1674. break;
  1675. case 26: //M26 - Set SD index
  1676. if(card.cardOK && code_seen('S')) {
  1677. card.setIndex(code_value_long());
  1678. }
  1679. break;
  1680. case 27: //M27 - Get SD status
  1681. card.getStatus();
  1682. break;
  1683. case 28: //M28 - Start SD write
  1684. starpos = (strchr(strchr_pointer + 4,'*'));
  1685. if(starpos != NULL){
  1686. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1687. strchr_pointer = strchr(npos,' ') + 1;
  1688. *(starpos) = '\0';
  1689. }
  1690. card.openFile(strchr_pointer+4,false);
  1691. break;
  1692. case 29: //M29 - Stop SD write
  1693. //processed in write to file routine above
  1694. //card,saving = false;
  1695. break;
  1696. case 30: //M30 <filename> Delete File
  1697. if (card.cardOK){
  1698. card.closefile();
  1699. starpos = (strchr(strchr_pointer + 4,'*'));
  1700. if(starpos != NULL){
  1701. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1702. strchr_pointer = strchr(npos,' ') + 1;
  1703. *(starpos) = '\0';
  1704. }
  1705. card.removeFile(strchr_pointer + 4);
  1706. }
  1707. break;
  1708. case 32: //M32 - Select file and start SD print
  1709. {
  1710. if(card.sdprinting) {
  1711. st_synchronize();
  1712. }
  1713. starpos = (strchr(strchr_pointer + 4,'*'));
  1714. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1715. if(namestartpos==NULL)
  1716. {
  1717. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1718. }
  1719. else
  1720. namestartpos++; //to skip the '!'
  1721. if(starpos!=NULL)
  1722. *(starpos)='\0';
  1723. bool call_procedure=(code_seen('P'));
  1724. if(strchr_pointer>namestartpos)
  1725. call_procedure=false; //false alert, 'P' found within filename
  1726. if( card.cardOK )
  1727. {
  1728. card.openFile(namestartpos,true,!call_procedure);
  1729. if(code_seen('S'))
  1730. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1731. card.setIndex(code_value_long());
  1732. card.startFileprint();
  1733. if(!call_procedure)
  1734. starttime=millis(); //procedure calls count as normal print time.
  1735. }
  1736. } break;
  1737. case 928: //M928 - Start SD write
  1738. starpos = (strchr(strchr_pointer + 5,'*'));
  1739. if(starpos != NULL){
  1740. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1741. strchr_pointer = strchr(npos,' ') + 1;
  1742. *(starpos) = '\0';
  1743. }
  1744. card.openLogFile(strchr_pointer+5);
  1745. break;
  1746. #endif //SDSUPPORT
  1747. case 31: //M31 take time since the start of the SD print or an M109 command
  1748. {
  1749. stoptime=millis();
  1750. char time[30];
  1751. unsigned long t=(stoptime-starttime)/1000;
  1752. int sec,min;
  1753. min=t/60;
  1754. sec=t%60;
  1755. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1756. SERIAL_ECHO_START;
  1757. SERIAL_ECHOLN(time);
  1758. lcd_setstatus(time);
  1759. autotempShutdown();
  1760. }
  1761. break;
  1762. case 42: //M42 -Change pin status via gcode
  1763. if (code_seen('S'))
  1764. {
  1765. int pin_status = code_value();
  1766. int pin_number = LED_PIN;
  1767. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1768. pin_number = code_value();
  1769. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1770. {
  1771. if (sensitive_pins[i] == pin_number)
  1772. {
  1773. pin_number = -1;
  1774. break;
  1775. }
  1776. }
  1777. #if defined(FAN_PIN) && FAN_PIN > -1
  1778. if (pin_number == FAN_PIN)
  1779. fanSpeed = pin_status;
  1780. #endif
  1781. if (pin_number > -1)
  1782. {
  1783. pinMode(pin_number, OUTPUT);
  1784. digitalWrite(pin_number, pin_status);
  1785. analogWrite(pin_number, pin_status);
  1786. }
  1787. }
  1788. break;
  1789. // M48 Z-Probe repeatability measurement function.
  1790. //
  1791. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1792. //
  1793. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1794. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1795. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1796. // regenerated.
  1797. //
  1798. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1799. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1800. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1801. //
  1802. #ifdef ENABLE_AUTO_BED_LEVELING
  1803. #ifdef Z_PROBE_REPEATABILITY_TEST
  1804. case 48: // M48 Z-Probe repeatability
  1805. {
  1806. #if Z_MIN_PIN == -1
  1807. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1808. #endif
  1809. double sum=0.0;
  1810. double mean=0.0;
  1811. double sigma=0.0;
  1812. double sample_set[50];
  1813. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1814. double X_current, Y_current, Z_current;
  1815. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1816. if (code_seen('V') || code_seen('v')) {
  1817. verbose_level = code_value();
  1818. if (verbose_level<0 || verbose_level>4 ) {
  1819. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1820. goto Sigma_Exit;
  1821. }
  1822. }
  1823. if (verbose_level > 0) {
  1824. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1825. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1826. }
  1827. if (code_seen('n')) {
  1828. n_samples = code_value();
  1829. if (n_samples<4 || n_samples>50 ) {
  1830. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1831. goto Sigma_Exit;
  1832. }
  1833. }
  1834. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1835. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1836. Z_current = st_get_position_mm(Z_AXIS);
  1837. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1838. ext_position = st_get_position_mm(E_AXIS);
  1839. if (code_seen('E') || code_seen('e') )
  1840. engage_probe_for_each_reading++;
  1841. if (code_seen('X') || code_seen('x') ) {
  1842. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1843. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1844. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1845. goto Sigma_Exit;
  1846. }
  1847. }
  1848. if (code_seen('Y') || code_seen('y') ) {
  1849. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1850. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1851. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1852. goto Sigma_Exit;
  1853. }
  1854. }
  1855. if (code_seen('L') || code_seen('l') ) {
  1856. n_legs = code_value();
  1857. if ( n_legs==1 )
  1858. n_legs = 2;
  1859. if ( n_legs<0 || n_legs>15 ) {
  1860. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1861. goto Sigma_Exit;
  1862. }
  1863. }
  1864. //
  1865. // Do all the preliminary setup work. First raise the probe.
  1866. //
  1867. st_synchronize();
  1868. plan_bed_level_matrix.set_to_identity();
  1869. plan_buffer_line( X_current, Y_current, Z_start_location,
  1870. ext_position,
  1871. homing_feedrate[Z_AXIS]/60,
  1872. active_extruder);
  1873. st_synchronize();
  1874. //
  1875. // Now get everything to the specified probe point So we can safely do a probe to
  1876. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1877. // use that as a starting point for each probe.
  1878. //
  1879. if (verbose_level > 2)
  1880. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1881. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1882. ext_position,
  1883. homing_feedrate[X_AXIS]/60,
  1884. active_extruder);
  1885. st_synchronize();
  1886. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1887. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1888. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1889. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1890. //
  1891. // OK, do the inital probe to get us close to the bed.
