My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 189KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "configuration_store.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "blinkm.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. /**
  56. * Look here for descriptions of G-codes:
  57. * - http://linuxcnc.org/handbook/gcode/g-code.html
  58. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. *
  60. * Help us document these G-codes online:
  61. * - http://reprap.org/wiki/G-code
  62. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  63. */
  64. /**
  65. * Implemented Codes
  66. * -------------------
  67. *
  68. * "G" Codes
  69. *
  70. * G0 -> G1
  71. * G1 - Coordinated Movement X Y Z E
  72. * G2 - CW ARC
  73. * G3 - CCW ARC
  74. * G4 - Dwell S<seconds> or P<milliseconds>
  75. * G10 - retract filament according to settings of M207
  76. * G11 - retract recover filament according to settings of M208
  77. * G28 - Home one or more axes
  78. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  79. * G30 - Single Z Probe, probes bed at current XY location.
  80. * G31 - Dock sled (Z_PROBE_SLED only)
  81. * G32 - Undock sled (Z_PROBE_SLED only)
  82. * G90 - Use Absolute Coordinates
  83. * G91 - Use Relative Coordinates
  84. * G92 - Set current position to coordinates given
  85. *
  86. * "M" Codes
  87. *
  88. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  89. * M1 - Same as M0
  90. * M17 - Enable/Power all stepper motors
  91. * M18 - Disable all stepper motors; same as M84
  92. * M20 - List SD card
  93. * M21 - Init SD card
  94. * M22 - Release SD card
  95. * M23 - Select SD file (M23 filename.g)
  96. * M24 - Start/resume SD print
  97. * M25 - Pause SD print
  98. * M26 - Set SD position in bytes (M26 S12345)
  99. * M27 - Report SD print status
  100. * M28 - Start SD write (M28 filename.g)
  101. * M29 - Stop SD write
  102. * M30 - Delete file from SD (M30 filename.g)
  103. * M31 - Output time since last M109 or SD card start to serial
  104. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  105. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  106. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  107. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  108. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  109. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  110. * M80 - Turn on Power Supply
  111. * M81 - Turn off Power Supply
  112. * M82 - Set E codes absolute (default)
  113. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. * M84 - Disable steppers until next move,
  115. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. * M92 - Set axis_steps_per_unit - same syntax as G92
  118. * M104 - Set extruder target temp
  119. * M105 - Read current temp
  120. * M106 - Fan on
  121. * M107 - Fan off
  122. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  126. * M112 - Emergency stop
  127. * M114 - Output current position to serial port
  128. * M115 - Capabilities string
  129. * M117 - display message
  130. * M119 - Output Endstop status to serial port
  131. * M120 - Enable endstop detection
  132. * M121 - Disable endstop detection
  133. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M140 - Set bed target temp
  138. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  142. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  146. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. * M206 - Set additional homing offset
  148. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. * M220 - Set speed factor override percentage: S<factor in percent>
  153. * M221 - Set extrude factor override percentage: S<factor in percent>
  154. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  155. * M240 - Trigger a camera to take a photograph
  156. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  158. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. * M301 - Set PID parameters P I and D
  160. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. * M304 - Set bed PID parameters P I and D
  163. * M380 - Activate solenoid on active extruder
  164. * M381 - Disable all solenoids
  165. * M400 - Finish all moves
  166. * M401 - Lower z-probe if present
  167. * M402 - Raise z-probe if present
  168. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  169. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  170. * M406 - Turn off Filament Sensor extrusion control
  171. * M407 - Display measured filament diameter
  172. * M410 - Quickstop. Abort all the planned moves
  173. * M500 - Store parameters in EEPROM
  174. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  175. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  176. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  177. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  178. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  179. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  180. * M666 - Set delta endstop adjustment
  181. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  182. * M907 - Set digital trimpot motor current using axis codes.
  183. * M908 - Control digital trimpot directly.
  184. * M350 - Set microstepping mode.
  185. * M351 - Toggle MS1 MS2 pins directly.
  186. *
  187. * ************ SCARA Specific - This can change to suit future G-code regulations
  188. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  189. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  190. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  191. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  192. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  193. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  194. * ************* SCARA End ***************
  195. *
  196. * M928 - Start SD logging (M928 filename.g) - ended by M29
  197. * M999 - Restart after being stopped by error
  198. */
  199. #ifdef SDSUPPORT
  200. CardReader card;
  201. #endif
  202. bool Running = true;
  203. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  204. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  205. float current_position[NUM_AXIS] = { 0.0 };
  206. static float destination[NUM_AXIS] = { 0.0 };
  207. bool axis_known_position[3] = { false };
  208. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  209. static int cmd_queue_index_r = 0;
  210. static int cmd_queue_index_w = 0;
  211. static int commands_in_queue = 0;
  212. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  213. float homing_feedrate[] = HOMING_FEEDRATE;
  214. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  215. int feedrate_multiplier = 100; //100->1 200->2
  216. int saved_feedrate_multiplier;
  217. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  218. bool volumetric_enabled = false;
  219. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  220. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  221. float home_offset[3] = { 0 };
  222. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  223. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  224. uint8_t active_extruder = 0;
  225. int fanSpeed = 0;
  226. bool cancel_heatup = false;
  227. const char errormagic[] PROGMEM = "Error:";
  228. const char echomagic[] PROGMEM = "echo:";
  229. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  230. static float offset[3] = { 0 };
  231. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  232. static char serial_char;
  233. static int serial_count = 0;
  234. static boolean comment_mode = false;
  235. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  236. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  237. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  238. // Inactivity shutdown
  239. millis_t previous_cmd_ms = 0;
  240. static millis_t max_inactive_time = 0;
  241. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  242. millis_t print_job_start_ms = 0; ///< Print job start time
  243. millis_t print_job_stop_ms = 0; ///< Print job stop time
  244. static uint8_t target_extruder;
  245. bool no_wait_for_cooling = true;
  246. bool target_direction;
  247. #ifdef ENABLE_AUTO_BED_LEVELING
  248. int xy_travel_speed = XY_TRAVEL_SPEED;
  249. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  250. #endif
  251. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  252. float z_endstop_adj = 0;
  253. #endif
  254. // Extruder offsets
  255. #if EXTRUDERS > 1
  256. #ifndef EXTRUDER_OFFSET_X
  257. #define EXTRUDER_OFFSET_X { 0 }
  258. #endif
  259. #ifndef EXTRUDER_OFFSET_Y
  260. #define EXTRUDER_OFFSET_Y { 0 }
  261. #endif
  262. float extruder_offset[][EXTRUDERS] = {
  263. EXTRUDER_OFFSET_X,
  264. EXTRUDER_OFFSET_Y
  265. #ifdef DUAL_X_CARRIAGE
  266. , { 0 } // supports offsets in XYZ plane
  267. #endif
  268. };
  269. #endif
  270. #ifdef SERVO_ENDSTOPS
  271. int servo_endstops[] = SERVO_ENDSTOPS;
  272. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  273. #endif
  274. #ifdef BARICUDA
  275. int ValvePressure = 0;
  276. int EtoPPressure = 0;
  277. #endif
  278. #ifdef FWRETRACT
  279. bool autoretract_enabled = false;
  280. bool retracted[EXTRUDERS] = { false };
  281. bool retracted_swap[EXTRUDERS] = { false };
  282. float retract_length = RETRACT_LENGTH;
  283. float retract_length_swap = RETRACT_LENGTH_SWAP;
  284. float retract_feedrate = RETRACT_FEEDRATE;
  285. float retract_zlift = RETRACT_ZLIFT;
  286. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  287. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  288. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  289. #endif // FWRETRACT
  290. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  291. bool powersupply =
  292. #ifdef PS_DEFAULT_OFF
  293. false
  294. #else
  295. true
  296. #endif
  297. ;
  298. #endif
  299. #ifdef DELTA
  300. float delta[3] = { 0 };
  301. #define SIN_60 0.8660254037844386
  302. #define COS_60 0.5
  303. float endstop_adj[3] = { 0 };
  304. // these are the default values, can be overriden with M665
  305. float delta_radius = DELTA_RADIUS;
  306. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  307. float delta_tower1_y = -COS_60 * delta_radius;
  308. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  309. float delta_tower2_y = -COS_60 * delta_radius;
  310. float delta_tower3_x = 0; // back middle tower
  311. float delta_tower3_y = delta_radius;
  312. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  313. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  314. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  315. #ifdef ENABLE_AUTO_BED_LEVELING
  316. int delta_grid_spacing[2] = { 0, 0 };
  317. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  318. #endif
  319. #else
  320. static bool home_all_axis = true;
  321. #endif
  322. #ifdef SCARA
  323. static float delta[3] = { 0 };
  324. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  325. #endif
  326. #ifdef FILAMENT_SENSOR
  327. //Variables for Filament Sensor input
  328. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  329. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  330. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  331. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  332. int delay_index1 = 0; //index into ring buffer
  333. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  334. float delay_dist = 0; //delay distance counter
  335. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  336. #endif
  337. #ifdef FILAMENT_RUNOUT_SENSOR
  338. static bool filrunoutEnqueued = false;
  339. #endif
  340. #ifdef SDSUPPORT
  341. static bool fromsd[BUFSIZE];
  342. #endif
  343. #if NUM_SERVOS > 0
  344. Servo servo[NUM_SERVOS];
  345. #endif
  346. #ifdef CHDK
  347. unsigned long chdkHigh = 0;
  348. boolean chdkActive = false;
  349. #endif
  350. //===========================================================================
  351. //================================ Functions ================================
  352. //===========================================================================
  353. void get_arc_coordinates();
  354. bool setTargetedHotend(int code);
  355. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  356. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  357. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  358. #ifdef PREVENT_DANGEROUS_EXTRUDE
  359. float extrude_min_temp = EXTRUDE_MINTEMP;
  360. #endif
  361. #ifdef SDSUPPORT
  362. #include "SdFatUtil.h"
  363. int freeMemory() { return SdFatUtil::FreeRam(); }
  364. #else
  365. extern "C" {
  366. extern unsigned int __bss_end;
  367. extern unsigned int __heap_start;
  368. extern void *__brkval;
  369. int freeMemory() {
  370. int free_memory;
  371. if ((int)__brkval == 0)
  372. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  373. else
  374. free_memory = ((int)&free_memory) - ((int)__brkval);
  375. return free_memory;
  376. }
  377. }
  378. #endif //!SDSUPPORT
  379. /**
  380. * Inject the next command from the command queue, when possible
  381. * Return false only if no command was pending
  382. */
  383. static bool drain_queued_commands_P() {
  384. if (!queued_commands_P) return false;
  385. // Get the next 30 chars from the sequence of gcodes to run
  386. char cmd[30];
  387. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  388. cmd[sizeof(cmd) - 1] = '\0';
  389. // Look for the end of line, or the end of sequence
  390. size_t i = 0;
  391. char c;
  392. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  393. cmd[i] = '\0';
  394. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  395. if (c)
  396. queued_commands_P += i + 1; // move to next command
  397. else
  398. queued_commands_P = NULL; // will have no more commands in the sequence
  399. }
  400. return true;
  401. }
  402. /**
  403. * Record one or many commands to run from program memory.
  404. * Aborts the current queue, if any.
  405. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  406. */
  407. void enqueuecommands_P(const char* pgcode) {
  408. queued_commands_P = pgcode;
  409. drain_queued_commands_P(); // first command executed asap (when possible)
  410. }
  411. /**
  412. * Copy a command directly into the main command buffer, from RAM.
  413. *
  414. * This is done in a non-safe way and needs a rework someday.
  415. * Returns false if it doesn't add any command
  416. */
  417. bool enqueuecommand(const char *cmd) {
  418. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  419. // This is dangerous if a mixing of serial and this happens
  420. char *command = command_queue[cmd_queue_index_w];
  421. strcpy(command, cmd);
  422. SERIAL_ECHO_START;
  423. SERIAL_ECHOPGM(MSG_Enqueueing);
  424. SERIAL_ECHO(command);
  425. SERIAL_ECHOLNPGM("\"");
  426. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  427. commands_in_queue++;
  428. return true;
  429. }
  430. void setup_killpin() {
  431. #if HAS_KILL
  432. SET_INPUT(KILL_PIN);
  433. WRITE(KILL_PIN, HIGH);
  434. #endif
  435. }
  436. void setup_filrunoutpin() {
  437. #if HAS_FILRUNOUT
  438. pinMode(FILRUNOUT_PIN, INPUT);
  439. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  440. WRITE(FILLRUNOUT_PIN, HIGH);
  441. #endif
  442. #endif
  443. }
  444. // Set home pin
  445. void setup_homepin(void) {
  446. #if HAS_HOME
  447. SET_INPUT(HOME_PIN);
  448. WRITE(HOME_PIN, HIGH);
  449. #endif
  450. }
  451. void setup_photpin() {
  452. #if HAS_PHOTOGRAPH
  453. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  454. #endif
  455. }
  456. void setup_powerhold() {
  457. #if HAS_SUICIDE
  458. OUT_WRITE(SUICIDE_PIN, HIGH);
  459. #endif
  460. #if HAS_POWER_SWITCH
  461. #ifdef PS_DEFAULT_OFF
  462. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  463. #else
  464. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  465. #endif
  466. #endif
  467. }
  468. void suicide() {
  469. #if HAS_SUICIDE
  470. OUT_WRITE(SUICIDE_PIN, LOW);
  471. #endif
  472. }
  473. void servo_init() {
  474. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  475. servo[0].attach(SERVO0_PIN);
  476. #endif
  477. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  478. servo[1].attach(SERVO1_PIN);
  479. #endif
  480. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  481. servo[2].attach(SERVO2_PIN);
  482. #endif
  483. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  484. servo[3].attach(SERVO3_PIN);
  485. #endif
  486. // Set position of Servo Endstops that are defined
  487. #ifdef SERVO_ENDSTOPS
  488. for (int i = 0; i < 3; i++)
  489. if (servo_endstops[i] >= 0)
  490. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  491. #endif
  492. #if SERVO_LEVELING
  493. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  494. servo[servo_endstops[Z_AXIS]].detach();
  495. #endif
  496. }
  497. /**
  498. * Marlin entry-point: Set up before the program loop
  499. * - Set up the kill pin, filament runout, power hold
  500. * - Start the serial port
  501. * - Print startup messages and diagnostics
  502. * - Get EEPROM or default settings
  503. * - Initialize managers for:
  504. * • temperature
  505. * • planner
  506. * • watchdog
  507. * • stepper
  508. * • photo pin
  509. * • servos
  510. * • LCD controller
  511. * • Digipot I2C
  512. * • Z probe sled
  513. * • status LEDs
  514. */
  515. void setup() {
  516. setup_killpin();
  517. setup_filrunoutpin();
  518. setup_powerhold();
  519. MYSERIAL.begin(BAUDRATE);
  520. SERIAL_PROTOCOLLNPGM("start");
  521. SERIAL_ECHO_START;
  522. // Check startup - does nothing if bootloader sets MCUSR to 0
  523. byte mcu = MCUSR;
  524. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  525. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  526. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  527. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  528. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  529. MCUSR = 0;
  530. SERIAL_ECHOPGM(MSG_MARLIN);
  531. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  532. #ifdef STRING_VERSION_CONFIG_H
  533. #ifdef STRING_CONFIG_H_AUTHOR
  534. SERIAL_ECHO_START;
  535. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  536. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  537. SERIAL_ECHOPGM(MSG_AUTHOR);
  538. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  539. SERIAL_ECHOPGM("Compiled: ");
  540. SERIAL_ECHOLNPGM(__DATE__);
  541. #endif // STRING_CONFIG_H_AUTHOR
  542. #endif // STRING_VERSION_CONFIG_H
  543. SERIAL_ECHO_START;
  544. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  545. SERIAL_ECHO(freeMemory());
  546. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  547. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  548. #ifdef SDSUPPORT
  549. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  550. #endif
  551. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  552. Config_RetrieveSettings();
  553. tp_init(); // Initialize temperature loop
  554. plan_init(); // Initialize planner;
  555. watchdog_init();
  556. st_init(); // Initialize stepper, this enables interrupts!
