123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * temperature.cpp - temperature control
- */
-
- #include "temperature.h"
- #include "endstops.h"
-
- #include "../Marlin.h"
- #include "../lcd/ultralcd.h"
- #include "planner.h"
- #include "../core/language.h"
- #include "../HAL/shared/Delay.h"
-
- #define MAX6675_SEPARATE_SPI EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) && PIN_EXISTS(MAX6675_SCK, MAX6675_DO)
-
- #if MAX6675_SEPARATE_SPI
- #include "../libs/private_spi.h"
- #endif
-
- #if EITHER(BABYSTEPPING, PID_EXTRUSION_SCALING)
- #include "stepper.h"
- #endif
-
- #if ENABLED(BABYSTEPPING)
- #include "../feature/babystep.h"
- #if ENABLED(BABYSTEP_ALWAYS_AVAILABLE)
- #include "../gcode/gcode.h"
- #endif
- #endif
-
- #include "printcounter.h"
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- #include "../feature/filwidth.h"
- #endif
-
- #if ENABLED(EMERGENCY_PARSER)
- #include "../feature/emergency_parser.h"
- #endif
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- #include "../feature/leds/printer_event_leds.h"
- #endif
-
- #if ENABLED(SINGLENOZZLE)
- #include "tool_change.h"
- #endif
-
- #if HAS_BUZZER
- #include "../libs/buzzer.h"
- #endif
-
- #if HOTEND_USES_THERMISTOR
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
- static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
- #else
- static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE, (void*)HEATER_5_TEMPTABLE);
- static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN, HEATER_5_TEMPTABLE_LEN);
- #endif
- #endif
-
- #ifndef THERMAL_PROTECTION_GRACE_PERIOD
- #define THERMAL_PROTECTION_GRACE_PERIOD 0 // No grace period needed on well-behaved boards
- #endif
-
- Temperature thermalManager;
-
- /**
- * Macros to include the heater id in temp errors. The compiler's dead-code
- * elimination should (hopefully) optimize out the unused strings.
- */
-
- #if HAS_HEATED_BED
- #define _BED_PSTR(M,E) (E) == -1 ? PSTR(M) :
- #else
- #define _BED_PSTR(M,E)
- #endif
- #if HAS_HEATED_CHAMBER
- #define _CHAMBER_PSTR(M,E) (E) == -2 ? PSTR(M) :
- #else
- #define _CHAMBER_PSTR(M,E)
- #endif
- #define _E_PSTR(M,E,N) ((HOTENDS) >= (N) && (E) == (N)-1) ? PSTR(MSG_E##N " " M) :
- #define TEMP_ERR_PSTR(M,E) _BED_PSTR(M##_BED,E) _CHAMBER_PSTR(M##_CHAMBER,E) _E_PSTR(M,E,2) _E_PSTR(M,E,3) _E_PSTR(M,E,4) _E_PSTR(M,E,5) _E_PSTR(M,E,6) PSTR(MSG_E1 " " M)
-
- // public:
-
- #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
- bool Temperature::adaptive_fan_slowing = true;
- #endif
-
- hotend_info_t Temperature::temp_hotend[HOTENDS]; // = { 0 }
-
- #if ENABLED(AUTO_POWER_E_FANS)
- uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 }
- #endif
-
- #if ENABLED(AUTO_POWER_CHAMBER_FAN)
- uint8_t Temperature::chamberfan_speed; // = 0
- #endif
-
- #if FAN_COUNT > 0
-
- uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 }
-
- #if ENABLED(EXTRA_FAN_SPEED)
- uint8_t Temperature::old_fan_speed[FAN_COUNT], Temperature::new_fan_speed[FAN_COUNT];
-
- void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp) {
- switch (tmp_temp) {
- case 1:
- set_fan_speed(fan, old_fan_speed[fan]);
- break;
- case 2:
- old_fan_speed[fan] = fan_speed[fan];
- set_fan_speed(fan, new_fan_speed[fan]);
- break;
- default:
- new_fan_speed[fan] = MIN(tmp_temp, 255U);
- break;
- }
- }
-
- #endif
-
- #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
- bool Temperature::fans_paused; // = false;
- uint8_t Temperature::saved_fan_speed[FAN_COUNT]; // = { 0 }
- #endif
-
- #if ENABLED(ADAPTIVE_FAN_SLOWING)
- uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128);
- #endif
-
- #if HAS_LCD_MENU
-
- uint8_t Temperature::lcd_tmpfan_speed[
- #if ENABLED(SINGLENOZZLE)
- MAX(EXTRUDERS, FAN_COUNT)
- #else
- FAN_COUNT
- #endif
- ]; // = { 0 }
-
- #endif
-
- void Temperature::set_fan_speed(uint8_t target, uint16_t speed) {
-
- NOMORE(speed, 255U);
-
- #if ENABLED(SINGLENOZZLE)
- if (target != active_extruder) {
- if (target < EXTRUDERS) singlenozzle_fan_speed[target] = speed;
- return;
- }
- target = 0; // Always use fan index 0 with SINGLENOZZLE
- #endif
-
- if (target >= FAN_COUNT) return;
-
- fan_speed[target] = speed;
- #if HAS_LCD_MENU
- lcd_tmpfan_speed[target] = speed;
- #endif
- }
-
- #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
-
- void Temperature::set_fans_paused(const bool p) {
- if (p != fans_paused) {
- fans_paused = p;
- if (p)
- FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; }
- else
- FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i];
- }
- }
-
- #endif
-
- #endif // FAN_COUNT > 0
-
- #if WATCH_HOTENDS
- heater_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } }
- #endif
- #if HEATER_IDLE_HANDLER
- heater_idle_t Temperature::hotend_idle[HOTENDS]; // = { { 0 } }
- #endif
-
- #if HAS_HEATED_BED
- bed_info_t Temperature::temp_bed; // = { 0 }
- // Init min and max temp with extreme values to prevent false errors during startup
- #ifdef BED_MINTEMP
- int16_t Temperature::mintemp_raw_BED = HEATER_BED_RAW_LO_TEMP;
- #endif
- #ifdef BED_MAXTEMP
- int16_t Temperature::maxtemp_raw_BED = HEATER_BED_RAW_HI_TEMP;
- #endif
- #if WATCH_BED
- heater_watch_t Temperature::watch_bed; // = { 0 }
- #endif
- #if DISABLED(PIDTEMPBED)
- millis_t Temperature::next_bed_check_ms;
- #endif
- #if HEATER_IDLE_HANDLER
- heater_idle_t Temperature::bed_idle; // = { 0 }
- #endif
- #endif // HAS_HEATED_BED
-
- #if HAS_TEMP_CHAMBER
- chamber_info_t Temperature::temp_chamber; // = { 0 }
- #if HAS_HEATED_CHAMBER
- #ifdef CHAMBER_MINTEMP
- int16_t Temperature::mintemp_raw_CHAMBER = HEATER_CHAMBER_RAW_LO_TEMP;
- #endif
- #ifdef CHAMBER_MAXTEMP
- int16_t Temperature::maxtemp_raw_CHAMBER = HEATER_CHAMBER_RAW_HI_TEMP;
- #endif
- #if WATCH_CHAMBER
- heater_watch_t Temperature::watch_chamber = { 0 };
- #endif
- millis_t Temperature::next_chamber_check_ms;
- #endif // HAS_HEATED_CHAMBER
- #endif // HAS_TEMP_CHAMBER
-
- // Initialized by settings.load()
- #if ENABLED(PIDTEMP)
- //hotend_pid_t Temperature::pid[HOTENDS];
- #endif
-
- #if ENABLED(PREVENT_COLD_EXTRUSION)
- bool Temperature::allow_cold_extrude = false;
- int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
- #endif
-
- // private:
-
- #if EARLY_WATCHDOG
- bool Temperature::inited = false;
- #endif
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- uint16_t Temperature::redundant_temperature_raw = 0;
- float Temperature::redundant_temperature = 0.0;
- #endif
-
- volatile bool Temperature::temp_meas_ready = false;
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN];
- lpq_ptr_t Temperature::lpq_ptr = 0;
- #endif
-
- #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) < (HEATER_##N##_RAW_HI_TEMP) ? 1 : -1)
-
- // Init mintemp and maxtemp with extreme values to prevent false errors during startup
- constexpr temp_range_t sensor_heater_0 { HEATER_0_RAW_LO_TEMP, HEATER_0_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_1 { HEATER_1_RAW_LO_TEMP, HEATER_1_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_2 { HEATER_2_RAW_LO_TEMP, HEATER_2_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_3 { HEATER_3_RAW_LO_TEMP, HEATER_3_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_4 { HEATER_4_RAW_LO_TEMP, HEATER_4_RAW_HI_TEMP, 0, 16383 },
- sensor_heater_5 { HEATER_5_RAW_LO_TEMP, HEATER_5_RAW_HI_TEMP, 0, 16383 };
-
- temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5);
-
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
- #endif
-
- #ifdef MILLISECONDS_PREHEAT_TIME
- millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
- #endif
-
- #if HAS_AUTO_FAN
- millis_t Temperature::next_auto_fan_check_ms = 0;
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
- Temperature::soft_pwm_count_fan[FAN_COUNT];
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
- #endif
-
- #if ENABLED(PROBING_HEATERS_OFF)
- bool Temperature::paused;
- #endif
-
- // public:
-
- #if HAS_ADC_BUTTONS
- uint32_t Temperature::current_ADCKey_raw = 1024;
- uint8_t Temperature::ADCKey_count = 0;
- #endif
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- int16_t Temperature::lpq_len; // Initialized in configuration_store
- #endif
-
- #if HAS_PID_HEATING
-
- inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); }
-
- /**
- * PID Autotuning (M303)
- *
- * Alternately heat and cool the nozzle, observing its behavior to
- * determine the best PID values to achieve a stable temperature.
- * Needs sufficient heater power to make some overshoot at target
- * temperature to succeed.
- */
- void Temperature::PID_autotune(const float &target, const int8_t heater, const int8_t ncycles, const bool set_result/*=false*/) {
- float current = 0.0;
- int cycles = 0;
- bool heating = true;
-
- millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
- long t_high = 0, t_low = 0;
-
- long bias, d;
- PID_t tune_pid = { 0, 0, 0 };
- float max = 0, min = 10000;
-
- const bool isbed = (heater < 0);
-
- #if HAS_PID_FOR_BOTH
- #define GHV(B,H) (isbed ? (B) : (H))
- #define SHV(B,H) do{ if (isbed) temp_bed.soft_pwm_amount = B; else temp_hotend[heater].soft_pwm_amount = H; }while(0)
- #define ONHEATINGSTART() (isbed ? printerEventLEDs.onBedHeatingStart() : printerEventLEDs.onHotendHeatingStart())
- #define ONHEATING(S,C,T) (isbed ? printerEventLEDs.onBedHeating(S,C,T) : printerEventLEDs.onHotendHeating(S,C,T))
- #elif ENABLED(PIDTEMPBED)
- #define GHV(B,H) B
- #define SHV(B,H) (temp_bed.soft_pwm_amount = B)
- #define ONHEATINGSTART() printerEventLEDs.onBedHeatingStart()
- #define ONHEATING(S,C,T) printerEventLEDs.onBedHeating(S,C,T)
- #else
- #define GHV(B,H) H
- #define SHV(B,H) (temp_hotend[heater].soft_pwm_amount = H)
- #define ONHEATINGSTART() printerEventLEDs.onHotendHeatingStart()
- #define ONHEATING(S,C,T) printerEventLEDs.onHotendHeating(S,C,T)
- #endif
-
- #if WATCH_BED || WATCH_HOTENDS
- #define HAS_TP_BED BOTH(THERMAL_PROTECTION_BED, PIDTEMPBED)
- #if HAS_TP_BED && BOTH(THERMAL_PROTECTION_HOTENDS, PIDTEMP)
- #define GTV(B,H) (isbed ? (B) : (H))
- #elif HAS_TP_BED
- #define GTV(B,H) (B)
- #else
- #define GTV(B,H) (H)
- #endif
- const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
- const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
- const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1);
- millis_t temp_change_ms = next_temp_ms + watch_temp_period * 1000UL;
- float next_watch_temp = 0.0;
- bool heated = false;
- #endif
-
- #if HAS_AUTO_FAN
- next_auto_fan_check_ms = next_temp_ms + 2500UL;
- #endif
-
- if (target > GHV(BED_MAXTEMP, temp_range[heater].maxtemp) - 15) {
- SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH);
- return;
- }
-
- SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_START);
-
- disable_all_heaters();
-
- SHV(bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1);
-
- wait_for_heatup = true; // Can be interrupted with M108
- #if ENABLED(PRINTER_EVENT_LEDS)
- const float start_temp = GHV(temp_bed.current, temp_hotend[heater].current);
- LEDColor color = ONHEATINGSTART();
- #endif
-
- #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
- adaptive_fan_slowing = false;
- #endif
-
- // PID Tuning loop
- while (wait_for_heatup) {
-
- const millis_t ms = millis();
-
- if (temp_meas_ready) { // temp sample ready
- updateTemperaturesFromRawValues();
-
- // Get the current temperature and constrain it
- current = GHV(temp_bed.current, temp_hotend[heater].current);
- NOLESS(max, current);
- NOMORE(min, current);
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- ONHEATING(start_temp, current, target);
- #endif
-
- #if HAS_AUTO_FAN
- if (ELAPSED(ms, next_auto_fan_check_ms)) {
- checkExtruderAutoFans();
- next_auto_fan_check_ms = ms + 2500UL;
- }
- #endif
-
- if (heating && current > target) {
- if (ELAPSED(ms, t2 + 5000UL)) {
- heating = false;
- SHV((bias - d) >> 1, (bias - d) >> 1);
- t1 = ms;
- t_high = t1 - t2;
- max = target;
- }
- }
-
- if (!heating && current < target) {
- if (ELAPSED(ms, t1 + 5000UL)) {
- heating = true;
- t2 = ms;
- t_low = t2 - t1;
- if (cycles > 0) {
- const long max_pow = GHV(MAX_BED_POWER, PID_MAX);
- bias += (d * (t_high - t_low)) / (t_low + t_high);
- bias = constrain(bias, 20, max_pow - 20);
- d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
-
- SERIAL_ECHOPAIR(MSG_BIAS, bias, MSG_D, d, MSG_T_MIN, min, MSG_T_MAX, max);
- if (cycles > 2) {
- const float Ku = (4.0f * d) / (float(M_PI) * (max - min) * 0.5f),
- Tu = float(t_low + t_high) * 0.001f,
- pf = isbed ? 0.2f : 0.6f,
- df = isbed ? 1.0f / 3.0f : 1.0f / 8.0f;
- tune_pid.Kp = Ku * pf;
- tune_pid.Kd = tune_pid.Kp * Tu * df;
- tune_pid.Ki = 2 * tune_pid.Kp / Tu;
- SERIAL_ECHOPAIR(MSG_KU, Ku, MSG_TU, Tu);
- SERIAL_ECHOLNPGM("\n" MSG_CLASSIC_PID);
- SERIAL_ECHOLNPAIR(MSG_KP, tune_pid.Kp, MSG_KI, tune_pid.Ki, MSG_KD, tune_pid.Kd);
- /**
- tune_pid.Kp = 0.33 * Ku;
- tune_pid.Ki = tune_pid.Kp / Tu;
- tune_pid.Kd = tune_pid.Kp * Tu / 3;
- SERIAL_ECHOLNPGM(" Some overshoot");
- SERIAL_ECHOLNPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd, " No overshoot");
- tune_pid.Kp = 0.2 * Ku;
- tune_pid.Ki = 2 * tune_pid.Kp / Tu;
- tune_pid.Kd = tune_pid.Kp * Tu / 3;
- SERIAL_ECHOPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd);
- */
- }
- }
- SHV((bias + d) >> 1, (bias + d) >> 1);
- cycles++;
- min = target;
- }
- }
- }
-
- // Did the temperature overshoot very far?