  1892. // Then retrace the right amount and use that in subsequent probes
  1893. //
  1894. engage_z_probe();
  1895. setup_for_endstop_move();
  1896. run_z_probe();
  1897. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1898. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1899. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1900. ext_position,
  1901. homing_feedrate[X_AXIS]/60,
  1902. active_extruder);
  1903. st_synchronize();
  1904. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1905. if (engage_probe_for_each_reading)
  1906. retract_z_probe();
  1907. for( n=0; n<n_samples; n++) {
  1908. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  1909. if ( n_legs) {
  1910. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  1911. int rotational_direction, l;
  1912. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  1913. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  1914. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  1915. //SERIAL_ECHOPAIR("starting radius: ",radius);
  1916. //SERIAL_ECHOPAIR(" theta: ",theta);
  1917. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  1918. //SERIAL_PROTOCOLLNPGM("");
  1919. for( l=0; l<n_legs-1; l++) {
  1920. if (rotational_direction==1)
  1921. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1922. else
  1923. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1924. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  1925. if ( radius<0.0 )
  1926. radius = -radius;
  1927. X_current = X_probe_location + cos(theta) * radius;
  1928. Y_current = Y_probe_location + sin(theta) * radius;
  1929. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  1930. X_current = X_MIN_POS;
  1931. if ( X_current>X_MAX_POS)
  1932. X_current = X_MAX_POS;
  1933. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  1934. Y_current = Y_MIN_POS;
  1935. if ( Y_current>Y_MAX_POS)
  1936. Y_current = Y_MAX_POS;
  1937. if (verbose_level>3 ) {
  1938. SERIAL_ECHOPAIR("x: ", X_current);
  1939. SERIAL_ECHOPAIR("y: ", Y_current);
  1940. SERIAL_PROTOCOLLNPGM("");
  1941. }
  1942. do_blocking_move_to( X_current, Y_current, Z_current );
  1943. }
  1944. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  1945. }
  1946. if (engage_probe_for_each_reading) {
  1947. engage_z_probe();
  1948. delay(1000);
  1949. }
  1950. setup_for_endstop_move();
  1951. run_z_probe();
  1952. sample_set[n] = current_position[Z_AXIS];
  1953. //
  1954. // Get the current mean for the data points we have so far
  1955. //
  1956. sum=0.0;
  1957. for( j=0; j<=n; j++) {
  1958. sum = sum + sample_set[j];
  1959. }
  1960. mean = sum / (double (n+1));
  1961. //
  1962. // Now, use that mean to calculate the standard deviation for the
  1963. // data points we have so far
  1964. //
  1965. sum=0.0;
  1966. for( j=0; j<=n; j++) {
  1967. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  1968. }
  1969. sigma = sqrt( sum / (double (n+1)) );
  1970. if (verbose_level > 1) {
  1971. SERIAL_PROTOCOL(n+1);
  1972. SERIAL_PROTOCOL(" of ");
  1973. SERIAL_PROTOCOL(n_samples);
  1974. SERIAL_PROTOCOLPGM(" z: ");
  1975. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  1976. }
  1977. if (verbose_level > 2) {
  1978. SERIAL_PROTOCOL(" mean: ");
  1979. SERIAL_PROTOCOL_F(mean,6);
  1980. SERIAL_PROTOCOL(" sigma: ");
  1981. SERIAL_PROTOCOL_F(sigma,6);
  1982. }
  1983. if (verbose_level > 0)
  1984. SERIAL_PROTOCOLPGM("\n");
  1985. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1986. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1987. st_synchronize();
  1988. if (engage_probe_for_each_reading) {
  1989. retract_z_probe();
  1990. delay(1000);
  1991. }
  1992. }
  1993. retract_z_probe();
  1994. delay(1000);
  1995. clean_up_after_endstop_move();
  1996. // enable_endstops(true);
  1997. if (verbose_level > 0) {
  1998. SERIAL_PROTOCOLPGM("Mean: ");
  1999. SERIAL_PROTOCOL_F(mean, 6);
  2000. SERIAL_PROTOCOLPGM("\n");
  2001. }
  2002. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2003. SERIAL_PROTOCOL_F(sigma, 6);
  2004. SERIAL_PROTOCOLPGM("\n\n");
  2005. Sigma_Exit:
  2006. break;
  2007. }
  2008. #endif // Z_PROBE_REPEATABILITY_TEST
  2009. #endif // ENABLE_AUTO_BED_LEVELING
  2010. case 104: // M104
  2011. if(setTargetedHotend(104)){
  2012. break;
  2013. }
  2014. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2015. #ifdef DUAL_X_CARRIAGE
  2016. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2017. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2018. #endif
  2019. setWatch();
  2020. break;
  2021. case 112: // M112 -Emergency Stop
  2022. kill();
  2023. break;
  2024. case 140: // M140 set bed temp
  2025. if (code_seen('S')) setTargetBed(code_value());
  2026. break;
  2027. case 105 : // M105
  2028. if(setTargetedHotend(105)){
  2029. break;
  2030. }
  2031. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2032. SERIAL_PROTOCOLPGM("ok T:");
  2033. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2034. SERIAL_PROTOCOLPGM(" /");
  2035. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2036. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2037. SERIAL_PROTOCOLPGM(" B:");
  2038. SERIAL_PROTOCOL_F(degBed(),1);
  2039. SERIAL_PROTOCOLPGM(" /");
  2040. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2041. #endif //TEMP_BED_PIN
  2042. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2043. SERIAL_PROTOCOLPGM(" T");
  2044. SERIAL_PROTOCOL(cur_extruder);
  2045. SERIAL_PROTOCOLPGM(":");
  2046. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2047. SERIAL_PROTOCOLPGM(" /");
  2048. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2049. }
  2050. #else
  2051. SERIAL_ERROR_START;
  2052. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2053. #endif
  2054. SERIAL_PROTOCOLPGM(" @:");
  2055. #ifdef EXTRUDER_WATTS
  2056. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2057. SERIAL_PROTOCOLPGM("W");
  2058. #else
  2059. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2060. #endif
  2061. SERIAL_PROTOCOLPGM(" B@:");
  2062. #ifdef BED_WATTS
  2063. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2064. SERIAL_PROTOCOLPGM("W");
  2065. #else
  2066. SERIAL_PROTOCOL(getHeaterPower(-1));
  2067. #endif
  2068. #ifdef SHOW_TEMP_ADC_VALUES
  2069. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2070. SERIAL_PROTOCOLPGM(" ADC B:");
  2071. SERIAL_PROTOCOL_F(degBed(),1);
  2072. SERIAL_PROTOCOLPGM("C->");
  2073. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2074. #endif
  2075. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2076. SERIAL_PROTOCOLPGM(" T");
  2077. SERIAL_PROTOCOL(cur_extruder);
  2078. SERIAL_PROTOCOLPGM(":");
  2079. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2080. SERIAL_PROTOCOLPGM("C->");
  2081. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2082. }
  2083. #endif
  2084. SERIAL_PROTOCOLLN("");
  2085. return;
  2086. break;
  2087. case 109:
  2088. {// M109 - Wait for extruder heater to reach target.
  2089. if(setTargetedHotend(109)){
  2090. break;
  2091. }
  2092. LCD_MESSAGEPGM(MSG_HEATING);
  2093. #ifdef AUTOTEMP
  2094. autotemp_enabled=false;
  2095. #endif
  2096. if (code_seen('S')) {
  2097. setTargetHotend(code_value(), tmp_extruder);
  2098. #ifdef DUAL_X_CARRIAGE
  2099. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2100. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2101. #endif
  2102. CooldownNoWait = true;
  2103. } else if (code_seen('R')) {
  2104. setTargetHotend(code_value(), tmp_extruder);
  2105. #ifdef DUAL_X_CARRIAGE
  2106. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2107. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2108. #endif
  2109. CooldownNoWait = false;
  2110. }
  2111. #ifdef AUTOTEMP
  2112. if (code_seen('S')) autotemp_min=code_value();
  2113. if (code_seen('B')) autotemp_max=code_value();
  2114. if (code_seen('F'))
  2115. {
  2116. autotemp_factor=code_value();
  2117. autotemp_enabled=true;
  2118. }
  2119. #endif
  2120. setWatch();
  2121. codenum = millis();
  2122. /* See if we are heating up or cooling down */
  2123. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2124. cancel_heatup = false;
  2125. #ifdef TEMP_RESIDENCY_TIME
  2126. long residencyStart;
  2127. residencyStart = -1;
  2128. /* continue to loop until we have reached the target temp
  2129. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2130. while((!cancel_heatup)&&((residencyStart == -1) ||
  2131. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2132. #else
  2133. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2134. #endif //TEMP_RESIDENCY_TIME
  2135. if( (millis() - codenum) > 1000UL )
  2136. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2137. SERIAL_PROTOCOLPGM("T:");
  2138. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2139. SERIAL_PROTOCOLPGM(" E:");
  2140. SERIAL_PROTOCOL((int)tmp_extruder);
  2141. #ifdef TEMP_RESIDENCY_TIME
  2142. SERIAL_PROTOCOLPGM(" W:");
  2143. if(residencyStart > -1)
  2144. {
  2145. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2146. SERIAL_PROTOCOLLN( codenum );
  2147. }
  2148. else
  2149. {
  2150. SERIAL_PROTOCOLLN( "?" );
  2151. }
  2152. #else
  2153. SERIAL_PROTOCOLLN("");
  2154. #endif
  2155. codenum = millis();
  2156. }
  2157. manage_heater();
  2158. manage_inactivity();
  2159. lcd_update();
  2160. #ifdef TEMP_RESIDENCY_TIME
  2161. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2162. or when current temp falls outside the hysteresis after target temp was reached */
  2163. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2164. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2165. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2166. {
  2167. residencyStart = millis();
  2168. }
  2169. #endif //TEMP_RESIDENCY_TIME
  2170. }
  2171. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2172. starttime=millis();
  2173. previous_millis_cmd = millis();
  2174. }
  2175. break;
  2176. case 190: // M190 - Wait for bed heater to reach target.