  557. setup_photpin();
  558. servo_init();
  559. lcd_init();
  560. _delay_ms(1000); // wait 1sec to display the splash screen
  561. #if HAS_CONTROLLERFAN
  562. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  563. #endif
  564. #ifdef DIGIPOT_I2C
  565. digipot_i2c_init();
  566. #endif
  567. #ifdef Z_PROBE_SLED
  568. pinMode(SERVO0_PIN, OUTPUT);
  569. digitalWrite(SERVO0_PIN, LOW); // turn it off
  570. #endif // Z_PROBE_SLED
  571. setup_homepin();
  572. #ifdef STAT_LED_RED
  573. pinMode(STAT_LED_RED, OUTPUT);
  574. digitalWrite(STAT_LED_RED, LOW); // turn it off
  575. #endif
  576. #ifdef STAT_LED_BLUE
  577. pinMode(STAT_LED_BLUE, OUTPUT);
  578. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  579. #endif
  580. }
  581. /**
  582. * The main Marlin program loop
  583. *
  584. * - Save or log commands to SD
  585. * - Process available commands (if not saving)
  586. * - Call heater manager
  587. * - Call inactivity manager
  588. * - Call endstop manager
  589. * - Call LCD update
  590. */
  591. void loop() {
  592. if (commands_in_queue < BUFSIZE - 1) get_command();
  593. #ifdef SDSUPPORT
  594. card.checkautostart(false);
  595. #endif
  596. if (commands_in_queue) {
  597. #ifdef SDSUPPORT
  598. if (card.saving) {
  599. char *command = command_queue[cmd_queue_index_r];
  600. if (strstr_P(command, PSTR("M29"))) {
  601. // M29 closes the file
  602. card.closefile();
  603. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  604. }
  605. else {
  606. // Write the string from the read buffer to SD
  607. card.write_command(command);
  608. if (card.logging)
  609. process_commands(); // The card is saving because it's logging
  610. else
  611. SERIAL_PROTOCOLLNPGM(MSG_OK);
  612. }
  613. }
  614. else
  615. process_commands();
  616. #else
  617. process_commands();
  618. #endif // SDSUPPORT
  619. commands_in_queue--;
  620. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  621. }
  622. // Check heater every n milliseconds
  623. manage_heater();
  624. manage_inactivity();
  625. checkHitEndstops();
  626. lcd_update();
  627. }
  628. /**
  629. * Add to the circular command queue the next command from:
  630. * - The command-injection queue (queued_commands_P)
  631. * - The active serial input (usually USB)
  632. * - The SD card file being actively printed
  633. */
  634. void get_command() {
  635. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  636. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  637. serial_char = MYSERIAL.read();
  638. if (serial_char == '\n' || serial_char == '\r' ||
  639. serial_count >= (MAX_CMD_SIZE - 1)
  640. ) {
  641. // end of line == end of comment
  642. comment_mode = false;
  643. if (!serial_count) return; // shortcut for empty lines
  644. char *command = command_queue[cmd_queue_index_w];
  645. command[serial_count] = 0; // terminate string
  646. #ifdef SDSUPPORT
  647. fromsd[cmd_queue_index_w] = false;
  648. #endif
  649. if (strchr(command, 'N') != NULL) {
  650. strchr_pointer = strchr(command, 'N');
  651. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  652. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  653. SERIAL_ERROR_START;
  654. SERIAL_ERRORPGM(MSG_ERR_LINE_NO1);
  655. SERIAL_ERROR(gcode_LastN + 1);
  656. SERIAL_ERRORPGM(MSG_ERR_LINE_NO2);
  657. SERIAL_ERRORLN(gcode_N);
  658. FlushSerialRequestResend();
  659. serial_count = 0;
  660. return;
  661. }
  662. if (strchr(command, '*') != NULL) {
  663. byte checksum = 0;
  664. byte count = 0;
  665. while (command[count] != '*') checksum ^= command[count++];
  666. strchr_pointer = strchr(command, '*');
  667. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  668. SERIAL_ERROR_START;
  669. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  670. SERIAL_ERRORLN(gcode_LastN);
  671. FlushSerialRequestResend();
  672. serial_count = 0;
  673. return;
  674. }
  675. //if no errors, continue parsing
  676. }
  677. else {
  678. SERIAL_ERROR_START;
  679. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  680. SERIAL_ERRORLN(gcode_LastN);
  681. FlushSerialRequestResend();
  682. serial_count = 0;
  683. return;
  684. }
  685. gcode_LastN = gcode_N;
  686. //if no errors, continue parsing
  687. }
  688. else { // if we don't receive 'N' but still see '*'
  689. if ((strchr(command, '*') != NULL)) {
  690. SERIAL_ERROR_START;
  691. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  692. SERIAL_ERRORLN(gcode_LastN);
  693. serial_count = 0;
  694. return;
  695. }
  696. }
  697. if (strchr(command, 'G') != NULL) {
  698. strchr_pointer = strchr(command, 'G');
  699. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  700. case 0:
  701. case 1:
  702. case 2:
  703. case 3:
  704. if (IsStopped()) {
  705. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  706. LCD_MESSAGEPGM(MSG_STOPPED);
  707. }
  708. break;
  709. default:
  710. break;
  711. }
  712. }
  713. // If command was e-stop process now
  714. if (strcmp(command, "M112") == 0) kill();
  715. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  716. commands_in_queue += 1;
  717. serial_count = 0; //clear buffer
  718. }
  719. else if (serial_char == '\\') { // Handle escapes
  720. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  721. // if we have one more character, copy it over
  722. serial_char = MYSERIAL.read();
  723. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  724. }
  725. // otherwise do nothing
  726. }
  727. else { // its not a newline, carriage return or escape char
  728. if (serial_char == ';') comment_mode = true;
  729. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  730. }
  731. }
  732. #ifdef SDSUPPORT
  733. if (!card.sdprinting || serial_count) return;
  734. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  735. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  736. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  737. static bool stop_buffering = false;
  738. if (commands_in_queue == 0) stop_buffering = false;
  739. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  740. int16_t n = card.get();
  741. serial_char = (char)n;
  742. if (serial_char == '\n' || serial_char == '\r' ||
  743. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  744. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  745. ) {
  746. if (card.eof()) {
  747. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  748. print_job_stop_ms = millis();
  749. char time[30];
  750. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  751. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  752. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  753. SERIAL_ECHO_START;
  754. SERIAL_ECHOLN(time);
  755. lcd_setstatus(time, true);
  756. card.printingHasFinished();
  757. card.checkautostart(true);
  758. }
  759. if (serial_char == '#') stop_buffering = true;
  760. if (!serial_count) {
  761. comment_mode = false; //for new command
  762. return; //if empty line
  763. }
  764. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  765. // if (!comment_mode) {
  766. fromsd[cmd_queue_index_w] = true;
  767. commands_in_queue += 1;
  768. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  769. // }
  770. comment_mode = false; //for new command
  771. serial_count = 0; //clear buffer
  772. }
  773. else {
  774. if (serial_char == ';') comment_mode = true;
  775. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  776. }
  777. }
  778. #endif // SDSUPPORT
  779. }
  780. bool code_has_value() {
  781. int i = 1;
  782. char c = strchr_pointer[i];
  783. if (c == '-' || c == '+') c = strchr_pointer[++i];
  784. if (c == '.') c = strchr_pointer[++i];
  785. return (c >= '0' && c <= '9');
  786. }
  787. float code_value() {
  788. float ret;
  789. char *e = strchr(strchr_pointer, 'E');
  790. if (e) {
  791. *e = 0;
  792. ret = strtod(strchr_pointer+1, NULL);
  793. *e = 'E';
  794. }
  795. else
  796. ret = strtod(strchr_pointer+1, NULL);
  797. return ret;
  798. }
  799. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  800. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  801. bool code_seen(char code) {
  802. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  803. return (strchr_pointer != NULL); //Return True if a character was found
  804. }
  805. #define DEFINE_PGM_READ_ANY(type, reader) \
  806. static inline type pgm_read_any(const type *p) \
  807. { return pgm_read_##reader##_near(p); }
  808. DEFINE_PGM_READ_ANY(float, float);
  809. DEFINE_PGM_READ_ANY(signed char, byte);
  810. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  811. static const PROGMEM type array##_P[3] = \
  812. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  813. static inline type array(int axis) \
  814. { return pgm_read_any(&array##_P[axis]); }
  815. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  816. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  817. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  818. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  819. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  820. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  821. #ifdef DUAL_X_CARRIAGE
  822. #define DXC_FULL_CONTROL_MODE 0
  823. #define DXC_AUTO_PARK_MODE 1
  824. #define DXC_DUPLICATION_MODE 2
  825. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  826. static float x_home_pos(int extruder) {
  827. if (extruder == 0)
  828. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  829. else
  830. // In dual carriage mode the extruder offset provides an override of the
  831. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  832. // This allow soft recalibration of the second extruder offset position without firmware reflash
  833. // (through the M218 command).
  834. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  835. }
  836. static int x_home_dir(int extruder) {
  837. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  838. }
  839. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  840. static bool active_extruder_parked = false; // used in mode 1 & 2
  841. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  842. static millis_t delayed_move_time = 0; // used in mode 1
  843. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  844. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  845. bool extruder_duplication_enabled = false; // used in mode 2
  846. #endif //DUAL_X_CARRIAGE
  847. static void axis_is_at_home(int axis) {
  848. #ifdef DUAL_X_CARRIAGE
  849. if (axis == X_AXIS) {
  850. if (active_extruder != 0) {
  851. current_position[X_AXIS] = x_home_pos(active_extruder);
  852. min_pos[X_AXIS] = X2_MIN_POS;
  853. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  854. return;
  855. }
  856. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  857. float xoff = home_offset[X_AXIS];
  858. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  859. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  860. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  861. return;
  862. }
  863. }
  864. #endif
  865. #ifdef SCARA
  866. if (axis == X_AXIS || axis == Y_AXIS) {
  867. float homeposition[3];
  868. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  869. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  870. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  871. // Works out real Homeposition angles using inverse kinematics,
  872. // and calculates homing offset using forward kinematics
  873. calculate_delta(homeposition);
  874. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  875. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  876. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  877. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  878. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  879. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  880. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  881. calculate_SCARA_forward_Transform(delta);
  882. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  883. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  884. current_position[axis] = delta[axis];
  885. // SCARA home positions are based on configuration since the actual limits are determined by the
  886. // inverse kinematic transform.
  887. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  888. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  889. }
  890. else
  891. #endif
  892. {
  893. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  894. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  895. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  896. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  897. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  898. #endif
  899. }
  900. }
  901. /**
  902. * Some planner shorthand inline functions
  903. */
  904. inline void set_homing_bump_feedrate(AxisEnum axis) {
  905. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  906. if (homing_bump_divisor[axis] >= 1)
  907. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  908. else {
  909. feedrate = homing_feedrate[axis] / 10;
  910. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  911. }
  912. }
  913. inline void line_to_current_position() {
  914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  915. }
  916. inline void line_to_z(float zPosition) {
  917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  918. }
  919. inline void line_to_destination(float mm_m) {
  920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  921. }
  922. inline void line_to_destination() {
  923. line_to_destination(feedrate);
  924. }
  925. inline void sync_plan_position() {
  926. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  927. }
  928. #if defined(DELTA) || defined(SCARA)
  929. inline void sync_plan_position_delta() {
  930. calculate_delta(current_position);
  931. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  932. }
  933. #endif
  934. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  935. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  936. #ifdef ENABLE_AUTO_BED_LEVELING
  937. #ifdef DELTA
  938. /**
  939. * Calculate delta, start a line, and set current_position to destination
  940. */
  941. void prepare_move_raw() {
  942. refresh_cmd_timeout();
  943. calculate_delta(destination);
  944. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  945. set_current_to_destination();
  946. }
  947. #endif
  948. #ifdef AUTO_BED_LEVELING_GRID
  949. #ifndef DELTA
  950. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  951. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  952. planeNormal.debug("planeNormal");
  953. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  954. //bedLevel.debug("bedLevel");
  955. //plan_bed_level_matrix.debug("bed level before");
  956. //vector_3 uncorrected_position = plan_get_position_mm();
  957. //uncorrected_position.debug("position before");
  958. vector_3 corrected_position = plan_get_position();
  959. //corrected_position.debug("position after");
  960. current_position[X_AXIS] = corrected_position.x;
  961. current_position[Y_AXIS] = corrected_position.y;
  962. current_position[Z_AXIS] = corrected_position.z;
  963. sync_plan_position();
  964. }
  965. #endif // !DELTA
  966. #else // !AUTO_BED_LEVELING_GRID
  967. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  968. plan_bed_level_matrix.set_to_identity();
  969. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  970. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  971. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  972. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  973. if (planeNormal.z < 0) {
  974. planeNormal.x = -planeNormal.x;
  975. planeNormal.y = -planeNormal.y;
  976. planeNormal.z = -planeNormal.z;
  977. }
  978. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  979. vector_3 corrected_position = plan_get_position();
  980. current_position[X_AXIS] = corrected_position.x;
  981. current_position[Y_AXIS] = corrected_position.y;
  982. current_position[Z_AXIS] = corrected_position.z;
  983. sync_plan_position();
  984. }
  985. #endif // !AUTO_BED_LEVELING_GRID
  986. static void run_z_probe() {
  987. #ifdef DELTA
  988. float start_z = current_position[Z_AXIS];
  989. long start_steps = st_get_position(Z_AXIS);
  990. // move down slowly until you find the bed
  991. feedrate = homing_feedrate[Z_AXIS] / 4;
  992. destination[Z_AXIS] = -10;
  993. prepare_move_raw(); // this will also set_current_to_destination
  994. st_synchronize();
  995. endstops_hit_on_purpose(); // clear endstop hit flags
  996. // we have to let the planner know where we are right now as it is not where we said to go.
  997. long stop_steps = st_get_position(Z_AXIS);
  998. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  999. current_position[Z_AXIS] = mm;
  1000. sync_plan_position_delta();
  1001. #else // !DELTA
  1002. plan_bed_level_matrix.set_to_identity();
  1003. feedrate = homing_feedrate[Z_AXIS];
  1004. // move down until you find the bed
  1005. float zPosition = -10;
  1006. line_to_z(zPosition);
  1007. st_synchronize();
  1008. // we have to let the planner know where we are right now as it is not where we said to go.
  1009. zPosition = st_get_position_mm(Z_AXIS);
  1010. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1011. // move up the retract distance
  1012. zPosition += home_bump_mm(Z_AXIS);
  1013. line_to_z(zPosition);
  1014. st_synchronize();
  1015. endstops_hit_on_purpose(); // clear endstop hit flags
  1016. // move back down slowly to find bed
  1017. set_homing_bump_feedrate(Z_AXIS);
  1018. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1019. line_to_z(zPosition);
  1020. st_synchronize();
  1021. endstops_hit_on_purpose(); // clear endstop hit flags
  1022. // Get the current stepper position after bumping an endstop
  1023. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1024. sync_plan_position();
  1025. #endif // !DELTA
  1026. }
  1027. /**
  1028. * Plan a move to (X, Y, Z) and set the current_position
  1029. * The final current_position may not be the one that was requested
  1030. */
  1031. static void do_blocking_move_to(float x, float y, float z) {
  1032. float oldFeedRate = feedrate;
  1033. #ifdef DELTA
  1034. feedrate = XY_TRAVEL_SPEED;
  1035. destination[X_AXIS] = x;
  1036. destination[Y_AXIS] = y;
  1037. destination[Z_AXIS] = z;
  1038. prepare_move_raw(); // this will also set_current_to_destination
  1039. st_synchronize();
  1040. #else
  1041. feedrate = homing_feedrate[Z_AXIS];
  1042. current_position[Z_AXIS] = z;
  1043. line_to_current_position();
  1044. st_synchronize();
  1045. feedrate = xy_travel_speed;
  1046. current_position[X_AXIS] = x;
  1047. current_position[Y_AXIS] = y;
  1048. line_to_current_position();
  1049. st_synchronize();
  1050. #endif
  1051. feedrate = oldFeedRate;
  1052. }
  1053. static void setup_for_endstop_move() {
  1054. saved_feedrate = feedrate;
  1055. saved_feedrate_multiplier = feedrate_multiplier;
  1056. feedrate_multiplier = 100;
  1057. refresh_cmd_timeout();
  1058. enable_endstops(true);
  1059. }
  1060. static void clean_up_after_endstop_move() {
  1061. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1062. enable_endstops(false);
  1063. #endif
  1064. feedrate = saved_feedrate;
  1065. feedrate_multiplier = saved_feedrate_multiplier;
  1066. refresh_cmd_timeout();
  1067. }
  1068. static void deploy_z_probe() {
  1069. #ifdef SERVO_ENDSTOPS
  1070. // Engage Z Servo endstop if enabled
  1071. if (servo_endstops[Z_AXIS] >= 0) {
  1072. #if SERVO_LEVELING
  1073. servo[servo_endstops[Z_AXIS]].attach(0);
  1074. #endif
  1075. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1076. #if SERVO_LEVELING
  1077. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1078. servo[servo_endstops[Z_AXIS]].detach();
  1079. #endif
  1080. }
  1081. #elif defined(Z_PROBE_ALLEN_KEY)
  1082. feedrate = homing_feedrate[X_AXIS];
  1083. // Move to the start position to initiate deployment
  1084. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1085. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1086. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1087. prepare_move_raw(); // this will also set_current_to_destination
  1088. // Home X to touch the belt
  1089. feedrate = homing_feedrate[X_AXIS]/10;
  1090. destination[X_AXIS] = 0;
  1091. prepare_move_raw(); // this will also set_current_to_destination
  1092. // Home Y for safety
  1093. feedrate = homing_feedrate[X_AXIS]/2;
  1094. destination[Y_AXIS] = 0;
  1095. prepare_move_raw(); // this will also set_current_to_destination
  1096. st_synchronize();
  1097. #ifdef Z_PROBE_ENDSTOP
  1098. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1099. if (z_probe_endstop)
  1100. #else
  1101. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1102. if (z_min_endstop)
  1103. #endif
  1104. {
  1105. if (IsRunning()) {
  1106. SERIAL_ERROR_START;
  1107. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1108. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1109. }
  1110. Stop();
  1111. }
  1112. #endif // Z_PROBE_ALLEN_KEY
  1113. }
  1114. static void stow_z_probe() {
  1115. #ifdef SERVO_ENDSTOPS
  1116. // Retract Z Servo endstop if enabled
  1117. if (servo_endstops[Z_AXIS] >= 0) {
  1118. #if Z_RAISE_AFTER_PROBING > 0
  1119. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1120. st_synchronize();
  1121. #endif
  1122. #if SERVO_LEVELING
  1123. servo[servo_endstops[Z_AXIS]].attach(0);
  1124. #endif
  1125. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1126. #if SERVO_LEVELING
  1127. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1128. servo[servo_endstops[Z_AXIS]].detach();
  1129. #endif
  1130. }
  1131. #elif defined(Z_PROBE_ALLEN_KEY)
  1132. // Move up for safety
  1133. feedrate = homing_feedrate[X_AXIS];
  1134. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1135. prepare_move_raw(); // this will also set_current_to_destination
  1136. // Move to the start position to initiate retraction
  1137. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1138. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1139. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1140. prepare_move_raw(); // this will also set_current_to_destination
  1141. // Move the nozzle down to push the probe into retracted position
  1142. feedrate = homing_feedrate[Z_AXIS]/10;
  1143. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1144. prepare_move_raw(); // this will also set_current_to_destination
  1145. // Move up for safety
  1146. feedrate = homing_feedrate[Z_AXIS]/2;
  1147. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1148. prepare_move_raw(); // this will also set_current_to_destination
  1149. // Home XY for safety
  1150. feedrate = homing_feedrate[X_AXIS]/2;
  1151. destination[X_AXIS] = 0;
  1152. destination[Y_AXIS] = 0;
  1153. prepare_move_raw(); // this will also set_current_to_destination
  1154. st_synchronize();
  1155. #ifdef Z_PROBE_ENDSTOP
  1156. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1157. if (!z_probe_endstop)
  1158. #else
  1159. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1160. if (!z_min_endstop)
  1161. #endif
  1162. {
  1163. if (IsRunning()) {
  1164. SERIAL_ERROR_START;
  1165. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1166. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1167. }
  1168. Stop();
  1169. }
  1170. #endif
  1171. }
  1172. enum ProbeAction {
  1173. ProbeStay = 0,
  1174. ProbeDeploy = BIT(0),
  1175. ProbeStow = BIT(1),
  1176. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1177. };
  1178. // Probe bed height at position (x,y), returns the measured z value
  1179. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1180. // move to right place
  1181. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1182. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1183. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1184. if (retract_action & ProbeDeploy) deploy_z_probe();
  1185. #endif
  1186. run_z_probe();
  1187. float measured_z = current_position[Z_AXIS];
  1188. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1189. if (retract_action == ProbeStay) {
  1190. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1191. st_synchronize();
  1192. }
  1193. #endif
  1194. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1195. if (retract_action & ProbeStow) stow_z_probe();
  1196. #endif
  1197. if (verbose_level > 2) {
  1198. SERIAL_PROTOCOLPGM("Bed");
  1199. SERIAL_PROTOCOLPGM(" X: ");
  1200. SERIAL_PROTOCOL_F(x, 3);
  1201. SERIAL_PROTOCOLPGM(" Y: ");
  1202. SERIAL_PROTOCOL_F(y, 3);
  1203. SERIAL_PROTOCOLPGM(" Z: ");
  1204. SERIAL_PROTOCOL_F(measured_z, 3);
  1205. SERIAL_EOL;
  1206. }
  1207. return measured_z;
  1208. }
  1209. #ifdef DELTA
  1210. /**
  1211. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1212. */
  1213. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1214. if (bed_level[x][y] != 0.0) {
  1215. return; // Don't overwrite good values.
  1216. }
  1217. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1218. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1219. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1220. float median = c; // Median is robust (ignores outliers).
  1221. if (a < b) {
  1222. if (b < c) median = b;
  1223. if (c < a) median = a;
  1224. } else { // b <= a
  1225. if (c < b) median = b;
  1226. if (a < c) median = a;
  1227. }
  1228. bed_level[x][y] = median;
  1229. }
  1230. // Fill in the unprobed points (corners of circular print surface)
  1231. // using linear extrapolation, away from the center.
  1232. static void extrapolate_unprobed_bed_level() {
  1233. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1234. for (int y = 0; y <= half; y++) {
  1235. for (int x = 0; x <= half; x++) {
  1236. if (x + y < 3) continue;
  1237. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1238. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1239. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1240. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1241. }
  1242. }
  1243. }
  1244. // Print calibration results for plotting or manual frame adjustment.
  1245. static void print_bed_level() {
  1246. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1247. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1248. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1249. SERIAL_PROTOCOLCHAR(' ');
  1250. }
  1251. SERIAL_EOL;
  1252. }
  1253. }
  1254. // Reset calibration results to zero.