- #ifndef MAX_OVERSHOOT_PID_AUTOTUNE
- #define MAX_OVERSHOOT_PID_AUTOTUNE 20
- #endif
- if (current > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
- SERIAL_ECHOLNPGM(MSG_PID_TEMP_TOO_HIGH);
- break;
- }
-
- // Report heater states every 2 seconds
- if (ELAPSED(ms, next_temp_ms)) {
- #if HAS_TEMP_SENSOR
- print_heater_states(isbed ? active_extruder : heater);
- SERIAL_EOL();
- #endif
- next_temp_ms = ms + 2000UL;
-
- // Make sure heating is actually working
- #if WATCH_BED || WATCH_HOTENDS
- if (
- #if WATCH_BED && WATCH_HOTENDS
- true
- #elif WATCH_HOTENDS
- !isbed
- #else
- isbed
- #endif
- ) {
- if (!heated) { // If not yet reached target...
- if (current > next_watch_temp) { // Over the watch temp?
- next_watch_temp = current + watch_temp_increase; // - set the next temp to watch for
- temp_change_ms = ms + watch_temp_period * 1000UL; // - move the expiration timer up
- if (current > watch_temp_target) heated = true; // - Flag if target temperature reached
- }
- else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
- _temp_error(heater, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, heater));
- }
- else if (current < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
- _temp_error(heater, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater));
- }
- #endif
- } // every 2 seconds
-
- // Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
- #ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
- #define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
- #endif
- if (((ms - t1) + (ms - t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
- SERIAL_ECHOLNPGM(MSG_PID_TIMEOUT);
- break;
- }
-
- if (cycles > ncycles && cycles > 2) {
- SERIAL_ECHOLNPGM(MSG_PID_AUTOTUNE_FINISHED);
-
- #if HAS_PID_FOR_BOTH
- const char * const estring = GHV(PSTR("bed"), PSTR(""));
- say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
- say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
- say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
- #elif ENABLED(PIDTEMP)
- say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
- say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
- say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
- #else
- say_default_(); SERIAL_ECHOLNPAIR("bedKp ", tune_pid.Kp);
- say_default_(); SERIAL_ECHOLNPAIR("bedKi ", tune_pid.Ki);
- say_default_(); SERIAL_ECHOLNPAIR("bedKd ", tune_pid.Kd);
- #endif
-
- #define _SET_BED_PID() do { \
- temp_bed.pid.Kp = tune_pid.Kp; \
- temp_bed.pid.Ki = scalePID_i(tune_pid.Ki); \
- temp_bed.pid.Kd = scalePID_d(tune_pid.Kd); \
- }while(0)
-
- #define _SET_EXTRUDER_PID() do { \
- PID_PARAM(Kp, heater) = tune_pid.Kp; \
- PID_PARAM(Ki, heater) = scalePID_i(tune_pid.Ki); \
- PID_PARAM(Kd, heater) = scalePID_d(tune_pid.Kd); \
- updatePID(); }while(0)
-
- // Use the result? (As with "M303 U1")
- if (set_result) {
- #if HAS_PID_FOR_BOTH
- if (isbed) _SET_BED_PID(); else _SET_EXTRUDER_PID();
- #elif ENABLED(PIDTEMP)
- _SET_EXTRUDER_PID();
- #else
- _SET_BED_PID();
- #endif
- }
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- printerEventLEDs.onPidTuningDone(color);
- #endif
-
- goto EXIT_M303;
- }
- ui.update();
- }
-
- disable_all_heaters();
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- printerEventLEDs.onPidTuningDone(color);
- #endif
-
- EXIT_M303:
- #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
- adaptive_fan_slowing = true;
- #endif
- return;
- }
-
- #endif // HAS_PID_HEATING
-
- /**
- * Class and Instance Methods
- */
-
- Temperature::Temperature() { }
-
- int16_t Temperature::getHeaterPower(const int8_t heater) {
- return (
- #if HAS_HEATED_CHAMBER
- #if HAS_HEATED_BED
- heater == -2
- #else
- heater < 0
- #endif
- ? temp_chamber.soft_pwm_amount :
- #endif
- #if HAS_HEATED_BED
- #if HAS_HEATED_CHAMBER
- heater == -1
- #else
- heater < 0
- #endif
- ? temp_bed.soft_pwm_amount :
- #endif
- temp_hotend[heater].soft_pwm_amount
- );
- }
-
- #if HAS_AUTO_FAN
-
- #define AUTO_1_IS_0 (E1_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
- #define AUTO_2_IS_0 (E2_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
- #define AUTO_2_IS_1 (E2_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
- #define AUTO_3_IS_0 (E3_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
- #define AUTO_3_IS_1 (E3_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
- #define AUTO_3_IS_2 (E3_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
- #define AUTO_4_IS_0 (E4_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
- #define AUTO_4_IS_1 (E4_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
- #define AUTO_4_IS_2 (E4_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
- #define AUTO_4_IS_3 (E4_AUTO_FAN_PIN == E3_AUTO_FAN_PIN)
- #define AUTO_5_IS_0 (E5_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
- #define AUTO_5_IS_1 (E5_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
- #define AUTO_5_IS_2 (E5_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
- #define AUTO_5_IS_3 (E5_AUTO_FAN_PIN == E3_AUTO_FAN_PIN)
- #define AUTO_5_IS_4 (E5_AUTO_FAN_PIN == E4_AUTO_FAN_PIN)
- #define AUTO_CHAMBER_IS_0 (CHAMBER_AUTO_FAN_PIN == E0_AUTO_FAN_PIN)
- #define AUTO_CHAMBER_IS_1 (CHAMBER_AUTO_FAN_PIN == E1_AUTO_FAN_PIN)
- #define AUTO_CHAMBER_IS_2 (CHAMBER_AUTO_FAN_PIN == E2_AUTO_FAN_PIN)
- #define AUTO_CHAMBER_IS_3 (CHAMBER_AUTO_FAN_PIN == E3_AUTO_FAN_PIN)
- #define AUTO_CHAMBER_IS_4 (CHAMBER_AUTO_FAN_PIN == E4_AUTO_FAN_PIN)
- #define AUTO_CHAMBER_IS_5 (CHAMBER_AUTO_FAN_PIN == E5_AUTO_FAN_PIN)
- #define AUTO_CHAMBER_IS_E (AUTO_CHAMBER_IS_0 || AUTO_CHAMBER_IS_1 || AUTO_CHAMBER_IS_2 || AUTO_CHAMBER_IS_3 || AUTO_CHAMBER_IS_4 || AUTO_CHAMBER_IS_5)
- #define CHAMBER_FAN_INDEX HOTENDS
-
- void Temperature::checkExtruderAutoFans() {
- static const uint8_t fanBit[] PROGMEM = {
- 0
- #if HOTENDS > 1
- , AUTO_1_IS_0 ? 0 : 1
- #endif
- #if HOTENDS > 2
- , AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2
- #endif
- #if HOTENDS > 3
- , AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
- #endif
- #if HOTENDS > 4
- , AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4,
- #endif
- #if HOTENDS > 5
- , AUTO_5_IS_0 ? 0 : AUTO_5_IS_1 ? 1 : AUTO_5_IS_2 ? 2 : AUTO_5_IS_3 ? 3 : AUTO_5_IS_4 ? 4 : 5
- #endif
- #if HAS_AUTO_CHAMBER_FAN
- , AUTO_CHAMBER_IS_0 ? 0 : AUTO_CHAMBER_IS_1 ? 1 : AUTO_CHAMBER_IS_2 ? 2 : AUTO_CHAMBER_IS_3 ? 3 : AUTO_CHAMBER_IS_4 ? 4 : AUTO_CHAMBER_IS_5 ? 5 : 6
- #endif
- };
- uint8_t fanState = 0;
-
- HOTEND_LOOP()
- if (temp_hotend[e].current >= EXTRUDER_AUTO_FAN_TEMPERATURE)
- SBI(fanState, pgm_read_byte(&fanBit[e]));
-
- #if HAS_AUTO_CHAMBER_FAN
- if (temp_chamber.current >= CHAMBER_AUTO_FAN_TEMPERATURE)
- SBI(fanState, pgm_read_byte(&fanBit[CHAMBER_FAN_INDEX]));
- #endif
-
- #define _UPDATE_AUTO_FAN(P,D,A) do{ \
- if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \
- analogWrite(P##_AUTO_FAN_PIN, D ? A : 0); \
- else \
- WRITE(P##_AUTO_FAN_PIN, D); \
- }while(0)
-
- uint8_t fanDone = 0;
- for (uint8_t f = 0; f < COUNT(fanBit); f++) {
- const uint8_t realFan = pgm_read_byte(&fanBit[f]);
- if (TEST(fanDone, realFan)) continue;
- const bool fan_on = TEST(fanState, realFan);
- switch (f) {
- #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
- case CHAMBER_FAN_INDEX:
- chamberfan_speed = fan_on ? CHAMBER_AUTO_FAN_SPEED : 0;
- break;
- #endif
- default:
- #if ENABLED(AUTO_POWER_E_FANS)
- autofan_speed[realFan] = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0;
- #endif
- break;
- }
-
- switch (f) {
- #if HAS_AUTO_FAN_0
- case 0: _UPDATE_AUTO_FAN(E0, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_1
- case 1: _UPDATE_AUTO_FAN(E1, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_2
- case 2: _UPDATE_AUTO_FAN(E2, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_3
- case 3: _UPDATE_AUTO_FAN(E3, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_4
- case 4: _UPDATE_AUTO_FAN(E4, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_FAN_5
- case 5: _UPDATE_AUTO_FAN(E5, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
- #endif
- #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
- case CHAMBER_FAN_INDEX: _UPDATE_AUTO_FAN(CHAMBER, fan_on, CHAMBER_AUTO_FAN_SPEED); break;
- #endif
- }
- SBI(fanDone, realFan);
- }
- }
-
- #endif // HAS_AUTO_FAN
-
- //
- // Temperature Error Handlers
- //
- void Temperature::_temp_error(const int8_t heater, PGM_P const serial_msg, PGM_P const lcd_msg) {
- static bool killed = false;
- if (IsRunning()) {
- SERIAL_ERROR_START();
- serialprintPGM(serial_msg);
- SERIAL_ECHOPGM(MSG_STOPPED_HEATER);
- if (heater >= 0) SERIAL_ECHO((int)heater);
- #if HAS_HEATED_CHAMBER
- else if (heater == -2) SERIAL_ECHOPGM(MSG_HEATER_CHAMBER);
- #endif
- else SERIAL_ECHOPGM(MSG_HEATER_BED);
- SERIAL_EOL();
- }
-
- #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
- if (!killed) {
- Running = false;
- killed = true;
-
- disable_all_heaters();
-
- #if HAS_BUZZER && PIN_EXISTS(BEEPER)
- for (uint8_t i = 20; i--;) {
- WRITE(BEEPER_PIN, HIGH); delay(25);
- WRITE(BEEPER_PIN, LOW); delay(80);
- }
- WRITE(BEEPER_PIN, HIGH);
- #endif
-
- kill(lcd_msg);
- }
- else
- disable_all_heaters(); // paranoia
- #else
- UNUSED(killed);
- #endif
- }
-
- void Temperature::max_temp_error(const int8_t heater) {
- _temp_error(heater, PSTR(MSG_T_MAXTEMP), TEMP_ERR_PSTR(MSG_ERR_MAXTEMP, heater));
- }
-
- void Temperature::min_temp_error(const int8_t heater) {
- _temp_error(heater, PSTR(MSG_T_MINTEMP), TEMP_ERR_PSTR(MSG_ERR_MINTEMP, heater));
- }
-
- float Temperature::get_pid_output(const int8_t e) {
- #if HOTENDS == 1
- #define _HOTEND_TEST true
- #else
- #define _HOTEND_TEST (e == active_extruder)
- #endif
- E_UNUSED();
- float pid_output;
- #if ENABLED(PIDTEMP)
- #if DISABLED(PID_OPENLOOP)
- static hotend_pid_t work_pid[HOTENDS];
- static float temp_iState[HOTENDS] = { 0 },
- temp_dState[HOTENDS] = { 0 };
- static bool pid_reset[HOTENDS] = { false };
- const float pid_error = temp_hotend[HOTEND_INDEX].target - temp_hotend[HOTEND_INDEX].current;
-
- if (temp_hotend[HOTEND_INDEX].target == 0
- || pid_error < -(PID_FUNCTIONAL_RANGE)
- #if HEATER_IDLE_HANDLER
- || hotend_idle[HOTEND_INDEX].timed_out
- #endif
- ) {
- pid_output = 0;
- pid_reset[HOTEND_INDEX] = true;
- }
- else if (pid_error > PID_FUNCTIONAL_RANGE) {
