My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin_main.cpp 421KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Fan on.
  119. * M107 - Fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, or PCA9632)
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  175. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  176. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  177. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  178. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  179. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  180. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  181. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  182. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  183. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  184. * M400 - Finish all moves.
  185. * M401 - Lower Z probe. (Requires a probe)
  186. * M402 - Raise Z probe. (Requires a probe)
  187. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  188. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  190. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M410 - Quickstop. Abort all planned moves.
  192. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  193. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  194. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  195. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  196. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  197. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  198. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  199. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  200. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  201. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  202. * M666 - Set delta endstop adjustment. (Requires DELTA)
  203. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  204. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  205. * M860 - Report the position of position encoder modules.
  206. * M861 - Report the status of position encoder modules.
  207. * M862 - Perform an axis continuity test for position encoder modules.
  208. * M863 - Perform steps-per-mm calibration for position encoder modules.
  209. * M864 - Change position encoder module I2C address.
  210. * M865 - Check position encoder module firmware version.
  211. * M866 - Report or reset position encoder module error count.
  212. * M867 - Enable/disable or toggle error correction for position encoder modules.
  213. * M868 - Report or set position encoder module error correction threshold.
  214. * M869 - Report position encoder module error.
  215. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  216. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  217. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  218. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  219. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  220. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  221. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  222. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  223. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  224. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  225. *
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. *
  232. * ************ Custom codes - This can change to suit future G-code regulations
  233. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  234. * M999 - Restart after being stopped by error
  235. *
  236. * "T" Codes
  237. *
  238. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  239. *
  240. */
  241. #include "Marlin.h"
  242. #include "ultralcd.h"
  243. #include "planner.h"
  244. #include "stepper.h"
  245. #include "endstops.h"
  246. #include "temperature.h"
  247. #include "cardreader.h"
  248. #include "configuration_store.h"
  249. #include "language.h"
  250. #include "pins_arduino.h"
  251. #include "math.h"
  252. #include "nozzle.h"
  253. #include "duration_t.h"
  254. #include "types.h"
  255. #include "gcode.h"
  256. #if HAS_ABL
  257. #include "vector_3.h"
  258. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  259. #include "least_squares_fit.h"
  260. #endif
  261. #elif ENABLED(MESH_BED_LEVELING)
  262. #include "mesh_bed_leveling.h"
  263. #endif
  264. #if ENABLED(BEZIER_CURVE_SUPPORT)
  265. #include "planner_bezier.h"
  266. #endif
  267. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  268. #include "buzzer.h"
  269. #endif
  270. #if ENABLED(USE_WATCHDOG)
  271. #include "watchdog.h"
  272. #endif
  273. #if ENABLED(NEOPIXEL_RGBW_LED)
  274. #include <Adafruit_NeoPixel.h>
  275. #endif
  276. #if ENABLED(BLINKM)
  277. #include "blinkm.h"
  278. #include "Wire.h"
  279. #endif
  280. #if ENABLED(PCA9632)
  281. #include "pca9632.h"
  282. #endif
  283. #if HAS_SERVOS
  284. #include "servo.h"
  285. #endif
  286. #if HAS_DIGIPOTSS
  287. #include <SPI.h>
  288. #endif
  289. #if ENABLED(DAC_STEPPER_CURRENT)
  290. #include "stepper_dac.h"
  291. #endif
  292. #if ENABLED(EXPERIMENTAL_I2CBUS)
  293. #include "twibus.h"
  294. #endif
  295. #if ENABLED(I2C_POSITION_ENCODERS)
  296. #include "I2CPositionEncoder.h"
  297. #endif
  298. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  299. #include "endstop_interrupts.h"
  300. #endif
  301. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  302. void gcode_M100();
  303. void M100_dump_routine(const char * const title, const char *start, const char *end);
  304. #endif
  305. #if ENABLED(SDSUPPORT)
  306. CardReader card;
  307. #endif
  308. #if ENABLED(EXPERIMENTAL_I2CBUS)
  309. TWIBus i2c;
  310. #endif
  311. #if ENABLED(G38_PROBE_TARGET)
  312. bool G38_move = false,
  313. G38_endstop_hit = false;
  314. #endif
  315. #if ENABLED(AUTO_BED_LEVELING_UBL)
  316. #include "ubl.h"
  317. extern bool defer_return_to_status;
  318. unified_bed_leveling ubl;
  319. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  320. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  321. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  322. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  323. || isnan(ubl.z_values[0][0]))
  324. #endif
  325. bool Running = true;
  326. uint8_t marlin_debug_flags = DEBUG_NONE;
  327. /**
  328. * Cartesian Current Position
  329. * Used to track the logical position as moves are queued.
  330. * Used by 'line_to_current_position' to do a move after changing it.
  331. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  332. */
  333. float current_position[XYZE] = { 0.0 };
  334. /**
  335. * Cartesian Destination
  336. * A temporary position, usually applied to 'current_position'.
  337. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  338. * 'line_to_destination' sets 'current_position' to 'destination'.
  339. */
  340. float destination[XYZE] = { 0.0 };
  341. /**
  342. * axis_homed
  343. * Flags that each linear axis was homed.
  344. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  345. *
  346. * axis_known_position
  347. * Flags that the position is known in each linear axis. Set when homed.
  348. * Cleared whenever a stepper powers off, potentially losing its position.
  349. */
  350. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  351. /**
  352. * GCode line number handling. Hosts may opt to include line numbers when
  353. * sending commands to Marlin, and lines will be checked for sequentiality.
  354. * M110 N<int> sets the current line number.
  355. */
  356. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  357. /**
  358. * GCode Command Queue
  359. * A simple ring buffer of BUFSIZE command strings.
  360. *
  361. * Commands are copied into this buffer by the command injectors
  362. * (immediate, serial, sd card) and they are processed sequentially by
  363. * the main loop. The process_next_command function parses the next
  364. * command and hands off execution to individual handler functions.
  365. */
  366. uint8_t commands_in_queue = 0; // Count of commands in the queue
  367. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  368. cmd_queue_index_w = 0; // Ring buffer write position
  369. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  370. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  371. #else // This can be collapsed back to the way it was soon.
  372. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  373. #endif
  374. /**
  375. * Next Injected Command pointer. NULL if no commands are being injected.
  376. * Used by Marlin internally to ensure that commands initiated from within
  377. * are enqueued ahead of any pending serial or sd card commands.
  378. */
  379. static const char *injected_commands_P = NULL;
  380. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  381. TempUnit input_temp_units = TEMPUNIT_C;
  382. #endif
  383. /**
  384. * Feed rates are often configured with mm/m
  385. * but the planner and stepper like mm/s units.
  386. */
  387. static const float homing_feedrate_mm_s[] PROGMEM = {
  388. #if ENABLED(DELTA)
  389. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  390. #else
  391. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  392. #endif
  393. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  394. };
  395. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  396. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  397. static float saved_feedrate_mm_s;
  398. int16_t feedrate_percentage = 100, saved_feedrate_percentage,
  399. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  400. // Initialized by settings.load()
  401. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  402. volumetric_enabled;
  403. float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
  404. #if HAS_WORKSPACE_OFFSET
  405. #if HAS_POSITION_SHIFT
  406. // The distance that XYZ has been offset by G92. Reset by G28.
  407. float position_shift[XYZ] = { 0 };
  408. #endif
  409. #if HAS_HOME_OFFSET
  410. // This offset is added to the configured home position.
  411. // Set by M206, M428, or menu item. Saved to EEPROM.
  412. float home_offset[XYZ] = { 0 };
  413. #endif
  414. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  415. // The above two are combined to save on computes
  416. float workspace_offset[XYZ] = { 0 };
  417. #endif
  418. #endif
  419. // Software Endstops are based on the configured limits.
  420. #if HAS_SOFTWARE_ENDSTOPS
  421. bool soft_endstops_enabled = true;
  422. #endif
  423. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  424. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  425. #if FAN_COUNT > 0
  426. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  427. #if ENABLED(PROBING_FANS_OFF)
  428. bool fans_paused = false;
  429. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  430. #endif
  431. #endif
  432. // The active extruder (tool). Set with T<extruder> command.
  433. uint8_t active_extruder = 0;
  434. // Relative Mode. Enable with G91, disable with G90.
  435. static bool relative_mode = false;
  436. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  437. volatile bool wait_for_heatup = true;
  438. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  439. #if HAS_RESUME_CONTINUE
  440. volatile bool wait_for_user = false;
  441. #endif
  442. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  443. // Number of characters read in the current line of serial input
  444. static int serial_count = 0;
  445. // Inactivity shutdown
  446. millis_t previous_cmd_ms = 0;
  447. static millis_t max_inactive_time = 0;
  448. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  449. // Print Job Timer
  450. #if ENABLED(PRINTCOUNTER)
  451. PrintCounter print_job_timer = PrintCounter();
  452. #else
  453. Stopwatch print_job_timer = Stopwatch();
  454. #endif
  455. // Buzzer - I2C on the LCD or a BEEPER_PIN
  456. #if ENABLED(LCD_USE_I2C_BUZZER)
  457. #define BUZZ(d,f) lcd_buzz(d, f)
  458. #elif PIN_EXISTS(BEEPER)
  459. Buzzer buzzer;
  460. #define BUZZ(d,f) buzzer.tone(d, f)
  461. #else
  462. #define BUZZ(d,f) NOOP
  463. #endif
  464. static uint8_t target_extruder;
  465. #if HAS_BED_PROBE
  466. float zprobe_zoffset; // Initialized by settings.load()
  467. #endif
  468. #if HAS_ABL
  469. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  470. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  471. #elif defined(XY_PROBE_SPEED)
  472. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  473. #else
  474. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  475. #endif
  476. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  477. #if ENABLED(DELTA)
  478. #define ADJUST_DELTA(V) \
  479. if (planner.abl_enabled) { \
  480. const float zadj = bilinear_z_offset(V); \
  481. delta[A_AXIS] += zadj; \
  482. delta[B_AXIS] += zadj; \
  483. delta[C_AXIS] += zadj; \
  484. }
  485. #else
  486. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  487. #endif
  488. #elif IS_KINEMATIC
  489. #define ADJUST_DELTA(V) NOOP
  490. #endif
  491. #if ENABLED(Z_DUAL_ENDSTOPS)
  492. float z_endstop_adj;
  493. #endif
  494. // Extruder offsets
  495. #if HOTENDS > 1
  496. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  497. #endif
  498. #if HAS_Z_SERVO_ENDSTOP
  499. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  500. #endif
  501. #if ENABLED(BARICUDA)
  502. uint8_t baricuda_valve_pressure = 0,
  503. baricuda_e_to_p_pressure = 0;
  504. #endif
  505. #if ENABLED(FWRETRACT)
  506. bool autoretract_enabled = false;
  507. bool retracted[EXTRUDERS] = { false };
  508. bool retracted_swap[EXTRUDERS] = { false };
  509. float retract_length = RETRACT_LENGTH;
  510. float retract_length_swap = RETRACT_LENGTH_SWAP;
  511. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  512. float retract_zlift = RETRACT_ZLIFT;
  513. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  514. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  515. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  516. #endif // FWRETRACT
  517. #if HAS_POWER_SWITCH
  518. bool powersupply_on =
  519. #if ENABLED(PS_DEFAULT_OFF)
  520. false
  521. #else
  522. true
  523. #endif
  524. ;
  525. #endif
  526. #if ENABLED(DELTA)
  527. float delta[ABC],
  528. endstop_adj[ABC] = { 0 };
  529. // Initialized by settings.load()
  530. float delta_radius,
  531. delta_tower_angle_trim[2],
  532. delta_tower[ABC][2],
  533. delta_diagonal_rod,
  534. delta_calibration_radius,
  535. delta_diagonal_rod_2_tower[ABC],
  536. delta_segments_per_second,
  537. delta_clip_start_height = Z_MAX_POS;
  538. float delta_safe_distance_from_top();
  539. #endif
  540. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  541. int bilinear_grid_spacing[2], bilinear_start[2];
  542. float bilinear_grid_factor[2],
  543. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  544. #endif
  545. #if IS_SCARA
  546. // Float constants for SCARA calculations
  547. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  548. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  549. L2_2 = sq(float(L2));
  550. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  551. delta[ABC];
  552. #endif
  553. float cartes[XYZ] = { 0 };
  554. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  555. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  556. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  557. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  558. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  559. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  560. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  561. #endif
  562. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  563. static bool filament_ran_out = false;
  564. #endif
  565. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  566. AdvancedPauseMenuResponse advanced_pause_menu_response;
  567. #endif
  568. #if ENABLED(MIXING_EXTRUDER)
  569. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  570. #if MIXING_VIRTUAL_TOOLS > 1
  571. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  572. #endif
  573. #endif
  574. static bool send_ok[BUFSIZE];
  575. #if HAS_SERVOS
  576. Servo servo[NUM_SERVOS];
  577. #define MOVE_SERVO(I, P) servo[I].move(P)
  578. #if HAS_Z_SERVO_ENDSTOP
  579. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  580. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  581. #endif
  582. #endif
  583. #ifdef CHDK
  584. millis_t chdkHigh = 0;
  585. bool chdkActive = false;
  586. #endif
  587. #ifdef AUTOMATIC_CURRENT_CONTROL
  588. bool auto_current_control = 0;
  589. #endif
  590. #if ENABLED(PID_EXTRUSION_SCALING)
  591. int lpq_len = 20;
  592. #endif
  593. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  594. MarlinBusyState busy_state = NOT_BUSY;
  595. static millis_t next_busy_signal_ms = 0;
  596. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  597. #else
  598. #define host_keepalive() NOOP
  599. #endif
  600. #if ENABLED(I2C_POSITION_ENCODERS)
  601. I2CPositionEncodersMgr I2CPEM;
  602. uint8_t blockBufferIndexRef = 0;
  603. millis_t lastUpdateMillis;
  604. #endif
  605. #if ENABLED(CNC_WORKSPACE_PLANES)
  606. static WorkspacePlane workspace_plane = PLANE_XY;
  607. #endif
  608. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  609. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  610. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  611. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  612. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  613. typedef void __void_##CONFIG##__
  614. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  615. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  616. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  617. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  618. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  619. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  620. /**
  621. * ***************************************************************************
  622. * ******************************** FUNCTIONS ********************************
  623. * ***************************************************************************
  624. */
  625. void stop();
  626. void get_available_commands();
  627. void process_next_command();
  628. void prepare_move_to_destination();
  629. void get_cartesian_from_steppers();
  630. void set_current_from_steppers_for_axis(const AxisEnum axis);
  631. #if ENABLED(ARC_SUPPORT)
  632. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  633. #endif
  634. #if ENABLED(BEZIER_CURVE_SUPPORT)
  635. void plan_cubic_move(const float offset[4]);
  636. #endif
  637. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  638. void report_current_position();
  639. void report_current_position_detail();
  640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  641. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  642. serialprintPGM(prefix);
  643. SERIAL_CHAR('(');
  644. SERIAL_ECHO(x);
  645. SERIAL_ECHOPAIR(", ", y);
  646. SERIAL_ECHOPAIR(", ", z);
  647. SERIAL_CHAR(')');
  648. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  649. }
  650. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  651. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  652. }
  653. #if HAS_ABL
  654. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  655. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  656. }
  657. #endif
  658. #define DEBUG_POS(SUFFIX,VAR) do { \
  659. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  660. #endif
  661. /**
  662. * sync_plan_position
  663. *
  664. * Set the planner/stepper positions directly from current_position with
  665. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  666. */
  667. void sync_plan_position() {
  668. #if ENABLED(DEBUG_LEVELING_FEATURE)
  669. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  670. #endif
  671. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  672. }
  673. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  674. #if IS_KINEMATIC
  675. inline void sync_plan_position_kinematic() {
  676. #if ENABLED(DEBUG_LEVELING_FEATURE)
  677. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  678. #endif
  679. planner.set_position_mm_kinematic(current_position);
  680. }
  681. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  682. #else
  683. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  684. #endif
  685. #if ENABLED(SDSUPPORT)
  686. #include "SdFatUtil.h"
  687. int freeMemory() { return SdFatUtil::FreeRam(); }
  688. #else
  689. extern "C" {
  690. extern char __bss_end;
  691. extern char __heap_start;
  692. extern void* __brkval;
  693. int freeMemory() {
  694. int free_memory;
  695. if ((int)__brkval == 0)
  696. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  697. else
  698. free_memory = ((int)&free_memory) - ((int)__brkval);
  699. return free_memory;
  700. }
  701. }
  702. #endif // !SDSUPPORT
  703. #if ENABLED(DIGIPOT_I2C)
  704. extern void digipot_i2c_set_current(uint8_t channel, float current);
  705. extern void digipot_i2c_init();
  706. #endif
  707. /**
  708. * Inject the next "immediate" command, when possible, onto the front of the queue.
  709. * Return true if any immediate commands remain to inject.
  710. */
  711. static bool drain_injected_commands_P() {
  712. if (injected_commands_P != NULL) {
  713. size_t i = 0;
  714. char c, cmd[30];
  715. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  716. cmd[sizeof(cmd) - 1] = '\0';
  717. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  718. cmd[i] = '\0';
  719. if (enqueue_and_echo_command(cmd)) // success?
  720. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  721. }
  722. return (injected_commands_P != NULL); // return whether any more remain
  723. }
  724. /**
  725. * Record one or many commands to run from program memory.
  726. * Aborts the current queue, if any.
  727. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  728. */
  729. void enqueue_and_echo_commands_P(const char * const pgcode) {
  730. injected_commands_P = pgcode;
  731. drain_injected_commands_P(); // first command executed asap (when possible)
  732. }
  733. /**
  734. * Clear the Marlin command queue
  735. */
  736. void clear_command_queue() {
  737. cmd_queue_index_r = cmd_queue_index_w;
  738. commands_in_queue = 0;
  739. }
  740. /**
  741. * Once a new command is in the ring buffer, call this to commit it
  742. */
  743. inline void _commit_command(bool say_ok) {
  744. send_ok[cmd_queue_index_w] = say_ok;
  745. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  746. commands_in_queue++;
  747. }
  748. /**
  749. * Copy a command from RAM into the main command buffer.
  750. * Return true if the command was successfully added.
  751. * Return false for a full buffer, or if the 'command' is a comment.
  752. */
  753. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  754. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  755. strcpy(command_queue[cmd_queue_index_w], cmd);
  756. _commit_command(say_ok);
  757. return true;
  758. }
  759. /**
  760. * Enqueue with Serial Echo
  761. */
  762. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  763. if (_enqueuecommand(cmd, say_ok)) {
  764. SERIAL_ECHO_START();
  765. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  766. SERIAL_CHAR('"');
  767. SERIAL_EOL();
  768. return true;
  769. }
  770. return false;
  771. }
  772. void setup_killpin() {
  773. #if HAS_KILL
  774. SET_INPUT_PULLUP(KILL_PIN);
  775. #endif
  776. }
  777. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  778. void setup_filrunoutpin() {
  779. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  780. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  781. #else
  782. SET_INPUT(FIL_RUNOUT_PIN);
  783. #endif
  784. }
  785. #endif
  786. void setup_powerhold() {
  787. #if HAS_SUICIDE
  788. OUT_WRITE(SUICIDE_PIN, HIGH);
  789. #endif
  790. #if HAS_POWER_SWITCH
  791. #if ENABLED(PS_DEFAULT_OFF)
  792. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  793. #else
  794. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  795. #endif
  796. #endif
  797. }
  798. void suicide() {
  799. #if HAS_SUICIDE
  800. OUT_WRITE(SUICIDE_PIN, LOW);
  801. #endif
  802. }
  803. void servo_init() {
  804. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  805. servo[0].attach(SERVO0_PIN);
  806. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  807. #endif
  808. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  809. servo[1].attach(SERVO1_PIN);
  810. servo[1].detach();
  811. #endif
  812. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  813. servo[2].attach(SERVO2_PIN);
  814. servo[2].detach();
  815. #endif
  816. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  817. servo[3].attach(SERVO3_PIN);
  818. servo[3].detach();
  819. #endif
  820. #if HAS_Z_SERVO_ENDSTOP
  821. /**
  822. * Set position of Z Servo Endstop
  823. *
  824. * The servo might be deployed and positioned too low to stow
  825. * when starting up the machine or rebooting the board.
  826. * There's no way to know where the nozzle is positioned until
  827. * homing has been done - no homing with z-probe without init!
  828. *
  829. */
  830. STOW_Z_SERVO();
  831. #endif
  832. }
  833. /**
  834. * Stepper Reset (RigidBoard, et.al.)
  835. */
  836. #if HAS_STEPPER_RESET
  837. void disableStepperDrivers() {
  838. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  839. }
  840. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  841. #endif
  842. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  843. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  844. i2c.receive(bytes);
  845. }
  846. void i2c_on_request() { // just send dummy data for now
  847. i2c.reply("Hello World!\n");
  848. }
  849. #endif
  850. #if HAS_COLOR_LEDS
  851. #if ENABLED(NEOPIXEL_RGBW_LED)
  852. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEO_GRBW + NEO_KHZ800);
  853. void set_neopixel_color(const uint32_t color) {
  854. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  855. pixels.setPixelColor(i, color);
  856. pixels.show();
  857. }
  858. void setup_neopixel() {
  859. pixels.setBrightness(255); // 0 - 255 range
  860. pixels.begin();
  861. pixels.show(); // initialize to all off
  862. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  863. delay(2000);
  864. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  865. delay(2000);
  866. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  867. delay(2000);
  868. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  869. delay(2000);
  870. #endif
  871. set_neopixel_color(pixels.Color(0, 0, 0, 255)); // white
  872. }
  873. #endif // NEOPIXEL_RGBW_LED
  874. void set_led_color(
  875. const uint8_t r, const uint8_t g, const uint8_t b
  876. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  877. , const uint8_t w = 0
  878. #if ENABLED(NEOPIXEL_RGBW_LED)
  879. , bool isSequence = false
  880. #endif
  881. #endif
  882. ) {
  883. #if ENABLED(NEOPIXEL_RGBW_LED)
  884. const uint32_t color = pixels.Color(r, g, b, w);
  885. static uint16_t nextLed = 0;
  886. if (!isSequence)
  887. set_neopixel_color(color);
  888. else {
  889. pixels.setPixelColor(nextLed, color);
  890. pixels.show();
  891. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  892. return;
  893. }
  894. #endif
  895. #if ENABLED(BLINKM)
  896. // This variant uses i2c to send the RGB components to the device.
  897. SendColors(r, g, b);
  898. #endif
  899. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  900. // This variant uses 3 separate pins for the RGB components.
  901. // If the pins can do PWM then their intensity will be set.
  902. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  903. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  904. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  905. analogWrite(RGB_LED_R_PIN, r);
  906. analogWrite(RGB_LED_G_PIN, g);
  907. analogWrite(RGB_LED_B_PIN, b);
  908. #if ENABLED(RGBW_LED)
  909. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  910. analogWrite(RGB_LED_W_PIN, w);
  911. #endif
  912. #endif
  913. #if ENABLED(PCA9632)
  914. // Update I2C LED driver
  915. PCA9632_SetColor(r, g, b);
  916. #endif
  917. }
  918. #endif // HAS_COLOR_LEDS
  919. void gcode_line_error(const char* err, bool doFlush = true) {
  920. SERIAL_ERROR_START();
  921. serialprintPGM(err);
  922. SERIAL_ERRORLN(gcode_LastN);
  923. //Serial.println(gcode_N);
  924. if (doFlush) FlushSerialRequestResend();
  925. serial_count = 0;
  926. }
  927. /**
  928. * Get all commands waiting on the serial port and queue them.
  929. * Exit when the buffer is full or when no more characters are
  930. * left on the serial port.
  931. */
  932. inline void get_serial_commands() {
  933. static char serial_line_buffer[MAX_CMD_SIZE];
  934. static bool serial_comment_mode = false;
  935. // If the command buffer is empty for too long,
  936. // send "wait" to indicate Marlin is still waiting.
  937. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  938. static millis_t last_command_time = 0;
  939. const millis_t ms = millis();
  940. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  941. SERIAL_ECHOLNPGM(MSG_WAIT);
  942. last_command_time = ms;
  943. }
  944. #endif
  945. /**
  946. * Loop while serial characters are incoming and the queue is not full
  947. */
  948. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  949. char serial_char = MYSERIAL.read();
  950. /**
  951. * If the character ends the line
  952. */
  953. if (serial_char == '\n' || serial_char == '\r') {
  954. serial_comment_mode = false; // end of line == end of comment
  955. if (!serial_count) continue; // skip empty lines
  956. serial_line_buffer[serial_count] = 0; // terminate string
  957. serial_count = 0; //reset buffer
  958. char* command = serial_line_buffer;
  959. while (*command == ' ') command++; // skip any leading spaces
  960. char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
  961. *apos = strchr(command, '*');
  962. if (npos) {
  963. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  964. if (M110) {
  965. char* n2pos = strchr(command + 4, 'N');
  966. if (n2pos) npos = n2pos;
  967. }
  968. gcode_N = strtol(npos + 1, NULL, 10);
  969. if (gcode_N != gcode_LastN + 1 && !M110) {
  970. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  971. return;
  972. }
  973. if (apos) {
  974. byte checksum = 0, count = 0;
  975. while (command[count] != '*') checksum ^= command[count++];
  976. if (strtol(apos + 1, NULL, 10) != checksum) {
  977. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  978. return;
  979. }
  980. // if no errors, continue parsing
  981. }
  982. else {
  983. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  984. return;
  985. }
  986. gcode_LastN = gcode_N;
  987. // if no errors, continue parsing
  988. }
  989. else if (apos) { // No '*' without 'N'
  990. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  991. return;
  992. }
  993. // Movement commands alert when stopped
  994. if (IsStopped()) {
  995. char* gpos = strchr(command, 'G');
  996. if (gpos) {
  997. const int codenum = strtol(gpos + 1, NULL, 10);
  998. switch (codenum) {
  999. case 0:
  1000. case 1:
  1001. case 2:
  1002. case 3:
  1003. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1004. LCD_MESSAGEPGM(MSG_STOPPED);
  1005. break;
  1006. }
  1007. }
  1008. }
  1009. #if DISABLED(EMERGENCY_PARSER)
  1010. // If command was e-stop process now
  1011. if (strcmp(command, "M108") == 0) {
  1012. wait_for_heatup = false;
  1013. #if ENABLED(ULTIPANEL)
  1014. wait_for_user = false;
  1015. #endif
  1016. }
  1017. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1018. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1019. #endif
  1020. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1021. last_command_time = ms;
  1022. #endif
  1023. // Add the command to the queue
  1024. _enqueuecommand(serial_line_buffer, true);
  1025. }
  1026. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1027. // Keep fetching, but ignore normal characters beyond the max length
  1028. // The command will be injected when EOL is reached
  1029. }
  1030. else if (serial_char == '\\') { // Handle escapes
  1031. if (MYSERIAL.available() > 0) {
  1032. // if we have one more character, copy it over
  1033. serial_char = MYSERIAL.read();
  1034. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1035. }
  1036. // otherwise do nothing
  1037. }
  1038. else { // it's not a newline, carriage return or escape char
  1039. if (serial_char == ';') serial_comment_mode = true;
  1040. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1041. }
  1042. } // queue has space, serial has data
  1043. }
  1044. #if ENABLED(SDSUPPORT)
  1045. /**
  1046. * Get commands from the SD Card until the command buffer is full
  1047. * or until the end of the file is reached. The special character '#'
  1048. * can also interrupt buffering.
  1049. */
  1050. inline void get_sdcard_commands() {
  1051. static bool stop_buffering = false,
  1052. sd_comment_mode = false;
  1053. if (!card.sdprinting) return;
  1054. /**
  1055. * '#' stops reading from SD to the buffer prematurely, so procedural
  1056. * macro calls are possible. If it occurs, stop_buffering is triggered
  1057. * and the buffer is run dry; this character _can_ occur in serial com
  1058. * due to checksums, however, no checksums are used in SD printing.
  1059. */
  1060. if (commands_in_queue == 0) stop_buffering = false;
  1061. uint16_t sd_count = 0;
  1062. bool card_eof = card.eof();
  1063. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1064. const int16_t n = card.get();
  1065. char sd_char = (char)n;
  1066. card_eof = card.eof();
  1067. if (card_eof || n == -1
  1068. || sd_char == '\n' || sd_char == '\r'
  1069. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1070. ) {
  1071. if (card_eof) {
  1072. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1073. card.printingHasFinished();
  1074. #if ENABLED(PRINTER_EVENT_LEDS)
  1075. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1076. set_led_color(0, 255, 0); // Green
  1077. #if HAS_RESUME_CONTINUE
  1078. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1079. #else
  1080. safe_delay(1000);
  1081. #endif
  1082. set_led_color(0, 0, 0); // OFF
  1083. #endif
  1084. card.checkautostart(true);
  1085. }
  1086. else if (n == -1) {
  1087. SERIAL_ERROR_START();
  1088. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1089. }
  1090. if (sd_char == '#') stop_buffering = true;
  1091. sd_comment_mode = false; // for new command
  1092. if (!sd_count) continue; // skip empty lines (and comment lines)
  1093. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1094. sd_count = 0; // clear sd line buffer
  1095. _commit_command(false);
  1096. }
  1097. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1098. /**
  1099. * Keep fetching, but ignore normal characters beyond the max length
  1100. * The command will be injected when EOL is reached
  1101. */
  1102. }
  1103. else {
  1104. if (sd_char == ';') sd_comment_mode = true;
  1105. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1106. }
  1107. }
  1108. }
  1109. #endif // SDSUPPORT
  1110. /**
  1111. * Add to the circular command queue the next command from:
  1112. * - The command-injection queue (injected_commands_P)
  1113. * - The active serial input (usually USB)
  1114. * - The SD card file being actively printed
  1115. */
  1116. void get_available_commands() {
  1117. // if any immediate commands remain, don't get other commands yet
  1118. if (drain_injected_commands_P()) return;
  1119. get_serial_commands();
  1120. #if ENABLED(SDSUPPORT)
  1121. get_sdcard_commands();
  1122. #endif
  1123. }
  1124. /**
  1125. * Set target_extruder from the T parameter or the active_extruder
  1126. *
  1127. * Returns TRUE if the target is invalid
  1128. */
  1129. bool get_target_extruder_from_command(const uint16_t code) {
  1130. if (parser.seenval('T')) {
  1131. const int8_t e = parser.value_byte();
  1132. if (e >= EXTRUDERS) {
  1133. SERIAL_ECHO_START();
  1134. SERIAL_CHAR('M');
  1135. SERIAL_ECHO(code);
  1136. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1137. return true;
  1138. }
  1139. target_extruder = e;
  1140. }
  1141. else
  1142. target_extruder = active_extruder;
  1143. return false;
  1144. }
  1145. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1146. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1147. #endif
  1148. #if ENABLED(DUAL_X_CARRIAGE)
  1149. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1150. static float x_home_pos(const int extruder) {
  1151. if (extruder == 0)
  1152. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1153. else
  1154. /**
  1155. * In dual carriage mode the extruder offset provides an override of the
  1156. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1157. * This allows soft recalibration of the second extruder home position
  1158. * without firmware reflash (through the M218 command).
  1159. */
  1160. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1161. }
  1162. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1163. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1164. static bool active_extruder_parked = false; // used in mode 1 & 2
  1165. static float raised_parked_position[XYZE]; // used in mode 1
  1166. static millis_t delayed_move_time = 0; // used in mode 1
  1167. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1168. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1169. #endif // DUAL_X_CARRIAGE
  1170. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1171. /**
  1172. * Software endstops can be used to monitor the open end of
  1173. * an axis that has a hardware endstop on the other end. Or
  1174. * they can prevent axes from moving past endstops and grinding.
  1175. *
  1176. * To keep doing their job as the coordinate system changes,
  1177. * the software endstop positions must be refreshed to remain
  1178. * at the same positions relative to the machine.
  1179. */
  1180. void update_software_endstops(const AxisEnum axis) {
  1181. const float offs = 0.0
  1182. #if HAS_HOME_OFFSET
  1183. + home_offset[axis]
  1184. #endif
  1185. #if HAS_POSITION_SHIFT
  1186. + position_shift[axis]
  1187. #endif
  1188. ;
  1189. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1190. workspace_offset[axis] = offs;
  1191. #endif
  1192. #if ENABLED(DUAL_X_CARRIAGE)
  1193. if (axis == X_AXIS) {
  1194. // In Dual X mode hotend_offset[X] is T1's home position
  1195. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1196. if (active_extruder != 0) {
  1197. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1198. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1199. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1200. }
  1201. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1202. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1203. // but not so far to the right that T1 would move past the end
  1204. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1205. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1206. }
  1207. else {
  1208. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1209. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1210. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1211. }
  1212. }
  1213. #else
  1214. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1215. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1216. #endif
  1217. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1218. if (DEBUGGING(LEVELING)) {
  1219. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1220. #if HAS_HOME_OFFSET
  1221. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1222. #endif
  1223. #if HAS_POSITION_SHIFT
  1224. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1225. #endif
  1226. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1227. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1228. }
  1229. #endif
  1230. #if ENABLED(DELTA)
  1231. if (axis == Z_AXIS)
  1232. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1233. #endif
  1234. }
  1235. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1236. #if HAS_M206_COMMAND
  1237. /**
  1238. * Change the home offset for an axis, update the current
  1239. * position and the software endstops to retain the same
  1240. * relative distance to the new home.
  1241. *
  1242. * Since this changes the current_position, code should
  1243. * call sync_plan_position soon after this.
  1244. */
  1245. static void set_home_offset(const AxisEnum axis, const float v) {
  1246. current_position[axis] += v - home_offset[axis];
  1247. home_offset[axis] = v;
  1248. update_software_endstops(axis);
  1249. }
  1250. #endif // HAS_M206_COMMAND
  1251. /**
  1252. * Set an axis' current position to its home position (after homing).
  1253. *
  1254. * For Core and Cartesian robots this applies one-to-one when an
  1255. * individual axis has been homed.
  1256. *
  1257. * DELTA should wait until all homing is done before setting the XYZ
  1258. * current_position to home, because homing is a single operation.
  1259. * In the case where the axis positions are already known and previously
  1260. * homed, DELTA could home to X or Y individually by moving either one
  1261. * to the center. However, homing Z always homes XY and Z.
  1262. *
  1263. * SCARA should wait until all XY homing is done before setting the XY
  1264. * current_position to home, because neither X nor Y is at home until
  1265. * both are at home. Z can however be homed individually.
  1266. *
  1267. * Callers must sync the planner position after calling this!
  1268. */
  1269. static void set_axis_is_at_home(const AxisEnum axis) {
  1270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1271. if (DEBUGGING(LEVELING)) {
  1272. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1273. SERIAL_CHAR(')');
  1274. SERIAL_EOL();
  1275. }
  1276. #endif
  1277. axis_known_position[axis] = axis_homed[axis] = true;
  1278. #if HAS_POSITION_SHIFT
  1279. position_shift[axis] = 0;
  1280. update_software_endstops(axis);
  1281. #endif
  1282. #if ENABLED(DUAL_X_CARRIAGE)
  1283. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1284. current_position[X_AXIS] = x_home_pos(active_extruder);
  1285. return;
  1286. }
  1287. #endif
  1288. #if ENABLED(MORGAN_SCARA)
  1289. /**
  1290. * Morgan SCARA homes XY at the same time
  1291. */
  1292. if (axis == X_AXIS || axis == Y_AXIS) {
  1293. float homeposition[XYZ];
  1294. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1295. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1296. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1297. /**
  1298. * Get Home position SCARA arm angles using inverse kinematics,
  1299. * and calculate homing offset using forward kinematics
  1300. */
  1301. inverse_kinematics(homeposition);
  1302. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1303. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1304. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1305. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1306. /**
  1307. * SCARA home positions are based on configuration since the actual
  1308. * limits are determined by the inverse kinematic transform.
  1309. */
  1310. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1311. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1312. }
  1313. else
  1314. #endif
  1315. {
  1316. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1317. }
  1318. /**
  1319. * Z Probe Z Homing? Account for the probe's Z offset.
  1320. */
  1321. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1322. if (axis == Z_AXIS) {
  1323. #if HOMING_Z_WITH_PROBE
  1324. current_position[Z_AXIS] -= zprobe_zoffset;
  1325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1326. if (DEBUGGING(LEVELING)) {
  1327. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1328. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1329. }
  1330. #endif
  1331. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1332. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1333. #endif
  1334. }
  1335. #endif
  1336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (DEBUGGING(LEVELING)) {
  1338. #if HAS_HOME_OFFSET
  1339. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1340. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1341. #endif
  1342. DEBUG_POS("", current_position);
  1343. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1344. SERIAL_CHAR(')');
  1345. SERIAL_EOL();
  1346. }
  1347. #endif
  1348. #if ENABLED(I2C_POSITION_ENCODERS)
  1349. I2CPEM.homed(axis);
  1350. #endif
  1351. }
  1352. /**
  1353. * Some planner shorthand inline functions
  1354. */
  1355. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1356. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1357. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1358. if (hbd < 1) {
  1359. hbd = 10;
  1360. SERIAL_ECHO_START();
  1361. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1362. }
  1363. return homing_feedrate(axis) / hbd;
  1364. }
  1365. /**
  1366. * Move the planner to the current position from wherever it last moved
  1367. * (or from wherever it has been told it is located).
  1368. */
  1369. inline void line_to_current_position() {
  1370. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1371. }
  1372. /**
  1373. * Move the planner to the position stored in the destination array, which is
  1374. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1375. */
  1376. inline void line_to_destination(const float fr_mm_s) {
  1377. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1378. }
  1379. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1380. inline void set_current_to_destination() { COPY(current_position, destination); }
  1381. inline void set_destination_to_current() { COPY(destination, current_position); }
  1382. #if IS_KINEMATIC
  1383. /**
  1384. * Calculate delta, start a line, and set current_position to destination
  1385. */
  1386. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1387. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1388. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1389. #endif
  1390. refresh_cmd_timeout();
  1391. #if UBL_DELTA
  1392. // ubl segmented line will do z-only moves in single segment
  1393. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1394. #else
  1395. if ( current_position[X_AXIS] == destination[X_AXIS]
  1396. && current_position[Y_AXIS] == destination[Y_AXIS]
  1397. && current_position[Z_AXIS] == destination[Z_AXIS]
  1398. && current_position[E_AXIS] == destination[E_AXIS]
  1399. ) return;
  1400. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1401. #endif
  1402. set_current_to_destination();
  1403. }
  1404. #endif // IS_KINEMATIC
  1405. /**
  1406. * Plan a move to (X, Y, Z) and set the current_position
  1407. * The final current_position may not be the one that was requested
  1408. */
  1409. void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
  1410. const float old_feedrate_mm_s = feedrate_mm_s;
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
  1413. #endif
  1414. #if ENABLED(DELTA)
  1415. if (!position_is_reachable_xy(lx, ly)) return;
  1416. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1417. set_destination_to_current(); // sync destination at the start
  1418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1419. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1420. #endif
  1421. // when in the danger zone
  1422. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1423. if (lz > delta_clip_start_height) { // staying in the danger zone
  1424. destination[X_AXIS] = lx; // move directly (uninterpolated)
  1425. destination[Y_AXIS] = ly;
  1426. destination[Z_AXIS] = lz;
  1427. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1429. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1430. #endif
  1431. return;
  1432. }
  1433. else {
  1434. destination[Z_AXIS] = delta_clip_start_height;
  1435. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1436. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1437. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1438. #endif
  1439. }
  1440. }
  1441. if (lz > current_position[Z_AXIS]) { // raising?
  1442. destination[Z_AXIS] = lz;
  1443. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1445. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1446. #endif
  1447. }
  1448. destination[X_AXIS] = lx;
  1449. destination[Y_AXIS] = ly;
  1450. prepare_move_to_destination(); // set_current_to_destination
  1451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1452. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1453. #endif
  1454. if (lz < current_position[Z_AXIS]) { // lowering?
  1455. destination[Z_AXIS] = lz;
  1456. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1458. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1459. #endif
  1460. }
  1461. #elif IS_SCARA
  1462. if (!position_is_reachable_xy(lx, ly)) return;
  1463. set_destination_to_current();
  1464. // If Z needs to raise, do it before moving XY
  1465. if (destination[Z_AXIS] < lz) {
  1466. destination[Z_AXIS] = lz;
  1467. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1468. }
  1469. destination[X_AXIS] = lx;
  1470. destination[Y_AXIS] = ly;
  1471. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1472. // If Z needs to lower, do it after moving XY
  1473. if (destination[Z_AXIS] > lz) {
  1474. destination[Z_AXIS] = lz;
  1475. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1476. }
  1477. #else
  1478. // If Z needs to raise, do it before moving XY
  1479. if (current_position[Z_AXIS] < lz) {
  1480. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1481. current_position[Z_AXIS] = lz;
  1482. line_to_current_position();
  1483. }
  1484. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1485. current_position[X_AXIS] = lx;
  1486. current_position[Y_AXIS] = ly;
  1487. line_to_current_position();
  1488. // If Z needs to lower, do it after moving XY
  1489. if (current_position[Z_AXIS] > lz) {
  1490. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1491. current_position[Z_AXIS] = lz;
  1492. line_to_current_position();
  1493. }
  1494. #endif
  1495. stepper.synchronize();
  1496. feedrate_mm_s = old_feedrate_mm_s;
  1497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1498. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1499. #endif
  1500. }
  1501. void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
  1502. do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1503. }
  1504. void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
  1505. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
  1506. }
  1507. void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
  1508. do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
  1509. }
  1510. //
  1511. // Prepare to do endstop or probe moves
  1512. // with custom feedrates.
  1513. //
  1514. // - Save current feedrates
  1515. // - Reset the rate multiplier
  1516. // - Reset the command timeout
  1517. // - Enable the endstops (for endstop moves)
  1518. //
  1519. static void setup_for_endstop_or_probe_move() {
  1520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1521. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1522. #endif
  1523. saved_feedrate_mm_s = feedrate_mm_s;
  1524. saved_feedrate_percentage = feedrate_percentage;
  1525. feedrate_percentage = 100;
  1526. refresh_cmd_timeout();
  1527. }
  1528. static void clean_up_after_endstop_or_probe_move() {
  1529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1530. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1531. #endif
  1532. feedrate_mm_s = saved_feedrate_mm_s;
  1533. feedrate_percentage = saved_feedrate_percentage;
  1534. refresh_cmd_timeout();
  1535. }
  1536. #if HAS_BED_PROBE
  1537. /**
  1538. * Raise Z to a minimum height to make room for a probe to move
  1539. */
  1540. inline void do_probe_raise(const float z_raise) {
  1541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1542. if (DEBUGGING(LEVELING)) {
  1543. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1544. SERIAL_CHAR(')');
  1545. SERIAL_EOL();
  1546. }
  1547. #endif
  1548. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1549. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1550. #if ENABLED(DELTA)
  1551. z_dest -= home_offset[Z_AXIS]; // Account for delta height adjustment
  1552. #endif
  1553. if (z_dest > current_position[Z_AXIS])
  1554. do_blocking_move_to_z(z_dest);
  1555. }
  1556. #endif // HAS_BED_PROBE
  1557. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1558. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1559. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1560. const bool xx = x && !axis_known_position[X_AXIS],
  1561. yy = y && !axis_known_position[Y_AXIS],
  1562. zz = z && !axis_known_position[Z_AXIS];
  1563. #else
  1564. const bool xx = x && !axis_homed[X_AXIS],
  1565. yy = y && !axis_homed[Y_AXIS],
  1566. zz = z && !axis_homed[Z_AXIS];
  1567. #endif
  1568. if (xx || yy || zz) {
  1569. SERIAL_ECHO_START();
  1570. SERIAL_ECHOPGM(MSG_HOME " ");
  1571. if (xx) SERIAL_ECHOPGM(MSG_X);
  1572. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1573. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1574. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1575. #if ENABLED(ULTRA_LCD)
  1576. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1577. #endif
  1578. return true;
  1579. }
  1580. return false;
  1581. }
  1582. #endif
  1583. #if ENABLED(Z_PROBE_SLED)
  1584. #ifndef SLED_DOCKING_OFFSET
  1585. #define SLED_DOCKING_OFFSET 0
  1586. #endif
  1587. /**
  1588. * Method to dock/undock a sled designed by Charles Bell.
