123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- #include "../../inc/MarlinConfig.h"
-
- #if ENABLED(DELTA_AUTO_CALIBRATION)
-
- #include "../gcode.h"
- #include "../../module/delta.h"
- #include "../../module/probe.h"
- #include "../../module/motion.h"
- #include "../../module/stepper.h"
- #include "../../module/endstops.h"
- #include "../../lcd/ultralcd.h"
-
- #if HOTENDS > 1
- #include "../../module/tool_change.h"
- #endif
-
- #if HAS_LEVELING
- #include "../../feature/bedlevel/bedlevel.h"
- #endif
-
- constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
- _4P_STEP = _7P_STEP * 2, // 4-point step
- NPP = _7P_STEP * 6; // number of calibration points on the radius
- enum CalEnum : char { // the 7 main calibration points - add definitions if needed
- CEN = 0,
- __A = 1,
- _AB = __A + _7P_STEP,
- __B = _AB + _7P_STEP,
- _BC = __B + _7P_STEP,
- __C = _BC + _7P_STEP,
- _CA = __C + _7P_STEP,
- };
-
- #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
- #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
- #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
- #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
- #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
- #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
-
- static void print_signed_float(const char * const prefix, const float &f) {
- SERIAL_PROTOCOLPGM(" ");
- serialprintPGM(prefix);
- SERIAL_PROTOCOLCHAR(':');
- if (f >= 0) SERIAL_CHAR('+');
- SERIAL_PROTOCOL_F(f, 2);
- }
-
- static void print_G33_settings(const bool end_stops, const bool tower_angles) {
- SERIAL_PROTOCOLPAIR(".Height:", delta_height);
- if (end_stops) {
- print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
- print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
- print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
- }
- if (end_stops && tower_angles) {
- SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
- SERIAL_EOL();
- SERIAL_CHAR('.');
- SERIAL_PROTOCOL_SP(13);
- }
- if (tower_angles) {
- print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
- print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
- print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
- }
- if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
- SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
- }
- SERIAL_EOL();
- }
-
- static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
- SERIAL_PROTOCOLPGM(". ");
- print_signed_float(PSTR("c"), z_at_pt[CEN]);
- if (tower_points) {
- print_signed_float(PSTR(" x"), z_at_pt[__A]);
- print_signed_float(PSTR(" y"), z_at_pt[__B]);
- print_signed_float(PSTR(" z"), z_at_pt[__C]);
- }
- if (tower_points && opposite_points) {
- SERIAL_EOL();
- SERIAL_CHAR('.');
- SERIAL_PROTOCOL_SP(13);
- }
- if (opposite_points) {
- print_signed_float(PSTR("yz"), z_at_pt[_BC]);
- print_signed_float(PSTR("zx"), z_at_pt[_CA]);
- print_signed_float(PSTR("xy"), z_at_pt[_AB]);
- }
- SERIAL_EOL();
- }
-
- /**
- * After G33:
- * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
- * - Stow the probe
- * - Restore endstops state
- * - Select the old tool, if needed
- */
- static void G33_cleanup(
- #if HOTENDS > 1
- const uint8_t old_tool_index
- #endif
- ) {
- #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
- do_blocking_move_to_z(delta_clip_start_height);
- #endif
- STOW_PROBE();
- clean_up_after_endstop_or_probe_move();
- #if HOTENDS > 1
- tool_change(old_tool_index, 0, true);
- #endif
- }
-
- inline float calibration_probe(const float nx, const float ny, const bool stow) {
- #if HAS_BED_PROBE
- return probe_pt(nx, ny, stow, 0, false);
- #else
- UNUSED(stow);
- return lcd_probe_pt(nx, ny);
- #endif
- }
-
- static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
- const bool _0p_calibration = probe_points == 0,
- _1p_calibration = probe_points == 1,
- _4p_calibration = probe_points == 2,
- _4p_opposite_points = _4p_calibration && !towers_set,
- _7p_calibration = probe_points >= 3 || probe_points == 0,
- _7p_no_intermediates = probe_points == 3,
- _7p_1_intermediates = probe_points == 4,
- _7p_2_intermediates = probe_points == 5,
- _7p_4_intermediates = probe_points == 6,
- _7p_6_intermediates = probe_points == 7,
- _7p_8_intermediates = probe_points == 8,
- _7p_11_intermediates = probe_points == 9,
- _7p_14_intermediates = probe_points == 10,
- _7p_intermed_points = probe_points >= 4,
- _7p_6_centre = probe_points >= 5 && probe_points <= 7,
- _7p_9_centre = probe_points >= 8;
-
- LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
-
- if (!_0p_calibration) {
-
- if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
- z_at_pt[CEN] += calibration_probe(0, 0, stow_after_each);
- if (isnan(z_at_pt[CEN])) return NAN;
- }
-
- if (_7p_calibration) { // probe extra center points
- const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
- steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
- I_LOOP_CAL_PT(axis, start, steps) {
- const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
- r = delta_calibration_radius * 0.1;
- z_at_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
- if (isnan(z_at_pt[CEN])) return NAN;
- }
- z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
- }
-
- if (!_1p_calibration) { // probe the radius
- const CalEnum start = _4p_opposite_points ? _AB : __A;
- const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