  1255. void reset_bed_level() {
  1256. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1257. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1258. bed_level[x][y] = 0.0;
  1259. }
  1260. }
  1261. }
  1262. #endif // DELTA
  1263. #endif // ENABLE_AUTO_BED_LEVELING
  1264. /**
  1265. * Home an individual axis
  1266. */
  1267. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1268. static void homeaxis(AxisEnum axis) {
  1269. #define HOMEAXIS_DO(LETTER) \
  1270. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1271. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1272. int axis_home_dir =
  1273. #ifdef DUAL_X_CARRIAGE
  1274. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1275. #endif
  1276. home_dir(axis);
  1277. // Set the axis position as setup for the move
  1278. current_position[axis] = 0;
  1279. sync_plan_position();
  1280. // Engage Servo endstop if enabled
  1281. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1282. #if SERVO_LEVELING
  1283. if (axis == Z_AXIS) deploy_z_probe(); else
  1284. #endif
  1285. {
  1286. if (servo_endstops[axis] > -1)
  1287. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1288. }
  1289. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1290. #ifdef Z_DUAL_ENDSTOPS
  1291. if (axis == Z_AXIS) In_Homing_Process(true);
  1292. #endif
  1293. // Move towards the endstop until an endstop is triggered
  1294. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1295. feedrate = homing_feedrate[axis];
  1296. line_to_destination();
  1297. st_synchronize();
  1298. // Set the axis position as setup for the move
  1299. current_position[axis] = 0;
  1300. sync_plan_position();
  1301. // Move away from the endstop by the axis HOME_BUMP_MM
  1302. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1303. line_to_destination();
  1304. st_synchronize();
  1305. // Slow down the feedrate for the next move
  1306. set_homing_bump_feedrate(axis);
  1307. // Move slowly towards the endstop until triggered
  1308. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1309. line_to_destination();
  1310. st_synchronize();
  1311. #ifdef Z_DUAL_ENDSTOPS
  1312. if (axis == Z_AXIS) {
  1313. float adj = fabs(z_endstop_adj);
  1314. bool lockZ1;
  1315. if (axis_home_dir > 0) {
  1316. adj = -adj;
  1317. lockZ1 = (z_endstop_adj > 0);
  1318. }
  1319. else
  1320. lockZ1 = (z_endstop_adj < 0);
  1321. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1322. sync_plan_position();
  1323. // Move to the adjusted endstop height
  1324. feedrate = homing_feedrate[axis];
  1325. destination[Z_AXIS] = adj;
  1326. line_to_destination();
  1327. st_synchronize();
  1328. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1329. In_Homing_Process(false);
  1330. } // Z_AXIS
  1331. #endif
  1332. #ifdef DELTA
  1333. // retrace by the amount specified in endstop_adj
  1334. if (endstop_adj[axis] * axis_home_dir < 0) {
  1335. sync_plan_position();
  1336. destination[axis] = endstop_adj[axis];
  1337. line_to_destination();
  1338. st_synchronize();
  1339. }
  1340. #endif
  1341. // Set the axis position to its home position (plus home offsets)
  1342. axis_is_at_home(axis);
  1343. sync_plan_position();
  1344. destination[axis] = current_position[axis];
  1345. feedrate = 0.0;
  1346. endstops_hit_on_purpose(); // clear endstop hit flags
  1347. axis_known_position[axis] = true;
  1348. // Retract Servo endstop if enabled
  1349. #ifdef SERVO_ENDSTOPS
  1350. if (servo_endstops[axis] > -1)
  1351. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1352. #endif
  1353. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1354. if (axis == Z_AXIS) stow_z_probe();
  1355. #endif
  1356. }
  1357. }
  1358. #ifdef FWRETRACT
  1359. void retract(bool retracting, bool swapretract = false) {
  1360. if (retracting == retracted[active_extruder]) return;
  1361. float oldFeedrate = feedrate;
  1362. set_destination_to_current();
  1363. if (retracting) {
  1364. feedrate = retract_feedrate * 60;
  1365. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1366. plan_set_e_position(current_position[E_AXIS]);
  1367. prepare_move();
  1368. if (retract_zlift > 0.01) {
  1369. current_position[Z_AXIS] -= retract_zlift;
  1370. #ifdef DELTA
  1371. sync_plan_position_delta();
  1372. #else
  1373. sync_plan_position();
  1374. #endif
  1375. prepare_move();
  1376. }
  1377. }
  1378. else {
  1379. if (retract_zlift > 0.01) {
  1380. current_position[Z_AXIS] += retract_zlift;
  1381. #ifdef DELTA
  1382. sync_plan_position_delta();
  1383. #else
  1384. sync_plan_position();
  1385. #endif
  1386. //prepare_move();
  1387. }
  1388. feedrate = retract_recover_feedrate * 60;
  1389. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1390. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1391. plan_set_e_position(current_position[E_AXIS]);
  1392. prepare_move();
  1393. }
  1394. feedrate = oldFeedrate;
  1395. retracted[active_extruder] = retracting;
  1396. } // retract()
  1397. #endif // FWRETRACT
  1398. #ifdef Z_PROBE_SLED
  1399. #ifndef SLED_DOCKING_OFFSET
  1400. #define SLED_DOCKING_OFFSET 0
  1401. #endif
  1402. /**
  1403. * Method to dock/undock a sled designed by Charles Bell.
  1404. *
  1405. * dock[in] If true, move to MAX_X and engage the electromagnet
  1406. * offset[in] The additional distance to move to adjust docking location
  1407. */
  1408. static void dock_sled(bool dock, int offset=0) {
  1409. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1410. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1411. SERIAL_ECHO_START;
  1412. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1413. return;
  1414. }
  1415. if (dock) {
  1416. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1417. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1418. } else {
  1419. float z_loc = current_position[Z_AXIS];
  1420. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1421. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1422. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1423. }
  1424. }
  1425. #endif // Z_PROBE_SLED
  1426. /**
  1427. *
  1428. * G-Code Handler functions
  1429. *
  1430. */
  1431. /**
  1432. * G0, G1: Coordinated movement of X Y Z E axes
  1433. */
  1434. inline void gcode_G0_G1() {
  1435. if (IsRunning()) {
  1436. get_coordinates(); // For X Y Z E F
  1437. #ifdef FWRETRACT
  1438. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1439. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1440. // Is this move an attempt to retract or recover?
  1441. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1442. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1443. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1444. retract(!retracted[active_extruder]);
  1445. return;
  1446. }
  1447. }
  1448. #endif //FWRETRACT
  1449. prepare_move();
  1450. //ClearToSend();
  1451. }
  1452. }
  1453. /**
  1454. * G2: Clockwise Arc
  1455. * G3: Counterclockwise Arc
  1456. */
  1457. inline void gcode_G2_G3(bool clockwise) {
  1458. if (IsRunning()) {
  1459. get_arc_coordinates();
  1460. prepare_arc_move(clockwise);
  1461. }
  1462. }
  1463. /**
  1464. * G4: Dwell S<seconds> or P<milliseconds>
  1465. */
  1466. inline void gcode_G4() {
  1467. millis_t codenum = 0;
  1468. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1469. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1470. st_synchronize();
  1471. refresh_cmd_timeout();
  1472. codenum += previous_cmd_ms; // keep track of when we started waiting
  1473. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1474. while (millis() < codenum) {
  1475. manage_heater();
  1476. manage_inactivity();
  1477. lcd_update();
  1478. }
  1479. }
  1480. #ifdef FWRETRACT
  1481. /**
  1482. * G10 - Retract filament according to settings of M207
  1483. * G11 - Recover filament according to settings of M208
  1484. */
  1485. inline void gcode_G10_G11(bool doRetract=false) {
  1486. #if EXTRUDERS > 1
  1487. if (doRetract) {
  1488. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1489. }
  1490. #endif
  1491. retract(doRetract
  1492. #if EXTRUDERS > 1
  1493. , retracted_swap[active_extruder]
  1494. #endif
  1495. );
  1496. }
  1497. #endif //FWRETRACT
  1498. /**
  1499. * G28: Home all axes according to settings
  1500. *
  1501. * Parameters
  1502. *
  1503. * None Home to all axes with no parameters.
  1504. * With QUICK_HOME enabled XY will home together, then Z.
  1505. *
  1506. * Cartesian parameters
  1507. *
  1508. * X Home to the X endstop
  1509. * Y Home to the Y endstop
  1510. * Z Home to the Z endstop
  1511. *
  1512. */
  1513. inline void gcode_G28() {
  1514. // For auto bed leveling, clear the level matrix
  1515. #ifdef ENABLE_AUTO_BED_LEVELING
  1516. plan_bed_level_matrix.set_to_identity();
  1517. #ifdef DELTA
  1518. reset_bed_level();
  1519. #endif
  1520. #endif
  1521. // For manual bed leveling deactivate the matrix temporarily
  1522. #ifdef MESH_BED_LEVELING
  1523. uint8_t mbl_was_active = mbl.active;
  1524. mbl.active = 0;
  1525. #endif
  1526. saved_feedrate = feedrate;
  1527. saved_feedrate_multiplier = feedrate_multiplier;
  1528. feedrate_multiplier = 100;
  1529. refresh_cmd_timeout();
  1530. enable_endstops(true);
  1531. set_destination_to_current();
  1532. feedrate = 0.0;
  1533. #ifdef DELTA
  1534. // A delta can only safely home all axis at the same time
  1535. // all axis have to home at the same time
  1536. // Pretend the current position is 0,0,0
  1537. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1538. sync_plan_position();
  1539. // Move all carriages up together until the first endstop is hit.
  1540. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1541. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1542. line_to_destination();
  1543. st_synchronize();
  1544. endstops_hit_on_purpose(); // clear endstop hit flags
  1545. // Destination reached
  1546. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1547. // take care of back off and rehome now we are all at the top
  1548. HOMEAXIS(X);
  1549. HOMEAXIS(Y);
  1550. HOMEAXIS(Z);
  1551. sync_plan_position_delta();
  1552. #else // NOT DELTA
  1553. bool homeX = code_seen(axis_codes[X_AXIS]),
  1554. homeY = code_seen(axis_codes[Y_AXIS]),
  1555. homeZ = code_seen(axis_codes[Z_AXIS]);
  1556. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1557. if (home_all_axis || homeZ) {
  1558. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1559. HOMEAXIS(Z);
  1560. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1561. // Raise Z before homing any other axes
  1562. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1563. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1564. feedrate = max_feedrate[Z_AXIS] * 60;
  1565. line_to_destination();
  1566. st_synchronize();
  1567. #endif
  1568. } // home_all_axis || homeZ
  1569. #ifdef QUICK_HOME
  1570. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1571. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1572. #ifdef DUAL_X_CARRIAGE
  1573. int x_axis_home_dir = x_home_dir(active_extruder);
  1574. extruder_duplication_enabled = false;
  1575. #else
  1576. int x_axis_home_dir = home_dir(X_AXIS);
  1577. #endif
  1578. sync_plan_position();
  1579. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1580. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1581. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1582. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1583. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1584. line_to_destination();
  1585. st_synchronize();
  1586. axis_is_at_home(X_AXIS);
  1587. axis_is_at_home(Y_AXIS);
  1588. sync_plan_position();
  1589. destination[X_AXIS] = current_position[X_AXIS];
  1590. destination[Y_AXIS] = current_position[Y_AXIS];
  1591. line_to_destination();
  1592. feedrate = 0.0;
  1593. st_synchronize();
  1594. endstops_hit_on_purpose(); // clear endstop hit flags
  1595. current_position[X_AXIS] = destination[X_AXIS];
  1596. current_position[Y_AXIS] = destination[Y_AXIS];
  1597. #ifndef SCARA
  1598. current_position[Z_AXIS] = destination[Z_AXIS];
  1599. #endif
  1600. }
  1601. #endif // QUICK_HOME
  1602. // Home X
  1603. if (home_all_axis || homeX) {
  1604. #ifdef DUAL_X_CARRIAGE
  1605. int tmp_extruder = active_extruder;
  1606. extruder_duplication_enabled = false;
  1607. active_extruder = !active_extruder;
  1608. HOMEAXIS(X);
  1609. inactive_extruder_x_pos = current_position[X_AXIS];
  1610. active_extruder = tmp_extruder;
  1611. HOMEAXIS(X);
  1612. // reset state used by the different modes
  1613. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1614. delayed_move_time = 0;
  1615. active_extruder_parked = true;
  1616. #else
  1617. HOMEAXIS(X);
  1618. #endif
  1619. }
  1620. // Home Y
  1621. if (home_all_axis || homeY) HOMEAXIS(Y);
  1622. // Home Z last if homing towards the bed
  1623. #if Z_HOME_DIR < 0
  1624. if (home_all_axis || homeZ) {
  1625. #ifdef Z_SAFE_HOMING
  1626. if (home_all_axis) {
  1627. current_position[Z_AXIS] = 0;
  1628. sync_plan_position();
  1629. //
  1630. // Set the probe (or just the nozzle) destination to the safe homing point
  1631. //
  1632. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1633. // then this may not work as expected.
  1634. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1635. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1636. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1637. feedrate = XY_TRAVEL_SPEED;
  1638. // This could potentially move X, Y, Z all together
  1639. line_to_destination();
  1640. st_synchronize();
  1641. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1642. current_position[X_AXIS] = destination[X_AXIS];
  1643. current_position[Y_AXIS] = destination[Y_AXIS];
  1644. // Home the Z axis
  1645. HOMEAXIS(Z);
  1646. }
  1647. else if (homeZ) { // Don't need to Home Z twice
  1648. // Let's see if X and Y are homed
  1649. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1650. // Make sure the probe is within the physical limits
  1651. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1652. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1653. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1654. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1655. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1656. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1657. // Set the plan current position to X, Y, 0
  1658. current_position[Z_AXIS] = 0;
  1659. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1660. // Set Z destination away from bed and raise the axis
  1661. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1662. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1663. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1664. line_to_destination();
  1665. st_synchronize();
  1666. // Home the Z axis
  1667. HOMEAXIS(Z);
  1668. }
  1669. else {
  1670. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1671. SERIAL_ECHO_START;
  1672. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1673. }
  1674. }
  1675. else {
  1676. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1677. SERIAL_ECHO_START;
  1678. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1679. }
  1680. } // !home_all_axes && homeZ
  1681. #else // !Z_SAFE_HOMING
  1682. HOMEAXIS(Z);
  1683. #endif // !Z_SAFE_HOMING
  1684. } // home_all_axis || homeZ
  1685. #endif // Z_HOME_DIR < 0
  1686. sync_plan_position();
  1687. #endif // else DELTA
  1688. #ifdef SCARA
  1689. sync_plan_position_delta();
  1690. #endif
  1691. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1692. enable_endstops(false);
  1693. #endif
  1694. // For manual leveling move back to 0,0
  1695. #ifdef MESH_BED_LEVELING
  1696. if (mbl_was_active) {
  1697. current_position[X_AXIS] = mbl.get_x(0);
  1698. current_position[Y_AXIS] = mbl.get_y(0);
  1699. set_destination_to_current();
  1700. feedrate = homing_feedrate[X_AXIS];
  1701. line_to_destination();
  1702. st_synchronize();
  1703. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1704. sync_plan_position();
  1705. mbl.active = 1;
  1706. }
  1707. #endif
  1708. feedrate = saved_feedrate;
  1709. feedrate_multiplier = saved_feedrate_multiplier;
  1710. refresh_cmd_timeout();
  1711. endstops_hit_on_purpose(); // clear endstop hit flags
  1712. }
  1713. #ifdef MESH_BED_LEVELING
  1714. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1715. /**
  1716. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1717. * mesh to compensate for variable bed height
  1718. *
  1719. * Parameters With MESH_BED_LEVELING:
  1720. *
  1721. * S0 Produce a mesh report
  1722. * S1 Start probing mesh points
  1723. * S2 Probe the next mesh point
  1724. * S3 Xn Yn Zn.nn Manually modify a single point
  1725. *
  1726. * The S0 report the points as below
  1727. *
  1728. * +----> X-axis
  1729. * |
  1730. * |
  1731. * v Y-axis
  1732. *
  1733. */
  1734. inline void gcode_G29() {
  1735. static int probe_point = -1;
  1736. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1737. if (state < 0 || state > 3) {
  1738. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1739. return;
  1740. }
  1741. int ix, iy;
  1742. float z;
  1743. switch(state) {
  1744. case MeshReport:
  1745. if (mbl.active) {
  1746. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1747. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1748. SERIAL_PROTOCOLCHAR(',');
  1749. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1750. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1751. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1752. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1753. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1754. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1755. SERIAL_PROTOCOLPGM(" ");
  1756. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1757. }
  1758. SERIAL_EOL;
  1759. }
  1760. }
  1761. else
  1762. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1763. break;
  1764. case MeshStart:
  1765. mbl.reset();
  1766. probe_point = 0;
  1767. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1768. break;
  1769. case MeshNext:
  1770. if (probe_point < 0) {
  1771. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1772. return;
  1773. }
  1774. if (probe_point == 0) {
  1775. // Set Z to a positive value before recording the first Z.
  1776. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1777. sync_plan_position();
  1778. }
  1779. else {
  1780. // For others, save the Z of the previous point, then raise Z again.
  1781. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1782. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1783. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1784. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1785. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1787. st_synchronize();
  1788. }
  1789. // Is there another point to sample? Move there.
  1790. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1791. ix = probe_point % MESH_NUM_X_POINTS;
  1792. iy = probe_point / MESH_NUM_X_POINTS;
  1793. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1794. current_position[X_AXIS] = mbl.get_x(ix);
  1795. current_position[Y_AXIS] = mbl.get_y(iy);
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1797. st_synchronize();
  1798. probe_point++;
  1799. }
  1800. else {
  1801. // After recording the last point, activate the mbl and home
  1802. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1803. probe_point = -1;
  1804. mbl.active = 1;
  1805. enqueuecommands_P(PSTR("G28"));
  1806. }
  1807. break;
  1808. case MeshSet:
  1809. if (code_seen('X') || code_seen('x')) {
  1810. ix = code_value_long()-1;
  1811. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1812. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1813. return;
  1814. }
  1815. } else {
  1816. SERIAL_PROTOCOLPGM("X not entered.\n");
  1817. return;
  1818. }
  1819. if (code_seen('Y') || code_seen('y')) {
  1820. iy = code_value_long()-1;
  1821. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1822. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1823. return;
  1824. }
  1825. } else {
  1826. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1827. return;
  1828. }
  1829. if (code_seen('Z') || code_seen('z')) {
  1830. z = code_value();
  1831. } else {
  1832. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1833. return;
  1834. }
  1835. mbl.z_values[iy][ix] = z;
  1836. } // switch(state)
  1837. }
  1838. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1839. /**
  1840. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1841. * Will fail if the printer has not been homed with G28.
  1842. *
  1843. * Enhanced G29 Auto Bed Leveling Probe Routine
  1844. *
  1845. * Parameters With AUTO_BED_LEVELING_GRID:
  1846. *
  1847. * P Set the size of the grid that will be probed (P x P points).
  1848. * Not supported by non-linear delta printer bed leveling.
  1849. * Example: "G29 P4"
  1850. *
  1851. * S Set the XY travel speed between probe points (in mm/min)
  1852. *
  1853. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1854. * or clean the rotation Matrix. Useful to check the topology
  1855. * after a first run of G29.
  1856. *
  1857. * V Set the verbose level (0-4). Example: "G29 V3"
  1858. *
  1859. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1860. * This is useful for manual bed leveling and finding flaws in the bed (to
  1861. * assist with part placement).
  1862. * Not supported by non-linear delta printer bed leveling.
  1863. *
  1864. * F Set the Front limit of the probing grid
  1865. * B Set the Back limit of the probing grid
  1866. * L Set the Left limit of the probing grid
  1867. * R Set the Right limit of the probing grid
  1868. *
  1869. * Global Parameters:
  1870. *
  1871. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1872. * Include "E" to engage/disengage the probe for each sample.
  1873. * There's no extra effect if you have a fixed probe.
