My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 196KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  31. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  32. #ifdef MESH_BED_LEVELING
  33. #include "mesh_bed_leveling.h"
  34. #endif
  35. #include "ultralcd.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "configuration_store.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #ifdef BLINKM
  47. #include "blinkm.h"
  48. #include "Wire.h"
  49. #endif
  50. #if NUM_SERVOS > 0
  51. #include "servo.h"
  52. #endif
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. /**
  57. * Look here for descriptions of G-codes:
  58. * - http://linuxcnc.org/handbook/gcode/g-code.html
  59. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  60. *
  61. * Help us document these G-codes online:
  62. * - http://reprap.org/wiki/G-code
  63. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  64. */
  65. /**
  66. * Implemented Codes
  67. * -------------------
  68. *
  69. * "G" Codes
  70. *
  71. * G0 -> G1
  72. * G1 - Coordinated Movement X Y Z E
  73. * G2 - CW ARC
  74. * G3 - CCW ARC
  75. * G4 - Dwell S<seconds> or P<milliseconds>
  76. * G10 - retract filament according to settings of M207
  77. * G11 - retract recover filament according to settings of M208
  78. * G28 - Home one or more axes
  79. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  80. * G30 - Single Z Probe, probes bed at current XY location.
  81. * G31 - Dock sled (Z_PROBE_SLED only)
  82. * G32 - Undock sled (Z_PROBE_SLED only)
  83. * G90 - Use Absolute Coordinates
  84. * G91 - Use Relative Coordinates
  85. * G92 - Set current position to coordinates given
  86. *
  87. * "M" Codes
  88. *
  89. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  90. * M1 - Same as M0
  91. * M17 - Enable/Power all stepper motors
  92. * M18 - Disable all stepper motors; same as M84
  93. * M20 - List SD card
  94. * M21 - Init SD card
  95. * M22 - Release SD card
  96. * M23 - Select SD file (M23 filename.g)
  97. * M24 - Start/resume SD print
  98. * M25 - Pause SD print
  99. * M26 - Set SD position in bytes (M26 S12345)
  100. * M27 - Report SD print status
  101. * M28 - Start SD write (M28 filename.g)
  102. * M29 - Stop SD write
  103. * M30 - Delete file from SD (M30 filename.g)
  104. * M31 - Output time since last M109 or SD card start to serial
  105. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  106. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  107. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  108. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  109. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  110. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  111. * M80 - Turn on Power Supply
  112. * M81 - Turn off Power Supply
  113. * M82 - Set E codes absolute (default)
  114. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  115. * M84 - Disable steppers until next move,
  116. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  117. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  118. * M92 - Set axis_steps_per_unit - same syntax as G92
  119. * M104 - Set extruder target temp
  120. * M105 - Read current temp
  121. * M106 - Fan on
  122. * M107 - Fan off
  123. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  124. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  125. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  126. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  127. * M112 - Emergency stop
  128. * M114 - Output current position to serial port
  129. * M115 - Capabilities string
  130. * M117 - display message
  131. * M119 - Output Endstop status to serial port
  132. * M120 - Enable endstop detection
  133. * M121 - Disable endstop detection
  134. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. * M140 - Set bed target temp
  139. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  140. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  141. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  142. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  143. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  144. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  145. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  146. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  147. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  148. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  149. * M206 - Set additional homing offset
  150. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  151. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  152. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  153. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  154. * M220 - Set speed factor override percentage: S<factor in percent>
  155. * M221 - Set extrude factor override percentage: S<factor in percent>
  156. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  157. * M240 - Trigger a camera to take a photograph
  158. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  159. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  160. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  161. * M301 - Set PID parameters P I and D
  162. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  163. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  164. * M304 - Set bed PID parameters P I and D
  165. * M380 - Activate solenoid on active extruder
  166. * M381 - Disable all solenoids
  167. * M400 - Finish all moves
  168. * M401 - Lower z-probe if present
  169. * M402 - Raise z-probe if present
  170. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  171. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  172. * M406 - Turn off Filament Sensor extrusion control
  173. * M407 - Display measured filament diameter
  174. * M410 - Quickstop. Abort all the planned moves
  175. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  176. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  177. * M428 - Set the home_offset logically based on the current_position
  178. * M500 - Store parameters in EEPROM
  179. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  180. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  181. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  182. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  183. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  184. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  185. * M666 - Set delta endstop adjustment
  186. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  187. * M907 - Set digital trimpot motor current using axis codes.
  188. * M908 - Control digital trimpot directly.
  189. * M350 - Set microstepping mode.
  190. * M351 - Toggle MS1 MS2 pins directly.