  2177. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2178. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2179. if (code_seen('S')) {
  2180. setTargetBed(code_value());
  2181. CooldownNoWait = true;
  2182. } else if (code_seen('R')) {
  2183. setTargetBed(code_value());
  2184. CooldownNoWait = false;
  2185. }
  2186. codenum = millis();
  2187. cancel_heatup = false;
  2188. target_direction = isHeatingBed(); // true if heating, false if cooling
  2189. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2190. {
  2191. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2192. {
  2193. float tt=degHotend(active_extruder);
  2194. SERIAL_PROTOCOLPGM("T:");
  2195. SERIAL_PROTOCOL(tt);
  2196. SERIAL_PROTOCOLPGM(" E:");
  2197. SERIAL_PROTOCOL((int)active_extruder);
  2198. SERIAL_PROTOCOLPGM(" B:");
  2199. SERIAL_PROTOCOL_F(degBed(),1);
  2200. SERIAL_PROTOCOLLN("");
  2201. codenum = millis();
  2202. }
  2203. manage_heater();
  2204. manage_inactivity();
  2205. lcd_update();
  2206. }
  2207. LCD_MESSAGEPGM(MSG_BED_DONE);
  2208. previous_millis_cmd = millis();
  2209. #endif
  2210. break;
  2211. #if defined(FAN_PIN) && FAN_PIN > -1
  2212. case 106: //M106 Fan On
  2213. if (code_seen('S')){
  2214. fanSpeed=constrain(code_value(),0,255);
  2215. }
  2216. else {
  2217. fanSpeed=255;
  2218. }
  2219. break;
  2220. case 107: //M107 Fan Off
  2221. fanSpeed = 0;
  2222. break;
  2223. #endif //FAN_PIN
  2224. #ifdef BARICUDA
  2225. // PWM for HEATER_1_PIN
  2226. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2227. case 126: //M126 valve open
  2228. if (code_seen('S')){
  2229. ValvePressure=constrain(code_value(),0,255);
  2230. }
  2231. else {
  2232. ValvePressure=255;
  2233. }
  2234. break;
  2235. case 127: //M127 valve closed
  2236. ValvePressure = 0;
  2237. break;
  2238. #endif //HEATER_1_PIN
  2239. // PWM for HEATER_2_PIN
  2240. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2241. case 128: //M128 valve open
  2242. if (code_seen('S')){
  2243. EtoPPressure=constrain(code_value(),0,255);
  2244. }
  2245. else {
  2246. EtoPPressure=255;
  2247. }
  2248. break;
  2249. case 129: //M129 valve closed
  2250. EtoPPressure = 0;
  2251. break;
  2252. #endif //HEATER_2_PIN
  2253. #endif
  2254. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2255. case 80: // M80 - Turn on Power Supply
  2256. SET_OUTPUT(PS_ON_PIN); //GND
  2257. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2258. // If you have a switch on suicide pin, this is useful
  2259. // if you want to start another print with suicide feature after
  2260. // a print without suicide...
  2261. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2262. SET_OUTPUT(SUICIDE_PIN);
  2263. WRITE(SUICIDE_PIN, HIGH);
  2264. #endif
  2265. #ifdef ULTIPANEL
  2266. powersupply = true;
  2267. LCD_MESSAGEPGM(WELCOME_MSG);
  2268. lcd_update();
  2269. #endif
  2270. break;
  2271. #endif
  2272. case 81: // M81 - Turn off Power Supply
  2273. disable_heater();
  2274. st_synchronize();
  2275. disable_e0();
  2276. disable_e1();
  2277. disable_e2();
  2278. finishAndDisableSteppers();
  2279. fanSpeed = 0;
  2280. delay(1000); // Wait a little before to switch off
  2281. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2282. st_synchronize();
  2283. suicide();
  2284. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2285. SET_OUTPUT(PS_ON_PIN);
  2286. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2287. #endif
  2288. #ifdef ULTIPANEL
  2289. powersupply = false;
  2290. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2291. lcd_update();
  2292. #endif
  2293. break;
  2294. case 82:
  2295. axis_relative_modes[3] = false;
  2296. break;
  2297. case 83:
  2298. axis_relative_modes[3] = true;
  2299. break;
  2300. case 18: //compatibility
  2301. case 84: // M84
  2302. if(code_seen('S')){
  2303. stepper_inactive_time = code_value() * 1000;
  2304. }
  2305. else
  2306. {
  2307. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2308. if(all_axis)
  2309. {
  2310. st_synchronize();
  2311. disable_e0();
  2312. disable_e1();
  2313. disable_e2();
  2314. finishAndDisableSteppers();
  2315. }
  2316. else
  2317. {
  2318. st_synchronize();
  2319. if(code_seen('X')) disable_x();
  2320. if(code_seen('Y')) disable_y();
  2321. if(code_seen('Z')) disable_z();
  2322. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2323. if(code_seen('E')) {
  2324. disable_e0();
  2325. disable_e1();
  2326. disable_e2();
  2327. }
  2328. #endif
  2329. }
  2330. }
  2331. break;
  2332. case 85: // M85
  2333. if(code_seen('S')) {
  2334. max_inactive_time = code_value() * 1000;
  2335. }
  2336. break;
  2337. case 92: // M92
  2338. for(int8_t i=0; i < NUM_AXIS; i++)
  2339. {
  2340. if(code_seen(axis_codes[i]))
  2341. {
  2342. if(i == 3) { // E
  2343. float value = code_value();
  2344. if(value < 20.0) {
  2345. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2346. max_e_jerk *= factor;
  2347. max_feedrate[i] *= factor;
  2348. axis_steps_per_sqr_second[i] *= factor;
  2349. }
  2350. axis_steps_per_unit[i] = value;
  2351. }
  2352. else {
  2353. axis_steps_per_unit[i] = code_value();
  2354. }
  2355. }
  2356. }
  2357. break;
  2358. case 115: // M115
  2359. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2360. break;
  2361. case 117: // M117 display message
  2362. starpos = (strchr(strchr_pointer + 5,'*'));
  2363. if(starpos!=NULL)
  2364. *(starpos)='\0';
  2365. lcd_setstatus(strchr_pointer + 5);
  2366. break;
  2367. case 114: // M114
  2368. SERIAL_PROTOCOLPGM("X:");
  2369. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2370. SERIAL_PROTOCOLPGM(" Y:");
  2371. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2372. SERIAL_PROTOCOLPGM(" Z:");
  2373. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2374. SERIAL_PROTOCOLPGM(" E:");
  2375. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2376. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2377. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2378. SERIAL_PROTOCOLPGM(" Y:");
  2379. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2380. SERIAL_PROTOCOLPGM(" Z:");
  2381. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2382. SERIAL_PROTOCOLLN("");
  2383. #ifdef SCARA
  2384. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2385. SERIAL_PROTOCOL(delta[X_AXIS]);
  2386. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2387. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2388. SERIAL_PROTOCOLLN("");
  2389. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2390. SERIAL_PROTOCOL(delta[X_AXIS]+add_homeing[0]);
  2391. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2392. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homeing[1]);
  2393. SERIAL_PROTOCOLLN("");
  2394. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2395. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2396. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2397. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2398. SERIAL_PROTOCOLLN("");
  2399. SERIAL_PROTOCOLLN("");
  2400. #endif
  2401. break;
  2402. case 120: // M120
  2403. enable_endstops(false) ;
  2404. break;
  2405. case 121: // M121
  2406. enable_endstops(true) ;
  2407. break;
  2408. case 119: // M119
  2409. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2410. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2411. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2412. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2413. #endif
  2414. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2415. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2416. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2417. #endif
  2418. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2419. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2420. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2421. #endif
  2422. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2423. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2424. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2425. #endif
  2426. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2427. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2428. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2429. #endif
  2430. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2431. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2432. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2433. #endif
  2434. break;
  2435. //TODO: update for all axis, use for loop
  2436. #ifdef BLINKM
  2437. case 150: // M150
  2438. {
  2439. byte red;
  2440. byte grn;
  2441. byte blu;
  2442. if(code_seen('R')) red = code_value();
  2443. if(code_seen('U')) grn = code_value();
  2444. if(code_seen('B')) blu = code_value();
  2445. SendColors(red,grn,blu);
  2446. }
  2447. break;
  2448. #endif //BLINKM
  2449. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2450. {
  2451. float area = .0;
  2452. float radius = .0;