  1874. * Usage: "G29 E" or "G29 e"
  1875. *
  1876. */
  1877. inline void gcode_G29() {
  1878. // Don't allow auto-leveling without homing first
  1879. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1880. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1881. SERIAL_ECHO_START;
  1882. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1883. return;
  1884. }
  1885. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1886. if (verbose_level < 0 || verbose_level > 4) {
  1887. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1888. return;
  1889. }
  1890. bool dryrun = code_seen('D') || code_seen('d'),
  1891. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1892. #ifdef AUTO_BED_LEVELING_GRID
  1893. #ifndef DELTA
  1894. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1895. #endif
  1896. if (verbose_level > 0) {
  1897. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1898. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1899. }
  1900. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1901. #ifndef DELTA
  1902. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1903. if (auto_bed_leveling_grid_points < 2) {
  1904. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1905. return;
  1906. }
  1907. #endif
  1908. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1909. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1910. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1911. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1912. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1913. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1914. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1915. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1916. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1917. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1918. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1919. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1920. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1921. if (left_out || right_out || front_out || back_out) {
  1922. if (left_out) {
  1923. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1924. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1925. }
  1926. if (right_out) {
  1927. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1928. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1929. }
  1930. if (front_out) {
  1931. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1932. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1933. }
  1934. if (back_out) {
  1935. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1936. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1937. }
  1938. return;
  1939. }
  1940. #endif // AUTO_BED_LEVELING_GRID
  1941. #ifdef Z_PROBE_SLED
  1942. dock_sled(false); // engage (un-dock) the probe
  1943. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1944. deploy_z_probe();
  1945. #endif
  1946. st_synchronize();
  1947. if (!dryrun) {
  1948. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1949. plan_bed_level_matrix.set_to_identity();
  1950. #ifdef DELTA
  1951. reset_bed_level();
  1952. #else //!DELTA
  1953. //vector_3 corrected_position = plan_get_position_mm();
  1954. //corrected_position.debug("position before G29");
  1955. vector_3 uncorrected_position = plan_get_position();
  1956. //uncorrected_position.debug("position during G29");
  1957. current_position[X_AXIS] = uncorrected_position.x;
  1958. current_position[Y_AXIS] = uncorrected_position.y;
  1959. current_position[Z_AXIS] = uncorrected_position.z;
  1960. sync_plan_position();
  1961. #endif // !DELTA
  1962. }
  1963. setup_for_endstop_move();
  1964. feedrate = homing_feedrate[Z_AXIS];
  1965. #ifdef AUTO_BED_LEVELING_GRID
  1966. // probe at the points of a lattice grid
  1967. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1968. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1969. #ifdef DELTA
  1970. delta_grid_spacing[0] = xGridSpacing;
  1971. delta_grid_spacing[1] = yGridSpacing;
  1972. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1973. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1974. #else // !DELTA
  1975. // solve the plane equation ax + by + d = z
  1976. // A is the matrix with rows [x y 1] for all the probed points
  1977. // B is the vector of the Z positions
  1978. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1979. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1980. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1981. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1982. eqnBVector[abl2], // "B" vector of Z points
  1983. mean = 0.0;
  1984. #endif // !DELTA
  1985. int probePointCounter = 0;
  1986. bool zig = true;
  1987. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1988. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1989. int xStart, xStop, xInc;
  1990. if (zig) {
  1991. xStart = 0;
  1992. xStop = auto_bed_leveling_grid_points;
  1993. xInc = 1;
  1994. }
  1995. else {
  1996. xStart = auto_bed_leveling_grid_points - 1;
  1997. xStop = -1;
  1998. xInc = -1;
  1999. }
  2000. #ifndef DELTA
  2001. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2002. // This gets the probe points in more readable order.
  2003. if (!do_topography_map) zig = !zig;
  2004. #endif
  2005. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2006. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2007. // raise extruder
  2008. float measured_z,
  2009. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2010. #ifdef DELTA
  2011. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2012. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2013. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2014. #endif //DELTA
  2015. ProbeAction act;
  2016. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2017. act = ProbeDeployAndStow;
  2018. else if (yCount == 0 && xCount == xStart)
  2019. act = ProbeDeploy;
  2020. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2021. act = ProbeStow;
  2022. else
  2023. act = ProbeStay;
  2024. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2025. #ifndef DELTA
  2026. mean += measured_z;
  2027. eqnBVector[probePointCounter] = measured_z;
  2028. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2029. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2030. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2031. #else
  2032. bed_level[xCount][yCount] = measured_z + z_offset;
  2033. #endif
  2034. probePointCounter++;
  2035. manage_heater();
  2036. manage_inactivity();
  2037. lcd_update();
  2038. } //xProbe
  2039. } //yProbe
  2040. clean_up_after_endstop_move();
  2041. #ifdef DELTA
  2042. if (!dryrun) extrapolate_unprobed_bed_level();
  2043. print_bed_level();
  2044. #else // !DELTA
  2045. // solve lsq problem
  2046. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2047. mean /= abl2;
  2048. if (verbose_level) {
  2049. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2050. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2051. SERIAL_PROTOCOLPGM(" b: ");
  2052. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2053. SERIAL_PROTOCOLPGM(" d: ");
  2054. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2055. SERIAL_EOL;
  2056. if (verbose_level > 2) {
  2057. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2058. SERIAL_PROTOCOL_F(mean, 8);
  2059. SERIAL_EOL;
  2060. }
  2061. }
  2062. // Show the Topography map if enabled
  2063. if (do_topography_map) {
  2064. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2065. SERIAL_PROTOCOLPGM("+-----------+\n");
  2066. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2067. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2068. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2069. SERIAL_PROTOCOLPGM("+-----------+\n");
  2070. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2071. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2072. int ind = yy * auto_bed_leveling_grid_points + xx;
  2073. float diff = eqnBVector[ind] - mean;
  2074. if (diff >= 0.0)
  2075. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2076. else
  2077. SERIAL_PROTOCOLCHAR(' ');
  2078. SERIAL_PROTOCOL_F(diff, 5);
  2079. } // xx
  2080. SERIAL_EOL;
  2081. } // yy
  2082. SERIAL_EOL;
  2083. } //do_topography_map
  2084. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2085. free(plane_equation_coefficients);
  2086. #endif //!DELTA
  2087. #else // !AUTO_BED_LEVELING_GRID
  2088. // Actions for each probe
  2089. ProbeAction p1, p2, p3;
  2090. if (deploy_probe_for_each_reading)
  2091. p1 = p2 = p3 = ProbeDeployAndStow;
  2092. else
  2093. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2094. // Probe at 3 arbitrary points
  2095. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2096. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2097. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2098. clean_up_after_endstop_move();
  2099. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2100. #endif // !AUTO_BED_LEVELING_GRID
  2101. #ifndef DELTA
  2102. if (verbose_level > 0)
  2103. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2104. if (!dryrun) {
  2105. // Correct the Z height difference from z-probe position and hotend tip position.
  2106. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2107. // When the bed is uneven, this height must be corrected.
  2108. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2109. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2110. z_tmp = current_position[Z_AXIS],
  2111. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2112. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2113. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2114. sync_plan_position();
  2115. }
  2116. #endif // !DELTA
  2117. #ifdef Z_PROBE_SLED
  2118. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2119. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2120. stow_z_probe();
  2121. #endif
  2122. #ifdef Z_PROBE_END_SCRIPT
  2123. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2124. st_synchronize();
  2125. #endif
  2126. }
  2127. #ifndef Z_PROBE_SLED
  2128. inline void gcode_G30() {
  2129. deploy_z_probe(); // Engage Z Servo endstop if available
  2130. st_synchronize();
  2131. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2132. setup_for_endstop_move();
  2133. feedrate = homing_feedrate[Z_AXIS];
  2134. run_z_probe();
  2135. SERIAL_PROTOCOLPGM("Bed");
  2136. SERIAL_PROTOCOLPGM(" X: ");
  2137. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2138. SERIAL_PROTOCOLPGM(" Y: ");
  2139. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2140. SERIAL_PROTOCOLPGM(" Z: ");
  2141. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2142. SERIAL_EOL;
  2143. clean_up_after_endstop_move();
  2144. stow_z_probe(); // Retract Z Servo endstop if available
  2145. }
  2146. #endif //!Z_PROBE_SLED
  2147. #endif //ENABLE_AUTO_BED_LEVELING
  2148. /**
  2149. * G92: Set current position to given X Y Z E
  2150. */
  2151. inline void gcode_G92() {
  2152. if (!code_seen(axis_codes[E_AXIS]))
  2153. st_synchronize();
  2154. bool didXYZ = false;
  2155. for (int i = 0; i < NUM_AXIS; i++) {
  2156. if (code_seen(axis_codes[i])) {
  2157. float v = current_position[i] = code_value();
  2158. if (i == E_AXIS)
  2159. plan_set_e_position(v);
  2160. else
  2161. didXYZ = true;
  2162. }
  2163. }
  2164. if (didXYZ) sync_plan_position();
  2165. }
  2166. #ifdef ULTIPANEL
  2167. /**
  2168. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2169. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2170. */
  2171. inline void gcode_M0_M1() {
  2172. char *src = strchr_pointer + 2;
  2173. millis_t codenum = 0;
  2174. bool hasP = false, hasS = false;
  2175. if (code_seen('P')) {
  2176. codenum = code_value_short(); // milliseconds to wait
  2177. hasP = codenum > 0;
  2178. }
  2179. if (code_seen('S')) {
  2180. codenum = code_value_short() * 1000UL; // seconds to wait
  2181. hasS = codenum > 0;
  2182. }
  2183. char* starpos = strchr(src, '*');
  2184. if (starpos != NULL) *(starpos) = '\0';
  2185. while (*src == ' ') ++src;
  2186. if (!hasP && !hasS && *src != '\0')
  2187. lcd_setstatus(src, true);
  2188. else {
  2189. LCD_MESSAGEPGM(MSG_USERWAIT);
  2190. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2191. dontExpireStatus();
  2192. #endif
  2193. }
  2194. lcd_ignore_click();
  2195. st_synchronize();
  2196. refresh_cmd_timeout();
  2197. if (codenum > 0) {
  2198. codenum += previous_cmd_ms; // keep track of when we started waiting
  2199. while(millis() < codenum && !lcd_clicked()) {
  2200. manage_heater();
  2201. manage_inactivity();
  2202. lcd_update();
  2203. }
  2204. lcd_ignore_click(false);
  2205. }
  2206. else {
  2207. if (!lcd_detected()) return;
  2208. while (!lcd_clicked()) {
  2209. manage_heater();
  2210. manage_inactivity();
  2211. lcd_update();
  2212. }
  2213. }
  2214. if (IS_SD_PRINTING)
  2215. LCD_MESSAGEPGM(MSG_RESUMING);
  2216. else
  2217. LCD_MESSAGEPGM(WELCOME_MSG);
  2218. }
  2219. #endif // ULTIPANEL
  2220. /**
  2221. * M17: Enable power on all stepper motors
  2222. */
  2223. inline void gcode_M17() {
  2224. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2225. enable_all_steppers();
  2226. }
  2227. #ifdef SDSUPPORT
  2228. /**
  2229. * M20: List SD card to serial output
  2230. */
  2231. inline void gcode_M20() {
  2232. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2233. card.ls();
  2234. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2235. }
  2236. /**
  2237. * M21: Init SD Card
  2238. */
  2239. inline void gcode_M21() {
  2240. card.initsd();
  2241. }
  2242. /**
  2243. * M22: Release SD Card
  2244. */
  2245. inline void gcode_M22() {
  2246. card.release();
  2247. }
  2248. /**
  2249. * M23: Select a file
  2250. */
  2251. inline void gcode_M23() {
  2252. char* codepos = strchr_pointer + 4;
  2253. char* starpos = strchr(codepos, '*');
  2254. if (starpos) *starpos = '\0';
  2255. card.openFile(codepos, true);
  2256. }
  2257. /**
  2258. * M24: Start SD Print
  2259. */
  2260. inline void gcode_M24() {
  2261. card.startFileprint();
  2262. print_job_start_ms = millis();
  2263. }
  2264. /**
  2265. * M25: Pause SD Print
  2266. */
  2267. inline void gcode_M25() {
  2268. card.pauseSDPrint();
  2269. }
  2270. /**
  2271. * M26: Set SD Card file index
  2272. */
  2273. inline void gcode_M26() {
  2274. if (card.cardOK && code_seen('S'))
  2275. card.setIndex(code_value_short());
  2276. }
  2277. /**
  2278. * M27: Get SD Card status
  2279. */
  2280. inline void gcode_M27() {
  2281. card.getStatus();
  2282. }
  2283. /**
  2284. * M28: Start SD Write
  2285. */
  2286. inline void gcode_M28() {
  2287. char* codepos = strchr_pointer + 4;
  2288. char* starpos = strchr(codepos, '*');
  2289. if (starpos) {
  2290. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2291. strchr_pointer = strchr(npos, ' ') + 1;
  2292. *(starpos) = '\0';
  2293. }
  2294. card.openFile(codepos, false);
  2295. }
  2296. /**
  2297. * M29: Stop SD Write
  2298. * Processed in write to file routine above
  2299. */
  2300. inline void gcode_M29() {
  2301. // card.saving = false;
  2302. }
  2303. /**
  2304. * M30 <filename>: Delete SD Card file
  2305. */
  2306. inline void gcode_M30() {
  2307. if (card.cardOK) {
  2308. card.closefile();
  2309. char* starpos = strchr(strchr_pointer + 4, '*');
  2310. if (starpos) {
  2311. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2312. strchr_pointer = strchr(npos, ' ') + 1;
  2313. *(starpos) = '\0';
  2314. }
  2315. card.removeFile(strchr_pointer + 4);
  2316. }
  2317. }
  2318. #endif
  2319. /**
  2320. * M31: Get the time since the start of SD Print (or last M109)
  2321. */
  2322. inline void gcode_M31() {
  2323. print_job_stop_ms = millis();
  2324. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2325. int min = t / 60, sec = t % 60;
  2326. char time[30];
  2327. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2328. SERIAL_ECHO_START;
  2329. SERIAL_ECHOLN(time);
  2330. lcd_setstatus(time);
  2331. autotempShutdown();
  2332. }
  2333. #ifdef SDSUPPORT
  2334. /**
  2335. * M32: Select file and start SD Print
  2336. */
  2337. inline void gcode_M32() {
  2338. if (card.sdprinting)
  2339. st_synchronize();
  2340. char* codepos = strchr_pointer + 4;
  2341. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2342. if (! namestartpos)
  2343. namestartpos = codepos; //default name position, 4 letters after the M
  2344. else
  2345. namestartpos++; //to skip the '!'
  2346. char* starpos = strchr(codepos, '*');
  2347. if (starpos) *(starpos) = '\0';
  2348. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2349. if (card.cardOK) {
  2350. card.openFile(namestartpos, true, !call_procedure);
  2351. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2352. card.setIndex(code_value_short());
  2353. card.startFileprint();
  2354. if (!call_procedure)
  2355. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2356. }
  2357. }
  2358. /**
  2359. * M928: Start SD Write
  2360. */
  2361. inline void gcode_M928() {
  2362. char* starpos = strchr(strchr_pointer + 5, '*');
  2363. if (starpos) {
  2364. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2365. strchr_pointer = strchr(npos, ' ') + 1;
  2366. *(starpos) = '\0';
  2367. }
  2368. card.openLogFile(strchr_pointer + 5);
  2369. }
  2370. #endif // SDSUPPORT
  2371. /**
  2372. * M42: Change pin status via GCode
  2373. */
  2374. inline void gcode_M42() {
  2375. if (code_seen('S')) {
  2376. int pin_status = code_value_short(),
  2377. pin_number = LED_PIN;
  2378. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2379. pin_number = code_value_short();
  2380. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2381. if (sensitive_pins[i] == pin_number) {
  2382. pin_number = -1;
  2383. break;
  2384. }
  2385. }
  2386. #if HAS_FAN
  2387. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2388. #endif
  2389. if (pin_number > -1) {
  2390. pinMode(pin_number, OUTPUT);
  2391. digitalWrite(pin_number, pin_status);
  2392. analogWrite(pin_number, pin_status);
  2393. }
  2394. } // code_seen('S')
  2395. }
  2396. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2397. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2398. #ifdef Z_PROBE_ENDSTOP
  2399. #if !HAS_Z_PROBE
  2400. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2401. #endif
  2402. #elif !HAS_Z_MIN
  2403. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2404. #endif
  2405. /**
  2406. * M48: Z-Probe repeatability measurement function.
  2407. *
  2408. * Usage:
  2409. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2410. * P = Number of sampled points (4-50, default 10)
  2411. * X = Sample X position
  2412. * Y = Sample Y position
  2413. * V = Verbose level (0-4, default=1)
  2414. * E = Engage probe for each reading
  2415. * L = Number of legs of movement before probe
  2416. *
  2417. * This function assumes the bed has been homed. Specifically, that a G28 command
  2418. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2419. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2420. * regenerated.
  2421. */
  2422. inline void gcode_M48() {
  2423. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2424. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2425. if (code_seen('V') || code_seen('v')) {
  2426. verbose_level = code_value_short();
  2427. if (verbose_level < 0 || verbose_level > 4 ) {
  2428. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2429. return;
  2430. }
  2431. }
  2432. if (verbose_level > 0)
  2433. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2434. if (code_seen('P') || code_seen('p')) {
  2435. n_samples = code_value_short();
  2436. if (n_samples < 4 || n_samples > 50) {
  2437. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2438. return;
  2439. }
  2440. }
  2441. double X_current = st_get_position_mm(X_AXIS),
  2442. Y_current = st_get_position_mm(Y_AXIS),
  2443. Z_current = st_get_position_mm(Z_AXIS),
  2444. E_current = st_get_position_mm(E_AXIS),
  2445. X_probe_location = X_current, Y_probe_location = Y_current,
  2446. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2447. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2448. if (code_seen('X') || code_seen('x')) {
  2449. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2450. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2451. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2452. return;
  2453. }
  2454. }
  2455. if (code_seen('Y') || code_seen('y')) {
  2456. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2457. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2458. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2459. return;
  2460. }
  2461. }
  2462. if (code_seen('L') || code_seen('l')) {
  2463. n_legs = code_value_short();
  2464. if (n_legs == 1) n_legs = 2;
  2465. if (n_legs < 0 || n_legs > 15) {
  2466. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2467. return;
  2468. }
  2469. }
  2470. //
  2471. // Do all the preliminary setup work. First raise the probe.
  2472. //
  2473. st_synchronize();
  2474. plan_bed_level_matrix.set_to_identity();
  2475. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2476. st_synchronize();
  2477. //
  2478. // Now get everything to the specified probe point So we can safely do a probe to
  2479. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2480. // use that as a starting point for each probe.
  2481. //
  2482. if (verbose_level > 2)
  2483. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2484. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2485. E_current,
  2486. homing_feedrate[X_AXIS]/60,
  2487. active_extruder);
  2488. st_synchronize();
  2489. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2490. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2491. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2492. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2493. //
  2494. // OK, do the inital probe to get us close to the bed.