  191. *
  192. * ************ SCARA Specific - This can change to suit future G-code regulations
  193. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  194. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  195. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  196. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  197. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  198. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  199. * ************* SCARA End ***************
  200. *
  201. * M928 - Start SD logging (M928 filename.g) - ended by M29
  202. * M999 - Restart after being stopped by error
  203. */
  204. #ifdef SDSUPPORT
  205. CardReader card;
  206. #endif
  207. bool Running = true;
  208. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  209. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  210. float current_position[NUM_AXIS] = { 0.0 };
  211. static float destination[NUM_AXIS] = { 0.0 };
  212. bool axis_known_position[3] = { false };
  213. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  214. static int cmd_queue_index_r = 0;
  215. static int cmd_queue_index_w = 0;
  216. static int commands_in_queue = 0;
  217. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  218. float homing_feedrate[] = HOMING_FEEDRATE;
  219. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  220. int feedrate_multiplier = 100; //100->1 200->2
  221. int saved_feedrate_multiplier;
  222. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  223. bool volumetric_enabled = false;
  224. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  225. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  226. float home_offset[3] = { 0 };
  227. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  228. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  229. uint8_t active_extruder = 0;
  230. int fanSpeed = 0;
  231. bool cancel_heatup = false;
  232. const char errormagic[] PROGMEM = "Error:";
  233. const char echomagic[] PROGMEM = "echo:";
  234. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  235. static float offset[3] = { 0 };
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char serial_char;
  238. static int serial_count = 0;
  239. static boolean comment_mode = false;
  240. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  241. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  242. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  243. // Inactivity shutdown
  244. millis_t previous_cmd_ms = 0;
  245. static millis_t max_inactive_time = 0;
  246. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  247. millis_t print_job_start_ms = 0; ///< Print job start time
  248. millis_t print_job_stop_ms = 0; ///< Print job stop time
  249. static uint8_t target_extruder;
  250. bool no_wait_for_cooling = true;
  251. bool target_direction;
  252. #ifdef ENABLE_AUTO_BED_LEVELING
  253. int xy_travel_speed = XY_TRAVEL_SPEED;
  254. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  255. #endif
  256. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  257. float z_endstop_adj = 0;
  258. #endif
  259. // Extruder offsets
  260. #if EXTRUDERS > 1
  261. #ifndef EXTRUDER_OFFSET_X
  262. #define EXTRUDER_OFFSET_X { 0 }
  263. #endif
  264. #ifndef EXTRUDER_OFFSET_Y
  265. #define EXTRUDER_OFFSET_Y { 0 }
  266. #endif
  267. float extruder_offset[][EXTRUDERS] = {
  268. EXTRUDER_OFFSET_X,
  269. EXTRUDER_OFFSET_Y
  270. #ifdef DUAL_X_CARRIAGE
  271. , { 0 } // supports offsets in XYZ plane
  272. #endif
  273. };
  274. #endif
  275. #ifdef SERVO_ENDSTOPS
  276. int servo_endstops[] = SERVO_ENDSTOPS;
  277. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  278. #endif
  279. #ifdef BARICUDA
  280. int ValvePressure = 0;
  281. int EtoPPressure = 0;
  282. #endif
  283. #ifdef FWRETRACT
  284. bool autoretract_enabled = false;
  285. bool retracted[EXTRUDERS] = { false };
  286. bool retracted_swap[EXTRUDERS] = { false };
  287. float retract_length = RETRACT_LENGTH;
  288. float retract_length_swap = RETRACT_LENGTH_SWAP;
  289. float retract_feedrate = RETRACT_FEEDRATE;
  290. float retract_zlift = RETRACT_ZLIFT;
  291. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  292. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  293. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  294. #endif // FWRETRACT
  295. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  296. bool powersupply =
  297. #ifdef PS_DEFAULT_OFF
  298. false
  299. #else
  300. true
  301. #endif
  302. ;
  303. #endif
  304. #ifdef DELTA
  305. float delta[3] = { 0 };
  306. #define SIN_60 0.8660254037844386
  307. #define COS_60 0.5
  308. float endstop_adj[3] = { 0 };
  309. // these are the default values, can be overriden with M665
  310. float delta_radius = DELTA_RADIUS;
  311. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  312. float delta_tower1_y = -COS_60 * delta_radius;
  313. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  314. float delta_tower2_y = -COS_60 * delta_radius;
  315. float delta_tower3_x = 0; // back middle tower
  316. float delta_tower3_y = delta_radius;
  317. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  318. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  319. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  320. #ifdef ENABLE_AUTO_BED_LEVELING
  321. int delta_grid_spacing[2] = { 0, 0 };
  322. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  323. #endif
  324. #else
  325. static bool home_all_axis = true;
  326. #endif
  327. #ifdef SCARA
  328. static float delta[3] = { 0 };
  329. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  330. #endif
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1 = 0; //index into ring buffer
  338. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist = 0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. #ifdef FILAMENT_RUNOUT_SENSOR
  343. static bool filrunoutEnqueued = false;
  344. #endif
  345. #ifdef SDSUPPORT
  346. static bool fromsd[BUFSIZE];
  347. #endif
  348. #if NUM_SERVOS > 0
  349. Servo servo[NUM_SERVOS];
  350. #endif
  351. #ifdef CHDK
  352. unsigned long chdkHigh = 0;
  353. boolean chdkActive = false;
  354. #endif
  355. //===========================================================================
  356. //================================ Functions ================================
  357. //===========================================================================
  358. void get_arc_coordinates();
  359. bool setTargetedHotend(int code);
  360. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  361. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  362. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  363. #ifdef PREVENT_DANGEROUS_EXTRUDE
  364. float extrude_min_temp = EXTRUDE_MINTEMP;
  365. #endif
  366. #ifdef SDSUPPORT
  367. #include "SdFatUtil.h"
  368. int freeMemory() { return SdFatUtil::FreeRam(); }
  369. #else
  370. extern "C" {
  371. extern unsigned int __bss_end;
  372. extern unsigned int __heap_start;
  373. extern void *__brkval;
  374. int freeMemory() {
  375. int free_memory;
  376. if ((int)__brkval == 0)
  377. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  378. else
  379. free_memory = ((int)&free_memory) - ((int)__brkval);
  380. return free_memory;
  381. }
  382. }
  383. #endif //!SDSUPPORT
  384. /**
  385. * Inject the next command from the command queue, when possible
  386. * Return false only if no command was pending
  387. */
  388. static bool drain_queued_commands_P() {
  389. if (!queued_commands_P) return false;
  390. // Get the next 30 chars from the sequence of gcodes to run
  391. char cmd[30];
  392. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  393. cmd[sizeof(cmd) - 1] = '\0';
  394. // Look for the end of line, or the end of sequence
  395. size_t i = 0;
  396. char c;
  397. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  398. cmd[i] = '\0';
  399. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  400. if (c)
  401. queued_commands_P += i + 1; // move to next command
  402. else
  403. queued_commands_P = NULL; // will have no more commands in the sequence
  404. }
  405. return true;
  406. }
  407. /**
  408. * Record one or many commands to run from program memory.