  2453. if(code_seen('D')) {
  2454. radius = (float)code_value() * .5;
  2455. if(radius == 0) {
  2456. area = 1;
  2457. } else {
  2458. area = M_PI * pow(radius, 2);
  2459. }
  2460. } else {
  2461. //reserved for setting filament diameter via UFID or filament measuring device
  2462. break;
  2463. }
  2464. tmp_extruder = active_extruder;
  2465. if(code_seen('T')) {
  2466. tmp_extruder = code_value();
  2467. if(tmp_extruder >= EXTRUDERS) {
  2468. SERIAL_ECHO_START;
  2469. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2470. break;
  2471. }
  2472. }
  2473. volumetric_multiplier[tmp_extruder] = 1 / area;
  2474. }
  2475. break;
  2476. case 201: // M201
  2477. for(int8_t i=0; i < NUM_AXIS; i++)
  2478. {
  2479. if(code_seen(axis_codes[i]))
  2480. {
  2481. max_acceleration_units_per_sq_second[i] = code_value();
  2482. }
  2483. }
  2484. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2485. reset_acceleration_rates();
  2486. break;
  2487. #if 0 // Not used for Sprinter/grbl gen6
  2488. case 202: // M202
  2489. for(int8_t i=0; i < NUM_AXIS; i++) {
  2490. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2491. }
  2492. break;
  2493. #endif
  2494. case 203: // M203 max feedrate mm/sec
  2495. for(int8_t i=0; i < NUM_AXIS; i++) {
  2496. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2497. }
  2498. break;
  2499. case 204: // M204 acclereration S normal moves T filmanent only moves
  2500. {
  2501. if(code_seen('S')) acceleration = code_value() ;
  2502. if(code_seen('T')) retract_acceleration = code_value() ;
  2503. }
  2504. break;
  2505. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2506. {
  2507. if(code_seen('S')) minimumfeedrate = code_value();
  2508. if(code_seen('T')) mintravelfeedrate = code_value();
  2509. if(code_seen('B')) minsegmenttime = code_value() ;
  2510. if(code_seen('X')) max_xy_jerk = code_value() ;
  2511. if(code_seen('Z')) max_z_jerk = code_value() ;
  2512. if(code_seen('E')) max_e_jerk = code_value() ;
  2513. }
  2514. break;
  2515. case 206: // M206 additional homeing offset
  2516. for(int8_t i=0; i < 3; i++)
  2517. {
  2518. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2519. }
  2520. #ifdef SCARA
  2521. if(code_seen('T')) // Theta
  2522. {
  2523. add_homeing[0] = code_value() ;
  2524. }
  2525. if(code_seen('P')) // Psi
  2526. {
  2527. add_homeing[1] = code_value() ;
  2528. }
  2529. #endif
  2530. break;
  2531. #ifdef DELTA
  2532. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2533. if(code_seen('L')) {
  2534. delta_diagonal_rod= code_value();
  2535. }
  2536. if(code_seen('R')) {
  2537. delta_radius= code_value();
  2538. }
  2539. if(code_seen('S')) {
  2540. delta_segments_per_second= code_value();
  2541. }
  2542. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2543. break;
  2544. case 666: // M666 set delta endstop adjustemnt
  2545. for(int8_t i=0; i < 3; i++)
  2546. {
  2547. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2548. }
  2549. break;
  2550. #endif
  2551. #ifdef FWRETRACT
  2552. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2553. {
  2554. if(code_seen('S'))
  2555. {
  2556. retract_length = code_value() ;
  2557. }
  2558. if(code_seen('F'))
  2559. {
  2560. retract_feedrate = code_value()/60 ;
  2561. }
  2562. if(code_seen('Z'))
  2563. {
  2564. retract_zlift = code_value() ;
  2565. }
  2566. }break;
  2567. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2568. {
  2569. if(code_seen('S'))
  2570. {
  2571. retract_recover_length = code_value() ;
  2572. }
  2573. if(code_seen('F'))
  2574. {
  2575. retract_recover_feedrate = code_value()/60 ;
  2576. }
  2577. }break;
  2578. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2579. {
  2580. if(code_seen('S'))
  2581. {
  2582. int t= code_value() ;
  2583. switch(t)
  2584. {
  2585. case 0:
  2586. {
  2587. autoretract_enabled=false;
  2588. retracted[0]=false;
  2589. #if EXTRUDERS > 1
  2590. retracted[1]=false;
  2591. #endif
  2592. #if EXTRUDERS > 2
  2593. retracted[2]=false;
  2594. #endif
  2595. }break;
  2596. case 1:
  2597. {
  2598. autoretract_enabled=true;
  2599. retracted[0]=false;
  2600. #if EXTRUDERS > 1
  2601. retracted[1]=false;
  2602. #endif
  2603. #if EXTRUDERS > 2
  2604. retracted[2]=false;
  2605. #endif
  2606. }break;
  2607. default:
  2608. SERIAL_ECHO_START;
  2609. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2610. SERIAL_ECHO(cmdbuffer[bufindr]);
  2611. SERIAL_ECHOLNPGM("\"");
  2612. }
  2613. }
  2614. }break;
  2615. #endif // FWRETRACT
  2616. #if EXTRUDERS > 1
  2617. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2618. {
  2619. if(setTargetedHotend(218)){
  2620. break;
  2621. }
  2622. if(code_seen('X'))
  2623. {
  2624. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2625. }
  2626. if(code_seen('Y'))
  2627. {
  2628. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2629. }
  2630. #ifdef DUAL_X_CARRIAGE
  2631. if(code_seen('Z'))
  2632. {
  2633. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2634. }
  2635. #endif
  2636. SERIAL_ECHO_START;
  2637. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2638. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2639. {
  2640. SERIAL_ECHO(" ");
  2641. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2642. SERIAL_ECHO(",");
  2643. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2644. #ifdef DUAL_X_CARRIAGE
  2645. SERIAL_ECHO(",");
  2646. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2647. #endif
  2648. }
  2649. SERIAL_ECHOLN("");
  2650. }break;
  2651. #endif
  2652. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2653. {
  2654. if(code_seen('S'))
  2655. {
  2656. feedmultiply = code_value() ;
  2657. }
  2658. }
  2659. break;
  2660. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2661. {
  2662. if(code_seen('S'))
  2663. {
  2664. int tmp_code = code_value();
  2665. if (code_seen('T'))
  2666. {
  2667. if(setTargetedHotend(221)){
  2668. break;
  2669. }
  2670. extruder_multiply[tmp_extruder] = tmp_code;
  2671. }
  2672. else
  2673. {
  2674. extrudemultiply = tmp_code ;
  2675. }
  2676. }
  2677. }
  2678. break;
  2679. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2680. {
  2681. if(code_seen('P')){
  2682. int pin_number = code_value(); // pin number
  2683. int pin_state = -1; // required pin state - default is inverted
  2684. if(code_seen('S')) pin_state = code_value(); // required pin state
  2685. if(pin_state >= -1 && pin_state <= 1){
  2686. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2687. {
  2688. if (sensitive_pins[i] == pin_number)
  2689. {
  2690. pin_number = -1;
  2691. break;
  2692. }
  2693. }
  2694. if (pin_number > -1)
  2695. {
  2696. st_synchronize();
  2697. pinMode(pin_number, INPUT);
  2698. int target;
  2699. switch(pin_state){
  2700. case 1:
  2701. target = HIGH;
  2702. break;
  2703. case 0:
  2704. target = LOW;
  2705. break;
  2706. case -1:
  2707. target = !digitalRead(pin_number);
  2708. break;
  2709. }
  2710. while(digitalRead(pin_number) != target){
  2711. manage_heater();
  2712. manage_inactivity();
  2713. lcd_update();
  2714. }
  2715. }
  2716. }
  2717. }
  2718. }
  2719. break;
  2720. #if NUM_SERVOS > 0
  2721. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2722. {
  2723. int servo_index = -1;
  2724. int servo_position = 0;
  2725. if (code_seen('P'))
  2726. servo_index = code_value();
  2727. if (code_seen('S')) {
  2728. servo_position = code_value();
  2729. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2730. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2731. servos[servo_index].attach(0);
  2732. #endif
  2733. servos[servo_index].write(servo_position);
  2734. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2735. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2736. servos[servo_index].detach();
  2737. #endif
  2738. }
  2739. else {
  2740. SERIAL_ECHO_START;
  2741. SERIAL_ECHO("Servo ");
  2742. SERIAL_ECHO(servo_index);
  2743. SERIAL_ECHOLN(" out of range");
  2744. }
  2745. }
  2746. else if (servo_index >= 0) {
  2747. SERIAL_PROTOCOL(MSG_OK);
  2748. SERIAL_PROTOCOL(" Servo ");
  2749. SERIAL_PROTOCOL(servo_index);
  2750. SERIAL_PROTOCOL(": ");
  2751. SERIAL_PROTOCOL(servos[servo_index].read());
  2752. SERIAL_PROTOCOLLN("");
  2753. }
  2754. }
  2755. break;
  2756. #endif // NUM_SERVOS > 0
  2757. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2758. case 300: // M300
  2759. {
  2760. int beepS = code_seen('S') ? code_value() : 110;
  2761. int beepP = code_seen('P') ? code_value() : 1000;
  2762. if (beepS > 0)
  2763. {
  2764. #if BEEPER > 0
  2765. tone(BEEPER, beepS);
  2766. delay(beepP);
  2767. noTone(BEEPER);
  2768. #elif defined(ULTRALCD)
  2769. lcd_buzz(beepS, beepP);
  2770. #elif defined(LCD_USE_I2C_BUZZER)
  2771. lcd_buzz(beepP, beepS);
  2772. #endif
  2773. }
  2774. else
  2775. {
  2776. delay(beepP);
  2777. }
  2778. }
  2779. break;
  2780. #endif // M300