  1589. *
  1590. * stow[in] If false, move to MAX_X and engage the solenoid
  1591. * If true, move to MAX_X and release the solenoid
  1592. */
  1593. static void dock_sled(bool stow) {
  1594. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1595. if (DEBUGGING(LEVELING)) {
  1596. SERIAL_ECHOPAIR("dock_sled(", stow);
  1597. SERIAL_CHAR(')');
  1598. SERIAL_EOL();
  1599. }
  1600. #endif
  1601. // Dock sled a bit closer to ensure proper capturing
  1602. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1603. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1604. WRITE(SOL1_PIN, !stow); // switch solenoid
  1605. #endif
  1606. }
  1607. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1608. FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
  1609. do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
  1610. }
  1611. void run_deploy_moves_script() {
  1612. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1624. #endif
  1625. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1626. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1627. #endif
  1628. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1629. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1630. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1636. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1637. #endif
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1640. #endif
  1641. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1642. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1643. #endif
  1644. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1645. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1646. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1647. #endif
  1648. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1649. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1650. #endif
  1651. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1652. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1653. #endif
  1654. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1655. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1656. #endif
  1657. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1658. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1659. #endif
  1660. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1662. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1665. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1668. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1672. #endif
  1673. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1674. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1675. #endif
  1676. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1681. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1682. #endif
  1683. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1684. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1688. #endif
  1689. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1690. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1691. #endif
  1692. }
  1693. void run_stow_moves_script() {
  1694. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1695. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1696. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1697. #endif
  1698. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1699. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1700. #endif
  1701. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1702. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1703. #endif
  1704. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1705. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1706. #endif
  1707. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1708. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1709. #endif
  1710. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1711. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1712. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1713. #endif
  1714. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1715. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1716. #endif
  1717. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1718. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1719. #endif
  1720. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1721. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1722. #endif
  1723. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1724. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1725. #endif
  1726. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1728. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1729. #endif
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1731. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1732. #endif
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1734. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1735. #endif
  1736. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1737. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1738. #endif
  1739. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1740. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1741. #endif
  1742. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1743. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1744. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1745. #endif
  1746. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1747. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1748. #endif
  1749. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1750. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1751. #endif
  1752. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1753. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1754. #endif
  1755. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1756. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1757. #endif
  1758. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1759. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1760. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1761. #endif
  1762. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1763. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1764. #endif
  1765. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1766. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1767. #endif
  1768. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1769. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1770. #endif
  1771. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1772. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1773. #endif
  1774. }
  1775. #endif
  1776. #if ENABLED(PROBING_FANS_OFF)
  1777. void fans_pause(const bool p) {
  1778. if (p != fans_paused) {
  1779. fans_paused = p;
  1780. if (p)
  1781. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1782. paused_fanSpeeds[x] = fanSpeeds[x];
  1783. fanSpeeds[x] = 0;
  1784. }
  1785. else
  1786. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1787. fanSpeeds[x] = paused_fanSpeeds[x];
  1788. }
  1789. }
  1790. #endif // PROBING_FANS_OFF
  1791. #if HAS_BED_PROBE
  1792. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1793. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1794. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1795. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1796. #else
  1797. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1798. #endif
  1799. #endif
  1800. #if QUIET_PROBING
  1801. void probing_pause(const bool p) {
  1802. #if ENABLED(PROBING_HEATERS_OFF)
  1803. thermalManager.pause(p);
  1804. #endif
  1805. #if ENABLED(PROBING_FANS_OFF)
  1806. fans_pause(p);
  1807. #endif
  1808. if (p) safe_delay(25);
  1809. }
  1810. #endif // QUIET_PROBING
  1811. #if ENABLED(BLTOUCH)
  1812. void bltouch_command(int angle) {
  1813. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1814. safe_delay(BLTOUCH_DELAY);
  1815. }
  1816. void set_bltouch_deployed(const bool deploy) {
  1817. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1818. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1819. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1820. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1821. safe_delay(1500); // Wait for internal self-test to complete.
  1822. // (Measured completion time was 0.65 seconds
  1823. // after reset, deploy, and stow sequence)
  1824. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1825. SERIAL_ERROR_START();
  1826. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1827. stop(); // punt!
  1828. }
  1829. }
  1830. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1832. if (DEBUGGING(LEVELING)) {
  1833. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1834. SERIAL_CHAR(')');
  1835. SERIAL_EOL();
  1836. }
  1837. #endif
  1838. }
  1839. #endif // BLTOUCH
  1840. // returns false for ok and true for failure
  1841. bool set_probe_deployed(bool deploy) {
  1842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1843. if (DEBUGGING(LEVELING)) {
  1844. DEBUG_POS("set_probe_deployed", current_position);
  1845. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1846. }
  1847. #endif
  1848. if (endstops.z_probe_enabled == deploy) return false;
  1849. // Make room for probe
  1850. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1851. // When deploying make sure BLTOUCH is not already triggered
  1852. #if ENABLED(BLTOUCH)
  1853. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1854. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1855. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1856. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1857. safe_delay(1500); // wait for internal self test to complete
  1858. // measured completion time was 0.65 seconds
  1859. // after reset, deploy & stow sequence
  1860. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1861. SERIAL_ERROR_START();
  1862. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1863. stop(); // punt!
  1864. return true;
  1865. }
  1866. }
  1867. #elif ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1868. #if ENABLED(Z_PROBE_SLED)
  1869. #define _AUE_ARGS true, false, false
  1870. #else
  1871. #define _AUE_ARGS
  1872. #endif
  1873. if (axis_unhomed_error(_AUE_ARGS)) {
  1874. SERIAL_ERROR_START();
  1875. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1876. stop();
  1877. return true;
  1878. }
  1879. #endif
  1880. const float oldXpos = current_position[X_AXIS],
  1881. oldYpos = current_position[Y_AXIS];
  1882. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1883. // If endstop is already false, the Z probe is deployed
  1884. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1885. // Would a goto be less ugly?
  1886. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1887. // for a triggered when stowed manual probe.
  1888. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1889. // otherwise an Allen-Key probe can't be stowed.
  1890. #endif
  1891. #if ENABLED(SOLENOID_PROBE)
  1892. #if HAS_SOLENOID_1
  1893. WRITE(SOL1_PIN, deploy);
  1894. #endif
  1895. #elif ENABLED(Z_PROBE_SLED)
  1896. dock_sled(!deploy);
  1897. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1898. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1899. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1900. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1901. #endif
  1902. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1903. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1904. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1905. if (IsRunning()) {
  1906. SERIAL_ERROR_START();
  1907. SERIAL_ERRORLNPGM("Z-Probe failed");
  1908. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1909. }
  1910. stop();
  1911. return true;
  1912. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1913. #endif
  1914. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1915. endstops.enable_z_probe(deploy);
  1916. return false;
  1917. }
  1918. static void do_probe_move(float z, float fr_mm_m) {
  1919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1920. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1921. #endif
  1922. // Deploy BLTouch at the start of any probe
  1923. #if ENABLED(BLTOUCH)
  1924. set_bltouch_deployed(true);
  1925. #endif
  1926. #if QUIET_PROBING
  1927. probing_pause(true);
  1928. #endif
  1929. // Move down until probe triggered
  1930. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1931. #if QUIET_PROBING
  1932. probing_pause(false);
  1933. #endif
  1934. // Retract BLTouch immediately after a probe
  1935. #if ENABLED(BLTOUCH)
  1936. set_bltouch_deployed(false);
  1937. #endif
  1938. // Clear endstop flags
  1939. endstops.hit_on_purpose();
  1940. // Get Z where the steppers were interrupted
  1941. set_current_from_steppers_for_axis(Z_AXIS);
  1942. // Tell the planner where we actually are
  1943. SYNC_PLAN_POSITION_KINEMATIC();
  1944. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1945. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1946. #endif
  1947. }
  1948. // Do a single Z probe and return with current_position[Z_AXIS]
  1949. // at the height where the probe triggered.
  1950. static float run_z_probe() {
  1951. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1952. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1953. #endif
  1954. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1955. refresh_cmd_timeout();
  1956. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1957. // Do a first probe at the fast speed
  1958. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1960. float first_probe_z = current_position[Z_AXIS];
  1961. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1962. #endif
  1963. // move up by the bump distance
  1964. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1965. #else
  1966. // If the nozzle is above the travel height then
  1967. // move down quickly before doing the slow probe
  1968. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1969. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1970. #if ENABLED(DELTA)
  1971. z -= home_offset[Z_AXIS]; // Account for delta height adjustment
  1972. #endif
  1973. if (z < current_position[Z_AXIS])
  1974. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1975. #endif
  1976. // move down slowly to find bed
  1977. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1978. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1979. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1980. #endif
  1981. // Debug: compare probe heights
  1982. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1983. if (DEBUGGING(LEVELING)) {
  1984. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1985. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1986. }
  1987. #endif
  1988. return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
  1989. #if ENABLED(DELTA)
  1990. + home_offset[Z_AXIS] // Account for delta height adjustment
  1991. #endif
  1992. ;
  1993. }
  1994. /**
  1995. * - Move to the given XY
  1996. * - Deploy the probe, if not already deployed
  1997. * - Probe the bed, get the Z position
  1998. * - Depending on the 'stow' flag
  1999. * - Stow the probe, or
  2000. * - Raise to the BETWEEN height
  2001. * - Return the probed Z position
  2002. */
  2003. float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  2004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (DEBUGGING(LEVELING)) {
  2006. SERIAL_ECHOPAIR(">>> probe_pt(", lx);
  2007. SERIAL_ECHOPAIR(", ", ly);
  2008. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2009. SERIAL_ECHOLNPGM("stow)");
  2010. DEBUG_POS("", current_position);
  2011. }
  2012. #endif
  2013. const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2014. if (printable) {
  2015. if (!position_is_reachable_by_probe_xy(lx, ly)) return NAN;
  2016. }
  2017. else if (!position_is_reachable_xy(nx, ny)) return NAN;
  2018. const float old_feedrate_mm_s = feedrate_mm_s;
  2019. #if ENABLED(DELTA)
  2020. if (current_position[Z_AXIS] > delta_clip_start_height)
  2021. do_blocking_move_to_z(delta_clip_start_height);
  2022. #endif
  2023. // Ensure a minimum height before moving the probe
  2024. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2025. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2026. // Move the probe to the given XY
  2027. do_blocking_move_to_xy(nx, ny);
  2028. if (DEPLOY_PROBE()) return NAN;
  2029. const float measured_z = run_z_probe();
  2030. if (!stow)
  2031. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2032. else
  2033. if (STOW_PROBE()) return NAN;
  2034. if (verbose_level > 2) {
  2035. SERIAL_PROTOCOLPGM("Bed X: ");
  2036. SERIAL_PROTOCOL_F(lx, 3);
  2037. SERIAL_PROTOCOLPGM(" Y: ");
  2038. SERIAL_PROTOCOL_F(ly, 3);
  2039. SERIAL_PROTOCOLPGM(" Z: ");
  2040. SERIAL_PROTOCOL_F(measured_z, 3);
  2041. SERIAL_EOL();
  2042. }
  2043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2044. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2045. #endif
  2046. feedrate_mm_s = old_feedrate_mm_s;
  2047. return measured_z;
  2048. }
  2049. #endif // HAS_BED_PROBE
  2050. #if HAS_LEVELING
  2051. bool leveling_is_valid() {
  2052. return
  2053. #if ENABLED(MESH_BED_LEVELING)
  2054. mbl.has_mesh()
  2055. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2056. !!bilinear_grid_spacing[X_AXIS]
  2057. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2058. true
  2059. #else // 3POINT, LINEAR
  2060. true
  2061. #endif
  2062. ;
  2063. }
  2064. bool leveling_is_active() {
  2065. return
  2066. #if ENABLED(MESH_BED_LEVELING)
  2067. mbl.active()
  2068. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2069. ubl.state.active
  2070. #else
  2071. planner.abl_enabled
  2072. #endif
  2073. ;
  2074. }
  2075. /**
  2076. * Turn bed leveling on or off, fixing the current
  2077. * position as-needed.
  2078. *
  2079. * Disable: Current position = physical position
  2080. * Enable: Current position = "unleveled" physical position
  2081. */
  2082. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2083. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2084. const bool can_change = (!enable || leveling_is_valid());
  2085. #else
  2086. constexpr bool can_change = true;
  2087. #endif
  2088. if (can_change && enable != leveling_is_active()) {
  2089. #if ENABLED(MESH_BED_LEVELING)
  2090. if (!enable)
  2091. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2092. const bool enabling = enable && leveling_is_valid();
  2093. mbl.set_active(enabling);
  2094. if (enabling) planner.unapply_leveling(current_position);
  2095. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2096. #if PLANNER_LEVELING
  2097. if (ubl.state.active) { // leveling from on to off
  2098. // change unleveled current_position to physical current_position without moving steppers.
  2099. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2100. ubl.state.active = false; // disable only AFTER calling apply_leveling
  2101. }
  2102. else { // leveling from off to on
  2103. ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2104. // change physical current_position to unleveled current_position without moving steppers.
  2105. planner.unapply_leveling(current_position);
  2106. }
  2107. #else
  2108. ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move.
  2109. #endif
  2110. #else // ABL
  2111. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2112. // Force bilinear_z_offset to re-calculate next time
  2113. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2114. (void)bilinear_z_offset(reset);
  2115. #endif
  2116. // Enable or disable leveling compensation in the planner
  2117. planner.abl_enabled = enable;
  2118. if (!enable)
  2119. // When disabling just get the current position from the steppers.
  2120. // This will yield the smallest error when first converted back to steps.
  2121. set_current_from_steppers_for_axis(
  2122. #if ABL_PLANAR
  2123. ALL_AXES
  2124. #else
  2125. Z_AXIS
  2126. #endif
  2127. );
  2128. else
  2129. // When enabling, remove compensation from the current position,
  2130. // so compensation will give the right stepper counts.
  2131. planner.unapply_leveling(current_position);
  2132. #endif // ABL
  2133. }
  2134. }
  2135. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2136. void set_z_fade_height(const float zfh) {
  2137. const bool level_active = leveling_is_active();
  2138. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2139. if (level_active)
  2140. set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2141. planner.z_fade_height = zfh;
  2142. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2143. if (level_active)
  2144. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2145. #else
  2146. planner.z_fade_height = zfh;
  2147. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2148. if (level_active) {
  2149. set_current_from_steppers_for_axis(
  2150. #if ABL_PLANAR
  2151. ALL_AXES
  2152. #else
  2153. Z_AXIS
  2154. #endif
  2155. );
  2156. }
  2157. #endif
  2158. }
  2159. #endif // LEVELING_FADE_HEIGHT
  2160. /**
  2161. * Reset calibration results to zero.
  2162. */
  2163. void reset_bed_level() {
  2164. set_bed_leveling_enabled(false);
  2165. #if ENABLED(MESH_BED_LEVELING)
  2166. if (leveling_is_valid()) {
  2167. mbl.reset();
  2168. mbl.set_has_mesh(false);
  2169. }
  2170. #else
  2171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2172. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2173. #endif
  2174. #if ABL_PLANAR
  2175. planner.bed_level_matrix.set_to_identity();
  2176. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2177. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2178. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2179. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2180. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2181. z_values[x][y] = NAN;
  2182. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2183. ubl.reset();
  2184. #endif
  2185. #endif
  2186. }
  2187. #endif // HAS_LEVELING
  2188. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2189. /**
  2190. * Enable to produce output in JSON format suitable
  2191. * for SCAD or JavaScript mesh visualizers.
  2192. *
  2193. * Visualize meshes in OpenSCAD using the included script.
  2194. *
  2195. * buildroot/shared/scripts/MarlinMesh.scad
  2196. */
  2197. //#define SCAD_MESH_OUTPUT
  2198. /**
  2199. * Print calibration results for plotting or manual frame adjustment.
  2200. */
  2201. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2202. #ifndef SCAD_MESH_OUTPUT
  2203. for (uint8_t x = 0; x < sx; x++) {
  2204. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2205. SERIAL_PROTOCOLCHAR(' ');
  2206. SERIAL_PROTOCOL((int)x);
  2207. }
  2208. SERIAL_EOL();
  2209. #endif
  2210. #ifdef SCAD_MESH_OUTPUT
  2211. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2212. #endif
  2213. for (uint8_t y = 0; y < sy; y++) {
  2214. #ifdef SCAD_MESH_OUTPUT
  2215. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2216. #else
  2217. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2218. SERIAL_PROTOCOL((int)y);
  2219. #endif
  2220. for (uint8_t x = 0; x < sx; x++) {
  2221. SERIAL_PROTOCOLCHAR(' ');
  2222. const float offset = fn(x, y);
  2223. if (!isnan(offset)) {
  2224. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2225. SERIAL_PROTOCOL_F(offset, precision);
  2226. }
  2227. else {
  2228. #ifdef SCAD_MESH_OUTPUT
  2229. for (uint8_t i = 3; i < precision + 3; i++)
  2230. SERIAL_PROTOCOLCHAR(' ');
  2231. SERIAL_PROTOCOLPGM("NAN");
  2232. #else
  2233. for (uint8_t i = 0; i < precision + 3; i++)
  2234. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2235. #endif
  2236. }
  2237. #ifdef SCAD_MESH_OUTPUT
  2238. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2239. #endif
  2240. }
  2241. #ifdef SCAD_MESH_OUTPUT
  2242. SERIAL_PROTOCOLCHAR(' ');
  2243. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2244. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2245. #endif
  2246. SERIAL_EOL();
  2247. }
  2248. #ifdef SCAD_MESH_OUTPUT
  2249. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2250. #endif
  2251. SERIAL_EOL();
  2252. }
  2253. #endif
  2254. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2255. /**
  2256. * Extrapolate a single point from its neighbors
  2257. */
  2258. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2260. if (DEBUGGING(LEVELING)) {
  2261. SERIAL_ECHOPGM("Extrapolate [");
  2262. if (x < 10) SERIAL_CHAR(' ');
  2263. SERIAL_ECHO((int)x);
  2264. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2265. SERIAL_CHAR(' ');
  2266. if (y < 10) SERIAL_CHAR(' ');
  2267. SERIAL_ECHO((int)y);
  2268. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2269. SERIAL_CHAR(']');
  2270. }
  2271. #endif
  2272. if (!isnan(z_values[x][y])) {
  2273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2274. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2275. #endif
  2276. return; // Don't overwrite good values.
  2277. }
  2278. SERIAL_EOL();
  2279. // Get X neighbors, Y neighbors, and XY neighbors
  2280. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2281. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2282. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2283. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2284. // Treat far unprobed points as zero, near as equal to far
  2285. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2286. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2287. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2288. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2289. // Take the average instead of the median
  2290. z_values[x][y] = (a + b + c) / 3.0;
  2291. // Median is robust (ignores outliers).
  2292. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2293. // : ((c < b) ? b : (a < c) ? a : c);
  2294. }
  2295. //Enable this if your SCARA uses 180° of total area
  2296. //#define EXTRAPOLATE_FROM_EDGE
  2297. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2298. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2299. #define HALF_IN_X
  2300. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2301. #define HALF_IN_Y
  2302. #endif
  2303. #endif
  2304. /**
  2305. * Fill in the unprobed points (corners of circular print surface)
  2306. * using linear extrapolation, away from the center.
  2307. */
  2308. static void extrapolate_unprobed_bed_level() {
  2309. #ifdef HALF_IN_X
  2310. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2311. #else
  2312. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2313. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2314. xlen = ctrx1;
  2315. #endif
  2316. #ifdef HALF_IN_Y
  2317. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2318. #else
  2319. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2320. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2321. ylen = ctry1;
  2322. #endif
  2323. for (uint8_t xo = 0; xo <= xlen; xo++)
  2324. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2325. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2326. #ifndef HALF_IN_X
  2327. const uint8_t x1 = ctrx1 - xo;
  2328. #endif
  2329. #ifndef HALF_IN_Y
  2330. const uint8_t y1 = ctry1 - yo;
  2331. #ifndef HALF_IN_X
  2332. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2333. #endif
  2334. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2335. #endif
  2336. #ifndef HALF_IN_X
  2337. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2338. #endif
  2339. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2340. }
  2341. }
  2342. static void print_bilinear_leveling_grid() {
  2343. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2344. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2345. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2346. );
  2347. }
  2348. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2349. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2350. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2351. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2352. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2353. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2354. int bilinear_grid_spacing_virt[2] = { 0 };
  2355. float bilinear_grid_factor_virt[2] = { 0 };
  2356. static void bed_level_virt_print() {
  2357. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2358. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2359. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2360. );
  2361. }
  2362. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2363. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2364. uint8_t ep = 0, ip = 1;
  2365. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2366. if (x) {
  2367. ep = GRID_MAX_POINTS_X - 1;
  2368. ip = GRID_MAX_POINTS_X - 2;
  2369. }
  2370. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2371. return LINEAR_EXTRAPOLATION(
  2372. z_values[ep][y - 1],
  2373. z_values[ip][y - 1]
  2374. );
  2375. else
  2376. return LINEAR_EXTRAPOLATION(
  2377. bed_level_virt_coord(ep + 1, y),
  2378. bed_level_virt_coord(ip + 1, y)
  2379. );
  2380. }
  2381. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2382. if (y) {
  2383. ep = GRID_MAX_POINTS_Y - 1;
  2384. ip = GRID_MAX_POINTS_Y - 2;
  2385. }
  2386. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2387. return LINEAR_EXTRAPOLATION(
  2388. z_values[x - 1][ep],
  2389. z_values[x - 1][ip]
  2390. );
  2391. else
  2392. return LINEAR_EXTRAPOLATION(
  2393. bed_level_virt_coord(x, ep + 1),
  2394. bed_level_virt_coord(x, ip + 1)
  2395. );
  2396. }
  2397. return z_values[x - 1][y - 1];
  2398. }
  2399. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2400. return (
  2401. p[i-1] * -t * sq(1 - t)
  2402. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2403. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2404. - p[i+2] * sq(t) * (1 - t)
  2405. ) * 0.5;
  2406. }
  2407. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2408. float row[4], column[4];
  2409. for (uint8_t i = 0; i < 4; i++) {
  2410. for (uint8_t j = 0; j < 4; j++) {
  2411. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2412. }
  2413. row[i] = bed_level_virt_cmr(column, 1, ty);
  2414. }
  2415. return bed_level_virt_cmr(row, 1, tx);
  2416. }
  2417. void bed_level_virt_interpolate() {
  2418. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2419. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2420. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2421. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2422. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2423. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2424. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2425. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2426. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2427. continue;
  2428. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2429. bed_level_virt_2cmr(
  2430. x + 1,
  2431. y + 1,
  2432. (float)tx / (BILINEAR_SUBDIVISIONS),
  2433. (float)ty / (BILINEAR_SUBDIVISIONS)
  2434. );
  2435. }
  2436. }
  2437. #endif // ABL_BILINEAR_SUBDIVISION
  2438. // Refresh after other values have been updated
  2439. void refresh_bed_level() {
  2440. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2441. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2442. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2443. bed_level_virt_interpolate();
  2444. #endif
  2445. }
  2446. #endif // AUTO_BED_LEVELING_BILINEAR
  2447. /**
  2448. * Home an individual linear axis
  2449. */
  2450. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2452. if (DEBUGGING(LEVELING)) {
  2453. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2454. SERIAL_ECHOPAIR(", ", distance);
  2455. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2456. SERIAL_CHAR(')');
  2457. SERIAL_EOL();
  2458. }
  2459. #endif
  2460. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2461. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2462. if (deploy_bltouch) set_bltouch_deployed(true);
  2463. #endif
  2464. #if QUIET_PROBING
  2465. if (axis == Z_AXIS) probing_pause(true);
  2466. #endif
  2467. // Tell the planner we're at Z=0
  2468. current_position[axis] = 0;
  2469. #if IS_SCARA
  2470. SYNC_PLAN_POSITION_KINEMATIC();
  2471. current_position[axis] = distance;
  2472. inverse_kinematics(current_position);
  2473. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2474. #else
  2475. sync_plan_position();
  2476. current_position[axis] = distance;
  2477. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2478. #endif
  2479. stepper.synchronize();
  2480. #if QUIET_PROBING
  2481. if (axis == Z_AXIS) probing_pause(false);
  2482. #endif
  2483. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2484. if (deploy_bltouch) set_bltouch_deployed(false);
  2485. #endif
  2486. endstops.hit_on_purpose();
  2487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2488. if (DEBUGGING(LEVELING)) {
  2489. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2490. SERIAL_CHAR(')');
  2491. SERIAL_EOL();
  2492. }
  2493. #endif
  2494. }
  2495. /**
  2496. * TMC2130 specific sensorless homing using stallGuard2.
  2497. * stallGuard2 only works when in spreadCycle mode.
  2498. * spreadCycle and stealthChop are mutually exclusive.
  2499. */
  2500. #if ENABLED(SENSORLESS_HOMING)
  2501. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2502. #if ENABLED(STEALTHCHOP)
  2503. if (enable) {
  2504. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2505. st.stealthChop(0);
  2506. }
  2507. else {
  2508. st.coolstep_min_speed(0);
  2509. st.stealthChop(1);
  2510. }
  2511. #endif
  2512. st.diag1_stall(enable ? 1 : 0);
  2513. }
  2514. #endif
  2515. /**
  2516. * Home an individual "raw axis" to its endstop.
  2517. * This applies to XYZ on Cartesian and Core robots, and
  2518. * to the individual ABC steppers on DELTA and SCARA.
  2519. *
  2520. * At the end of the procedure the axis is marked as
  2521. * homed and the current position of that axis is updated.
  2522. * Kinematic robots should wait till all axes are homed
  2523. * before updating the current position.
  2524. */
  2525. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2526. static void homeaxis(const AxisEnum axis) {
  2527. #if IS_SCARA
  2528. // Only Z homing (with probe) is permitted
  2529. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2530. #else
  2531. #define CAN_HOME(A) \
  2532. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2533. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2534. #endif
  2535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2536. if (DEBUGGING(LEVELING)) {
  2537. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2538. SERIAL_CHAR(')');
  2539. SERIAL_EOL();
  2540. }
  2541. #endif
  2542. const int axis_home_dir =
  2543. #if ENABLED(DUAL_X_CARRIAGE)
  2544. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2545. #endif
  2546. home_dir(axis);
  2547. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2548. #if HOMING_Z_WITH_PROBE
  2549. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2550. #endif
  2551. // Set a flag for Z motor locking
  2552. #if ENABLED(Z_DUAL_ENDSTOPS)
  2553. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2554. #endif
  2555. // Disable stealthChop if used. Enable diag1 pin on driver.
  2556. #if ENABLED(SENSORLESS_HOMING)
  2557. #if ENABLED(X_IS_TMC2130)
  2558. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2559. #endif
  2560. #if ENABLED(Y_IS_TMC2130)
  2561. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2562. #endif
  2563. #endif
  2564. // Fast move towards endstop until triggered
  2565. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2566. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2567. #endif
  2568. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2569. // When homing Z with probe respect probe clearance
  2570. const float bump = axis_home_dir * (
  2571. #if HOMING_Z_WITH_PROBE
  2572. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2573. #endif
  2574. home_bump_mm(axis)
  2575. );
  2576. // If a second homing move is configured...
  2577. if (bump) {
  2578. // Move away from the endstop by the axis HOME_BUMP_MM
  2579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2580. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2581. #endif
  2582. do_homing_move(axis, -bump);
  2583. // Slow move towards endstop until triggered
  2584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2585. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2586. #endif
  2587. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2588. }
  2589. #if ENABLED(Z_DUAL_ENDSTOPS)
  2590. if (axis == Z_AXIS) {
  2591. float adj = FABS(z_endstop_adj);
  2592. bool lockZ1;
  2593. if (axis_home_dir > 0) {
  2594. adj = -adj;
  2595. lockZ1 = (z_endstop_adj > 0);
  2596. }
  2597. else
  2598. lockZ1 = (z_endstop_adj < 0);
  2599. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2600. // Move to the adjusted endstop height
  2601. do_homing_move(axis, adj);
  2602. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2603. stepper.set_homing_flag(false);
  2604. } // Z_AXIS
  2605. #endif
  2606. #if IS_SCARA
  2607. set_axis_is_at_home(axis);
  2608. SYNC_PLAN_POSITION_KINEMATIC();
  2609. #elif ENABLED(DELTA)
  2610. // Delta has already moved all three towers up in G28
  2611. // so here it re-homes each tower in turn.
  2612. // Delta homing treats the axes as normal linear axes.
  2613. // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
  2614. if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2615. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2616. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2617. #endif
  2618. do_homing_move(axis, endstop_adj[axis] - 0.1);
  2619. }
  2620. #else
  2621. // For cartesian/core machines,
  2622. // set the axis to its home position
  2623. set_axis_is_at_home(axis);
  2624. sync_plan_position();
  2625. destination[axis] = current_position[axis];
  2626. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2627. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2628. #endif
  2629. #endif
  2630. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2631. #if ENABLED(SENSORLESS_HOMING)
  2632. #if ENABLED(X_IS_TMC2130)
  2633. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2634. #endif
  2635. #if ENABLED(Y_IS_TMC2130)
  2636. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2637. #endif
  2638. #endif
  2639. // Put away the Z probe
  2640. #if HOMING_Z_WITH_PROBE
  2641. if (axis == Z_AXIS && STOW_PROBE()) return;
  2642. #endif
  2643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2644. if (DEBUGGING(LEVELING)) {
  2645. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2646. SERIAL_CHAR(')');
  2647. SERIAL_EOL();
  2648. }
  2649. #endif
  2650. } // homeaxis()
  2651. #if ENABLED(FWRETRACT)
  2652. void retract(const bool retracting, const bool swapping = false) {
  2653. static float hop_height;
  2654. if (retracting == retracted[active_extruder]) return;
  2655. const float old_feedrate_mm_s = feedrate_mm_s;
  2656. set_destination_to_current();
  2657. if (retracting) {
  2658. feedrate_mm_s = retract_feedrate_mm_s;
  2659. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2660. sync_plan_position_e();
  2661. prepare_move_to_destination();
  2662. if (retract_zlift > 0.01) {
  2663. hop_height = current_position[Z_AXIS];
  2664. // Pretend current position is lower
  2665. current_position[Z_AXIS] -= retract_zlift;
  2666. SYNC_PLAN_POSITION_KINEMATIC();
  2667. // Raise up to the old current_position
  2668. prepare_move_to_destination();
  2669. }
  2670. }
  2671. else {
  2672. // If the height hasn't been lowered, undo the Z hop
  2673. if (retract_zlift > 0.01 && hop_height <= current_position[Z_AXIS]) {
  2674. // Pretend current position is higher. Z will lower on the next move
  2675. current_position[Z_AXIS] += retract_zlift;
  2676. SYNC_PLAN_POSITION_KINEMATIC();
  2677. // Lower Z
  2678. prepare_move_to_destination();
  2679. }
  2680. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2681. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2682. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2683. sync_plan_position_e();
  2684. // Recover E
  2685. prepare_move_to_destination();
  2686. }
  2687. feedrate_mm_s = old_feedrate_mm_s;
  2688. retracted[active_extruder] = retracting;
  2689. } // retract()
  2690. #endif // FWRETRACT
  2691. #if ENABLED(MIXING_EXTRUDER)
  2692. void normalize_mix() {
  2693. float mix_total = 0.0;
  2694. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2695. // Scale all values if they don't add up to ~1.0
  2696. if (!NEAR(mix_total, 1.0)) {
  2697. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2698. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2699. }
  2700. }
  2701. #if ENABLED(DIRECT_MIXING_IN_G1)
  2702. // Get mixing parameters from the GCode
  2703. // The total "must" be 1.0 (but it will be normalized)
  2704. // If no mix factors are given, the old mix is preserved
  2705. void gcode_get_mix() {
  2706. const char* mixing_codes = "ABCDHI";
  2707. byte mix_bits = 0;
  2708. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2709. if (parser.seenval(mixing_codes[i])) {
  2710. SBI(mix_bits, i);
  2711. float v = parser.value_float();
  2712. NOLESS(v, 0.0);
  2713. mixing_factor[i] = RECIPROCAL(v);
  2714. }
  2715. }
  2716. // If any mixing factors were included, clear the rest
  2717. // If none were included, preserve the last mix
  2718. if (mix_bits) {
  2719. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2720. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2721. normalize_mix();
  2722. }
  2723. }
  2724. #endif
  2725. #endif
  2726. /**
  2727. * ***************************************************************************
  2728. * ***************************** G-CODE HANDLING *****************************
  2729. * ***************************************************************************
  2730. */
  2731. /**
  2732. * Set XYZE destination and feedrate from the current GCode command
  2733. *
  2734. * - Set destination from included axis codes
  2735. * - Set to current for missing axis codes
  2736. * - Set the feedrate, if included
  2737. */
  2738. void gcode_get_destination() {
  2739. LOOP_XYZE(i) {
  2740. if (parser.seen(axis_codes[i]))
  2741. destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2742. else
  2743. destination[i] = current_position[i];
  2744. }
  2745. if (parser.linearval('F') > 0.0)
  2746. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2747. #if ENABLED(PRINTCOUNTER)
  2748. if (!DEBUGGING(DRYRUN))
  2749. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2750. #endif
  2751. // Get ABCDHI mixing factors
  2752. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2753. gcode_get_mix();
  2754. #endif
  2755. }
  2756. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2757. /**
  2758. * Output a "busy" message at regular intervals
  2759. * while the machine is not accepting commands.
  2760. */
  2761. void host_keepalive() {
  2762. const millis_t ms = millis();
  2763. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2764. if (PENDING(ms, next_busy_signal_ms)) return;
  2765. switch (busy_state) {
  2766. case IN_HANDLER:
  2767. case IN_PROCESS:
  2768. SERIAL_ECHO_START();
  2769. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2770. break;
  2771. case PAUSED_FOR_USER:
  2772. SERIAL_ECHO_START();
  2773. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2774. break;
  2775. case PAUSED_FOR_INPUT:
  2776. SERIAL_ECHO_START();
  2777. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2778. break;
  2779. default:
  2780. break;
  2781. }
  2782. }
  2783. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2784. }
  2785. #endif // HOST_KEEPALIVE_FEATURE
  2786. /**************************************************
  2787. ***************** GCode Handlers *****************
  2788. **************************************************/
  2789. /**
  2790. * G0, G1: Coordinated movement of X Y Z E axes
  2791. */
  2792. inline void gcode_G0_G1(
  2793. #if IS_SCARA
  2794. bool fast_move=false
  2795. #endif
  2796. ) {
  2797. if (IsRunning()) {
  2798. gcode_get_destination(); // For X Y Z E F
  2799. #if ENABLED(FWRETRACT)
  2800. if (autoretract_enabled && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z')) && parser.seen('E')) {
  2801. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2802. // Is this move an attempt to retract or recover?
  2803. if ((echange < -(MIN_RETRACT) && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2804. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2805. sync_plan_position_e(); // AND from the planner
  2806. retract(!retracted[active_extruder]);
  2807. return;
  2808. }
  2809. }
  2810. #endif // FWRETRACT
  2811. #if IS_SCARA
  2812. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2813. #else
  2814. prepare_move_to_destination();
  2815. #endif
  2816. }
  2817. }
  2818. /**
  2819. * G2: Clockwise Arc
  2820. * G3: Counterclockwise Arc
  2821. *
  2822. * This command has two forms: IJ-form and R-form.
  2823. *
  2824. * - I specifies an X offset. J specifies a Y offset.
  2825. * At least one of the IJ parameters is required.
  2826. * X and Y can be omitted to do a complete circle.
  2827. * The given XY is not error-checked. The arc ends
  2828. * based on the angle of the destination.
  2829. * Mixing I or J with R will throw an error.
  2830. *
  2831. * - R specifies the radius. X or Y is required.
  2832. * Omitting both X and Y will throw an error.
  2833. * X or Y must differ from the current XY.
  2834. * Mixing R with I or J will throw an error.
  2835. *
  2836. * - P specifies the number of full circles to do
  2837. * before the specified arc move.
  2838. *
  2839. * Examples:
  2840. *
  2841. * G2 I10 ; CW circle centered at X+10
  2842. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2843. */
  2844. #if ENABLED(ARC_SUPPORT)
  2845. inline void gcode_G2_G3(bool clockwise) {
  2846. if (IsRunning()) {
  2847. #if ENABLED(SF_ARC_FIX)
  2848. const bool relative_mode_backup = relative_mode;
  2849. relative_mode = true;
  2850. #endif
  2851. gcode_get_destination();
  2852. #if ENABLED(SF_ARC_FIX)
  2853. relative_mode = relative_mode_backup;
  2854. #endif
  2855. float arc_offset[2] = { 0.0, 0.0 };
  2856. if (parser.seenval('R')) {
  2857. const float r = parser.value_linear_units(),
  2858. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2859. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2860. if (r && (p2 != p1 || q2 != q1)) {
  2861. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2862. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2863. d = HYPOT(dx, dy), // Linear distance between the points
  2864. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2865. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2866. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2867. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2868. arc_offset[0] = cx - p1;
  2869. arc_offset[1] = cy - q1;
  2870. }
  2871. }
  2872. else {
  2873. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2874. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2875. }
  2876. if (arc_offset[0] || arc_offset[1]) {
  2877. #if ENABLED(ARC_P_CIRCLES)
  2878. // P indicates number of circles to do
  2879. int8_t circles_to_do = parser.byteval('P');
  2880. if (!WITHIN(circles_to_do, 0, 100)) {
  2881. SERIAL_ERROR_START();
  2882. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2883. }
  2884. while (circles_to_do--)
  2885. plan_arc(current_position, arc_offset, clockwise);
  2886. #endif
  2887. // Send the arc to the planner
  2888. plan_arc(destination, arc_offset, clockwise);
  2889. refresh_cmd_timeout();
  2890. }
  2891. else {
  2892. // Bad arguments
  2893. SERIAL_ERROR_START();
  2894. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2895. }
  2896. }
  2897. }
  2898. #endif // ARC_SUPPORT
  2899. /**
  2900. * G4: Dwell S<seconds> or P<milliseconds>
  2901. */
  2902. inline void gcode_G4() {
  2903. millis_t dwell_ms = 0;
  2904. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  2905. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  2906. stepper.synchronize();
  2907. refresh_cmd_timeout();
  2908. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2909. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2910. while (PENDING(millis(), dwell_ms)) idle();
  2911. }
  2912. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2913. /**
  2914. * Parameters interpreted according to:
  2915. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2916. * However I, J omission is not supported at this point; all
  2917. * parameters can be omitted and default to zero.
  2918. */
  2919. /**
  2920. * G5: Cubic B-spline
  2921. */
  2922. inline void gcode_G5() {
  2923. if (IsRunning()) {
  2924. gcode_get_destination();
  2925. const float offset[] = {
  2926. parser.linearval('I'),
  2927. parser.linearval('J'),
  2928. parser.linearval('P'),
  2929. parser.linearval('Q')
  2930. };
  2931. plan_cubic_move(offset);
  2932. }
  2933. }
  2934. #endif // BEZIER_CURVE_SUPPORT
  2935. #if ENABLED(FWRETRACT)
  2936. /**
  2937. * G10 - Retract filament according to settings of M207
  2938. */
  2939. inline void gcode_G10() {
  2940. #if EXTRUDERS > 1
  2941. const bool rs = parser.boolval('S');
  2942. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  2943. #endif
  2944. retract(true
  2945. #if EXTRUDERS > 1
  2946. , rs
  2947. #endif
  2948. );
  2949. }
  2950. /**
  2951. * G11 - Recover filament according to settings of M208
  2952. */
  2953. inline void gcode_G11() { retract(false); }
  2954. #endif // FWRETRACT
  2955. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2956. /**
  2957. * G12: Clean the nozzle
  2958. */
  2959. inline void gcode_G12() {
  2960. // Don't allow nozzle cleaning without homing first
  2961. if (axis_unhomed_error()) return;
  2962. const uint8_t pattern = parser.ushortval('P', 0),
  2963. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  2964. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  2965. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  2966. Nozzle::clean(pattern, strokes, radius, objects);
  2967. }
  2968. #endif
  2969. #if ENABLED(CNC_WORKSPACE_PLANES)
  2970. void report_workspace_plane() {
  2971. SERIAL_ECHO_START();
  2972. SERIAL_ECHOPGM("Workspace Plane ");
  2973. serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
  2974. }
  2975. /**
  2976. * G17: Select Plane XY
  2977. * G18: Select Plane ZX
  2978. * G19: Select Plane YZ
  2979. */
  2980. inline void gcode_G17() { workspace_plane = PLANE_XY; }
  2981. inline void gcode_G18() { workspace_plane = PLANE_ZX; }
  2982. inline void gcode_G19() { workspace_plane = PLANE_YZ; }
  2983. #endif // CNC_WORKSPACE_PLANES
  2984. #if ENABLED(INCH_MODE_SUPPORT)
  2985. /**
  2986. * G20: Set input mode to inches
  2987. */
  2988. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  2989. /**
  2990. * G21: Set input mode to millimeters
  2991. */
  2992. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  2993. #endif
  2994. #if ENABLED(NOZZLE_PARK_FEATURE)
  2995. /**
  2996. * G27: Park the nozzle
  2997. */
  2998. inline void gcode_G27() {
  2999. // Don't allow nozzle parking without homing first
  3000. if (axis_unhomed_error()) return;
  3001. Nozzle::park(parser.ushortval('P'));
  3002. }
  3003. #endif // NOZZLE_PARK_FEATURE
  3004. #if ENABLED(QUICK_HOME)
  3005. static void quick_home_xy() {
  3006. // Pretend the current position is 0,0
  3007. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3008. sync_plan_position();
  3009. const int x_axis_home_dir =
  3010. #if ENABLED(DUAL_X_CARRIAGE)
  3011. x_home_dir(active_extruder)
  3012. #else
  3013. home_dir(X_AXIS)
  3014. #endif
  3015. ;
  3016. const float mlx = max_length(X_AXIS),
  3017. mly = max_length(Y_AXIS),
  3018. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3019. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3020. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3021. endstops.hit_on_purpose(); // clear endstop hit flags
  3022. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3023. }
  3024. #endif // QUICK_HOME
  3025. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3026. void log_machine_info() {
  3027. SERIAL_ECHOPGM("Machine Type: ");
  3028. #if ENABLED(DELTA)
  3029. SERIAL_ECHOLNPGM("Delta");
  3030. #elif IS_SCARA
  3031. SERIAL_ECHOLNPGM("SCARA");
  3032. #elif IS_CORE
  3033. SERIAL_ECHOLNPGM("Core");
  3034. #else
  3035. SERIAL_ECHOLNPGM("Cartesian");
  3036. #endif
  3037. SERIAL_ECHOPGM("Probe: ");
  3038. #if ENABLED(PROBE_MANUALLY)
  3039. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3040. #elif ENABLED(FIX_MOUNTED_PROBE)
  3041. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3042. #elif ENABLED(BLTOUCH)
  3043. SERIAL_ECHOLNPGM("BLTOUCH");
  3044. #elif HAS_Z_SERVO_ENDSTOP
  3045. SERIAL_ECHOLNPGM("SERVO PROBE");
  3046. #elif ENABLED(Z_PROBE_SLED)
  3047. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3048. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3049. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3050. #else
  3051. SERIAL_ECHOLNPGM("NONE");
  3052. #endif
  3053. #if HAS_BED_PROBE
  3054. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3055. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3056. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3057. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3058. SERIAL_ECHOPGM(" (Right");
  3059. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3060. SERIAL_ECHOPGM(" (Left");
  3061. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3062. SERIAL_ECHOPGM(" (Middle");
  3063. #else
  3064. SERIAL_ECHOPGM(" (Aligned With");
  3065. #endif
  3066. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3067. SERIAL_ECHOPGM("-Back");
  3068. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3069. SERIAL_ECHOPGM("-Front");
  3070. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3071. SERIAL_ECHOPGM("-Center");
  3072. #endif
  3073. if (zprobe_zoffset < 0)
  3074. SERIAL_ECHOPGM(" & Below");
  3075. else if (zprobe_zoffset > 0)
  3076. SERIAL_ECHOPGM(" & Above");
  3077. else
  3078. SERIAL_ECHOPGM(" & Same Z as");
  3079. SERIAL_ECHOLNPGM(" Nozzle)");
  3080. #endif
  3081. #if HAS_ABL
  3082. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3083. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3084. SERIAL_ECHOPGM("LINEAR");
  3085. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3086. SERIAL_ECHOPGM("BILINEAR");
  3087. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3088. SERIAL_ECHOPGM("3POINT");
  3089. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3090. SERIAL_ECHOPGM("UBL");
  3091. #endif
  3092. if (leveling_is_active()) {
  3093. SERIAL_ECHOLNPGM(" (enabled)");
  3094. #if ABL_PLANAR
  3095. const float diff[XYZ] = {
  3096. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3097. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3098. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3099. };
  3100. SERIAL_ECHOPGM("ABL Adjustment X");
  3101. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3102. SERIAL_ECHO(diff[X_AXIS]);
  3103. SERIAL_ECHOPGM(" Y");
  3104. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3105. SERIAL_ECHO(diff[Y_AXIS]);
  3106. SERIAL_ECHOPGM(" Z");
  3107. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3108. SERIAL_ECHO(diff[Z_AXIS]);
  3109. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3110. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3111. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3112. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3113. #endif
  3114. }
  3115. else
  3116. SERIAL_ECHOLNPGM(" (disabled)");
  3117. SERIAL_EOL();
  3118. #elif ENABLED(MESH_BED_LEVELING)
  3119. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3120. if (leveling_is_active()) {
  3121. float lz = current_position[Z_AXIS];
  3122. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3123. SERIAL_ECHOLNPGM(" (enabled)");
  3124. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3125. }
  3126. else
  3127. SERIAL_ECHOPGM(" (disabled)");
  3128. SERIAL_EOL();
  3129. #endif // MESH_BED_LEVELING
  3130. }
  3131. #endif // DEBUG_LEVELING_FEATURE
  3132. #if ENABLED(DELTA)
  3133. /**
  3134. * A delta can only safely home all axes at the same time
  3135. * This is like quick_home_xy() but for 3 towers.