  409. * Aborts the current queue, if any.
  410. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  411. */
  412. void enqueuecommands_P(const char* pgcode) {
  413. queued_commands_P = pgcode;
  414. drain_queued_commands_P(); // first command executed asap (when possible)
  415. }
  416. /**
  417. * Copy a command directly into the main command buffer, from RAM.
  418. *
  419. * This is done in a non-safe way and needs a rework someday.
  420. * Returns false if it doesn't add any command
  421. */
  422. bool enqueuecommand(const char *cmd) {
  423. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  424. // This is dangerous if a mixing of serial and this happens
  425. char *command = command_queue[cmd_queue_index_w];
  426. strcpy(command, cmd);
  427. SERIAL_ECHO_START;
  428. SERIAL_ECHOPGM(MSG_Enqueueing);
  429. SERIAL_ECHO(command);
  430. SERIAL_ECHOLNPGM("\"");
  431. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  432. commands_in_queue++;
  433. return true;
  434. }
  435. void setup_killpin() {
  436. #if HAS_KILL
  437. SET_INPUT(KILL_PIN);
  438. WRITE(KILL_PIN, HIGH);
  439. #endif
  440. }
  441. void setup_filrunoutpin() {
  442. #if HAS_FILRUNOUT
  443. pinMode(FILRUNOUT_PIN, INPUT);
  444. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  445. WRITE(FILRUNOUT_PIN, HIGH);
  446. #endif
  447. #endif
  448. }
  449. // Set home pin
  450. void setup_homepin(void) {
  451. #if HAS_HOME
  452. SET_INPUT(HOME_PIN);
  453. WRITE(HOME_PIN, HIGH);
  454. #endif
  455. }
  456. void setup_photpin() {
  457. #if HAS_PHOTOGRAPH
  458. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  459. #endif
  460. }
  461. void setup_powerhold() {
  462. #if HAS_SUICIDE
  463. OUT_WRITE(SUICIDE_PIN, HIGH);
  464. #endif
  465. #if HAS_POWER_SWITCH
  466. #ifdef PS_DEFAULT_OFF
  467. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  468. #else
  469. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  470. #endif
  471. #endif
  472. }
  473. void suicide() {
  474. #if HAS_SUICIDE
  475. OUT_WRITE(SUICIDE_PIN, LOW);
  476. #endif
  477. }
  478. void servo_init() {
  479. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  480. servo[0].attach(SERVO0_PIN);
  481. #endif
  482. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  483. servo[1].attach(SERVO1_PIN);
  484. #endif
  485. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  486. servo[2].attach(SERVO2_PIN);
  487. #endif
  488. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  489. servo[3].attach(SERVO3_PIN);
  490. #endif
  491. // Set position of Servo Endstops that are defined
  492. #ifdef SERVO_ENDSTOPS
  493. for (int i = 0; i < 3; i++)
  494. if (servo_endstops[i] >= 0)
  495. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  496. #endif
  497. #if SERVO_LEVELING
  498. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  499. servo[servo_endstops[Z_AXIS]].detach();
  500. #endif
  501. }
  502. /**
  503. * Marlin entry-point: Set up before the program loop
  504. * - Set up the kill pin, filament runout, power hold
  505. * - Start the serial port
  506. * - Print startup messages and diagnostics
  507. * - Get EEPROM or default settings
  508. * - Initialize managers for:
  509. * • temperature
  510. * • planner
  511. * • watchdog
  512. * • stepper
  513. * • photo pin
  514. * • servos
  515. * • LCD controller
  516. * • Digipot I2C
  517. * • Z probe sled
  518. * • status LEDs
  519. */
  520. void setup() {
  521. setup_killpin();
  522. setup_filrunoutpin();
  523. setup_powerhold();
  524. MYSERIAL.begin(BAUDRATE);
  525. SERIAL_PROTOCOLLNPGM("start");
  526. SERIAL_ECHO_START;
  527. // Check startup - does nothing if bootloader sets MCUSR to 0
  528. byte mcu = MCUSR;
  529. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  530. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  531. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  532. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  533. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  534. MCUSR = 0;
  535. SERIAL_ECHOPGM(MSG_MARLIN);
  536. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  537. #ifdef STRING_VERSION_CONFIG_H
  538. #ifdef STRING_CONFIG_H_AUTHOR
  539. SERIAL_ECHO_START;
  540. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  541. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  542. SERIAL_ECHOPGM(MSG_AUTHOR);
  543. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  544. SERIAL_ECHOPGM("Compiled: ");
  545. SERIAL_ECHOLNPGM(__DATE__);
  546. #endif // STRING_CONFIG_H_AUTHOR
  547. #endif // STRING_VERSION_CONFIG_H
  548. SERIAL_ECHO_START;
  549. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  550. SERIAL_ECHO(freeMemory());
  551. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  552. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  553. #ifdef SDSUPPORT
  554. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  555. #endif
  556. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  557. Config_RetrieveSettings();
  558. tp_init(); // Initialize temperature loop
  559. plan_init(); // Initialize planner;
  560. watchdog_init();
  561. st_init(); // Initialize stepper, this enables interrupts!