  2781. #ifdef PIDTEMP
  2782. case 301: // M301
  2783. {
  2784. if(code_seen('P')) Kp = code_value();
  2785. if(code_seen('I')) Ki = scalePID_i(code_value());
  2786. if(code_seen('D')) Kd = scalePID_d(code_value());
  2787. #ifdef PID_ADD_EXTRUSION_RATE
  2788. if(code_seen('C')) Kc = code_value();
  2789. #endif
  2790. updatePID();
  2791. SERIAL_PROTOCOL(MSG_OK);
  2792. SERIAL_PROTOCOL(" p:");
  2793. SERIAL_PROTOCOL(Kp);
  2794. SERIAL_PROTOCOL(" i:");
  2795. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2796. SERIAL_PROTOCOL(" d:");
  2797. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2798. #ifdef PID_ADD_EXTRUSION_RATE
  2799. SERIAL_PROTOCOL(" c:");
  2800. //Kc does not have scaling applied above, or in resetting defaults
  2801. SERIAL_PROTOCOL(Kc);
  2802. #endif
  2803. SERIAL_PROTOCOLLN("");
  2804. }
  2805. break;
  2806. #endif //PIDTEMP
  2807. #ifdef PIDTEMPBED
  2808. case 304: // M304
  2809. {
  2810. if(code_seen('P')) bedKp = code_value();
  2811. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2812. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2813. updatePID();
  2814. SERIAL_PROTOCOL(MSG_OK);
  2815. SERIAL_PROTOCOL(" p:");
  2816. SERIAL_PROTOCOL(bedKp);
  2817. SERIAL_PROTOCOL(" i:");
  2818. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2819. SERIAL_PROTOCOL(" d:");
  2820. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2821. SERIAL_PROTOCOLLN("");
  2822. }
  2823. break;
  2824. #endif //PIDTEMP
  2825. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2826. {
  2827. #ifdef CHDK
  2828. SET_OUTPUT(CHDK);
  2829. WRITE(CHDK, HIGH);
  2830. chdkHigh = millis();
  2831. chdkActive = true;
  2832. #else
  2833. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2834. const uint8_t NUM_PULSES=16;
  2835. const float PULSE_LENGTH=0.01524;
  2836. for(int i=0; i < NUM_PULSES; i++) {
  2837. WRITE(PHOTOGRAPH_PIN, HIGH);
  2838. _delay_ms(PULSE_LENGTH);
  2839. WRITE(PHOTOGRAPH_PIN, LOW);
  2840. _delay_ms(PULSE_LENGTH);
  2841. }
  2842. delay(7.33);
  2843. for(int i=0; i < NUM_PULSES; i++) {
  2844. WRITE(PHOTOGRAPH_PIN, HIGH);
  2845. _delay_ms(PULSE_LENGTH);
  2846. WRITE(PHOTOGRAPH_PIN, LOW);
  2847. _delay_ms(PULSE_LENGTH);
  2848. }
  2849. #endif
  2850. #endif //chdk end if
  2851. }
  2852. break;
  2853. #ifdef DOGLCD
  2854. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2855. {
  2856. if (code_seen('C')) {
  2857. lcd_setcontrast( ((int)code_value())&63 );
  2858. }
  2859. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2860. SERIAL_PROTOCOL(lcd_contrast);
  2861. SERIAL_PROTOCOLLN("");
  2862. }
  2863. break;
  2864. #endif
  2865. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2866. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2867. {
  2868. float temp = .0;
  2869. if (code_seen('S')) temp=code_value();
  2870. set_extrude_min_temp(temp);
  2871. }
  2872. break;
  2873. #endif
  2874. case 303: // M303 PID autotune
  2875. {
  2876. float temp = 150.0;
  2877. int e=0;
  2878. int c=5;
  2879. if (code_seen('E')) e=code_value();
  2880. if (e<0)
  2881. temp=70;
  2882. if (code_seen('S')) temp=code_value();
  2883. if (code_seen('C')) c=code_value();
  2884. PID_autotune(temp, e, c);
  2885. }
  2886. break;
  2887. #ifdef SCARA
  2888. case 360: // M360 SCARA Theta pos1
  2889. SERIAL_ECHOLN(" Cal: Theta 0 ");
  2890. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2891. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2892. if(Stopped == false) {
  2893. //get_coordinates(); // For X Y Z E F
  2894. delta[0] = 0;
  2895. delta[1] = 120;
  2896. calculate_SCARA_forward_Transform(delta);
  2897. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2898. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2899. prepare_move();
  2900. //ClearToSend();
  2901. return;
  2902. }
  2903. break;
  2904. case 361: // SCARA Theta pos2
  2905. SERIAL_ECHOLN(" Cal: Theta 90 ");
  2906. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2907. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2908. if(Stopped == false) {
  2909. //get_coordinates(); // For X Y Z E F
  2910. delta[0] = 90;
  2911. delta[1] = 130;
  2912. calculate_SCARA_forward_Transform(delta);
  2913. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2914. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2915. prepare_move();
  2916. //ClearToSend();
  2917. return;
  2918. }
  2919. break;
  2920. case 362: // SCARA Psi pos1
  2921. SERIAL_ECHOLN(" Cal: Psi 0 ");
  2922. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2923. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2924. if(Stopped == false) {
  2925. //get_coordinates(); // For X Y Z E F
  2926. delta[0] = 60;
  2927. delta[1] = 180;
  2928. calculate_SCARA_forward_Transform(delta);
  2929. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2930. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2931. prepare_move();
  2932. //ClearToSend();
  2933. return;
  2934. }
  2935. break;
  2936. case 363: // SCARA Psi pos2
  2937. SERIAL_ECHOLN(" Cal: Psi 90 ");
  2938. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2939. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2940. if(Stopped == false) {
  2941. //get_coordinates(); // For X Y Z E F
  2942. delta[0] = 50;
  2943. delta[1] = 90;
  2944. calculate_SCARA_forward_Transform(delta);
  2945. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2946. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2947. prepare_move();
  2948. //ClearToSend();
  2949. return;
  2950. }
  2951. break;
  2952. case 364: // SCARA Psi pos3 (90 deg to Theta)
  2953. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  2954. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2955. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2956. if(Stopped == false) {
  2957. //get_coordinates(); // For X Y Z E F
  2958. delta[0] = 45;
  2959. delta[1] = 135;
  2960. calculate_SCARA_forward_Transform(delta);
  2961. destination[0] = delta[0]/axis_scaling[X_AXIS];
  2962. destination[1] = delta[1]/axis_scaling[Y_AXIS];
  2963. prepare_move();
  2964. //ClearToSend();
  2965. return;
  2966. }
  2967. break;
  2968. case 365: // M364 Set SCARA scaling for X Y Z
  2969. for(int8_t i=0; i < 3; i++)
  2970. {
  2971. if(code_seen(axis_codes[i]))
  2972. {
  2973. axis_scaling[i] = code_value();
  2974. }
  2975. }
  2976. break;
  2977. #endif
  2978. case 400: // M400 finish all moves
  2979. {
  2980. st_synchronize();
  2981. }
  2982. break;
  2983. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  2984. case 401:
  2985. {
  2986. engage_z_probe(); // Engage Z Servo endstop if available
  2987. }
  2988. break;
  2989. case 402:
  2990. {
  2991. retract_z_probe(); // Retract Z Servo endstop if enabled
  2992. }
  2993. break;
  2994. #endif
  2995. case 500: // M500 Store settings in EEPROM
  2996. {
  2997. Config_StoreSettings();
  2998. }
  2999. break;
  3000. case 501: // M501 Read settings from EEPROM
  3001. {
  3002. Config_RetrieveSettings();
  3003. }
  3004. break;
  3005. case 502: // M502 Revert to default settings
  3006. {
  3007. Config_ResetDefault();
  3008. }
  3009. break;
  3010. case 503: // M503 print settings currently in memory
  3011. {
  3012. Config_PrintSettings();
  3013. }
  3014. break;
  3015. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3016. case 540:
  3017. {
  3018. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3019. }
  3020. break;
  3021. #endif
  3022. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3023. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3024. {
  3025. float value;
  3026. if (code_seen('Z'))
  3027. {
  3028. value = code_value();
  3029. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3030. {
  3031. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3032. SERIAL_ECHO_START;
  3033. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3034. SERIAL_PROTOCOLLN("");
  3035. }
  3036. else
  3037. {
  3038. SERIAL_ECHO_START;
  3039. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3040. SERIAL_ECHOPGM(MSG_Z_MIN);
  3041. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3042. SERIAL_ECHOPGM(MSG_Z_MAX);
  3043. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3044. SERIAL_PROTOCOLLN("");
  3045. }
  3046. }
  3047. else
  3048. {
  3049. SERIAL_ECHO_START;
  3050. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3051. SERIAL_ECHO(-zprobe_zoffset);
  3052. SERIAL_PROTOCOLLN("");
  3053. }
  3054. break;
  3055. }
  3056. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3057. #ifdef FILAMENTCHANGEENABLE
  3058. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3059. {
  3060. float target[4];
  3061. float lastpos[4];
  3062. target[X_AXIS]=current_position[X_AXIS];
  3063. target[Y_AXIS]=current_position[Y_AXIS];
  3064. target[Z_AXIS]=current_position[Z_AXIS];
  3065. target[E_AXIS]=current_position[E_AXIS];
  3066. lastpos[X_AXIS]=current_position[X_AXIS];