  2495. // Then retrace the right amount and use that in subsequent probes
  2496. //
  2497. deploy_z_probe();
  2498. setup_for_endstop_move();
  2499. run_z_probe();
  2500. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2501. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2502. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2503. E_current,
  2504. homing_feedrate[X_AXIS]/60,
  2505. active_extruder);
  2506. st_synchronize();
  2507. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2508. if (deploy_probe_for_each_reading) stow_z_probe();
  2509. for (uint8_t n=0; n < n_samples; n++) {
  2510. // Make sure we are at the probe location
  2511. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2512. if (n_legs) {
  2513. millis_t ms = millis();
  2514. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2515. theta = RADIANS(ms % 360L);
  2516. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2517. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2518. //SERIAL_ECHOPAIR(" theta: ",theta);
  2519. //SERIAL_ECHOPAIR(" direction: ",dir);
  2520. //SERIAL_EOL;
  2521. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2522. ms = millis();
  2523. theta += RADIANS(dir * (ms % 20L));
  2524. radius += (ms % 10L) - 5L;
  2525. if (radius < 0.0) radius = -radius;
  2526. X_current = X_probe_location + cos(theta) * radius;
  2527. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2528. Y_current = Y_probe_location + sin(theta) * radius;
  2529. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2530. if (verbose_level > 3) {
  2531. SERIAL_ECHOPAIR("x: ", X_current);
  2532. SERIAL_ECHOPAIR("y: ", Y_current);
  2533. SERIAL_EOL;
  2534. }
  2535. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2536. } // n_legs loop
  2537. // Go back to the probe location
  2538. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2539. } // n_legs
  2540. if (deploy_probe_for_each_reading) {
  2541. deploy_z_probe();
  2542. delay(1000);
  2543. }
  2544. setup_for_endstop_move();
  2545. run_z_probe();
  2546. sample_set[n] = current_position[Z_AXIS];
  2547. //
  2548. // Get the current mean for the data points we have so far
  2549. //
  2550. sum = 0.0;
  2551. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2552. mean = sum / (n + 1);
  2553. //
  2554. // Now, use that mean to calculate the standard deviation for the
  2555. // data points we have so far
  2556. //
  2557. sum = 0.0;
  2558. for (uint8_t j = 0; j <= n; j++) {
  2559. float ss = sample_set[j] - mean;
  2560. sum += ss * ss;
  2561. }
  2562. sigma = sqrt(sum / (n + 1));
  2563. if (verbose_level > 1) {
  2564. SERIAL_PROTOCOL(n+1);
  2565. SERIAL_PROTOCOLPGM(" of ");
  2566. SERIAL_PROTOCOL(n_samples);
  2567. SERIAL_PROTOCOLPGM(" z: ");
  2568. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2569. if (verbose_level > 2) {
  2570. SERIAL_PROTOCOLPGM(" mean: ");
  2571. SERIAL_PROTOCOL_F(mean,6);
  2572. SERIAL_PROTOCOLPGM(" sigma: ");
  2573. SERIAL_PROTOCOL_F(sigma,6);
  2574. }
  2575. }
  2576. if (verbose_level > 0) SERIAL_EOL;
  2577. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2578. st_synchronize();
  2579. if (deploy_probe_for_each_reading) {
  2580. stow_z_probe();
  2581. delay(1000);
  2582. }
  2583. }
  2584. if (!deploy_probe_for_each_reading) {
  2585. stow_z_probe();
  2586. delay(1000);
  2587. }
  2588. clean_up_after_endstop_move();
  2589. // enable_endstops(true);
  2590. if (verbose_level > 0) {
  2591. SERIAL_PROTOCOLPGM("Mean: ");
  2592. SERIAL_PROTOCOL_F(mean, 6);
  2593. SERIAL_EOL;
  2594. }
  2595. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2596. SERIAL_PROTOCOL_F(sigma, 6);
  2597. SERIAL_EOL; SERIAL_EOL;
  2598. }
  2599. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2600. /**
  2601. * M104: Set hot end temperature
  2602. */
  2603. inline void gcode_M104() {
  2604. if (setTargetedHotend(104)) return;
  2605. if (code_seen('S')) {
  2606. float temp = code_value();
  2607. setTargetHotend(temp, target_extruder);
  2608. #ifdef DUAL_X_CARRIAGE
  2609. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2610. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2611. #endif
  2612. setWatch();
  2613. }
  2614. }
  2615. /**
  2616. * M105: Read hot end and bed temperature
  2617. */
  2618. inline void gcode_M105() {
  2619. if (setTargetedHotend(105)) return;
  2620. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2621. SERIAL_PROTOCOLPGM("ok");
  2622. #if HAS_TEMP_0
  2623. SERIAL_PROTOCOLPGM(" T:");
  2624. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2625. SERIAL_PROTOCOLPGM(" /");
  2626. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2627. #endif
  2628. #if HAS_TEMP_BED
  2629. SERIAL_PROTOCOLPGM(" B:");
  2630. SERIAL_PROTOCOL_F(degBed(), 1);
  2631. SERIAL_PROTOCOLPGM(" /");
  2632. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2633. #endif
  2634. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2635. SERIAL_PROTOCOLPGM(" T");
  2636. SERIAL_PROTOCOL(e);
  2637. SERIAL_PROTOCOLCHAR(':');
  2638. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2639. SERIAL_PROTOCOLPGM(" /");
  2640. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2641. }
  2642. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2643. SERIAL_ERROR_START;
  2644. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2645. #endif
  2646. SERIAL_PROTOCOLPGM(" @:");
  2647. #ifdef EXTRUDER_WATTS
  2648. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2649. SERIAL_PROTOCOLCHAR('W');
  2650. #else
  2651. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2652. #endif
  2653. SERIAL_PROTOCOLPGM(" B@:");
  2654. #ifdef BED_WATTS
  2655. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2656. SERIAL_PROTOCOLCHAR('W');
  2657. #else
  2658. SERIAL_PROTOCOL(getHeaterPower(-1));
  2659. #endif
  2660. #ifdef SHOW_TEMP_ADC_VALUES
  2661. #if HAS_TEMP_BED
  2662. SERIAL_PROTOCOLPGM(" ADC B:");
  2663. SERIAL_PROTOCOL_F(degBed(),1);
  2664. SERIAL_PROTOCOLPGM("C->");
  2665. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2666. #endif
  2667. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2668. SERIAL_PROTOCOLPGM(" T");
  2669. SERIAL_PROTOCOL(cur_extruder);
  2670. SERIAL_PROTOCOLCHAR(':');
  2671. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2672. SERIAL_PROTOCOLPGM("C->");
  2673. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2674. }
  2675. #endif
  2676. SERIAL_EOL;
  2677. }
  2678. #if HAS_FAN
  2679. /**
  2680. * M106: Set Fan Speed
  2681. */
  2682. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2683. /**
  2684. * M107: Fan Off
  2685. */
  2686. inline void gcode_M107() { fanSpeed = 0; }
  2687. #endif // HAS_FAN
  2688. /**
  2689. * M109: Wait for extruder(s) to reach temperature
  2690. */
  2691. inline void gcode_M109() {
  2692. if (setTargetedHotend(109)) return;
  2693. LCD_MESSAGEPGM(MSG_HEATING);
  2694. no_wait_for_cooling = code_seen('S');
  2695. if (no_wait_for_cooling || code_seen('R')) {
  2696. float temp = code_value();
  2697. setTargetHotend(temp, target_extruder);
  2698. #ifdef DUAL_X_CARRIAGE
  2699. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2700. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2701. #endif
  2702. }
  2703. #ifdef AUTOTEMP
  2704. autotemp_enabled = code_seen('F');
  2705. if (autotemp_enabled) autotemp_factor = code_value();
  2706. if (code_seen('S')) autotemp_min = code_value();
  2707. if (code_seen('B')) autotemp_max = code_value();
  2708. #endif
  2709. setWatch();
  2710. millis_t temp_ms = millis();
  2711. /* See if we are heating up or cooling down */
  2712. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2713. cancel_heatup = false;
  2714. #ifdef TEMP_RESIDENCY_TIME
  2715. long residency_start_ms = -1;
  2716. /* continue to loop until we have reached the target temp
  2717. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2718. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2719. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2720. #else
  2721. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2722. #endif //TEMP_RESIDENCY_TIME
  2723. { // while loop
  2724. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2725. SERIAL_PROTOCOLPGM("T:");
  2726. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2727. SERIAL_PROTOCOLPGM(" E:");
  2728. SERIAL_PROTOCOL((int)target_extruder);
  2729. #ifdef TEMP_RESIDENCY_TIME
  2730. SERIAL_PROTOCOLPGM(" W:");
  2731. if (residency_start_ms > -1) {
  2732. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2733. SERIAL_PROTOCOLLN(temp_ms);
  2734. }
  2735. else {
  2736. SERIAL_PROTOCOLLNPGM("?");
  2737. }
  2738. #else
  2739. SERIAL_EOL;
  2740. #endif
  2741. temp_ms = millis();
  2742. }
  2743. manage_heater();
  2744. manage_inactivity();
  2745. lcd_update();
  2746. #ifdef TEMP_RESIDENCY_TIME
  2747. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2748. // or when current temp falls outside the hysteresis after target temp was reached
  2749. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2750. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2751. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2752. {
  2753. residency_start_ms = millis();
  2754. }
  2755. #endif //TEMP_RESIDENCY_TIME
  2756. }
  2757. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2758. refresh_cmd_timeout();
  2759. print_job_start_ms = previous_cmd_ms;
  2760. }
  2761. #if HAS_TEMP_BED
  2762. /**
  2763. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2764. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2765. */
  2766. inline void gcode_M190() {
  2767. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2768. no_wait_for_cooling = code_seen('S');
  2769. if (no_wait_for_cooling || code_seen('R'))
  2770. setTargetBed(code_value());
  2771. millis_t temp_ms = millis();
  2772. cancel_heatup = false;
  2773. target_direction = isHeatingBed(); // true if heating, false if cooling
  2774. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2775. millis_t ms = millis();
  2776. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2777. temp_ms = ms;
  2778. float tt = degHotend(active_extruder);
  2779. SERIAL_PROTOCOLPGM("T:");
  2780. SERIAL_PROTOCOL(tt);
  2781. SERIAL_PROTOCOLPGM(" E:");
  2782. SERIAL_PROTOCOL((int)active_extruder);
  2783. SERIAL_PROTOCOLPGM(" B:");
  2784. SERIAL_PROTOCOL_F(degBed(), 1);
  2785. SERIAL_EOL;
  2786. }
  2787. manage_heater();
  2788. manage_inactivity();
  2789. lcd_update();
  2790. }
  2791. LCD_MESSAGEPGM(MSG_BED_DONE);
  2792. refresh_cmd_timeout();
  2793. }
  2794. #endif // HAS_TEMP_BED
  2795. /**
  2796. * M111: Set the debug level
  2797. */
  2798. inline void gcode_M111() {
  2799. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2800. }
  2801. /**
  2802. * M112: Emergency Stop
  2803. */
  2804. inline void gcode_M112() { kill(); }
  2805. #ifdef BARICUDA
  2806. #if HAS_HEATER_1
  2807. /**
  2808. * M126: Heater 1 valve open
  2809. */
  2810. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2811. /**
  2812. * M127: Heater 1 valve close
  2813. */
  2814. inline void gcode_M127() { ValvePressure = 0; }
  2815. #endif
  2816. #if HAS_HEATER_2
  2817. /**
  2818. * M128: Heater 2 valve open
  2819. */
  2820. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2821. /**
  2822. * M129: Heater 2 valve close
  2823. */
  2824. inline void gcode_M129() { EtoPPressure = 0; }
  2825. #endif
  2826. #endif //BARICUDA
  2827. /**
  2828. * M140: Set bed temperature
  2829. */
  2830. inline void gcode_M140() {
  2831. if (code_seen('S')) setTargetBed(code_value());
  2832. }
  2833. #if HAS_POWER_SWITCH
  2834. /**
  2835. * M80: Turn on Power Supply
  2836. */
  2837. inline void gcode_M80() {
  2838. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2839. // If you have a switch on suicide pin, this is useful
  2840. // if you want to start another print with suicide feature after
  2841. // a print without suicide...
  2842. #if HAS_SUICIDE
  2843. OUT_WRITE(SUICIDE_PIN, HIGH);
  2844. #endif
  2845. #ifdef ULTIPANEL
  2846. powersupply = true;
  2847. LCD_MESSAGEPGM(WELCOME_MSG);
  2848. lcd_update();
  2849. #endif
  2850. }
  2851. #endif // HAS_POWER_SWITCH
  2852. /**
  2853. * M81: Turn off Power, including Power Supply, if there is one.
  2854. *
  2855. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2856. */
  2857. inline void gcode_M81() {
  2858. disable_all_heaters();
  2859. st_synchronize();
  2860. disable_e0();
  2861. disable_e1();
  2862. disable_e2();
  2863. disable_e3();
  2864. finishAndDisableSteppers();
  2865. fanSpeed = 0;
  2866. delay(1000); // Wait 1 second before switching off
  2867. #if HAS_SUICIDE
  2868. st_synchronize();
  2869. suicide();
  2870. #elif HAS_POWER_SWITCH
  2871. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2872. #endif
  2873. #ifdef ULTIPANEL
  2874. #if HAS_POWER_SWITCH
  2875. powersupply = false;
  2876. #endif
  2877. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2878. lcd_update();
  2879. #endif
  2880. }
  2881. /**
  2882. * M82: Set E codes absolute (default)
  2883. */
  2884. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2885. /**
  2886. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2887. */
  2888. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2889. /**
  2890. * M18, M84: Disable all stepper motors
  2891. */
  2892. inline void gcode_M18_M84() {
  2893. if (code_seen('S')) {
  2894. stepper_inactive_time = code_value() * 1000;
  2895. }
  2896. else {
  2897. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2898. if (all_axis) {
  2899. st_synchronize();
  2900. disable_e0();
  2901. disable_e1();
  2902. disable_e2();
  2903. disable_e3();
  2904. finishAndDisableSteppers();
  2905. }
  2906. else {
  2907. st_synchronize();
  2908. if (code_seen('X')) disable_x();
  2909. if (code_seen('Y')) disable_y();
  2910. if (code_seen('Z')) disable_z();
  2911. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2912. if (code_seen('E')) {
  2913. disable_e0();
  2914. disable_e1();
  2915. disable_e2();
  2916. disable_e3();
  2917. }
  2918. #endif
  2919. }
  2920. }
  2921. }
  2922. /**
  2923. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2924. */
  2925. inline void gcode_M85() {
  2926. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2927. }
  2928. /**
  2929. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2930. */
  2931. inline void gcode_M92() {
  2932. for(int8_t i=0; i < NUM_AXIS; i++) {
  2933. if (code_seen(axis_codes[i])) {
  2934. if (i == E_AXIS) {
  2935. float value = code_value();
  2936. if (value < 20.0) {
  2937. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2938. max_e_jerk *= factor;
  2939. max_feedrate[i] *= factor;
  2940. axis_steps_per_sqr_second[i] *= factor;
  2941. }
  2942. axis_steps_per_unit[i] = value;
  2943. }
  2944. else {
  2945. axis_steps_per_unit[i] = code_value();
  2946. }
  2947. }
  2948. }
  2949. }
  2950. /**
  2951. * M114: Output current position to serial port
  2952. */
  2953. inline void gcode_M114() {
  2954. SERIAL_PROTOCOLPGM("X:");
  2955. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2956. SERIAL_PROTOCOLPGM(" Y:");
  2957. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2958. SERIAL_PROTOCOLPGM(" Z:");
  2959. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2960. SERIAL_PROTOCOLPGM(" E:");
  2961. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2962. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2963. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2964. SERIAL_PROTOCOLPGM(" Y:");
  2965. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2966. SERIAL_PROTOCOLPGM(" Z:");
  2967. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2968. SERIAL_EOL;
  2969. #ifdef SCARA
  2970. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2971. SERIAL_PROTOCOL(delta[X_AXIS]);
  2972. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2973. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2974. SERIAL_EOL;
  2975. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2976. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2977. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2978. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2979. SERIAL_EOL;
  2980. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2981. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2982. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2983. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2984. SERIAL_EOL; SERIAL_EOL;
  2985. #endif
  2986. }
  2987. /**
  2988. * M115: Capabilities string
  2989. */
  2990. inline void gcode_M115() {
  2991. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2992. }
  2993. /**
  2994. * M117: Set LCD Status Message
  2995. */
  2996. inline void gcode_M117() {
  2997. char* codepos = strchr_pointer + 5;
  2998. char* starpos = strchr(codepos, '*');
  2999. if (starpos) *starpos = '\0';
  3000. lcd_setstatus(codepos);
  3001. }
  3002. /**
  3003. * M119: Output endstop states to serial output
  3004. */
  3005. inline void gcode_M119() {
  3006. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3007. #if HAS_X_MIN
  3008. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3009. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3010. #endif
  3011. #if HAS_X_MAX
  3012. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3013. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3014. #endif
  3015. #if HAS_Y_MIN
  3016. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3017. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3018. #endif
  3019. #if HAS_Y_MAX
  3020. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3021. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3022. #endif
  3023. #if HAS_Z_MIN
  3024. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3025. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3026. #endif
  3027. #if HAS_Z_MAX
  3028. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3029. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3030. #endif
  3031. #if HAS_Z2_MAX
  3032. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3033. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3034. #endif
  3035. #if HAS_Z_PROBE
  3036. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3037. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3038. #endif
  3039. }
  3040. /**
  3041. * M120: Enable endstops
  3042. */
  3043. inline void gcode_M120() { enable_endstops(false); }
  3044. /**
  3045. * M121: Disable endstops
  3046. */
  3047. inline void gcode_M121() { enable_endstops(true); }
  3048. #ifdef BLINKM
  3049. /**
  3050. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3051. */
  3052. inline void gcode_M150() {
  3053. SendColors(
  3054. code_seen('R') ? (byte)code_value_short() : 0,
  3055. code_seen('U') ? (byte)code_value_short() : 0,
  3056. code_seen('B') ? (byte)code_value_short() : 0
  3057. );
  3058. }
  3059. #endif // BLINKM
  3060. /**
  3061. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3062. * T<extruder>
  3063. * D<millimeters>
  3064. */
  3065. inline void gcode_M200() {
  3066. int tmp_extruder = active_extruder;
  3067. if (code_seen('T')) {
  3068. tmp_extruder = code_value_short();
  3069. if (tmp_extruder >= EXTRUDERS) {
  3070. SERIAL_ECHO_START;
  3071. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3072. return;
  3073. }
  3074. }
  3075. if (code_seen('D')) {
  3076. float diameter = code_value();
  3077. // setting any extruder filament size disables volumetric on the assumption that
  3078. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3079. // for all extruders
  3080. volumetric_enabled = (diameter != 0.0);
  3081. if (volumetric_enabled) {
  3082. filament_size[tmp_extruder] = diameter;
  3083. // make sure all extruders have some sane value for the filament size
  3084. for (int i=0; i<EXTRUDERS; i++)
  3085. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3086. }
  3087. }
  3088. else {
  3089. //reserved for setting filament diameter via UFID or filament measuring device
  3090. return;
  3091. }
  3092. calculate_volumetric_multipliers();
  3093. }
  3094. /**
  3095. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3096. */
  3097. inline void gcode_M201() {
  3098. for (int8_t i=0; i < NUM_AXIS; i++) {
  3099. if (code_seen(axis_codes[i])) {
  3100. max_acceleration_units_per_sq_second[i] = code_value();
  3101. }
  3102. }
  3103. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3104. reset_acceleration_rates();
  3105. }
  3106. #if 0 // Not used for Sprinter/grbl gen6
  3107. inline void gcode_M202() {
  3108. for(int8_t i=0; i < NUM_AXIS; i++) {
  3109. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3110. }
  3111. }
  3112. #endif
  3113. /**
  3114. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3115. */
  3116. inline void gcode_M203() {
  3117. for (int8_t i=0; i < NUM_AXIS; i++) {
  3118. if (code_seen(axis_codes[i])) {
  3119. max_feedrate[i] = code_value();
  3120. }
  3121. }
  3122. }
  3123. /**
  3124. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3125. *
  3126. * P = Printing moves
  3127. * R = Retract only (no X, Y, Z) moves
  3128. * T = Travel (non printing) moves
  3129. *
  3130. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3131. */
  3132. inline void gcode_M204() {
  3133. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3134. acceleration = code_value();
  3135. travel_acceleration = acceleration;
  3136. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3137. SERIAL_EOL;
  3138. }
  3139. if (code_seen('P')) {
  3140. acceleration = code_value();
  3141. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3142. SERIAL_EOL;
  3143. }
  3144. if (code_seen('R')) {
  3145. retract_acceleration = code_value();
  3146. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3147. SERIAL_EOL;
  3148. }
  3149. if (code_seen('T')) {
  3150. travel_acceleration = code_value();
  3151. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3152. SERIAL_EOL;
  3153. }
  3154. }
  3155. /**
  3156. * M205: Set Advanced Settings
  3157. *
  3158. * S = Min Feed Rate (mm/s)
  3159. * T = Min Travel Feed Rate (mm/s)
  3160. * B = Min Segment Time (µs)
  3161. * X = Max XY Jerk (mm/s/s)
  3162. * Z = Max Z Jerk (mm/s/s)
  3163. * E = Max E Jerk (mm/s/s)
  3164. */
  3165. inline void gcode_M205() {
  3166. if (code_seen('S')) minimumfeedrate = code_value();
  3167. if (code_seen('T')) mintravelfeedrate = code_value();
  3168. if (code_seen('B')) minsegmenttime = code_value();