- _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
- _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
- _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
- _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
- _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
- _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
- _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
- _4P_STEP; // .5r * 6 + 1c = 4
- bool zig_zag = true;
- F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
- const int8_t offset = _7p_9_centre ? 1 : 0;
- for (int8_t circle = -offset; circle <= offset; circle++) {
- const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
- r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
- interpol = fmod(axis, 1);
- const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
- if (isnan(z_temp)) return NAN;
- // split probe point to neighbouring calibration points
- z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
- z_at_pt[uint8_t(round(axis - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
- }
- zig_zag = !zig_zag;
- }
- if (_7p_intermed_points)
- LOOP_CAL_RAD(axis)
- z_at_pt[axis] /= _7P_STEP / steps;
- }
-
- float S1 = z_at_pt[CEN],
- S2 = sq(z_at_pt[CEN]);
- int16_t N = 1;
- if (!_1p_calibration) { // std dev from zero plane
- LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
- S1 += z_at_pt[axis];
- S2 += sq(z_at_pt[axis]);
- N++;
- }
- return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
- }
- }
-
- return 0.00001;
- }
-
- #if HAS_BED_PROBE
-
- static bool G33_auto_tune() {
- float z_at_pt[NPP + 1] = { 0.0 },
- z_at_pt_base[NPP + 1] = { 0.0 },
- z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
-
- #define ZP(N,I) ((N) * z_at_pt[I])
- #define Z06(I) ZP(6, I)
- #define Z03(I) ZP(3, I)
- #define Z02(I) ZP(2, I)
- #define Z01(I) ZP(1, I)
- #define Z32(I) ZP(3/2, I)
-
- SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
- SERIAL_EOL();
- if (isnan(probe_G33_points(z_at_pt_base, 3, true, false))) return false;
- print_G33_results(z_at_pt_base, true, true);
-
- LOOP_XYZ(axis) {
- delta_endstop_adj[axis] -= 1.0;
- recalc_delta_settings();
-
- endstops.enable(true);
- if (!home_delta()) return false;
- endstops.not_homing();
-
- SERIAL_PROTOCOLPGM("Tuning E");
- SERIAL_CHAR(tolower(axis_codes[axis]));
- SERIAL_EOL();
-
- if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
- LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
- print_G33_results(z_at_pt, true, true);
- delta_endstop_adj[axis] += 1.0;
- recalc_delta_settings();
- switch (axis) {
- case A_AXIS :
- h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
- break;
- case B_AXIS :
- h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
- break;
- case C_AXIS :
- h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
- break;
- }
- }
- h_fac /= 3.0;
- h_fac *= norm; // Normalize to 1.02 for Kossel mini
-
- for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
- delta_radius += 1.0 * zig_zag;
- recalc_delta_settings();
-
- endstops.enable(true);
- if (!home_delta()) return false;
- endstops.not_homing();
-
- SERIAL_PROTOCOLPGM("Tuning R");
- SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
- SERIAL_EOL();
- if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
- LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
- print_G33_results(z_at_pt, true, true);
- delta_radius -= 1.0 * zig_zag;
- recalc_delta_settings();
- r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
- }
- r_fac /= 2.0;
- r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
-
- LOOP_XYZ(axis) {
- delta_tower_angle_trim[axis] += 1.0;
- delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
- delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
- z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
- delta_height -= z_temp;
- LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
- recalc_delta_settings();
-
- endstops.enable(true);
- if (!home_delta()) return false;
- endstops.not_homing();
-
- SERIAL_PROTOCOLPGM("Tuning T");
- SERIAL_CHAR(tolower(axis_codes[axis]));
- SERIAL_EOL();
-
- if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
- LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
- print_G33_results(z_at_pt, true, true);
-
- delta_tower_angle_trim[axis] -= 1.0;
- delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
- delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
- z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
- delta_height -= z_temp;
- LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
- recalc_delta_settings();
- switch (axis) {
- case A_AXIS :
- a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
- break;
- case B_AXIS :
- a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
- break;
- case C_AXIS :
- a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
- break;
- }
- }
- a_fac /= 3.0;
- a_fac *= norm; // Normalize to 0.83 for Kossel mini
-
- endstops.enable(true);
- if (!home_delta()) return false;
- endstops.not_homing();
- print_signed_float(PSTR( "H_FACTOR: "), h_fac);
- print_signed_float(PSTR(" R_FACTOR: "), r_fac);
- print_signed_float(PSTR(" A_FACTOR: "), a_fac);
- SERIAL_EOL();
- SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
- SERIAL_EOL();
- return true;
- }
-
- #endif // HAS_BED_PROBE
-
- /**
- * G33 - Delta '1-4-7-point' Auto-Calibration
- * Calibrate height, endstops, delta radius, and tower angles.