  3136. */
  3137. inline void home_delta() {
  3138. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3139. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3140. #endif
  3141. // Init the current position of all carriages to 0,0,0
  3142. ZERO(current_position);
  3143. sync_plan_position();
  3144. // Move all carriages together linearly until an endstop is hit.
  3145. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3146. feedrate_mm_s = homing_feedrate(X_AXIS);
  3147. line_to_current_position();
  3148. stepper.synchronize();
  3149. endstops.hit_on_purpose(); // clear endstop hit flags
  3150. // At least one carriage has reached the top.
  3151. // Now re-home each carriage separately.
  3152. HOMEAXIS(A);
  3153. HOMEAXIS(B);
  3154. HOMEAXIS(C);
  3155. // Set all carriages to their home positions
  3156. // Do this here all at once for Delta, because
  3157. // XYZ isn't ABC. Applying this per-tower would
  3158. // give the impression that they are the same.
  3159. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3160. SYNC_PLAN_POSITION_KINEMATIC();
  3161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3162. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3163. #endif
  3164. }
  3165. #endif // DELTA
  3166. #if ENABLED(Z_SAFE_HOMING)
  3167. inline void home_z_safely() {
  3168. // Disallow Z homing if X or Y are unknown
  3169. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3170. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3171. SERIAL_ECHO_START();
  3172. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3173. return;
  3174. }
  3175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3176. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3177. #endif
  3178. SYNC_PLAN_POSITION_KINEMATIC();
  3179. /**
  3180. * Move the Z probe (or just the nozzle) to the safe homing point
  3181. */
  3182. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3183. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3184. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3185. #if HOMING_Z_WITH_PROBE
  3186. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3187. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3188. #endif
  3189. if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
  3190. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3191. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3192. #endif
  3193. // This causes the carriage on Dual X to unpark
  3194. #if ENABLED(DUAL_X_CARRIAGE)
  3195. active_extruder_parked = false;
  3196. #endif
  3197. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3198. HOMEAXIS(Z);
  3199. }
  3200. else {
  3201. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3202. SERIAL_ECHO_START();
  3203. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3204. }
  3205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3206. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3207. #endif
  3208. }
  3209. #endif // Z_SAFE_HOMING
  3210. #if ENABLED(PROBE_MANUALLY)
  3211. bool g29_in_progress = false;
  3212. #else
  3213. constexpr bool g29_in_progress = false;
  3214. #endif
  3215. /**
  3216. * G28: Home all axes according to settings
  3217. *
  3218. * Parameters
  3219. *
  3220. * None Home to all axes with no parameters.
  3221. * With QUICK_HOME enabled XY will home together, then Z.
  3222. *
  3223. * Cartesian parameters
  3224. *
  3225. * X Home to the X endstop
  3226. * Y Home to the Y endstop
  3227. * Z Home to the Z endstop
  3228. *
  3229. */
  3230. inline void gcode_G28(const bool always_home_all) {
  3231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3232. if (DEBUGGING(LEVELING)) {
  3233. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3234. log_machine_info();
  3235. }
  3236. #endif
  3237. // Wait for planner moves to finish!
  3238. stepper.synchronize();
  3239. // Cancel the active G29 session
  3240. #if ENABLED(PROBE_MANUALLY)
  3241. g29_in_progress = false;
  3242. #endif
  3243. // Disable the leveling matrix before homing
  3244. #if HAS_LEVELING
  3245. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3246. const bool ubl_state_at_entry = leveling_is_active();
  3247. #endif
  3248. set_bed_leveling_enabled(false);
  3249. #endif
  3250. #if ENABLED(CNC_WORKSPACE_PLANES)
  3251. workspace_plane = PLANE_XY;
  3252. #endif
  3253. // Always home with tool 0 active
  3254. #if HOTENDS > 1
  3255. const uint8_t old_tool_index = active_extruder;
  3256. tool_change(0, 0, true);
  3257. #endif
  3258. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3259. extruder_duplication_enabled = false;
  3260. #endif
  3261. setup_for_endstop_or_probe_move();
  3262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3263. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3264. #endif
  3265. endstops.enable(true); // Enable endstops for next homing move
  3266. #if ENABLED(DELTA)
  3267. home_delta();
  3268. UNUSED(always_home_all);
  3269. #else // NOT DELTA
  3270. const bool homeX = always_home_all || parser.seen('X'),
  3271. homeY = always_home_all || parser.seen('Y'),
  3272. homeZ = always_home_all || parser.seen('Z'),
  3273. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3274. set_destination_to_current();
  3275. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3276. if (home_all || homeZ) {
  3277. HOMEAXIS(Z);
  3278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3279. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3280. #endif
  3281. }
  3282. #else
  3283. if (home_all || homeX || homeY) {
  3284. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3285. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3286. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3288. if (DEBUGGING(LEVELING))
  3289. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3290. #endif
  3291. do_blocking_move_to_z(destination[Z_AXIS]);
  3292. }
  3293. }
  3294. #endif
  3295. #if ENABLED(QUICK_HOME)
  3296. if (home_all || (homeX && homeY)) quick_home_xy();
  3297. #endif
  3298. #if ENABLED(HOME_Y_BEFORE_X)
  3299. // Home Y
  3300. if (home_all || homeY) {
  3301. HOMEAXIS(Y);
  3302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3303. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3304. #endif
  3305. }
  3306. #endif
  3307. // Home X
  3308. if (home_all || homeX) {
  3309. #if ENABLED(DUAL_X_CARRIAGE)
  3310. // Always home the 2nd (right) extruder first
  3311. active_extruder = 1;
  3312. HOMEAXIS(X);
  3313. // Remember this extruder's position for later tool change
  3314. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3315. // Home the 1st (left) extruder
  3316. active_extruder = 0;
  3317. HOMEAXIS(X);
  3318. // Consider the active extruder to be parked
  3319. COPY(raised_parked_position, current_position);
  3320. delayed_move_time = 0;
  3321. active_extruder_parked = true;
  3322. #else
  3323. HOMEAXIS(X);
  3324. #endif
  3325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3326. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3327. #endif
  3328. }
  3329. #if DISABLED(HOME_Y_BEFORE_X)
  3330. // Home Y
  3331. if (home_all || homeY) {
  3332. HOMEAXIS(Y);
  3333. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3334. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3335. #endif
  3336. }
  3337. #endif
  3338. // Home Z last if homing towards the bed
  3339. #if Z_HOME_DIR < 0
  3340. if (home_all || homeZ) {
  3341. #if ENABLED(Z_SAFE_HOMING)
  3342. home_z_safely();
  3343. #else
  3344. HOMEAXIS(Z);
  3345. #endif
  3346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3347. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3348. #endif
  3349. } // home_all || homeZ
  3350. #endif // Z_HOME_DIR < 0
  3351. SYNC_PLAN_POSITION_KINEMATIC();
  3352. #endif // !DELTA (gcode_G28)
  3353. endstops.not_homing();
  3354. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3355. // move to a height where we can use the full xy-area
  3356. do_blocking_move_to_z(delta_clip_start_height);
  3357. #endif
  3358. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3359. set_bed_leveling_enabled(ubl_state_at_entry);
  3360. #endif
  3361. clean_up_after_endstop_or_probe_move();
  3362. // Restore the active tool after homing
  3363. #if HOTENDS > 1
  3364. tool_change(old_tool_index, 0, true);
  3365. #endif
  3366. lcd_refresh();
  3367. report_current_position();
  3368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3369. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3370. #endif
  3371. } // G28
  3372. void home_all_axes() { gcode_G28(true); }
  3373. #if HAS_PROBING_PROCEDURE
  3374. void out_of_range_error(const char* p_edge) {
  3375. SERIAL_PROTOCOLPGM("?Probe ");
  3376. serialprintPGM(p_edge);
  3377. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3378. }
  3379. #endif
  3380. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3381. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3382. extern bool lcd_wait_for_move;
  3383. #endif
  3384. inline void _manual_goto_xy(const float &x, const float &y) {
  3385. const float old_feedrate_mm_s = feedrate_mm_s;
  3386. #if MANUAL_PROBE_HEIGHT > 0
  3387. const float prev_z = current_position[Z_AXIS];
  3388. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3389. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
  3390. line_to_current_position();
  3391. #endif
  3392. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3393. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3394. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3395. line_to_current_position();
  3396. #if MANUAL_PROBE_HEIGHT > 0
  3397. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3398. current_position[Z_AXIS] = prev_z; // move back to the previous Z.
  3399. line_to_current_position();
  3400. #endif
  3401. feedrate_mm_s = old_feedrate_mm_s;
  3402. stepper.synchronize();
  3403. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3404. lcd_wait_for_move = false;
  3405. #endif
  3406. }
  3407. #endif
  3408. #if ENABLED(MESH_BED_LEVELING)
  3409. // Save 130 bytes with non-duplication of PSTR
  3410. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3411. void mbl_mesh_report() {
  3412. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3413. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3414. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3415. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3416. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3417. );
  3418. }
  3419. void mesh_probing_done() {
  3420. mbl.set_has_mesh(true);
  3421. home_all_axes();
  3422. set_bed_leveling_enabled(true);
  3423. #if ENABLED(MESH_G28_REST_ORIGIN)
  3424. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3425. set_destination_to_current();
  3426. line_to_destination(homing_feedrate(Z_AXIS));
  3427. stepper.synchronize();
  3428. #endif
  3429. }
  3430. /**
  3431. * G29: Mesh-based Z probe, probes a grid and produces a
  3432. * mesh to compensate for variable bed height
  3433. *
  3434. * Parameters With MESH_BED_LEVELING:
  3435. *
  3436. * S0 Produce a mesh report
  3437. * S1 Start probing mesh points
  3438. * S2 Probe the next mesh point
  3439. * S3 Xn Yn Zn.nn Manually modify a single point
  3440. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3441. * S5 Reset and disable mesh
  3442. *
  3443. * The S0 report the points as below
  3444. *
  3445. * +----> X-axis 1-n
  3446. * |
  3447. * |
  3448. * v Y-axis 1-n
  3449. *
  3450. */
  3451. inline void gcode_G29() {
  3452. static int mbl_probe_index = -1;
  3453. #if HAS_SOFTWARE_ENDSTOPS
  3454. static bool enable_soft_endstops;
  3455. #endif
  3456. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3457. if (!WITHIN(state, 0, 5)) {
  3458. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3459. return;
  3460. }
  3461. int8_t px, py;
  3462. switch (state) {
  3463. case MeshReport:
  3464. if (leveling_is_valid()) {
  3465. SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF);
  3466. mbl_mesh_report();
  3467. }
  3468. else
  3469. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3470. break;
  3471. case MeshStart:
  3472. mbl.reset();
  3473. mbl_probe_index = 0;
  3474. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3475. break;
  3476. case MeshNext:
  3477. if (mbl_probe_index < 0) {
  3478. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3479. return;
  3480. }
  3481. // For each G29 S2...
  3482. if (mbl_probe_index == 0) {
  3483. #if HAS_SOFTWARE_ENDSTOPS
  3484. // For the initial G29 S2 save software endstop state
  3485. enable_soft_endstops = soft_endstops_enabled;
  3486. #endif
  3487. }
  3488. else {
  3489. // For G29 S2 after adjusting Z.
  3490. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3491. #if HAS_SOFTWARE_ENDSTOPS
  3492. soft_endstops_enabled = enable_soft_endstops;
  3493. #endif
  3494. }
  3495. // If there's another point to sample, move there with optional lift.
  3496. if (mbl_probe_index < GRID_MAX_POINTS) {
  3497. mbl.zigzag(mbl_probe_index, px, py);
  3498. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3499. #if HAS_SOFTWARE_ENDSTOPS
  3500. // Disable software endstops to allow manual adjustment
  3501. // If G29 is not completed, they will not be re-enabled
  3502. soft_endstops_enabled = false;
  3503. #endif
  3504. mbl_probe_index++;
  3505. }
  3506. else {
  3507. // One last "return to the bed" (as originally coded) at completion
  3508. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3509. line_to_current_position();
  3510. stepper.synchronize();
  3511. // After recording the last point, activate home and activate
  3512. mbl_probe_index = -1;
  3513. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3514. BUZZ(100, 659);
  3515. BUZZ(100, 698);
  3516. mesh_probing_done();
  3517. }
  3518. break;
  3519. case MeshSet:
  3520. if (parser.seenval('X')) {
  3521. px = parser.value_int() - 1;
  3522. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3523. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3524. return;
  3525. }
  3526. }
  3527. else {
  3528. SERIAL_CHAR('X'); echo_not_entered();
  3529. return;
  3530. }
  3531. if (parser.seenval('Y')) {
  3532. py = parser.value_int() - 1;
  3533. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3534. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3535. return;
  3536. }
  3537. }
  3538. else {
  3539. SERIAL_CHAR('Y'); echo_not_entered();
  3540. return;
  3541. }
  3542. if (parser.seenval('Z')) {
  3543. mbl.z_values[px][py] = parser.value_linear_units();
  3544. }
  3545. else {
  3546. SERIAL_CHAR('Z'); echo_not_entered();
  3547. return;
  3548. }
  3549. break;
  3550. case MeshSetZOffset:
  3551. if (parser.seenval('Z')) {
  3552. mbl.z_offset = parser.value_linear_units();
  3553. }
  3554. else {
  3555. SERIAL_CHAR('Z'); echo_not_entered();
  3556. return;
  3557. }
  3558. break;
  3559. case MeshReset:
  3560. reset_bed_level();
  3561. break;
  3562. } // switch(state)
  3563. report_current_position();
  3564. }
  3565. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3566. #if ABL_GRID
  3567. #if ENABLED(PROBE_Y_FIRST)
  3568. #define PR_OUTER_VAR xCount
  3569. #define PR_OUTER_END abl_grid_points_x
  3570. #define PR_INNER_VAR yCount
  3571. #define PR_INNER_END abl_grid_points_y
  3572. #else
  3573. #define PR_OUTER_VAR yCount
  3574. #define PR_OUTER_END abl_grid_points_y
  3575. #define PR_INNER_VAR xCount
  3576. #define PR_INNER_END abl_grid_points_x
  3577. #endif
  3578. #endif
  3579. /**
  3580. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3581. * Will fail if the printer has not been homed with G28.
  3582. *
  3583. * Enhanced G29 Auto Bed Leveling Probe Routine
  3584. *
  3585. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3586. * or alter the bed level data. Useful to check the topology
  3587. * after a first run of G29.
  3588. *
  3589. * J Jettison current bed leveling data
  3590. *
  3591. * V Set the verbose level (0-4). Example: "G29 V3"
  3592. *
  3593. * Parameters With LINEAR leveling only:
  3594. *
  3595. * P Set the size of the grid that will be probed (P x P points).
  3596. * Example: "G29 P4"
  3597. *
  3598. * X Set the X size of the grid that will be probed (X x Y points).
  3599. * Example: "G29 X7 Y5"
  3600. *
  3601. * Y Set the Y size of the grid that will be probed (X x Y points).
  3602. *
  3603. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3604. * This is useful for manual bed leveling and finding flaws in the bed (to
  3605. * assist with part placement).
  3606. * Not supported by non-linear delta printer bed leveling.
  3607. *
  3608. * Parameters With LINEAR and BILINEAR leveling only:
  3609. *
  3610. * S Set the XY travel speed between probe points (in units/min)
  3611. *
  3612. * F Set the Front limit of the probing grid
  3613. * B Set the Back limit of the probing grid
  3614. * L Set the Left limit of the probing grid
  3615. * R Set the Right limit of the probing grid
  3616. *
  3617. * Parameters with DEBUG_LEVELING_FEATURE only:
  3618. *
  3619. * C Make a totally fake grid with no actual probing.
  3620. * For use in testing when no probing is possible.
  3621. *
  3622. * Parameters with BILINEAR leveling only:
  3623. *
  3624. * Z Supply an additional Z probe offset
  3625. *
  3626. * Extra parameters with PROBE_MANUALLY:
  3627. *
  3628. * To do manual probing simply repeat G29 until the procedure is complete.
  3629. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3630. *
  3631. * Q Query leveling and G29 state
  3632. *
  3633. * A Abort current leveling procedure
  3634. *
  3635. * Extra parameters with BILINEAR only:
  3636. *
  3637. * W Write a mesh point. (If G29 is idle.)
  3638. * I X index for mesh point
  3639. * J Y index for mesh point
  3640. * X X for mesh point, overrides I
  3641. * Y Y for mesh point, overrides J
  3642. * Z Z for mesh point. Otherwise, raw current Z.
  3643. *
  3644. * Without PROBE_MANUALLY:
  3645. *
  3646. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3647. * Include "E" to engage/disengage the Z probe for each sample.
  3648. * There's no extra effect if you have a fixed Z probe.
  3649. *
  3650. */
  3651. inline void gcode_G29() {
  3652. // G29 Q is also available if debugging
  3653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3654. const bool query = parser.seen('Q');
  3655. const uint8_t old_debug_flags = marlin_debug_flags;
  3656. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3657. if (DEBUGGING(LEVELING)) {
  3658. DEBUG_POS(">>> gcode_G29", current_position);
  3659. log_machine_info();
  3660. }
  3661. marlin_debug_flags = old_debug_flags;
  3662. #if DISABLED(PROBE_MANUALLY)
  3663. if (query) return;
  3664. #endif
  3665. #endif
  3666. #if ENABLED(PROBE_MANUALLY)
  3667. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3668. #endif
  3669. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3670. const bool faux = parser.boolval('C');
  3671. #elif ENABLED(PROBE_MANUALLY)
  3672. const bool faux = no_action;
  3673. #else
  3674. bool constexpr faux = false;
  3675. #endif
  3676. // Don't allow auto-leveling without homing first
  3677. if (axis_unhomed_error()) return;
  3678. // Define local vars 'static' for manual probing, 'auto' otherwise
  3679. #if ENABLED(PROBE_MANUALLY)
  3680. #define ABL_VAR static
  3681. #else
  3682. #define ABL_VAR
  3683. #endif
  3684. ABL_VAR int verbose_level;
  3685. ABL_VAR float xProbe, yProbe, measured_z;
  3686. ABL_VAR bool dryrun, abl_should_enable;
  3687. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3688. ABL_VAR int abl_probe_index;
  3689. #endif
  3690. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3691. ABL_VAR bool enable_soft_endstops = true;
  3692. #endif
  3693. #if ABL_GRID
  3694. #if ENABLED(PROBE_MANUALLY)
  3695. ABL_VAR uint8_t PR_OUTER_VAR;
  3696. ABL_VAR int8_t PR_INNER_VAR;
  3697. #endif
  3698. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3699. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3700. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3701. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3702. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3703. ABL_VAR bool do_topography_map;
  3704. #else // Bilinear
  3705. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3706. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3707. #endif
  3708. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3709. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3710. ABL_VAR int abl2;
  3711. #else // Bilinear
  3712. int constexpr abl2 = GRID_MAX_POINTS;
  3713. #endif
  3714. #endif
  3715. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3716. ABL_VAR float zoffset;
  3717. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3718. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3719. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3720. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3721. mean;
  3722. #endif
  3723. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3724. int constexpr abl2 = 3;
  3725. // Probe at 3 arbitrary points
  3726. ABL_VAR vector_3 points[3] = {
  3727. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3728. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3729. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3730. };
  3731. #endif // AUTO_BED_LEVELING_3POINT
  3732. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3733. struct linear_fit_data lsf_results;
  3734. incremental_LSF_reset(&lsf_results);
  3735. #endif
  3736. /**
  3737. * On the initial G29 fetch command parameters.
  3738. */
  3739. if (!g29_in_progress) {
  3740. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3741. abl_probe_index = -1;
  3742. #endif
  3743. abl_should_enable = leveling_is_active();
  3744. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3745. if (parser.seen('W')) {
  3746. if (!leveling_is_valid()) {
  3747. SERIAL_ERROR_START();
  3748. SERIAL_ERRORLNPGM("No bilinear grid");
  3749. return;
  3750. }
  3751. const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
  3752. if (!WITHIN(z, -10, 10)) {
  3753. SERIAL_ERROR_START();
  3754. SERIAL_ERRORLNPGM("Bad Z value");
  3755. return;
  3756. }
  3757. const float x = parser.floatval('X', NAN),
  3758. y = parser.floatval('Y', NAN);
  3759. int8_t i = parser.byteval('I', -1),
  3760. j = parser.byteval('J', -1);
  3761. if (!isnan(x) && !isnan(y)) {
  3762. // Get nearest i / j from x / y
  3763. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3764. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3765. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3766. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3767. }
  3768. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3769. set_bed_leveling_enabled(false);
  3770. z_values[i][j] = z;
  3771. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3772. bed_level_virt_interpolate();
  3773. #endif
  3774. set_bed_leveling_enabled(abl_should_enable);
  3775. }
  3776. return;
  3777. } // parser.seen('W')
  3778. #endif
  3779. #if HAS_LEVELING
  3780. // Jettison bed leveling data
  3781. if (parser.seen('J')) {
  3782. reset_bed_level();
  3783. return;
  3784. }
  3785. #endif
  3786. verbose_level = parser.intval('V');
  3787. if (!WITHIN(verbose_level, 0, 4)) {
  3788. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3789. return;
  3790. }
  3791. dryrun = parser.boolval('D')
  3792. #if ENABLED(PROBE_MANUALLY)
  3793. || no_action
  3794. #endif
  3795. ;
  3796. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3797. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3798. // X and Y specify points in each direction, overriding the default
  3799. // These values may be saved with the completed mesh
  3800. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3801. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3802. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3803. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3804. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3805. return;
  3806. }
  3807. abl2 = abl_grid_points_x * abl_grid_points_y;
  3808. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3809. zoffset = parser.linearval('Z');
  3810. #endif
  3811. #if ABL_GRID
  3812. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3813. left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
  3814. right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
  3815. front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
  3816. back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
  3817. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3818. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3819. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3820. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3821. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3822. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3823. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3824. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3825. if (left_out || right_out || front_out || back_out) {
  3826. if (left_out) {
  3827. out_of_range_error(PSTR("(L)eft"));
  3828. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3829. }
  3830. if (right_out) {
  3831. out_of_range_error(PSTR("(R)ight"));
  3832. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3833. }
  3834. if (front_out) {
  3835. out_of_range_error(PSTR("(F)ront"));
  3836. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3837. }
  3838. if (back_out) {
  3839. out_of_range_error(PSTR("(B)ack"));
  3840. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3841. }
  3842. return;
  3843. }
  3844. // probe at the points of a lattice grid
  3845. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3846. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3847. #endif // ABL_GRID
  3848. if (verbose_level > 0) {
  3849. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3850. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3851. }
  3852. stepper.synchronize();
  3853. // Disable auto bed leveling during G29
  3854. planner.abl_enabled = false;
  3855. if (!dryrun) {
  3856. // Re-orient the current position without leveling
  3857. // based on where the steppers are positioned.
  3858. set_current_from_steppers_for_axis(ALL_AXES);
  3859. // Sync the planner to where the steppers stopped
  3860. SYNC_PLAN_POSITION_KINEMATIC();
  3861. }
  3862. if (!faux) setup_for_endstop_or_probe_move();
  3863. //xProbe = yProbe = measured_z = 0;
  3864. #if HAS_BED_PROBE
  3865. // Deploy the probe. Probe will raise if needed.
  3866. if (DEPLOY_PROBE()) {
  3867. planner.abl_enabled = abl_should_enable;
  3868. return;
  3869. }
  3870. #endif
  3871. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3872. #if ENABLED(PROBE_MANUALLY)
  3873. if (!no_action)
  3874. #endif
  3875. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3876. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3877. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3878. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3879. ) {
  3880. if (dryrun) {
  3881. // Before reset bed level, re-enable to correct the position
  3882. planner.abl_enabled = abl_should_enable;
  3883. }
  3884. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3885. reset_bed_level();
  3886. // Initialize a grid with the given dimensions
  3887. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3888. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3889. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3890. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3891. // Can't re-enable (on error) until the new grid is written
  3892. abl_should_enable = false;
  3893. }
  3894. #endif // AUTO_BED_LEVELING_BILINEAR
  3895. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3896. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3897. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3898. #endif
  3899. // Probe at 3 arbitrary points
  3900. points[0].z = points[1].z = points[2].z = 0;
  3901. #endif // AUTO_BED_LEVELING_3POINT
  3902. } // !g29_in_progress
  3903. #if ENABLED(PROBE_MANUALLY)
  3904. // For manual probing, get the next index to probe now.
  3905. // On the first probe this will be incremented to 0.
  3906. if (!no_action) {
  3907. ++abl_probe_index;
  3908. g29_in_progress = true;
  3909. }
  3910. // Abort current G29 procedure, go back to idle state
  3911. if (seenA && g29_in_progress) {
  3912. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3913. #if HAS_SOFTWARE_ENDSTOPS
  3914. soft_endstops_enabled = enable_soft_endstops;
  3915. #endif
  3916. planner.abl_enabled = abl_should_enable;
  3917. g29_in_progress = false;
  3918. #if ENABLED(LCD_BED_LEVELING)
  3919. lcd_wait_for_move = false;
  3920. #endif
  3921. }
  3922. // Query G29 status
  3923. if (verbose_level || seenQ) {
  3924. SERIAL_PROTOCOLPGM("Manual G29 ");
  3925. if (g29_in_progress) {
  3926. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  3927. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3928. }
  3929. else
  3930. SERIAL_PROTOCOLLNPGM("idle");
  3931. }
  3932. if (no_action) return;
  3933. if (abl_probe_index == 0) {
  3934. // For the initial G29 save software endstop state
  3935. #if HAS_SOFTWARE_ENDSTOPS
  3936. enable_soft_endstops = soft_endstops_enabled;
  3937. #endif
  3938. }
  3939. else {
  3940. // For G29 after adjusting Z.
  3941. // Save the previous Z before going to the next point
  3942. measured_z = current_position[Z_AXIS];
  3943. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3944. mean += measured_z;
  3945. eqnBVector[abl_probe_index] = measured_z;
  3946. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3947. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3948. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3949. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  3950. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3951. z_values[xCount][yCount] = measured_z + zoffset;
  3952. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3953. if (DEBUGGING(LEVELING)) {
  3954. SERIAL_PROTOCOLPAIR("Save X", xCount);
  3955. SERIAL_PROTOCOLPAIR(" Y", yCount);
  3956. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  3957. }
  3958. #endif
  3959. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3960. points[abl_probe_index].z = measured_z;
  3961. #endif
  3962. }
  3963. //
  3964. // If there's another point to sample, move there with optional lift.
  3965. //
  3966. #if ABL_GRID
  3967. // Skip any unreachable points
  3968. while (abl_probe_index < abl2) {
  3969. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3970. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3971. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3972. // Probe in reverse order for every other row/column
  3973. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  3974. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3975. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  3976. yBase = yCount * yGridSpacing + front_probe_bed_position;
  3977. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  3978. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  3979. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3980. indexIntoAB[xCount][yCount] = abl_probe_index;
  3981. #endif
  3982. // Keep looping till a reachable point is found
  3983. if (position_is_reachable_xy(xProbe, yProbe)) break;
  3984. ++abl_probe_index;
  3985. }
  3986. // Is there a next point to move to?
  3987. if (abl_probe_index < abl2) {
  3988. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3989. #if HAS_SOFTWARE_ENDSTOPS
  3990. // Disable software endstops to allow manual adjustment
  3991. // If G29 is not completed, they will not be re-enabled
  3992. soft_endstops_enabled = false;
  3993. #endif
  3994. return;
  3995. }
  3996. else {
  3997. // Leveling done! Fall through to G29 finishing code below
  3998. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3999. // Re-enable software endstops, if needed
  4000. #if HAS_SOFTWARE_ENDSTOPS
  4001. soft_endstops_enabled = enable_soft_endstops;
  4002. #endif
  4003. }
  4004. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4005. // Probe at 3 arbitrary points
  4006. if (abl_probe_index < 3) {
  4007. xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
  4008. yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
  4009. #if HAS_SOFTWARE_ENDSTOPS
  4010. // Disable software endstops to allow manual adjustment
  4011. // If G29 is not completed, they will not be re-enabled
  4012. soft_endstops_enabled = false;
  4013. #endif
  4014. return;
  4015. }
  4016. else {
  4017. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4018. // Re-enable software endstops, if needed
  4019. #if HAS_SOFTWARE_ENDSTOPS
  4020. soft_endstops_enabled = enable_soft_endstops;
  4021. #endif
  4022. if (!dryrun) {
  4023. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4024. if (planeNormal.z < 0) {
  4025. planeNormal.x *= -1;
  4026. planeNormal.y *= -1;
  4027. planeNormal.z *= -1;
  4028. }
  4029. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4030. // Can't re-enable (on error) until the new grid is written
  4031. abl_should_enable = false;
  4032. }
  4033. }
  4034. #endif // AUTO_BED_LEVELING_3POINT
  4035. #else // !PROBE_MANUALLY
  4036. const bool stow_probe_after_each = parser.boolval('E');
  4037. #if ABL_GRID
  4038. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4039. // Outer loop is Y with PROBE_Y_FIRST disabled
  4040. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  4041. int8_t inStart, inStop, inInc;
  4042. if (zig) { // away from origin
  4043. inStart = 0;
  4044. inStop = PR_INNER_END;
  4045. inInc = 1;
  4046. }
  4047. else { // towards origin
  4048. inStart = PR_INNER_END - 1;
  4049. inStop = -1;
  4050. inInc = -1;
  4051. }
  4052. zig ^= true; // zag
  4053. // Inner loop is Y with PROBE_Y_FIRST enabled
  4054. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4055. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4056. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4057. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4058. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4059. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4060. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4061. #endif
  4062. #if IS_KINEMATIC
  4063. // Avoid probing outside the round or hexagonal area
  4064. if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
  4065. #endif
  4066. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4067. if (isnan(measured_z)) {
  4068. planner.abl_enabled = abl_should_enable;
  4069. return;
  4070. }
  4071. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4072. mean += measured_z;
  4073. eqnBVector[abl_probe_index] = measured_z;
  4074. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4075. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4076. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4077. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4078. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4079. z_values[xCount][yCount] = measured_z + zoffset;
  4080. #endif
  4081. abl_should_enable = false;
  4082. idle();
  4083. } // inner
  4084. } // outer
  4085. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4086. // Probe at 3 arbitrary points
  4087. for (uint8_t i = 0; i < 3; ++i) {
  4088. // Retain the last probe position
  4089. xProbe = LOGICAL_X_POSITION(points[i].x);
  4090. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4091. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4092. if (isnan(measured_z)) {
  4093. planner.abl_enabled = abl_should_enable;
  4094. return;
  4095. }
  4096. points[i].z = measured_z;
  4097. }
  4098. if (!dryrun) {
  4099. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4100. if (planeNormal.z < 0) {
  4101. planeNormal.x *= -1;
  4102. planeNormal.y *= -1;
  4103. planeNormal.z *= -1;
  4104. }
  4105. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4106. // Can't re-enable (on error) until the new grid is written
  4107. abl_should_enable = false;
  4108. }
  4109. #endif // AUTO_BED_LEVELING_3POINT
  4110. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4111. if (STOW_PROBE()) {
  4112. planner.abl_enabled = abl_should_enable;
  4113. return;
  4114. }
  4115. #endif // !PROBE_MANUALLY
  4116. //
  4117. // G29 Finishing Code
  4118. //
  4119. // Unless this is a dry run, auto bed leveling will
  4120. // definitely be enabled after this point.
  4121. //
  4122. // If code above wants to continue leveling, it should
  4123. // return or loop before this point.
  4124. //
  4125. // Restore state after probing
  4126. if (!faux) clean_up_after_endstop_or_probe_move();
  4127. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4128. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4129. #endif
  4130. #if ENABLED(PROBE_MANUALLY)
  4131. g29_in_progress = false;
  4132. #if ENABLED(LCD_BED_LEVELING)
  4133. lcd_wait_for_move = false;
  4134. #endif
  4135. #endif
  4136. // Calculate leveling, print reports, correct the position
  4137. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4138. if (!dryrun) extrapolate_unprobed_bed_level();
  4139. print_bilinear_leveling_grid();
  4140. refresh_bed_level();
  4141. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4142. bed_level_virt_print();
  4143. #endif
  4144. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4145. // For LINEAR leveling calculate matrix, print reports, correct the position
  4146. /**
  4147. * solve the plane equation ax + by + d = z
  4148. * A is the matrix with rows [x y 1] for all the probed points
  4149. * B is the vector of the Z positions
  4150. * the normal vector to the plane is formed by the coefficients of the
  4151. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4152. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4153. */
  4154. float plane_equation_coefficients[3];
  4155. finish_incremental_LSF(&lsf_results);
  4156. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4157. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4158. plane_equation_coefficients[2] = -lsf_results.D;
  4159. mean /= abl2;
  4160. if (verbose_level) {
  4161. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4162. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4163. SERIAL_PROTOCOLPGM(" b: ");
  4164. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4165. SERIAL_PROTOCOLPGM(" d: ");
  4166. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4167. SERIAL_EOL();
  4168. if (verbose_level > 2) {
  4169. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4170. SERIAL_PROTOCOL_F(mean, 8);
  4171. SERIAL_EOL();
  4172. }
  4173. }
  4174. // Create the matrix but don't correct the position yet
  4175. if (!dryrun)
  4176. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4177. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4178. );
  4179. // Show the Topography map if enabled
  4180. if (do_topography_map) {
  4181. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4182. " +--- BACK --+\n"
  4183. " | |\n"
  4184. " L | (+) | R\n"
  4185. " E | | I\n"
  4186. " F | (-) N (+) | G\n"
  4187. " T | | H\n"
  4188. " | (-) | T\n"
  4189. " | |\n"
  4190. " O-- FRONT --+\n"
  4191. " (0,0)");
  4192. float min_diff = 999;
  4193. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4194. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4195. int ind = indexIntoAB[xx][yy];
  4196. float diff = eqnBVector[ind] - mean,
  4197. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4198. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4199. z_tmp = 0;
  4200. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4201. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4202. if (diff >= 0.0)
  4203. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4204. else
  4205. SERIAL_PROTOCOLCHAR(' ');
  4206. SERIAL_PROTOCOL_F(diff, 5);
  4207. } // xx
  4208. SERIAL_EOL();
  4209. } // yy
  4210. SERIAL_EOL();
  4211. if (verbose_level > 3) {
  4212. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4213. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4214. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4215. int ind = indexIntoAB[xx][yy];
  4216. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4217. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4218. z_tmp = 0;
  4219. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4220. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4221. if (diff >= 0.0)
  4222. SERIAL_PROTOCOLPGM(" +");
  4223. // Include + for column alignment
  4224. else
  4225. SERIAL_PROTOCOLCHAR(' ');
  4226. SERIAL_PROTOCOL_F(diff, 5);
  4227. } // xx
  4228. SERIAL_EOL();
  4229. } // yy
  4230. SERIAL_EOL();
  4231. }
  4232. } //do_topography_map
  4233. #endif // AUTO_BED_LEVELING_LINEAR
  4234. #if ABL_PLANAR
  4235. // For LINEAR and 3POINT leveling correct the current position
  4236. if (verbose_level > 0)
  4237. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4238. if (!dryrun) {
  4239. //
  4240. // Correct the current XYZ position based on the tilted plane.
  4241. //
  4242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4243. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4244. #endif
  4245. float converted[XYZ];
  4246. COPY(converted, current_position);
  4247. planner.abl_enabled = true;
  4248. planner.unapply_leveling(converted); // use conversion machinery
  4249. planner.abl_enabled = false;
  4250. // Use the last measured distance to the bed, if possible
  4251. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4252. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4253. ) {
  4254. const float simple_z = current_position[Z_AXIS] - measured_z;
  4255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4256. if (DEBUGGING(LEVELING)) {
  4257. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4258. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4259. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4260. }
  4261. #endif
  4262. converted[Z_AXIS] = simple_z;
  4263. }
  4264. // The rotated XY and corrected Z are now current_position
  4265. COPY(current_position, converted);
  4266. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4267. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4268. #endif
  4269. }
  4270. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4271. if (!dryrun) {
  4272. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4273. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4274. #endif
  4275. // Unapply the offset because it is going to be immediately applied
  4276. // and cause compensation movement in Z
  4277. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4279. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4280. #endif
  4281. }
  4282. #endif // ABL_PLANAR
  4283. #ifdef Z_PROBE_END_SCRIPT
  4284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4285. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4286. #endif
  4287. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4288. stepper.synchronize();
  4289. #endif
  4290. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4291. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4292. #endif
  4293. report_current_position();
  4294. KEEPALIVE_STATE(IN_HANDLER);
  4295. // Auto Bed Leveling is complete! Enable if possible.
  4296. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4297. if (planner.abl_enabled)
  4298. SYNC_PLAN_POSITION_KINEMATIC();
  4299. }
  4300. #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
  4301. #if HAS_BED_PROBE
  4302. /**
  4303. * G30: Do a single Z probe at the current XY
  4304. *
  4305. * Parameters:
  4306. *
  4307. * X Probe X position (default current X)
  4308. * Y Probe Y position (default current Y)
  4309. * S0 Leave the probe deployed
  4310. */
  4311. inline void gcode_G30() {
  4312. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4313. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4314. if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
  4315. // Disable leveling so the planner won't mess with us
  4316. #if HAS_LEVELING
  4317. set_bed_leveling_enabled(false);
  4318. #endif
  4319. setup_for_endstop_or_probe_move();
  4320. const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
  4321. if (!isnan(measured_z)) {
  4322. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4323. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4324. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4325. }
  4326. clean_up_after_endstop_or_probe_move();
  4327. report_current_position();
  4328. }
  4329. #if ENABLED(Z_PROBE_SLED)
  4330. /**
  4331. * G31: Deploy the Z probe
  4332. */
  4333. inline void gcode_G31() { DEPLOY_PROBE(); }
  4334. /**
  4335. * G32: Stow the Z probe
  4336. */
  4337. inline void gcode_G32() { STOW_PROBE(); }
  4338. #endif // Z_PROBE_SLED
  4339. #endif // HAS_BED_PROBE
  4340. #if PROBE_SELECTED
  4341. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4342. /**
  4343. * G33 - Delta '1-4-7-point' Auto-Calibration
  4344. * Calibrate height, endstops, delta radius, and tower angles.
  4345. *
  4346. * Parameters:
  4347. *
  4348. * Pn Number of probe points:
  4349. *
  4350. * P1 Probe center and set height only.
  4351. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4352. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4353. * P4-P7 Probe all positions at different locations and average them.