  3169. if (code_seen('X')) max_xy_jerk = code_value();
  3170. if (code_seen('Z')) max_z_jerk = code_value();
  3171. if (code_seen('E')) max_e_jerk = code_value();
  3172. }
  3173. /**
  3174. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3175. */
  3176. inline void gcode_M206() {
  3177. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3178. if (code_seen(axis_codes[i])) {
  3179. home_offset[i] = code_value();
  3180. }
  3181. }
  3182. #ifdef SCARA
  3183. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3184. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3185. #endif
  3186. }
  3187. #ifdef DELTA
  3188. /**
  3189. * M665: Set delta configurations
  3190. *
  3191. * L = diagonal rod
  3192. * R = delta radius
  3193. * S = segments per second
  3194. */
  3195. inline void gcode_M665() {
  3196. if (code_seen('L')) delta_diagonal_rod = code_value();
  3197. if (code_seen('R')) delta_radius = code_value();
  3198. if (code_seen('S')) delta_segments_per_second = code_value();
  3199. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3200. }
  3201. /**
  3202. * M666: Set delta endstop adjustment
  3203. */
  3204. inline void gcode_M666() {
  3205. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3206. if (code_seen(axis_codes[i])) {
  3207. endstop_adj[i] = code_value();
  3208. }
  3209. }
  3210. }
  3211. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3212. /**
  3213. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3214. */
  3215. inline void gcode_M666() {
  3216. if (code_seen('Z')) z_endstop_adj = code_value();
  3217. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3218. SERIAL_EOL;
  3219. }
  3220. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3221. #ifdef FWRETRACT
  3222. /**
  3223. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3224. */
  3225. inline void gcode_M207() {
  3226. if (code_seen('S')) retract_length = code_value();
  3227. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3228. if (code_seen('Z')) retract_zlift = code_value();
  3229. }
  3230. /**
  3231. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3232. */
  3233. inline void gcode_M208() {
  3234. if (code_seen('S')) retract_recover_length = code_value();
  3235. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3236. }
  3237. /**
  3238. * M209: Enable automatic retract (M209 S1)
  3239. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3240. */
  3241. inline void gcode_M209() {
  3242. if (code_seen('S')) {
  3243. int t = code_value_short();
  3244. switch(t) {
  3245. case 0:
  3246. autoretract_enabled = false;
  3247. break;
  3248. case 1:
  3249. autoretract_enabled = true;
  3250. break;
  3251. default:
  3252. SERIAL_ECHO_START;
  3253. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3254. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3255. SERIAL_ECHOLNPGM("\"");
  3256. return;
  3257. }
  3258. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3259. }
  3260. }
  3261. #endif // FWRETRACT
  3262. #if EXTRUDERS > 1
  3263. /**
  3264. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3265. */
  3266. inline void gcode_M218() {
  3267. if (setTargetedHotend(218)) return;
  3268. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3269. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3270. #ifdef DUAL_X_CARRIAGE
  3271. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3272. #endif
  3273. SERIAL_ECHO_START;
  3274. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3275. for (int e = 0; e < EXTRUDERS; e++) {
  3276. SERIAL_CHAR(' ');
  3277. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3278. SERIAL_CHAR(',');
  3279. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3280. #ifdef DUAL_X_CARRIAGE
  3281. SERIAL_CHAR(',');
  3282. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3283. #endif
  3284. }
  3285. SERIAL_EOL;
  3286. }
  3287. #endif // EXTRUDERS > 1
  3288. /**
  3289. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3290. */
  3291. inline void gcode_M220() {
  3292. if (code_seen('S')) feedrate_multiplier = code_value();
  3293. }
  3294. /**
  3295. * M221: Set extrusion percentage (M221 T0 S95)
  3296. */
  3297. inline void gcode_M221() {
  3298. if (code_seen('S')) {
  3299. int sval = code_value();
  3300. if (code_seen('T')) {
  3301. if (setTargetedHotend(221)) return;
  3302. extruder_multiply[target_extruder] = sval;
  3303. }
  3304. else {
  3305. extruder_multiply[active_extruder] = sval;
  3306. }
  3307. }
  3308. }
  3309. /**
  3310. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3311. */
  3312. inline void gcode_M226() {
  3313. if (code_seen('P')) {
  3314. int pin_number = code_value();
  3315. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3316. if (pin_state >= -1 && pin_state <= 1) {
  3317. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3318. if (sensitive_pins[i] == pin_number) {
  3319. pin_number = -1;
  3320. break;
  3321. }
  3322. }
  3323. if (pin_number > -1) {
  3324. int target = LOW;
  3325. st_synchronize();
  3326. pinMode(pin_number, INPUT);
  3327. switch(pin_state){
  3328. case 1:
  3329. target = HIGH;
  3330. break;
  3331. case 0:
  3332. target = LOW;
  3333. break;
  3334. case -1:
  3335. target = !digitalRead(pin_number);
  3336. break;
  3337. }
  3338. while(digitalRead(pin_number) != target) {
  3339. manage_heater();
  3340. manage_inactivity();
  3341. lcd_update();
  3342. }
  3343. } // pin_number > -1
  3344. } // pin_state -1 0 1
  3345. } // code_seen('P')
  3346. }
  3347. #if NUM_SERVOS > 0
  3348. /**
  3349. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3350. */
  3351. inline void gcode_M280() {
  3352. int servo_index = code_seen('P') ? code_value() : -1;
  3353. int servo_position = 0;
  3354. if (code_seen('S')) {
  3355. servo_position = code_value();
  3356. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3357. #if SERVO_LEVELING
  3358. servo[servo_index].attach(0);
  3359. #endif
  3360. servo[servo_index].write(servo_position);
  3361. #if SERVO_LEVELING
  3362. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3363. servo[servo_index].detach();
  3364. #endif
  3365. }
  3366. else {
  3367. SERIAL_ECHO_START;
  3368. SERIAL_ECHO("Servo ");
  3369. SERIAL_ECHO(servo_index);
  3370. SERIAL_ECHOLN(" out of range");
  3371. }
  3372. }
  3373. else if (servo_index >= 0) {
  3374. SERIAL_PROTOCOL(MSG_OK);
  3375. SERIAL_PROTOCOL(" Servo ");
  3376. SERIAL_PROTOCOL(servo_index);
  3377. SERIAL_PROTOCOL(": ");
  3378. SERIAL_PROTOCOL(servo[servo_index].read());
  3379. SERIAL_EOL;
  3380. }
  3381. }
  3382. #endif // NUM_SERVOS > 0
  3383. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  3384. /**
  3385. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3386. */
  3387. inline void gcode_M300() {
  3388. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3389. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3390. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3391. lcd_buzz(beepP, beepS);
  3392. }
  3393. #endif // BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER
  3394. #ifdef PIDTEMP
  3395. /**
  3396. * M301: Set PID parameters P I D (and optionally C)
  3397. */
  3398. inline void gcode_M301() {
  3399. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3400. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3401. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3402. if (e < EXTRUDERS) { // catch bad input value
  3403. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3404. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3405. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3406. #ifdef PID_ADD_EXTRUSION_RATE
  3407. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3408. #endif
  3409. updatePID();
  3410. SERIAL_PROTOCOL(MSG_OK);
  3411. #ifdef PID_PARAMS_PER_EXTRUDER
  3412. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3413. SERIAL_PROTOCOL(e);
  3414. #endif // PID_PARAMS_PER_EXTRUDER
  3415. SERIAL_PROTOCOL(" p:");
  3416. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3417. SERIAL_PROTOCOL(" i:");
  3418. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3419. SERIAL_PROTOCOL(" d:");
  3420. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3421. #ifdef PID_ADD_EXTRUSION_RATE
  3422. SERIAL_PROTOCOL(" c:");
  3423. //Kc does not have scaling applied above, or in resetting defaults
  3424. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3425. #endif
  3426. SERIAL_EOL;
  3427. }
  3428. else {
  3429. SERIAL_ECHO_START;
  3430. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3431. }
  3432. }
  3433. #endif // PIDTEMP
  3434. #ifdef PIDTEMPBED
  3435. inline void gcode_M304() {
  3436. if (code_seen('P')) bedKp = code_value();
  3437. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3438. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3439. updatePID();
  3440. SERIAL_PROTOCOL(MSG_OK);
  3441. SERIAL_PROTOCOL(" p:");
  3442. SERIAL_PROTOCOL(bedKp);
  3443. SERIAL_PROTOCOL(" i:");
  3444. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3445. SERIAL_PROTOCOL(" d:");
  3446. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3447. SERIAL_EOL;
  3448. }
  3449. #endif // PIDTEMPBED
  3450. #if defined(CHDK) || HAS_PHOTOGRAPH
  3451. /**
  3452. * M240: Trigger a camera by emulating a Canon RC-1
  3453. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3454. */
  3455. inline void gcode_M240() {
  3456. #ifdef CHDK
  3457. OUT_WRITE(CHDK, HIGH);
  3458. chdkHigh = millis();
  3459. chdkActive = true;
  3460. #elif HAS_PHOTOGRAPH
  3461. const uint8_t NUM_PULSES = 16;
  3462. const float PULSE_LENGTH = 0.01524;
  3463. for (int i = 0; i < NUM_PULSES; i++) {
  3464. WRITE(PHOTOGRAPH_PIN, HIGH);
  3465. _delay_ms(PULSE_LENGTH);
  3466. WRITE(PHOTOGRAPH_PIN, LOW);
  3467. _delay_ms(PULSE_LENGTH);
  3468. }
  3469. delay(7.33);
  3470. for (int i = 0; i < NUM_PULSES; i++) {
  3471. WRITE(PHOTOGRAPH_PIN, HIGH);
  3472. _delay_ms(PULSE_LENGTH);
  3473. WRITE(PHOTOGRAPH_PIN, LOW);
  3474. _delay_ms(PULSE_LENGTH);
  3475. }
  3476. #endif // !CHDK && HAS_PHOTOGRAPH
  3477. }
  3478. #endif // CHDK || PHOTOGRAPH_PIN
  3479. #ifdef HAS_LCD_CONTRAST
  3480. /**
  3481. * M250: Read and optionally set the LCD contrast
  3482. */
  3483. inline void gcode_M250() {
  3484. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3485. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3486. SERIAL_PROTOCOL(lcd_contrast);
  3487. SERIAL_EOL;
  3488. }
  3489. #endif // HAS_LCD_CONTRAST
  3490. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3491. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3492. /**
  3493. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3494. */
  3495. inline void gcode_M302() {
  3496. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3497. }
  3498. #endif // PREVENT_DANGEROUS_EXTRUDE
  3499. /**
  3500. * M303: PID relay autotune
  3501. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3502. * E<extruder> (-1 for the bed)
  3503. * C<cycles>
  3504. */
  3505. inline void gcode_M303() {
  3506. int e = code_seen('E') ? code_value_short() : 0;
  3507. int c = code_seen('C') ? code_value_short() : 5;
  3508. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3509. PID_autotune(temp, e, c);
  3510. }
  3511. #ifdef SCARA
  3512. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3513. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3514. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3515. if (IsRunning()) {
  3516. //get_coordinates(); // For X Y Z E F
  3517. delta[X_AXIS] = delta_x;
  3518. delta[Y_AXIS] = delta_y;
  3519. calculate_SCARA_forward_Transform(delta);
  3520. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3521. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3522. prepare_move();
  3523. //ClearToSend();
  3524. return true;
  3525. }
  3526. return false;
  3527. }
  3528. /**
  3529. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3530. */
  3531. inline bool gcode_M360() {
  3532. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3533. return SCARA_move_to_cal(0, 120);
  3534. }
  3535. /**
  3536. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3537. */
  3538. inline bool gcode_M361() {
  3539. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3540. return SCARA_move_to_cal(90, 130);
  3541. }
  3542. /**
  3543. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3544. */
  3545. inline bool gcode_M362() {
  3546. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3547. return SCARA_move_to_cal(60, 180);
  3548. }
  3549. /**
  3550. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3551. */
  3552. inline bool gcode_M363() {
  3553. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3554. return SCARA_move_to_cal(50, 90);
  3555. }
  3556. /**
  3557. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3558. */
  3559. inline bool gcode_M364() {
  3560. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3561. return SCARA_move_to_cal(45, 135);
  3562. }
  3563. /**
  3564. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3565. */
  3566. inline void gcode_M365() {
  3567. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3568. if (code_seen(axis_codes[i])) {
  3569. axis_scaling[i] = code_value();
  3570. }
  3571. }
  3572. }
  3573. #endif // SCARA
  3574. #ifdef EXT_SOLENOID
  3575. void enable_solenoid(uint8_t num) {
  3576. switch(num) {
  3577. case 0:
  3578. OUT_WRITE(SOL0_PIN, HIGH);
  3579. break;
  3580. #if HAS_SOLENOID_1
  3581. case 1:
  3582. OUT_WRITE(SOL1_PIN, HIGH);
  3583. break;
  3584. #endif
  3585. #if HAS_SOLENOID_2
  3586. case 2:
  3587. OUT_WRITE(SOL2_PIN, HIGH);
  3588. break;
  3589. #endif
  3590. #if HAS_SOLENOID_3
  3591. case 3:
  3592. OUT_WRITE(SOL3_PIN, HIGH);
  3593. break;
  3594. #endif
  3595. default:
  3596. SERIAL_ECHO_START;
  3597. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3598. break;
  3599. }
  3600. }
  3601. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3602. void disable_all_solenoids() {
  3603. OUT_WRITE(SOL0_PIN, LOW);
  3604. OUT_WRITE(SOL1_PIN, LOW);
  3605. OUT_WRITE(SOL2_PIN, LOW);
  3606. OUT_WRITE(SOL3_PIN, LOW);
  3607. }
  3608. /**
  3609. * M380: Enable solenoid on the active extruder
  3610. */
  3611. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3612. /**
  3613. * M381: Disable all solenoids
  3614. */
  3615. inline void gcode_M381() { disable_all_solenoids(); }
  3616. #endif // EXT_SOLENOID
  3617. /**
  3618. * M400: Finish all moves
  3619. */
  3620. inline void gcode_M400() { st_synchronize(); }
  3621. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3622. #ifdef SERVO_ENDSTOPS
  3623. void raise_z_for_servo() {
  3624. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3625. if (!axis_known_position[Z_AXIS]) z_dest += zpos;
  3626. if (zpos < z_dest)
  3627. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3628. }
  3629. #endif
  3630. /**
  3631. * M401: Engage Z Servo endstop if available
  3632. */
  3633. inline void gcode_M401() {
  3634. #ifdef SERVO_ENDSTOPS
  3635. raise_z_for_servo();
  3636. #endif
  3637. deploy_z_probe();
  3638. }
  3639. /**
  3640. * M402: Retract Z Servo endstop if enabled
  3641. */
  3642. inline void gcode_M402() {
  3643. #ifdef SERVO_ENDSTOPS
  3644. raise_z_for_servo();
  3645. #endif
  3646. stow_z_probe();
  3647. }
  3648. #endif
  3649. #ifdef FILAMENT_SENSOR
  3650. /**
  3651. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3652. */
  3653. inline void gcode_M404() {
  3654. #if HAS_FILWIDTH
  3655. if (code_seen('W')) {
  3656. filament_width_nominal = code_value();
  3657. }
  3658. else {
  3659. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3660. SERIAL_PROTOCOLLN(filament_width_nominal);
  3661. }
  3662. #endif
  3663. }
  3664. /**
  3665. * M405: Turn on filament sensor for control
  3666. */
  3667. inline void gcode_M405() {
  3668. if (code_seen('D')) meas_delay_cm = code_value();
  3669. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3670. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3671. int temp_ratio = widthFil_to_size_ratio();
  3672. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3673. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3674. delay_index1 = delay_index2 = 0;
  3675. }
  3676. filament_sensor = true;
  3677. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3678. //SERIAL_PROTOCOL(filament_width_meas);
  3679. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3680. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3681. }
  3682. /**
  3683. * M406: Turn off filament sensor for control
  3684. */
  3685. inline void gcode_M406() { filament_sensor = false; }
  3686. /**
  3687. * M407: Get measured filament diameter on serial output
  3688. */
  3689. inline void gcode_M407() {
  3690. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3691. SERIAL_PROTOCOLLN(filament_width_meas);
  3692. }
  3693. #endif // FILAMENT_SENSOR
  3694. /**
  3695. * M410: Quickstop - Abort all planned moves
  3696. *
  3697. * This will stop the carriages mid-move, so most likely they
  3698. * will be out of sync with the stepper position after this.
  3699. */
  3700. inline void gcode_M410() { quickStop(); }
  3701. /**
  3702. * M500: Store settings in EEPROM
  3703. */
  3704. inline void gcode_M500() {
  3705. Config_StoreSettings();
  3706. }
  3707. /**
  3708. * M501: Read settings from EEPROM
  3709. */
  3710. inline void gcode_M501() {
  3711. Config_RetrieveSettings();
  3712. }
  3713. /**
  3714. * M502: Revert to default settings
  3715. */
  3716. inline void gcode_M502() {
  3717. Config_ResetDefault();
  3718. }
  3719. /**
  3720. * M503: print settings currently in memory
  3721. */
  3722. inline void gcode_M503() {
  3723. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3724. }
  3725. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3726. /**
  3727. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3728. */
  3729. inline void gcode_M540() {
  3730. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3731. }
  3732. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3733. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3734. inline void gcode_SET_Z_PROBE_OFFSET() {
  3735. float value;
  3736. if (code_seen('Z')) {
  3737. value = code_value();
  3738. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3739. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  3740. SERIAL_ECHO_START;
  3741. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3742. SERIAL_EOL;
  3743. }
  3744. else {
  3745. SERIAL_ECHO_START;
  3746. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3747. SERIAL_ECHOPGM(MSG_Z_MIN);
  3748. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3749. SERIAL_ECHOPGM(MSG_Z_MAX);
  3750. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3751. SERIAL_EOL;
  3752. }
  3753. }
  3754. else {
  3755. SERIAL_ECHO_START;
  3756. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3757. SERIAL_ECHO(-zprobe_zoffset);
  3758. SERIAL_EOL;
  3759. }
  3760. }
  3761. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3762. #ifdef FILAMENTCHANGEENABLE
  3763. /**
  3764. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3765. */
  3766. inline void gcode_M600() {
  3767. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3768. for (int i=0; i<NUM_AXIS; i++)
  3769. target[i] = lastpos[i] = current_position[i];
  3770. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3771. #ifdef DELTA
  3772. #define RUNPLAN calculate_delta(target); BASICPLAN
  3773. #else
  3774. #define RUNPLAN BASICPLAN
  3775. #endif
  3776. //retract by E
  3777. if (code_seen('E')) target[E_AXIS] += code_value();
  3778. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3779. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3780. #endif
  3781. RUNPLAN;
  3782. //lift Z
  3783. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3784. #ifdef FILAMENTCHANGE_ZADD
  3785. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3786. #endif
  3787. RUNPLAN;
  3788. //move xy
  3789. if (code_seen('X')) target[X_AXIS] = code_value();
  3790. #ifdef FILAMENTCHANGE_XPOS
  3791. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3792. #endif
  3793. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3794. #ifdef FILAMENTCHANGE_YPOS
  3795. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3796. #endif
  3797. RUNPLAN;
  3798. if (code_seen('L')) target[E_AXIS] += code_value();
  3799. #ifdef FILAMENTCHANGE_FINALRETRACT
  3800. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3801. #endif
  3802. RUNPLAN;
  3803. //finish moves
  3804. st_synchronize();
  3805. //disable extruder steppers so filament can be removed
  3806. disable_e0();
  3807. disable_e1();
  3808. disable_e2();
  3809. disable_e3();
  3810. delay(100);
  3811. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3812. uint8_t cnt = 0;
  3813. while (!lcd_clicked()) {
  3814. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  3815. manage_heater();
  3816. manage_inactivity(true);
  3817. lcd_update();
  3818. } // while(!lcd_clicked)
  3819. //return to normal
  3820. if (code_seen('L')) target[E_AXIS] -= code_value();
  3821. #ifdef FILAMENTCHANGE_FINALRETRACT
  3822. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3823. #endif
  3824. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3825. plan_set_e_position(current_position[E_AXIS]);
  3826. RUNPLAN; //should do nothing
  3827. lcd_reset_alert_level();
  3828. #ifdef DELTA
  3829. calculate_delta(lastpos);
  3830. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3831. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3832. #else
  3833. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3834. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3835. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3836. #endif
  3837. #ifdef FILAMENT_RUNOUT_SENSOR
  3838. filrunoutEnqueued = false;
  3839. #endif
  3840. }
  3841. #endif // FILAMENTCHANGEENABLE
  3842. #ifdef DUAL_X_CARRIAGE
  3843. /**
  3844. * M605: Set dual x-carriage movement mode
  3845. *
  3846. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3847. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3848. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3849. * millimeters x-offset and an optional differential hotend temperature of
  3850. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3851. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3852. *
  3853. * Note: the X axis should be homed after changing dual x-carriage mode.