- *
- * Parameters:
- *
- * Pn Number of probe points:
- * P0 No probe. Normalize only.
- * P1 Probe center and set height only.
- * P2 Probe center and towers. Set height, endstops and delta radius.
- * P3 Probe all positions: center, towers and opposite towers. Set all.
- * P4-P10 Probe all positions + at different intermediate locations and average them.
- *
- * T Don't calibrate tower angle corrections
- *
- * Cn.nn Calibration precision; when omitted calibrates to maximum precision
- *
- * Fn Force to run at least n iterations and take the best result
- *
- * A Auto-tune calibration factors (set in Configuration.h)
- *
- * Vn Verbose level:
- * V0 Dry-run mode. Report settings and probe results. No calibration.
- * V1 Report start and end settings only
- * V2 Report settings at each iteration
- * V3 Report settings and probe results
- *
- * E Engage the probe for each point
- */
- void GcodeSuite::G33() {
-
- const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
- if (!WITHIN(probe_points, 0, 10)) {
- SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
- return;
- }
-
- const int8_t verbose_level = parser.byteval('V', 1);
- if (!WITHIN(verbose_level, 0, 3)) {
- SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3).");
- return;
- }
-
- const float calibration_precision = parser.floatval('C', 0.0);
- if (calibration_precision < 0) {
- SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
- return;
- }
-
- const int8_t force_iterations = parser.intval('F', 0);
- if (!WITHIN(force_iterations, 0, 30)) {
- SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
- return;
- }
-
- const bool towers_set = !parser.boolval('T'),
- auto_tune = parser.boolval('A'),
- stow_after_each = parser.boolval('E'),
- _0p_calibration = probe_points == 0,
- _1p_calibration = probe_points == 1,
- _4p_calibration = probe_points == 2,
- _7p_9_centre = probe_points >= 8,
- _tower_results = (_4p_calibration && towers_set)
- || probe_points >= 3 || probe_points == 0,
- _opposite_results = (_4p_calibration && !towers_set)
- || probe_points >= 3 || probe_points == 0,
- _endstop_results = probe_points != 1,
- _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
- const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
- int8_t iterations = 0;
- float test_precision,
- zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
- zero_std_dev_min = zero_std_dev,
- e_old[ABC] = {
- delta_endstop_adj[A_AXIS],
- delta_endstop_adj[B_AXIS],
- delta_endstop_adj[C_AXIS]
- },
- dr_old = delta_radius,
- zh_old = delta_height,
- ta_old[ABC] = {
- delta_tower_angle_trim[A_AXIS],
- delta_tower_angle_trim[B_AXIS],
- delta_tower_angle_trim[C_AXIS]
- };
-
- SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
-
- if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
- LOOP_CAL_RAD(axis) {
- const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
- r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
- if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
- SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
- return;
- }
- }
- }
-
- stepper.synchronize();
- #if HAS_LEVELING
- reset_bed_level(); // After calibration bed-level data is no longer valid
- #endif
-
- #if HOTENDS > 1
- const uint8_t old_tool_index = active_extruder;
- tool_change(0, 0, true);
- #define G33_CLEANUP() G33_cleanup(old_tool_index)
- #else
- #define G33_CLEANUP() G33_cleanup()
- #endif
-
- setup_for_endstop_or_probe_move();
- endstops.enable(true);
- if (!_0p_calibration) {
- if (!home_delta())
- return;
- endstops.not_homing();
- }
-
- if (auto_tune) {
- #if HAS_BED_PROBE
- G33_auto_tune();
- #else
- SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
- #endif
- G33_CLEANUP();
- return;
- }
-
- // Report settings
-
- PGM_P checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
- serialprintPGM(checkingac);
- if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
- SERIAL_EOL();
- lcd_setstatusPGM(checkingac);
-
- print_G33_settings(_endstop_results, _angle_results);
-
- do {
-
- float z_at_pt[NPP + 1] = { 0.0 };
-
- test_precision = zero_std_dev;
-
- iterations++;
-
- // Probe the points
-
- zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
- if (isnan(zero_std_dev)) {
- SERIAL_PROTOCOLPGM("Correct delta_radius with M665 R or end-stops with M666 X Y Z");
- SERIAL_EOL();
- return G33_CLEANUP();
- }
-
- // Solve matrices
-
- if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
- if (zero_std_dev < zero_std_dev_min) {
- COPY(e_old, delta_endstop_adj);
- dr_old = delta_radius;
- zh_old = delta_height;
- COPY(ta_old, delta_tower_angle_trim);
- }
-
- float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
- const float r_diff = delta_radius - delta_calibration_radius,
- h_factor = 1 / 6.0 *
- #ifdef H_FACTOR