  4354. *
  4355. * T0 Don't calibrate tower angle corrections
  4356. *
  4357. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4358. *
  4359. * Fn Force to run at least n iterations and takes the best result
  4360. *
  4361. * Vn Verbose level:
  4362. *
  4363. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4364. * V1 Report settings
  4365. * V2 Report settings and probe results
  4366. *
  4367. * E Engage the probe for each point
  4368. */
  4369. void print_signed_float(const char * const prefix, const float &f) {
  4370. SERIAL_PROTOCOLPGM(" ");
  4371. serialprintPGM(prefix);
  4372. SERIAL_PROTOCOLCHAR(':');
  4373. if (f >= 0) SERIAL_CHAR('+');
  4374. SERIAL_PROTOCOL_F(f, 2);
  4375. }
  4376. inline void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
  4377. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4378. if (end_stops) {
  4379. print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
  4380. print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
  4381. print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
  4382. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4383. }
  4384. SERIAL_EOL();
  4385. if (tower_angles) {
  4386. SERIAL_PROTOCOLPGM(".Tower angle : ");
  4387. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4388. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4389. SERIAL_PROTOCOLLNPGM(" Tz:+0.00");
  4390. }
  4391. }
  4392. inline void gcode_G33() {
  4393. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4394. if (!WITHIN(probe_points, 1, 7)) {
  4395. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1-7).");
  4396. return;
  4397. }
  4398. const int8_t verbose_level = parser.byteval('V', 1);
  4399. if (!WITHIN(verbose_level, 0, 2)) {
  4400. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4401. return;
  4402. }
  4403. const float calibration_precision = parser.floatval('C');
  4404. if (calibration_precision < 0) {
  4405. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
  4406. return;
  4407. }
  4408. const int8_t force_iterations = parser.intval('F', 0);
  4409. if (!WITHIN(force_iterations, 0, 30)) {
  4410. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4411. return;
  4412. }
  4413. const bool towers_set = parser.boolval('T', true),
  4414. stow_after_each = parser.boolval('E'),
  4415. _1p_calibration = probe_points == 1,
  4416. _4p_calibration = probe_points == 2,
  4417. _4p_towers_points = _4p_calibration && towers_set,
  4418. _4p_opposite_points = _4p_calibration && !towers_set,
  4419. _7p_calibration = probe_points >= 3,
  4420. _7p_half_circle = probe_points == 3,
  4421. _7p_double_circle = probe_points == 5,
  4422. _7p_triple_circle = probe_points == 6,
  4423. _7p_quadruple_circle = probe_points == 7,
  4424. _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
  4425. _7p_intermed_points = _7p_calibration && !_7p_half_circle;
  4426. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4427. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4428. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4429. int8_t iterations = 0;
  4430. float test_precision,
  4431. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4432. zero_std_dev_old = zero_std_dev,
  4433. zero_std_dev_min = zero_std_dev,
  4434. e_old[XYZ] = {
  4435. endstop_adj[A_AXIS],
  4436. endstop_adj[B_AXIS],
  4437. endstop_adj[C_AXIS]
  4438. },
  4439. dr_old = delta_radius,
  4440. zh_old = home_offset[Z_AXIS],
  4441. alpha_old = delta_tower_angle_trim[A_AXIS],
  4442. beta_old = delta_tower_angle_trim[B_AXIS];
  4443. if (!_1p_calibration) { // test if the outer radius is reachable
  4444. const float circles = (_7p_quadruple_circle ? 1.5 :
  4445. _7p_triple_circle ? 1.0 :
  4446. _7p_double_circle ? 0.5 : 0),
  4447. r = (1 + circles * 0.1) * delta_calibration_radius;
  4448. for (uint8_t axis = 1; axis < 13; ++axis) {
  4449. const float a = RADIANS(180 + 30 * axis);
  4450. if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
  4451. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4452. return;
  4453. }
  4454. }
  4455. }
  4456. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4457. stepper.synchronize();
  4458. #if HAS_LEVELING
  4459. reset_bed_level(); // After calibration bed-level data is no longer valid
  4460. #endif
  4461. #if HOTENDS > 1
  4462. const uint8_t old_tool_index = active_extruder;
  4463. tool_change(0, 0, true);
  4464. #endif
  4465. setup_for_endstop_or_probe_move();
  4466. DEPLOY_PROBE();
  4467. endstops.enable(true);
  4468. home_delta();
  4469. endstops.not_homing();
  4470. // print settings
  4471. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4472. serialprintPGM(checkingac);
  4473. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4474. SERIAL_EOL();
  4475. lcd_setstatusPGM(checkingac);
  4476. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4477. #if DISABLED(PROBE_MANUALLY)
  4478. home_offset[Z_AXIS] -= probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
  4479. #endif
  4480. do {
  4481. float z_at_pt[13] = { 0.0 };
  4482. test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
  4483. iterations++;
  4484. // Probe the points
  4485. if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
  4486. #if ENABLED(PROBE_MANUALLY)
  4487. z_at_pt[0] += lcd_probe_pt(0, 0);
  4488. #else
  4489. z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
  4490. #endif
  4491. }
  4492. if (_7p_calibration) { // probe extra center points
  4493. for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
  4494. const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
  4495. #if ENABLED(PROBE_MANUALLY)
  4496. z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4497. #else
  4498. z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
  4499. #endif
  4500. }
  4501. z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
  4502. }
  4503. if (!_1p_calibration) { // probe the radius
  4504. bool zig_zag = true;
  4505. const uint8_t start = _4p_opposite_points ? 3 : 1,
  4506. step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
  4507. for (uint8_t axis = start; axis < 13; axis += step) {
  4508. const float zigadd = (zig_zag ? 0.5 : 0.0),
  4509. offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
  4510. _7p_triple_circle ? zigadd + 0.5 :
  4511. _7p_double_circle ? zigadd : 0;
  4512. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4513. const float a = RADIANS(180 + 30 * axis),
  4514. r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
  4515. #if ENABLED(PROBE_MANUALLY)
  4516. z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
  4517. #else
  4518. z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
  4519. #endif
  4520. }
  4521. zig_zag = !zig_zag;
  4522. z_at_pt[axis] /= (2 * offset_circles + 1);
  4523. }
  4524. }
  4525. if (_7p_intermed_points) // average intermediates to tower and opposites
  4526. for (uint8_t axis = 1; axis < 13; axis += 2)
  4527. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4528. float S1 = z_at_pt[0],
  4529. S2 = sq(z_at_pt[0]);
  4530. int16_t N = 1;
  4531. if (!_1p_calibration) // std dev from zero plane
  4532. for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
  4533. S1 += z_at_pt[axis];
  4534. S2 += sq(z_at_pt[axis]);
  4535. N++;
  4536. }
  4537. zero_std_dev_old = zero_std_dev;
  4538. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4539. // Solve matrices
  4540. if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
  4541. if (zero_std_dev < zero_std_dev_min) {
  4542. COPY(e_old, endstop_adj);
  4543. dr_old = delta_radius;
  4544. zh_old = home_offset[Z_AXIS];
  4545. alpha_old = delta_tower_angle_trim[A_AXIS];
  4546. beta_old = delta_tower_angle_trim[B_AXIS];
  4547. }
  4548. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
  4549. const float r_diff = delta_radius - delta_calibration_radius,
  4550. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4551. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4552. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4553. #define ZP(N,I) ((N) * z_at_pt[I])
  4554. #define Z1000(I) ZP(1.00, I)
  4555. #define Z1050(I) ZP(h_factor, I)
  4556. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4557. #define Z0350(I) ZP(h_factor / 3.00, I)
  4558. #define Z0175(I) ZP(h_factor / 6.00, I)
  4559. #define Z2250(I) ZP(r_factor, I)
  4560. #define Z0750(I) ZP(r_factor / 3.00, I)
  4561. #define Z0375(I) ZP(r_factor / 6.00, I)
  4562. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4563. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4564. #if ENABLED(PROBE_MANUALLY)
  4565. test_precision = 0.00; // forced end
  4566. #endif
  4567. switch (probe_points) {
  4568. case 1:
  4569. test_precision = 0.00; // forced end
  4570. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4571. break;
  4572. case 2:
  4573. if (towers_set) {
  4574. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4575. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4576. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4577. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4578. }
  4579. else {
  4580. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4581. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4582. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4583. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4584. }
  4585. break;
  4586. default:
  4587. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4588. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4589. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4590. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4591. if (towers_set) {
  4592. t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4593. t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
  4594. }
  4595. break;
  4596. }
  4597. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4598. delta_radius += r_delta;
  4599. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4600. delta_tower_angle_trim[B_AXIS] += t_beta;
  4601. // adjust delta_height and endstops by the max amount
  4602. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4603. home_offset[Z_AXIS] -= z_temp;
  4604. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4605. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4606. }
  4607. else if (zero_std_dev >= test_precision) { // step one back
  4608. COPY(endstop_adj, e_old);
  4609. delta_radius = dr_old;
  4610. home_offset[Z_AXIS] = zh_old;
  4611. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4612. delta_tower_angle_trim[B_AXIS] = beta_old;
  4613. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4614. }
  4615. NOMORE(zero_std_dev_min, zero_std_dev);
  4616. // print report
  4617. if (verbose_level != 1) {
  4618. SERIAL_PROTOCOLPGM(". ");
  4619. print_signed_float(PSTR("c"), z_at_pt[0]);
  4620. if (_4p_towers_points || _7p_calibration) {
  4621. print_signed_float(PSTR(" x"), z_at_pt[1]);
  4622. print_signed_float(PSTR(" y"), z_at_pt[5]);
  4623. print_signed_float(PSTR(" z"), z_at_pt[9]);
  4624. }
  4625. if (!_4p_opposite_points) SERIAL_EOL();
  4626. if ((_4p_opposite_points) || _7p_calibration) {
  4627. if (_7p_calibration) {
  4628. SERIAL_CHAR('.');
  4629. SERIAL_PROTOCOL_SP(13);
  4630. }
  4631. print_signed_float(PSTR(" yz"), z_at_pt[7]);
  4632. print_signed_float(PSTR("zx"), z_at_pt[11]);
  4633. print_signed_float(PSTR("xy"), z_at_pt[3]);
  4634. SERIAL_EOL();
  4635. }
  4636. }
  4637. if (verbose_level != 0) { // !dry run
  4638. if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
  4639. SERIAL_PROTOCOLPGM("Calibration OK");
  4640. SERIAL_PROTOCOL_SP(36);
  4641. #if DISABLED(PROBE_MANUALLY)
  4642. if (zero_std_dev >= test_precision && !_1p_calibration)
  4643. SERIAL_PROTOCOLPGM("rolling back.");
  4644. else
  4645. #endif
  4646. {
  4647. SERIAL_PROTOCOLPGM("std dev:");
  4648. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  4649. }
  4650. SERIAL_EOL();
  4651. char mess[21];
  4652. sprintf_P(mess, PSTR("Calibration sd:"));
  4653. if (zero_std_dev_min < 1)
  4654. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  4655. else
  4656. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  4657. lcd_setstatus(mess);
  4658. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4659. serialprintPGM(save_message);
  4660. SERIAL_EOL();
  4661. }
  4662. else { // !end iterations
  4663. char mess[15];
  4664. if (iterations < 31)
  4665. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4666. else
  4667. sprintf_P(mess, PSTR("No convergence"));
  4668. SERIAL_PROTOCOL(mess);
  4669. SERIAL_PROTOCOL_SP(36);
  4670. SERIAL_PROTOCOLPGM("std dev:");
  4671. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4672. SERIAL_EOL();
  4673. lcd_setstatus(mess);
  4674. print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
  4675. }
  4676. }
  4677. else { // dry run
  4678. const char *enddryrun = PSTR("End DRY-RUN");
  4679. serialprintPGM(enddryrun);
  4680. SERIAL_PROTOCOL_SP(39);
  4681. SERIAL_PROTOCOLPGM("std dev:");
  4682. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4683. SERIAL_EOL();
  4684. char mess[21];
  4685. sprintf_P(mess, enddryrun);
  4686. sprintf_P(&mess[11], PSTR(" sd:"));
  4687. if (zero_std_dev < 1)
  4688. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  4689. else
  4690. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  4691. lcd_setstatus(mess);
  4692. }
  4693. endstops.enable(true);
  4694. home_delta();
  4695. endstops.not_homing();
  4696. }
  4697. while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations);
  4698. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4699. do_blocking_move_to_z(delta_clip_start_height);
  4700. #endif
  4701. STOW_PROBE();
  4702. clean_up_after_endstop_or_probe_move();
  4703. #if HOTENDS > 1
  4704. tool_change(old_tool_index, 0, true);
  4705. #endif
  4706. }
  4707. #endif // DELTA_AUTO_CALIBRATION
  4708. #endif // PROBE_SELECTED
  4709. #if ENABLED(G38_PROBE_TARGET)
  4710. static bool G38_run_probe() {
  4711. bool G38_pass_fail = false;
  4712. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4713. // Get direction of move and retract
  4714. float retract_mm[XYZ];
  4715. LOOP_XYZ(i) {
  4716. float dist = destination[i] - current_position[i];
  4717. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4718. }
  4719. #endif
  4720. stepper.synchronize(); // wait until the machine is idle
  4721. // Move until destination reached or target hit
  4722. endstops.enable(true);
  4723. G38_move = true;
  4724. G38_endstop_hit = false;
  4725. prepare_move_to_destination();
  4726. stepper.synchronize();
  4727. G38_move = false;
  4728. endstops.hit_on_purpose();
  4729. set_current_from_steppers_for_axis(ALL_AXES);
  4730. SYNC_PLAN_POSITION_KINEMATIC();
  4731. if (G38_endstop_hit) {
  4732. G38_pass_fail = true;
  4733. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4734. // Move away by the retract distance
  4735. set_destination_to_current();
  4736. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4737. endstops.enable(false);
  4738. prepare_move_to_destination();
  4739. stepper.synchronize();
  4740. feedrate_mm_s /= 4;
  4741. // Bump the target more slowly
  4742. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4743. endstops.enable(true);
  4744. G38_move = true;
  4745. prepare_move_to_destination();
  4746. stepper.synchronize();
  4747. G38_move = false;
  4748. set_current_from_steppers_for_axis(ALL_AXES);
  4749. SYNC_PLAN_POSITION_KINEMATIC();
  4750. #endif
  4751. }
  4752. endstops.hit_on_purpose();
  4753. endstops.not_homing();
  4754. return G38_pass_fail;
  4755. }
  4756. /**
  4757. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4758. * G38.3 - probe toward workpiece, stop on contact
  4759. *
  4760. * Like G28 except uses Z min probe for all axes
  4761. */
  4762. inline void gcode_G38(bool is_38_2) {
  4763. // Get X Y Z E F
  4764. gcode_get_destination();
  4765. setup_for_endstop_or_probe_move();
  4766. // If any axis has enough movement, do the move
  4767. LOOP_XYZ(i)
  4768. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4769. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  4770. // If G38.2 fails throw an error
  4771. if (!G38_run_probe() && is_38_2) {
  4772. SERIAL_ERROR_START();
  4773. SERIAL_ERRORLNPGM("Failed to reach target");
  4774. }
  4775. break;
  4776. }
  4777. clean_up_after_endstop_or_probe_move();
  4778. }
  4779. #endif // G38_PROBE_TARGET
  4780. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  4781. /**
  4782. * G42: Move X & Y axes to mesh coordinates (I & J)
  4783. */
  4784. inline void gcode_G42() {
  4785. if (IsRunning()) {
  4786. const bool hasI = parser.seenval('I');
  4787. const int8_t ix = hasI ? parser.value_int() : 0;
  4788. const bool hasJ = parser.seenval('J');
  4789. const int8_t iy = hasJ ? parser.value_int() : 0;
  4790. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  4791. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  4792. return;
  4793. }
  4794. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4795. #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
  4796. #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
  4797. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  4798. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  4799. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  4800. #elif ENABLED(MESH_BED_LEVELING)
  4801. #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  4802. #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
  4803. #endif
  4804. set_destination_to_current();
  4805. if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
  4806. if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
  4807. if (parser.boolval('P')) {
  4808. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  4809. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  4810. }
  4811. const float fval = parser.linearval('F');
  4812. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  4813. // SCARA kinematic has "safe" XY raw moves
  4814. #if IS_SCARA
  4815. prepare_uninterpolated_move_to_destination();
  4816. #else
  4817. prepare_move_to_destination();
  4818. #endif
  4819. }
  4820. }
  4821. #endif // AUTO_BED_LEVELING_UBL
  4822. /**
  4823. * G92: Set current position to given X Y Z E
  4824. */
  4825. inline void gcode_G92() {
  4826. bool didXYZ = false,
  4827. didE = parser.seenval('E');
  4828. if (!didE) stepper.synchronize();
  4829. LOOP_XYZE(i) {
  4830. if (parser.seenval(axis_codes[i])) {
  4831. #if IS_SCARA
  4832. current_position[i] = parser.value_axis_units((AxisEnum)i);
  4833. if (i != E_AXIS) didXYZ = true;
  4834. #else
  4835. #if HAS_POSITION_SHIFT
  4836. const float p = current_position[i];
  4837. #endif
  4838. const float v = parser.value_axis_units((AxisEnum)i);
  4839. current_position[i] = v;
  4840. if (i != E_AXIS) {
  4841. didXYZ = true;
  4842. #if HAS_POSITION_SHIFT
  4843. position_shift[i] += v - p; // Offset the coordinate space
  4844. update_software_endstops((AxisEnum)i);
  4845. #if ENABLED(I2C_POSITION_ENCODERS)
  4846. I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
  4847. #endif
  4848. #endif
  4849. }
  4850. #endif
  4851. }
  4852. }
  4853. if (didXYZ)
  4854. SYNC_PLAN_POSITION_KINEMATIC();
  4855. else if (didE)
  4856. sync_plan_position_e();
  4857. report_current_position();
  4858. }
  4859. #if HAS_RESUME_CONTINUE
  4860. /**
  4861. * M0: Unconditional stop - Wait for user button press on LCD
  4862. * M1: Conditional stop - Wait for user button press on LCD
  4863. */
  4864. inline void gcode_M0_M1() {
  4865. const char * const args = parser.string_arg;
  4866. millis_t ms = 0;
  4867. bool hasP = false, hasS = false;
  4868. if (parser.seenval('P')) {
  4869. ms = parser.value_millis(); // milliseconds to wait
  4870. hasP = ms > 0;
  4871. }
  4872. if (parser.seenval('S')) {
  4873. ms = parser.value_millis_from_seconds(); // seconds to wait
  4874. hasS = ms > 0;
  4875. }
  4876. #if ENABLED(ULTIPANEL)
  4877. if (!hasP && !hasS && args && *args)
  4878. lcd_setstatus(args, true);
  4879. else {
  4880. LCD_MESSAGEPGM(MSG_USERWAIT);
  4881. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4882. dontExpireStatus();
  4883. #endif
  4884. }
  4885. #else
  4886. if (!hasP && !hasS && args && *args) {
  4887. SERIAL_ECHO_START();
  4888. SERIAL_ECHOLN(args);
  4889. }
  4890. #endif
  4891. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4892. wait_for_user = true;
  4893. stepper.synchronize();
  4894. refresh_cmd_timeout();
  4895. if (ms > 0) {
  4896. ms += previous_cmd_ms; // wait until this time for a click
  4897. while (PENDING(millis(), ms) && wait_for_user) idle();
  4898. }
  4899. else {
  4900. #if ENABLED(ULTIPANEL)
  4901. if (lcd_detected()) {
  4902. while (wait_for_user) idle();
  4903. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4904. }
  4905. #else
  4906. while (wait_for_user) idle();
  4907. #endif
  4908. }
  4909. wait_for_user = false;
  4910. KEEPALIVE_STATE(IN_HANDLER);
  4911. }
  4912. #endif // HAS_RESUME_CONTINUE
  4913. #if ENABLED(SPINDLE_LASER_ENABLE)
  4914. /**
  4915. * M3: Spindle Clockwise
  4916. * M4: Spindle Counter-clockwise
  4917. *
  4918. * S0 turns off spindle.
  4919. *
  4920. * If no speed PWM output is defined then M3/M4 just turns it on.
  4921. *
  4922. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  4923. * Hardware PWM is required. ISRs are too slow.
  4924. *
  4925. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  4926. * No other settings give a PWM signal that goes from 0 to 5 volts.
  4927. *
  4928. * The system automatically sets WGM to Mode 1, so no special
  4929. * initialization is needed.
  4930. *
  4931. * WGM bits for timer 2 are automatically set by the system to
  4932. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  4933. * No special initialization is needed.
  4934. *
  4935. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  4936. * factors for timers 2, 3, 4, and 5 are acceptable.
  4937. *
  4938. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  4939. * the spindle/laser during power-up or when connecting to the host
  4940. * (usually goes through a reset which sets all I/O pins to tri-state)
  4941. *
  4942. * PWM duty cycle goes from 0 (off) to 255 (always on).
  4943. */
  4944. // Wait for spindle to come up to speed
  4945. inline void delay_for_power_up() {
  4946. refresh_cmd_timeout();
  4947. while (PENDING(millis(), SPINDLE_LASER_POWERUP_DELAY + previous_cmd_ms)) idle();
  4948. }
  4949. // Wait for spindle to stop turning
  4950. inline void delay_for_power_down() {
  4951. refresh_cmd_timeout();
  4952. while (PENDING(millis(), SPINDLE_LASER_POWERDOWN_DELAY + previous_cmd_ms + 1)) idle();
  4953. }
  4954. /**
  4955. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  4956. *
  4957. * it accepts inputs of 0-255
  4958. */
  4959. inline void ocr_val_mode() {
  4960. uint8_t spindle_laser_power = parser.value_byte();
  4961. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  4962. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  4963. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  4964. }
  4965. inline void gcode_M3_M4(bool is_M3) {
  4966. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  4967. #if SPINDLE_DIR_CHANGE
  4968. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  4969. if (SPINDLE_STOP_ON_DIR_CHANGE \
  4970. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  4971. && READ(SPINDLE_DIR_PIN) != rotation_dir
  4972. ) {
  4973. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  4974. delay_for_power_down();
  4975. }
  4976. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  4977. #endif
  4978. /**
  4979. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  4980. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  4981. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  4982. */
  4983. #if ENABLED(SPINDLE_LASER_PWM)
  4984. if (parser.seen('O')) ocr_val_mode();
  4985. else {
  4986. const float spindle_laser_power = parser.floatval('S');
  4987. if (spindle_laser_power == 0) {
  4988. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  4989. delay_for_power_down();
  4990. }
  4991. else {
  4992. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  4993. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  4994. if (spindle_laser_power <= SPEED_POWER_MIN)
  4995. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  4996. if (spindle_laser_power >= SPEED_POWER_MAX)
  4997. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  4998. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  4999. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5000. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5001. delay_for_power_up();
  5002. }
  5003. }
  5004. #else
  5005. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5006. delay_for_power_up();
  5007. #endif
  5008. }
  5009. /**
  5010. * M5 turn off spindle
  5011. */
  5012. inline void gcode_M5() {
  5013. stepper.synchronize();
  5014. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5015. delay_for_power_down();
  5016. }
  5017. #endif // SPINDLE_LASER_ENABLE
  5018. /**
  5019. * M17: Enable power on all stepper motors
  5020. */
  5021. inline void gcode_M17() {
  5022. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5023. enable_all_steppers();
  5024. }
  5025. #if IS_KINEMATIC
  5026. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5027. #else
  5028. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  5029. #endif
  5030. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5031. static float resume_position[XYZE];
  5032. static bool move_away_flag = false;
  5033. #if ENABLED(SDSUPPORT)
  5034. static bool sd_print_paused = false;
  5035. #endif
  5036. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5037. static millis_t next_buzz = 0;
  5038. static int8_t runout_beep = 0;
  5039. if (init) next_buzz = runout_beep = 0;
  5040. const millis_t ms = millis();
  5041. if (ELAPSED(ms, next_buzz)) {
  5042. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5043. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5044. BUZZ(300, 2000);
  5045. runout_beep++;
  5046. }
  5047. }
  5048. }
  5049. static void ensure_safe_temperature() {
  5050. bool heaters_heating = true;
  5051. wait_for_heatup = true; // M108 will clear this
  5052. while (wait_for_heatup && heaters_heating) {
  5053. idle();
  5054. heaters_heating = false;
  5055. HOTEND_LOOP() {
  5056. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5057. heaters_heating = true;
  5058. #if ENABLED(ULTIPANEL)
  5059. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5060. #endif
  5061. break;
  5062. }
  5063. }
  5064. }
  5065. }
  5066. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5067. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5068. ) {
  5069. if (move_away_flag) return false; // already paused
  5070. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5071. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5072. if (!thermalManager.allow_cold_extrude &&
  5073. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5074. SERIAL_ERROR_START();
  5075. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5076. return false;
  5077. }
  5078. #endif
  5079. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5080. }
  5081. // Indicate that the printer is paused
  5082. move_away_flag = true;
  5083. // Pause the print job and timer
  5084. #if ENABLED(SDSUPPORT)
  5085. if (card.sdprinting) {
  5086. card.pauseSDPrint();
  5087. sd_print_paused = true;
  5088. }
  5089. #endif
  5090. print_job_timer.pause();
  5091. // Show initial message and wait for synchronize steppers
  5092. if (show_lcd) {
  5093. #if ENABLED(ULTIPANEL)
  5094. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5095. #endif
  5096. }
  5097. stepper.synchronize();
  5098. // Save current position
  5099. COPY(resume_position, current_position);
  5100. set_destination_to_current();
  5101. if (retract) {
  5102. // Initial retract before move to filament change position
  5103. destination[E_AXIS] += retract;
  5104. RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
  5105. }
  5106. // Lift Z axis
  5107. if (z_lift > 0) {
  5108. destination[Z_AXIS] += z_lift;
  5109. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5110. RUNPLAN(PAUSE_PARK_Z_FEEDRATE);
  5111. }
  5112. // Move XY axes to filament exchange position
  5113. destination[X_AXIS] = x_pos;
  5114. destination[Y_AXIS] = y_pos;
  5115. clamp_to_software_endstops(destination);
  5116. RUNPLAN(PAUSE_PARK_XY_FEEDRATE);
  5117. stepper.synchronize();
  5118. if (unload_length != 0) {
  5119. if (show_lcd) {
  5120. #if ENABLED(ULTIPANEL)
  5121. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5122. idle();
  5123. #endif
  5124. }
  5125. // Unload filament
  5126. destination[E_AXIS] += unload_length;
  5127. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5128. stepper.synchronize();
  5129. }
  5130. if (show_lcd) {
  5131. #if ENABLED(ULTIPANEL)
  5132. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5133. #endif
  5134. }
  5135. #if HAS_BUZZER
  5136. filament_change_beep(max_beep_count, true);
  5137. #endif
  5138. idle();
  5139. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5140. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5141. disable_e_steppers();
  5142. safe_delay(100);
  5143. #endif
  5144. // Start the heater idle timers
  5145. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5146. HOTEND_LOOP()
  5147. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5148. return true;
  5149. }
  5150. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5151. bool nozzle_timed_out = false;
  5152. // Wait for filament insert by user and press button
  5153. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5154. wait_for_user = true; // LCD click or M108 will clear this
  5155. while (wait_for_user) {
  5156. #if HAS_BUZZER
  5157. filament_change_beep(max_beep_count);
  5158. #endif
  5159. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5160. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5161. if (!nozzle_timed_out)
  5162. HOTEND_LOOP()
  5163. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5164. if (nozzle_timed_out) {
  5165. #if ENABLED(ULTIPANEL)
  5166. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5167. #endif
  5168. // Wait for LCD click or M108
  5169. while (wait_for_user) idle(true);
  5170. // Re-enable the heaters if they timed out
  5171. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5172. // Wait for the heaters to reach the target temperatures
  5173. ensure_safe_temperature();
  5174. #if ENABLED(ULTIPANEL)
  5175. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5176. #endif
  5177. // Start the heater idle timers
  5178. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5179. HOTEND_LOOP()
  5180. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5181. wait_for_user = true; /* Wait for user to load filament */
  5182. nozzle_timed_out = false;
  5183. #if HAS_BUZZER
  5184. filament_change_beep(max_beep_count, true);
  5185. #endif
  5186. }
  5187. idle(true);
  5188. }
  5189. KEEPALIVE_STATE(IN_HANDLER);
  5190. }
  5191. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5192. bool nozzle_timed_out = false;
  5193. if (!move_away_flag) return;
  5194. // Re-enable the heaters if they timed out
  5195. HOTEND_LOOP() {
  5196. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5197. thermalManager.reset_heater_idle_timer(e);
  5198. }
  5199. if (nozzle_timed_out) ensure_safe_temperature();
  5200. #if HAS_BUZZER
  5201. filament_change_beep(max_beep_count, true);
  5202. #endif
  5203. if (load_length != 0) {
  5204. #if ENABLED(ULTIPANEL)
  5205. // Show "insert filament"
  5206. if (nozzle_timed_out)
  5207. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5208. #endif
  5209. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5210. wait_for_user = true; // LCD click or M108 will clear this
  5211. while (wait_for_user && nozzle_timed_out) {
  5212. #if HAS_BUZZER
  5213. filament_change_beep(max_beep_count);
  5214. #endif
  5215. idle(true);
  5216. }
  5217. KEEPALIVE_STATE(IN_HANDLER);
  5218. #if ENABLED(ULTIPANEL)
  5219. // Show "load" message
  5220. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5221. #endif
  5222. // Load filament
  5223. destination[E_AXIS] += load_length;
  5224. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5225. stepper.synchronize();
  5226. }
  5227. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5228. float extrude_length = initial_extrude_length;
  5229. do {
  5230. if (extrude_length > 0) {
  5231. // "Wait for filament extrude"
  5232. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5233. // Extrude filament to get into hotend
  5234. destination[E_AXIS] += extrude_length;
  5235. RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5236. stepper.synchronize();
  5237. }
  5238. // Show "Extrude More" / "Resume" menu and wait for reply
  5239. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5240. wait_for_user = false;
  5241. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5242. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5243. KEEPALIVE_STATE(IN_HANDLER);
  5244. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5245. // Keep looping if "Extrude More" was selected
  5246. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5247. #endif
  5248. #if ENABLED(ULTIPANEL)
  5249. // "Wait for print to resume"
  5250. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5251. #endif
  5252. // Set extruder to saved position
  5253. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5254. planner.set_e_position_mm(current_position[E_AXIS]);
  5255. #if IS_KINEMATIC
  5256. // Move XYZ to starting position
  5257. planner.buffer_line_kinematic(resume_position, PAUSE_PARK_XY_FEEDRATE, active_extruder);
  5258. #else
  5259. // Move XY to starting position, then Z
  5260. destination[X_AXIS] = resume_position[X_AXIS];
  5261. destination[Y_AXIS] = resume_position[Y_AXIS];
  5262. RUNPLAN(PAUSE_PARK_XY_FEEDRATE);
  5263. destination[Z_AXIS] = resume_position[Z_AXIS];
  5264. RUNPLAN(PAUSE_PARK_Z_FEEDRATE);
  5265. #endif
  5266. stepper.synchronize();
  5267. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5268. filament_ran_out = false;
  5269. #endif
  5270. #if ENABLED(ULTIPANEL)
  5271. // Show status screen
  5272. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5273. #endif
  5274. #if ENABLED(SDSUPPORT)
  5275. if (sd_print_paused) {
  5276. card.startFileprint();
  5277. sd_print_paused = false;
  5278. }
  5279. #endif
  5280. move_away_flag = false;
  5281. }
  5282. #endif // ADVANCED_PAUSE_FEATURE
  5283. #if ENABLED(SDSUPPORT)
  5284. /**
  5285. * M20: List SD card to serial output
  5286. */
  5287. inline void gcode_M20() {
  5288. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5289. card.ls();
  5290. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5291. }
  5292. /**
  5293. * M21: Init SD Card
  5294. */
  5295. inline void gcode_M21() { card.initsd(); }
  5296. /**
  5297. * M22: Release SD Card
  5298. */
  5299. inline void gcode_M22() { card.release(); }
  5300. /**
  5301. * M23: Open a file
  5302. */
  5303. inline void gcode_M23() {
  5304. // Simplify3D includes the size, so zero out all spaces (#7227)
  5305. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5306. card.openFile(parser.string_arg, true);
  5307. }
  5308. /**
  5309. * M24: Start or Resume SD Print
  5310. */
  5311. inline void gcode_M24() {
  5312. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5313. resume_print();
  5314. #endif
  5315. card.startFileprint();
  5316. print_job_timer.start();
  5317. }
  5318. /**
  5319. * M25: Pause SD Print
  5320. */
  5321. inline void gcode_M25() {
  5322. card.pauseSDPrint();
  5323. print_job_timer.pause();
  5324. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5325. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5326. #endif
  5327. }
  5328. /**
  5329. * M26: Set SD Card file index
  5330. */
  5331. inline void gcode_M26() {
  5332. if (card.cardOK && parser.seenval('S'))
  5333. card.setIndex(parser.value_long());
  5334. }
  5335. /**
  5336. * M27: Get SD Card status
  5337. */
  5338. inline void gcode_M27() { card.getStatus(); }
  5339. /**
  5340. * M28: Start SD Write
  5341. */
  5342. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5343. /**
  5344. * M29: Stop SD Write
  5345. * Processed in write to file routine above
  5346. */
  5347. inline void gcode_M29() {
  5348. // card.saving = false;
  5349. }
  5350. /**
  5351. * M30 <filename>: Delete SD Card file
  5352. */
  5353. inline void gcode_M30() {
  5354. if (card.cardOK) {
  5355. card.closefile();
  5356. card.removeFile(parser.string_arg);
  5357. }
  5358. }
  5359. #endif // SDSUPPORT
  5360. /**
  5361. * M31: Get the time since the start of SD Print (or last M109)
  5362. */
  5363. inline void gcode_M31() {
  5364. char buffer[21];
  5365. duration_t elapsed = print_job_timer.duration();
  5366. elapsed.toString(buffer);
  5367. lcd_setstatus(buffer);
  5368. SERIAL_ECHO_START();
  5369. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5370. }
  5371. #if ENABLED(SDSUPPORT)
  5372. /**
  5373. * M32: Select file and start SD Print
  5374. */
  5375. inline void gcode_M32() {
  5376. if (card.sdprinting)
  5377. stepper.synchronize();
  5378. char* namestartpos = parser.string_arg;
  5379. const bool call_procedure = parser.boolval('P');
  5380. if (card.cardOK) {
  5381. card.openFile(namestartpos, true, call_procedure);
  5382. if (parser.seenval('S'))
  5383. card.setIndex(parser.value_long());
  5384. card.startFileprint();
  5385. // Procedure calls count as normal print time.
  5386. if (!call_procedure) print_job_timer.start();
  5387. }
  5388. }
  5389. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5390. /**
  5391. * M33: Get the long full path of a file or folder
  5392. *
  5393. * Parameters:
  5394. * <dospath> Case-insensitive DOS-style path to a file or folder
  5395. *
  5396. * Example:
  5397. * M33 miscel~1/armchair/armcha~1.gco
  5398. *
  5399. * Output:
  5400. * /Miscellaneous/Armchair/Armchair.gcode
  5401. */
  5402. inline void gcode_M33() {
  5403. card.printLongPath(parser.string_arg);
  5404. }
  5405. #endif
  5406. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5407. /**
  5408. * M34: Set SD Card Sorting Options
  5409. */
  5410. inline void gcode_M34() {
  5411. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5412. if (parser.seenval('F')) {
  5413. const int v = parser.value_long();
  5414. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5415. }
  5416. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5417. }
  5418. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5419. /**
  5420. * M928: Start SD Write
  5421. */
  5422. inline void gcode_M928() {
  5423. card.openLogFile(parser.string_arg);
  5424. }
  5425. #endif // SDSUPPORT
  5426. /**
  5427. * Sensitive pin test for M42, M226
  5428. */
  5429. static bool pin_is_protected(const int8_t pin) {
  5430. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5431. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5432. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5433. return false;
  5434. }
  5435. /**
  5436. * M42: Change pin status via GCode
  5437. *
  5438. * P<pin> Pin number (LED if omitted)
  5439. * S<byte> Pin status from 0 - 255
  5440. */
  5441. inline void gcode_M42() {
  5442. if (!parser.seenval('S')) return;
  5443. const byte pin_status = parser.value_byte();
  5444. const int pin_number = parser.intval('P', LED_PIN);
  5445. if (pin_number < 0) return;
  5446. if (pin_is_protected(pin_number)) {
  5447. SERIAL_ERROR_START();
  5448. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5449. return;
  5450. }
  5451. pinMode(pin_number, OUTPUT);
  5452. digitalWrite(pin_number, pin_status);
  5453. analogWrite(pin_number, pin_status);
  5454. #if FAN_COUNT > 0
  5455. switch (pin_number) {
  5456. #if HAS_FAN0
  5457. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5458. #endif
  5459. #if HAS_FAN1
  5460. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5461. #endif
  5462. #if HAS_FAN2
  5463. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5464. #endif
  5465. }
  5466. #endif
  5467. }
  5468. #if ENABLED(PINS_DEBUGGING)
  5469. #include "pinsDebug.h"
  5470. inline void toggle_pins() {
  5471. const bool I_flag = parser.boolval('I');
  5472. const int repeat = parser.intval('R', 1),
  5473. start = parser.intval('S'),
  5474. end = parser.intval('E', NUM_DIGITAL_PINS - 1),
  5475. wait = parser.intval('W', 500);
  5476. for (uint8_t pin = start; pin <= end; pin++) {
  5477. //report_pin_state_extended(pin, I_flag, false);
  5478. if (!I_flag && pin_is_protected(pin)) {
  5479. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5480. SERIAL_EOL();
  5481. }
  5482. else {
  5483. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5484. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5485. if (pin == TEENSY_E2) {
  5486. SET_OUTPUT(TEENSY_E2);
  5487. for (int16_t j = 0; j < repeat; j++) {
  5488. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5489. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5490. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5491. }
  5492. }
  5493. else if (pin == TEENSY_E3) {
  5494. SET_OUTPUT(TEENSY_E3);
  5495. for (int16_t j = 0; j < repeat; j++) {
  5496. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5497. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5498. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5499. }
  5500. }
  5501. else
  5502. #endif
  5503. {
  5504. pinMode(pin, OUTPUT);
  5505. for (int16_t j = 0; j < repeat; j++) {
  5506. digitalWrite(pin, 0); safe_delay(wait);
  5507. digitalWrite(pin, 1); safe_delay(wait);
  5508. digitalWrite(pin, 0); safe_delay(wait);
  5509. }
  5510. }
  5511. }
  5512. SERIAL_EOL();
  5513. }
  5514. SERIAL_ECHOLNPGM("Done.");
  5515. } // toggle_pins
  5516. inline void servo_probe_test() {
  5517. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5518. SERIAL_ERROR_START();
  5519. SERIAL_ERRORLNPGM("SERVO not setup");
  5520. #elif !HAS_Z_SERVO_ENDSTOP
  5521. SERIAL_ERROR_START();
  5522. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5523. #else
  5524. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5525. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5526. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5527. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5528. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5529. bool probe_inverting;
  5530. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5531. #define PROBE_TEST_PIN Z_MIN_PIN
  5532. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5533. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5534. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5535. #if Z_MIN_ENDSTOP_INVERTING
  5536. SERIAL_PROTOCOLLNPGM("true");
  5537. #else
  5538. SERIAL_PROTOCOLLNPGM("false");
  5539. #endif
  5540. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5541. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5542. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5543. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5544. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5545. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5546. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5547. SERIAL_PROTOCOLLNPGM("true");
  5548. #else
  5549. SERIAL_PROTOCOLLNPGM("false");
  5550. #endif
  5551. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5552. #endif
  5553. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5554. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5555. bool deploy_state, stow_state;
  5556. for (uint8_t i = 0; i < 4; i++) {
  5557. servo[probe_index].move(z_servo_angle[0]); //deploy
  5558. safe_delay(500);
  5559. deploy_state = READ(PROBE_TEST_PIN);
  5560. servo[probe_index].move(z_servo_angle[1]); //stow
  5561. safe_delay(500);
  5562. stow_state = READ(PROBE_TEST_PIN);
  5563. }
  5564. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5565. refresh_cmd_timeout();
  5566. if (deploy_state != stow_state) {
  5567. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5568. if (deploy_state) {
  5569. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5570. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5571. }
  5572. else {
  5573. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5574. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5575. }
  5576. #if ENABLED(BLTOUCH)
  5577. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5578. #endif
  5579. }
  5580. else { // measure active signal length
  5581. servo[probe_index].move(z_servo_angle[0]); // deploy
  5582. safe_delay(500);
  5583. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5584. uint16_t probe_counter = 0;
  5585. // Allow 30 seconds max for operator to trigger probe
  5586. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5587. safe_delay(2);
  5588. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5589. refresh_cmd_timeout();
  5590. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  5591. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  5592. safe_delay(2);
  5593. if (probe_counter == 50)
  5594. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5595. else if (probe_counter >= 2)
  5596. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5597. else
  5598. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5599. servo[probe_index].move(z_servo_angle[1]); //stow
  5600. } // pulse detected
  5601. } // for loop waiting for trigger
  5602. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5603. } // measure active signal length
  5604. #endif
  5605. } // servo_probe_test
  5606. /**
  5607. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5608. *
  5609. * M43 - report name and state of pin(s)
  5610. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5611. * I Flag to ignore Marlin's pin protection.
  5612. *
  5613. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5614. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5615. * I Flag to ignore Marlin's pin protection.
  5616. *
  5617. * M43 E<bool> - Enable / disable background endstop monitoring
  5618. * - Machine continues to operate
  5619. * - Reports changes to endstops
  5620. * - Toggles LED_PIN when an endstop changes
  5621. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5622. *
  5623. * M43 T - Toggle pin(s) and report which pin is being toggled
  5624. * S<pin> - Start Pin number. If not given, will default to 0
  5625. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5626. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5627. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5628. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5629. *
  5630. * M43 S - Servo probe test
  5631. * P<index> - Probe index (optional - defaults to 0
  5632. */
  5633. inline void gcode_M43() {
  5634. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  5635. toggle_pins();
  5636. return;
  5637. }
  5638. // Enable or disable endstop monitoring
  5639. if (parser.seen('E')) {
  5640. endstop_monitor_flag = parser.value_bool();
  5641. SERIAL_PROTOCOLPGM("endstop monitor ");
  5642. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  5643. SERIAL_PROTOCOLLNPGM("abled");
  5644. return;
  5645. }
  5646. if (parser.seen('S')) {
  5647. servo_probe_test();
  5648. return;
  5649. }
  5650. // Get the range of pins to test or watch
  5651. const uint8_t first_pin = parser.byteval('P'),
  5652. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5653. if (first_pin > last_pin) return;
  5654. const bool ignore_protection = parser.boolval('I');
  5655. // Watch until click, M108, or reset
  5656. if (parser.boolval('W')) {
  5657. SERIAL_PROTOCOLLNPGM("Watching pins");
  5658. byte pin_state[last_pin - first_pin + 1];
  5659. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5660. if (pin_is_protected(pin) && !ignore_protection) continue;
  5661. pinMode(pin, INPUT_PULLUP);
  5662. delay(1);
  5663. /*
  5664. if (IS_ANALOG(pin))
  5665. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5666. else
  5667. //*/
  5668. pin_state[pin - first_pin] = digitalRead(pin);
  5669. }
  5670. #if HAS_RESUME_CONTINUE
  5671. wait_for_user = true;
  5672. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5673. #endif
  5674. for (;;) {
  5675. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5676. if (pin_is_protected(pin) && !ignore_protection) continue;
  5677. const byte val =
  5678. /*
  5679. IS_ANALOG(pin)
  5680. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5681. :
  5682. //*/
  5683. digitalRead(pin);
  5684. if (val != pin_state[pin - first_pin]) {
  5685. report_pin_state_extended(pin, ignore_protection, false);
  5686. pin_state[pin - first_pin] = val;
  5687. }
  5688. }
  5689. #if HAS_RESUME_CONTINUE
  5690. if (!wait_for_user) {
  5691. KEEPALIVE_STATE(IN_HANDLER);
  5692. break;
  5693. }
  5694. #endif
  5695. safe_delay(200);
  5696. }
  5697. return;
  5698. }
  5699. // Report current state of selected pin(s)
  5700. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5701. report_pin_state_extended(pin, ignore_protection, true);
  5702. }
  5703. #endif // PINS_DEBUGGING
  5704. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5705. /**
  5706. * M48: Z probe repeatability measurement function.
  5707. *
  5708. * Usage:
  5709. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5710. * P = Number of sampled points (4-50, default 10)
  5711. * X = Sample X position
  5712. * Y = Sample Y position
  5713. * V = Verbose level (0-4, default=1)
  5714. * E = Engage Z probe for each reading
  5715. * L = Number of legs of movement before probe
  5716. * S = Schizoid (Or Star if you prefer)
  5717. *
  5718. * This function assumes the bed has been homed. Specifically, that a G28 command
  5719. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5720. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5721. * regenerated.
  5722. */
  5723. inline void gcode_M48() {
  5724. if (axis_unhomed_error()) return;
  5725. const int8_t verbose_level = parser.byteval('V', 1);
  5726. if (!WITHIN(verbose_level, 0, 4)) {
  5727. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  5728. return;
  5729. }
  5730. if (verbose_level > 0)
  5731. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5732. const int8_t n_samples = parser.byteval('P', 10);
  5733. if (!WITHIN(n_samples, 4, 50)) {
  5734. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5735. return;
  5736. }
  5737. const bool stow_probe_after_each = parser.boolval('E');
  5738. float X_current = current_position[X_AXIS],
  5739. Y_current = current_position[Y_AXIS];
  5740. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  5741. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5742. #if DISABLED(DELTA)
  5743. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5744. out_of_range_error(PSTR("X"));
  5745. return;
  5746. }
  5747. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5748. out_of_range_error(PSTR("Y"));
  5749. return;
  5750. }
  5751. #else
  5752. if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
  5753. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5754. return;
  5755. }
  5756. #endif
  5757. bool seen_L = parser.seen('L');
  5758. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  5759. if (n_legs > 15) {
  5760. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5761. return;
  5762. }
  5763. if (n_legs == 1) n_legs = 2;
  5764. const bool schizoid_flag = parser.boolval('S');
  5765. if (schizoid_flag && !seen_L) n_legs = 7;
  5766. /**
  5767. * Now get everything to the specified probe point So we can safely do a
  5768. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5769. * we don't want to use that as a starting point for each probe.