- pid_output = BANG_MAX;
- pid_reset[HOTEND_INDEX] = true;
- }
- else {
- if (pid_reset[HOTEND_INDEX]) {
- temp_iState[HOTEND_INDEX] = 0.0;
- work_pid[HOTEND_INDEX].Kd = 0.0;
- pid_reset[HOTEND_INDEX] = false;
- }
-
- work_pid[HOTEND_INDEX].Kd = work_pid[HOTEND_INDEX].Kd + PID_K2 * (PID_PARAM(Kd, HOTEND_INDEX) * (temp_dState[HOTEND_INDEX] - temp_hotend[HOTEND_INDEX].current) - work_pid[HOTEND_INDEX].Kd);
- const float max_power_over_i_gain = (float)PID_MAX / PID_PARAM(Ki, HOTEND_INDEX);
- temp_iState[HOTEND_INDEX] = constrain(temp_iState[HOTEND_INDEX] + pid_error, 0, max_power_over_i_gain);
- work_pid[HOTEND_INDEX].Kp = PID_PARAM(Kp, HOTEND_INDEX) * pid_error;
- work_pid[HOTEND_INDEX].Ki = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
-
- pid_output = work_pid[HOTEND_INDEX].Kp + work_pid[HOTEND_INDEX].Ki + work_pid[HOTEND_INDEX].Kd;
-
- #if ENABLED(PID_EXTRUSION_SCALING)
- work_pid[HOTEND_INDEX].Kc = 0;
- if (_HOTEND_TEST) {
- const long e_position = stepper.position(E_AXIS);
- if (e_position > last_e_position) {
- lpq[lpq_ptr] = e_position - last_e_position;
- last_e_position = e_position;
- }
- else
- lpq[lpq_ptr] = 0;
-
- if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
- work_pid[HOTEND_INDEX].Kc = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
- pid_output += work_pid[HOTEND_INDEX].Kc;
- }
- #endif // PID_EXTRUSION_SCALING
-
- pid_output = constrain(pid_output, 0, PID_MAX);
- }
- temp_dState[HOTEND_INDEX] = temp_hotend[HOTEND_INDEX].current;
-
- #else // PID_OPENLOOP
-
- const float pid_output = constrain(temp_hotend[HOTEND_INDEX].target, 0, PID_MAX);
-
- #endif // PID_OPENLOOP
-
- #if ENABLED(PID_DEBUG)
- SERIAL_ECHO_START();
- SERIAL_ECHOPAIR(
- MSG_PID_DEBUG, HOTEND_INDEX,
- MSG_PID_DEBUG_INPUT, temp_hotend[HOTEND_INDEX].current,
- MSG_PID_DEBUG_OUTPUT, pid_output
- );
- #if DISABLED(PID_OPENLOOP)
- SERIAL_ECHOPAIR(
- MSG_PID_DEBUG_PTERM, work_pid[HOTEND_INDEX].Kp,
- MSG_PID_DEBUG_ITERM, work_pid[HOTEND_INDEX].Ki,
- MSG_PID_DEBUG_DTERM, work_pid[HOTEND_INDEX].Kd
- #if ENABLED(PID_EXTRUSION_SCALING)
- , MSG_PID_DEBUG_CTERM, work_pid[HOTEND_INDEX].Kc
- #endif
- );
- #endif
- SERIAL_EOL();
- #endif // PID_DEBUG
-
- #else /* PID off */
- #if HEATER_IDLE_HANDLER
- #define _TIMED_OUT_TEST hotend_idle[HOTEND_INDEX].timed_out
- #else
- #define _TIMED_OUT_TEST false
- #endif
- pid_output = (!_TIMED_OUT_TEST && temp_hotend[HOTEND_INDEX].current < temp_hotend[HOTEND_INDEX].target) ? BANG_MAX : 0;
- #undef _TIMED_OUT_TEST
- #endif
-
- return pid_output;
- }
-
- #if ENABLED(PIDTEMPBED)
-
- float Temperature::get_pid_output_bed() {
-
- #if DISABLED(PID_OPENLOOP)
-
- static PID_t work_pid = { 0 };
- static float temp_iState = 0, temp_dState = 0;
-
- const float max_power_over_i_gain = (float)MAX_BED_POWER / temp_bed.pid.Ki,
- pid_error = temp_bed.target - temp_bed.current;
-
- temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain);
-
- work_pid.Kp = temp_bed.pid.Kp * pid_error;
- work_pid.Ki = temp_bed.pid.Ki * temp_iState;
- work_pid.Kd = work_pid.Kd + PID_K2 * (temp_bed.pid.Kd * (temp_dState - temp_bed.current) - work_pid.Kd);
-
- temp_dState = temp_bed.current;
-
- const float pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd, 0, MAX_BED_POWER);
-
- #else // PID_OPENLOOP
-
- const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER);
-
- #endif // PID_OPENLOOP
-
- #if ENABLED(PID_BED_DEBUG)
- SERIAL_ECHO_START();
- SERIAL_ECHOLNPAIR(
- " PID_BED_DEBUG : Input ", temp_bed.current, " Output ", pid_output,
- #if DISABLED(PID_OPENLOOP)
- MSG_PID_DEBUG_PTERM, work_pid.Kp,
- MSG_PID_DEBUG_ITERM, work_pid.Ki,
- MSG_PID_DEBUG_DTERM, work_pid.Kd,
- #endif
- );
- #endif
-
- return pid_output;
- }
-
- #endif // PIDTEMPBED
-
- /**
- * Manage heating activities for extruder hot-ends and a heated bed
- * - Acquire updated temperature readings
- * - Also resets the watchdog timer
- * - Invoke thermal runaway protection
- * - Manage extruder auto-fan
- * - Apply filament width to the extrusion rate (may move)
- * - Update the heated bed PID output value
- */
- void Temperature::manage_heater() {
-
- #if EARLY_WATCHDOG
- // If thermal manager is still not running, make sure to at least reset the watchdog!
- if (!inited) {
- watchdog_reset();
- return;
- }
- #endif
-
- #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
- static bool last_pause_state;
- #endif
-
- #if ENABLED(EMERGENCY_PARSER)
- if (emergency_parser.killed_by_M112) kill();
- #endif
-
- if (!temp_meas_ready) return;
-
- updateTemperaturesFromRawValues(); // also resets the watchdog
-
- #if ENABLED(HEATER_0_USES_MAX6675)
- if (temp_hotend[0].current > MIN(HEATER_0_MAXTEMP, HEATER_0_MAX6675_TMAX - 1.0)) max_temp_error(0);
- if (temp_hotend[0].current < MAX(HEATER_0_MINTEMP, HEATER_0_MAX6675_TMIN + .01)) min_temp_error(0);
- #endif
-
- #if ENABLED(HEATER_1_USES_MAX6675)
- if (temp_hotend[1].current > MIN(HEATER_1_MAXTEMP, HEATER_1_MAX6675_TMAX - 1.0)) max_temp_error(1);
- if (temp_hotend[1].current < MAX(HEATER_1_MINTEMP, HEATER_1_MAX6675_TMIN + .01)) min_temp_error(1);
- #endif
-
- #define HAS_THERMAL_PROTECTION (ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED || ENABLED(THERMAL_PROTECTION_CHAMBER))
-
- #if HAS_THERMAL_PROTECTION || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN || HEATER_IDLE_HANDLER
- millis_t ms = millis();
- #endif
-
- #if HAS_THERMAL_PROTECTION
- #if THERMAL_PROTECTION_GRACE_PERIOD > 0
- static millis_t grace_period = ms + THERMAL_PROTECTION_GRACE_PERIOD;
- if (ELAPSED(ms, grace_period)) grace_period = 0UL;
- #else
- static constexpr millis_t grace_period = 0UL;
- #endif
- #endif
-
- HOTEND_LOOP() {
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- if (!grace_period && degHotend(e) > temp_range[e].maxtemp)
- _temp_error(e, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, e));
- #endif
-
- #if HEATER_IDLE_HANDLER
- hotend_idle[e].update(ms);
- #endif
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- // Check for thermal runaway
- thermal_runaway_protection(tr_state_machine[e], temp_hotend[e].current, temp_hotend[e].target, e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
- #endif
-
- temp_hotend[e].soft_pwm_amount = (temp_hotend[e].current > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].current < temp_range[e].maxtemp ? (int)get_pid_output(e) >> 1 : 0;
-
- #if WATCH_HOTENDS
- // Make sure temperature is increasing
- if (watch_hotend[e].next_ms && ELAPSED(ms, watch_hotend[e].next_ms)) { // Time to check this extruder?
- if (degHotend(e) < watch_hotend[e].target) // Failed to increase enough?
- _temp_error(e, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, e));
- else // Start again if the target is still far off
- start_watching_heater(e);
- }
- #endif
-
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- // Make sure measured temperatures are close together
- if (ABS(temp_hotend[0].current - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
- _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
- #endif
-
- } // HOTEND_LOOP
-
- #if HAS_AUTO_FAN
- if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
- checkExtruderAutoFans();
- next_auto_fan_check_ms = ms + 2500UL;
- }
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- /**
- * Filament Width Sensor dynamically sets the volumetric multiplier
- * based on a delayed measurement of the filament diameter.
- */
- if (filament_sensor) {
- meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
- if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
- meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
- planner.calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index]);
- }
- #endif // FILAMENT_WIDTH_SENSOR
-
- #if HAS_HEATED_BED
-
- #if ENABLED(THERMAL_PROTECTION_BED)
- if (!grace_period && degBed() > BED_MAXTEMP)
- _temp_error(-1, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, -1));
- #endif
-
- #if WATCH_BED
- // Make sure temperature is increasing
- if (watch_bed.elapsed(ms)) { // Time to check the bed?
- if (degBed() < watch_bed.target) // Failed to increase enough?
- _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -1));
- else // Start again if the target is still far off
- start_watching_bed();
- }
- #endif // WATCH_BED
-
- do {
-
- #if DISABLED(PIDTEMPBED)
- if (PENDING(ms, next_bed_check_ms)
- #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
- && paused == last_pause_state
- #endif
- ) break;
- next_bed_check_ms = ms + BED_CHECK_INTERVAL;
- #if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
- last_pause_state = paused;
- #endif
- #endif
-
- #if HEATER_IDLE_HANDLER
- bed_idle.update(ms);
- #endif
-
- #if HAS_THERMALLY_PROTECTED_BED
- thermal_runaway_protection(tr_state_machine_bed, temp_bed.current, temp_bed.target, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
- #endif
-
- #if HEATER_IDLE_HANDLER
- if (bed_idle.timed_out) {
- temp_bed.soft_pwm_amount = 0;
- #if DISABLED(PIDTEMPBED)
- WRITE_HEATER_BED(LOW);
- #endif
- }
- else
- #endif
- {
- #if ENABLED(PIDTEMPBED)
- temp_bed.soft_pwm_amount = WITHIN(temp_bed.current, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
- #else
- // Check if temperature is within the correct band
- if (WITHIN(temp_bed.current, BED_MINTEMP, BED_MAXTEMP)) {
- #if ENABLED(BED_LIMIT_SWITCHING)
- if (temp_bed.current >= temp_bed.target + BED_HYSTERESIS)
- temp_bed.soft_pwm_amount = 0;
- else if (temp_bed.current <= temp_bed.target - (BED_HYSTERESIS))
- temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1;
- #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
- temp_bed.soft_pwm_amount = temp_bed.current < temp_bed.target ? MAX_BED_POWER >> 1 : 0;
- #endif
- }
- else {
- temp_bed.soft_pwm_amount = 0;
- WRITE_HEATER_BED(LOW);
- }
- #endif
- }
-
- } while (false);
-
- #endif // HAS_HEATED_BED
-
- #if HAS_HEATED_CHAMBER
-
- #ifndef CHAMBER_CHECK_INTERVAL
- #define CHAMBER_CHECK_INTERVAL 1000UL
- #endif
-
- #if ENABLED(THERMAL_PROTECTION_CHAMBER)
- if (!grace_period && degChamber() > CHAMBER_MAXTEMP)
- _temp_error(-2, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, -2));
- #endif
-
- #if WATCH_CHAMBER
- // Make sure temperature is increasing
- if (watch_chamber.elapsed(ms)) { // Time to check the chamber?