- (H_FACTOR), // Set in Configuration.h
- #else
- (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
- #endif
- r_factor = 1 / 6.0 *
- #ifdef R_FACTOR
- -(R_FACTOR), // Set in Configuration.h
- #else
- -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
- #endif
- a_factor = 1 / 6.0 *
- #ifdef A_FACTOR
- (A_FACTOR); // Set in Configuration.h
- #else
- (66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
- #endif
-
- #define ZP(N,I) ((N) * z_at_pt[I])
- #define Z6(I) ZP(6, I)
- #define Z4(I) ZP(4, I)
- #define Z2(I) ZP(2, I)
- #define Z1(I) ZP(1, I)
-
- #if !HAS_BED_PROBE
- test_precision = 0.00; // forced end
- #endif
-
- switch (probe_points) {
- case 0:
- test_precision = 0.00; // forced end
- break;
-
- case 1:
- test_precision = 0.00; // forced end
- LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
- break;
-
- case 2:
- if (towers_set) {
- e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
- e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
- e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
- r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
- }
- else {
- e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
- e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
- e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
- r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
- }
- break;
-
- default:
- e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
- e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
- e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
- r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
-
- if (towers_set) {
- t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
- t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
- t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
- e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
- e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
- e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
- }
- break;
- }
-
- LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
- delta_radius += r_delta;
- LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
- }
- else if (zero_std_dev >= test_precision) { // step one back
- COPY(delta_endstop_adj, e_old);
- delta_radius = dr_old;
- delta_height = zh_old;
- COPY(delta_tower_angle_trim, ta_old);
- }
-
- if (verbose_level != 0) { // !dry run
- // normalise angles to least squares
- if (_angle_results) {
- float a_sum = 0.0;
- LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
- LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
- }
-
- // adjust delta_height and endstops by the max amount
- const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
- delta_height -= z_temp;
- LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
- }
- recalc_delta_settings();
- NOMORE(zero_std_dev_min, zero_std_dev);
-
- // print report
-
- if (verbose_level > 2)
- print_G33_results(z_at_pt, _tower_results, _opposite_results);
-
- if (verbose_level != 0) { // !dry run
- if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
- SERIAL_PROTOCOLPGM("Calibration OK");
- SERIAL_PROTOCOL_SP(32);
- #if HAS_BED_PROBE
- if (zero_std_dev >= test_precision && !_1p_calibration)
- SERIAL_PROTOCOLPGM("rolling back.");
- else
- #endif
- {
- SERIAL_PROTOCOLPGM("std dev:");
- SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
- }
- SERIAL_EOL();
- char mess[21];
- strcpy_P(mess, PSTR("Calibration sd:"));
- if (zero_std_dev_min < 1)
- sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
- else
- sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
- lcd_setstatus(mess);
- print_G33_settings(_endstop_results, _angle_results);
- serialprintPGM(save_message);
- SERIAL_EOL();
- }
- else { // !end iterations
- char mess[15];
- if (iterations < 31)
- sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
- else
- strcpy_P(mess, PSTR("No convergence"));
- SERIAL_PROTOCOL(mess);
- SERIAL_PROTOCOL_SP(32);
- SERIAL_PROTOCOLPGM("std dev:");
- SERIAL_PROTOCOL_F(zero_std_dev, 3);
- SERIAL_EOL();
- lcd_setstatus(mess);
- if (verbose_level > 1)
- print_G33_settings(_endstop_results, _angle_results);
- }
- }
- else { // dry run
- PGM_P enddryrun = PSTR("End DRY-RUN");
- serialprintPGM(enddryrun);
- SERIAL_PROTOCOL_SP(35);
- SERIAL_PROTOCOLPGM("std dev:");
- SERIAL_PROTOCOL_F(zero_std_dev, 3);
- SERIAL_EOL();
-
- char mess[21];
- strcpy_P(mess, enddryrun);
- strcpy_P(&mess[11], PSTR(" sd:"));
- if (zero_std_dev < 1)
- sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
- else
- sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
- lcd_setstatus(mess);
- }
-
- endstops.enable(true);
- if (!home_delta())
- return;
- endstops.not_homing();
-
- }
- while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
-
- G33_CLEANUP();
- }
-
- #endif // DELTA_AUTO_CALIBRATION
|