  3067. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3068. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3069. lastpos[E_AXIS]=current_position[E_AXIS];
  3070. //retract by E
  3071. if(code_seen('E'))
  3072. {
  3073. target[E_AXIS]+= code_value();
  3074. }
  3075. else
  3076. {
  3077. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3078. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3079. #endif
  3080. }
  3081. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3082. //lift Z
  3083. if(code_seen('Z'))
  3084. {
  3085. target[Z_AXIS]+= code_value();
  3086. }
  3087. else
  3088. {
  3089. #ifdef FILAMENTCHANGE_ZADD
  3090. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3091. #endif
  3092. }
  3093. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3094. //move xy
  3095. if(code_seen('X'))
  3096. {
  3097. target[X_AXIS]+= code_value();
  3098. }
  3099. else
  3100. {
  3101. #ifdef FILAMENTCHANGE_XPOS
  3102. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3103. #endif
  3104. }
  3105. if(code_seen('Y'))
  3106. {
  3107. target[Y_AXIS]= code_value();
  3108. }
  3109. else
  3110. {
  3111. #ifdef FILAMENTCHANGE_YPOS
  3112. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3113. #endif
  3114. }
  3115. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3116. if(code_seen('L'))
  3117. {
  3118. target[E_AXIS]+= code_value();
  3119. }
  3120. else
  3121. {
  3122. #ifdef FILAMENTCHANGE_FINALRETRACT
  3123. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3124. #endif
  3125. }
  3126. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3127. //finish moves
  3128. st_synchronize();
  3129. //disable extruder steppers so filament can be removed
  3130. disable_e0();
  3131. disable_e1();
  3132. disable_e2();
  3133. delay(100);
  3134. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3135. uint8_t cnt=0;
  3136. while(!lcd_clicked()){
  3137. cnt++;
  3138. manage_heater();
  3139. manage_inactivity();
  3140. lcd_update();
  3141. if(cnt==0)
  3142. {
  3143. #if BEEPER > 0
  3144. SET_OUTPUT(BEEPER);
  3145. WRITE(BEEPER,HIGH);
  3146. delay(3);
  3147. WRITE(BEEPER,LOW);
  3148. delay(3);
  3149. #else
  3150. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3151. lcd_buzz(1000/6,100);
  3152. #else
  3153. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3154. #endif
  3155. #endif
  3156. }
  3157. }
  3158. //return to normal
  3159. if(code_seen('L'))
  3160. {
  3161. target[E_AXIS]+= -code_value();
  3162. }
  3163. else
  3164. {
  3165. #ifdef FILAMENTCHANGE_FINALRETRACT
  3166. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3167. #endif
  3168. }
  3169. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3170. plan_set_e_position(current_position[E_AXIS]);
  3171. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3172. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3173. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3174. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3175. }
  3176. break;
  3177. #endif //FILAMENTCHANGEENABLE
  3178. #ifdef DUAL_X_CARRIAGE
  3179. case 605: // Set dual x-carriage movement mode:
  3180. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3181. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3182. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3183. // millimeters x-offset and an optional differential hotend temperature of
  3184. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3185. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3186. //
  3187. // Note: the X axis should be homed after changing dual x-carriage mode.
  3188. {
  3189. st_synchronize();
  3190. if (code_seen('S'))
  3191. dual_x_carriage_mode = code_value();
  3192. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3193. {
  3194. if (code_seen('X'))
  3195. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3196. if (code_seen('R'))
  3197. duplicate_extruder_temp_offset = code_value();
  3198. SERIAL_ECHO_START;
  3199. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3200. SERIAL_ECHO(" ");
  3201. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3202. SERIAL_ECHO(",");
  3203. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3204. SERIAL_ECHO(" ");
  3205. SERIAL_ECHO(duplicate_extruder_x_offset);
  3206. SERIAL_ECHO(",");
  3207. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3208. }
  3209. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3210. {
  3211. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3212. }
  3213. active_extruder_parked = false;
  3214. extruder_duplication_enabled = false;
  3215. delayed_move_time = 0;
  3216. }
  3217. break;
  3218. #endif //DUAL_X_CARRIAGE
  3219. case 907: // M907 Set digital trimpot motor current using axis codes.
  3220. {
  3221. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3222. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3223. if(code_seen('B')) digipot_current(4,code_value());
  3224. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3225. #endif
  3226. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3227. if(code_seen('X')) digipot_current(0, code_value());
  3228. #endif
  3229. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3230. if(code_seen('Z')) digipot_current(1, code_value());
  3231. #endif
  3232. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3233. if(code_seen('E')) digipot_current(2, code_value());
  3234. #endif
  3235. #ifdef DIGIPOT_I2C
  3236. // this one uses actual amps in floating point
  3237. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3238. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3239. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3240. #endif
  3241. }
  3242. break;
  3243. case 908: // M908 Control digital trimpot directly.
  3244. {
  3245. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3246. uint8_t channel,current;
  3247. if(code_seen('P')) channel=code_value();
  3248. if(code_seen('S')) current=code_value();
  3249. digitalPotWrite(channel, current);
  3250. #endif
  3251. }
  3252. break;
  3253. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3254. {
  3255. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3256. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3257. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3258. if(code_seen('B')) microstep_mode(4,code_value());
  3259. microstep_readings();
  3260. #endif
  3261. }
  3262. break;
  3263. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3264. {
  3265. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3266. if(code_seen('S')) switch((int)code_value())
  3267. {
  3268. case 1:
  3269. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3270. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3271. break;
  3272. case 2:
  3273. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3274. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3275. break;
  3276. }
  3277. microstep_readings();
  3278. #endif
  3279. }
  3280. break;
  3281. case 999: // M999: Restart after being stopped
  3282. Stopped = false;
  3283. lcd_reset_alert_level();
  3284. gcode_LastN = Stopped_gcode_LastN;
  3285. FlushSerialRequestResend();
  3286. break;
  3287. }
  3288. }
  3289. else if(code_seen('T'))
  3290. {
  3291. tmp_extruder = code_value();
  3292. if(tmp_extruder >= EXTRUDERS) {
  3293. SERIAL_ECHO_START;
  3294. SERIAL_ECHO("T");
  3295. SERIAL_ECHO(tmp_extruder);
  3296. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3297. }
  3298. else {
  3299. boolean make_move = false;
  3300. if(code_seen('F')) {
  3301. make_move = true;
  3302. next_feedrate = code_value();
  3303. if(next_feedrate > 0.0) {
  3304. feedrate = next_feedrate;
  3305. }
  3306. }
  3307. #if EXTRUDERS > 1
  3308. if(tmp_extruder != active_extruder) {
  3309. // Save current position to return to after applying extruder offset
  3310. memcpy(destination, current_position, sizeof(destination));
  3311. #ifdef DUAL_X_CARRIAGE
  3312. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3313. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3314. {
  3315. // Park old head: 1) raise 2) move to park position 3) lower
  3316. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3317. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3318. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3319. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3320. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3321. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3322. st_synchronize();
  3323. }
  3324. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3325. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3326. extruder_offset[Y_AXIS][active_extruder] +
  3327. extruder_offset[Y_AXIS][tmp_extruder];
  3328. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3329. extruder_offset[Z_AXIS][active_extruder] +
  3330. extruder_offset[Z_AXIS][tmp_extruder];
  3331. active_extruder = tmp_extruder;
  3332. // This function resets the max/min values - the current position may be overwritten below.