  5770. */
  5771. if (verbose_level > 2)
  5772. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5773. // Disable bed level correction in M48 because we want the raw data when we probe
  5774. #if HAS_LEVELING
  5775. const bool was_enabled = leveling_is_active();
  5776. set_bed_leveling_enabled(false);
  5777. #endif
  5778. setup_for_endstop_or_probe_move();
  5779. // Move to the first point, deploy, and probe
  5780. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5781. if (isnan(t)) return;
  5782. randomSeed(millis());
  5783. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5784. for (uint8_t n = 0; n < n_samples; n++) {
  5785. if (n_legs) {
  5786. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5787. float angle = random(0.0, 360.0);
  5788. const float radius = random(
  5789. #if ENABLED(DELTA)
  5790. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  5791. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  5792. #else
  5793. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  5794. #endif
  5795. );
  5796. if (verbose_level > 3) {
  5797. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5798. SERIAL_ECHOPAIR(" angle: ", angle);
  5799. SERIAL_ECHOPGM(" Direction: ");
  5800. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5801. SERIAL_ECHOLNPGM("Clockwise");
  5802. }
  5803. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5804. double delta_angle;
  5805. if (schizoid_flag)
  5806. // The points of a 5 point star are 72 degrees apart. We need to
  5807. // skip a point and go to the next one on the star.
  5808. delta_angle = dir * 2.0 * 72.0;
  5809. else
  5810. // If we do this line, we are just trying to move further
  5811. // around the circle.
  5812. delta_angle = dir * (float) random(25, 45);
  5813. angle += delta_angle;
  5814. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5815. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5816. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5817. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5818. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5819. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5820. #if DISABLED(DELTA)
  5821. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5822. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5823. #else
  5824. // If we have gone out too far, we can do a simple fix and scale the numbers
  5825. // back in closer to the origin.
  5826. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
  5827. X_current *= 0.8;
  5828. Y_current *= 0.8;
  5829. if (verbose_level > 3) {
  5830. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5831. SERIAL_ECHOLNPAIR(", ", Y_current);
  5832. }
  5833. }
  5834. #endif
  5835. if (verbose_level > 3) {
  5836. SERIAL_PROTOCOLPGM("Going to:");
  5837. SERIAL_ECHOPAIR(" X", X_current);
  5838. SERIAL_ECHOPAIR(" Y", Y_current);
  5839. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5840. }
  5841. do_blocking_move_to_xy(X_current, Y_current);
  5842. } // n_legs loop
  5843. } // n_legs
  5844. // Probe a single point
  5845. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5846. /**
  5847. * Get the current mean for the data points we have so far
  5848. */
  5849. double sum = 0.0;
  5850. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5851. mean = sum / (n + 1);
  5852. NOMORE(min, sample_set[n]);
  5853. NOLESS(max, sample_set[n]);
  5854. /**
  5855. * Now, use that mean to calculate the standard deviation for the
  5856. * data points we have so far
  5857. */
  5858. sum = 0.0;
  5859. for (uint8_t j = 0; j <= n; j++)
  5860. sum += sq(sample_set[j] - mean);
  5861. sigma = SQRT(sum / (n + 1));
  5862. if (verbose_level > 0) {
  5863. if (verbose_level > 1) {
  5864. SERIAL_PROTOCOL(n + 1);
  5865. SERIAL_PROTOCOLPGM(" of ");
  5866. SERIAL_PROTOCOL((int)n_samples);
  5867. SERIAL_PROTOCOLPGM(": z: ");
  5868. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5869. if (verbose_level > 2) {
  5870. SERIAL_PROTOCOLPGM(" mean: ");
  5871. SERIAL_PROTOCOL_F(mean, 4);
  5872. SERIAL_PROTOCOLPGM(" sigma: ");
  5873. SERIAL_PROTOCOL_F(sigma, 6);
  5874. SERIAL_PROTOCOLPGM(" min: ");
  5875. SERIAL_PROTOCOL_F(min, 3);
  5876. SERIAL_PROTOCOLPGM(" max: ");
  5877. SERIAL_PROTOCOL_F(max, 3);
  5878. SERIAL_PROTOCOLPGM(" range: ");
  5879. SERIAL_PROTOCOL_F(max-min, 3);
  5880. }
  5881. SERIAL_EOL();
  5882. }
  5883. }
  5884. } // End of probe loop
  5885. if (STOW_PROBE()) return;
  5886. SERIAL_PROTOCOLPGM("Finished!");
  5887. SERIAL_EOL();
  5888. if (verbose_level > 0) {
  5889. SERIAL_PROTOCOLPGM("Mean: ");
  5890. SERIAL_PROTOCOL_F(mean, 6);
  5891. SERIAL_PROTOCOLPGM(" Min: ");
  5892. SERIAL_PROTOCOL_F(min, 3);
  5893. SERIAL_PROTOCOLPGM(" Max: ");
  5894. SERIAL_PROTOCOL_F(max, 3);
  5895. SERIAL_PROTOCOLPGM(" Range: ");
  5896. SERIAL_PROTOCOL_F(max-min, 3);
  5897. SERIAL_EOL();
  5898. }
  5899. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5900. SERIAL_PROTOCOL_F(sigma, 6);
  5901. SERIAL_EOL();
  5902. SERIAL_EOL();
  5903. clean_up_after_endstop_or_probe_move();
  5904. // Re-enable bed level correction if it had been on
  5905. #if HAS_LEVELING
  5906. set_bed_leveling_enabled(was_enabled);
  5907. #endif
  5908. report_current_position();
  5909. }
  5910. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5911. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  5912. inline void gcode_M49() {
  5913. ubl.g26_debug_flag ^= true;
  5914. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5915. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5916. }
  5917. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  5918. /**
  5919. * M75: Start print timer
  5920. */
  5921. inline void gcode_M75() { print_job_timer.start(); }
  5922. /**
  5923. * M76: Pause print timer
  5924. */
  5925. inline void gcode_M76() { print_job_timer.pause(); }
  5926. /**
  5927. * M77: Stop print timer
  5928. */
  5929. inline void gcode_M77() { print_job_timer.stop(); }
  5930. #if ENABLED(PRINTCOUNTER)
  5931. /**
  5932. * M78: Show print statistics
  5933. */
  5934. inline void gcode_M78() {
  5935. // "M78 S78" will reset the statistics
  5936. if (parser.intval('S') == 78)
  5937. print_job_timer.initStats();
  5938. else
  5939. print_job_timer.showStats();
  5940. }
  5941. #endif
  5942. /**
  5943. * M104: Set hot end temperature
  5944. */
  5945. inline void gcode_M104() {
  5946. if (get_target_extruder_from_command(104)) return;
  5947. if (DEBUGGING(DRYRUN)) return;
  5948. #if ENABLED(SINGLENOZZLE)
  5949. if (target_extruder != active_extruder) return;
  5950. #endif
  5951. if (parser.seenval('S')) {
  5952. const int16_t temp = parser.value_celsius();
  5953. thermalManager.setTargetHotend(temp, target_extruder);
  5954. #if ENABLED(DUAL_X_CARRIAGE)
  5955. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5956. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  5957. #endif
  5958. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5959. /**
  5960. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5961. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5962. * standby mode, for instance in a dual extruder setup, without affecting
  5963. * the running print timer.
  5964. */
  5965. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  5966. print_job_timer.stop();
  5967. LCD_MESSAGEPGM(WELCOME_MSG);
  5968. }
  5969. #endif
  5970. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  5971. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5972. }
  5973. #if ENABLED(AUTOTEMP)
  5974. planner.autotemp_M104_M109();
  5975. #endif
  5976. }
  5977. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5978. void print_heater_state(const float &c, const float &t,
  5979. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5980. const float r,
  5981. #endif
  5982. const int8_t e=-2
  5983. ) {
  5984. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  5985. UNUSED(e);
  5986. #endif
  5987. SERIAL_PROTOCOLCHAR(' ');
  5988. SERIAL_PROTOCOLCHAR(
  5989. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  5990. e == -1 ? 'B' : 'T'
  5991. #elif HAS_TEMP_HOTEND
  5992. 'T'
  5993. #else
  5994. 'B'
  5995. #endif
  5996. );
  5997. #if HOTENDS > 1
  5998. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  5999. #endif
  6000. SERIAL_PROTOCOLCHAR(':');
  6001. SERIAL_PROTOCOL(c);
  6002. SERIAL_PROTOCOLPAIR(" /" , t);
  6003. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6004. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6005. SERIAL_PROTOCOLCHAR(')');
  6006. #endif
  6007. }
  6008. void print_heaterstates() {
  6009. #if HAS_TEMP_HOTEND
  6010. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6011. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6012. , thermalManager.rawHotendTemp(target_extruder)
  6013. #endif
  6014. );
  6015. #endif
  6016. #if HAS_TEMP_BED
  6017. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6018. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6019. thermalManager.rawBedTemp(),
  6020. #endif
  6021. -1 // BED
  6022. );
  6023. #endif
  6024. #if HOTENDS > 1
  6025. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6026. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6027. thermalManager.rawHotendTemp(e),
  6028. #endif
  6029. e
  6030. );
  6031. #endif
  6032. SERIAL_PROTOCOLPGM(" @:");
  6033. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6034. #if HAS_TEMP_BED
  6035. SERIAL_PROTOCOLPGM(" B@:");
  6036. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6037. #endif
  6038. #if HOTENDS > 1
  6039. HOTEND_LOOP() {
  6040. SERIAL_PROTOCOLPAIR(" @", e);
  6041. SERIAL_PROTOCOLCHAR(':');
  6042. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6043. }
  6044. #endif
  6045. }
  6046. #endif
  6047. /**
  6048. * M105: Read hot end and bed temperature
  6049. */
  6050. inline void gcode_M105() {
  6051. if (get_target_extruder_from_command(105)) return;
  6052. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6053. SERIAL_PROTOCOLPGM(MSG_OK);
  6054. print_heaterstates();
  6055. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6056. SERIAL_ERROR_START();
  6057. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6058. #endif
  6059. SERIAL_EOL();
  6060. }
  6061. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6062. static uint8_t auto_report_temp_interval;
  6063. static millis_t next_temp_report_ms;
  6064. /**
  6065. * M155: Set temperature auto-report interval. M155 S<seconds>
  6066. */
  6067. inline void gcode_M155() {
  6068. if (parser.seenval('S')) {
  6069. auto_report_temp_interval = parser.value_byte();
  6070. NOMORE(auto_report_temp_interval, 60);
  6071. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6072. }
  6073. }
  6074. inline void auto_report_temperatures() {
  6075. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6076. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6077. print_heaterstates();
  6078. SERIAL_EOL();
  6079. }
  6080. }
  6081. #endif // AUTO_REPORT_TEMPERATURES
  6082. #if FAN_COUNT > 0
  6083. /**
  6084. * M106: Set Fan Speed
  6085. *
  6086. * S<int> Speed between 0-255
  6087. * P<index> Fan index, if more than one fan
  6088. */
  6089. inline void gcode_M106() {
  6090. uint16_t s = parser.ushortval('S', 255);
  6091. NOMORE(s, 255);
  6092. const uint8_t p = parser.byteval('P', 0);
  6093. if (p < FAN_COUNT) fanSpeeds[p] = s;
  6094. }
  6095. /**
  6096. * M107: Fan Off
  6097. */
  6098. inline void gcode_M107() {
  6099. const uint16_t p = parser.ushortval('P');
  6100. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6101. }
  6102. #endif // FAN_COUNT > 0
  6103. #if DISABLED(EMERGENCY_PARSER)
  6104. /**
  6105. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6106. */
  6107. inline void gcode_M108() { wait_for_heatup = false; }
  6108. /**
  6109. * M112: Emergency Stop
  6110. */
  6111. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6112. /**
  6113. * M410: Quickstop - Abort all planned moves
  6114. *
  6115. * This will stop the carriages mid-move, so most likely they
  6116. * will be out of sync with the stepper position after this.
  6117. */
  6118. inline void gcode_M410() { quickstop_stepper(); }
  6119. #endif
  6120. /**
  6121. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6122. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6123. */
  6124. #ifndef MIN_COOLING_SLOPE_DEG
  6125. #define MIN_COOLING_SLOPE_DEG 1.50
  6126. #endif
  6127. #ifndef MIN_COOLING_SLOPE_TIME
  6128. #define MIN_COOLING_SLOPE_TIME 60
  6129. #endif
  6130. inline void gcode_M109() {
  6131. if (get_target_extruder_from_command(109)) return;
  6132. if (DEBUGGING(DRYRUN)) return;
  6133. #if ENABLED(SINGLENOZZLE)
  6134. if (target_extruder != active_extruder) return;
  6135. #endif
  6136. const bool no_wait_for_cooling = parser.seenval('S');
  6137. if (no_wait_for_cooling || parser.seenval('R')) {
  6138. const int16_t temp = parser.value_celsius();
  6139. thermalManager.setTargetHotend(temp, target_extruder);
  6140. #if ENABLED(DUAL_X_CARRIAGE)
  6141. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6142. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6143. #endif
  6144. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6145. /**
  6146. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6147. * standby mode, (e.g., in a dual extruder setup) without affecting
  6148. * the running print timer.
  6149. */
  6150. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6151. print_job_timer.stop();
  6152. LCD_MESSAGEPGM(WELCOME_MSG);
  6153. }
  6154. else
  6155. print_job_timer.start();
  6156. #endif
  6157. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6158. }
  6159. else return;
  6160. #if ENABLED(AUTOTEMP)
  6161. planner.autotemp_M104_M109();
  6162. #endif
  6163. #if TEMP_RESIDENCY_TIME > 0
  6164. millis_t residency_start_ms = 0;
  6165. // Loop until the temperature has stabilized
  6166. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6167. #else
  6168. // Loop until the temperature is very close target
  6169. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6170. #endif
  6171. float target_temp = -1.0, old_temp = 9999.0;
  6172. bool wants_to_cool = false;
  6173. wait_for_heatup = true;
  6174. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6175. #if DISABLED(BUSY_WHILE_HEATING)
  6176. KEEPALIVE_STATE(NOT_BUSY);
  6177. #endif
  6178. #if ENABLED(PRINTER_EVENT_LEDS)
  6179. const float start_temp = thermalManager.degHotend(target_extruder);
  6180. uint8_t old_blue = 0;
  6181. #endif
  6182. do {
  6183. // Target temperature might be changed during the loop
  6184. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6185. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6186. target_temp = thermalManager.degTargetHotend(target_extruder);
  6187. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6188. if (no_wait_for_cooling && wants_to_cool) break;
  6189. }
  6190. now = millis();
  6191. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6192. next_temp_ms = now + 1000UL;
  6193. print_heaterstates();
  6194. #if TEMP_RESIDENCY_TIME > 0
  6195. SERIAL_PROTOCOLPGM(" W:");
  6196. if (residency_start_ms)
  6197. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6198. else
  6199. SERIAL_PROTOCOLCHAR('?');
  6200. #endif
  6201. SERIAL_EOL();
  6202. }
  6203. idle();
  6204. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6205. const float temp = thermalManager.degHotend(target_extruder);
  6206. #if ENABLED(PRINTER_EVENT_LEDS)
  6207. // Gradually change LED strip from violet to red as nozzle heats up
  6208. if (!wants_to_cool) {
  6209. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6210. if (blue != old_blue) {
  6211. old_blue = blue;
  6212. set_led_color(255, 0, blue
  6213. #if ENABLED(NEOPIXEL_RGBW_LED)
  6214. , 0, true
  6215. #endif
  6216. );
  6217. }
  6218. }
  6219. #endif
  6220. #if TEMP_RESIDENCY_TIME > 0
  6221. const float temp_diff = FABS(target_temp - temp);
  6222. if (!residency_start_ms) {
  6223. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6224. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6225. }
  6226. else if (temp_diff > TEMP_HYSTERESIS) {
  6227. // Restart the timer whenever the temperature falls outside the hysteresis.
  6228. residency_start_ms = now;
  6229. }
  6230. #endif
  6231. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6232. if (wants_to_cool) {
  6233. // break after MIN_COOLING_SLOPE_TIME seconds
  6234. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6235. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6236. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6237. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6238. old_temp = temp;
  6239. }
  6240. }
  6241. } while (wait_for_heatup && TEMP_CONDITIONS);
  6242. if (wait_for_heatup) {
  6243. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6244. #if ENABLED(PRINTER_EVENT_LEDS)
  6245. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  6246. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  6247. #else
  6248. set_led_color(255, 255, 255); // Set LEDs All On
  6249. #endif
  6250. #endif
  6251. }
  6252. #if DISABLED(BUSY_WHILE_HEATING)
  6253. KEEPALIVE_STATE(IN_HANDLER);
  6254. #endif
  6255. }
  6256. #if HAS_TEMP_BED
  6257. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6258. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6259. #endif
  6260. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6261. #define MIN_COOLING_SLOPE_TIME_BED 60
  6262. #endif
  6263. /**
  6264. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6265. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6266. */
  6267. inline void gcode_M190() {
  6268. if (DEBUGGING(DRYRUN)) return;
  6269. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6270. const bool no_wait_for_cooling = parser.seenval('S');
  6271. if (no_wait_for_cooling || parser.seenval('R')) {
  6272. thermalManager.setTargetBed(parser.value_celsius());
  6273. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6274. if (parser.value_celsius() > BED_MINTEMP)
  6275. print_job_timer.start();
  6276. #endif
  6277. }
  6278. else return;
  6279. #if TEMP_BED_RESIDENCY_TIME > 0
  6280. millis_t residency_start_ms = 0;
  6281. // Loop until the temperature has stabilized
  6282. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6283. #else
  6284. // Loop until the temperature is very close target
  6285. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6286. #endif
  6287. float target_temp = -1.0, old_temp = 9999.0;
  6288. bool wants_to_cool = false;
  6289. wait_for_heatup = true;
  6290. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6291. #if DISABLED(BUSY_WHILE_HEATING)
  6292. KEEPALIVE_STATE(NOT_BUSY);
  6293. #endif
  6294. target_extruder = active_extruder; // for print_heaterstates
  6295. #if ENABLED(PRINTER_EVENT_LEDS)
  6296. const float start_temp = thermalManager.degBed();
  6297. uint8_t old_red = 255;
  6298. #endif
  6299. do {
  6300. // Target temperature might be changed during the loop
  6301. if (target_temp != thermalManager.degTargetBed()) {
  6302. wants_to_cool = thermalManager.isCoolingBed();
  6303. target_temp = thermalManager.degTargetBed();
  6304. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6305. if (no_wait_for_cooling && wants_to_cool) break;
  6306. }
  6307. now = millis();
  6308. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6309. next_temp_ms = now + 1000UL;
  6310. print_heaterstates();
  6311. #if TEMP_BED_RESIDENCY_TIME > 0
  6312. SERIAL_PROTOCOLPGM(" W:");
  6313. if (residency_start_ms)
  6314. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6315. else
  6316. SERIAL_PROTOCOLCHAR('?');
  6317. #endif
  6318. SERIAL_EOL();
  6319. }
  6320. idle();
  6321. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6322. const float temp = thermalManager.degBed();
  6323. #if ENABLED(PRINTER_EVENT_LEDS)
  6324. // Gradually change LED strip from blue to violet as bed heats up
  6325. if (!wants_to_cool) {
  6326. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6327. if (red != old_red) {
  6328. old_red = red;
  6329. set_led_color(red, 0, 255
  6330. #if ENABLED(NEOPIXEL_RGBW_LED)
  6331. , 0, true
  6332. #endif
  6333. );
  6334. }
  6335. }
  6336. #endif
  6337. #if TEMP_BED_RESIDENCY_TIME > 0
  6338. const float temp_diff = FABS(target_temp - temp);
  6339. if (!residency_start_ms) {
  6340. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6341. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6342. }
  6343. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6344. // Restart the timer whenever the temperature falls outside the hysteresis.
  6345. residency_start_ms = now;
  6346. }
  6347. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6348. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6349. if (wants_to_cool) {
  6350. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6351. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6352. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6353. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6354. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6355. old_temp = temp;
  6356. }
  6357. }
  6358. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6359. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6360. #if DISABLED(BUSY_WHILE_HEATING)
  6361. KEEPALIVE_STATE(IN_HANDLER);
  6362. #endif
  6363. }
  6364. #endif // HAS_TEMP_BED
  6365. /**
  6366. * M110: Set Current Line Number
  6367. */
  6368. inline void gcode_M110() {
  6369. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6370. }
  6371. /**
  6372. * M111: Set the debug level
  6373. */
  6374. inline void gcode_M111() {
  6375. marlin_debug_flags = parser.byteval('S', (uint8_t)DEBUG_NONE);
  6376. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  6377. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  6378. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  6379. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  6380. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  6381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6382. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  6383. #endif
  6384. const static char* const debug_strings[] PROGMEM = {
  6385. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6387. , str_debug_32
  6388. #endif
  6389. };
  6390. SERIAL_ECHO_START();
  6391. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6392. if (marlin_debug_flags) {
  6393. uint8_t comma = 0;
  6394. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6395. if (TEST(marlin_debug_flags, i)) {
  6396. if (comma++) SERIAL_CHAR(',');
  6397. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6398. }
  6399. }
  6400. }
  6401. else {
  6402. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6403. }
  6404. SERIAL_EOL();
  6405. }
  6406. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6407. /**
  6408. * M113: Get or set Host Keepalive interval (0 to disable)
  6409. *
  6410. * S<seconds> Optional. Set the keepalive interval.
  6411. */
  6412. inline void gcode_M113() {
  6413. if (parser.seenval('S')) {
  6414. host_keepalive_interval = parser.value_byte();
  6415. NOMORE(host_keepalive_interval, 60);
  6416. }
  6417. else {
  6418. SERIAL_ECHO_START();
  6419. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6420. }
  6421. }
  6422. #endif
  6423. #if ENABLED(BARICUDA)
  6424. #if HAS_HEATER_1
  6425. /**
  6426. * M126: Heater 1 valve open
  6427. */
  6428. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6429. /**
  6430. * M127: Heater 1 valve close
  6431. */
  6432. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6433. #endif
  6434. #if HAS_HEATER_2
  6435. /**
  6436. * M128: Heater 2 valve open
  6437. */
  6438. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6439. /**
  6440. * M129: Heater 2 valve close
  6441. */
  6442. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6443. #endif
  6444. #endif // BARICUDA
  6445. /**
  6446. * M140: Set bed temperature
  6447. */
  6448. inline void gcode_M140() {
  6449. if (DEBUGGING(DRYRUN)) return;
  6450. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6451. }
  6452. #if ENABLED(ULTIPANEL)
  6453. /**
  6454. * M145: Set the heatup state for a material in the LCD menu
  6455. *
  6456. * S<material> (0=PLA, 1=ABS)
  6457. * H<hotend temp>
  6458. * B<bed temp>
  6459. * F<fan speed>
  6460. */
  6461. inline void gcode_M145() {
  6462. const uint8_t material = (uint8_t)parser.intval('S');
  6463. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6464. SERIAL_ERROR_START();
  6465. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6466. }
  6467. else {
  6468. int v;
  6469. if (parser.seenval('H')) {
  6470. v = parser.value_int();
  6471. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6472. }
  6473. if (parser.seenval('F')) {
  6474. v = parser.value_int();
  6475. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6476. }
  6477. #if TEMP_SENSOR_BED != 0
  6478. if (parser.seenval('B')) {
  6479. v = parser.value_int();
  6480. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6481. }
  6482. #endif
  6483. }
  6484. }
  6485. #endif // ULTIPANEL
  6486. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6487. /**
  6488. * M149: Set temperature units
  6489. */
  6490. inline void gcode_M149() {
  6491. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6492. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6493. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6494. }
  6495. #endif
  6496. #if HAS_POWER_SWITCH
  6497. /**
  6498. * M80 : Turn on the Power Supply
  6499. * M80 S : Report the current state and exit
  6500. */
  6501. inline void gcode_M80() {
  6502. // S: Report the current power supply state and exit
  6503. if (parser.seen('S')) {
  6504. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6505. return;
  6506. }
  6507. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6508. /**
  6509. * If you have a switch on suicide pin, this is useful
  6510. * if you want to start another print with suicide feature after
  6511. * a print without suicide...
  6512. */
  6513. #if HAS_SUICIDE
  6514. OUT_WRITE(SUICIDE_PIN, HIGH);
  6515. #endif
  6516. #if ENABLED(HAVE_TMC2130)
  6517. delay(100);
  6518. tmc2130_init(); // Settings only stick when the driver has power
  6519. #endif
  6520. powersupply_on = true;
  6521. #if ENABLED(ULTIPANEL)
  6522. LCD_MESSAGEPGM(WELCOME_MSG);
  6523. #endif
  6524. }
  6525. #endif // HAS_POWER_SWITCH
  6526. /**
  6527. * M81: Turn off Power, including Power Supply, if there is one.
  6528. *
  6529. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6530. */
  6531. inline void gcode_M81() {
  6532. thermalManager.disable_all_heaters();
  6533. stepper.finish_and_disable();
  6534. #if FAN_COUNT > 0
  6535. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6536. #if ENABLED(PROBING_FANS_OFF)
  6537. fans_paused = false;
  6538. ZERO(paused_fanSpeeds);
  6539. #endif
  6540. #endif
  6541. safe_delay(1000); // Wait 1 second before switching off
  6542. #if HAS_SUICIDE
  6543. stepper.synchronize();
  6544. suicide();
  6545. #elif HAS_POWER_SWITCH
  6546. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6547. powersupply_on = false;
  6548. #endif
  6549. #if ENABLED(ULTIPANEL)
  6550. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6551. #endif
  6552. }
  6553. /**
  6554. * M82: Set E codes absolute (default)
  6555. */
  6556. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6557. /**
  6558. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6559. */
  6560. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6561. /**
  6562. * M18, M84: Disable stepper motors
  6563. */
  6564. inline void gcode_M18_M84() {
  6565. if (parser.seenval('S')) {
  6566. stepper_inactive_time = parser.value_millis_from_seconds();
  6567. }
  6568. else {
  6569. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  6570. if (all_axis) {
  6571. stepper.finish_and_disable();
  6572. }
  6573. else {
  6574. stepper.synchronize();
  6575. if (parser.seen('X')) disable_X();
  6576. if (parser.seen('Y')) disable_Y();
  6577. if (parser.seen('Z')) disable_Z();
  6578. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  6579. if (parser.seen('E')) disable_e_steppers();
  6580. #endif
  6581. }
  6582. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  6583. ubl_lcd_map_control = defer_return_to_status = false;
  6584. #endif
  6585. }
  6586. }
  6587. /**
  6588. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6589. */
  6590. inline void gcode_M85() {
  6591. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  6592. }
  6593. /**
  6594. * Multi-stepper support for M92, M201, M203
  6595. */
  6596. #if ENABLED(DISTINCT_E_FACTORS)
  6597. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6598. #define TARGET_EXTRUDER target_extruder
  6599. #else
  6600. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6601. #define TARGET_EXTRUDER 0
  6602. #endif
  6603. /**
  6604. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6605. * (Follows the same syntax as G92)
  6606. *
  6607. * With multiple extruders use T to specify which one.
  6608. */
  6609. inline void gcode_M92() {
  6610. GET_TARGET_EXTRUDER(92);
  6611. LOOP_XYZE(i) {
  6612. if (parser.seen(axis_codes[i])) {
  6613. if (i == E_AXIS) {
  6614. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6615. if (value < 20.0) {
  6616. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6617. planner.max_jerk[E_AXIS] *= factor;
  6618. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6619. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6620. }
  6621. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6622. }
  6623. else {
  6624. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  6625. }
  6626. }
  6627. }
  6628. planner.refresh_positioning();
  6629. }
  6630. /**
  6631. * Output the current position to serial
  6632. */
  6633. void report_current_position() {
  6634. SERIAL_PROTOCOLPGM("X:");
  6635. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6636. SERIAL_PROTOCOLPGM(" Y:");
  6637. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6638. SERIAL_PROTOCOLPGM(" Z:");
  6639. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6640. SERIAL_PROTOCOLPGM(" E:");
  6641. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6642. stepper.report_positions();
  6643. #if IS_SCARA
  6644. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6645. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6646. SERIAL_EOL();
  6647. #endif
  6648. }
  6649. #ifdef M114_DETAIL
  6650. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  6651. char str[12];
  6652. for (uint8_t i = 0; i < n; i++) {
  6653. SERIAL_CHAR(' ');
  6654. SERIAL_CHAR(axis_codes[i]);
  6655. SERIAL_CHAR(':');
  6656. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  6657. }
  6658. SERIAL_EOL();
  6659. }
  6660. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  6661. void report_current_position_detail() {
  6662. stepper.synchronize();
  6663. SERIAL_PROTOCOLPGM("\nLogical:");
  6664. report_xyze(current_position);
  6665. SERIAL_PROTOCOLPGM("Raw: ");
  6666. const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
  6667. report_xyz(raw);
  6668. SERIAL_PROTOCOLPGM("Leveled:");
  6669. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  6670. planner.apply_leveling(leveled);
  6671. report_xyz(leveled);
  6672. SERIAL_PROTOCOLPGM("UnLevel:");
  6673. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  6674. planner.unapply_leveling(unleveled);
  6675. report_xyz(unleveled);
  6676. #if IS_KINEMATIC
  6677. #if IS_SCARA
  6678. SERIAL_PROTOCOLPGM("ScaraK: ");
  6679. #else
  6680. SERIAL_PROTOCOLPGM("DeltaK: ");
  6681. #endif
  6682. inverse_kinematics(leveled); // writes delta[]
  6683. report_xyz(delta);
  6684. #endif
  6685. SERIAL_PROTOCOLPGM("Stepper:");
  6686. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  6687. report_xyze(step_count, 4, 0);
  6688. #if IS_SCARA
  6689. const float deg[XYZ] = {
  6690. stepper.get_axis_position_degrees(A_AXIS),
  6691. stepper.get_axis_position_degrees(B_AXIS)
  6692. };
  6693. SERIAL_PROTOCOLPGM("Degrees:");
  6694. report_xyze(deg, 2);
  6695. #endif
  6696. SERIAL_PROTOCOLPGM("FromStp:");
  6697. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  6698. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  6699. report_xyze(from_steppers);
  6700. const float diff[XYZE] = {
  6701. from_steppers[X_AXIS] - leveled[X_AXIS],
  6702. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  6703. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  6704. from_steppers[E_AXIS] - current_position[E_AXIS]
  6705. };
  6706. SERIAL_PROTOCOLPGM("Differ: ");
  6707. report_xyze(diff);
  6708. }
  6709. #endif // M114_DETAIL
  6710. /**
  6711. * M114: Report current position to host
  6712. */
  6713. inline void gcode_M114() {
  6714. #ifdef M114_DETAIL
  6715. if (parser.seen('D')) {
  6716. report_current_position_detail();
  6717. return;
  6718. }
  6719. #endif
  6720. stepper.synchronize();
  6721. report_current_position();
  6722. }
  6723. /**
  6724. * M115: Capabilities string
  6725. */
  6726. inline void gcode_M115() {
  6727. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6728. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6729. // EEPROM (M500, M501)
  6730. #if ENABLED(EEPROM_SETTINGS)
  6731. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6732. #else
  6733. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6734. #endif
  6735. // AUTOREPORT_TEMP (M155)
  6736. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6737. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6738. #else
  6739. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6740. #endif
  6741. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6742. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6743. // Print Job timer M75, M76, M77
  6744. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  6745. // AUTOLEVEL (G29)
  6746. #if HAS_ABL
  6747. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6748. #else
  6749. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6750. #endif
  6751. // Z_PROBE (G30)
  6752. #if HAS_BED_PROBE
  6753. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6754. #else
  6755. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6756. #endif
  6757. // MESH_REPORT (M420 V)
  6758. #if HAS_LEVELING
  6759. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6760. #else
  6761. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6762. #endif
  6763. // SOFTWARE_POWER (M80, M81)
  6764. #if HAS_POWER_SWITCH
  6765. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6766. #else
  6767. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6768. #endif
  6769. // CASE LIGHTS (M355)
  6770. #if HAS_CASE_LIGHT
  6771. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6772. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  6773. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  6774. }
  6775. else
  6776. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6777. #else
  6778. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6779. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6780. #endif
  6781. // EMERGENCY_PARSER (M108, M112, M410)
  6782. #if ENABLED(EMERGENCY_PARSER)
  6783. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6784. #else
  6785. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6786. #endif
  6787. #endif // EXTENDED_CAPABILITIES_REPORT
  6788. }
  6789. /**
  6790. * M117: Set LCD Status Message
  6791. */
  6792. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  6793. /**
  6794. * M118: Display a message in the host console.
  6795. *
  6796. * A Append '// ' for an action command, as in OctoPrint
  6797. * E Have the host 'echo:' the text
  6798. */
  6799. inline void gcode_M118() {
  6800. if (parser.boolval('E')) SERIAL_ECHO_START();
  6801. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  6802. SERIAL_ECHOLN(parser.string_arg);
  6803. }
  6804. /**
  6805. * M119: Output endstop states to serial output
  6806. */
  6807. inline void gcode_M119() { endstops.M119(); }
  6808. /**
  6809. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6810. */
  6811. inline void gcode_M120() { endstops.enable_globally(true); }
  6812. /**
  6813. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6814. */
  6815. inline void gcode_M121() { endstops.enable_globally(false); }
  6816. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6817. /**
  6818. * M125: Store current position and move to filament change position.
  6819. * Called on pause (by M25) to prevent material leaking onto the
  6820. * object. On resume (M24) the head will be moved back and the
  6821. * print will resume.
  6822. *
  6823. * If Marlin is compiled without SD Card support, M125 can be
  6824. * used directly to pause the print and move to park position,
  6825. * resuming with a button click or M108.
  6826. *
  6827. * L = override retract length
  6828. * X = override X
  6829. * Y = override Y
  6830. * Z = override Z raise
  6831. */
  6832. inline void gcode_M125() {
  6833. // Initial retract before move to filament change position
  6834. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  6835. #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
  6836. - (PAUSE_PARK_RETRACT_LENGTH)
  6837. #endif
  6838. ;
  6839. // Lift Z axis
  6840. const float z_lift = parser.linearval('Z')
  6841. #if PAUSE_PARK_Z_ADD > 0
  6842. + PAUSE_PARK_Z_ADD
  6843. #endif
  6844. ;
  6845. // Move XY axes to filament change position or given position
  6846. const float x_pos = parser.linearval('X')
  6847. #ifdef PAUSE_PARK_X_POS
  6848. + PAUSE_PARK_X_POS
  6849. #endif
  6850. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6851. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  6852. #endif
  6853. ;
  6854. const float y_pos = parser.linearval('Y')
  6855. #ifdef PAUSE_PARK_Y_POS
  6856. + PAUSE_PARK_Y_POS
  6857. #endif
  6858. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6859. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  6860. #endif
  6861. ;
  6862. const bool job_running = print_job_timer.isRunning();
  6863. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  6864. #if DISABLED(SDSUPPORT)
  6865. // Wait for lcd click or M108
  6866. wait_for_filament_reload();
  6867. // Return to print position and continue
  6868. resume_print();
  6869. if (job_running) print_job_timer.start();
  6870. #endif
  6871. }
  6872. }
  6873. #endif // PARK_HEAD_ON_PAUSE
  6874. #if HAS_COLOR_LEDS
  6875. /**
  6876. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6877. *
  6878. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6879. *
  6880. * Examples:
  6881. *
  6882. * M150 R255 ; Turn LED red
  6883. * M150 R255 U127 ; Turn LED orange (PWM only)
  6884. * M150 ; Turn LED off
  6885. * M150 R U B ; Turn LED white
  6886. * M150 W ; Turn LED white using a white LED
  6887. *
  6888. */
  6889. inline void gcode_M150() {
  6890. set_led_color(
  6891. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  6892. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  6893. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  6894. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
  6895. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  6896. #endif
  6897. );
  6898. }
  6899. #endif // HAS_COLOR_LEDS
  6900. /**
  6901. * M200: Set filament diameter and set E axis units to cubic units
  6902. *
  6903. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6904. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6905. */
  6906. inline void gcode_M200() {
  6907. if (get_target_extruder_from_command(200)) return;
  6908. if (parser.seen('D')) {
  6909. // setting any extruder filament size disables volumetric on the assumption that
  6910. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6911. // for all extruders
  6912. volumetric_enabled = (parser.value_linear_units() != 0.0);
  6913. if (volumetric_enabled) {
  6914. filament_size[target_extruder] = parser.value_linear_units();
  6915. // make sure all extruders have some sane value for the filament size
  6916. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6917. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6918. }
  6919. }
  6920. calculate_volumetric_multipliers();
  6921. }
  6922. /**
  6923. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6924. *
  6925. * With multiple extruders use T to specify which one.
  6926. */
  6927. inline void gcode_M201() {
  6928. GET_TARGET_EXTRUDER(201);
  6929. LOOP_XYZE(i) {
  6930. if (parser.seen(axis_codes[i])) {
  6931. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6932. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  6933. }
  6934. }
  6935. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6936. planner.reset_acceleration_rates();
  6937. }
  6938. #if 0 // Not used for Sprinter/grbl gen6
  6939. inline void gcode_M202() {
  6940. LOOP_XYZE(i) {
  6941. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6942. }
  6943. }
  6944. #endif
  6945. /**
  6946. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6947. *
  6948. * With multiple extruders use T to specify which one.
  6949. */
  6950. inline void gcode_M203() {
  6951. GET_TARGET_EXTRUDER(203);
  6952. LOOP_XYZE(i)
  6953. if (parser.seen(axis_codes[i])) {
  6954. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6955. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  6956. }
  6957. }
  6958. /**
  6959. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6960. *
  6961. * P = Printing moves
  6962. * R = Retract only (no X, Y, Z) moves
  6963. * T = Travel (non printing) moves
  6964. *
  6965. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6966. */
  6967. inline void gcode_M204() {
  6968. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6969. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  6970. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6971. }
  6972. if (parser.seen('P')) {
  6973. planner.acceleration = parser.value_linear_units();
  6974. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6975. }
  6976. if (parser.seen('R')) {
  6977. planner.retract_acceleration = parser.value_linear_units();
  6978. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6979. }
  6980. if (parser.seen('T')) {
  6981. planner.travel_acceleration = parser.value_linear_units();
  6982. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6983. }
  6984. }
  6985. /**
  6986. * M205: Set Advanced Settings
  6987. *
  6988. * S = Min Feed Rate (units/s)
  6989. * T = Min Travel Feed Rate (units/s)
  6990. * B = Min Segment Time (µs)
  6991. * X = Max X Jerk (units/sec^2)
  6992. * Y = Max Y Jerk (units/sec^2)
  6993. * Z = Max Z Jerk (units/sec^2)
  6994. * E = Max E Jerk (units/sec^2)
  6995. */
  6996. inline void gcode_M205() {
  6997. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  6998. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  6999. if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
  7000. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7001. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7002. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7003. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7004. }
  7005. #if HAS_M206_COMMAND
  7006. /**
  7007. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7008. *
  7009. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7010. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7011. * *** In the next 1.2 release, it will simply be disabled by default.
  7012. */
  7013. inline void gcode_M206() {
  7014. LOOP_XYZ(i)
  7015. if (parser.seen(axis_codes[i]))
  7016. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7017. #if ENABLED(MORGAN_SCARA)
  7018. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
  7019. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
  7020. #endif
  7021. SYNC_PLAN_POSITION_KINEMATIC();
  7022. report_current_position();
  7023. }
  7024. #endif // HAS_M206_COMMAND
  7025. #if ENABLED(DELTA)
  7026. /**
  7027. * M665: Set delta configurations
  7028. *
  7029. * H = delta height
  7030. * L = diagonal rod
  7031. * R = delta radius
  7032. * S = segments per second
  7033. * B = delta calibration radius
  7034. * X = Alpha (Tower 1) angle trim
  7035. * Y = Beta (Tower 2) angle trim
  7036. * Z = Rotate A and B by this angle
  7037. */
  7038. inline void gcode_M665() {
  7039. if (parser.seen('H')) {
  7040. home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
  7041. update_software_endstops(Z_AXIS);
  7042. }
  7043. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7044. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7045. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7046. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7047. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7048. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7049. if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
  7050. delta_tower_angle_trim[A_AXIS] -= parser.value_float();
  7051. delta_tower_angle_trim[B_AXIS] -= parser.value_float();
  7052. }
  7053. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  7054. }
  7055. /**
  7056. * M666: Set delta endstop adjustment
  7057. */
  7058. inline void gcode_M666() {
  7059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7060. if (DEBUGGING(LEVELING)) {
  7061. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7062. }
  7063. #endif
  7064. LOOP_XYZ(i) {
  7065. if (parser.seen(axis_codes[i])) {
  7066. endstop_adj[i] = parser.value_linear_units();
  7067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7068. if (DEBUGGING(LEVELING)) {
  7069. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  7070. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  7071. }
  7072. #endif
  7073. }
  7074. }
  7075. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7076. if (DEBUGGING(LEVELING)) {
  7077. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7078. }
  7079. #endif
  7080. // normalize endstops so all are <=0; set the residue to delta height
  7081. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  7082. home_offset[Z_AXIS] -= z_temp;
  7083. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  7084. }
  7085. #elif IS_SCARA
  7086. /**
  7087. * M665: Set SCARA settings
  7088. *
  7089. * Parameters:
  7090. *
  7091. * S[segments-per-second] - Segments-per-second
  7092. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7093. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7094. *
  7095. * A, P, and X are all aliases for the shoulder angle
  7096. * B, T, and Y are all aliases for the elbow angle
  7097. */
  7098. inline void gcode_M665() {
  7099. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7100. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7101. const uint8_t sumAPX = hasA + hasP + hasX;
  7102. if (sumAPX == 1)
  7103. home_offset[A_AXIS] = parser.value_float();
  7104. else if (sumAPX > 1) {
  7105. SERIAL_ERROR_START();
  7106. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7107. return;
  7108. }
  7109. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7110. const uint8_t sumBTY = hasB + hasT + hasY;
  7111. if (sumBTY == 1)
  7112. home_offset[B_AXIS] = parser.value_float();
  7113. else if (sumBTY > 1) {
  7114. SERIAL_ERROR_START();
  7115. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7116. return;
  7117. }
  7118. }
  7119. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  7120. /**
  7121. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7122. */
  7123. inline void gcode_M666() {
  7124. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7125. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  7126. }
  7127. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7128. #if ENABLED(FWRETRACT)
  7129. /**
  7130. * M207: Set firmware retraction values
  7131. *
  7132. * S[+units] retract_length
  7133. * W[+units] retract_length_swap (multi-extruder)
  7134. * F[units/min] retract_feedrate_mm_s
  7135. * Z[units] retract_zlift
  7136. */
  7137. inline void gcode_M207() {
  7138. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7139. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7140. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7141. #if EXTRUDERS > 1
  7142. if (parser.seen('W')) retract_length_swap = parser.value_axis_units(E_AXIS);
  7143. #endif
  7144. }
  7145. /**
  7146. * M208: Set firmware un-retraction values
  7147. *
  7148. * S[+units] retract_recover_length (in addition to M207 S*)
  7149. * W[+units] retract_recover_length_swap (multi-extruder)
  7150. * F[units/min] retract_recover_feedrate_mm_s
  7151. */
  7152. inline void gcode_M208() {
  7153. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7154. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7155. #if EXTRUDERS > 1
  7156. if (parser.seen('W')) retract_recover_length_swap = parser.value_axis_units(E_AXIS);
  7157. #endif
  7158. }
  7159. /**
  7160. * M209: Enable automatic retract (M209 S1)
  7161. * For slicers that don't support G10/11, reversed extrude-only
  7162. * moves will be classified as retraction.