- if (degChamber() < watch_chamber.target) // Failed to increase enough?
- _temp_error(-2, PSTR(MSG_T_HEATING_FAILED), TEMP_ERR_PSTR(MSG_HEATING_FAILED_LCD, -2));
- else
- start_watching_chamber(); // Start again if the target is still far off
- }
- #endif
-
- if (ELAPSED(ms, next_chamber_check_ms)) {
- next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL;
-
- if (WITHIN(temp_chamber.current, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) {
- #if ENABLED(CHAMBER_LIMIT_SWITCHING)
- if (temp_chamber.current >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS)
- temp_chamber.soft_pwm_amount = 0;
- else if (temp_chamber.current <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS))
- temp_chamber.soft_pwm_amount = MAX_CHAMBER_POWER >> 1;
- #else
- temp_chamber.soft_pwm_amount = temp_chamber.current < temp_chamber.target ? MAX_CHAMBER_POWER >> 1 : 0;
- #endif
- }
- else {
- temp_chamber.soft_pwm_amount = 0;
- WRITE_HEATER_CHAMBER(LOW);
- }
-
- #if ENABLED(THERMAL_PROTECTION_CHAMBER)
- thermal_runaway_protection(tr_state_machine_chamber, temp_chamber.current, temp_chamber.target, -2, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS);
- #endif
- }
-
- // TODO: Implement true PID pwm
- //temp_bed.soft_pwm_amount = WITHIN(temp_chamber.current, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0;
-
- #endif // HAS_HEATED_CHAMBER
- }
-
- #define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
- #define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / 1024.0 / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
-
- /**
- * Bisect search for the range of the 'raw' value, then interpolate
- * proportionally between the under and over values.
- */
- #define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
- uint8_t l = 0, r = LEN, m; \
- for (;;) { \
- m = (l + r) >> 1; \
- if (!m) return short(pgm_read_word(&TBL[0][1])); \
- if (m == l || m == r) return short(pgm_read_word(&TBL[LEN-1][1])); \
- short v00 = pgm_read_word(&TBL[m-1][0]), \
- v10 = pgm_read_word(&TBL[m-0][0]); \
- if (raw < v00) r = m; \
- else if (raw > v10) l = m; \
- else { \
- const short v01 = short(pgm_read_word(&TBL[m-1][1])), \
- v11 = short(pgm_read_word(&TBL[m-0][1])); \
- return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
- } \
- } \
- }while(0)
-
- #if HAS_USER_THERMISTORS
-
- user_thermistor_t Temperature::user_thermistor[USER_THERMISTORS]; // Initialized by settings.load()
-
- void Temperature::reset_user_thermistors() {
- user_thermistor_t user_thermistor[USER_THERMISTORS] = {
- #if ENABLED(HEATER_0_USER_THERMISTOR)
- { true, 0, 0, HOTEND0_PULLUP_RESISTOR_OHMS, HOTEND0_RESISTANCE_25C_OHMS, 0, 0, HOTEND0_BETA, 0 },
- #endif
- #if ENABLED(HEATER_1_USER_THERMISTOR)
- { true, 0, 0, HOTEND1_PULLUP_RESISTOR_OHMS, HOTEND1_RESISTANCE_25C_OHMS, 0, 0, HOTEND1_BETA, 0 },
- #endif
- #if ENABLED(HEATER_2_USER_THERMISTOR)
- { true, 0, 0, HOTEND2_PULLUP_RESISTOR_OHMS, HOTEND2_RESISTANCE_25C_OHMS, 0, 0, HOTEND2_BETA, 0 },
- #endif
- #if ENABLED(HEATER_3_USER_THERMISTOR)
- { true, 0, 0, HOTEND3_PULLUP_RESISTOR_OHMS, HOTEND3_RESISTANCE_25C_OHMS, 0, 0, HOTEND3_BETA, 0 },
- #endif
- #if ENABLED(HEATER_4_USER_THERMISTOR)
- { true, 0, 0, HOTEND4_PULLUP_RESISTOR_OHMS, HOTEND4_RESISTANCE_25C_OHMS, 0, 0, HOTEND4_BETA, 0 },
- #endif
- #if ENABLED(HEATER_5_USER_THERMISTOR)
- { true, 0, 0, HOTEND5_PULLUP_RESISTOR_OHMS, HOTEND5_RESISTANCE_25C_OHMS, 0, 0, HOTEND5_BETA, 0 },
- #endif
- #if ENABLED(HEATER_BED_USER_THERMISTOR)
- { true, 0, 0, BED_PULLUP_RESISTOR_OHMS, BED_RESISTANCE_25C_OHMS, 0, 0, BED_BETA, 0 },
- #endif
- #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
- { true, 0, 0, CHAMBER_PULLUP_RESISTOR_OHMS, CHAMBER_RESISTANCE_25C_OHMS, 0, 0, CHAMBER_BETA, 0 }
- #endif
- };
- COPY(thermalManager.user_thermistor, user_thermistor);
- }
-
- void Temperature::log_user_thermistor(const uint8_t t_index, const bool eprom/*=false*/) {
-
- if (eprom)
- SERIAL_ECHOPGM(" M305 ");
- else
- SERIAL_ECHO_START();
- SERIAL_CHAR('P');
- SERIAL_CHAR('0' + t_index);
-
- const user_thermistor_t &t = user_thermistor[t_index];
-
- SERIAL_ECHOPAIR_F(" R", t.series_res, 1);
- SERIAL_ECHOPAIR_F(" T", t.res_25, 1);
- SERIAL_ECHOPAIR_F(" B", t.beta, 1);
- SERIAL_ECHOPAIR_F(" C", t.sh_c_coeff, 9);
- SERIAL_ECHOPGM(" ; ");
- serialprintPGM(
- #if ENABLED(HEATER_0_USER_THERMISTOR)
- t_index == CTI_HOTEND_0 ? PSTR("HOTEND 0") :
- #endif
- #if ENABLED(HEATER_1_USER_THERMISTOR)
- t_index == CTI_HOTEND_1 ? PSTR("HOTEND 1") :
- #endif
- #if ENABLED(HEATER_2_USER_THERMISTOR)
- t_index == CTI_HOTEND_2 ? PSTR("HOTEND 2") :
- #endif
- #if ENABLED(HEATER_3_USER_THERMISTOR)
- t_index == CTI_HOTEND_3 ? PSTR("HOTEND 3") :
- #endif
- #if ENABLED(HEATER_4_USER_THERMISTOR)
- t_index == CTI_HOTEND_4 ? PSTR("HOTEND 4") :
- #endif
- #if ENABLED(HEATER_5_USER_THERMISTOR)
- t_index == CTI_HOTEND_5 ? PSTR("HOTEND 5") :
- #endif
- #if ENABLED(HEATER_BED_USER_THERMISTOR)
- t_index == CTI_BED ? PSTR("BED") :
- #endif
- #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
- t_index == CTI_CHAMBER ? PSTR("CHAMBER") :
- #endif
- nullptr
- );
- SERIAL_EOL();
- }
-
- float Temperature::user_thermistor_to_deg_c(const uint8_t t_index, const int raw) {
- //#if (MOTHERBOARD == BOARD_RAMPS_14_EFB)
- // static uint32_t clocks_total = 0;
- // static uint32_t calls = 0;
- // uint32_t tcnt5 = TCNT5;
- //#endif
-
- if (!WITHIN(t_index, 0, COUNT(user_thermistor) - 1)) return 25;
-
- if (user_thermistor[t_index].pre_calc) {
- // pre-calculate some variables
- user_thermistor[t_index].pre_calc = false;
- user_thermistor[t_index].res_25_recip = 1.0f / user_thermistor[t_index].res_25;
- user_thermistor[t_index].res_25_log = logf(user_thermistor[t_index].res_25);
- user_thermistor[t_index].beta_recip = 1.0f / user_thermistor[t_index].beta;
- user_thermistor[t_index].sh_alpha = (1.0f / (THERMISTOR_RESISTANCE_NOMINAL_C - THERMISTOR_ABS_ZERO_C)) - (user_thermistor[t_index].beta_recip * user_thermistor[t_index].res_25_log) - (user_thermistor[t_index].sh_c_coeff * user_thermistor[t_index].res_25_log * user_thermistor[t_index].res_25_log * user_thermistor[t_index].res_25_log);
- }
-
- // maximum adc value .. take into account the over sampling
- const int adc_max = (THERMISTOR_ADC_RESOLUTION * OVERSAMPLENR) - 1,
- adc_raw = constrain(raw, 1, adc_max - 1); // constrain to prevent divide-by-zero
-
- const float adc_inverse = (adc_max - adc_raw) - 0.5f,
- resistance = user_thermistor[t_index].series_res * (adc_raw + 0.5f) / adc_inverse,
- log_resistance = logf(resistance);
-
- float value = user_thermistor[t_index].sh_alpha;
- value += log_resistance * user_thermistor[t_index].beta_recip;
- if (user_thermistor[t_index].sh_c_coeff != 0)
- value += user_thermistor[t_index].sh_c_coeff * log_resistance * log_resistance * log_resistance;
- value = 1.0f / value;
-
- //#if (MOTHERBOARD == BOARD_RAMPS_14_EFB)
- // int32_t clocks = TCNT5 - tcnt5;
- // if (clocks >= 0) {
- // clocks_total += clocks;
- // calls++;
- // }
- //#endif
-
- // Return degrees C (up to 999, as the LCD only displays 3 digits)
- return MIN(value + THERMISTOR_ABS_ZERO_C, 999);
- }
- #endif
-
- // Derived from RepRap FiveD extruder::getTemperature()
- // For hot end temperature measurement.
- float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) {
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- if (e > HOTENDS)
- #else
- if (e >= HOTENDS)
- #endif
- {
- SERIAL_ERROR_START();
- SERIAL_ECHO((int)e);
- SERIAL_ECHOLNPGM(MSG_INVALID_EXTRUDER_NUM);
- kill();
- return 0.0;
- }
-
- switch (e) {
- case 0:
- #if ENABLED(HEATER_0_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_0, raw);
- #elif ENABLED(HEATER_0_USES_MAX6675)
- return raw * 0.25;
- #elif ENABLED(HEATER_0_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_0_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 1:
- #if ENABLED(HEATER_1_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_1, raw);
- #elif ENABLED(HEATER_1_USES_MAX6675)
- return raw * 0.25;
- #elif ENABLED(HEATER_1_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_1_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 2:
- #if ENABLED(HEATER_2_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_2, raw);
- #elif ENABLED(HEATER_2_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_2_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 3:
- #if ENABLED(HEATER_3_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_3, raw);
- #elif ENABLED(HEATER_3_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_3_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 4:
- #if ENABLED(HEATER_4_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_4, raw);
- #elif ENABLED(HEATER_4_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_4_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- case 5:
- #if ENABLED(HEATER_5_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_HOTEND_5, raw);
- #elif ENABLED(HEATER_5_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_5_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- break;
- #endif
- default: break;
- }
-
- #if HOTEND_USES_THERMISTOR
- // Thermistor with conversion table?
- const short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
- SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
- #endif
-
- return 0;
- }
-
- #if HAS_HEATED_BED
- // Derived from RepRap FiveD extruder::getTemperature()
- // For bed temperature measurement.
- float Temperature::analog_to_celsius_bed(const int raw) {
- #if ENABLED(HEATER_BED_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_BED, raw);
- #elif ENABLED(HEATER_BED_USES_THERMISTOR)
- SCAN_THERMISTOR_TABLE(BED_TEMPTABLE, BED_TEMPTABLE_LEN);
- #elif ENABLED(HEATER_BED_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_BED_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- return 0;
- #endif
- }
- #endif // HAS_HEATED_BED
-
- #if HAS_TEMP_CHAMBER
- // Derived from RepRap FiveD extruder::getTemperature()
- // For chamber temperature measurement.
- float Temperature::analog_to_celsius_chamber(const int raw) {
- #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
- return user_thermistor_to_deg_c(CTI_CHAMBER, raw);
- #elif ENABLED(HEATER_CHAMBER_USES_THERMISTOR)
- SCAN_THERMISTOR_TABLE(CHAMBER_TEMPTABLE, CHAMBER_TEMPTABLE_LEN);
- #elif ENABLED(HEATER_CHAMBER_USES_AD595)
- return TEMP_AD595(raw);
- #elif ENABLED(HEATER_CHAMBER_USES_AD8495)
- return TEMP_AD8495(raw);
- #else
- return 0;
- #endif
- }
- #endif // HAS_TEMP_CHAMBER
-
- /**
- * Get the raw values into the actual temperatures.
- * The raw values are created in interrupt context,
- * and this function is called from normal context
- * as it would block the stepper routine.
- */
- void Temperature::updateTemperaturesFromRawValues() {
- #if ENABLED(HEATER_0_USES_MAX6675)
- temp_hotend[0].raw = READ_MAX6675(0);
- #endif
- #if ENABLED(HEATER_1_USES_MAX6675)
- temp_hotend[1].raw = READ_MAX6675(1);
- #endif
- HOTEND_LOOP() temp_hotend[e].current = analog_to_celsius_hotend(temp_hotend[e].raw, e);
- #if HAS_HEATED_BED
- temp_bed.current = analog_to_celsius_bed(temp_bed.raw);
- #endif
- #if HAS_TEMP_CHAMBER
- temp_chamber.current = analog_to_celsius_chamber(temp_chamber.raw);
- #endif
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1);
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- filament_width_meas = analog_to_mm_fil_width();
- #endif
-
- #if ENABLED(USE_WATCHDOG)
- // Reset the watchdog after we know we have a temperature measurement.