  3854. */
  3855. inline void gcode_M605() {
  3856. st_synchronize();
  3857. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3858. switch(dual_x_carriage_mode) {
  3859. case DXC_DUPLICATION_MODE:
  3860. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3861. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3862. SERIAL_ECHO_START;
  3863. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3864. SERIAL_CHAR(' ');
  3865. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3866. SERIAL_CHAR(',');
  3867. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3868. SERIAL_CHAR(' ');
  3869. SERIAL_ECHO(duplicate_extruder_x_offset);
  3870. SERIAL_CHAR(',');
  3871. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3872. break;
  3873. case DXC_FULL_CONTROL_MODE:
  3874. case DXC_AUTO_PARK_MODE:
  3875. break;
  3876. default:
  3877. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3878. break;
  3879. }
  3880. active_extruder_parked = false;
  3881. extruder_duplication_enabled = false;
  3882. delayed_move_time = 0;
  3883. }
  3884. #endif // DUAL_X_CARRIAGE
  3885. /**
  3886. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3887. */
  3888. inline void gcode_M907() {
  3889. #if HAS_DIGIPOTSS
  3890. for (int i=0;i<NUM_AXIS;i++)
  3891. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3892. if (code_seen('B')) digipot_current(4, code_value());
  3893. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3894. #endif
  3895. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3896. if (code_seen('X')) digipot_current(0, code_value());
  3897. #endif
  3898. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3899. if (code_seen('Z')) digipot_current(1, code_value());
  3900. #endif
  3901. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3902. if (code_seen('E')) digipot_current(2, code_value());
  3903. #endif
  3904. #ifdef DIGIPOT_I2C
  3905. // this one uses actual amps in floating point
  3906. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3907. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3908. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3909. #endif
  3910. }
  3911. #if HAS_DIGIPOTSS
  3912. /**
  3913. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3914. */
  3915. inline void gcode_M908() {
  3916. digitalPotWrite(
  3917. code_seen('P') ? code_value() : 0,
  3918. code_seen('S') ? code_value() : 0
  3919. );
  3920. }
  3921. #endif // HAS_DIGIPOTSS
  3922. #if HAS_MICROSTEPS
  3923. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3924. inline void gcode_M350() {
  3925. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3926. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3927. if(code_seen('B')) microstep_mode(4,code_value());
  3928. microstep_readings();
  3929. }
  3930. /**
  3931. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3932. * S# determines MS1 or MS2, X# sets the pin high/low.
  3933. */
  3934. inline void gcode_M351() {
  3935. if (code_seen('S')) switch(code_value_short()) {
  3936. case 1:
  3937. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3938. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3939. break;
  3940. case 2:
  3941. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3942. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3943. break;
  3944. }
  3945. microstep_readings();
  3946. }
  3947. #endif // HAS_MICROSTEPS
  3948. /**
  3949. * M999: Restart after being stopped
  3950. */
  3951. inline void gcode_M999() {
  3952. Running = true;
  3953. lcd_reset_alert_level();
  3954. gcode_LastN = Stopped_gcode_LastN;
  3955. FlushSerialRequestResend();
  3956. }
  3957. /**
  3958. * T0-T3: Switch tool, usually switching extruders
  3959. */
  3960. inline void gcode_T() {
  3961. int tmp_extruder = code_value();
  3962. if (tmp_extruder >= EXTRUDERS) {
  3963. SERIAL_ECHO_START;
  3964. SERIAL_CHAR('T');
  3965. SERIAL_ECHO(tmp_extruder);
  3966. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3967. }
  3968. else {
  3969. target_extruder = tmp_extruder;
  3970. #if EXTRUDERS > 1
  3971. bool make_move = false;
  3972. #endif
  3973. if (code_seen('F')) {
  3974. #if EXTRUDERS > 1
  3975. make_move = true;
  3976. #endif
  3977. next_feedrate = code_value();
  3978. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3979. }
  3980. #if EXTRUDERS > 1
  3981. if (tmp_extruder != active_extruder) {
  3982. // Save current position to return to after applying extruder offset
  3983. set_destination_to_current();
  3984. #ifdef DUAL_X_CARRIAGE
  3985. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  3986. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3987. // Park old head: 1) raise 2) move to park position 3) lower
  3988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3989. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3990. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3991. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3992. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3993. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3994. st_synchronize();
  3995. }
  3996. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3997. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3998. extruder_offset[Y_AXIS][active_extruder] +
  3999. extruder_offset[Y_AXIS][tmp_extruder];
  4000. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4001. extruder_offset[Z_AXIS][active_extruder] +
  4002. extruder_offset[Z_AXIS][tmp_extruder];
  4003. active_extruder = tmp_extruder;
  4004. // This function resets the max/min values - the current position may be overwritten below.
  4005. axis_is_at_home(X_AXIS);
  4006. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4007. current_position[X_AXIS] = inactive_extruder_x_pos;
  4008. inactive_extruder_x_pos = destination[X_AXIS];
  4009. }
  4010. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4011. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4012. if (active_extruder == 0 || active_extruder_parked)
  4013. current_position[X_AXIS] = inactive_extruder_x_pos;
  4014. else
  4015. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4016. inactive_extruder_x_pos = destination[X_AXIS];
  4017. extruder_duplication_enabled = false;
  4018. }
  4019. else {
  4020. // record raised toolhead position for use by unpark
  4021. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4022. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4023. active_extruder_parked = true;
  4024. delayed_move_time = 0;
  4025. }
  4026. #else // !DUAL_X_CARRIAGE
  4027. // Offset extruder (only by XY)
  4028. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4029. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4030. // Set the new active extruder and position
  4031. active_extruder = tmp_extruder;
  4032. #endif // !DUAL_X_CARRIAGE
  4033. #ifdef DELTA
  4034. sync_plan_position_delta();
  4035. #else
  4036. sync_plan_position();
  4037. #endif
  4038. // Move to the old position if 'F' was in the parameters
  4039. if (make_move && IsRunning()) prepare_move();
  4040. }
  4041. #ifdef EXT_SOLENOID
  4042. st_synchronize();
  4043. disable_all_solenoids();
  4044. enable_solenoid_on_active_extruder();
  4045. #endif // EXT_SOLENOID
  4046. #endif // EXTRUDERS > 1
  4047. SERIAL_ECHO_START;
  4048. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4049. SERIAL_PROTOCOLLN((int)active_extruder);
  4050. }
  4051. }
  4052. /**
  4053. * Process Commands and dispatch them to handlers
  4054. * This is called from the main loop()
  4055. */
  4056. void process_commands() {
  4057. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4058. SERIAL_ECHO_START;
  4059. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4060. }
  4061. if (code_seen('G')) {
  4062. int gCode = code_value_short();
  4063. switch(gCode) {
  4064. // G0, G1
  4065. case 0:
  4066. case 1:
  4067. gcode_G0_G1();
  4068. break;
  4069. // G2, G3
  4070. #ifndef SCARA
  4071. case 2: // G2 - CW ARC
  4072. case 3: // G3 - CCW ARC
  4073. gcode_G2_G3(gCode == 2);
  4074. break;
  4075. #endif
  4076. // G4 Dwell
  4077. case 4:
  4078. gcode_G4();
  4079. break;
  4080. #ifdef FWRETRACT
  4081. case 10: // G10: retract
  4082. case 11: // G11: retract_recover
  4083. gcode_G10_G11(gCode == 10);
  4084. break;
  4085. #endif //FWRETRACT
  4086. case 28: // G28: Home all axes, one at a time
  4087. gcode_G28();
  4088. break;
  4089. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4090. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4091. gcode_G29();
  4092. break;
  4093. #endif
  4094. #ifdef ENABLE_AUTO_BED_LEVELING
  4095. #ifndef Z_PROBE_SLED
  4096. case 30: // G30 Single Z Probe
  4097. gcode_G30();
  4098. break;
  4099. #else // Z_PROBE_SLED
  4100. case 31: // G31: dock the sled
  4101. case 32: // G32: undock the sled
  4102. dock_sled(gCode == 31);
  4103. break;
  4104. #endif // Z_PROBE_SLED
  4105. #endif // ENABLE_AUTO_BED_LEVELING
  4106. case 90: // G90
  4107. relative_mode = false;
  4108. break;
  4109. case 91: // G91
  4110. relative_mode = true;
  4111. break;
  4112. case 92: // G92
  4113. gcode_G92();
  4114. break;
  4115. }
  4116. }
  4117. else if (code_seen('M')) {
  4118. switch(code_value_short()) {
  4119. #ifdef ULTIPANEL
  4120. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4121. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4122. gcode_M0_M1();
  4123. break;
  4124. #endif // ULTIPANEL
  4125. case 17:
  4126. gcode_M17();
  4127. break;
  4128. #ifdef SDSUPPORT
  4129. case 20: // M20 - list SD card
  4130. gcode_M20(); break;
  4131. case 21: // M21 - init SD card
  4132. gcode_M21(); break;
  4133. case 22: //M22 - release SD card
  4134. gcode_M22(); break;
  4135. case 23: //M23 - Select file
  4136. gcode_M23(); break;
  4137. case 24: //M24 - Start SD print
  4138. gcode_M24(); break;
  4139. case 25: //M25 - Pause SD print
  4140. gcode_M25(); break;
  4141. case 26: //M26 - Set SD index
  4142. gcode_M26(); break;
  4143. case 27: //M27 - Get SD status
  4144. gcode_M27(); break;
  4145. case 28: //M28 - Start SD write
  4146. gcode_M28(); break;
  4147. case 29: //M29 - Stop SD write
  4148. gcode_M29(); break;
  4149. case 30: //M30 <filename> Delete File
  4150. gcode_M30(); break;
  4151. case 32: //M32 - Select file and start SD print
  4152. gcode_M32(); break;
  4153. case 928: //M928 - Start SD write
  4154. gcode_M928(); break;
  4155. #endif //SDSUPPORT
  4156. case 31: //M31 take time since the start of the SD print or an M109 command
  4157. gcode_M31();
  4158. break;
  4159. case 42: //M42 -Change pin status via gcode
  4160. gcode_M42();
  4161. break;
  4162. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4163. case 48: // M48 Z-Probe repeatability
  4164. gcode_M48();
  4165. break;
  4166. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4167. case 104: // M104
  4168. gcode_M104();
  4169. break;
  4170. case 111: // M111: Set debug level
  4171. gcode_M111();
  4172. break;
  4173. case 112: // M112: Emergency Stop
  4174. gcode_M112();
  4175. break;
  4176. case 140: // M140: Set bed temp
  4177. gcode_M140();
  4178. break;
  4179. case 105: // M105: Read current temperature
  4180. gcode_M105();
  4181. return;
  4182. break;
  4183. case 109: // M109: Wait for temperature
  4184. gcode_M109();
  4185. break;
  4186. #if HAS_TEMP_BED
  4187. case 190: // M190: Wait for bed heater to reach target
  4188. gcode_M190();
  4189. break;
  4190. #endif // HAS_TEMP_BED
  4191. #if HAS_FAN
  4192. case 106: // M106: Fan On
  4193. gcode_M106();
  4194. break;
  4195. case 107: // M107: Fan Off
  4196. gcode_M107();
  4197. break;
  4198. #endif // HAS_FAN
  4199. #ifdef BARICUDA
  4200. // PWM for HEATER_1_PIN
  4201. #if HAS_HEATER_1
  4202. case 126: // M126: valve open
  4203. gcode_M126();
  4204. break;
  4205. case 127: // M127: valve closed
  4206. gcode_M127();
  4207. break;
  4208. #endif // HAS_HEATER_1
  4209. // PWM for HEATER_2_PIN
  4210. #if HAS_HEATER_2
  4211. case 128: // M128: valve open
  4212. gcode_M128();
  4213. break;
  4214. case 129: // M129: valve closed
  4215. gcode_M129();
  4216. break;
  4217. #endif // HAS_HEATER_2
  4218. #endif // BARICUDA
  4219. #if HAS_POWER_SWITCH
  4220. case 80: // M80: Turn on Power Supply
  4221. gcode_M80();
  4222. break;
  4223. #endif // HAS_POWER_SWITCH
  4224. case 81: // M81: Turn off Power, including Power Supply, if possible
  4225. gcode_M81();
  4226. break;
  4227. case 82:
  4228. gcode_M82();
  4229. break;
  4230. case 83:
  4231. gcode_M83();
  4232. break;
  4233. case 18: // (for compatibility)
  4234. case 84: // M84
  4235. gcode_M18_M84();
  4236. break;
  4237. case 85: // M85
  4238. gcode_M85();
  4239. break;
  4240. case 92: // M92
  4241. gcode_M92();
  4242. break;
  4243. case 115: // M115
  4244. gcode_M115();
  4245. break;
  4246. case 117: // M117 display message
  4247. gcode_M117();
  4248. break;
  4249. case 114: // M114
  4250. gcode_M114();
  4251. break;
  4252. case 120: // M120
  4253. gcode_M120();
  4254. break;
  4255. case 121: // M121
  4256. gcode_M121();
  4257. break;
  4258. case 119: // M119
  4259. gcode_M119();
  4260. break;
  4261. //TODO: update for all axis, use for loop
  4262. #ifdef BLINKM
  4263. case 150: // M150
  4264. gcode_M150();
  4265. break;
  4266. #endif //BLINKM
  4267. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4268. gcode_M200();
  4269. break;
  4270. case 201: // M201
  4271. gcode_M201();
  4272. break;
  4273. #if 0 // Not used for Sprinter/grbl gen6
  4274. case 202: // M202
  4275. gcode_M202();
  4276. break;
  4277. #endif
  4278. case 203: // M203 max feedrate mm/sec
  4279. gcode_M203();
  4280. break;
  4281. case 204: // M204 acclereration S normal moves T filmanent only moves
  4282. gcode_M204();
  4283. break;
  4284. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4285. gcode_M205();
  4286. break;
  4287. case 206: // M206 additional homing offset
  4288. gcode_M206();
  4289. break;
  4290. #ifdef DELTA
  4291. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4292. gcode_M665();
  4293. break;
  4294. #endif
  4295. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4296. case 666: // M666 set delta / dual endstop adjustment
  4297. gcode_M666();
  4298. break;
  4299. #endif
  4300. #ifdef FWRETRACT
  4301. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4302. gcode_M207();
  4303. break;
  4304. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4305. gcode_M208();
  4306. break;
  4307. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4308. gcode_M209();
  4309. break;
  4310. #endif // FWRETRACT
  4311. #if EXTRUDERS > 1
  4312. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4313. gcode_M218();
  4314. break;
  4315. #endif
  4316. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4317. gcode_M220();
  4318. break;
  4319. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4320. gcode_M221();
  4321. break;
  4322. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4323. gcode_M226();
  4324. break;
  4325. #if NUM_SERVOS > 0
  4326. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4327. gcode_M280();
  4328. break;
  4329. #endif // NUM_SERVOS > 0
  4330. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  4331. case 300: // M300 - Play beep tone
  4332. gcode_M300();
  4333. break;
  4334. #endif // BEEPER > 0 || ULTRALCD || LCD_USE_I2C_BUZZER
  4335. #ifdef PIDTEMP
  4336. case 301: // M301
  4337. gcode_M301();
  4338. break;
  4339. #endif // PIDTEMP
  4340. #ifdef PIDTEMPBED
  4341. case 304: // M304
  4342. gcode_M304();
  4343. break;
  4344. #endif // PIDTEMPBED
  4345. #if defined(CHDK) || HAS_PHOTOGRAPH
  4346. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4347. gcode_M240();
  4348. break;
  4349. #endif // CHDK || PHOTOGRAPH_PIN
  4350. #ifdef HAS_LCD_CONTRAST
  4351. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4352. gcode_M250();
  4353. break;
  4354. #endif // HAS_LCD_CONTRAST
  4355. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4356. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4357. gcode_M302();
  4358. break;
  4359. #endif // PREVENT_DANGEROUS_EXTRUDE
  4360. case 303: // M303 PID autotune
  4361. gcode_M303();
  4362. break;
  4363. #ifdef SCARA
  4364. case 360: // M360 SCARA Theta pos1
  4365. if (gcode_M360()) return;
  4366. break;
  4367. case 361: // M361 SCARA Theta pos2
  4368. if (gcode_M361()) return;
  4369. break;
  4370. case 362: // M362 SCARA Psi pos1
  4371. if (gcode_M362()) return;
  4372. break;
  4373. case 363: // M363 SCARA Psi pos2
  4374. if (gcode_M363()) return;
  4375. break;
  4376. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4377. if (gcode_M364()) return;
  4378. break;
  4379. case 365: // M365 Set SCARA scaling for X Y Z
  4380. gcode_M365();
  4381. break;
  4382. #endif // SCARA
  4383. case 400: // M400 finish all moves
  4384. gcode_M400();
  4385. break;
  4386. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4387. case 401:
  4388. gcode_M401();
  4389. break;
  4390. case 402:
  4391. gcode_M402();
  4392. break;
  4393. #endif
  4394. #ifdef FILAMENT_SENSOR
  4395. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4396. gcode_M404();
  4397. break;
  4398. case 405: //M405 Turn on filament sensor for control
  4399. gcode_M405();
  4400. break;
  4401. case 406: //M406 Turn off filament sensor for control
  4402. gcode_M406();
  4403. break;
  4404. case 407: //M407 Display measured filament diameter
  4405. gcode_M407();
  4406. break;
  4407. #endif // FILAMENT_SENSOR
  4408. case 410: // M410 quickstop - Abort all the planned moves.
  4409. gcode_M410();
  4410. break;
  4411. case 500: // M500 Store settings in EEPROM
  4412. gcode_M500();
  4413. break;
  4414. case 501: // M501 Read settings from EEPROM
  4415. gcode_M501();
  4416. break;
  4417. case 502: // M502 Revert to default settings
  4418. gcode_M502();
  4419. break;
  4420. case 503: // M503 print settings currently in memory
  4421. gcode_M503();
  4422. break;
  4423. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4424. case 540:
  4425. gcode_M540();
  4426. break;
  4427. #endif
  4428. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4429. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4430. gcode_SET_Z_PROBE_OFFSET();
  4431. break;
  4432. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4433. #ifdef FILAMENTCHANGEENABLE
  4434. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4435. gcode_M600();
  4436. break;
  4437. #endif // FILAMENTCHANGEENABLE
  4438. #ifdef DUAL_X_CARRIAGE
  4439. case 605:
  4440. gcode_M605();
  4441. break;
  4442. #endif // DUAL_X_CARRIAGE
  4443. case 907: // M907 Set digital trimpot motor current using axis codes.
  4444. gcode_M907();
  4445. break;
  4446. #if HAS_DIGIPOTSS
  4447. case 908: // M908 Control digital trimpot directly.