  562. setup_photpin();
  563. servo_init();
  564. lcd_init();
  565. _delay_ms(1000); // wait 1sec to display the splash screen
  566. #if HAS_CONTROLLERFAN
  567. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  568. #endif
  569. #ifdef DIGIPOT_I2C
  570. digipot_i2c_init();
  571. #endif
  572. #ifdef Z_PROBE_SLED
  573. pinMode(SERVO0_PIN, OUTPUT);
  574. digitalWrite(SERVO0_PIN, LOW); // turn it off
  575. #endif // Z_PROBE_SLED
  576. setup_homepin();
  577. #ifdef STAT_LED_RED
  578. pinMode(STAT_LED_RED, OUTPUT);
  579. digitalWrite(STAT_LED_RED, LOW); // turn it off
  580. #endif
  581. #ifdef STAT_LED_BLUE
  582. pinMode(STAT_LED_BLUE, OUTPUT);
  583. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  584. #endif
  585. }
  586. /**
  587. * The main Marlin program loop
  588. *
  589. * - Save or log commands to SD
  590. * - Process available commands (if not saving)
  591. * - Call heater manager
  592. * - Call inactivity manager
  593. * - Call endstop manager
  594. * - Call LCD update
  595. */
  596. void loop() {
  597. if (commands_in_queue < BUFSIZE - 1) get_command();
  598. #ifdef SDSUPPORT
  599. card.checkautostart(false);
  600. #endif
  601. if (commands_in_queue) {
  602. #ifdef SDSUPPORT
  603. if (card.saving) {
  604. char *command = command_queue[cmd_queue_index_r];
  605. if (strstr_P(command, PSTR("M29"))) {
  606. // M29 closes the file
  607. card.closefile();
  608. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  609. }
  610. else {
  611. // Write the string from the read buffer to SD
  612. card.write_command(command);
  613. if (card.logging)
  614. process_commands(); // The card is saving because it's logging
  615. else
  616. SERIAL_PROTOCOLLNPGM(MSG_OK);
  617. }
  618. }
  619. else
  620. process_commands();
  621. #else
  622. process_commands();
  623. #endif // SDSUPPORT
  624. commands_in_queue--;
  625. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  626. }
  627. // Check heater every n milliseconds
  628. manage_heater();
  629. manage_inactivity();
  630. checkHitEndstops();
  631. lcd_update();
  632. }
  633. /**
  634. * Add to the circular command queue the next command from:
  635. * - The command-injection queue (queued_commands_P)
  636. * - The active serial input (usually USB)
  637. * - The SD card file being actively printed
  638. */
  639. void get_command() {
  640. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  641. #ifdef NO_TIMEOUTS
  642. static millis_t last_command_time = 0;
  643. millis_t ms = millis();
  644. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  645. SERIAL_ECHOLNPGM(MSG_WAIT);
  646. last_command_time = ms;
  647. }
  648. #endif
  649. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  650. #ifdef NO_TIMEOUTS
  651. last_command_time = ms;
  652. #endif
  653. serial_char = MYSERIAL.read();
  654. if (serial_char == '\n' || serial_char == '\r' ||
  655. serial_count >= (MAX_CMD_SIZE - 1)
  656. ) {
  657. // end of line == end of comment
  658. comment_mode = false;
  659. if (!serial_count) return; // shortcut for empty lines
  660. char *command = command_queue[cmd_queue_index_w];
  661. command[serial_count] = 0; // terminate string
  662. #ifdef SDSUPPORT
  663. fromsd[cmd_queue_index_w] = false;
  664. #endif
  665. if (strchr(command, 'N') != NULL) {
  666. strchr_pointer = strchr(command, 'N');
  667. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  668. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  669. SERIAL_ERROR_START;
  670. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  671. SERIAL_ERRORLN(gcode_LastN);
  672. //Serial.println(gcode_N);
  673. FlushSerialRequestResend();
  674. serial_count = 0;
  675. return;
  676. }
  677. if (strchr(command, '*') != NULL) {
  678. byte checksum = 0;
  679. byte count = 0;
  680. while (command[count] != '*') checksum ^= command[count++];
  681. strchr_pointer = strchr(command, '*');
  682. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  683. SERIAL_ERROR_START;
  684. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  685. SERIAL_ERRORLN(gcode_LastN);
  686. FlushSerialRequestResend();
  687. serial_count = 0;
  688. return;
  689. }
  690. //if no errors, continue parsing
  691. }
  692. else {
  693. SERIAL_ERROR_START;
  694. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  695. SERIAL_ERRORLN(gcode_LastN);
  696. FlushSerialRequestResend();
  697. serial_count = 0;
  698. return;
  699. }
  700. gcode_LastN = gcode_N;
  701. //if no errors, continue parsing
  702. }
  703. else { // if we don't receive 'N' but still see '*'
  704. if ((strchr(command, '*') != NULL)) {
  705. SERIAL_ERROR_START;
  706. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  707. SERIAL_ERRORLN(gcode_LastN);
  708. serial_count = 0;
  709. return;
  710. }
  711. }
  712. if (strchr(command, 'G') != NULL) {
  713. strchr_pointer = strchr(command, 'G');
  714. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  715. case 0:
  716. case 1:
  717. case 2:
  718. case 3:
  719. if (IsStopped()) {
  720. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  721. LCD_MESSAGEPGM(MSG_STOPPED);
  722. }
  723. break;
  724. default:
  725. break;
  726. }
  727. }
  728. // If command was e-stop process now
  729. if (strcmp(command, "M112") == 0) kill();
  730. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  731. commands_in_queue += 1;
  732. serial_count = 0; //clear buffer
  733. }
  734. else if (serial_char == '\\') { // Handle escapes
  735. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  736. // if we have one more character, copy it over
  737. serial_char = MYSERIAL.read();
  738. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  739. }
  740. // otherwise do nothing
  741. }
  742. else { // its not a newline, carriage return or escape char
  743. if (serial_char == ';') comment_mode = true;
  744. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  745. }
  746. }
  747. #ifdef SDSUPPORT
  748. if (!card.sdprinting || serial_count) return;
  749. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  750. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  751. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  752. static bool stop_buffering = false;