  7163. */
  7164. inline void gcode_M209() {
  7165. if (parser.seen('S')) {
  7166. autoretract_enabled = parser.value_bool();
  7167. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7168. }
  7169. }
  7170. #endif // FWRETRACT
  7171. /**
  7172. * M211: Enable, Disable, and/or Report software endstops
  7173. *
  7174. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7175. */
  7176. inline void gcode_M211() {
  7177. SERIAL_ECHO_START();
  7178. #if HAS_SOFTWARE_ENDSTOPS
  7179. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7180. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7181. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7182. #else
  7183. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7184. SERIAL_ECHOPGM(MSG_OFF);
  7185. #endif
  7186. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7187. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7188. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7189. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7190. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7191. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7192. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7193. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7194. }
  7195. #if HOTENDS > 1
  7196. /**
  7197. * M218 - set hotend offset (in linear units)
  7198. *
  7199. * T<tool>
  7200. * X<xoffset>
  7201. * Y<yoffset>
  7202. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7203. */
  7204. inline void gcode_M218() {
  7205. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7206. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7207. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7208. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  7209. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7210. #endif
  7211. SERIAL_ECHO_START();
  7212. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7213. HOTEND_LOOP() {
  7214. SERIAL_CHAR(' ');
  7215. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7216. SERIAL_CHAR(',');
  7217. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7218. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  7219. SERIAL_CHAR(',');
  7220. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7221. #endif
  7222. }
  7223. SERIAL_EOL();
  7224. }
  7225. #endif // HOTENDS > 1
  7226. /**
  7227. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7228. */
  7229. inline void gcode_M220() {
  7230. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7231. }
  7232. /**
  7233. * M221: Set extrusion percentage (M221 T0 S95)
  7234. */
  7235. inline void gcode_M221() {
  7236. if (get_target_extruder_from_command(221)) return;
  7237. if (parser.seenval('S'))
  7238. flow_percentage[target_extruder] = parser.value_int();
  7239. }
  7240. /**
  7241. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7242. */
  7243. inline void gcode_M226() {
  7244. if (parser.seen('P')) {
  7245. const int pin_number = parser.value_int(),
  7246. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7247. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7248. int target = LOW;
  7249. stepper.synchronize();
  7250. pinMode(pin_number, INPUT);
  7251. switch (pin_state) {
  7252. case 1:
  7253. target = HIGH;
  7254. break;
  7255. case 0:
  7256. target = LOW;
  7257. break;
  7258. case -1:
  7259. target = !digitalRead(pin_number);
  7260. break;
  7261. }
  7262. while (digitalRead(pin_number) != target) idle();
  7263. } // pin_state -1 0 1 && pin_number > -1
  7264. } // parser.seen('P')
  7265. }
  7266. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7267. /**
  7268. * M260: Send data to a I2C slave device
  7269. *
  7270. * This is a PoC, the formating and arguments for the GCODE will
  7271. * change to be more compatible, the current proposal is:
  7272. *
  7273. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7274. *
  7275. * M260 B<byte-1 value in base 10>
  7276. * M260 B<byte-2 value in base 10>
  7277. * M260 B<byte-3 value in base 10>
  7278. *
  7279. * M260 S1 ; Send the buffered data and reset the buffer
  7280. * M260 R1 ; Reset the buffer without sending data
  7281. *
  7282. */
  7283. inline void gcode_M260() {
  7284. // Set the target address
  7285. if (parser.seen('A')) i2c.address(parser.value_byte());
  7286. // Add a new byte to the buffer
  7287. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7288. // Flush the buffer to the bus
  7289. if (parser.seen('S')) i2c.send();
  7290. // Reset and rewind the buffer
  7291. else if (parser.seen('R')) i2c.reset();
  7292. }
  7293. /**
  7294. * M261: Request X bytes from I2C slave device
  7295. *
  7296. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7297. */
  7298. inline void gcode_M261() {
  7299. if (parser.seen('A')) i2c.address(parser.value_byte());
  7300. uint8_t bytes = parser.byteval('B', 1);
  7301. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7302. i2c.relay(bytes);
  7303. }
  7304. else {
  7305. SERIAL_ERROR_START();
  7306. SERIAL_ERRORLN("Bad i2c request");
  7307. }
  7308. }
  7309. #endif // EXPERIMENTAL_I2CBUS
  7310. #if HAS_SERVOS
  7311. /**
  7312. * M280: Get or set servo position. P<index> [S<angle>]
  7313. */
  7314. inline void gcode_M280() {
  7315. if (!parser.seen('P')) return;
  7316. const int servo_index = parser.value_int();
  7317. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7318. if (parser.seen('S'))
  7319. MOVE_SERVO(servo_index, parser.value_int());
  7320. else {
  7321. SERIAL_ECHO_START();
  7322. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7323. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7324. }
  7325. }
  7326. else {
  7327. SERIAL_ERROR_START();
  7328. SERIAL_ECHOPAIR("Servo ", servo_index);
  7329. SERIAL_ECHOLNPGM(" out of range");
  7330. }
  7331. }
  7332. #endif // HAS_SERVOS
  7333. #if HAS_BUZZER
  7334. /**
  7335. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7336. */
  7337. inline void gcode_M300() {
  7338. uint16_t const frequency = parser.ushortval('S', 260);
  7339. uint16_t duration = parser.ushortval('P', 1000);
  7340. // Limits the tone duration to 0-5 seconds.
  7341. NOMORE(duration, 5000);
  7342. BUZZ(duration, frequency);
  7343. }
  7344. #endif // HAS_BUZZER
  7345. #if ENABLED(PIDTEMP)
  7346. /**
  7347. * M301: Set PID parameters P I D (and optionally C, L)
  7348. *
  7349. * P[float] Kp term
  7350. * I[float] Ki term (unscaled)
  7351. * D[float] Kd term (unscaled)
  7352. *
  7353. * With PID_EXTRUSION_SCALING:
  7354. *
  7355. * C[float] Kc term
  7356. * L[float] LPQ length
  7357. */
  7358. inline void gcode_M301() {
  7359. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7360. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7361. const uint8_t e = parser.byteval('E'); // extruder being updated
  7362. if (e < HOTENDS) { // catch bad input value
  7363. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7364. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7365. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7366. #if ENABLED(PID_EXTRUSION_SCALING)
  7367. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7368. if (parser.seen('L')) lpq_len = parser.value_float();
  7369. NOMORE(lpq_len, LPQ_MAX_LEN);
  7370. #endif
  7371. thermalManager.updatePID();
  7372. SERIAL_ECHO_START();
  7373. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7374. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7375. #endif // PID_PARAMS_PER_HOTEND
  7376. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7377. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7378. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7379. #if ENABLED(PID_EXTRUSION_SCALING)
  7380. //Kc does not have scaling applied above, or in resetting defaults
  7381. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7382. #endif
  7383. SERIAL_EOL();
  7384. }
  7385. else {
  7386. SERIAL_ERROR_START();
  7387. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7388. }
  7389. }
  7390. #endif // PIDTEMP
  7391. #if ENABLED(PIDTEMPBED)
  7392. inline void gcode_M304() {
  7393. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7394. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7395. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7396. thermalManager.updatePID();
  7397. SERIAL_ECHO_START();
  7398. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7399. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7400. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7401. }
  7402. #endif // PIDTEMPBED
  7403. #if defined(CHDK) || HAS_PHOTOGRAPH
  7404. /**
  7405. * M240: Trigger a camera by emulating a Canon RC-1
  7406. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7407. */
  7408. inline void gcode_M240() {
  7409. #ifdef CHDK
  7410. OUT_WRITE(CHDK, HIGH);
  7411. chdkHigh = millis();
  7412. chdkActive = true;
  7413. #elif HAS_PHOTOGRAPH
  7414. const uint8_t NUM_PULSES = 16;
  7415. const float PULSE_LENGTH = 0.01524;
  7416. for (int i = 0; i < NUM_PULSES; i++) {
  7417. WRITE(PHOTOGRAPH_PIN, HIGH);
  7418. _delay_ms(PULSE_LENGTH);
  7419. WRITE(PHOTOGRAPH_PIN, LOW);
  7420. _delay_ms(PULSE_LENGTH);
  7421. }
  7422. delay(7.33);
  7423. for (int i = 0; i < NUM_PULSES; i++) {
  7424. WRITE(PHOTOGRAPH_PIN, HIGH);
  7425. _delay_ms(PULSE_LENGTH);
  7426. WRITE(PHOTOGRAPH_PIN, LOW);
  7427. _delay_ms(PULSE_LENGTH);
  7428. }
  7429. #endif // !CHDK && HAS_PHOTOGRAPH
  7430. }
  7431. #endif // CHDK || PHOTOGRAPH_PIN
  7432. #if HAS_LCD_CONTRAST
  7433. /**
  7434. * M250: Read and optionally set the LCD contrast
  7435. */
  7436. inline void gcode_M250() {
  7437. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7438. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7439. SERIAL_PROTOCOL(lcd_contrast);
  7440. SERIAL_EOL();
  7441. }
  7442. #endif // HAS_LCD_CONTRAST
  7443. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7444. /**
  7445. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7446. *
  7447. * S<temperature> sets the minimum extrude temperature
  7448. * P<bool> enables (1) or disables (0) cold extrusion
  7449. *
  7450. * Examples:
  7451. *
  7452. * M302 ; report current cold extrusion state
  7453. * M302 P0 ; enable cold extrusion checking
  7454. * M302 P1 ; disables cold extrusion checking
  7455. * M302 S0 ; always allow extrusion (disables checking)
  7456. * M302 S170 ; only allow extrusion above 170
  7457. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7458. */
  7459. inline void gcode_M302() {
  7460. const bool seen_S = parser.seen('S');
  7461. if (seen_S) {
  7462. thermalManager.extrude_min_temp = parser.value_celsius();
  7463. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7464. }
  7465. if (parser.seen('P'))
  7466. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7467. else if (!seen_S) {
  7468. // Report current state
  7469. SERIAL_ECHO_START();
  7470. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7471. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7472. SERIAL_ECHOLNPGM("C)");
  7473. }
  7474. }
  7475. #endif // PREVENT_COLD_EXTRUSION
  7476. /**
  7477. * M303: PID relay autotune
  7478. *
  7479. * S<temperature> sets the target temperature. (default 150C)
  7480. * E<extruder> (-1 for the bed) (default 0)
  7481. * C<cycles>
  7482. * U<bool> with a non-zero value will apply the result to current settings
  7483. */
  7484. inline void gcode_M303() {
  7485. #if HAS_PID_HEATING
  7486. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7487. const bool u = parser.boolval('U');
  7488. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7489. if (WITHIN(e, 0, HOTENDS - 1))
  7490. target_extruder = e;
  7491. #if DISABLED(BUSY_WHILE_HEATING)
  7492. KEEPALIVE_STATE(NOT_BUSY);
  7493. #endif
  7494. thermalManager.PID_autotune(temp, e, c, u);
  7495. #if DISABLED(BUSY_WHILE_HEATING)
  7496. KEEPALIVE_STATE(IN_HANDLER);
  7497. #endif
  7498. #else
  7499. SERIAL_ERROR_START();
  7500. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7501. #endif
  7502. }
  7503. #if ENABLED(MORGAN_SCARA)
  7504. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  7505. if (IsRunning()) {
  7506. forward_kinematics_SCARA(delta_a, delta_b);
  7507. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  7508. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  7509. destination[Z_AXIS] = current_position[Z_AXIS];
  7510. prepare_move_to_destination();
  7511. return true;
  7512. }
  7513. return false;
  7514. }
  7515. /**
  7516. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7517. */
  7518. inline bool gcode_M360() {
  7519. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7520. return SCARA_move_to_cal(0, 120);
  7521. }
  7522. /**
  7523. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7524. */
  7525. inline bool gcode_M361() {
  7526. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7527. return SCARA_move_to_cal(90, 130);
  7528. }
  7529. /**
  7530. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7531. */
  7532. inline bool gcode_M362() {
  7533. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7534. return SCARA_move_to_cal(60, 180);
  7535. }
  7536. /**
  7537. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7538. */
  7539. inline bool gcode_M363() {
  7540. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7541. return SCARA_move_to_cal(50, 90);
  7542. }
  7543. /**
  7544. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7545. */
  7546. inline bool gcode_M364() {
  7547. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7548. return SCARA_move_to_cal(45, 135);
  7549. }
  7550. #endif // SCARA
  7551. #if ENABLED(EXT_SOLENOID)
  7552. void enable_solenoid(const uint8_t num) {
  7553. switch (num) {
  7554. case 0:
  7555. OUT_WRITE(SOL0_PIN, HIGH);
  7556. break;
  7557. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7558. case 1:
  7559. OUT_WRITE(SOL1_PIN, HIGH);
  7560. break;
  7561. #endif
  7562. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7563. case 2:
  7564. OUT_WRITE(SOL2_PIN, HIGH);
  7565. break;
  7566. #endif
  7567. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7568. case 3:
  7569. OUT_WRITE(SOL3_PIN, HIGH);
  7570. break;
  7571. #endif
  7572. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7573. case 4:
  7574. OUT_WRITE(SOL4_PIN, HIGH);
  7575. break;
  7576. #endif
  7577. default:
  7578. SERIAL_ECHO_START();
  7579. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  7580. break;
  7581. }
  7582. }
  7583. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  7584. void disable_all_solenoids() {
  7585. OUT_WRITE(SOL0_PIN, LOW);
  7586. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7587. OUT_WRITE(SOL1_PIN, LOW);
  7588. #endif
  7589. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7590. OUT_WRITE(SOL2_PIN, LOW);
  7591. #endif
  7592. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7593. OUT_WRITE(SOL3_PIN, LOW);
  7594. #endif
  7595. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7596. OUT_WRITE(SOL4_PIN, LOW);
  7597. #endif
  7598. }
  7599. /**
  7600. * M380: Enable solenoid on the active extruder
  7601. */
  7602. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  7603. /**
  7604. * M381: Disable all solenoids
  7605. */
  7606. inline void gcode_M381() { disable_all_solenoids(); }
  7607. #endif // EXT_SOLENOID
  7608. /**
  7609. * M400: Finish all moves
  7610. */
  7611. inline void gcode_M400() { stepper.synchronize(); }
  7612. #if HAS_BED_PROBE
  7613. /**
  7614. * M401: Engage Z Servo endstop if available
  7615. */
  7616. inline void gcode_M401() { DEPLOY_PROBE(); }
  7617. /**
  7618. * M402: Retract Z Servo endstop if enabled
  7619. */
  7620. inline void gcode_M402() { STOW_PROBE(); }
  7621. #endif // HAS_BED_PROBE
  7622. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7623. /**
  7624. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  7625. */
  7626. inline void gcode_M404() {
  7627. if (parser.seen('W')) {
  7628. filament_width_nominal = parser.value_linear_units();
  7629. }
  7630. else {
  7631. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  7632. SERIAL_PROTOCOLLN(filament_width_nominal);
  7633. }
  7634. }
  7635. /**
  7636. * M405: Turn on filament sensor for control
  7637. */
  7638. inline void gcode_M405() {
  7639. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  7640. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  7641. if (parser.seen('D')) {
  7642. meas_delay_cm = parser.value_byte();
  7643. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  7644. }
  7645. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  7646. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  7647. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  7648. measurement_delay[i] = temp_ratio;
  7649. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  7650. }
  7651. filament_sensor = true;
  7652. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7653. //SERIAL_PROTOCOL(filament_width_meas);
  7654. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7655. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7656. }
  7657. /**
  7658. * M406: Turn off filament sensor for control
  7659. */
  7660. inline void gcode_M406() { filament_sensor = false; }
  7661. /**
  7662. * M407: Get measured filament diameter on serial output
  7663. */
  7664. inline void gcode_M407() {
  7665. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7666. SERIAL_PROTOCOLLN(filament_width_meas);
  7667. }
  7668. #endif // FILAMENT_WIDTH_SENSOR
  7669. void quickstop_stepper() {
  7670. stepper.quick_stop();
  7671. stepper.synchronize();
  7672. set_current_from_steppers_for_axis(ALL_AXES);
  7673. SYNC_PLAN_POSITION_KINEMATIC();
  7674. }
  7675. #if HAS_LEVELING
  7676. /**
  7677. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7678. *
  7679. * S[bool] Turns leveling on or off
  7680. * Z[height] Sets the Z fade height (0 or none to disable)
  7681. * V[bool] Verbose - Print the leveling grid
  7682. *
  7683. * With AUTO_BED_LEVELING_UBL only:
  7684. *
  7685. * L[index] Load UBL mesh from index (0 is default)
  7686. */
  7687. inline void gcode_M420() {
  7688. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7689. // L to load a mesh from the EEPROM
  7690. if (parser.seen('L')) {
  7691. #if ENABLED(EEPROM_SETTINGS)
  7692. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
  7693. const int16_t a = settings.calc_num_meshes();
  7694. if (!a) {
  7695. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7696. return;
  7697. }
  7698. if (!WITHIN(storage_slot, 0, a - 1)) {
  7699. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  7700. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  7701. return;
  7702. }
  7703. settings.load_mesh(storage_slot);
  7704. ubl.state.storage_slot = storage_slot;
  7705. #else
  7706. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7707. return;
  7708. #endif
  7709. }
  7710. // L to load a mesh from the EEPROM
  7711. if (parser.seen('L') || parser.seen('V')) {
  7712. ubl.display_map(0); // Currently only supports one map type
  7713. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7714. SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
  7715. }
  7716. #endif // AUTO_BED_LEVELING_UBL
  7717. // V to print the matrix or mesh
  7718. if (parser.seen('V')) {
  7719. #if ABL_PLANAR
  7720. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  7721. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7722. if (leveling_is_valid()) {
  7723. print_bilinear_leveling_grid();
  7724. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7725. bed_level_virt_print();
  7726. #endif
  7727. }
  7728. #elif ENABLED(MESH_BED_LEVELING)
  7729. if (leveling_is_valid()) {
  7730. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7731. mbl_mesh_report();
  7732. }
  7733. #endif
  7734. }
  7735. const bool to_enable = parser.boolval('S');
  7736. if (parser.seen('S'))
  7737. set_bed_leveling_enabled(to_enable);
  7738. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7739. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  7740. #endif
  7741. const bool new_status = leveling_is_active();
  7742. if (to_enable && !new_status) {
  7743. SERIAL_ERROR_START();
  7744. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7745. }
  7746. SERIAL_ECHO_START();
  7747. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7748. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7749. SERIAL_ECHO_START();
  7750. SERIAL_ECHOPGM("Fade Height ");
  7751. if (planner.z_fade_height > 0.0)
  7752. SERIAL_ECHOLN(planner.z_fade_height);
  7753. else
  7754. SERIAL_ECHOLNPGM(MSG_OFF);
  7755. #endif
  7756. }
  7757. #endif
  7758. #if ENABLED(MESH_BED_LEVELING)
  7759. /**
  7760. * M421: Set a single Mesh Bed Leveling Z coordinate
  7761. *
  7762. * Usage:
  7763. * M421 X<linear> Y<linear> Z<linear>
  7764. * M421 X<linear> Y<linear> Q<offset>
  7765. * M421 I<xindex> J<yindex> Z<linear>
  7766. * M421 I<xindex> J<yindex> Q<offset>
  7767. */
  7768. inline void gcode_M421() {
  7769. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  7770. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
  7771. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  7772. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
  7773. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  7774. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  7775. SERIAL_ERROR_START();
  7776. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7777. }
  7778. else if (ix < 0 || iy < 0) {
  7779. SERIAL_ERROR_START();
  7780. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7781. }
  7782. else
  7783. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  7784. }
  7785. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7786. /**
  7787. * M421: Set a single Mesh Bed Leveling Z coordinate
  7788. *
  7789. * Usage:
  7790. * M421 I<xindex> J<yindex> Z<linear>
  7791. * M421 I<xindex> J<yindex> Q<offset>
  7792. */
  7793. inline void gcode_M421() {
  7794. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7795. const bool hasI = ix >= 0,
  7796. hasJ = iy >= 0,
  7797. hasZ = parser.seen('Z'),
  7798. hasQ = !hasZ && parser.seen('Q');
  7799. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  7800. SERIAL_ERROR_START();
  7801. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7802. }
  7803. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7804. SERIAL_ERROR_START();
  7805. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7806. }
  7807. else {
  7808. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  7809. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7810. bed_level_virt_interpolate();
  7811. #endif
  7812. }
  7813. }
  7814. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7815. /**
  7816. * M421: Set a single Mesh Bed Leveling Z coordinate
  7817. *
  7818. * Usage:
  7819. * M421 I<xindex> J<yindex> Z<linear>
  7820. * M421 I<xindex> J<yindex> Q<offset>
  7821. * M421 C Z<linear>
  7822. * M421 C Q<offset>
  7823. */
  7824. inline void gcode_M421() {
  7825. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7826. const bool hasI = ix >= 0,
  7827. hasJ = iy >= 0,
  7828. hasC = parser.seen('C'),
  7829. hasZ = parser.seen('Z'),
  7830. hasQ = !hasZ && parser.seen('Q');
  7831. if (hasC) {
  7832. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
  7833. ix = location.x_index;
  7834. iy = location.y_index;
  7835. }
  7836. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  7837. SERIAL_ERROR_START();
  7838. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7839. }
  7840. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7841. SERIAL_ERROR_START();
  7842. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7843. }
  7844. else
  7845. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  7846. }
  7847. #endif // AUTO_BED_LEVELING_UBL
  7848. #if HAS_M206_COMMAND
  7849. /**
  7850. * M428: Set home_offset based on the distance between the
  7851. * current_position and the nearest "reference point."
  7852. * If an axis is past center its endstop position
  7853. * is the reference-point. Otherwise it uses 0. This allows
  7854. * the Z offset to be set near the bed when using a max endstop.
  7855. *
  7856. * M428 can't be used more than 2cm away from 0 or an endstop.
  7857. *
  7858. * Use M206 to set these values directly.
  7859. */
  7860. inline void gcode_M428() {
  7861. bool err = false;
  7862. LOOP_XYZ(i) {
  7863. if (axis_homed[i]) {
  7864. const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7865. diff = base - RAW_POSITION(current_position[i], i);
  7866. if (WITHIN(diff, -20, 20)) {
  7867. set_home_offset((AxisEnum)i, diff);
  7868. }
  7869. else {
  7870. SERIAL_ERROR_START();
  7871. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7872. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7873. BUZZ(200, 40);
  7874. err = true;
  7875. break;
  7876. }
  7877. }
  7878. }
  7879. if (!err) {
  7880. SYNC_PLAN_POSITION_KINEMATIC();
  7881. report_current_position();
  7882. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7883. BUZZ(100, 659);
  7884. BUZZ(100, 698);
  7885. }
  7886. }
  7887. #endif // HAS_M206_COMMAND
  7888. /**
  7889. * M500: Store settings in EEPROM
  7890. */
  7891. inline void gcode_M500() {
  7892. (void)settings.save();
  7893. }
  7894. /**
  7895. * M501: Read settings from EEPROM
  7896. */
  7897. inline void gcode_M501() {
  7898. (void)settings.load();
  7899. }
  7900. /**
  7901. * M502: Revert to default settings
  7902. */
  7903. inline void gcode_M502() {
  7904. (void)settings.reset();
  7905. }
  7906. #if DISABLED(DISABLE_M503)
  7907. /**
  7908. * M503: print settings currently in memory
  7909. */
  7910. inline void gcode_M503() {
  7911. (void)settings.report(!parser.boolval('S', true));
  7912. }
  7913. #endif
  7914. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7915. /**
  7916. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7917. */
  7918. inline void gcode_M540() {
  7919. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  7920. }
  7921. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7922. #if HAS_BED_PROBE
  7923. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7924. static float last_zoffset = NAN;
  7925. if (!isnan(last_zoffset)) {
  7926. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  7927. const float diff = zprobe_zoffset - last_zoffset;
  7928. #endif
  7929. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7930. // Correct bilinear grid for new probe offset
  7931. if (diff) {
  7932. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7933. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7934. z_values[x][y] -= diff;
  7935. }
  7936. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7937. bed_level_virt_interpolate();
  7938. #endif
  7939. #endif
  7940. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7941. if (!no_babystep && leveling_is_active())
  7942. thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7943. #else
  7944. UNUSED(no_babystep);
  7945. #endif
  7946. #if ENABLED(DELTA) // correct the delta_height
  7947. home_offset[Z_AXIS] -= diff;
  7948. #endif
  7949. }
  7950. last_zoffset = zprobe_zoffset;
  7951. }
  7952. inline void gcode_M851() {
  7953. SERIAL_ECHO_START();
  7954. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7955. if (parser.seen('Z')) {
  7956. const float value = parser.value_linear_units();
  7957. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7958. zprobe_zoffset = value;
  7959. refresh_zprobe_zoffset();
  7960. SERIAL_ECHO(zprobe_zoffset);
  7961. }
  7962. else
  7963. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7964. }
  7965. else
  7966. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7967. SERIAL_EOL();
  7968. }
  7969. #endif // HAS_BED_PROBE
  7970. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  7971. /**
  7972. * M600: Pause for filament change
  7973. *
  7974. * E[distance] - Retract the filament this far (negative value)
  7975. * Z[distance] - Move the Z axis by this distance
  7976. * X[position] - Move to this X position, with Y
  7977. * Y[position] - Move to this Y position, with X
  7978. * U[distance] - Retract distance for removal (negative value) (manual reload)
  7979. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  7980. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  7981. *
  7982. * Default values are used for omitted arguments.
  7983. *
  7984. */
  7985. inline void gcode_M600() {
  7986. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  7987. // Don't allow filament change without homing first
  7988. if (axis_unhomed_error()) home_all_axes();
  7989. #endif
  7990. // Initial retract before move to filament change position
  7991. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  7992. #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
  7993. - (PAUSE_PARK_RETRACT_LENGTH)
  7994. #endif
  7995. ;
  7996. // Lift Z axis
  7997. const float z_lift = parser.linearval('Z', 0
  7998. #if defined(PAUSE_PARK_Z_ADD) && PAUSE_PARK_Z_ADD > 0
  7999. + PAUSE_PARK_Z_ADD
  8000. #endif
  8001. );
  8002. // Move XY axes to filament exchange position
  8003. const float x_pos = parser.linearval('X', 0
  8004. #ifdef PAUSE_PARK_X_POS
  8005. + PAUSE_PARK_X_POS
  8006. #endif
  8007. );
  8008. const float y_pos = parser.linearval('Y', 0
  8009. #ifdef PAUSE_PARK_Y_POS
  8010. + PAUSE_PARK_Y_POS
  8011. #endif
  8012. );
  8013. // Unload filament
  8014. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8015. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8016. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8017. #endif
  8018. ;
  8019. // Load filament
  8020. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8021. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8022. + FILAMENT_CHANGE_LOAD_LENGTH
  8023. #endif
  8024. ;
  8025. const int beep_count = parser.intval('B',
  8026. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8027. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8028. #else
  8029. -1
  8030. #endif
  8031. );
  8032. const bool job_running = print_job_timer.isRunning();
  8033. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8034. wait_for_filament_reload(beep_count);
  8035. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8036. }
  8037. // Resume the print job timer if it was running
  8038. if (job_running) print_job_timer.start();
  8039. }
  8040. #endif // ADVANCED_PAUSE_FEATURE
  8041. #if ENABLED(MK2_MULTIPLEXER)
  8042. inline void select_multiplexed_stepper(const uint8_t e) {
  8043. stepper.synchronize();
  8044. disable_e_steppers();
  8045. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8046. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8047. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8048. safe_delay(100);
  8049. }
  8050. /**
  8051. * M702: Unload all extruders
  8052. */
  8053. inline void gcode_M702() {
  8054. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8055. select_multiplexed_stepper(e);
  8056. // TODO: standard unload filament function
  8057. // MK2 firmware behavior:
  8058. // - Make sure temperature is high enough
  8059. // - Raise Z to at least 15 to make room
  8060. // - Extrude 1cm of filament in 1 second
  8061. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8062. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8063. // - Restore E max feedrate to 50
  8064. }
  8065. // Go back to the last active extruder
  8066. select_multiplexed_stepper(active_extruder);
  8067. disable_e_steppers();
  8068. }
  8069. #endif // MK2_MULTIPLEXER
  8070. #if ENABLED(DUAL_X_CARRIAGE)
  8071. /**
  8072. * M605: Set dual x-carriage movement mode
  8073. *
  8074. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8075. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8076. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8077. * units x-offset and an optional differential hotend temperature of
  8078. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8079. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8080. *
  8081. * Note: the X axis should be homed after changing dual x-carriage mode.
  8082. */
  8083. inline void gcode_M605() {
  8084. stepper.synchronize();
  8085. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8086. switch (dual_x_carriage_mode) {
  8087. case DXC_FULL_CONTROL_MODE:
  8088. case DXC_AUTO_PARK_MODE:
  8089. break;
  8090. case DXC_DUPLICATION_MODE:
  8091. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8092. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8093. SERIAL_ECHO_START();
  8094. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8095. SERIAL_CHAR(' ');
  8096. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8097. SERIAL_CHAR(',');
  8098. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8099. SERIAL_CHAR(' ');
  8100. SERIAL_ECHO(duplicate_extruder_x_offset);
  8101. SERIAL_CHAR(',');
  8102. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8103. break;
  8104. default:
  8105. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8106. break;
  8107. }
  8108. active_extruder_parked = false;
  8109. extruder_duplication_enabled = false;
  8110. delayed_move_time = 0;
  8111. }
  8112. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8113. inline void gcode_M605() {
  8114. stepper.synchronize();
  8115. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8116. SERIAL_ECHO_START();
  8117. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8118. }
  8119. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8120. #if ENABLED(LIN_ADVANCE)
  8121. /**
  8122. * M900: Set and/or Get advance K factor and WH/D ratio
  8123. *
  8124. * K<factor> Set advance K factor
  8125. * R<ratio> Set ratio directly (overrides WH/D)
  8126. * W<width> H<height> D<diam> Set ratio from WH/D
  8127. */
  8128. inline void gcode_M900() {
  8129. stepper.synchronize();
  8130. const float newK = parser.floatval('K', -1);
  8131. if (newK >= 0) planner.extruder_advance_k = newK;
  8132. float newR = parser.floatval('R', -1);
  8133. if (newR < 0) {
  8134. const float newD = parser.floatval('D', -1),
  8135. newW = parser.floatval('W', -1),
  8136. newH = parser.floatval('H', -1);
  8137. if (newD >= 0 && newW >= 0 && newH >= 0)
  8138. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8139. }
  8140. if (newR >= 0) planner.advance_ed_ratio = newR;
  8141. SERIAL_ECHO_START();
  8142. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8143. SERIAL_ECHOPGM(" E/D=");
  8144. const float ratio = planner.advance_ed_ratio;
  8145. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8146. SERIAL_EOL();
  8147. }
  8148. #endif // LIN_ADVANCE
  8149. #if ENABLED(HAVE_TMC2130)
  8150. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8151. SERIAL_CHAR(name);
  8152. SERIAL_ECHOPGM(" axis driver current: ");
  8153. SERIAL_ECHOLN(st.getCurrent());
  8154. }
  8155. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8156. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8157. tmc2130_get_current(st, name);
  8158. }
  8159. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8160. SERIAL_CHAR(name);
  8161. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8162. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8163. SERIAL_EOL();
  8164. }
  8165. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8166. st.clear_otpw();
  8167. SERIAL_CHAR(name);
  8168. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8169. }
  8170. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8171. SERIAL_CHAR(name);
  8172. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8173. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8174. }
  8175. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8176. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8177. tmc2130_get_pwmthrs(st, name, spmm);
  8178. }
  8179. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8180. SERIAL_CHAR(name);
  8181. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8182. SERIAL_ECHOLN(st.sgt());
  8183. }
  8184. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8185. st.sgt(sgt_val);
  8186. tmc2130_get_sgt(st, name);
  8187. }
  8188. /**
  8189. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8190. * Report driver currents when no axis specified
  8191. *
  8192. * S1: Enable automatic current control
  8193. * S0: Disable
  8194. */
  8195. inline void gcode_M906() {
  8196. uint16_t values[XYZE];
  8197. LOOP_XYZE(i)
  8198. values[i] = parser.intval(axis_codes[i]);
  8199. #if ENABLED(X_IS_TMC2130)
  8200. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8201. else tmc2130_get_current(stepperX, 'X');
  8202. #endif
  8203. #if ENABLED(Y_IS_TMC2130)
  8204. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8205. else tmc2130_get_current(stepperY, 'Y');
  8206. #endif
  8207. #if ENABLED(Z_IS_TMC2130)
  8208. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8209. else tmc2130_get_current(stepperZ, 'Z');
  8210. #endif
  8211. #if ENABLED(E0_IS_TMC2130)
  8212. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8213. else tmc2130_get_current(stepperE0, 'E');
  8214. #endif
  8215. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8216. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8217. #endif
  8218. }
  8219. /**
  8220. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8221. * The flag is held by the library and persist until manually cleared by M912
  8222. */
  8223. inline void gcode_M911() {
  8224. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8225. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8226. #if ENABLED(X_IS_TMC2130)
  8227. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8228. #endif
  8229. #if ENABLED(Y_IS_TMC2130)
  8230. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8231. #endif
  8232. #if ENABLED(Z_IS_TMC2130)
  8233. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8234. #endif
  8235. #if ENABLED(E0_IS_TMC2130)
  8236. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8237. #endif
  8238. }
  8239. /**
  8240. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8241. */
  8242. inline void gcode_M912() {
  8243. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8244. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8245. #if ENABLED(X_IS_TMC2130)
  8246. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8247. #endif
  8248. #if ENABLED(Y_IS_TMC2130)
  8249. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8250. #endif
  8251. #if ENABLED(Z_IS_TMC2130)
  8252. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8253. #endif
  8254. #if ENABLED(E0_IS_TMC2130)
  8255. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8256. #endif
  8257. }
  8258. /**
  8259. * M913: Set HYBRID_THRESHOLD speed.
  8260. */
  8261. #if ENABLED(HYBRID_THRESHOLD)
  8262. inline void gcode_M913() {
  8263. uint16_t values[XYZE];
  8264. LOOP_XYZE(i)
  8265. values[i] = parser.intval(axis_codes[i]);
  8266. #if ENABLED(X_IS_TMC2130)
  8267. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8268. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8269. #endif
  8270. #if ENABLED(Y_IS_TMC2130)
  8271. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8272. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8273. #endif
  8274. #if ENABLED(Z_IS_TMC2130)
  8275. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8276. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8277. #endif
  8278. #if ENABLED(E0_IS_TMC2130)
  8279. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8280. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8281. #endif
  8282. }
  8283. #endif // HYBRID_THRESHOLD
  8284. /**
  8285. * M914: Set SENSORLESS_HOMING sensitivity.
  8286. */
  8287. #if ENABLED(SENSORLESS_HOMING)
  8288. inline void gcode_M914() {
  8289. #if ENABLED(X_IS_TMC2130)
  8290. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8291. else tmc2130_get_sgt(stepperX, 'X');
  8292. #endif
  8293. #if ENABLED(Y_IS_TMC2130)
  8294. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8295. else tmc2130_get_sgt(stepperY, 'Y');
  8296. #endif
  8297. }
  8298. #endif // SENSORLESS_HOMING
  8299. #endif // HAVE_TMC2130
  8300. /**
  8301. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8302. */
  8303. inline void gcode_M907() {
  8304. #if HAS_DIGIPOTSS
  8305. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8306. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8307. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8308. #elif HAS_MOTOR_CURRENT_PWM
  8309. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8310. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8311. #endif
  8312. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8313. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8314. #endif
  8315. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8316. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8317. #endif
  8318. #endif
  8319. #if ENABLED(DIGIPOT_I2C)
  8320. // this one uses actual amps in floating point
  8321. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8322. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8323. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8324. #endif
  8325. #if ENABLED(DAC_STEPPER_CURRENT)
  8326. if (parser.seen('S')) {
  8327. const float dac_percent = parser.value_float();
  8328. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8329. }
  8330. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8331. #endif
  8332. }
  8333. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8334. /**
  8335. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8336. */
  8337. inline void gcode_M908() {
  8338. #if HAS_DIGIPOTSS
  8339. stepper.digitalPotWrite(
  8340. parser.intval('P'),
  8341. parser.intval('S')
  8342. );
  8343. #endif
  8344. #ifdef DAC_STEPPER_CURRENT
  8345. dac_current_raw(
  8346. parser.byteval('P', -1),
  8347. parser.ushortval('S', 0)
  8348. );
  8349. #endif
  8350. }
  8351. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8352. inline void gcode_M909() { dac_print_values(); }
  8353. inline void gcode_M910() { dac_commit_eeprom(); }
  8354. #endif
  8355. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8356. #if HAS_MICROSTEPS
  8357. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8358. inline void gcode_M350() {
  8359. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8360. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8361. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8362. stepper.microstep_readings();
  8363. }
  8364. /**
  8365. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8366. * S# determines MS1 or MS2, X# sets the pin high/low.
  8367. */
  8368. inline void gcode_M351() {
  8369. if (parser.seenval('S')) switch (parser.value_byte()) {
  8370. case 1:
  8371. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8372. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8373. break;
  8374. case 2:
  8375. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8376. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8377. break;
  8378. }
  8379. stepper.microstep_readings();
  8380. }
  8381. #endif // HAS_MICROSTEPS
  8382. #if HAS_CASE_LIGHT
  8383. #ifndef INVERT_CASE_LIGHT
  8384. #define INVERT_CASE_LIGHT false
  8385. #endif
  8386. int case_light_brightness; // LCD routine wants INT
  8387. bool case_light_on;
  8388. void update_case_light() {
  8389. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8390. uint8_t case_light_bright = (uint8_t)case_light_brightness;
  8391. if (case_light_on) {
  8392. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  8393. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness );
  8394. }
  8395. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8396. }
  8397. else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8398. }
  8399. #endif // HAS_CASE_LIGHT
  8400. /**
  8401. * M355: Turn case light on/off and set brightness
  8402. *
  8403. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8404. *
  8405. * S<bool> Set case light on/off
  8406. *
  8407. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8408. *
  8409. * M355 P200 S0 turns off the light & sets the brightness level
  8410. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8411. */
  8412. inline void gcode_M355() {
  8413. #if HAS_CASE_LIGHT
  8414. uint8_t args = 0;
  8415. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8416. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8417. if (args) update_case_light();
  8418. // always report case light status
  8419. SERIAL_ECHO_START();
  8420. if (!case_light_on) {
  8421. SERIAL_ECHOLN("Case light: off");
  8422. }
  8423. else {
  8424. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8425. else SERIAL_ECHOLNPAIR("Case light: ", case_light_brightness);
  8426. }
  8427. #else
  8428. SERIAL_ERROR_START();
  8429. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8430. #endif // HAS_CASE_LIGHT
  8431. }
  8432. #if ENABLED(MIXING_EXTRUDER)
  8433. /**
  8434. * M163: Set a single mix factor for a mixing extruder
  8435. * This is called "weight" by some systems.
  8436. *
  8437. * S[index] The channel index to set
  8438. * P[float] The mix value
  8439. *
  8440. */
  8441. inline void gcode_M163() {
  8442. const int mix_index = parser.intval('S');
  8443. if (mix_index < MIXING_STEPPERS) {
  8444. float mix_value = parser.floatval('P');
  8445. NOLESS(mix_value, 0.0);
  8446. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8447. }
  8448. }
  8449. #if MIXING_VIRTUAL_TOOLS > 1
  8450. /**
  8451. * M164: Store the current mix factors as a virtual tool.
  8452. *
  8453. * S[index] The virtual tool to store
  8454. *
  8455. */
  8456. inline void gcode_M164() {
  8457. const int tool_index = parser.intval('S');
  8458. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8459. normalize_mix();
  8460. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8461. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8462. }
  8463. }
  8464. #endif
  8465. #if ENABLED(DIRECT_MIXING_IN_G1)
  8466. /**
  8467. * M165: Set multiple mix factors for a mixing extruder.
  8468. * Factors that are left out will be set to 0.
  8469. * All factors together must add up to 1.0.
  8470. *
  8471. * A[factor] Mix factor for extruder stepper 1
  8472. * B[factor] Mix factor for extruder stepper 2
  8473. * C[factor] Mix factor for extruder stepper 3
  8474. * D[factor] Mix factor for extruder stepper 4
  8475. * H[factor] Mix factor for extruder stepper 5
  8476. * I[factor] Mix factor for extruder stepper 6
  8477. *
  8478. */
  8479. inline void gcode_M165() { gcode_get_mix(); }
  8480. #endif
  8481. #endif // MIXING_EXTRUDER
  8482. /**
  8483. * M999: Restart after being stopped
  8484. *
  8485. * Default behaviour is to flush the serial buffer and request
  8486. * a resend to the host starting on the last N line received.
  8487. *
  8488. * Sending "M999 S1" will resume printing without flushing the
  8489. * existing command buffer.
  8490. *
  8491. */
  8492. inline void gcode_M999() {
  8493. Running = true;
  8494. lcd_reset_alert_level();
  8495. if (parser.boolval('S')) return;
  8496. // gcode_LastN = Stopped_gcode_LastN;
  8497. FlushSerialRequestResend();
  8498. }
  8499. #if ENABLED(SWITCHING_EXTRUDER)
  8500. #if EXTRUDERS > 3
  8501. #define REQ_ANGLES 4
  8502. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  8503. #else
  8504. #define REQ_ANGLES 2
  8505. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  8506. #endif
  8507. inline void move_extruder_servo(const uint8_t e) {
  8508. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  8509. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  8510. stepper.synchronize();
  8511. #if EXTRUDERS & 1
  8512. if (e < EXTRUDERS - 1)
  8513. #endif
  8514. {
  8515. MOVE_SERVO(_SERVO_NR, angles[e]);
  8516. safe_delay(500);
  8517. }
  8518. }
  8519. #endif // SWITCHING_EXTRUDER
  8520. #if ENABLED(SWITCHING_NOZZLE)
  8521. inline void move_nozzle_servo(const uint8_t e) {
  8522. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  8523. stepper.synchronize();
  8524. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  8525. safe_delay(500);
  8526. }
  8527. #endif
  8528. inline void invalid_extruder_error(const uint8_t e) {
  8529. SERIAL_ECHO_START();
  8530. SERIAL_CHAR('T');
  8531. SERIAL_ECHO_F(e, DEC);
  8532. SERIAL_CHAR(' ');
  8533. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  8534. }
  8535. /**
  8536. * Perform a tool-change, which may result in moving the
  8537. * previous tool out of the way and the new tool into place.