  3333. axis_is_at_home(X_AXIS);
  3334. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3335. {
  3336. current_position[X_AXIS] = inactive_extruder_x_pos;
  3337. inactive_extruder_x_pos = destination[X_AXIS];
  3338. }
  3339. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3340. {
  3341. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3342. if (active_extruder == 0 || active_extruder_parked)
  3343. current_position[X_AXIS] = inactive_extruder_x_pos;
  3344. else
  3345. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3346. inactive_extruder_x_pos = destination[X_AXIS];
  3347. extruder_duplication_enabled = false;
  3348. }
  3349. else
  3350. {
  3351. // record raised toolhead position for use by unpark
  3352. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3353. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3354. active_extruder_parked = true;
  3355. delayed_move_time = 0;
  3356. }
  3357. #else
  3358. // Offset extruder (only by XY)
  3359. int i;
  3360. for(i = 0; i < 2; i++) {
  3361. current_position[i] = current_position[i] -
  3362. extruder_offset[i][active_extruder] +
  3363. extruder_offset[i][tmp_extruder];
  3364. }
  3365. // Set the new active extruder and position
  3366. active_extruder = tmp_extruder;
  3367. #endif //else DUAL_X_CARRIAGE
  3368. #ifdef DELTA
  3369. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3370. //sent position to plan_set_position();
  3371. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3372. #else
  3373. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3374. #endif
  3375. // Move to the old position if 'F' was in the parameters
  3376. if(make_move && Stopped == false) {
  3377. prepare_move();
  3378. }
  3379. }
  3380. #endif
  3381. SERIAL_ECHO_START;
  3382. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3383. SERIAL_PROTOCOLLN((int)active_extruder);
  3384. }
  3385. }
  3386. else
  3387. {
  3388. SERIAL_ECHO_START;
  3389. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3390. SERIAL_ECHO(cmdbuffer[bufindr]);
  3391. SERIAL_ECHOLNPGM("\"");
  3392. }
  3393. ClearToSend();
  3394. }
  3395. void FlushSerialRequestResend()
  3396. {
  3397. //char cmdbuffer[bufindr][100]="Resend:";
  3398. MYSERIAL.flush();
  3399. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3400. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3401. ClearToSend();
  3402. }
  3403. void ClearToSend()
  3404. {
  3405. previous_millis_cmd = millis();
  3406. #ifdef SDSUPPORT
  3407. if(fromsd[bufindr])
  3408. return;
  3409. #endif //SDSUPPORT
  3410. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3411. }
  3412. void get_coordinates()
  3413. {
  3414. bool seen[4]={false,false,false,false};
  3415. for(int8_t i=0; i < NUM_AXIS; i++) {
  3416. if(code_seen(axis_codes[i]))
  3417. {
  3418. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3419. seen[i]=true;
  3420. }
  3421. else destination[i] = current_position[i]; //Are these else lines really needed?
  3422. }
  3423. if(code_seen('F')) {
  3424. next_feedrate = code_value();
  3425. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3426. }
  3427. }
  3428. void get_arc_coordinates()
  3429. {
  3430. #ifdef SF_ARC_FIX
  3431. bool relative_mode_backup = relative_mode;
  3432. relative_mode = true;
  3433. #endif
  3434. get_coordinates();
  3435. #ifdef SF_ARC_FIX
  3436. relative_mode=relative_mode_backup;
  3437. #endif
  3438. if(code_seen('I')) {
  3439. offset[0] = code_value();
  3440. }
  3441. else {
  3442. offset[0] = 0.0;
  3443. }
  3444. if(code_seen('J')) {
  3445. offset[1] = code_value();
  3446. }
  3447. else {
  3448. offset[1] = 0.0;
  3449. }
  3450. }
  3451. void clamp_to_software_endstops(float target[3])
  3452. {
  3453. if (min_software_endstops) {
  3454. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3455. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3456. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  3457. }
  3458. if (max_software_endstops) {
  3459. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3460. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3461. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3462. }
  3463. }
  3464. #ifdef DELTA
  3465. void recalc_delta_settings(float radius, float diagonal_rod)
  3466. {
  3467. delta_tower1_x= -SIN_60*radius; // front left tower
  3468. delta_tower1_y= -COS_60*radius;
  3469. delta_tower2_x= SIN_60*radius; // front right tower
  3470. delta_tower2_y= -COS_60*radius;
  3471. delta_tower3_x= 0.0; // back middle tower
  3472. delta_tower3_y= radius;
  3473. delta_diagonal_rod_2= sq(diagonal_rod);
  3474. }
  3475. void calculate_delta(float cartesian[3])
  3476. {
  3477. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3478. - sq(delta_tower1_x-cartesian[X_AXIS])
  3479. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3480. ) + cartesian[Z_AXIS];
  3481. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3482. - sq(delta_tower2_x-cartesian[X_AXIS])
  3483. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3484. ) + cartesian[Z_AXIS];
  3485. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3486. - sq(delta_tower3_x-cartesian[X_AXIS])
  3487. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3488. ) + cartesian[Z_AXIS];
  3489. /*
  3490. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3491. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3492. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3493. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3494. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3495. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3496. */
  3497. }
  3498. #endif
  3499. void prepare_move()
  3500. {
  3501. clamp_to_software_endstops(destination);
  3502. previous_millis_cmd = millis();
  3503. #ifdef SCARA //for now same as delta-code
  3504. float difference[NUM_AXIS];
  3505. for (int8_t i=0; i < NUM_AXIS; i++) {
  3506. difference[i] = destination[i] - current_position[i];
  3507. }
  3508. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3509. sq(difference[Y_AXIS]) +
  3510. sq(difference[Z_AXIS]));
  3511. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3512. if (cartesian_mm < 0.000001) { return; }
  3513. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3514. int steps = max(1, int(scara_segments_per_second * seconds));
  3515. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3516. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3517. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3518. for (int s = 1; s <= steps; s++) {
  3519. float fraction = float(s) / float(steps);
  3520. for(int8_t i=0; i < NUM_AXIS; i++) {
  3521. destination[i] = current_position[i] + difference[i] * fraction;
  3522. }
  3523. calculate_delta(destination);
  3524. //SERIAL_ECHOPGM("destination[0]="); SERIAL_ECHOLN(destination[0]);
  3525. //SERIAL_ECHOPGM("destination[1]="); SERIAL_ECHOLN(destination[1]);
  3526. //SERIAL_ECHOPGM("destination[2]="); SERIAL_ECHOLN(destination[2]);
  3527. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3528. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3529. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3530. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3531. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3532. active_extruder);
  3533. }
  3534. #endif // SCARA
  3535. #ifdef DELTA
  3536. float difference[NUM_AXIS];
  3537. for (int8_t i=0; i < NUM_AXIS; i++) {
  3538. difference[i] = destination[i] - current_position[i];
  3539. }
  3540. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3541. sq(difference[Y_AXIS]) +
  3542. sq(difference[Z_AXIS]));
  3543. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3544. if (cartesian_mm < 0.000001) { return; }
  3545. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3546. int steps = max(1, int(delta_segments_per_second * seconds));
  3547. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3548. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3549. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3550. for (int s = 1; s <= steps; s++) {
  3551. float fraction = float(s) / float(steps);
  3552. for(int8_t i=0; i < NUM_AXIS; i++) {
  3553. destination[i] = current_position[i] + difference[i] * fraction;
  3554. }
  3555. calculate_delta(destination);
  3556. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3557. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3558. active_extruder);
  3559. }
  3560. #endif // DELTA
  3561. #ifdef DUAL_X_CARRIAGE
  3562. if (active_extruder_parked)
  3563. {
  3564. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3565. {
  3566. // move duplicate extruder into correct duplication position.
  3567. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3568. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3569. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3570. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3571. st_synchronize();
  3572. extruder_duplication_enabled = true;
  3573. active_extruder_parked = false;
  3574. }
  3575. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3576. {
  3577. if (current_position[E_AXIS] == destination[E_AXIS])
  3578. {
  3579. // this is a travel move - skit it but keep track of current position (so that it can later
  3580. // be used as start of first non-travel move)
  3581. if (delayed_move_time != 0xFFFFFFFFUL)
  3582. {
  3583. memcpy(current_position, destination, sizeof(current_position));
  3584. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3585. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3586. delayed_move_time = millis();
  3587. return;
  3588. }
  3589. }
  3590. delayed_move_time = 0;
  3591. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3592. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3594. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3596. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3597. active_extruder_parked = false;
  3598. }
  3599. }
  3600. #endif //DUAL_X_CARRIAGE
  3601. #if ! (defined DELTA || defined SCARA)
  3602. // Do not use feedmultiply for E or Z only moves
  3603. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3604. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3605. }
  3606. else {
  3607. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3608. }
  3609. #endif // !(DELTA || SCARA)
  3610. for(int8_t i=0; i < NUM_AXIS; i++) {
  3611. current_position[i] = destination[i];
  3612. }
  3613. }
  3614. void prepare_arc_move(char isclockwise) {
  3615. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3616. // Trace the arc
  3617. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3618. // As far as the parser is concerned, the position is now == target. In reality the
  3619. // motion control system might still be processing the action and the real tool position
  3620. // in any intermediate location.