- watchdog_reset();
- #endif
-
- temp_meas_ready = false;
- }
-
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
-
- // Convert raw Filament Width to millimeters
- float Temperature::analog_to_mm_fil_width() {
- return current_raw_filwidth * 5.0f * (1.0f / 16383.0f);
- }
-
- /**
- * Convert Filament Width (mm) to a simple ratio
- * and reduce to an 8 bit value.
- *
- * A nominal width of 1.75 and measured width of 1.73
- * gives (100 * 1.75 / 1.73) for a ratio of 101 and
- * a return value of 1.
- */
- int8_t Temperature::widthFil_to_size_ratio() {
- if (ABS(filament_width_nominal - filament_width_meas) <= FILWIDTH_ERROR_MARGIN)
- return int(100.0f * filament_width_nominal / filament_width_meas) - 100;
- return 0;
- }
-
- #endif
-
- #if MAX6675_SEPARATE_SPI
- SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
- #endif
-
- // Init fans according to whether they're native PWM or Software PWM
- #define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH)
- #if ENABLED(FAN_SOFT_PWM)
- #define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P)
- #else
- #define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0)
- #endif
- #if ENABLED(FAST_PWM_FAN)
- #define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY)
- #else
- #define SET_FAST_PWM_FREQ(P) NOOP
- #endif
- #define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0)
- #if EXTRUDER_AUTO_FAN_SPEED != 255
- #define INIT_E_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0)
- #else
- #define INIT_E_AUTO_FAN_PIN(P) SET_OUTPUT(P)
- #endif
- #if CHAMBER_AUTO_FAN_SPEED != 255
- #define INIT_CHAMBER_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0)
- #else
- #define INIT_CHAMBER_AUTO_FAN_PIN(P) SET_OUTPUT(P)
- #endif
-
-
- /**
- * Initialize the temperature manager
- * The manager is implemented by periodic calls to manage_heater()
- */
- void Temperature::init() {
-
- #if EARLY_WATCHDOG
- // Flag that the thermalManager should be running
- if (inited) return;
- inited = true;
- #endif
-
- #if MB(RUMBA)
- #define _AD(N) (ANY(HEATER_##N##_USES_AD595, HEATER_##N##_USES_AD8495))
- #if _AD(0) || _AD(1) || _AD(2) || _AD(3) || _AD(4) || _AD(5) || _AD(BED) || _AD(CHAMBER)
- // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
- MCUCR = _BV(JTD);
- MCUCR = _BV(JTD);
- #endif
- #endif
-
- #if BOTH(PIDTEMP, PID_EXTRUSION_SCALING)
- last_e_position = 0;
- #endif
-
- #if HAS_HEATER_0
- OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING);
- #endif
- #if HAS_HEATER_1
- OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING);
- #endif
- #if HAS_HEATER_2
- OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING);
- #endif
- #if HAS_HEATER_3
- OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING);
- #endif
- #if HAS_HEATER_4
- OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING);
- #endif
- #if HAS_HEATER_5
- OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING);
- #endif
- #if HAS_HEATED_BED
- OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING);
- #endif
- #if HAS_HEATED_CHAMBER
- OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING);
- #endif
-
- #if HAS_FAN0
- INIT_FAN_PIN(FAN_PIN);
- #endif
- #if HAS_FAN1
- INIT_FAN_PIN(FAN1_PIN);
- #endif
- #if HAS_FAN2
- INIT_FAN_PIN(FAN2_PIN);
- #endif
- #if ENABLED(USE_CONTROLLER_FAN)
- INIT_FAN_PIN(CONTROLLER_FAN_PIN);
- #endif
-
- #if MAX6675_SEPARATE_SPI
-
- OUT_WRITE(SCK_PIN, LOW);
- OUT_WRITE(MOSI_PIN, HIGH);
- SET_INPUT_PULLUP(MISO_PIN);
-
- max6675_spi.init();
-
- OUT_WRITE(SS_PIN, HIGH);
- OUT_WRITE(MAX6675_SS_PIN, HIGH);
-
- #endif
-
- #if ENABLED(HEATER_1_USES_MAX6675)
- OUT_WRITE(MAX6675_SS2_PIN, HIGH);
- #endif
-
- HAL_adc_init();
-
- #if HAS_TEMP_ADC_0
- HAL_ANALOG_SELECT(TEMP_0_PIN);
- #endif
- #if HAS_TEMP_ADC_1
- HAL_ANALOG_SELECT(TEMP_1_PIN);
- #endif
- #if HAS_TEMP_ADC_2
- HAL_ANALOG_SELECT(TEMP_2_PIN);
- #endif
- #if HAS_TEMP_ADC_3
- HAL_ANALOG_SELECT(TEMP_3_PIN);
- #endif
- #if HAS_TEMP_ADC_4
- HAL_ANALOG_SELECT(TEMP_4_PIN);
- #endif
- #if HAS_TEMP_ADC_5
- HAL_ANALOG_SELECT(TEMP_5_PIN);
- #endif
- #if HAS_HEATED_BED
- HAL_ANALOG_SELECT(TEMP_BED_PIN);
- #endif
- #if HAS_TEMP_CHAMBER
- HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- HAL_ANALOG_SELECT(FILWIDTH_PIN);
- #endif
-
- HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY);
- ENABLE_TEMPERATURE_INTERRUPT();
-
- #if HAS_AUTO_FAN_0
- INIT_E_AUTO_FAN_PIN(E0_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
- INIT_E_AUTO_FAN_PIN(E1_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_2 && !(AUTO_2_IS_0 || AUTO_2_IS_1)
- INIT_E_AUTO_FAN_PIN(E2_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_3 && !(AUTO_3_IS_0 || AUTO_3_IS_1 || AUTO_3_IS_2)
- INIT_E_AUTO_FAN_PIN(E3_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_4 && !(AUTO_4_IS_0 || AUTO_4_IS_1 || AUTO_4_IS_2 || AUTO_4_IS_3)
- INIT_E_AUTO_FAN_PIN(E4_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_FAN_5 && !(AUTO_5_IS_0 || AUTO_5_IS_1 || AUTO_5_IS_2 || AUTO_5_IS_3 || AUTO_5_IS_4)
- INIT_E_AUTO_FAN_PIN(E5_AUTO_FAN_PIN);
- #endif
- #if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
- INIT_CHAMBER_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN);
- #endif
-
- // Wait for temperature measurement to settle
- delay(250);
-
- #if HOTENDS
-
- #define _TEMP_MIN_E(NR) do{ \
- temp_range[NR].mintemp = HEATER_ ##NR## _MINTEMP; \
- while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < HEATER_ ##NR## _MINTEMP) \
- temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \
- }while(0)
- #define _TEMP_MAX_E(NR) do{ \
- temp_range[NR].maxtemp = HEATER_ ##NR## _MAXTEMP; \
- while (analog_to_celsius_hotend(temp_range[NR].raw_max, NR) > HEATER_ ##NR## _MAXTEMP) \
- temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \
- }while(0)
-
- #ifdef HEATER_0_MINTEMP
- _TEMP_MIN_E(0);
- #endif
- #ifdef HEATER_0_MAXTEMP
- _TEMP_MAX_E(0);
- #endif
- #if HOTENDS > 1
- #ifdef HEATER_1_MINTEMP
- _TEMP_MIN_E(1);
- #endif
- #ifdef HEATER_1_MAXTEMP
- _TEMP_MAX_E(1);
- #endif
- #if HOTENDS > 2
- #ifdef HEATER_2_MINTEMP
- _TEMP_MIN_E(2);
- #endif
- #ifdef HEATER_2_MAXTEMP
- _TEMP_MAX_E(2);
- #endif
- #if HOTENDS > 3
- #ifdef HEATER_3_MINTEMP
- _TEMP_MIN_E(3);
- #endif
- #ifdef HEATER_3_MAXTEMP
- _TEMP_MAX_E(3);
- #endif
- #if HOTENDS > 4
- #ifdef HEATER_4_MINTEMP
- _TEMP_MIN_E(4);
- #endif
- #ifdef HEATER_4_MAXTEMP
- _TEMP_MAX_E(4);
- #endif
- #if HOTENDS > 5
- #ifdef HEATER_5_MINTEMP
- _TEMP_MIN_E(5);
- #endif
- #ifdef HEATER_5_MAXTEMP
- _TEMP_MAX_E(5);
- #endif
- #endif // HOTENDS > 5
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
-
- #endif // HOTENDS > 1
-
- #if HAS_HEATED_BED
- #ifdef BED_MINTEMP
- while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR);
- #endif
- #ifdef BED_MAXTEMP
- while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) maxtemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR);
- #endif
- #endif // HAS_HEATED_BED
-
- #if HAS_HEATED_CHAMBER
- #ifdef CHAMBER_MINTEMP
- while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR);
- #endif
- #ifdef CHAMBER_MAXTEMP
- while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) maxtemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR);
- #endif
- #endif
-
- #if ENABLED(PROBING_HEATERS_OFF)
- paused = false;
- #endif
- }
-
- #if WATCH_HOTENDS
- /**
- * Start Heating Sanity Check for hotends that are below
- * their target temperature by a configurable margin.
- * This is called when the temperature is set. (M104, M109)
- */
- void Temperature::start_watching_heater(const uint8_t e) {
- E_UNUSED();
- if (degTargetHotend(HOTEND_INDEX) && degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
- watch_hotend[HOTEND_INDEX].target = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
- watch_hotend[HOTEND_INDEX].next_ms = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
- }
- else
- watch_hotend[HOTEND_INDEX].next_ms = 0;
- }
- #endif
-
- #if WATCH_BED
- /**
- * Start Heating Sanity Check for hotends that are below
- * their target temperature by a configurable margin.
- * This is called when the temperature is set. (M140, M190)
- */
- void Temperature::start_watching_bed() {
- if (degTargetBed() && degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
- watch_bed.target = degBed() + WATCH_BED_TEMP_INCREASE;
- watch_bed.next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
- }
- else
- watch_bed.next_ms = 0;
- }
- #endif
-
- #if WATCH_CHAMBER
- /**
- * Start Heating Sanity Check for chamber that is below
- * its target temperature by a configurable margin.