  8538. */
  8539. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  8540. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8541. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  8542. return invalid_extruder_error(tmp_extruder);
  8543. // T0-Tnnn: Switch virtual tool by changing the mix
  8544. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  8545. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  8546. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8547. if (tmp_extruder >= EXTRUDERS)
  8548. return invalid_extruder_error(tmp_extruder);
  8549. #if HOTENDS > 1
  8550. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  8551. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  8552. if (tmp_extruder != active_extruder) {
  8553. if (!no_move && axis_unhomed_error()) {
  8554. SERIAL_ECHOLNPGM("No move on toolchange");
  8555. no_move = true;
  8556. }
  8557. // Save current position to destination, for use later
  8558. set_destination_to_current();
  8559. #if ENABLED(DUAL_X_CARRIAGE)
  8560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8561. if (DEBUGGING(LEVELING)) {
  8562. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  8563. switch (dual_x_carriage_mode) {
  8564. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  8565. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  8566. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  8567. }
  8568. }
  8569. #endif
  8570. const float xhome = x_home_pos(active_extruder);
  8571. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  8572. && IsRunning()
  8573. && (delayed_move_time || current_position[X_AXIS] != xhome)
  8574. ) {
  8575. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  8576. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8577. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  8578. #endif
  8579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8580. if (DEBUGGING(LEVELING)) {
  8581. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  8582. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  8583. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  8584. }
  8585. #endif
  8586. // Park old head: 1) raise 2) move to park position 3) lower
  8587. for (uint8_t i = 0; i < 3; i++)
  8588. planner.buffer_line(
  8589. i == 0 ? current_position[X_AXIS] : xhome,
  8590. current_position[Y_AXIS],
  8591. i == 2 ? current_position[Z_AXIS] : raised_z,
  8592. current_position[E_AXIS],
  8593. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  8594. active_extruder
  8595. );
  8596. stepper.synchronize();
  8597. }
  8598. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  8599. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  8600. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8601. // Activate the new extruder
  8602. active_extruder = tmp_extruder;
  8603. // This function resets the max/min values - the current position may be overwritten below.
  8604. set_axis_is_at_home(X_AXIS);
  8605. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8606. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  8607. #endif
  8608. // Only when auto-parking are carriages safe to move
  8609. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  8610. switch (dual_x_carriage_mode) {
  8611. case DXC_FULL_CONTROL_MODE:
  8612. // New current position is the position of the activated extruder
  8613. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8614. // Save the inactive extruder's position (from the old current_position)
  8615. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8616. break;
  8617. case DXC_AUTO_PARK_MODE:
  8618. // record raised toolhead position for use by unpark
  8619. COPY(raised_parked_position, current_position);
  8620. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  8621. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8622. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8623. #endif
  8624. active_extruder_parked = true;
  8625. delayed_move_time = 0;
  8626. break;
  8627. case DXC_DUPLICATION_MODE:
  8628. // If the new extruder is the left one, set it "parked"
  8629. // This triggers the second extruder to move into the duplication position
  8630. active_extruder_parked = (active_extruder == 0);
  8631. if (active_extruder_parked)
  8632. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8633. else
  8634. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8635. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8636. extruder_duplication_enabled = false;
  8637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8638. if (DEBUGGING(LEVELING)) {
  8639. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8640. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8641. }
  8642. #endif
  8643. break;
  8644. }
  8645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8646. if (DEBUGGING(LEVELING)) {
  8647. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8648. DEBUG_POS("New extruder (parked)", current_position);
  8649. }
  8650. #endif
  8651. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8652. #else // !DUAL_X_CARRIAGE
  8653. #if ENABLED(SWITCHING_NOZZLE)
  8654. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  8655. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8656. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8657. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8658. // Always raise by some amount (destination copied from current_position earlier)
  8659. current_position[Z_AXIS] += z_raise;
  8660. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8661. move_nozzle_servo(tmp_extruder);
  8662. #endif
  8663. /**
  8664. * Set current_position to the position of the new nozzle.
  8665. * Offsets are based on linear distance, so we need to get
  8666. * the resulting position in coordinate space.
  8667. *
  8668. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8669. * - With mesh leveling, update Z for the new position
  8670. * - Otherwise, just use the raw linear distance
  8671. *
  8672. * Software endstops are altered here too. Consider a case where:
  8673. * E0 at X=0 ... E1 at X=10
  8674. * When we switch to E1 now X=10, but E1 can't move left.
  8675. * To express this we apply the change in XY to the software endstops.
  8676. * E1 can move farther right than E0, so the right limit is extended.
  8677. *
  8678. * Note that we don't adjust the Z software endstops. Why not?
  8679. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8680. * because the bed is 1mm lower at the new position. As long as
  8681. * the first nozzle is out of the way, the carriage should be
  8682. * allowed to move 1mm lower. This technically "breaks" the
  8683. * Z software endstop. But this is technically correct (and
  8684. * there is no viable alternative).
  8685. */
  8686. #if ABL_PLANAR
  8687. // Offset extruder, make sure to apply the bed level rotation matrix
  8688. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8689. hotend_offset[Y_AXIS][tmp_extruder],
  8690. 0),
  8691. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8692. hotend_offset[Y_AXIS][active_extruder],
  8693. 0),
  8694. offset_vec = tmp_offset_vec - act_offset_vec;
  8695. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8696. if (DEBUGGING(LEVELING)) {
  8697. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  8698. act_offset_vec.debug(PSTR("act_offset_vec"));
  8699. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  8700. }
  8701. #endif
  8702. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8704. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  8705. #endif
  8706. // Adjustments to the current position
  8707. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8708. current_position[Z_AXIS] += offset_vec.z;
  8709. #else // !ABL_PLANAR
  8710. const float xydiff[2] = {
  8711. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8712. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8713. };
  8714. #if ENABLED(MESH_BED_LEVELING)
  8715. if (leveling_is_active()) {
  8716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8717. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8718. #endif
  8719. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8720. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8721. z1 = current_position[Z_AXIS], z2 = z1;
  8722. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8723. planner.apply_leveling(x2, y2, z2);
  8724. current_position[Z_AXIS] += z2 - z1;
  8725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8726. if (DEBUGGING(LEVELING))
  8727. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8728. #endif
  8729. }
  8730. #endif // MESH_BED_LEVELING
  8731. #endif // !HAS_ABL
  8732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8733. if (DEBUGGING(LEVELING)) {
  8734. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8735. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8736. SERIAL_ECHOLNPGM(" }");
  8737. }
  8738. #endif
  8739. // The newly-selected extruder XY is actually at...
  8740. current_position[X_AXIS] += xydiff[X_AXIS];
  8741. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8742. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8743. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8744. #if HAS_POSITION_SHIFT
  8745. position_shift[i] += xydiff[i];
  8746. #endif
  8747. update_software_endstops((AxisEnum)i);
  8748. }
  8749. #endif
  8750. // Set the new active extruder
  8751. active_extruder = tmp_extruder;
  8752. #endif // !DUAL_X_CARRIAGE
  8753. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8754. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8755. #endif
  8756. // Tell the planner the new "current position"
  8757. SYNC_PLAN_POSITION_KINEMATIC();
  8758. // Move to the "old position" (move the extruder into place)
  8759. if (!no_move && IsRunning()) {
  8760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8761. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8762. #endif
  8763. prepare_move_to_destination();
  8764. }
  8765. #if ENABLED(SWITCHING_NOZZLE)
  8766. // Move back down, if needed. (Including when the new tool is higher.)
  8767. if (z_raise != z_diff) {
  8768. destination[Z_AXIS] += z_diff;
  8769. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8770. prepare_move_to_destination();
  8771. }
  8772. #endif
  8773. } // (tmp_extruder != active_extruder)
  8774. stepper.synchronize();
  8775. #if ENABLED(EXT_SOLENOID)
  8776. disable_all_solenoids();
  8777. enable_solenoid_on_active_extruder();
  8778. #endif // EXT_SOLENOID
  8779. feedrate_mm_s = old_feedrate_mm_s;
  8780. #else // HOTENDS <= 1
  8781. UNUSED(fr_mm_s);
  8782. UNUSED(no_move);
  8783. #if ENABLED(MK2_MULTIPLEXER)
  8784. if (tmp_extruder >= E_STEPPERS)
  8785. return invalid_extruder_error(tmp_extruder);
  8786. select_multiplexed_stepper(tmp_extruder);
  8787. #endif
  8788. #endif // HOTENDS <= 1
  8789. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  8790. stepper.synchronize();
  8791. move_extruder_servo(tmp_extruder);
  8792. #endif
  8793. active_extruder = tmp_extruder;
  8794. SERIAL_ECHO_START();
  8795. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8796. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8797. }
  8798. /**
  8799. * T0-T3: Switch tool, usually switching extruders
  8800. *
  8801. * F[units/min] Set the movement feedrate
  8802. * S1 Don't move the tool in XY after change
  8803. */
  8804. inline void gcode_T(uint8_t tmp_extruder) {
  8805. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8806. if (DEBUGGING(LEVELING)) {
  8807. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8808. SERIAL_CHAR(')');
  8809. SERIAL_EOL();
  8810. DEBUG_POS("BEFORE", current_position);
  8811. }
  8812. #endif
  8813. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8814. tool_change(tmp_extruder);
  8815. #elif HOTENDS > 1
  8816. tool_change(
  8817. tmp_extruder,
  8818. MMM_TO_MMS(parser.linearval('F')),
  8819. (tmp_extruder == active_extruder) || parser.boolval('S')
  8820. );
  8821. #endif
  8822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8823. if (DEBUGGING(LEVELING)) {
  8824. DEBUG_POS("AFTER", current_position);
  8825. SERIAL_ECHOLNPGM("<<< gcode_T");
  8826. }
  8827. #endif
  8828. }
  8829. /**
  8830. * Process a single command and dispatch it to its handler
  8831. * This is called from the main loop()
  8832. */
  8833. void process_next_command() {
  8834. char * const current_command = command_queue[cmd_queue_index_r];
  8835. if (DEBUGGING(ECHO)) {
  8836. SERIAL_ECHO_START();
  8837. SERIAL_ECHOLN(current_command);
  8838. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8839. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8840. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  8841. #endif
  8842. }
  8843. KEEPALIVE_STATE(IN_HANDLER);
  8844. // Parse the next command in the queue
  8845. parser.parse(current_command);
  8846. // Handle a known G, M, or T
  8847. switch (parser.command_letter) {
  8848. case 'G': switch (parser.codenum) {
  8849. // G0, G1
  8850. case 0:
  8851. case 1:
  8852. #if IS_SCARA
  8853. gcode_G0_G1(parser.codenum == 0);
  8854. #else
  8855. gcode_G0_G1();
  8856. #endif
  8857. break;
  8858. // G2, G3
  8859. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8860. case 2: // G2: CW ARC
  8861. case 3: // G3: CCW ARC
  8862. gcode_G2_G3(parser.codenum == 2);
  8863. break;
  8864. #endif
  8865. // G4 Dwell
  8866. case 4:
  8867. gcode_G4();
  8868. break;
  8869. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8870. case 5: // G5: Cubic B_spline
  8871. gcode_G5();
  8872. break;
  8873. #endif // BEZIER_CURVE_SUPPORT
  8874. #if ENABLED(FWRETRACT)
  8875. case 10: // G10: retract
  8876. gcode_G10();
  8877. break;
  8878. case 11: // G11: retract_recover
  8879. gcode_G11();
  8880. break;
  8881. #endif // FWRETRACT
  8882. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8883. case 12:
  8884. gcode_G12(); // G12: Nozzle Clean
  8885. break;
  8886. #endif // NOZZLE_CLEAN_FEATURE
  8887. #if ENABLED(CNC_WORKSPACE_PLANES)
  8888. case 17: // G17: Select Plane XY
  8889. gcode_G17();
  8890. break;
  8891. case 18: // G18: Select Plane ZX
  8892. gcode_G18();
  8893. break;
  8894. case 19: // G19: Select Plane YZ
  8895. gcode_G19();
  8896. break;
  8897. #endif // CNC_WORKSPACE_PLANES
  8898. #if ENABLED(INCH_MODE_SUPPORT)
  8899. case 20: //G20: Inch Mode
  8900. gcode_G20();
  8901. break;
  8902. case 21: //G21: MM Mode
  8903. gcode_G21();
  8904. break;
  8905. #endif // INCH_MODE_SUPPORT
  8906. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  8907. case 26: // G26: Mesh Validation Pattern generation
  8908. gcode_G26();
  8909. break;
  8910. #endif // AUTO_BED_LEVELING_UBL
  8911. #if ENABLED(NOZZLE_PARK_FEATURE)
  8912. case 27: // G27: Nozzle Park
  8913. gcode_G27();
  8914. break;
  8915. #endif // NOZZLE_PARK_FEATURE
  8916. case 28: // G28: Home all axes, one at a time
  8917. gcode_G28(false);
  8918. break;
  8919. #if HAS_LEVELING
  8920. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8921. // or provides access to the UBL System if enabled.
  8922. gcode_G29();
  8923. break;
  8924. #endif // HAS_LEVELING
  8925. #if HAS_BED_PROBE
  8926. case 30: // G30 Single Z probe
  8927. gcode_G30();
  8928. break;
  8929. #if ENABLED(Z_PROBE_SLED)
  8930. case 31: // G31: dock the sled
  8931. gcode_G31();
  8932. break;
  8933. case 32: // G32: undock the sled
  8934. gcode_G32();
  8935. break;
  8936. #endif // Z_PROBE_SLED
  8937. #endif // HAS_BED_PROBE
  8938. #if PROBE_SELECTED
  8939. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8940. case 33: // G33: Delta Auto-Calibration
  8941. gcode_G33();
  8942. break;
  8943. #endif // DELTA_AUTO_CALIBRATION
  8944. #endif // PROBE_SELECTED
  8945. #if ENABLED(G38_PROBE_TARGET)
  8946. case 38: // G38.2 & G38.3
  8947. if (parser.subcode == 2 || parser.subcode == 3)
  8948. gcode_G38(parser.subcode == 2);
  8949. break;
  8950. #endif
  8951. case 90: // G90
  8952. relative_mode = false;
  8953. break;
  8954. case 91: // G91
  8955. relative_mode = true;
  8956. break;
  8957. case 92: // G92
  8958. gcode_G92();
  8959. break;
  8960. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  8961. case 42:
  8962. gcode_G42();
  8963. break;
  8964. #endif
  8965. #if ENABLED(DEBUG_GCODE_PARSER)
  8966. case 800:
  8967. parser.debug(); // GCode Parser Test for G
  8968. break;
  8969. #endif
  8970. }
  8971. break;
  8972. case 'M': switch (parser.codenum) {
  8973. #if HAS_RESUME_CONTINUE
  8974. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8975. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8976. gcode_M0_M1();
  8977. break;
  8978. #endif // ULTIPANEL
  8979. #if ENABLED(SPINDLE_LASER_ENABLE)
  8980. case 3:
  8981. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  8982. break; // synchronizes with movement commands
  8983. case 4:
  8984. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  8985. break; // synchronizes with movement commands
  8986. case 5:
  8987. gcode_M5(); // M5 - turn spindle/laser off
  8988. break; // synchronizes with movement commands
  8989. #endif
  8990. case 17: // M17: Enable all stepper motors
  8991. gcode_M17();
  8992. break;
  8993. #if ENABLED(SDSUPPORT)
  8994. case 20: // M20: list SD card
  8995. gcode_M20(); break;
  8996. case 21: // M21: init SD card
  8997. gcode_M21(); break;
  8998. case 22: // M22: release SD card
  8999. gcode_M22(); break;
  9000. case 23: // M23: Select file
  9001. gcode_M23(); break;
  9002. case 24: // M24: Start SD print
  9003. gcode_M24(); break;
  9004. case 25: // M25: Pause SD print
  9005. gcode_M25(); break;
  9006. case 26: // M26: Set SD index
  9007. gcode_M26(); break;
  9008. case 27: // M27: Get SD status
  9009. gcode_M27(); break;
  9010. case 28: // M28: Start SD write
  9011. gcode_M28(); break;
  9012. case 29: // M29: Stop SD write
  9013. gcode_M29(); break;
  9014. case 30: // M30 <filename> Delete File
  9015. gcode_M30(); break;
  9016. case 32: // M32: Select file and start SD print
  9017. gcode_M32(); break;
  9018. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9019. case 33: // M33: Get the long full path to a file or folder
  9020. gcode_M33(); break;
  9021. #endif
  9022. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9023. case 34: //M34 - Set SD card sorting options
  9024. gcode_M34(); break;
  9025. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9026. case 928: // M928: Start SD write
  9027. gcode_M928(); break;
  9028. #endif // SDSUPPORT
  9029. case 31: // M31: Report time since the start of SD print or last M109
  9030. gcode_M31(); break;
  9031. case 42: // M42: Change pin state
  9032. gcode_M42(); break;
  9033. #if ENABLED(PINS_DEBUGGING)
  9034. case 43: // M43: Read pin state
  9035. gcode_M43(); break;
  9036. #endif
  9037. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9038. case 48: // M48: Z probe repeatability test
  9039. gcode_M48();
  9040. break;
  9041. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9042. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  9043. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9044. gcode_M49();
  9045. break;
  9046. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  9047. case 75: // M75: Start print timer
  9048. gcode_M75(); break;
  9049. case 76: // M76: Pause print timer
  9050. gcode_M76(); break;
  9051. case 77: // M77: Stop print timer
  9052. gcode_M77(); break;
  9053. #if ENABLED(PRINTCOUNTER)
  9054. case 78: // M78: Show print statistics
  9055. gcode_M78(); break;
  9056. #endif
  9057. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9058. case 100: // M100: Free Memory Report
  9059. gcode_M100();
  9060. break;
  9061. #endif
  9062. case 104: // M104: Set hot end temperature
  9063. gcode_M104();
  9064. break;
  9065. case 110: // M110: Set Current Line Number
  9066. gcode_M110();
  9067. break;
  9068. case 111: // M111: Set debug level
  9069. gcode_M111();
  9070. break;
  9071. #if DISABLED(EMERGENCY_PARSER)
  9072. case 108: // M108: Cancel Waiting
  9073. gcode_M108();
  9074. break;
  9075. case 112: // M112: Emergency Stop
  9076. gcode_M112();
  9077. break;
  9078. case 410: // M410 quickstop - Abort all the planned moves.
  9079. gcode_M410();
  9080. break;
  9081. #endif
  9082. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9083. case 113: // M113: Set Host Keepalive interval
  9084. gcode_M113();
  9085. break;
  9086. #endif
  9087. case 140: // M140: Set bed temperature
  9088. gcode_M140();
  9089. break;
  9090. case 105: // M105: Report current temperature
  9091. gcode_M105();
  9092. KEEPALIVE_STATE(NOT_BUSY);
  9093. return; // "ok" already printed
  9094. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9095. case 155: // M155: Set temperature auto-report interval
  9096. gcode_M155();
  9097. break;
  9098. #endif
  9099. case 109: // M109: Wait for hotend temperature to reach target
  9100. gcode_M109();
  9101. break;
  9102. #if HAS_TEMP_BED
  9103. case 190: // M190: Wait for bed temperature to reach target
  9104. gcode_M190();
  9105. break;
  9106. #endif // HAS_TEMP_BED
  9107. #if FAN_COUNT > 0
  9108. case 106: // M106: Fan On
  9109. gcode_M106();
  9110. break;
  9111. case 107: // M107: Fan Off
  9112. gcode_M107();
  9113. break;
  9114. #endif // FAN_COUNT > 0
  9115. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9116. case 125: // M125: Store current position and move to filament change position
  9117. gcode_M125(); break;
  9118. #endif
  9119. #if ENABLED(BARICUDA)
  9120. // PWM for HEATER_1_PIN
  9121. #if HAS_HEATER_1
  9122. case 126: // M126: valve open
  9123. gcode_M126();
  9124. break;
  9125. case 127: // M127: valve closed
  9126. gcode_M127();
  9127. break;
  9128. #endif // HAS_HEATER_1
  9129. // PWM for HEATER_2_PIN
  9130. #if HAS_HEATER_2
  9131. case 128: // M128: valve open
  9132. gcode_M128();
  9133. break;
  9134. case 129: // M129: valve closed
  9135. gcode_M129();
  9136. break;
  9137. #endif // HAS_HEATER_2
  9138. #endif // BARICUDA
  9139. #if HAS_POWER_SWITCH
  9140. case 80: // M80: Turn on Power Supply
  9141. gcode_M80();
  9142. break;
  9143. #endif // HAS_POWER_SWITCH
  9144. case 81: // M81: Turn off Power, including Power Supply, if possible
  9145. gcode_M81();
  9146. break;
  9147. case 82: // M82: Set E axis normal mode (same as other axes)
  9148. gcode_M82();
  9149. break;
  9150. case 83: // M83: Set E axis relative mode
  9151. gcode_M83();
  9152. break;
  9153. case 18: // M18 => M84
  9154. case 84: // M84: Disable all steppers or set timeout
  9155. gcode_M18_M84();
  9156. break;
  9157. case 85: // M85: Set inactivity stepper shutdown timeout
  9158. gcode_M85();
  9159. break;
  9160. case 92: // M92: Set the steps-per-unit for one or more axes
  9161. gcode_M92();
  9162. break;
  9163. case 114: // M114: Report current position
  9164. gcode_M114();
  9165. break;
  9166. case 115: // M115: Report capabilities
  9167. gcode_M115();
  9168. break;
  9169. case 117: // M117: Set LCD message text, if possible
  9170. gcode_M117();
  9171. break;
  9172. case 118: // M118: Display a message in the host console
  9173. gcode_M118();
  9174. break;
  9175. case 119: // M119: Report endstop states
  9176. gcode_M119();
  9177. break;
  9178. case 120: // M120: Enable endstops
  9179. gcode_M120();
  9180. break;
  9181. case 121: // M121: Disable endstops
  9182. gcode_M121();
  9183. break;
  9184. #if ENABLED(ULTIPANEL)
  9185. case 145: // M145: Set material heatup parameters
  9186. gcode_M145();
  9187. break;
  9188. #endif
  9189. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9190. case 149: // M149: Set temperature units
  9191. gcode_M149();
  9192. break;
  9193. #endif
  9194. #if HAS_COLOR_LEDS
  9195. case 150: // M150: Set Status LED Color
  9196. gcode_M150();
  9197. break;
  9198. #endif // HAS_COLOR_LEDS
  9199. #if ENABLED(MIXING_EXTRUDER)
  9200. case 163: // M163: Set a component weight for mixing extruder
  9201. gcode_M163();
  9202. break;
  9203. #if MIXING_VIRTUAL_TOOLS > 1
  9204. case 164: // M164: Save current mix as a virtual extruder
  9205. gcode_M164();
  9206. break;
  9207. #endif
  9208. #if ENABLED(DIRECT_MIXING_IN_G1)
  9209. case 165: // M165: Set multiple mix weights
  9210. gcode_M165();
  9211. break;
  9212. #endif
  9213. #endif
  9214. case 200: // M200: Set filament diameter, E to cubic units
  9215. gcode_M200();
  9216. break;
  9217. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9218. gcode_M201();
  9219. break;
  9220. #if 0 // Not used for Sprinter/grbl gen6
  9221. case 202: // M202
  9222. gcode_M202();
  9223. break;
  9224. #endif
  9225. case 203: // M203: Set max feedrate (units/sec)
  9226. gcode_M203();
  9227. break;
  9228. case 204: // M204: Set acceleration
  9229. gcode_M204();
  9230. break;
  9231. case 205: //M205: Set advanced settings
  9232. gcode_M205();
  9233. break;
  9234. #if HAS_M206_COMMAND
  9235. case 206: // M206: Set home offsets
  9236. gcode_M206();
  9237. break;
  9238. #endif
  9239. #if ENABLED(DELTA)
  9240. case 665: // M665: Set delta configurations
  9241. gcode_M665();
  9242. break;
  9243. #endif
  9244. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  9245. case 666: // M666: Set delta or dual endstop adjustment
  9246. gcode_M666();
  9247. break;
  9248. #endif
  9249. #if ENABLED(FWRETRACT)
  9250. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9251. gcode_M207();
  9252. break;
  9253. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9254. gcode_M208();
  9255. break;
  9256. case 209: // M209: Turn Automatic Retract Detection on/off
  9257. gcode_M209();
  9258. break;
  9259. #endif // FWRETRACT
  9260. case 211: // M211: Enable, Disable, and/or Report software endstops
  9261. gcode_M211();
  9262. break;
  9263. #if HOTENDS > 1
  9264. case 218: // M218: Set a tool offset
  9265. gcode_M218();
  9266. break;
  9267. #endif
  9268. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9269. gcode_M220();
  9270. break;
  9271. case 221: // M221: Set Flow Percentage
  9272. gcode_M221();
  9273. break;
  9274. case 226: // M226: Wait until a pin reaches a state
  9275. gcode_M226();
  9276. break;
  9277. #if HAS_SERVOS
  9278. case 280: // M280: Set servo position absolute
  9279. gcode_M280();
  9280. break;
  9281. #endif // HAS_SERVOS
  9282. #if HAS_BUZZER
  9283. case 300: // M300: Play beep tone
  9284. gcode_M300();
  9285. break;
  9286. #endif // HAS_BUZZER
  9287. #if ENABLED(PIDTEMP)
  9288. case 301: // M301: Set hotend PID parameters
  9289. gcode_M301();
  9290. break;
  9291. #endif // PIDTEMP
  9292. #if ENABLED(PIDTEMPBED)
  9293. case 304: // M304: Set bed PID parameters
  9294. gcode_M304();
  9295. break;
  9296. #endif // PIDTEMPBED
  9297. #if defined(CHDK) || HAS_PHOTOGRAPH
  9298. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9299. gcode_M240();
  9300. break;
  9301. #endif // CHDK || PHOTOGRAPH_PIN
  9302. #if HAS_LCD_CONTRAST
  9303. case 250: // M250: Set LCD contrast
  9304. gcode_M250();
  9305. break;
  9306. #endif // HAS_LCD_CONTRAST
  9307. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9308. case 260: // M260: Send data to an i2c slave
  9309. gcode_M260();
  9310. break;
  9311. case 261: // M261: Request data from an i2c slave
  9312. gcode_M261();
  9313. break;
  9314. #endif // EXPERIMENTAL_I2CBUS
  9315. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9316. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9317. gcode_M302();
  9318. break;
  9319. #endif // PREVENT_COLD_EXTRUSION
  9320. case 303: // M303: PID autotune
  9321. gcode_M303();
  9322. break;
  9323. #if ENABLED(MORGAN_SCARA)
  9324. case 360: // M360: SCARA Theta pos1
  9325. if (gcode_M360()) return;
  9326. break;
  9327. case 361: // M361: SCARA Theta pos2
  9328. if (gcode_M361()) return;
  9329. break;
  9330. case 362: // M362: SCARA Psi pos1
  9331. if (gcode_M362()) return;
  9332. break;
  9333. case 363: // M363: SCARA Psi pos2
  9334. if (gcode_M363()) return;
  9335. break;
  9336. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  9337. if (gcode_M364()) return;
  9338. break;
  9339. #endif // SCARA
  9340. case 400: // M400: Finish all moves
  9341. gcode_M400();
  9342. break;
  9343. #if HAS_BED_PROBE
  9344. case 401: // M401: Deploy probe
  9345. gcode_M401();
  9346. break;
  9347. case 402: // M402: Stow probe
  9348. gcode_M402();
  9349. break;
  9350. #endif // HAS_BED_PROBE
  9351. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  9352. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  9353. gcode_M404();
  9354. break;
  9355. case 405: // M405: Turn on filament sensor for control
  9356. gcode_M405();
  9357. break;
  9358. case 406: // M406: Turn off filament sensor for control
  9359. gcode_M406();
  9360. break;
  9361. case 407: // M407: Display measured filament diameter
  9362. gcode_M407();
  9363. break;
  9364. #endif // FILAMENT_WIDTH_SENSOR
  9365. #if HAS_LEVELING
  9366. case 420: // M420: Enable/Disable Bed Leveling
  9367. gcode_M420();
  9368. break;
  9369. #endif
  9370. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9371. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  9372. gcode_M421();
  9373. break;
  9374. #endif
  9375. #if HAS_M206_COMMAND
  9376. case 428: // M428: Apply current_position to home_offset
  9377. gcode_M428();
  9378. break;
  9379. #endif
  9380. case 500: // M500: Store settings in EEPROM
  9381. gcode_M500();
  9382. break;
  9383. case 501: // M501: Read settings from EEPROM
  9384. gcode_M501();
  9385. break;
  9386. case 502: // M502: Revert to default settings
  9387. gcode_M502();
  9388. break;
  9389. #if DISABLED(DISABLE_M503)
  9390. case 503: // M503: print settings currently in memory
  9391. gcode_M503();
  9392. break;
  9393. #endif
  9394. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  9395. case 540: // M540: Set abort on endstop hit for SD printing
  9396. gcode_M540();
  9397. break;
  9398. #endif
  9399. #if HAS_BED_PROBE
  9400. case 851: // M851: Set Z Probe Z Offset
  9401. gcode_M851();
  9402. break;
  9403. #endif // HAS_BED_PROBE
  9404. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  9405. case 600: // M600: Pause for filament change
  9406. gcode_M600();
  9407. break;
  9408. #endif // ADVANCED_PAUSE_FEATURE
  9409. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  9410. case 605: // M605: Set Dual X Carriage movement mode
  9411. gcode_M605();
  9412. break;
  9413. #endif // DUAL_X_CARRIAGE
  9414. #if ENABLED(MK2_MULTIPLEXER)
  9415. case 702: // M702: Unload all extruders
  9416. gcode_M702();
  9417. break;
  9418. #endif
  9419. #if ENABLED(LIN_ADVANCE)
  9420. case 900: // M900: Set advance K factor.
  9421. gcode_M900();
  9422. break;
  9423. #endif
  9424. #if ENABLED(HAVE_TMC2130)
  9425. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  9426. gcode_M906();
  9427. break;
  9428. #endif
  9429. case 907: // M907: Set digital trimpot motor current using axis codes.
  9430. gcode_M907();
  9431. break;
  9432. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9433. case 908: // M908: Control digital trimpot directly.
  9434. gcode_M908();
  9435. break;
  9436. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9437. case 909: // M909: Print digipot/DAC current value
  9438. gcode_M909();
  9439. break;
  9440. case 910: // M910: Commit digipot/DAC value to external EEPROM
  9441. gcode_M910();
  9442. break;
  9443. #endif
  9444. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9445. #if ENABLED(HAVE_TMC2130)
  9446. case 911: // M911: Report TMC2130 prewarn triggered flags
  9447. gcode_M911();
  9448. break;
  9449. case 912: // M911: Clear TMC2130 prewarn triggered flags
  9450. gcode_M912();
  9451. break;
  9452. #if ENABLED(HYBRID_THRESHOLD)
  9453. case 913: // M913: Set HYBRID_THRESHOLD speed.
  9454. gcode_M913();
  9455. break;
  9456. #endif
  9457. #if ENABLED(SENSORLESS_HOMING)
  9458. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  9459. gcode_M914();
  9460. break;
  9461. #endif
  9462. #endif
  9463. #if HAS_MICROSTEPS
  9464. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9465. gcode_M350();
  9466. break;
  9467. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  9468. gcode_M351();
  9469. break;
  9470. #endif // HAS_MICROSTEPS
  9471. case 355: // M355 set case light brightness
  9472. gcode_M355();
  9473. break;
  9474. #if ENABLED(DEBUG_GCODE_PARSER)
  9475. case 800:
  9476. parser.debug(); // GCode Parser Test for M
  9477. break;
  9478. #endif
  9479. #if ENABLED(I2C_POSITION_ENCODERS)
  9480. case 860: // M860 Report encoder module position
  9481. gcode_M860();
  9482. break;
  9483. case 861: // M861 Report encoder module status
  9484. gcode_M861();
  9485. break;
  9486. case 862: // M862 Perform axis test
  9487. gcode_M862();
  9488. break;
  9489. case 863: // M863 Calibrate steps/mm
  9490. gcode_M863();
  9491. break;
  9492. case 864: // M864 Change module address
  9493. gcode_M864();
  9494. break;
  9495. case 865: // M865 Check module firmware version
  9496. gcode_M865();
  9497. break;
  9498. case 866: // M866 Report axis error count
  9499. gcode_M866();
  9500. break;
  9501. case 867: // M867 Toggle error correction
  9502. gcode_M867();
  9503. break;
  9504. case 868: // M868 Set error correction threshold
  9505. gcode_M868();
  9506. break;
  9507. case 869: // M869 Report axis error
  9508. gcode_M869();
  9509. break;
  9510. #endif // I2C_POSITION_ENCODERS
  9511. case 999: // M999: Restart after being Stopped
  9512. gcode_M999();
  9513. break;
  9514. }
  9515. break;
  9516. case 'T':
  9517. gcode_T(parser.codenum);
  9518. break;
  9519. default: parser.unknown_command_error();
  9520. }
  9521. KEEPALIVE_STATE(NOT_BUSY);
  9522. ok_to_send();
  9523. }
  9524. /**
  9525. * Send a "Resend: nnn" message to the host to
  9526. * indicate that a command needs to be re-sent.
  9527. */
  9528. void FlushSerialRequestResend() {
  9529. //char command_queue[cmd_queue_index_r][100]="Resend:";
  9530. MYSERIAL.flush();
  9531. SERIAL_PROTOCOLPGM(MSG_RESEND);
  9532. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  9533. ok_to_send();
  9534. }
  9535. /**
  9536. * Send an "ok" message to the host, indicating
  9537. * that a command was successfully processed.
  9538. *
  9539. * If ADVANCED_OK is enabled also include:
  9540. * N<int> Line number of the command, if any
  9541. * P<int> Planner space remaining
  9542. * B<int> Block queue space remaining
  9543. */
  9544. void ok_to_send() {
  9545. refresh_cmd_timeout();
  9546. if (!send_ok[cmd_queue_index_r]) return;
  9547. SERIAL_PROTOCOLPGM(MSG_OK);
  9548. #if ENABLED(ADVANCED_OK)
  9549. char* p = command_queue[cmd_queue_index_r];
  9550. if (*p == 'N') {
  9551. SERIAL_PROTOCOL(' ');
  9552. SERIAL_ECHO(*p++);
  9553. while (NUMERIC_SIGNED(*p))
  9554. SERIAL_ECHO(*p++);
  9555. }
  9556. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  9557. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  9558. #endif
  9559. SERIAL_EOL();
  9560. }
  9561. #if HAS_SOFTWARE_ENDSTOPS
  9562. /**
  9563. * Constrain the given coordinates to the software endstops.
  9564. */
  9565. // NOTE: This makes no sense for delta beds other than Z-axis.
  9566. // For delta the X/Y would need to be clamped at
  9567. // DELTA_PRINTABLE_RADIUS from center of bed, but delta
  9568. // now enforces is_position_reachable for X/Y regardless
  9569. // of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
  9570. // redundant here. Probably should #ifdef out the X/Y
  9571. // axis clamps here for delta and just leave the Z clamp.
  9572. void clamp_to_software_endstops(float target[XYZ]) {
  9573. if (!soft_endstops_enabled) return;
  9574. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  9575. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  9576. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  9577. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  9578. #endif
  9579. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9580. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  9581. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  9582. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9583. #endif
  9584. }
  9585. #endif
  9586. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9587. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  9588. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  9589. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  9590. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  9591. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  9592. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  9593. #else
  9594. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  9595. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  9596. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  9597. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  9598. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  9599. #endif
  9600. // Get the Z adjustment for non-linear bed leveling
  9601. float bilinear_z_offset(const float logical[XYZ]) {
  9602. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  9603. last_x = -999.999, last_y = -999.999;
  9604. // Whole units for the grid line indices. Constrained within bounds.
  9605. static int8_t gridx, gridy, nextx, nexty,
  9606. last_gridx = -99, last_gridy = -99;
  9607. // XY relative to the probed area
  9608. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  9609. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  9610. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  9611. // Keep using the last grid box
  9612. #define FAR_EDGE_OR_BOX 2
  9613. #else
  9614. // Just use the grid far edge
  9615. #define FAR_EDGE_OR_BOX 1
  9616. #endif
  9617. if (last_x != x) {
  9618. last_x = x;
  9619. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  9620. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  9621. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  9622. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9623. // Beyond the grid maintain height at grid edges
  9624. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  9625. #endif
  9626. gridx = gx;
  9627. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  9628. }
  9629. if (last_y != y || last_gridx != gridx) {
  9630. if (last_y != y) {
  9631. last_y = y;
  9632. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  9633. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  9634. ratio_y -= gy;
  9635. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9636. // Beyond the grid maintain height at grid edges
  9637. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  9638. #endif
  9639. gridy = gy;
  9640. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  9641. }
  9642. if (last_gridx != gridx || last_gridy != gridy) {
  9643. last_gridx = gridx;
  9644. last_gridy = gridy;
  9645. // Z at the box corners
  9646. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  9647. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  9648. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  9649. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  9650. }
  9651. // Bilinear interpolate. Needed since y or gridx has changed.
  9652. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  9653. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  9654. D = R - L;
  9655. }
  9656. const float offset = L + ratio_x * D; // the offset almost always changes
  9657. /*
  9658. static float last_offset = 0;
  9659. if (FABS(last_offset - offset) > 0.2) {
  9660. SERIAL_ECHOPGM("Sudden Shift at ");
  9661. SERIAL_ECHOPAIR("x=", x);
  9662. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  9663. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  9664. SERIAL_ECHOPAIR(" y=", y);
  9665. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  9666. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  9667. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  9668. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  9669. SERIAL_ECHOPAIR(" z1=", z1);
  9670. SERIAL_ECHOPAIR(" z2=", z2);
  9671. SERIAL_ECHOPAIR(" z3=", z3);
  9672. SERIAL_ECHOLNPAIR(" z4=", z4);
  9673. SERIAL_ECHOPAIR(" L=", L);
  9674. SERIAL_ECHOPAIR(" R=", R);
  9675. SERIAL_ECHOLNPAIR(" offset=", offset);
  9676. }
  9677. last_offset = offset;
  9678. //*/
  9679. return offset;
  9680. }
  9681. #endif // AUTO_BED_LEVELING_BILINEAR
  9682. #if ENABLED(DELTA)
  9683. /**
  9684. * Recalculate factors used for delta kinematics whenever
  9685. * settings have been changed (e.g., by M665).
  9686. */
  9687. void recalc_delta_settings(float radius, float diagonal_rod) {
  9688. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  9689. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  9690. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  9691. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  9692. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  9693. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  9694. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  9695. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  9696. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  9697. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9698. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  9699. }
  9700. #if ENABLED(DELTA_FAST_SQRT)
  9701. /**
  9702. * Fast inverse sqrt from Quake III Arena
  9703. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  9704. */
  9705. float Q_rsqrt(float number) {
  9706. long i;
  9707. float x2, y;
  9708. const float threehalfs = 1.5f;
  9709. x2 = number * 0.5f;
  9710. y = number;
  9711. i = * ( long * ) &y; // evil floating point bit level hacking
  9712. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9713. y = * ( float * ) &i;
  9714. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9715. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9716. return y;
  9717. }
  9718. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9719. #else
  9720. #define _SQRT(n) SQRT(n)
  9721. #endif
  9722. /**
  9723. * Delta Inverse Kinematics
  9724. *
  9725. * Calculate the tower positions for a given logical
  9726. * position, storing the result in the delta[] array.
  9727. *
  9728. * This is an expensive calculation, requiring 3 square
  9729. * roots per segmented linear move, and strains the limits
  9730. * of a Mega2560 with a Graphical Display.
  9731. *
  9732. * Suggested optimizations include:
  9733. *
  9734. * - Disable the home_offset (M206) and/or position_shift (G92)
  9735. * features to remove up to 12 float additions.
  9736. *
  9737. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9738. * (see above)
  9739. */
  9740. // Macro to obtain the Z position of an individual tower
  9741. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9742. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9743. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9744. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9745. ) \
  9746. )
  9747. #define DELTA_RAW_IK() do { \
  9748. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9749. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9750. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9751. }while(0)
  9752. #define DELTA_LOGICAL_IK() do { \
  9753. const float raw[XYZ] = { \
  9754. RAW_X_POSITION(logical[X_AXIS]), \
  9755. RAW_Y_POSITION(logical[Y_AXIS]), \
  9756. RAW_Z_POSITION(logical[Z_AXIS]) \
  9757. }; \
  9758. DELTA_RAW_IK(); \
  9759. }while(0)
  9760. #define DELTA_DEBUG() do { \
  9761. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9762. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9763. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9764. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9765. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9766. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9767. }while(0)
  9768. void inverse_kinematics(const float logical[XYZ]) {
  9769. DELTA_LOGICAL_IK();
  9770. // DELTA_DEBUG();
  9771. }
  9772. /**
  9773. * Calculate the highest Z position where the
  9774. * effector has the full range of XY motion.
  9775. */
  9776. float delta_safe_distance_from_top() {
  9777. float cartesian[XYZ] = {
  9778. LOGICAL_X_POSITION(0),
  9779. LOGICAL_Y_POSITION(0),
  9780. LOGICAL_Z_POSITION(0)
  9781. };
  9782. inverse_kinematics(cartesian);
  9783. float distance = delta[A_AXIS];
  9784. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9785. inverse_kinematics(cartesian);
  9786. return FABS(distance - delta[A_AXIS]);
  9787. }
  9788. /**
  9789. * Delta Forward Kinematics
  9790. *
  9791. * See the Wikipedia article "Trilateration"
  9792. * https://en.wikipedia.org/wiki/Trilateration
  9793. *
  9794. * Establish a new coordinate system in the plane of the
  9795. * three carriage points. This system has its origin at
  9796. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9797. * plane with a Z component of zero.
  9798. * We will define unit vectors in this coordinate system
  9799. * in our original coordinate system. Then when we calculate
  9800. * the Xnew, Ynew and Znew values, we can translate back into
  9801. * the original system by moving along those unit vectors
  9802. * by the corresponding values.
  9803. *
  9804. * Variable names matched to Marlin, c-version, and avoid the
  9805. * use of any vector library.
  9806. *
  9807. * by Andreas Hardtung 2016-06-07
  9808. * based on a Java function from "Delta Robot Kinematics V3"
  9809. * by Steve Graves
  9810. *
  9811. * The result is stored in the cartes[] array.
  9812. */
  9813. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9814. // Create a vector in old coordinates along x axis of new coordinate
  9815. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9816. // Get the Magnitude of vector.
  9817. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9818. // Create unit vector by dividing by magnitude.
  9819. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9820. // Get the vector from the origin of the new system to the third point.
  9821. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9822. // Use the dot product to find the component of this vector on the X axis.
  9823. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9824. // Create a vector along the x axis that represents the x component of p13.
  9825. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9826. // Subtract the X component from the original vector leaving only Y. We use the
  9827. // variable that will be the unit vector after we scale it.
  9828. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9829. // The magnitude of Y component
  9830. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9831. // Convert to a unit vector
  9832. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9833. // The cross product of the unit x and y is the unit z
  9834. // float[] ez = vectorCrossProd(ex, ey);
  9835. float ez[3] = {
  9836. ex[1] * ey[2] - ex[2] * ey[1],
  9837. ex[2] * ey[0] - ex[0] * ey[2],
  9838. ex[0] * ey[1] - ex[1] * ey[0]
  9839. };
  9840. // We now have the d, i and j values defined in Wikipedia.
  9841. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9842. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9843. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9844. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9845. // Start from the origin of the old coordinates and add vectors in the
  9846. // old coords that represent the Xnew, Ynew and Znew to find the point
  9847. // in the old system.
  9848. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9849. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9850. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9851. }
  9852. void forward_kinematics_DELTA(float point[ABC]) {
  9853. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9854. }
  9855. #endif // DELTA
  9856. /**
  9857. * Get the stepper positions in the cartes[] array.
  9858. * Forward kinematics are applied for DELTA and SCARA.
  9859. *
  9860. * The result is in the current coordinate space with
  9861. * leveling applied. The coordinates need to be run through
  9862. * unapply_leveling to obtain the "ideal" coordinates
  9863. * suitable for current_position, etc.
  9864. */
  9865. void get_cartesian_from_steppers() {
  9866. #if ENABLED(DELTA)
  9867. forward_kinematics_DELTA(
  9868. stepper.get_axis_position_mm(A_AXIS),
  9869. stepper.get_axis_position_mm(B_AXIS),
  9870. stepper.get_axis_position_mm(C_AXIS)
  9871. );
  9872. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9873. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9874. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9875. #elif IS_SCARA
  9876. forward_kinematics_SCARA(
  9877. stepper.get_axis_position_degrees(A_AXIS),
  9878. stepper.get_axis_position_degrees(B_AXIS)
  9879. );
  9880. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9881. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9882. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9883. #else
  9884. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9885. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9886. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9887. #endif
  9888. }
  9889. /**
  9890. * Set the current_position for an axis based on
  9891. * the stepper positions, removing any leveling that
  9892. * may have been applied.