  753. if (commands_in_queue == 0) stop_buffering = false;
  754. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  755. int16_t n = card.get();
  756. serial_char = (char)n;
  757. if (serial_char == '\n' || serial_char == '\r' ||
  758. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  759. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  760. ) {
  761. if (card.eof()) {
  762. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  763. print_job_stop_ms = millis();
  764. char time[30];
  765. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  766. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  767. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  768. SERIAL_ECHO_START;
  769. SERIAL_ECHOLN(time);
  770. lcd_setstatus(time, true);
  771. card.printingHasFinished();
  772. card.checkautostart(true);
  773. }
  774. if (serial_char == '#') stop_buffering = true;
  775. if (!serial_count) {
  776. comment_mode = false; //for new command
  777. return; //if empty line
  778. }
  779. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  780. // if (!comment_mode) {
  781. fromsd[cmd_queue_index_w] = true;
  782. commands_in_queue += 1;
  783. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  784. // }
  785. comment_mode = false; //for new command
  786. serial_count = 0; //clear buffer
  787. }
  788. else {
  789. if (serial_char == ';') comment_mode = true;
  790. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  791. }
  792. }
  793. #endif // SDSUPPORT
  794. }
  795. bool code_has_value() {
  796. int i = 1;
  797. char c = strchr_pointer[i];
  798. if (c == '-' || c == '+') c = strchr_pointer[++i];
  799. if (c == '.') c = strchr_pointer[++i];
  800. return (c >= '0' && c <= '9');
  801. }
  802. float code_value() {
  803. float ret;
  804. char *e = strchr(strchr_pointer, 'E');
  805. if (e) {
  806. *e = 0;
  807. ret = strtod(strchr_pointer+1, NULL);
  808. *e = 'E';
  809. }
  810. else
  811. ret = strtod(strchr_pointer+1, NULL);
  812. return ret;
  813. }
  814. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  815. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  816. bool code_seen(char code) {
  817. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  818. return (strchr_pointer != NULL); //Return True if a character was found
  819. }
  820. #define DEFINE_PGM_READ_ANY(type, reader) \
  821. static inline type pgm_read_any(const type *p) \
  822. { return pgm_read_##reader##_near(p); }
  823. DEFINE_PGM_READ_ANY(float, float);
  824. DEFINE_PGM_READ_ANY(signed char, byte);
  825. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  826. static const PROGMEM type array##_P[3] = \
  827. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  828. static inline type array(int axis) \
  829. { return pgm_read_any(&array##_P[axis]); }
  830. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  831. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  832. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  833. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  834. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  835. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  836. #ifdef DUAL_X_CARRIAGE
  837. #define DXC_FULL_CONTROL_MODE 0
  838. #define DXC_AUTO_PARK_MODE 1
  839. #define DXC_DUPLICATION_MODE 2
  840. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  841. static float x_home_pos(int extruder) {
  842. if (extruder == 0)
  843. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  844. else
  845. // In dual carriage mode the extruder offset provides an override of the
  846. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  847. // This allow soft recalibration of the second extruder offset position without firmware reflash
  848. // (through the M218 command).
  849. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  850. }
  851. static int x_home_dir(int extruder) {
  852. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  853. }
  854. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  855. static bool active_extruder_parked = false; // used in mode 1 & 2
  856. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  857. static millis_t delayed_move_time = 0; // used in mode 1
  858. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  859. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  860. bool extruder_duplication_enabled = false; // used in mode 2
  861. #endif //DUAL_X_CARRIAGE
  862. static void axis_is_at_home(int axis) {
  863. #ifdef DUAL_X_CARRIAGE
  864. if (axis == X_AXIS) {
  865. if (active_extruder != 0) {
  866. current_position[X_AXIS] = x_home_pos(active_extruder);
  867. min_pos[X_AXIS] = X2_MIN_POS;
  868. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  869. return;
  870. }
  871. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  872. float xoff = home_offset[X_AXIS];
  873. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  874. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  875. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  876. return;
  877. }
  878. }
  879. #endif
  880. #ifdef SCARA
  881. if (axis == X_AXIS || axis == Y_AXIS) {
  882. float homeposition[3];
  883. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  884. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  885. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  886. // Works out real Homeposition angles using inverse kinematics,
  887. // and calculates homing offset using forward kinematics
  888. calculate_delta(homeposition);
  889. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  890. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  891. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  892. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  893. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  894. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  895. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  896. calculate_SCARA_forward_Transform(delta);
  897. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  898. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  899. current_position[axis] = delta[axis];
  900. // SCARA home positions are based on configuration since the actual limits are determined by the
  901. // inverse kinematic transform.