- * This is called when the temperature is set. (M141, M191)
- */
- void Temperature::start_watching_chamber() {
- if (degChamber() < degTargetChamber() - (WATCH_CHAMBER_TEMP_INCREASE + TEMP_CHAMBER_HYSTERESIS + 1)) {
- watch_chamber.target = degChamber() + WATCH_CHAMBER_TEMP_INCREASE;
- watch_chamber.next_ms = millis() + (WATCH_CHAMBER_TEMP_PERIOD) * 1000UL;
- }
- else
- watch_chamber.next_ms = 0;
- }
- #endif
-
- #if HAS_THERMAL_PROTECTION
-
- #if ENABLED(THERMAL_PROTECTION_HOTENDS)
- Temperature::tr_state_machine_t Temperature::tr_state_machine[HOTENDS]; // = { { TRInactive, 0 } };
- #endif
- #if HAS_THERMALLY_PROTECTED_BED
- Temperature::tr_state_machine_t Temperature::tr_state_machine_bed; // = { TRInactive, 0 };
- #endif
- #if ENABLED(THERMAL_PROTECTION_CHAMBER)
- Temperature::tr_state_machine_t Temperature::tr_state_machine_chamber; // = { TRInactive, 0 };
- #endif
-
- void Temperature::thermal_runaway_protection(Temperature::tr_state_machine_t &sm, const float ¤t, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
-
- static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
-
- /**
- SERIAL_ECHO_START();
- SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
- if (heater_id == -2) SERIAL_ECHOPGM("chamber");
- if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
- SERIAL_ECHOPAIR(" ; State:", sm.state, " ; Timer:", sm.timer, " ; Temperature:", current, " ; Target Temp:", target);
- if (heater_id >= 0)
- SERIAL_ECHOPAIR(" ; Idle Timeout:", hotend_idle[heater_id].timed_out);
- else
- SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle.timed_out);
- SERIAL_EOL();
- //*/
-
- const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
-
- #if HEATER_IDLE_HANDLER
- // If the heater idle timeout expires, restart
- if ((heater_id >= 0 && hotend_idle[heater_id].timed_out)
- #if HAS_HEATED_BED
- || (heater_id < 0 && bed_idle.timed_out)
- #endif
- ) {
- sm.state = TRInactive;
- tr_target_temperature[heater_index] = 0;
- }
- else
- #endif
- {
- // If the target temperature changes, restart
- if (tr_target_temperature[heater_index] != target) {
- tr_target_temperature[heater_index] = target;
- sm.state = target > 0 ? TRFirstHeating : TRInactive;
- }
- }
-
- switch (sm.state) {
- // Inactive state waits for a target temperature to be set
- case TRInactive: break;
-
- // When first heating, wait for the temperature to be reached then go to Stable state
- case TRFirstHeating:
- if (current < tr_target_temperature[heater_index]) break;
- sm.state = TRStable;
-
- // While the temperature is stable watch for a bad temperature
- case TRStable:
-
- #if ENABLED(ADAPTIVE_FAN_SLOWING)
- if (adaptive_fan_slowing && heater_id >= 0) {
- const int fan_index = MIN(heater_id, FAN_COUNT - 1);
- if (fan_speed[fan_index] == 0 || current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.25f))
- fan_speed_scaler[fan_index] = 128;
- else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.3335f))
- fan_speed_scaler[fan_index] = 96;
- else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.5f))
- fan_speed_scaler[fan_index] = 64;
- else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.8f))
- fan_speed_scaler[fan_index] = 32;
- else
- fan_speed_scaler[fan_index] = 0;
- }
- #endif
-
- if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
- sm.timer = millis() + period_seconds * 1000UL;
- break;
- }
- else if (PENDING(millis(), sm.timer)) break;
- sm.state = TRRunaway;
-
- case TRRunaway:
- _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), TEMP_ERR_PSTR(MSG_THERMAL_RUNAWAY, heater_id));
- }
- }
-
- #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED || ENABLED(THERMAL_PROTECTION_CHAMBER)
-
- void Temperature::disable_all_heaters() {
-
- #if ENABLED(AUTOTEMP)
- planner.autotemp_enabled = false;
- #endif
-
- HOTEND_LOOP() setTargetHotend(0, e);
-
- #if HAS_HEATED_BED
- setTargetBed(0);
- #endif
-
- #if HAS_HEATED_CHAMBER
- setTargetChamber(0);
- #endif
-
- // Unpause and reset everything
- #if ENABLED(PROBING_HEATERS_OFF)
- pause(false);
- #endif
-
- #define DISABLE_HEATER(NR) { \
- setTargetHotend(0, NR); \
- temp_hotend[NR].soft_pwm_amount = 0; \
- WRITE_HEATER_ ##NR (LOW); \
- }
-
- #if HAS_TEMP_HOTEND
- DISABLE_HEATER(0);
- #if HOTENDS > 1
- DISABLE_HEATER(1);
- #if HOTENDS > 2
- DISABLE_HEATER(2);
- #if HOTENDS > 3
- DISABLE_HEATER(3);
- #if HOTENDS > 4
- DISABLE_HEATER(4);
- #if HOTENDS > 5
- DISABLE_HEATER(5);
- #endif // HOTENDS > 5
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #endif
-
- #if HAS_HEATED_BED
- temp_bed.target = 0;
- temp_bed.soft_pwm_amount = 0;
- #if HAS_HEATED_BED
- WRITE_HEATER_BED(LOW);
- #endif
- #endif
-
- #if HAS_HEATED_CHAMBER
- temp_chamber.target = 0;
- temp_chamber.soft_pwm_amount = 0;
- #if HAS_HEATED_CHAMBER
- WRITE_HEATER_CHAMBER(LOW);
- #endif
- #endif
- }
-
- #if ENABLED(PROBING_HEATERS_OFF)
-
- void Temperature::pause(const bool p) {
- if (p != paused) {
- paused = p;
- if (p) {
- HOTEND_LOOP() hotend_idle[e].expire(); // timeout immediately
- #if HAS_HEATED_BED
- bed_idle.expire(); // timeout immediately
- #endif
- }
- else {
- HOTEND_LOOP() reset_heater_idle_timer(e);
- #if HAS_HEATED_BED
- reset_bed_idle_timer();
- #endif
- }
- }
- }
-
- #endif // PROBING_HEATERS_OFF
-
- #if HAS_MAX6675
-
- int Temperature::read_max6675(
- #if COUNT_6675 > 1
- const uint8_t hindex
- #endif
- ) {
- #if COUNT_6675 == 1
- constexpr uint8_t hindex = 0;
- #else
- // Needed to return the correct temp when this is called too soon
- static uint16_t max6675_temp_previous[COUNT_6675] = { 0 };
- #endif
-
- #define MAX6675_HEAT_INTERVAL 250UL
-
- #if ENABLED(MAX6675_IS_MAX31855)
- static uint32_t max6675_temp = 2000;
- #define MAX6675_ERROR_MASK 7
- #define MAX6675_DISCARD_BITS 18
- #define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64
- #else
- static uint16_t max6675_temp = 2000;
- #define MAX6675_ERROR_MASK 4
- #define MAX6675_DISCARD_BITS 3
- #define MAX6675_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16
- #endif
-
- // Return last-read value between readings
- static millis_t next_max6675_ms[COUNT_6675] = { 0 };
- millis_t ms = millis();
- if (PENDING(ms, next_max6675_ms[hindex]))
- return int(
- #if COUNT_6675 == 1
- max6675_temp
- #else
- max6675_temp_previous[hindex] // Need to return the correct previous value
- #endif
- );
-
- next_max6675_ms[hindex] = ms + MAX6675_HEAT_INTERVAL;
-
- //
- // TODO: spiBegin, spiRec and spiInit doesn't work when soft spi is used.
- //
- #if !MAX6675_SEPARATE_SPI
- spiBegin();
- spiInit(MAX6675_SPEED_BITS);
- #endif
-
- #if COUNT_6675 > 1
- #define WRITE_MAX6675(V) do{ switch (hindex) { case 1: WRITE(MAX6675_SS2_PIN, V); break; default: WRITE(MAX6675_SS_PIN, V); } }while(0)
- #define SET_OUTPUT_MAX6675() do{ switch (hindex) { case 1: SET_OUTPUT(MAX6675_SS2_PIN); break; default: SET_OUTPUT(MAX6675_SS_PIN); } }while(0)
- #elif ENABLED(HEATER_1_USES_MAX6675)
- #define WRITE_MAX6675(V) WRITE(MAX6675_SS2_PIN, V)
- #define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS2_PIN)
- #else
- #define WRITE_MAX6675(V) WRITE(MAX6675_SS_PIN, V)
- #define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS_PIN)
- #endif
-
- SET_OUTPUT_MAX6675();
- WRITE_MAX6675(LOW); // enable TT_MAX6675
-
- DELAY_NS(100); // Ensure 100ns delay
-
- // Read a big-endian temperature value
- max6675_temp = 0;
- for (uint8_t i = sizeof(max6675_temp); i--;) {
- max6675_temp |= (
- #if MAX6675_SEPARATE_SPI
- max6675_spi.receive()
- #else
- spiRec()
- #endif
- );
- if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
- }
-
- WRITE_MAX6675(HIGH); // disable TT_MAX6675
-
- if (max6675_temp & MAX6675_ERROR_MASK) {
- SERIAL_ERROR_START();
- SERIAL_ECHOPGM("Temp measurement error! ");
- #if MAX6675_ERROR_MASK == 7
- SERIAL_ECHOPGM("MAX31855 ");
- if (max6675_temp & 1)
- SERIAL_ECHOLNPGM("Open Circuit");
- else if (max6675_temp & 2)
- SERIAL_ECHOLNPGM("Short to GND");
- else if (max6675_temp & 4)
- SERIAL_ECHOLNPGM("Short to VCC");
- #else
- SERIAL_ECHOLNPGM("MAX6675");
- #endif
-
- // Thermocouple open
- max6675_temp = 4 * (
- #if COUNT_6675 > 1
- hindex ? HEATER_1_MAX6675_TMAX : HEATER_0_MAX6675_TMAX
- #elif ENABLED(HEATER_1_USES_MAX6675)
- HEATER_1_MAX6675_TMAX
- #else
- HEATER_0_MAX6675_TMAX
- #endif
- );
- }
- else
- max6675_temp >>= MAX6675_DISCARD_BITS;
-
- #if ENABLED(MAX6675_IS_MAX31855)
- if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000; // Support negative temperature
- #endif
-
- #if COUNT_6675 > 1
- max6675_temp_previous[hindex] = max6675_temp;
- #endif
-
- return int(max6675_temp);
- }
-
- #endif // HAS_MAX6675
-
- /**
- * Get raw temperatures
- */
- void Temperature::set_current_temp_raw() {
-
- #if HAS_TEMP_ADC_0 && DISABLED(HEATER_0_USES_MAX6675)
- temp_hotend[0].raw = temp_hotend[0].acc;
- #endif
-
- #if HAS_TEMP_ADC_1
- #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
- redundant_temperature_raw = temp_hotend[1].acc;
- #elif DISABLED(HEATER_1_USES_MAX6675)
- temp_hotend[1].raw = temp_hotend[1].acc;
- #endif
- #if HAS_TEMP_ADC_2
- temp_hotend[2].raw = temp_hotend[2].acc;
- #if HAS_TEMP_ADC_3
- temp_hotend[3].raw = temp_hotend[3].acc;
- #if HAS_TEMP_ADC_4
- temp_hotend[4].raw = temp_hotend[4].acc;
- #if HAS_TEMP_ADC_5
- temp_hotend[5].raw = temp_hotend[5].acc;
- #endif // HAS_TEMP_ADC_5
- #endif // HAS_TEMP_ADC_4
- #endif // HAS_TEMP_ADC_3
- #endif // HAS_TEMP_ADC_2
- #endif // HAS_TEMP_ADC_1
-
- #if HAS_HEATED_BED
- temp_bed.raw = temp_bed.acc;
- #endif
-
- #if HAS_TEMP_CHAMBER
- temp_chamber.raw = temp_chamber.acc;
- #endif
-
- temp_meas_ready = true;
- }
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- uint32_t raw_filwidth_value; // = 0
- #endif
-
- void Temperature::readings_ready() {
-
- #if THERMAL_PROTECTION_GRACE_PERIOD > 0
- const millis_t ms = millis();
- static millis_t grace_period = ms + THERMAL_PROTECTION_GRACE_PERIOD; // NOTE: millis() == 0 on reset
- if (ELAPSED(ms, grace_period)) grace_period = 0;
- #else
- static constexpr millis_t grace_period = 0;
- #endif
-
- // Update the raw values if they've been read. Else we could be updating them during reading.
- if (!temp_meas_ready) set_current_temp_raw();
-
- // Filament Sensor - can be read any time since IIR filtering is used
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
- #endif
-
- HOTEND_LOOP() temp_hotend[e].acc = 0;
-
- #if HAS_HEATED_BED
- temp_bed.acc = 0;
- #endif
-
- #if HAS_TEMP_CHAMBER
- temp_chamber.acc = 0;
- #endif
-
- int constexpr temp_dir[] = {
- #if ENABLED(HEATER_0_USES_MAX6675)
- 0
- #else
- TEMPDIR(0)
- #endif
- #if HOTENDS > 1
- , TEMPDIR(1)
- #if HOTENDS > 2
- , TEMPDIR(2)
- #if HOTENDS > 3
- , TEMPDIR(3)
- #if HOTENDS > 4
- , TEMPDIR(4)
- #if HOTENDS > 5
- , TEMPDIR(5)
- #endif // HOTENDS > 5
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- };
-
- // Give ADC temperature readings time to settle at boot-up before testing
- if (grace_period) return;
-
- for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
- const int16_t tdir = temp_dir[e], rawtemp = temp_hotend[e].raw * tdir;
- const bool heater_on = (temp_hotend[e].target > 0)
- #if ENABLED(PIDTEMP)
- || (temp_hotend[e].soft_pwm_amount > 0)
- #endif
- ;
- if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error(e);
- if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) {
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
- #endif
- min_temp_error(e);
- }
- #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
- else
- consecutive_low_temperature_error[e] = 0;
- #endif
- }
-
- #if HAS_HEATED_BED
- #if TEMPDIR(BED) < 0
- #define BEDCMP(A,B) ((A)<=(B))
- #else
- #define BEDCMP(A,B) ((A)>=(B))
- #endif
- const bool bed_on = (temp_bed.target > 0)
- #if ENABLED(PIDTEMPBED)
- || (temp_bed.soft_pwm_amount > 0)
- #endif
- ;
- if (BEDCMP(temp_bed.raw, maxtemp_raw_BED)) max_temp_error(-1);
- if (bed_on && BEDCMP(mintemp_raw_BED, temp_bed.raw)) min_temp_error(-1);
- #endif
-
- #if HAS_HEATED_CHAMBER
- #if TEMPDIR(CHAMBER) < 0
- #define CHAMBERCMP(A,B) ((A)<=(B))
- #else
- #define CHAMBERCMP(A,B) ((A)>=(B))
- #endif
- const bool chamber_on = (temp_chamber.target > 0);
- if (CHAMBERCMP(temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(-2);
- if (chamber_on && CHAMBERCMP(mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(-2);
- #endif
- }
-
- /**
- * Timer 0 is shared with millies so don't change the prescaler.
- *
- * On AVR this ISR uses the compare method so it runs at the base
- * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
- * in OCR0B above (128 or halfway between OVFs).