  3621. for(int8_t i=0; i < NUM_AXIS; i++) {
  3622. current_position[i] = destination[i];
  3623. }
  3624. previous_millis_cmd = millis();
  3625. }
  3626. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3627. #if defined(FAN_PIN)
  3628. #if CONTROLLERFAN_PIN == FAN_PIN
  3629. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3630. #endif
  3631. #endif
  3632. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3633. unsigned long lastMotorCheck = 0;
  3634. void controllerFan()
  3635. {
  3636. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3637. {
  3638. lastMotorCheck = millis();
  3639. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3640. #if EXTRUDERS > 2
  3641. || !READ(E2_ENABLE_PIN)
  3642. #endif
  3643. #if EXTRUDER > 1
  3644. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3645. || !READ(X2_ENABLE_PIN)
  3646. #endif
  3647. || !READ(E1_ENABLE_PIN)
  3648. #endif
  3649. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3650. {
  3651. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3652. }
  3653. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3654. {
  3655. digitalWrite(CONTROLLERFAN_PIN, 0);
  3656. analogWrite(CONTROLLERFAN_PIN, 0);
  3657. }
  3658. else
  3659. {
  3660. // allows digital or PWM fan output to be used (see M42 handling)
  3661. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3662. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3663. }
  3664. }
  3665. }
  3666. #endif
  3667. #ifdef SCARA
  3668. void calculate_SCARA_forward_Transform(float f_scara[3])
  3669. {
  3670. // Perform forward kinematics, and place results in delta[3]
  3671. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3672. float x_sin, x_cos, y_sin, y_cos;
  3673. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3674. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3675. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3676. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3677. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3678. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3679. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3680. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3681. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3682. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3683. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3684. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3685. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3686. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3687. }
  3688. void calculate_delta(float cartesian[3]){
  3689. //reverse kinematics.
  3690. // Perform reversed kinematics, and place results in delta[3]
  3691. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3692. float SCARA_pos[2];
  3693. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3694. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3695. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3696. #if (Linkage_1 == Linkage_2)
  3697. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3698. #else
  3699. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3700. #endif
  3701. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3702. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3703. SCARA_K2 = Linkage_2 * SCARA_S2;
  3704. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3705. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3706. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3707. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3708. delta[Z_AXIS] = cartesian[Z_AXIS];
  3709. /*
  3710. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3711. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3712. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3713. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3714. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3715. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3716. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3717. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3718. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3719. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3720. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3721. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3722. SERIAL_ECHOLN(" ");*/
  3723. }
  3724. #endif
  3725. #ifdef TEMP_STAT_LEDS
  3726. static bool blue_led = false;
  3727. static bool red_led = false;
  3728. static uint32_t stat_update = 0;
  3729. void handle_status_leds(void) {
  3730. float max_temp = 0.0;
  3731. if(millis() > stat_update) {
  3732. stat_update += 500; // Update every 0.5s
  3733. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3734. max_temp = max(max_temp, degHotend(cur_extruder));
  3735. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3736. }
  3737. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3738. max_temp = max(max_temp, degTargetBed());
  3739. max_temp = max(max_temp, degBed());
  3740. #endif
  3741. if((max_temp > 55.0) && (red_led == false)) {
  3742. digitalWrite(STAT_LED_RED, 1);
  3743. digitalWrite(STAT_LED_BLUE, 0);
  3744. red_led = true;
  3745. blue_led = false;
  3746. }
  3747. if((max_temp < 54.0) && (blue_led == false)) {
  3748. digitalWrite(STAT_LED_RED, 0);
  3749. digitalWrite(STAT_LED_BLUE, 1);
  3750. red_led = false;
  3751. blue_led = true;
  3752. }
  3753. }
  3754. }
  3755. #endif
  3756. void manage_inactivity()
  3757. {
  3758. if(buflen < (BUFSIZE-1))
  3759. get_command();
  3760. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3761. if(max_inactive_time)
  3762. kill();
  3763. if(stepper_inactive_time) {
  3764. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3765. {
  3766. if(blocks_queued() == false) {
  3767. disable_x();
  3768. disable_y();
  3769. disable_z();
  3770. disable_e0();
  3771. disable_e1();
  3772. disable_e2();
  3773. }
  3774. }
  3775. }
  3776. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3777. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3778. {
  3779. chdkActive = false;
  3780. WRITE(CHDK, LOW);
  3781. }
  3782. #endif
  3783. #if defined(KILL_PIN) && KILL_PIN > -1
  3784. if( 0 == READ(KILL_PIN) )
  3785. kill();
  3786. #endif
  3787. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3788. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3789. #endif
  3790. #ifdef EXTRUDER_RUNOUT_PREVENT
  3791. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3792. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3793. {
  3794. bool oldstatus=READ(E0_ENABLE_PIN);
  3795. enable_e0();
  3796. float oldepos=current_position[E_AXIS];
  3797. float oldedes=destination[E_AXIS];
  3798. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3799. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3800. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3801. current_position[E_AXIS]=oldepos;
  3802. destination[E_AXIS]=oldedes;
  3803. plan_set_e_position(oldepos);
  3804. previous_millis_cmd=millis();
  3805. st_synchronize();
  3806. WRITE(E0_ENABLE_PIN,oldstatus);
  3807. }
  3808. #endif
  3809. #if defined(DUAL_X_CARRIAGE)
  3810. // handle delayed move timeout
  3811. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3812. {
  3813. // travel moves have been received so enact them
  3814. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3815. memcpy(destination,current_position,sizeof(destination));
  3816. prepare_move();
  3817. }
  3818. #endif
  3819. #ifdef TEMP_STAT_LEDS
  3820. handle_status_leds();
  3821. #endif
  3822. check_axes_activity();
  3823. }
  3824. void kill()
  3825. {
  3826. cli(); // Stop interrupts
  3827. disable_heater();
  3828. disable_x();
  3829. disable_y();
  3830. disable_z();
  3831. disable_e0();
  3832. disable_e1();
  3833. disable_e2();
  3834. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3835. pinMode(PS_ON_PIN,INPUT);
  3836. #endif
  3837. SERIAL_ERROR_START;
  3838. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3839. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3840. suicide();
  3841. while(1) { /* Intentionally left empty */ } // Wait for reset
  3842. }
  3843. void Stop()
  3844. {
  3845. disable_heater();
  3846. if(Stopped == false) {
  3847. Stopped = true;
  3848. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3849. SERIAL_ERROR_START;
  3850. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3851. LCD_MESSAGEPGM(MSG_STOPPED);
  3852. }
  3853. }
  3854. bool IsStopped() { return Stopped; };
  3855. #ifdef FAST_PWM_FAN
  3856. void setPwmFrequency(uint8_t pin, int val)
  3857. {
  3858. val &= 0x07;
  3859. switch(digitalPinToTimer(pin))
  3860. {
  3861. #if defined(TCCR0A)
  3862. case TIMER0A:
  3863. case TIMER0B:
  3864. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3865. // TCCR0B |= val;
  3866. break;
  3867. #endif
  3868. #if defined(TCCR1A)
  3869. case TIMER1A:
  3870. case TIMER1B:
  3871. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3872. // TCCR1B |= val;
  3873. break;
  3874. #endif
  3875. #if defined(TCCR2)
  3876. case TIMER2:
  3877. case TIMER2:
  3878. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3879. TCCR2 |= val;
  3880. break;
  3881. #endif
  3882. #if defined(TCCR2A)
  3883. case TIMER2A:
  3884. case TIMER2B:
  3885. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3886. TCCR2B |= val;
  3887. break;
  3888. #endif
  3889. #if defined(TCCR3A)
  3890. case TIMER3A:
  3891. case TIMER3B:
  3892. case TIMER3C:
  3893. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3894. TCCR3B |= val;
  3895. break;
  3896. #endif
  3897. #if defined(TCCR4A)
  3898. case TIMER4A:
  3899. case TIMER4B:
  3900. case TIMER4C:
  3901. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3902. TCCR4B |= val;
  3903. break;
  3904. #endif
  3905. #if defined(TCCR5A)
  3906. case TIMER5A:
  3907. case TIMER5B:
  3908. case TIMER5C:
  3909. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3910. TCCR5B |= val;
  3911. break;
  3912. #endif
  3913. }
  3914. }
  3915. #endif //FAST_PWM_FAN
  3916. bool setTargetedHotend(int code){
  3917. tmp_extruder = active_extruder;
  3918. if(code_seen('T')) {
  3919. tmp_extruder = code_value();
  3920. if(tmp_extruder >= EXTRUDERS) {
  3921. SERIAL_ECHO_START;
  3922. switch(code){
  3923. case 104:
  3924. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3925. break;
  3926. case 105:
  3927. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3928. break;
  3929. case 109:
  3930. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3931. break;
  3932. case 218:
  3933. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3934. break;
  3935. case 221:
  3936. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3937. break;
  3938. }
  3939. SERIAL_ECHOLN(tmp_extruder);
  3940. return true;
  3941. }
  3942. }
  3943. return false;
  3944. }