  902. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  903. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  904. }
  905. else
  906. #endif
  907. {
  908. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  909. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  910. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  911. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  912. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  913. #endif
  914. }
  915. }
  916. /**
  917. * Some planner shorthand inline functions
  918. */
  919. inline void set_homing_bump_feedrate(AxisEnum axis) {
  920. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  921. if (homing_bump_divisor[axis] >= 1)
  922. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  923. else {
  924. feedrate = homing_feedrate[axis] / 10;
  925. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  926. }
  927. }
  928. inline void line_to_current_position() {
  929. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  930. }
  931. inline void line_to_z(float zPosition) {
  932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  933. }
  934. inline void line_to_destination(float mm_m) {
  935. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  936. }
  937. inline void line_to_destination() {
  938. line_to_destination(feedrate);
  939. }
  940. inline void sync_plan_position() {
  941. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  942. }
  943. #if defined(DELTA) || defined(SCARA)
  944. inline void sync_plan_position_delta() {
  945. calculate_delta(current_position);
  946. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  947. }
  948. #endif
  949. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  950. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  951. static void setup_for_endstop_move() {
  952. saved_feedrate = feedrate;
  953. saved_feedrate_multiplier = feedrate_multiplier;
  954. feedrate_multiplier = 100;
  955. refresh_cmd_timeout();
  956. enable_endstops(true);
  957. }
  958. #ifdef ENABLE_AUTO_BED_LEVELING
  959. #ifdef DELTA
  960. /**
  961. * Calculate delta, start a line, and set current_position to destination
  962. */
  963. void prepare_move_raw() {
  964. refresh_cmd_timeout();
  965. calculate_delta(destination);
  966. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  967. set_current_to_destination();
  968. }
  969. #endif
  970. #ifdef AUTO_BED_LEVELING_GRID
  971. #ifndef DELTA
  972. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  973. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  974. planeNormal.debug("planeNormal");
  975. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  976. //bedLevel.debug("bedLevel");
  977. //plan_bed_level_matrix.debug("bed level before");
  978. //vector_3 uncorrected_position = plan_get_position_mm();
  979. //uncorrected_position.debug("position before");
  980. vector_3 corrected_position = plan_get_position();
  981. //corrected_position.debug("position after");
  982. current_position[X_AXIS] = corrected_position.x;
  983. current_position[Y_AXIS] = corrected_position.y;
  984. current_position[Z_AXIS] = corrected_position.z;
  985. sync_plan_position();
  986. }
  987. #endif // !DELTA
  988. #else // !AUTO_BED_LEVELING_GRID
  989. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  990. plan_bed_level_matrix.set_to_identity();
  991. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  992. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  993. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  994. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  995. if (planeNormal.z < 0) {
  996. planeNormal.x = -planeNormal.x;
  997. planeNormal.y = -planeNormal.y;
  998. planeNormal.z = -planeNormal.z;
  999. }
  1000. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1001. vector_3 corrected_position = plan_get_position();
  1002. current_position[X_AXIS] = corrected_position.x;
  1003. current_position[Y_AXIS] = corrected_position.y;
  1004. current_position[Z_AXIS] = corrected_position.z;
  1005. sync_plan_position();
  1006. }
  1007. #endif // !AUTO_BED_LEVELING_GRID
  1008. static void run_z_probe() {
  1009. #ifdef DELTA
  1010. float start_z = current_position[Z_AXIS];
  1011. long start_steps = st_get_position(Z_AXIS);
  1012. // move down slowly until you find the bed
  1013. feedrate = homing_feedrate[Z_AXIS] / 4;
  1014. destination[Z_AXIS] = -10;
  1015. prepare_move_raw(); // this will also set_current_to_destination
  1016. st_synchronize();
  1017. endstops_hit_on_purpose(); // clear endstop hit flags
  1018. // we have to let the planner know where we are right now as it is not where we said to go.
  1019. long stop_steps = st_get_position(Z_AXIS);
  1020. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1021. current_position[Z_AXIS] = mm;
  1022. sync_plan_position_delta();
  1023. #else // !DELTA
  1024. plan_bed_level_matrix.set_to_identity();
  1025. feedrate = homing_feedrate[Z_AXIS];
  1026. // move down until you find the bed
  1027. float zPosition = -10;
  1028. line_to_z(zPosition);
  1029. st_synchronize();
  1030. // we have to let the planner know where we are right now as it is not where we said to go.
  1031. zPosition = st_get_position_mm(Z_AXIS);
  1032. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1033. // move up the retract distance
  1034. zPosition += home_bump_mm(Z_AXIS);
  1035. line_to_z(zPosition);
  1036. st_synchronize();
  1037. endstops_hit_on_purpose(); // clear endstop hit flags
  1038. // move back down slowly to find bed
  1039. set_homing_bump_feedrate(Z_AXIS);
  1040. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1041. line_to_z(zPosition);
  1042. st_synchronize();
  1043. endstops_hit_on_purpose(); // clear endstop hit flags
  1044. // Get the current stepper position after bumping an endstop
  1045. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1046. sync_plan_position();
  1047. #endif // !DELTA
  1048. }
  1049. /**
  1050. * Plan a move to (X, Y, Z) and set the current_position
  1051. * The final current_position may not be the one that was requested
  1052. */
  1053. static void do_blocking_move_to(float x, float y, float z) {
  1054. float oldFeedRate = feedrate;
  1055. #ifdef DELTA
  1056. feedrate = XY_TRAVEL_SPEED;
  1057. destination[X_AXIS] = x;
  1058. destination[Y_AXIS] = y;
  1059. destination[Z_AXIS] = z;
  1060. prepare_move_raw(); // this will also set_current_to_destination
  1061. st_synchronize();
  1062. #else
  1063. feedrate = homing_feedrate[Z_AXIS];
  1064. current_position[Z_AXIS] = z;