- *
- * - Manage PWM to all the heaters and fan
- * - Prepare or Measure one of the raw ADC sensor values
- * - Check new temperature values for MIN/MAX errors (kill on error)
- * - Step the babysteps value for each axis towards 0
- * - For PINS_DEBUGGING, monitor and report endstop pins
- * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
- * - Call planner.tick to count down its "ignore" time
- */
- HAL_TEMP_TIMER_ISR() {
- HAL_timer_isr_prologue(TEMP_TIMER_NUM);
-
- Temperature::isr();
-
- HAL_timer_isr_epilogue(TEMP_TIMER_NUM);
- }
-
- #if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME)
- #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
- #endif
-
- class SoftPWM {
- public:
- uint8_t count;
- inline bool add(const uint8_t mask, const uint8_t amount) {
- count = (count & mask) + amount; return (count > mask);
- }
- #if ENABLED(SLOW_PWM_HEATERS)
- bool state_heater;
- uint8_t state_timer_heater;
- inline void dec() { if (state_timer_heater > 0) state_timer_heater--; }
- inline bool ready(const bool v) {
- const bool rdy = !state_timer_heater;
- if (rdy && state_heater != v) {
- state_heater = v;
- state_timer_heater = MIN_STATE_TIME;
- }
- return rdy;
- }
- #endif
- };
-
- void Temperature::isr() {
-
- static int8_t temp_count = -1;
- static ADCSensorState adc_sensor_state = StartupDelay;
- static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
- // avoid multiple loads of pwm_count
- uint8_t pwm_count_tmp = pwm_count;
-
- #if HAS_ADC_BUTTONS
- static unsigned int raw_ADCKey_value = 0;
- static bool ADCKey_pressed = false;
- #endif
-
- #if ENABLED(SLOW_PWM_HEATERS)
- static uint8_t slow_pwm_count = 0;
- #endif
-
- static SoftPWM soft_pwm_hotend[HOTENDS];
-
- #if HAS_HEATED_BED
- static SoftPWM soft_pwm_bed;
- #endif
-
- #if HAS_HEATED_CHAMBER
- static SoftPWM soft_pwm_chamber;
- #endif
-
- #if DISABLED(SLOW_PWM_HEATERS)
- constexpr uint8_t pwm_mask =
- #if ENABLED(SOFT_PWM_DITHER)
- _BV(SOFT_PWM_SCALE) - 1
- #else
- 0
- #endif
- ;
-
- /**
- * Standard heater PWM modulation
- */
- if (pwm_count_tmp >= 127) {
- pwm_count_tmp -= 127;
- #define _PWM_MOD(N,S,T) do{ \
- const bool on = S.add(pwm_mask, T.soft_pwm_amount); \
- WRITE_HEATER_##N(on); \
- }while(0)
- #define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N])
- _PWM_MOD_E(0);
- #if HOTENDS > 1
- _PWM_MOD_E(1);
- #if HOTENDS > 2
- _PWM_MOD_E(2);
- #if HOTENDS > 3
- _PWM_MOD_E(3);
- #if HOTENDS > 4
- _PWM_MOD_E(4);
- #if HOTENDS > 5
- _PWM_MOD_E(5);
- #endif // HOTENDS > 5
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
-
- #if HAS_HEATED_BED
- _PWM_MOD(BED,soft_pwm_bed,temp_bed);
- #endif
-
- #if HAS_HEATED_CHAMBER
- _PWM_MOD(CHAMBER,soft_pwm_chamber,temp_chamber);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #define _FAN_PWM(N) do{ \
- soft_pwm_count_fan[N] = (soft_pwm_count_fan[N] & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \
- WRITE_FAN_N(N, soft_pwm_count_fan[N] > pwm_mask ? HIGH : LOW); \
- }while(0)
- #if HAS_FAN0
- _FAN_PWM(0);
- #endif
- #if HAS_FAN1
- _FAN_PWM(1);
- #endif
- #if HAS_FAN2
- _FAN_PWM(2);
- #endif
- #endif
- }
- else {
- #define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0)
- #if HOTENDS
- #define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N])
- _PWM_LOW_E(0);
- #if HOTENDS > 1
- _PWM_LOW_E(1);
- #if HOTENDS > 2
- _PWM_LOW_E(2);
- #if HOTENDS > 3
- _PWM_LOW_E(3);
- #if HOTENDS > 4
- _PWM_LOW_E(4);
- #if HOTENDS > 5
- _PWM_LOW_E(5);
- #endif // HOTENDS > 5
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #endif // HOTENDS
-
- #if HAS_HEATED_BED
- _PWM_LOW(BED, soft_pwm_bed);
- #endif
-
- #if HAS_HEATED_CHAMBER
- _PWM_LOW(CHAMBER, soft_pwm_chamber);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
- #endif
- #if HAS_FAN1
- if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
- #endif
- #if HAS_FAN2
- if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
- #endif
- #endif
- }
-
- // SOFT_PWM_SCALE to frequency:
- //
- // 0: 16000000/64/256/128 = 7.6294 Hz
- // 1: / 64 = 15.2588 Hz
- // 2: / 32 = 30.5176 Hz
- // 3: / 16 = 61.0352 Hz
- // 4: / 8 = 122.0703 Hz
- // 5: / 4 = 244.1406 Hz
- pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
-
- #else // SLOW_PWM_HEATERS
-
- /**
- * SLOW PWM HEATERS
- *
- * For relay-driven heaters
- */
- #define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0)
- #define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0)
- #define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0)
-
- if (slow_pwm_count == 0) {
-
- #if HOTENDS
- #define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N])
- _SLOW_PWM_E(0);
- #if HOTENDS > 1
- _SLOW_PWM_E(1);
- #if HOTENDS > 2
- _SLOW_PWM_E(2);
- #if HOTENDS > 3
- _SLOW_PWM_E(3);
- #if HOTENDS > 4
- _SLOW_PWM_E(4);
- #if HOTENDS > 5
- _SLOW_PWM_E(5);
- #endif // HOTENDS > 5
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #endif // HOTENDS
-
- #if HAS_HEATED_BED
- _SLOW_PWM(BED, soft_pwm_bed, temp_bed);
- #endif
-
- } // slow_pwm_count == 0
-
- #if HOTENDS
- #define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]);
- _PWM_OFF_E(0);
- #if HOTENDS > 1
- _PWM_OFF_E(1);
- #if HOTENDS > 2
- _PWM_OFF_E(2);
- #if HOTENDS > 3
- _PWM_OFF_E(3);
- #if HOTENDS > 4
- _PWM_OFF_E(4);
- #if HOTENDS > 5
- _PWM_OFF_E(5);
- #endif // HOTENDS > 5
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #endif // HOTENDS
-
- #if HAS_HEATED_BED
- _PWM_OFF(BED, soft_pwm_bed);
- #endif
-
- #if ENABLED(FAN_SOFT_PWM)
- if (pwm_count_tmp >= 127) {
- pwm_count_tmp = 0;
- #define _PWM_FAN(N,I) do{ \
- soft_pwm_count_fan[I] = soft_pwm_amount_fan[I] >> 1; \
- WRITE_FAN##N(soft_pwm_count_fan[I] > 0 ? HIGH : LOW); \
- }while(0)
- #if HAS_FAN0
- _PWM_FAN(,0);
- #endif
- #if HAS_FAN1
- _PWM_FAN(1,1);
- #endif
- #if HAS_FAN2
- _PWM_FAN(2,2);
- #endif
- }
- #if HAS_FAN0
- if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
- #endif
- #if HAS_FAN1
- if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
- #endif
- #if HAS_FAN2
- if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
- #endif
- #endif // FAN_SOFT_PWM
-
- // SOFT_PWM_SCALE to frequency:
- //
- // 0: 16000000/64/256/128 = 7.6294 Hz
- // 1: / 64 = 15.2588 Hz
- // 2: / 32 = 30.5176 Hz
- // 3: / 16 = 61.0352 Hz
- // 4: / 8 = 122.0703 Hz
- // 5: / 4 = 244.1406 Hz
- pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
-
- // increment slow_pwm_count only every 64th pwm_count,
- // i.e. yielding a PWM frequency of 16/128 Hz (8s).
- if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
- slow_pwm_count++;
- slow_pwm_count &= 0x7F;
-
- soft_pwm_hotend[0].dec();
- #if HOTENDS > 1
- soft_pwm_hotend[1].dec();
- #if HOTENDS > 2
- soft_pwm_hotend[2].dec();
- #if HOTENDS > 3
- soft_pwm_hotend[3].dec();
- #if HOTENDS > 4
- soft_pwm_hotend[4].dec();
- #if HOTENDS > 5
- soft_pwm_hotend[5].dec();
- #endif // HOTENDS > 5
- #endif // HOTENDS > 4
- #endif // HOTENDS > 3
- #endif // HOTENDS > 2
- #endif // HOTENDS > 1
- #if HAS_HEATED_BED
- soft_pwm_bed.dec();
- #endif
- } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
-
- #endif // SLOW_PWM_HEATERS
-
- //
- // Update lcd buttons 488 times per second
- //
- static bool do_buttons;
- if ((do_buttons ^= true)) ui.update_buttons();
-
- /**
- * One sensor is sampled on every other call of the ISR.
- * Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
- *
- * On each Prepare pass, ADC is started for a sensor pin.
- * On the next pass, the ADC value is read and accumulated.
- *
- * This gives each ADC 0.9765ms to charge up.
- */
- #define ACCUMULATE_ADC(obj) do{ \
- if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
- else obj.acc += HAL_READ_ADC(); \
- }while(0)
-
- ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
-
- switch (adc_sensor_state) {
-
- case SensorsReady: {
- // All sensors have been read. Stay in this state for a few
- // ISRs to save on calls to temp update/checking code below.
- constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
- static uint8_t delay_count = 0;
- if (extra_loops > 0) {
- if (delay_count == 0) delay_count = extra_loops; // Init this delay
- if (--delay_count) // While delaying...
- next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
- break;
- }
- else {
- adc_sensor_state = StartSampling; // Fall-through to start sampling
- next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
- }
- }
-
- case StartSampling: // Start of sampling loops. Do updates/checks.
- if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
- temp_count = 0;
- readings_ready();
- }
- break;
-
- #if HAS_TEMP_ADC_0
- case PrepareTemp_0:
- HAL_START_ADC(TEMP_0_PIN);
- break;
- case MeasureTemp_0:
- ACCUMULATE_ADC(temp_hotend[0]);
- break;
- #endif
-
- #if HAS_HEATED_BED
- case PrepareTemp_BED:
- HAL_START_ADC(TEMP_BED_PIN);
- break;
- case MeasureTemp_BED:
- ACCUMULATE_ADC(temp_bed);
- break;
- #endif
-
- #if HAS_TEMP_CHAMBER
- case PrepareTemp_CHAMBER:
- HAL_START_ADC(TEMP_CHAMBER_PIN);
- break;
- case MeasureTemp_CHAMBER:
- ACCUMULATE_ADC(temp_chamber);
- break;
- #endif
-
- #if HAS_TEMP_ADC_1
- case PrepareTemp_1:
- HAL_START_ADC(TEMP_1_PIN);
- break;
- case MeasureTemp_1:
- ACCUMULATE_ADC(temp_hotend[1]);
- break;
- #endif
-
- #if HAS_TEMP_ADC_2
- case PrepareTemp_2:
- HAL_START_ADC(TEMP_2_PIN);
- break;
- case MeasureTemp_2:
- ACCUMULATE_ADC(temp_hotend[2]);
- break;
- #endif
-
- #if HAS_TEMP_ADC_3
- case PrepareTemp_3:
- HAL_START_ADC(TEMP_3_PIN);
- break;
- case MeasureTemp_3:
- ACCUMULATE_ADC(temp_hotend[3]);
- break;
- #endif
-
- #if HAS_TEMP_ADC_4
- case PrepareTemp_4:
- HAL_START_ADC(TEMP_4_PIN);
- break;
- case MeasureTemp_4:
- ACCUMULATE_ADC(temp_hotend[4]);
- break;
- #endif
-
- #if HAS_TEMP_ADC_5
- case PrepareTemp_5:
- HAL_START_ADC(TEMP_5_PIN);
- break;
- case MeasureTemp_5:
- ACCUMULATE_ADC(temp_hotend[5]);
- break;
- #endif
-
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- case Prepare_FILWIDTH:
- HAL_START_ADC(FILWIDTH_PIN);
- break;
- case Measure_FILWIDTH:
- if (!HAL_ADC_READY())
- next_sensor_state = adc_sensor_state; // redo this state
- else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
- raw_filwidth_value -= raw_filwidth_value >> 7; // Subtract 1/128th of the raw_filwidth_value
- raw_filwidth_value += uint32_t(HAL_READ_ADC()) << 7; // Add new ADC reading, scaled by 128
- }
- break;
- #endif
-
- #if HAS_ADC_BUTTONS
- case Prepare_ADC_KEY:
- HAL_START_ADC(ADC_KEYPAD_PIN);
- break;
- case Measure_ADC_KEY:
- if (!HAL_ADC_READY())
- next_sensor_state = adc_sensor_state; // redo this state
- else if (ADCKey_count < 16) {
- raw_ADCKey_value = HAL_READ_ADC();
- if (raw_ADCKey_value <= 900) {
- NOMORE(current_ADCKey_raw, raw_ADCKey_value);
- ADCKey_count++;
- }
- else { //ADC Key release
- if (ADCKey_count > 0) ADCKey_count++; else ADCKey_pressed = false;
- if (ADCKey_pressed) {
- ADCKey_count = 0;
- current_ADCKey_raw = 1024;
- }
- }
- }
- if (ADCKey_count == 16) ADCKey_pressed = true;
- break;
- #endif // ADC_KEYPAD
-
- case StartupDelay: break;
-
- } // switch(adc_sensor_state)
-
- // Go to the next state
- adc_sensor_state = next_sensor_state;
-
- //
- // Additional ~1KHz Tasks
- //
-
- #if ENABLED(BABYSTEPPING)
- babystep.task();
- #endif
-
- // Poll endstops state, if required
- endstops.poll();
-
- // Periodically call the planner timer
- planner.tick();
- }
-
- #if HAS_TEMP_SENSOR
-
- #include "../gcode/gcode.h"
-
- static void print_heater_state(const float &c, const float &t
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , const float r
- #endif
- , const int8_t e=-3
- ) {
- #if !(HAS_HEATED_BED && HAS_TEMP_HOTEND && HAS_TEMP_CHAMBER) && HOTENDS <= 1
- UNUSED(e);
- #endif
-
- SERIAL_CHAR(' ');
- SERIAL_CHAR(
- #if HAS_TEMP_CHAMBER && HAS_HEATED_BED && HAS_TEMP_HOTEND
- e == -2 ? 'C' : e == -1 ? 'B' : 'T'
- #elif HAS_HEATED_BED && HAS_TEMP_HOTEND
- e == -1 ? 'B' : 'T'
- #elif HAS_TEMP_HOTEND
- 'T'
- #else
- 'B'
- #endif
- );
- #if HOTENDS > 1
- if (e >= 0) SERIAL_CHAR('0' + e);
- #endif
- SERIAL_CHAR(':');
- SERIAL_ECHO(c);
- SERIAL_ECHOPAIR(" /" , t);
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- SERIAL_ECHOPAIR(" (", r / OVERSAMPLENR);
- SERIAL_CHAR(')');
- #endif
- delay(2);
- }
-