  9893. */
  9894. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9895. get_cartesian_from_steppers();
  9896. #if PLANNER_LEVELING
  9897. planner.unapply_leveling(cartes);
  9898. #endif
  9899. if (axis == ALL_AXES)
  9900. COPY(current_position, cartes);
  9901. else
  9902. current_position[axis] = cartes[axis];
  9903. }
  9904. #if ENABLED(MESH_BED_LEVELING)
  9905. /**
  9906. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9907. * splitting the move where it crosses mesh borders.
  9908. */
  9909. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9910. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9911. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9912. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9913. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9914. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9915. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9916. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9917. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9918. if (cx1 == cx2 && cy1 == cy2) {
  9919. // Start and end on same mesh square
  9920. line_to_destination(fr_mm_s);
  9921. set_current_to_destination();
  9922. return;
  9923. }
  9924. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9925. float normalized_dist, end[XYZE];
  9926. // Split at the left/front border of the right/top square
  9927. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9928. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9929. COPY(end, destination);
  9930. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9931. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9932. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9933. CBI(x_splits, gcx);
  9934. }
  9935. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9936. COPY(end, destination);
  9937. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9938. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9939. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9940. CBI(y_splits, gcy);
  9941. }
  9942. else {
  9943. // Already split on a border
  9944. line_to_destination(fr_mm_s);
  9945. set_current_to_destination();
  9946. return;
  9947. }
  9948. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9949. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9950. // Do the split and look for more borders
  9951. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9952. // Restore destination from stack
  9953. COPY(destination, end);
  9954. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9955. }
  9956. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9957. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9958. /**
  9959. * Prepare a bilinear-leveled linear move on Cartesian,
  9960. * splitting the move where it crosses grid borders.
  9961. */
  9962. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9963. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9964. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9965. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9966. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9967. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9968. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9969. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9970. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9971. if (cx1 == cx2 && cy1 == cy2) {
  9972. // Start and end on same mesh square
  9973. line_to_destination(fr_mm_s);
  9974. set_current_to_destination();
  9975. return;
  9976. }
  9977. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9978. float normalized_dist, end[XYZE];
  9979. // Split at the left/front border of the right/top square
  9980. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9981. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9982. COPY(end, destination);
  9983. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9984. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9985. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9986. CBI(x_splits, gcx);
  9987. }
  9988. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9989. COPY(end, destination);
  9990. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9991. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9992. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9993. CBI(y_splits, gcy);
  9994. }
  9995. else {
  9996. // Already split on a border
  9997. line_to_destination(fr_mm_s);
  9998. set_current_to_destination();
  9999. return;
  10000. }
  10001. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10002. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10003. // Do the split and look for more borders
  10004. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10005. // Restore destination from stack
  10006. COPY(destination, end);
  10007. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10008. }
  10009. #endif // AUTO_BED_LEVELING_BILINEAR
  10010. #if IS_KINEMATIC && !UBL_DELTA
  10011. /**
  10012. * Prepare a linear move in a DELTA or SCARA setup.
  10013. *
  10014. * This calls planner.buffer_line several times, adding
  10015. * small incremental moves for DELTA or SCARA.
  10016. */
  10017. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  10018. // Get the top feedrate of the move in the XY plane
  10019. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10020. // If the move is only in Z/E don't split up the move
  10021. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  10022. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10023. return false;
  10024. }
  10025. // Fail if attempting move outside printable radius
  10026. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
  10027. // Get the cartesian distances moved in XYZE
  10028. const float difference[XYZE] = {
  10029. ltarget[X_AXIS] - current_position[X_AXIS],
  10030. ltarget[Y_AXIS] - current_position[Y_AXIS],
  10031. ltarget[Z_AXIS] - current_position[Z_AXIS],
  10032. ltarget[E_AXIS] - current_position[E_AXIS]
  10033. };
  10034. // Get the linear distance in XYZ
  10035. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10036. // If the move is very short, check the E move distance
  10037. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10038. // No E move either? Game over.
  10039. if (UNEAR_ZERO(cartesian_mm)) return true;
  10040. // Minimum number of seconds to move the given distance
  10041. const float seconds = cartesian_mm / _feedrate_mm_s;
  10042. // The number of segments-per-second times the duration
  10043. // gives the number of segments
  10044. uint16_t segments = delta_segments_per_second * seconds;
  10045. // For SCARA minimum segment size is 0.25mm
  10046. #if IS_SCARA
  10047. NOMORE(segments, cartesian_mm * 4);
  10048. #endif
  10049. // At least one segment is required
  10050. NOLESS(segments, 1);
  10051. // The approximate length of each segment
  10052. const float inv_segments = 1.0 / float(segments),
  10053. segment_distance[XYZE] = {
  10054. difference[X_AXIS] * inv_segments,
  10055. difference[Y_AXIS] * inv_segments,
  10056. difference[Z_AXIS] * inv_segments,
  10057. difference[E_AXIS] * inv_segments
  10058. };
  10059. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10060. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10061. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10062. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10063. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10064. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10065. feed_factor = inv_segment_length * _feedrate_mm_s;
  10066. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10067. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10068. #endif
  10069. // Get the logical current position as starting point
  10070. float logical[XYZE];
  10071. COPY(logical, current_position);
  10072. // Drop one segment so the last move is to the exact target.
  10073. // If there's only 1 segment, loops will be skipped entirely.
  10074. --segments;
  10075. // Calculate and execute the segments
  10076. for (uint16_t s = segments + 1; --s;) {
  10077. LOOP_XYZE(i) logical[i] += segment_distance[i];
  10078. #if ENABLED(DELTA)
  10079. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  10080. #else
  10081. inverse_kinematics(logical);
  10082. #endif
  10083. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  10084. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10085. // For SCARA scale the feed rate from mm/s to degrees/s
  10086. // Use ratio between the length of the move and the larger angle change
  10087. const float adiff = abs(delta[A_AXIS] - oldA),
  10088. bdiff = abs(delta[B_AXIS] - oldB);
  10089. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10090. oldA = delta[A_AXIS];
  10091. oldB = delta[B_AXIS];
  10092. #else
  10093. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  10094. #endif
  10095. }
  10096. // Since segment_distance is only approximate,
  10097. // the final move must be to the exact destination.
  10098. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10099. // For SCARA scale the feed rate from mm/s to degrees/s
  10100. // With segments > 1 length is 1 segment, otherwise total length
  10101. inverse_kinematics(ltarget);
  10102. ADJUST_DELTA(ltarget);
  10103. const float adiff = abs(delta[A_AXIS] - oldA),
  10104. bdiff = abs(delta[B_AXIS] - oldB);
  10105. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10106. #else
  10107. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10108. #endif
  10109. return false;
  10110. }
  10111. #else // !IS_KINEMATIC || UBL_DELTA
  10112. /**
  10113. * Prepare a linear move in a Cartesian setup.
  10114. * If Mesh Bed Leveling is enabled, perform a mesh move.
  10115. *
  10116. * Returns true if the caller didn't update current_position.
  10117. */
  10118. inline bool prepare_move_to_destination_cartesian() {
  10119. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10120. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10121. if (ubl.state.active) { // direct use of ubl.state.active for speed
  10122. ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
  10123. return true;
  10124. }
  10125. else
  10126. line_to_destination(fr_scaled);
  10127. #else
  10128. // Do not use feedrate_percentage for E or Z only moves
  10129. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
  10130. line_to_destination();
  10131. else {
  10132. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10133. #if ENABLED(MESH_BED_LEVELING)
  10134. if (mbl.active()) { // direct used of mbl.active() for speed
  10135. mesh_line_to_destination(fr_scaled);
  10136. return true;
  10137. }
  10138. else
  10139. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10140. if (planner.abl_enabled) { // direct use of abl_enabled for speed
  10141. bilinear_line_to_destination(fr_scaled);
  10142. return true;
  10143. }
  10144. else
  10145. #endif
  10146. line_to_destination(fr_scaled);
  10147. }
  10148. #endif
  10149. return false;
  10150. }
  10151. #endif // !IS_KINEMATIC || UBL_DELTA
  10152. #if ENABLED(DUAL_X_CARRIAGE)
  10153. /**
  10154. * Prepare a linear move in a dual X axis setup
  10155. */
  10156. inline bool prepare_move_to_destination_dualx() {
  10157. if (active_extruder_parked) {
  10158. switch (dual_x_carriage_mode) {
  10159. case DXC_FULL_CONTROL_MODE:
  10160. break;
  10161. case DXC_AUTO_PARK_MODE:
  10162. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10163. // This is a travel move (with no extrusion)
  10164. // Skip it, but keep track of the current position
  10165. // (so it can be used as the start of the next non-travel move)
  10166. if (delayed_move_time != 0xFFFFFFFFUL) {
  10167. set_current_to_destination();
  10168. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10169. delayed_move_time = millis();
  10170. return true;
  10171. }
  10172. }
  10173. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10174. for (uint8_t i = 0; i < 3; i++)
  10175. planner.buffer_line(
  10176. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10177. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10178. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10179. current_position[E_AXIS],
  10180. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10181. active_extruder
  10182. );
  10183. delayed_move_time = 0;
  10184. active_extruder_parked = false;
  10185. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10186. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10187. #endif
  10188. break;
  10189. case DXC_DUPLICATION_MODE:
  10190. if (active_extruder == 0) {
  10191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10192. if (DEBUGGING(LEVELING)) {
  10193. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  10194. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10195. }
  10196. #endif
  10197. // move duplicate extruder into correct duplication position.
  10198. planner.set_position_mm(
  10199. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  10200. current_position[Y_AXIS],
  10201. current_position[Z_AXIS],
  10202. current_position[E_AXIS]
  10203. );
  10204. planner.buffer_line(
  10205. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10206. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10207. planner.max_feedrate_mm_s[X_AXIS], 1
  10208. );
  10209. SYNC_PLAN_POSITION_KINEMATIC();
  10210. stepper.synchronize();
  10211. extruder_duplication_enabled = true;
  10212. active_extruder_parked = false;
  10213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10214. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10215. #endif
  10216. }
  10217. else {
  10218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10219. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10220. #endif
  10221. }
  10222. break;
  10223. }
  10224. }
  10225. return false;
  10226. }
  10227. #endif // DUAL_X_CARRIAGE
  10228. /**
  10229. * Prepare a single move and get ready for the next one
  10230. *
  10231. * This may result in several calls to planner.buffer_line to
  10232. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10233. */
  10234. void prepare_move_to_destination() {
  10235. clamp_to_software_endstops(destination);
  10236. refresh_cmd_timeout();
  10237. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10238. if (!DEBUGGING(DRYRUN)) {
  10239. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10240. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10241. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10242. SERIAL_ECHO_START();
  10243. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10244. }
  10245. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10246. if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
  10247. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10248. SERIAL_ECHO_START();
  10249. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10250. }
  10251. #endif
  10252. }
  10253. }
  10254. #endif
  10255. if (
  10256. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10257. ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
  10258. #elif IS_KINEMATIC
  10259. prepare_kinematic_move_to(destination)
  10260. #elif ENABLED(DUAL_X_CARRIAGE)
  10261. prepare_move_to_destination_dualx()
  10262. #else
  10263. prepare_move_to_destination_cartesian()
  10264. #endif
  10265. ) return;
  10266. set_current_to_destination();
  10267. }
  10268. #if ENABLED(ARC_SUPPORT)
  10269. #if N_ARC_CORRECTION < 1
  10270. #undef N_ARC_CORRECTION
  10271. #define N_ARC_CORRECTION 1
  10272. #endif
  10273. /**
  10274. * Plan an arc in 2 dimensions
  10275. *
  10276. * The arc is approximated by generating many small linear segments.
  10277. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10278. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10279. * larger segments will tend to be more efficient. Your slicer should have
  10280. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10281. */
  10282. void plan_arc(
  10283. float logical[XYZE], // Destination position
  10284. float *offset, // Center of rotation relative to current_position
  10285. uint8_t clockwise // Clockwise?
  10286. ) {
  10287. #if ENABLED(CNC_WORKSPACE_PLANES)
  10288. AxisEnum p_axis, q_axis, l_axis;
  10289. switch (workspace_plane) {
  10290. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10291. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10292. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10293. }
  10294. #else
  10295. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10296. #endif
  10297. // Radius vector from center to current location
  10298. float r_P = -offset[0], r_Q = -offset[1];
  10299. const float radius = HYPOT(r_P, r_Q),
  10300. center_P = current_position[p_axis] - r_P,
  10301. center_Q = current_position[q_axis] - r_Q,
  10302. rt_X = logical[p_axis] - center_P,
  10303. rt_Y = logical[q_axis] - center_Q,
  10304. linear_travel = logical[l_axis] - current_position[l_axis],
  10305. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  10306. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  10307. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  10308. if (angular_travel < 0) angular_travel += RADIANS(360);
  10309. if (clockwise) angular_travel -= RADIANS(360);
  10310. // Make a circle if the angular rotation is 0 and the target is current position
  10311. if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
  10312. angular_travel = RADIANS(360);
  10313. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  10314. if (mm_of_travel < 0.001) return;
  10315. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  10316. if (segments == 0) segments = 1;
  10317. /**
  10318. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  10319. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  10320. * r_T = [cos(phi) -sin(phi);
  10321. * sin(phi) cos(phi)] * r ;
  10322. *
  10323. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  10324. * defined from the circle center to the initial position. Each line segment is formed by successive
  10325. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  10326. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  10327. * all double numbers are single precision on the Arduino. (True double precision will not have
  10328. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  10329. * tool precision in some cases. Therefore, arc path correction is implemented.
  10330. *
  10331. * Small angle approximation may be used to reduce computation overhead further. This approximation
  10332. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  10333. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  10334. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  10335. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  10336. * issue for CNC machines with the single precision Arduino calculations.
  10337. *
  10338. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  10339. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  10340. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  10341. * This is important when there are successive arc motions.
  10342. */
  10343. // Vector rotation matrix values
  10344. float arc_target[XYZE];
  10345. const float theta_per_segment = angular_travel / segments,
  10346. linear_per_segment = linear_travel / segments,
  10347. extruder_per_segment = extruder_travel / segments,
  10348. sin_T = theta_per_segment,
  10349. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  10350. // Initialize the linear axis
  10351. arc_target[l_axis] = current_position[l_axis];
  10352. // Initialize the extruder axis
  10353. arc_target[E_AXIS] = current_position[E_AXIS];
  10354. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  10355. millis_t next_idle_ms = millis() + 200UL;
  10356. #if N_ARC_CORRECTION > 1
  10357. int8_t count = N_ARC_CORRECTION;
  10358. #endif
  10359. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  10360. thermalManager.manage_heater();
  10361. if (ELAPSED(millis(), next_idle_ms)) {
  10362. next_idle_ms = millis() + 200UL;
  10363. idle();
  10364. }
  10365. #if N_ARC_CORRECTION > 1
  10366. if (--count) {
  10367. // Apply vector rotation matrix to previous r_P / 1
  10368. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  10369. r_P = r_P * cos_T - r_Q * sin_T;
  10370. r_Q = r_new_Y;
  10371. }
  10372. else
  10373. #endif
  10374. {
  10375. #if N_ARC_CORRECTION > 1
  10376. count = N_ARC_CORRECTION;
  10377. #endif
  10378. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  10379. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  10380. // To reduce stuttering, the sin and cos could be computed at different times.
  10381. // For now, compute both at the same time.
  10382. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  10383. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  10384. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  10385. }
  10386. // Update arc_target location
  10387. arc_target[p_axis] = center_P + r_P;
  10388. arc_target[q_axis] = center_Q + r_Q;
  10389. arc_target[l_axis] += linear_per_segment;
  10390. arc_target[E_AXIS] += extruder_per_segment;
  10391. clamp_to_software_endstops(arc_target);
  10392. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  10393. }
  10394. // Ensure last segment arrives at target location.
  10395. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  10396. // As far as the parser is concerned, the position is now == target. In reality the
  10397. // motion control system might still be processing the action and the real tool position
  10398. // in any intermediate location.
  10399. set_current_to_destination();
  10400. }
  10401. #endif
  10402. #if ENABLED(BEZIER_CURVE_SUPPORT)
  10403. void plan_cubic_move(const float offset[4]) {
  10404. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  10405. // As far as the parser is concerned, the position is now == destination. In reality the
  10406. // motion control system might still be processing the action and the real tool position
  10407. // in any intermediate location.
  10408. set_current_to_destination();
  10409. }
  10410. #endif // BEZIER_CURVE_SUPPORT
  10411. #if ENABLED(USE_CONTROLLER_FAN)
  10412. void controllerFan() {
  10413. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  10414. nextMotorCheck = 0; // Last time the state was checked
  10415. const millis_t ms = millis();
  10416. if (ELAPSED(ms, nextMotorCheck)) {
  10417. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  10418. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  10419. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  10420. #if E_STEPPERS > 1
  10421. || E1_ENABLE_READ == E_ENABLE_ON
  10422. #if HAS_X2_ENABLE
  10423. || X2_ENABLE_READ == X_ENABLE_ON
  10424. #endif
  10425. #if E_STEPPERS > 2
  10426. || E2_ENABLE_READ == E_ENABLE_ON
  10427. #if E_STEPPERS > 3
  10428. || E3_ENABLE_READ == E_ENABLE_ON
  10429. #if E_STEPPERS > 4
  10430. || E4_ENABLE_READ == E_ENABLE_ON
  10431. #endif // E_STEPPERS > 4
  10432. #endif // E_STEPPERS > 3
  10433. #endif // E_STEPPERS > 2
  10434. #endif // E_STEPPERS > 1
  10435. ) {
  10436. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  10437. }
  10438. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  10439. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  10440. // allows digital or PWM fan output to be used (see M42 handling)
  10441. WRITE(CONTROLLER_FAN_PIN, speed);
  10442. analogWrite(CONTROLLER_FAN_PIN, speed);
  10443. }
  10444. }
  10445. #endif // USE_CONTROLLER_FAN
  10446. #if ENABLED(MORGAN_SCARA)
  10447. /**
  10448. * Morgan SCARA Forward Kinematics. Results in cartes[].
  10449. * Maths and first version by QHARLEY.
  10450. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10451. */
  10452. void forward_kinematics_SCARA(const float &a, const float &b) {
  10453. float a_sin = sin(RADIANS(a)) * L1,
  10454. a_cos = cos(RADIANS(a)) * L1,
  10455. b_sin = sin(RADIANS(b)) * L2,
  10456. b_cos = cos(RADIANS(b)) * L2;
  10457. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  10458. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  10459. /*
  10460. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  10461. SERIAL_ECHOPAIR(" b=", b);
  10462. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  10463. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  10464. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  10465. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  10466. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  10467. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  10468. //*/
  10469. }
  10470. /**
  10471. * Morgan SCARA Inverse Kinematics. Results in delta[].
  10472. *
  10473. * See http://forums.reprap.org/read.php?185,283327
  10474. *
  10475. * Maths and first version by QHARLEY.
  10476. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10477. */
  10478. void inverse_kinematics(const float logical[XYZ]) {
  10479. static float C2, S2, SK1, SK2, THETA, PSI;
  10480. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  10481. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  10482. if (L1 == L2)
  10483. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  10484. else
  10485. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  10486. S2 = SQRT(1 - sq(C2));
  10487. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  10488. SK1 = L1 + L2 * C2;
  10489. // Rotated Arm2 gives the distance from Arm1 to Arm2
  10490. SK2 = L2 * S2;
  10491. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  10492. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  10493. // Angle of Arm2
  10494. PSI = ATAN2(S2, C2);
  10495. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  10496. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  10497. delta[C_AXIS] = logical[Z_AXIS];
  10498. /*
  10499. DEBUG_POS("SCARA IK", logical);
  10500. DEBUG_POS("SCARA IK", delta);
  10501. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  10502. SERIAL_ECHOPAIR(",", sy);
  10503. SERIAL_ECHOPAIR(" C2=", C2);
  10504. SERIAL_ECHOPAIR(" S2=", S2);
  10505. SERIAL_ECHOPAIR(" Theta=", THETA);
  10506. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  10507. //*/
  10508. }
  10509. #endif // MORGAN_SCARA
  10510. #if ENABLED(TEMP_STAT_LEDS)
  10511. static bool red_led = false;
  10512. static millis_t next_status_led_update_ms = 0;
  10513. void handle_status_leds(void) {
  10514. if (ELAPSED(millis(), next_status_led_update_ms)) {
  10515. next_status_led_update_ms += 500; // Update every 0.5s
  10516. float max_temp = 0.0;
  10517. #if HAS_TEMP_BED
  10518. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  10519. #endif
  10520. HOTEND_LOOP()
  10521. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  10522. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  10523. if (new_led != red_led) {
  10524. red_led = new_led;
  10525. #if PIN_EXISTS(STAT_LED_RED)
  10526. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  10527. #if PIN_EXISTS(STAT_LED_BLUE)
  10528. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  10529. #endif
  10530. #else
  10531. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  10532. #endif
  10533. }
  10534. }
  10535. }
  10536. #endif
  10537. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10538. void handle_filament_runout() {
  10539. if (!filament_ran_out) {
  10540. filament_ran_out = true;
  10541. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  10542. stepper.synchronize();
  10543. }
  10544. }
  10545. #endif // FILAMENT_RUNOUT_SENSOR
  10546. #if ENABLED(FAST_PWM_FAN)
  10547. void setPwmFrequency(uint8_t pin, int val) {
  10548. val &= 0x07;
  10549. switch (digitalPinToTimer(pin)) {
  10550. #ifdef TCCR0A
  10551. #if !AVR_AT90USB1286_FAMILY
  10552. case TIMER0A:
  10553. #endif
  10554. case TIMER0B:
  10555. //_SET_CS(0, val);
  10556. break;
  10557. #endif
  10558. #ifdef TCCR1A
  10559. case TIMER1A:
  10560. case TIMER1B:
  10561. //_SET_CS(1, val);
  10562. break;
  10563. #endif
  10564. #ifdef TCCR2
  10565. case TIMER2:
  10566. case TIMER2:
  10567. _SET_CS(2, val);
  10568. break;
  10569. #endif
  10570. #ifdef TCCR2A
  10571. case TIMER2A:
  10572. case TIMER2B:
  10573. _SET_CS(2, val);
  10574. break;
  10575. #endif
  10576. #ifdef TCCR3A
  10577. case TIMER3A:
  10578. case TIMER3B:
  10579. case TIMER3C:
  10580. _SET_CS(3, val);
  10581. break;
  10582. #endif
  10583. #ifdef TCCR4A
  10584. case TIMER4A:
  10585. case TIMER4B:
  10586. case TIMER4C:
  10587. _SET_CS(4, val);
  10588. break;
  10589. #endif
  10590. #ifdef TCCR5A
  10591. case TIMER5A:
  10592. case TIMER5B:
  10593. case TIMER5C:
  10594. _SET_CS(5, val);
  10595. break;
  10596. #endif
  10597. }
  10598. }
  10599. #endif // FAST_PWM_FAN
  10600. float calculate_volumetric_multiplier(const float diameter) {
  10601. if (!volumetric_enabled || diameter == 0) return 1.0;
  10602. return 1.0 / (M_PI * sq(diameter * 0.5));
  10603. }
  10604. void calculate_volumetric_multipliers() {
  10605. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  10606. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  10607. }
  10608. void enable_all_steppers() {
  10609. enable_X();
  10610. enable_Y();
  10611. enable_Z();
  10612. enable_E0();
  10613. enable_E1();
  10614. enable_E2();
  10615. enable_E3();
  10616. enable_E4();
  10617. }
  10618. void disable_e_steppers() {
  10619. disable_E0();
  10620. disable_E1();
  10621. disable_E2();
  10622. disable_E3();
  10623. disable_E4();
  10624. }
  10625. void disable_all_steppers() {
  10626. disable_X();
  10627. disable_Y();
  10628. disable_Z();
  10629. disable_e_steppers();
  10630. }
  10631. #if ENABLED(HAVE_TMC2130)
  10632. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  10633. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  10634. const bool is_otpw = st.checkOT();
  10635. // Report if a warning was triggered
  10636. static bool previous_otpw = false;
  10637. if (is_otpw && !previous_otpw) {
  10638. char timestamp[10];
  10639. duration_t elapsed = print_job_timer.duration();
  10640. const bool has_days = (elapsed.value > 60*60*24L);
  10641. (void)elapsed.toDigital(timestamp, has_days);
  10642. SERIAL_ECHO(timestamp);
  10643. SERIAL_ECHOPGM(": ");
  10644. SERIAL_ECHO(axisID);
  10645. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  10646. }
  10647. previous_otpw = is_otpw;
  10648. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  10649. // Return if user has not enabled current control start with M906 S1.
  10650. if (!auto_current_control) return;
  10651. /**
  10652. * Decrease current if is_otpw is true.
  10653. * Bail out if driver is disabled.
  10654. * Increase current if OTPW has not been triggered yet.
  10655. */
  10656. uint16_t current = st.getCurrent();
  10657. if (is_otpw) {
  10658. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  10659. #if ENABLED(REPORT_CURRENT_CHANGE)
  10660. SERIAL_ECHO(axisID);
  10661. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  10662. #endif
  10663. }
  10664. else if (!st.isEnabled())
  10665. return;
  10666. else if (!is_otpw && !st.getOTPW()) {
  10667. current += CURRENT_STEP;
  10668. if (current <= AUTO_ADJUST_MAX) {
  10669. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  10670. #if ENABLED(REPORT_CURRENT_CHANGE)
  10671. SERIAL_ECHO(axisID);
  10672. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  10673. #endif
  10674. }
  10675. }
  10676. SERIAL_EOL();
  10677. #endif
  10678. }
  10679. void checkOverTemp() {
  10680. static millis_t next_cOT = 0;
  10681. if (ELAPSED(millis(), next_cOT)) {
  10682. next_cOT = millis() + 5000;
  10683. #if ENABLED(X_IS_TMC2130)
  10684. automatic_current_control(stepperX, "X");
  10685. #endif
  10686. #if ENABLED(Y_IS_TMC2130)
  10687. automatic_current_control(stepperY, "Y");
  10688. #endif
  10689. #if ENABLED(Z_IS_TMC2130)
  10690. automatic_current_control(stepperZ, "Z");
  10691. #endif
  10692. #if ENABLED(X2_IS_TMC2130)
  10693. automatic_current_control(stepperX2, "X2");
  10694. #endif
  10695. #if ENABLED(Y2_IS_TMC2130)
  10696. automatic_current_control(stepperY2, "Y2");
  10697. #endif
  10698. #if ENABLED(Z2_IS_TMC2130)
  10699. automatic_current_control(stepperZ2, "Z2");
  10700. #endif
  10701. #if ENABLED(E0_IS_TMC2130)
  10702. automatic_current_control(stepperE0, "E0");
  10703. #endif
  10704. #if ENABLED(E1_IS_TMC2130)
  10705. automatic_current_control(stepperE1, "E1");
  10706. #endif
  10707. #if ENABLED(E2_IS_TMC2130)
  10708. automatic_current_control(stepperE2, "E2");
  10709. #endif
  10710. #if ENABLED(E3_IS_TMC2130)
  10711. automatic_current_control(stepperE3, "E3");
  10712. #endif
  10713. #if ENABLED(E4_IS_TMC2130)
  10714. automatic_current_control(stepperE4, "E4");
  10715. #endif
  10716. #if ENABLED(E4_IS_TMC2130)
  10717. automatic_current_control(stepperE4);
  10718. #endif
  10719. }
  10720. }
  10721. #endif // HAVE_TMC2130
  10722. /**
  10723. * Manage several activities:
  10724. * - Check for Filament Runout
  10725. * - Keep the command buffer full
  10726. * - Check for maximum inactive time between commands
  10727. * - Check for maximum inactive time between stepper commands
  10728. * - Check if pin CHDK needs to go LOW
  10729. * - Check for KILL button held down
  10730. * - Check for HOME button held down
  10731. * - Check if cooling fan needs to be switched on
  10732. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  10733. */
  10734. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  10735. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10736. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  10737. handle_filament_runout();
  10738. #endif
  10739. if (commands_in_queue < BUFSIZE) get_available_commands();
  10740. const millis_t ms = millis();
  10741. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  10742. SERIAL_ERROR_START();
  10743. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  10744. kill(PSTR(MSG_KILLED));
  10745. }
  10746. // Prevent steppers timing-out in the middle of M600
  10747. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  10748. #define MOVE_AWAY_TEST !move_away_flag
  10749. #else
  10750. #define MOVE_AWAY_TEST true
  10751. #endif
  10752. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  10753. && !ignore_stepper_queue && !planner.blocks_queued()) {
  10754. #if ENABLED(DISABLE_INACTIVE_X)
  10755. disable_X();
  10756. #endif
  10757. #if ENABLED(DISABLE_INACTIVE_Y)
  10758. disable_Y();
  10759. #endif
  10760. #if ENABLED(DISABLE_INACTIVE_Z)
  10761. disable_Z();
  10762. #endif
  10763. #if ENABLED(DISABLE_INACTIVE_E)
  10764. disable_e_steppers();
  10765. #endif
  10766. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  10767. ubl_lcd_map_control = defer_return_to_status = false;
  10768. #endif
  10769. }
  10770. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10771. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10772. chdkActive = false;
  10773. WRITE(CHDK, LOW);
  10774. }
  10775. #endif
  10776. #if HAS_KILL
  10777. // Check if the kill button was pressed and wait just in case it was an accidental
  10778. // key kill key press
  10779. // -------------------------------------------------------------------------------
  10780. static int killCount = 0; // make the inactivity button a bit less responsive
  10781. const int KILL_DELAY = 750;
  10782. if (!READ(KILL_PIN))
  10783. killCount++;
  10784. else if (killCount > 0)
  10785. killCount--;
  10786. // Exceeded threshold and we can confirm that it was not accidental
  10787. // KILL the machine
  10788. // ----------------------------------------------------------------
  10789. if (killCount >= KILL_DELAY) {
  10790. SERIAL_ERROR_START();
  10791. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10792. kill(PSTR(MSG_KILLED));
  10793. }
  10794. #endif
  10795. #if HAS_HOME
  10796. // Check to see if we have to home, use poor man's debouncer
  10797. // ---------------------------------------------------------
  10798. static int homeDebounceCount = 0; // poor man's debouncing count
  10799. const int HOME_DEBOUNCE_DELAY = 2500;
  10800. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10801. if (!homeDebounceCount) {
  10802. enqueue_and_echo_commands_P(PSTR("G28"));
  10803. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10804. }
  10805. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10806. homeDebounceCount++;
  10807. else
  10808. homeDebounceCount = 0;
  10809. }
  10810. #endif
  10811. #if ENABLED(USE_CONTROLLER_FAN)
  10812. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10813. #endif
  10814. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10815. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10816. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10817. #if ENABLED(SWITCHING_EXTRUDER)
  10818. const bool oldstatus = E0_ENABLE_READ;
  10819. enable_E0();
  10820. #else // !SWITCHING_EXTRUDER
  10821. bool oldstatus;
  10822. switch (active_extruder) {
  10823. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10824. #if E_STEPPERS > 1
  10825. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10826. #if E_STEPPERS > 2
  10827. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10828. #if E_STEPPERS > 3
  10829. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10830. #if E_STEPPERS > 4
  10831. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10832. #endif // E_STEPPERS > 4
  10833. #endif // E_STEPPERS > 3
  10834. #endif // E_STEPPERS > 2
  10835. #endif // E_STEPPERS > 1
  10836. }
  10837. #endif // !SWITCHING_EXTRUDER
  10838. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10839. const float olde = current_position[E_AXIS];
  10840. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10841. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10842. current_position[E_AXIS] = olde;
  10843. planner.set_e_position_mm(olde);
  10844. stepper.synchronize();
  10845. #if ENABLED(SWITCHING_EXTRUDER)
  10846. E0_ENABLE_WRITE(oldstatus);
  10847. #else
  10848. switch (active_extruder) {
  10849. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10850. #if E_STEPPERS > 1
  10851. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10852. #if E_STEPPERS > 2
  10853. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10854. #if E_STEPPERS > 3
  10855. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10856. #if E_STEPPERS > 4
  10857. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10858. #endif // E_STEPPERS > 4
  10859. #endif // E_STEPPERS > 3
  10860. #endif // E_STEPPERS > 2
  10861. #endif // E_STEPPERS > 1
  10862. }
  10863. #endif // !SWITCHING_EXTRUDER
  10864. }
  10865. #endif // EXTRUDER_RUNOUT_PREVENT
  10866. #if ENABLED(DUAL_X_CARRIAGE)
  10867. // handle delayed move timeout
  10868. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10869. // travel moves have been received so enact them
  10870. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10871. set_destination_to_current();
  10872. prepare_move_to_destination();
  10873. }
  10874. #endif
  10875. #if ENABLED(TEMP_STAT_LEDS)
  10876. handle_status_leds();
  10877. #endif
  10878. #if ENABLED(HAVE_TMC2130)
  10879. checkOverTemp();
  10880. #endif
  10881. planner.check_axes_activity();
  10882. }
  10883. /**
  10884. * Standard idle routine keeps the machine alive
  10885. */
  10886. void idle(
  10887. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10888. bool no_stepper_sleep/*=false*/
  10889. #endif
  10890. ) {
  10891. lcd_update();
  10892. host_keepalive();
  10893. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10894. auto_report_temperatures();
  10895. #endif
  10896. manage_inactivity(
  10897. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10898. no_stepper_sleep
  10899. #endif
  10900. );
  10901. thermalManager.manage_heater();
  10902. #if ENABLED(PRINTCOUNTER)
  10903. print_job_timer.tick();
  10904. #endif
  10905. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10906. buzzer.tick();
  10907. #endif
  10908. #if ENABLED(I2C_POSITION_ENCODERS)
  10909. if (planner.blocks_queued() &&
  10910. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  10911. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  10912. blockBufferIndexRef = planner.block_buffer_head;
  10913. I2CPEM.update();
  10914. lastUpdateMillis = millis();
  10915. }
  10916. #endif
  10917. }
  10918. /**
  10919. * Kill all activity and lock the machine.
  10920. * After this the machine will need to be reset.
  10921. */
  10922. void kill(const char* lcd_msg) {
  10923. SERIAL_ERROR_START();
  10924. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10925. thermalManager.disable_all_heaters();
  10926. disable_all_steppers();
  10927. #if ENABLED(ULTRA_LCD)
  10928. kill_screen(lcd_msg);
  10929. #else
  10930. UNUSED(lcd_msg);
  10931. #endif
  10932. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10933. cli(); // Stop interrupts
  10934. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10935. thermalManager.disable_all_heaters(); //turn off heaters again
  10936. #ifdef ACTION_ON_KILL
  10937. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  10938. #endif
  10939. #if HAS_POWER_SWITCH
  10940. SET_INPUT(PS_ON_PIN);
  10941. #endif
  10942. suicide();
  10943. while (1) {
  10944. #if ENABLED(USE_WATCHDOG)
  10945. watchdog_reset();
  10946. #endif
  10947. } // Wait for reset
  10948. }
  10949. /**
  10950. * Turn off heaters and stop the print in progress
  10951. * After a stop the machine may be resumed with M999
  10952. */
  10953. void stop() {
  10954. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  10955. #if ENABLED(PROBING_FANS_OFF)
  10956. if (fans_paused) fans_pause(false); // put things back the way they were
  10957. #endif
  10958. if (IsRunning()) {
  10959. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10960. SERIAL_ERROR_START();
  10961. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10962. LCD_MESSAGEPGM(MSG_STOPPED);
  10963. safe_delay(350); // allow enough time for messages to get out before stopping
  10964. Running = false;
  10965. }
  10966. }
  10967. /**
  10968. * Marlin entry-point: Set up before the program loop
  10969. * - Set up the kill pin, filament runout, power hold
  10970. * - Start the serial port
  10971. * - Print startup messages and diagnostics
  10972. * - Get EEPROM or default settings
  10973. * - Initialize managers for:
  10974. * • temperature
  10975. * • planner
  10976. * • watchdog
  10977. * • stepper
  10978. * • photo pin
  10979. * • servos
  10980. * • LCD controller
  10981. * • Digipot I2C
  10982. * • Z probe sled
  10983. * • status LEDs
  10984. */
  10985. void setup() {
  10986. #ifdef DISABLE_JTAG
  10987. // Disable JTAG on AT90USB chips to free up pins for IO
  10988. MCUCR = 0x80;
  10989. MCUCR = 0x80;
  10990. #endif
  10991. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10992. setup_filrunoutpin();
  10993. #endif
  10994. setup_killpin();
  10995. setup_powerhold();
  10996. #if HAS_STEPPER_RESET
  10997. disableStepperDrivers();
  10998. #endif
  10999. MYSERIAL.begin(BAUDRATE);
  11000. SERIAL_PROTOCOLLNPGM("start");
  11001. SERIAL_ECHO_START();
  11002. // Check startup - does nothing if bootloader sets MCUSR to 0
  11003. byte mcu = MCUSR;
  11004. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11005. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11006. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11007. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11008. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11009. MCUSR = 0;
  11010. SERIAL_ECHOPGM(MSG_MARLIN);
  11011. SERIAL_CHAR(' ');
  11012. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11013. SERIAL_EOL();
  11014. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11015. SERIAL_ECHO_START();
  11016. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11017. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11018. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11019. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11020. #endif
  11021. SERIAL_ECHO_START();
  11022. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11023. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11024. // Send "ok" after commands by default
  11025. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11026. // Load data from EEPROM if available (or use defaults)
  11027. // This also updates variables in the planner, elsewhere
  11028. (void)settings.load();
  11029. #if HAS_M206_COMMAND
  11030. // Initialize current position based on home_offset
  11031. COPY(current_position, home_offset);
  11032. #else
  11033. ZERO(current_position);
  11034. #endif
  11035. // Vital to init stepper/planner equivalent for current_position
  11036. SYNC_PLAN_POSITION_KINEMATIC();
  11037. thermalManager.init(); // Initialize temperature loop
  11038. #if ENABLED(USE_WATCHDOG)
  11039. watchdog_init();
  11040. #endif
  11041. stepper.init(); // Initialize stepper, this enables interrupts!
  11042. servo_init();
  11043. #if HAS_PHOTOGRAPH
  11044. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11045. #endif
  11046. #if HAS_CASE_LIGHT
  11047. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11048. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11049. update_case_light();
  11050. #endif
  11051. #if ENABLED(SPINDLE_LASER_ENABLE)
  11052. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11053. #if SPINDLE_DIR_CHANGE
  11054. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11055. #endif
  11056. #if ENABLED(SPINDLE_LASER_PWM)
  11057. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11058. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11059. #endif
  11060. #endif
  11061. #if HAS_BED_PROBE
  11062. endstops.enable_z_probe(false);
  11063. #endif
  11064. #if ENABLED(USE_CONTROLLER_FAN)
  11065. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11066. #endif
  11067. #if HAS_STEPPER_RESET
  11068. enableStepperDrivers();
  11069. #endif
  11070. #if ENABLED(DIGIPOT_I2C)
  11071. digipot_i2c_init();
  11072. #endif
  11073. #if ENABLED(DAC_STEPPER_CURRENT)
  11074. dac_init();
  11075. #endif
  11076. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11077. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11078. #endif
  11079. #if HAS_HOME
  11080. SET_INPUT_PULLUP(HOME_PIN);
  11081. #endif
  11082. #if PIN_EXISTS(STAT_LED_RED)
  11083. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11084. #endif
  11085. #if PIN_EXISTS(STAT_LED_BLUE)
  11086. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11087. #endif
  11088. #if ENABLED(NEOPIXEL_RGBW_LED)
  11089. SET_OUTPUT(NEOPIXEL_PIN);
  11090. setup_neopixel();
  11091. #endif
  11092. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11093. SET_OUTPUT(RGB_LED_R_PIN);
  11094. SET_OUTPUT(RGB_LED_G_PIN);
  11095. SET_OUTPUT(RGB_LED_B_PIN);
  11096. #if ENABLED(RGBW_LED)
  11097. SET_OUTPUT(RGB_LED_W_PIN);
  11098. #endif
  11099. #endif
  11100. #if ENABLED(MK2_MULTIPLEXER)
  11101. SET_OUTPUT(E_MUX0_PIN);
  11102. SET_OUTPUT(E_MUX1_PIN);
  11103. SET_OUTPUT(E_MUX2_PIN);
  11104. #endif
  11105. lcd_init();
  11106. #ifndef CUSTOM_BOOTSCREEN_TIMEOUT
  11107. #define CUSTOM_BOOTSCREEN_TIMEOUT 2500
  11108. #endif
  11109. #if ENABLED(SHOW_BOOTSCREEN)
  11110. #if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
  11111. #if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
  11112. safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
  11113. lcd_bootscreen(); // Show Marlin boot screen
  11114. #endif
  11115. safe_delay(BOOTSCREEN_TIMEOUT); // Pause
  11116. #elif ENABLED(ULTRA_LCD)
  11117. lcd_bootscreen();
  11118. #if DISABLED(SDSUPPORT)
  11119. lcd_init();
  11120. #endif
  11121. #endif
  11122. #endif
  11123. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11124. // Initialize mixing to 100% color 1
  11125. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11126. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11127. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11128. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11129. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11130. #endif
  11131. #if ENABLED(BLTOUCH)
  11132. // Make sure any BLTouch error condition is cleared
  11133. bltouch_command(BLTOUCH_RESET);
  11134. set_bltouch_deployed(true);
  11135. set_bltouch_deployed(false);
  11136. #endif
  11137. #if ENABLED(I2C_POSITION_ENCODERS)
  11138. I2CPEM.init();
  11139. #endif
  11140. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11141. i2c.onReceive(i2c_on_receive);
  11142. i2c.onRequest(i2c_on_request);
  11143. #endif
  11144. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11145. setup_endstop_interrupts();
  11146. #endif
  11147. #if ENABLED(SWITCHING_EXTRUDER)
  11148. move_extruder_servo(0); // Initialize extruder servo
  11149. #endif
  11150. #if ENABLED(SWITCHING_NOZZLE)
  11151. move_nozzle_servo(0); // Initialize nozzle servo
  11152. #endif
  11153. }
  11154. /**
  11155. * The main Marlin program loop
  11156. *
  11157. * - Save or log commands to SD
  11158. * - Process available commands (if not saving)
  11159. * - Call heater manager
  11160. * - Call inactivity manager
  11161. * - Call endstop manager
  11162. * - Call LCD update
  11163. */
  11164. void loop() {
  11165. if (commands_in_queue < BUFSIZE) get_available_commands();
  11166. #if ENABLED(SDSUPPORT)
  11167. card.checkautostart(false);
  11168. #endif
  11169. if (commands_in_queue) {
  11170. #if ENABLED(SDSUPPORT)
  11171. if (card.saving) {
  11172. char* command = command_queue[cmd_queue_index_r];
  11173. if (strstr_P(command, PSTR("M29"))) {
  11174. // M29 closes the file
  11175. card.closefile();
  11176. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11177. ok_to_send();
  11178. }
  11179. else {
  11180. // Write the string from the read buffer to SD
  11181. card.write_command(command);
  11182. if (card.logging)
  11183. process_next_command(); // The card is saving because it's logging
  11184. else
  11185. ok_to_send();
  11186. }
  11187. }
  11188. else
  11189. process_next_command();
  11190. #else
  11191. process_next_command();
  11192. #endif // SDSUPPORT
  11193. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11194. if (commands_in_queue) {
  11195. --commands_in_queue;
  11196. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11197. }
  11198. }
  11199. endstops.report_state();
  11200. idle();
  11201. }