  4448. gcode_M908();
  4449. break;
  4450. #endif // HAS_DIGIPOTSS
  4451. #if HAS_MICROSTEPS
  4452. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4453. gcode_M350();
  4454. break;
  4455. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4456. gcode_M351();
  4457. break;
  4458. #endif // HAS_MICROSTEPS
  4459. case 999: // M999: Restart after being Stopped
  4460. gcode_M999();
  4461. break;
  4462. }
  4463. }
  4464. else if (code_seen('T')) {
  4465. gcode_T();
  4466. }
  4467. else {
  4468. SERIAL_ECHO_START;
  4469. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4470. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4471. SERIAL_ECHOLNPGM("\"");
  4472. }
  4473. ClearToSend();
  4474. }
  4475. void FlushSerialRequestResend() {
  4476. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4477. MYSERIAL.flush();
  4478. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4479. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4480. ClearToSend();
  4481. }
  4482. void ClearToSend() {
  4483. refresh_cmd_timeout();
  4484. #ifdef SDSUPPORT
  4485. if (fromsd[cmd_queue_index_r]) return;
  4486. #endif
  4487. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4488. }
  4489. void get_coordinates() {
  4490. for (int i = 0; i < NUM_AXIS; i++) {
  4491. if (code_seen(axis_codes[i]))
  4492. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4493. else
  4494. destination[i] = current_position[i];
  4495. }
  4496. if (code_seen('F')) {
  4497. next_feedrate = code_value();
  4498. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4499. }
  4500. }
  4501. void get_arc_coordinates() {
  4502. #ifdef SF_ARC_FIX
  4503. bool relative_mode_backup = relative_mode;
  4504. relative_mode = true;
  4505. #endif
  4506. get_coordinates();
  4507. #ifdef SF_ARC_FIX
  4508. relative_mode = relative_mode_backup;
  4509. #endif
  4510. offset[0] = code_seen('I') ? code_value() : 0;
  4511. offset[1] = code_seen('J') ? code_value() : 0;
  4512. }
  4513. void clamp_to_software_endstops(float target[3]) {
  4514. if (min_software_endstops) {
  4515. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4516. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4517. float negative_z_offset = 0;
  4518. #ifdef ENABLE_AUTO_BED_LEVELING
  4519. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4520. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4521. #endif
  4522. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4523. }
  4524. if (max_software_endstops) {
  4525. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4526. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4527. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4528. }
  4529. }
  4530. #ifdef DELTA
  4531. void recalc_delta_settings(float radius, float diagonal_rod) {
  4532. delta_tower1_x = -SIN_60 * radius; // front left tower
  4533. delta_tower1_y = -COS_60 * radius;
  4534. delta_tower2_x = SIN_60 * radius; // front right tower
  4535. delta_tower2_y = -COS_60 * radius;
  4536. delta_tower3_x = 0.0; // back middle tower
  4537. delta_tower3_y = radius;
  4538. delta_diagonal_rod_2 = sq(diagonal_rod);
  4539. }
  4540. void calculate_delta(float cartesian[3]) {
  4541. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4542. - sq(delta_tower1_x-cartesian[X_AXIS])
  4543. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4544. ) + cartesian[Z_AXIS];
  4545. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4546. - sq(delta_tower2_x-cartesian[X_AXIS])
  4547. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4548. ) + cartesian[Z_AXIS];
  4549. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4550. - sq(delta_tower3_x-cartesian[X_AXIS])
  4551. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4552. ) + cartesian[Z_AXIS];
  4553. /*
  4554. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4555. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4556. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4557. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4558. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4559. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4560. */
  4561. }
  4562. #ifdef ENABLE_AUTO_BED_LEVELING
  4563. // Adjust print surface height by linear interpolation over the bed_level array.
  4564. void adjust_delta(float cartesian[3]) {
  4565. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4566. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4567. float h1 = 0.001 - half, h2 = half - 0.001,
  4568. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4569. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4570. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4571. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4572. z1 = bed_level[floor_x + half][floor_y + half],
  4573. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4574. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4575. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4576. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4577. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4578. offset = (1 - ratio_x) * left + ratio_x * right;
  4579. delta[X_AXIS] += offset;
  4580. delta[Y_AXIS] += offset;
  4581. delta[Z_AXIS] += offset;
  4582. /*
  4583. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4584. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4585. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4586. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4587. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4588. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4589. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4590. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4591. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4592. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4593. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4594. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4595. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4596. */
  4597. }
  4598. #endif // ENABLE_AUTO_BED_LEVELING
  4599. #endif // DELTA
  4600. #ifdef MESH_BED_LEVELING
  4601. #if !defined(MIN)
  4602. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4603. #endif // ! MIN
  4604. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4605. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4606. {
  4607. if (!mbl.active) {
  4608. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4609. set_current_to_destination();
  4610. return;
  4611. }
  4612. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4613. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4614. int ix = mbl.select_x_index(x);
  4615. int iy = mbl.select_y_index(y);
  4616. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4617. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4618. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4619. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4620. if (pix == ix && piy == iy) {
  4621. // Start and end on same mesh square
  4622. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4623. set_current_to_destination();
  4624. return;
  4625. }
  4626. float nx, ny, ne, normalized_dist;
  4627. if (ix > pix && (x_splits) & BIT(ix)) {
  4628. nx = mbl.get_x(ix);
  4629. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4630. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4631. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4632. x_splits ^= BIT(ix);
  4633. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4634. nx = mbl.get_x(pix);
  4635. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4636. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4637. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4638. x_splits ^= BIT(pix);
  4639. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4640. ny = mbl.get_y(iy);
  4641. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4642. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4643. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4644. y_splits ^= BIT(iy);
  4645. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4646. ny = mbl.get_y(piy);
  4647. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4648. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4649. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4650. y_splits ^= BIT(piy);
  4651. } else {
  4652. // Already split on a border
  4653. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4654. set_current_to_destination();
  4655. return;
  4656. }
  4657. // Do the split and look for more borders
  4658. destination[X_AXIS] = nx;
  4659. destination[Y_AXIS] = ny;
  4660. destination[E_AXIS] = ne;
  4661. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4662. destination[X_AXIS] = x;
  4663. destination[Y_AXIS] = y;
  4664. destination[E_AXIS] = e;
  4665. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4666. }
  4667. #endif // MESH_BED_LEVELING
  4668. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4669. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4670. float de = dest_e - curr_e;
  4671. if (de) {
  4672. if (degHotend(active_extruder) < extrude_min_temp) {
  4673. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4674. SERIAL_ECHO_START;
  4675. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4676. return 0;
  4677. }
  4678. #ifdef PREVENT_LENGTHY_EXTRUDE
  4679. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4680. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4681. SERIAL_ECHO_START;
  4682. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4683. return 0;
  4684. }
  4685. #endif
  4686. }
  4687. return de;
  4688. }
  4689. #endif // PREVENT_DANGEROUS_EXTRUDE
  4690. void prepare_move() {
  4691. clamp_to_software_endstops(destination);
  4692. refresh_cmd_timeout();
  4693. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4694. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4695. #endif
  4696. #ifdef SCARA //for now same as delta-code
  4697. float difference[NUM_AXIS];
  4698. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4699. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4700. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4701. if (cartesian_mm < 0.000001) { return; }
  4702. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4703. int steps = max(1, int(scara_segments_per_second * seconds));
  4704. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4705. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4706. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4707. for (int s = 1; s <= steps; s++) {
  4708. float fraction = float(s) / float(steps);
  4709. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4710. calculate_delta(destination);
  4711. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4712. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4713. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4714. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4715. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4716. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4717. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4718. }
  4719. #endif // SCARA
  4720. #ifdef DELTA
  4721. float difference[NUM_AXIS];
  4722. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4723. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4724. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4725. if (cartesian_mm < 0.000001) return;
  4726. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4727. int steps = max(1, int(delta_segments_per_second * seconds));
  4728. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4729. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4730. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4731. for (int s = 1; s <= steps; s++) {
  4732. float fraction = float(s) / float(steps);
  4733. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4734. calculate_delta(destination);
  4735. #ifdef ENABLE_AUTO_BED_LEVELING
  4736. adjust_delta(destination);
  4737. #endif
  4738. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4739. }
  4740. #endif // DELTA
  4741. #ifdef DUAL_X_CARRIAGE
  4742. if (active_extruder_parked) {
  4743. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4744. // move duplicate extruder into correct duplication position.
  4745. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4746. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4747. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4748. sync_plan_position();
  4749. st_synchronize();
  4750. extruder_duplication_enabled = true;
  4751. active_extruder_parked = false;
  4752. }
  4753. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4754. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4755. // This is a travel move (with no extrusion)
  4756. // Skip it, but keep track of the current position
  4757. // (so it can be used as the start of the next non-travel move)
  4758. if (delayed_move_time != 0xFFFFFFFFUL) {
  4759. set_current_to_destination();
  4760. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4761. delayed_move_time = millis();
  4762. return;
  4763. }
  4764. }
  4765. delayed_move_time = 0;
  4766. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4767. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4770. active_extruder_parked = false;
  4771. }
  4772. }
  4773. #endif // DUAL_X_CARRIAGE
  4774. #if !defined(DELTA) && !defined(SCARA)
  4775. // Do not use feedrate_multiplier for E or Z only moves
  4776. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4777. line_to_destination();
  4778. }
  4779. else {
  4780. #ifdef MESH_BED_LEVELING
  4781. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4782. return;
  4783. #else
  4784. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4785. #endif // MESH_BED_LEVELING
  4786. }
  4787. #endif // !(DELTA || SCARA)
  4788. set_current_to_destination();
  4789. }
  4790. void prepare_arc_move(char isclockwise) {
  4791. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4792. // Trace the arc
  4793. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  4794. // As far as the parser is concerned, the position is now == target. In reality the
  4795. // motion control system might still be processing the action and the real tool position
  4796. // in any intermediate location.
  4797. set_current_to_destination();
  4798. refresh_cmd_timeout();
  4799. }
  4800. #if HAS_CONTROLLERFAN
  4801. millis_t lastMotor = 0; // Last time a motor was turned on
  4802. millis_t lastMotorCheck = 0; // Last time the state was checked
  4803. void controllerFan() {
  4804. millis_t ms = millis();
  4805. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4806. lastMotorCheck = ms;
  4807. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4808. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4809. #if EXTRUDERS > 1
  4810. || E1_ENABLE_READ == E_ENABLE_ON
  4811. #if HAS_X2_ENABLE
  4812. || X2_ENABLE_READ == X_ENABLE_ON
  4813. #endif
  4814. #if EXTRUDERS > 2
  4815. || E2_ENABLE_READ == E_ENABLE_ON
  4816. #if EXTRUDERS > 3
  4817. || E3_ENABLE_READ == E_ENABLE_ON
  4818. #endif
  4819. #endif
  4820. #endif
  4821. ) {
  4822. lastMotor = ms; //... set time to NOW so the fan will turn on
  4823. }
  4824. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4825. // allows digital or PWM fan output to be used (see M42 handling)
  4826. digitalWrite(CONTROLLERFAN_PIN, speed);
  4827. analogWrite(CONTROLLERFAN_PIN, speed);
  4828. }
  4829. }
  4830. #endif
  4831. #ifdef SCARA
  4832. void calculate_SCARA_forward_Transform(float f_scara[3])
  4833. {
  4834. // Perform forward kinematics, and place results in delta[3]
  4835. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4836. float x_sin, x_cos, y_sin, y_cos;
  4837. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4838. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4839. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4840. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4841. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4842. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4843. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4844. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4845. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4846. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4847. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4848. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4849. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4850. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4851. }
  4852. void calculate_delta(float cartesian[3]){
  4853. //reverse kinematics.
  4854. // Perform reversed kinematics, and place results in delta[3]
  4855. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4856. float SCARA_pos[2];
  4857. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4858. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4859. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4860. #if (Linkage_1 == Linkage_2)
  4861. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4862. #else
  4863. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4864. #endif
  4865. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4866. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4867. SCARA_K2 = Linkage_2 * SCARA_S2;
  4868. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4869. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4870. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4871. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4872. delta[Z_AXIS] = cartesian[Z_AXIS];
  4873. /*
  4874. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4875. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4876. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4877. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4878. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4879. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4880. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4881. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4882. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4883. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4884. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4885. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4886. SERIAL_ECHOLN(" ");*/
  4887. }
  4888. #endif
  4889. #ifdef TEMP_STAT_LEDS
  4890. static bool red_led = false;
  4891. static millis_t next_status_led_update_ms = 0;
  4892. void handle_status_leds(void) {
  4893. float max_temp = 0.0;
  4894. if (millis() > next_status_led_update_ms) {
  4895. next_status_led_update_ms += 500; // Update every 0.5s
  4896. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  4897. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  4898. #if HAS_TEMP_BED
  4899. max_temp = max(max(max_temp, degTargetBed()), degBed());
  4900. #endif
  4901. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  4902. if (new_led != red_led) {
  4903. red_led = new_led;
  4904. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  4905. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  4906. }
  4907. }
  4908. }
  4909. #endif
  4910. void enable_all_steppers() {
  4911. enable_x();
  4912. enable_y();
  4913. enable_z();
  4914. enable_e0();
  4915. enable_e1();
  4916. enable_e2();
  4917. enable_e3();
  4918. }
  4919. void disable_all_steppers() {
  4920. disable_x();
  4921. disable_y();
  4922. disable_z();
  4923. disable_e0();
  4924. disable_e1();
  4925. disable_e2();
  4926. disable_e3();
  4927. }
  4928. /**
  4929. * Manage several activities:
  4930. * - Check for Filament Runout
  4931. * - Keep the command buffer full
  4932. * - Check for maximum inactive time between commands
  4933. * - Check for maximum inactive time between stepper commands
  4934. * - Check if pin CHDK needs to go LOW
  4935. * - Check for KILL button held down
  4936. * - Check for HOME button held down
  4937. * - Check if cooling fan needs to be switched on
  4938. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  4939. */
  4940. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4941. #if HAS_FILRUNOUT
  4942. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4943. filrunout();
  4944. #endif
  4945. if (commands_in_queue < BUFSIZE - 1) get_command();
  4946. millis_t ms = millis();
  4947. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  4948. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  4949. && !ignore_stepper_queue && !blocks_queued())
  4950. disable_all_steppers();
  4951. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  4952. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4953. chdkActive = false;
  4954. WRITE(CHDK, LOW);
  4955. }
  4956. #endif
  4957. #if HAS_KILL
  4958. // Check if the kill button was pressed and wait just in case it was an accidental
  4959. // key kill key press
  4960. // -------------------------------------------------------------------------------
  4961. static int killCount = 0; // make the inactivity button a bit less responsive
  4962. const int KILL_DELAY = 750;
  4963. if (!READ(KILL_PIN))
  4964. killCount++;
  4965. else if (killCount > 0)
  4966. killCount--;
  4967. // Exceeded threshold and we can confirm that it was not accidental
  4968. // KILL the machine
  4969. // ----------------------------------------------------------------
  4970. if (killCount >= KILL_DELAY) kill();
  4971. #endif
  4972. #if HAS_HOME
  4973. // Check to see if we have to home, use poor man's debouncer
  4974. // ---------------------------------------------------------
  4975. static int homeDebounceCount = 0; // poor man's debouncing count
  4976. const int HOME_DEBOUNCE_DELAY = 750;
  4977. if (!READ(HOME_PIN)) {
  4978. if (!homeDebounceCount) {
  4979. enqueuecommands_P(PSTR("G28"));
  4980. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4981. }
  4982. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4983. homeDebounceCount++;
  4984. else
  4985. homeDebounceCount = 0;
  4986. }
  4987. #endif
  4988. #if HAS_CONTROLLERFAN
  4989. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  4990. #endif
  4991. #ifdef EXTRUDER_RUNOUT_PREVENT
  4992. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  4993. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4994. bool oldstatus;
  4995. switch(active_extruder) {
  4996. case 0:
  4997. oldstatus = E0_ENABLE_READ;
  4998. enable_e0();
  4999. break;
  5000. #if EXTRUDERS > 1
  5001. case 1:
  5002. oldstatus = E1_ENABLE_READ;
  5003. enable_e1();
  5004. break;
  5005. #if EXTRUDERS > 2
  5006. case 2:
  5007. oldstatus = E2_ENABLE_READ;
  5008. enable_e2();
  5009. break;
  5010. #if EXTRUDERS > 3
  5011. case 3:
  5012. oldstatus = E3_ENABLE_READ;
  5013. enable_e3();
  5014. break;
  5015. #endif
  5016. #endif
  5017. #endif
  5018. }
  5019. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5020. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5021. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5022. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5023. current_position[E_AXIS] = oldepos;
  5024. destination[E_AXIS] = oldedes;
  5025. plan_set_e_position(oldepos);
  5026. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5027. st_synchronize();
  5028. switch(active_extruder) {
  5029. case 0:
  5030. E0_ENABLE_WRITE(oldstatus);
  5031. break;
  5032. #if EXTRUDERS > 1
  5033. case 1:
  5034. E1_ENABLE_WRITE(oldstatus);
  5035. break;
  5036. #if EXTRUDERS > 2
  5037. case 2:
  5038. E2_ENABLE_WRITE(oldstatus);
  5039. break;
  5040. #if EXTRUDERS > 3
  5041. case 3:
  5042. E3_ENABLE_WRITE(oldstatus);
  5043. break;
  5044. #endif
  5045. #endif
  5046. #endif
  5047. }
  5048. }
  5049. #endif
  5050. #ifdef DUAL_X_CARRIAGE
  5051. // handle delayed move timeout
  5052. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5053. // travel moves have been received so enact them
  5054. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5055. set_destination_to_current();
  5056. prepare_move();
  5057. }
  5058. #endif
  5059. #ifdef TEMP_STAT_LEDS
  5060. handle_status_leds();
  5061. #endif
  5062. check_axes_activity();
  5063. }
  5064. void kill()
  5065. {
  5066. cli(); // Stop interrupts
  5067. disable_all_heaters();
  5068. disable_all_steppers();
  5069. #if HAS_POWER_SWITCH
  5070. pinMode(PS_ON_PIN, INPUT);
  5071. #endif
  5072. SERIAL_ERROR_START;
  5073. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5074. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5075. // FMC small patch to update the LCD before ending
  5076. sei(); // enable interrupts
  5077. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5078. cli(); // disable interrupts
  5079. suicide();
  5080. while(1) { /* Intentionally left empty */ } // Wait for reset
  5081. }
  5082. #ifdef FILAMENT_RUNOUT_SENSOR
  5083. void filrunout() {
  5084. if (!filrunoutEnqueued) {
  5085. filrunoutEnqueued = true;
  5086. enqueuecommand("M600");
  5087. }
  5088. }
  5089. #endif
  5090. void Stop() {
  5091. disable_all_heaters();
  5092. if (IsRunning()) {
  5093. Running = false;
  5094. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5095. SERIAL_ERROR_START;
  5096. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5097. LCD_MESSAGEPGM(MSG_STOPPED);
  5098. }
  5099. }
  5100. #ifdef FAST_PWM_FAN
  5101. void setPwmFrequency(uint8_t pin, int val)
  5102. {
  5103. val &= 0x07;
  5104. switch(digitalPinToTimer(pin))
  5105. {
  5106. #if defined(TCCR0A)
  5107. case TIMER0A:
  5108. case TIMER0B:
  5109. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5110. // TCCR0B |= val;
  5111. break;
  5112. #endif
  5113. #if defined(TCCR1A)
  5114. case TIMER1A:
  5115. case TIMER1B:
  5116. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5117. // TCCR1B |= val;
  5118. break;
  5119. #endif
  5120. #if defined(TCCR2)
  5121. case TIMER2:
  5122. case TIMER2:
  5123. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5124. TCCR2 |= val;
  5125. break;
  5126. #endif
  5127. #if defined(TCCR2A)
  5128. case TIMER2A:
  5129. case TIMER2B:
  5130. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5131. TCCR2B |= val;
  5132. break;
  5133. #endif
  5134. #if defined(TCCR3A)
  5135. case TIMER3A:
  5136. case TIMER3B:
  5137. case TIMER3C:
  5138. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5139. TCCR3B |= val;
  5140. break;
  5141. #endif
  5142. #if defined(TCCR4A)
  5143. case TIMER4A:
  5144. case TIMER4B:
  5145. case TIMER4C:
  5146. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5147. TCCR4B |= val;
  5148. break;
  5149. #endif
  5150. #if defined(TCCR5A)
  5151. case TIMER5A:
  5152. case TIMER5B:
  5153. case TIMER5C:
  5154. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5155. TCCR5B |= val;
  5156. break;
  5157. #endif
  5158. }
  5159. }
  5160. #endif //FAST_PWM_FAN
  5161. bool setTargetedHotend(int code){
  5162. target_extruder = active_extruder;
  5163. if (code_seen('T')) {
  5164. target_extruder = code_value_short();
  5165. if (target_extruder >= EXTRUDERS) {
  5166. SERIAL_ECHO_START;
  5167. switch(code){
  5168. case 104:
  5169. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5170. break;
  5171. case 105:
  5172. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5173. break;
  5174. case 109:
  5175. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5176. break;
  5177. case 218:
  5178. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5179. break;
  5180. case 221:
  5181. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5182. break;
  5183. }
  5184. SERIAL_ECHOLN(target_extruder);
  5185. return true;
  5186. }
  5187. }
  5188. return false;
  5189. }
  5190. float calculate_volumetric_multiplier(float diameter) {
  5191. if (!volumetric_enabled || diameter == 0) return 1.0;
  5192. float d2 = diameter * 0.5;
  5193. return 1.0 / (M_PI * d2 * d2);
  5194. }
  5195. void calculate_volumetric_multipliers() {
  5196. for (int i=0; i<EXTRUDERS; i++)
  5197. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5198. }