  1065. line_to_current_position();
  1066. st_synchronize();
  1067. feedrate = xy_travel_speed;
  1068. current_position[X_AXIS] = x;
  1069. current_position[Y_AXIS] = y;
  1070. line_to_current_position();
  1071. st_synchronize();
  1072. #endif
  1073. feedrate = oldFeedRate;
  1074. }
  1075. static void setup_for_endstop_move() {
  1076. saved_feedrate = feedrate;
  1077. saved_feedrate_multiplier = feedrate_multiplier;
  1078. feedrate_multiplier = 100;
  1079. refresh_cmd_timeout();
  1080. enable_endstops(true);
  1081. }
  1082. static void clean_up_after_endstop_move() {
  1083. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1084. enable_endstops(false);
  1085. #endif
  1086. feedrate = saved_feedrate;
  1087. feedrate_multiplier = saved_feedrate_multiplier;
  1088. refresh_cmd_timeout();
  1089. }
  1090. static void deploy_z_probe() {
  1091. #ifdef SERVO_ENDSTOPS
  1092. // Engage Z Servo endstop if enabled
  1093. if (servo_endstops[Z_AXIS] >= 0) {
  1094. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1095. #if SERVO_LEVELING
  1096. srv->attach(0);
  1097. #endif
  1098. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1099. #if SERVO_LEVELING
  1100. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1101. srv->detach();
  1102. #endif
  1103. }
  1104. #elif defined(Z_PROBE_ALLEN_KEY)
  1105. feedrate = homing_feedrate[X_AXIS];
  1106. // Move to the start position to initiate deployment
  1107. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1108. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1109. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1110. prepare_move_raw(); // this will also set_current_to_destination
  1111. // Home X to touch the belt
  1112. feedrate = homing_feedrate[X_AXIS]/10;
  1113. destination[X_AXIS] = 0;
  1114. prepare_move_raw(); // this will also set_current_to_destination
  1115. // Home Y for safety
  1116. feedrate = homing_feedrate[X_AXIS]/2;
  1117. destination[Y_AXIS] = 0;
  1118. prepare_move_raw(); // this will also set_current_to_destination
  1119. st_synchronize();
  1120. #ifdef Z_PROBE_ENDSTOP
  1121. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1122. if (z_probe_endstop)
  1123. #else
  1124. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1125. if (z_min_endstop)
  1126. #endif
  1127. {
  1128. if (IsRunning()) {
  1129. SERIAL_ERROR_START;
  1130. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1131. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1132. }
  1133. Stop();
  1134. }
  1135. #endif // Z_PROBE_ALLEN_KEY
  1136. }
  1137. static void stow_z_probe(bool doRaise=true) {
  1138. #ifdef SERVO_ENDSTOPS
  1139. // Retract Z Servo endstop if enabled
  1140. if (servo_endstops[Z_AXIS] >= 0) {
  1141. #if Z_RAISE_AFTER_PROBING > 0
  1142. if (doRaise) {
  1143. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1144. st_synchronize();
  1145. }
  1146. #endif
  1147. // Change the Z servo angle
  1148. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1149. #if SERVO_LEVELING
  1150. srv->attach(0);
  1151. #endif
  1152. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1153. #if SERVO_LEVELING
  1154. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1155. srv->detach();
  1156. #endif
  1157. }
  1158. #elif defined(Z_PROBE_ALLEN_KEY)
  1159. // Move up for safety
  1160. feedrate = homing_feedrate[X_AXIS];
  1161. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1162. prepare_move_raw(); // this will also set_current_to_destination
  1163. // Move to the start position to initiate retraction
  1164. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1165. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1166. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1167. prepare_move_raw(); // this will also set_current_to_destination
  1168. // Move the nozzle down to push the probe into retracted position
  1169. feedrate = homing_feedrate[Z_AXIS]/10;
  1170. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1171. prepare_move_raw(); // this will also set_current_to_destination
  1172. // Move up for safety
  1173. feedrate = homing_feedrate[Z_AXIS]/2;
  1174. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1175. prepare_move_raw(); // this will also set_current_to_destination
  1176. // Home XY for safety
  1177. feedrate = homing_feedrate[X_AXIS]/2;
  1178. destination[X_AXIS] = 0;
  1179. destination[Y_AXIS] = 0;
  1180. prepare_move_raw(); // this will also set_current_to_destination
  1181. st_synchronize();
  1182. #ifdef Z_PROBE_ENDSTOP
  1183. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1184. if (!z_probe_endstop)
  1185. #else
  1186. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1187. if (!z_min_endstop)
  1188. #endif
  1189. {
  1190. if (IsRunning()) {
  1191. SERIAL_ERROR_START;
  1192. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1193. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1194. }
  1195. Stop();
  1196. }
  1197. #endif
  1198. }
  1199. enum ProbeAction {
  1200. ProbeStay = 0,
  1201. ProbeDeploy = BIT(0),
  1202. ProbeStow = BIT(1),
  1203. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1204. };
  1205. // Probe bed height at position (x,y), returns the measured z value
  1206. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1207. // move to right place
  1208. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1209. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1210. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1211. if (retract_action & ProbeDeploy) deploy_z_probe();
  1212. #endif
  1213. run_z_probe();
  1214. float measured_z = current_position[Z_AXIS];
  1215. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1216. if (retract_action == ProbeStay) {
  1217. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1218. st_synchronize();
  1219. }
  1220. #endif
  1221. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1222. if (retract_action & ProbeStow) stow_z_probe();
  1223. #endif
  1224. if (verbose_level > 2) {
  1225. SERIAL_PROTOCOLPGM("Bed");
  1226. SERIAL_PROTOCOLPGM(" X: ");
  1227. SERIAL_PROTOCOL_F(x, 3);
  1228. SERIAL_PROTOCOLPGM(" Y: ");
  1229. SERIAL_PROTOCOL_F(y, 3);
  1230. SERIAL_PROTOCOLPGM(" Z: ");
  1231. SERIAL_PROTOCOL_F(measured_z, 3);
  1232. SERIAL_EOL;
  1233. }
  1234. return measured_z;
  1235. }
  1236. #ifdef DELTA
  1237. /**
  1238. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1239. */
  1240. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1241. if (bed_level[x][y] != 0.0) {
  1242. return; // Don't overwrite good values.