- void Temperature::print_heater_states(const uint8_t target_extruder) {
- #if HAS_TEMP_HOTEND
- print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder)
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , rawHotendTemp(target_extruder)
- #endif
- );
- #endif
- #if HAS_HEATED_BED
- print_heater_state(degBed(), degTargetBed()
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , rawBedTemp()
- #endif
- , -1 // BED
- );
- #endif
- #if HAS_TEMP_CHAMBER
- print_heater_state(degChamber()
- #if HAS_HEATED_CHAMBER
- , degTargetChamber()
- #else
- , 0
- #endif
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , rawChamberTemp()
- #endif
- , -2 // CHAMBER
- );
- #endif // HAS_TEMP_CHAMBER
- #if HOTENDS > 1
- HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
- #if ENABLED(SHOW_TEMP_ADC_VALUES)
- , rawHotendTemp(e)
- #endif
- , e
- );
- #endif
- SERIAL_ECHOPAIR(" @:", getHeaterPower(target_extruder));
- #if HAS_HEATED_BED
- SERIAL_ECHOPAIR(" B@:", getHeaterPower(-1));
- #endif
- #if HAS_HEATED_CHAMBER
- SERIAL_ECHOPAIR(" C@:", getHeaterPower(-2));
- #endif
- #if HOTENDS > 1
- HOTEND_LOOP() {
- SERIAL_ECHOPAIR(" @", e);
- SERIAL_CHAR(':');
- SERIAL_ECHO(getHeaterPower(e));
- }
- #endif
- }
-
- #if ENABLED(AUTO_REPORT_TEMPERATURES)
-
- uint8_t Temperature::auto_report_temp_interval;
- millis_t Temperature::next_temp_report_ms;
-
- void Temperature::auto_report_temperatures() {
- if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
- next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
- PORT_REDIRECT(SERIAL_BOTH);
- print_heater_states(active_extruder);
- SERIAL_EOL();
- }
- }
-
- #endif // AUTO_REPORT_TEMPERATURES
-
- #if EITHER(ULTRA_LCD, EXTENSIBLE_UI)
- void Temperature::set_heating_message(const uint8_t e) {
- const bool heating = isHeatingHotend(e);
- #if HOTENDS > 1
- ui.status_printf_P(0, heating ? PSTR("E%c " MSG_HEATING) : PSTR("E%c " MSG_COOLING), '1' + e);
- #else
- ui.set_status_P(heating ? PSTR("E " MSG_HEATING) : PSTR("E " MSG_COOLING));
- #endif
- }
- #endif
-
- #if HAS_TEMP_HOTEND
-
- #ifndef MIN_COOLING_SLOPE_DEG
- #define MIN_COOLING_SLOPE_DEG 1.50
- #endif
- #ifndef MIN_COOLING_SLOPE_TIME
- #define MIN_COOLING_SLOPE_TIME 60
- #endif
-
- bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/
- #if G26_CLICK_CAN_CANCEL
- , const bool click_to_cancel/*=false*/
- #endif
- ) {
- #if TEMP_RESIDENCY_TIME > 0
- millis_t residency_start_ms = 0;
- // Loop until the temperature has stabilized
- #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
- #else
- // Loop until the temperature is very close target
- #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
- #endif
-
- #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
- const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state;
- KEEPALIVE_STATE(NOT_BUSY);
- #endif
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- const float start_temp = degHotend(target_extruder);
- printerEventLEDs.onHotendHeatingStart();
- #endif
-
- float target_temp = -1.0, old_temp = 9999.0;
- bool wants_to_cool = false, first_loop = true;
- wait_for_heatup = true;
- millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
- do {
- // Target temperature might be changed during the loop
- if (target_temp != degTargetHotend(target_extruder)) {
- wants_to_cool = isCoolingHotend(target_extruder);
- target_temp = degTargetHotend(target_extruder);
-
- // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
- if (no_wait_for_cooling && wants_to_cool) break;
- }
-
- now = millis();
- if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting
- next_temp_ms = now + 1000UL;
- print_heater_states(target_extruder);
- #if TEMP_RESIDENCY_TIME > 0
- SERIAL_ECHOPGM(" W:");
- if (residency_start_ms)
- SERIAL_ECHO(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
- else
- SERIAL_CHAR('?');
- #endif
- SERIAL_EOL();
- }
-
- idle();
- gcode.reset_stepper_timeout(); // Keep steppers powered
-
- const float temp = degHotend(target_extruder);
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- // Gradually change LED strip from violet to red as nozzle heats up
- if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp);
- #endif
-
- #if TEMP_RESIDENCY_TIME > 0
-
- const float temp_diff = ABS(target_temp - temp);
-
- if (!residency_start_ms) {
- // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
- if (temp_diff < TEMP_WINDOW) {
- residency_start_ms = now;
- if (first_loop) residency_start_ms += (TEMP_RESIDENCY_TIME) * 1000UL;
- }
- }
- else if (temp_diff > TEMP_HYSTERESIS) {
- // Restart the timer whenever the temperature falls outside the hysteresis.
- residency_start_ms = now;
- }
-
- #endif
-
- // Prevent a wait-forever situation if R is misused i.e. M109 R0
- if (wants_to_cool) {
- // break after MIN_COOLING_SLOPE_TIME seconds
- // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
- if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
- if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
- next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
- old_temp = temp;
- }
- }
-
- #if G26_CLICK_CAN_CANCEL
- if (click_to_cancel && ui.use_click()) {
- wait_for_heatup = false;
- ui.quick_feedback();
- }
- #endif
-
- first_loop = false;
-
- } while (wait_for_heatup && TEMP_CONDITIONS);
-
- if (wait_for_heatup) {
- ui.reset_status();
- #if ENABLED(PRINTER_EVENT_LEDS)
- printerEventLEDs.onHeatingDone();
- #endif
- }
-
- #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
- gcode.busy_state = old_busy_state;
- #endif
-
- return wait_for_heatup;
- }
-
- #endif // HAS_TEMP_HOTEND
-
- #if HAS_HEATED_BED
-
- #ifndef MIN_COOLING_SLOPE_DEG_BED
- #define MIN_COOLING_SLOPE_DEG_BED 1.50
- #endif
- #ifndef MIN_COOLING_SLOPE_TIME_BED
- #define MIN_COOLING_SLOPE_TIME_BED 60
- #endif
-
- bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/
- #if G26_CLICK_CAN_CANCEL
- , const bool click_to_cancel/*=false*/
- #endif
- ) {
- #if TEMP_BED_RESIDENCY_TIME > 0
- millis_t residency_start_ms = 0;
- bool first_loop = true;
- // Loop until the temperature has stabilized
- #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
- #else
- // Loop until the temperature is very close target
- #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
- #endif
-
- float target_temp = -1, old_temp = 9999;
- bool wants_to_cool = false;
- wait_for_heatup = true;
- millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
-
- #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
- const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state;
- KEEPALIVE_STATE(NOT_BUSY);
- #endif
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- const float start_temp = degBed();
- printerEventLEDs.onBedHeatingStart();
- #endif
-
- do {
- // Target temperature might be changed during the loop
- if (target_temp != degTargetBed()) {
- wants_to_cool = isCoolingBed();
- target_temp = degTargetBed();
-
- // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
- if (no_wait_for_cooling && wants_to_cool) break;
- }
-
- now = millis();
- if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
- next_temp_ms = now + 1000UL;
- print_heater_states(active_extruder);
- #if TEMP_BED_RESIDENCY_TIME > 0
- SERIAL_ECHOPGM(" W:");
- if (residency_start_ms)
- SERIAL_ECHO(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
- else
- SERIAL_CHAR('?');
- #endif
- SERIAL_EOL();
- }
-
- idle();
- gcode.reset_stepper_timeout(); // Keep steppers powered
-
- const float temp = degBed();
-
- #if ENABLED(PRINTER_EVENT_LEDS)
- // Gradually change LED strip from blue to violet as bed heats up
- if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp);
- #endif
-
- #if TEMP_BED_RESIDENCY_TIME > 0
-
- const float temp_diff = ABS(target_temp - temp);
-
- if (!residency_start_ms) {
- // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
- if (temp_diff < TEMP_BED_WINDOW) {
- residency_start_ms = now;
- if (first_loop) residency_start_ms += (TEMP_BED_RESIDENCY_TIME) * 1000UL;
- }
- }
- else if (temp_diff > TEMP_BED_HYSTERESIS) {
- // Restart the timer whenever the temperature falls outside the hysteresis.
- residency_start_ms = now;
- }
-
- #endif // TEMP_BED_RESIDENCY_TIME > 0
-
- // Prevent a wait-forever situation if R is misused i.e. M190 R0
- if (wants_to_cool) {
- // Break after MIN_COOLING_SLOPE_TIME_BED seconds
- // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
- if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
- if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
- next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
- old_temp = temp;
- }
- }
-
- #if G26_CLICK_CAN_CANCEL
- if (click_to_cancel && ui.use_click()) {
- wait_for_heatup = false;
- ui.quick_feedback();
- }
- #endif
-
- #if TEMP_BED_RESIDENCY_TIME > 0
- first_loop = false;
- #endif
-
- } while (wait_for_heatup && TEMP_BED_CONDITIONS);
-
- if (wait_for_heatup) ui.reset_status();
-
- #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
- gcode.busy_state = old_busy_state;
- #endif
-
- return wait_for_heatup;
- }
-
- #endif // HAS_HEATED_BED
-
- #if 0 && HAS_HEATED_CHAMBER
-
- #ifndef MIN_COOLING_SLOPE_DEG_CHAMBER
- #define MIN_COOLING_SLOPE_DEG_CHAMBER 1.50
- #endif
- #ifndef MIN_COOLING_SLOPE_TIME_CHAMBER
- #define MIN_COOLING_SLOPE_TIME_CHAMBER 60
- #endif
-
- bool Temperature::wait_for_chamber(const bool no_wait_for_cooling/*=true*/) {
- #if TEMP_CHAMBER_RESIDENCY_TIME > 0
- millis_t residency_start_ms = 0;
- // Loop until the temperature has stabilized
- #define TEMP_CHAMBER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_CHAMBER_RESIDENCY_TIME) * 1000UL))
- #else
- // Loop until the temperature is very close target
- #define TEMP_CHAMBER_CONDITIONS (wants_to_cool ? isCoolingChamber() : isHeatingChamber())
- #endif
-
- float target_temp = -1, old_temp = 9999;
- bool wants_to_cool = false, first_loop = true;
- wait_for_heatup = true;
- millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
-
- #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
- const GcodeSuite::MarlinBusyState old_busy_state = gcode.busy_state;
- KEEPALIVE_STATE(NOT_BUSY);
- #endif
-
- do {
- // Target temperature might be changed during the loop
- if (target_temp != degTargetChamber()) {
- wants_to_cool = isCoolingChamber();
- target_temp = degTargetChamber();
-
- // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
- if (no_wait_for_cooling && wants_to_cool) break;
- }
-
- now = millis();
- if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
- next_temp_ms = now + 1000UL;
- print_heater_states(active_extruder);
- #if TEMP_CHAMBER_RESIDENCY_TIME > 0
- SERIAL_ECHOPGM(" W:");
- if (residency_start_ms)
- SERIAL_ECHO(long((((TEMP_CHAMBER_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
- else
- SERIAL_CHAR('?');
- #endif
- SERIAL_EOL();
- }
-
- idle();
- gcode.reset_stepper_timeout(); // Keep steppers powered
-
- const float temp = degChamber();
-
- #if TEMP_CHAMBER_RESIDENCY_TIME > 0
-
- const float temp_diff = ABS(target_temp - temp);
-
- if (!residency_start_ms) {
- // Start the TEMP_CHAMBER_RESIDENCY_TIME timer when we reach target temp for the first time.
- if (temp_diff < TEMP_CHAMBER_WINDOW) {
- residency_start_ms = now;
- if (first_loop) residency_start_ms += (TEMP_CHAMBER_RESIDENCY_TIME) * 1000UL;
- }
- }
- else if (temp_diff > TEMP_CHAMBER_HYSTERESIS) {
- // Restart the timer whenever the temperature falls outside the hysteresis.
- residency_start_ms = now;
- }
-
- #endif // TEMP_CHAMBER_RESIDENCY_TIME > 0
-
- // Prevent a wait-forever situation if R is misused i.e. M191 R0
- if (wants_to_cool) {
- // Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds
- // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER
- if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
- if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_CHAMBER)) break;
- next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_CHAMBER;
- old_temp = temp;
- }
- }
-
- first_loop = false;
-
- } while (wait_for_heatup && TEMP_CHAMBER_CONDITIONS);
-
- if (wait_for_heatup) ui.reset_status();
-
- #if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
- gcode.busy_state = old_busy_state;
- #endif
-
- return wait_for_heatup;
- }
-
- #endif // HAS_HEATED_CHAMBER
-
- #endif // HAS_TEMP_SENSOR
|