  1243. }
  1244. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1245. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1246. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1247. float median = c; // Median is robust (ignores outliers).
  1248. if (a < b) {
  1249. if (b < c) median = b;
  1250. if (c < a) median = a;
  1251. } else { // b <= a
  1252. if (c < b) median = b;
  1253. if (a < c) median = a;
  1254. }
  1255. bed_level[x][y] = median;
  1256. }
  1257. // Fill in the unprobed points (corners of circular print surface)
  1258. // using linear extrapolation, away from the center.
  1259. static void extrapolate_unprobed_bed_level() {
  1260. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1261. for (int y = 0; y <= half; y++) {
  1262. for (int x = 0; x <= half; x++) {
  1263. if (x + y < 3) continue;
  1264. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1265. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1266. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1267. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1268. }
  1269. }
  1270. }
  1271. // Print calibration results for plotting or manual frame adjustment.
  1272. static void print_bed_level() {
  1273. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1274. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1275. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1276. SERIAL_PROTOCOLCHAR(' ');
  1277. }
  1278. SERIAL_EOL;
  1279. }
  1280. }
  1281. // Reset calibration results to zero.
  1282. void reset_bed_level() {
  1283. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1284. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1285. bed_level[x][y] = 0.0;
  1286. }
  1287. }
  1288. }
  1289. #endif // DELTA
  1290. #endif // ENABLE_AUTO_BED_LEVELING
  1291. /**
  1292. * Home an individual axis
  1293. */
  1294. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1295. static void homeaxis(AxisEnum axis) {
  1296. #define HOMEAXIS_DO(LETTER) \
  1297. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1298. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1299. int axis_home_dir =
  1300. #ifdef DUAL_X_CARRIAGE
  1301. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1302. #endif
  1303. home_dir(axis);
  1304. // Set the axis position as setup for the move
  1305. current_position[axis] = 0;
  1306. sync_plan_position();
  1307. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1308. // Deploy a probe if there is one, and homing towards the bed
  1309. if (axis == Z_AXIS) {
  1310. if (axis_home_dir < 0) deploy_z_probe();
  1311. }
  1312. else
  1313. #endif
  1314. #ifdef SERVO_ENDSTOPS
  1315. {
  1316. // Engage Servo endstop if enabled
  1317. if (servo_endstops[axis] > -1)
  1318. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1319. }
  1320. #endif
  1321. // Set a flag for Z motor locking
  1322. #ifdef Z_DUAL_ENDSTOPS
  1323. if (axis == Z_AXIS) In_Homing_Process(true);
  1324. #endif
  1325. // Move towards the endstop until an endstop is triggered
  1326. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1327. feedrate = homing_feedrate[axis];
  1328. line_to_destination();
  1329. st_synchronize();
  1330. // Set the axis position as setup for the move
  1331. current_position[axis] = 0;
  1332. sync_plan_position();
  1333. enable_endstops(false); // Disable endstops while moving away
  1334. // Move away from the endstop by the axis HOME_BUMP_MM
  1335. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1336. line_to_destination();
  1337. st_synchronize();
  1338. enable_endstops(true); // Enable endstops for next homing move
  1339. // Slow down the feedrate for the next move
  1340. set_homing_bump_feedrate(axis);
  1341. // Move slowly towards the endstop until triggered
  1342. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1343. line_to_destination();
  1344. st_synchronize();
  1345. #ifdef Z_DUAL_ENDSTOPS
  1346. if (axis == Z_AXIS) {
  1347. float adj = fabs(z_endstop_adj);
  1348. bool lockZ1;
  1349. if (axis_home_dir > 0) {
  1350. adj = -adj;
  1351. lockZ1 = (z_endstop_adj > 0);
  1352. }
  1353. else
  1354. lockZ1 = (z_endstop_adj < 0);
  1355. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1356. sync_plan_position();
  1357. // Move to the adjusted endstop height
  1358. feedrate = homing_feedrate[axis];
  1359. destination[Z_AXIS] = adj;
  1360. line_to_destination();
  1361. st_synchronize();
  1362. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1363. In_Homing_Process(false);
  1364. } // Z_AXIS
  1365. #endif
  1366. #ifdef DELTA
  1367. // retrace by the amount specified in endstop_adj
  1368. if (endstop_adj[axis] * axis_home_dir < 0) {
  1369. enable_endstops(false); // Disable endstops while moving away
  1370. sync_plan_position();
  1371. destination[axis] = endstop_adj[axis];
  1372. line_to_destination();
  1373. st_synchronize();
  1374. enable_endstops(true); // Enable endstops for next homing move
  1375. }
  1376. #endif
  1377. // Set the axis position to its home position (plus home offsets)
  1378. axis_is_at_home(axis);
  1379. sync_plan_position();
  1380. destination[axis] = current_position[axis];
  1381. feedrate = 0.0;
  1382. endstops_hit_on_purpose(); // clear endstop hit flags
  1383. axis_known_position[axis] = true;
  1384. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1385. // Deploy a probe if there is one, and homing towards the bed
  1386. if (axis == Z_AXIS) {
  1387. if (axis_home_dir < 0) stow_z_probe();
  1388. }
  1389. else
  1390. #endif
  1391. #ifdef SERVO_ENDSTOPS
  1392. {
  1393. // Retract Servo endstop if enabled
  1394. if (servo_endstops[axis] > -1)
  1395. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1396. }
  1397. #endif
  1398. }
  1399. }
  1400. #ifdef FWRETRACT
  1401. void retract(bool retracting, bool swapretract = false) {
  1402. if (retracting == retracted[active_extruder]) return;
  1403. float oldFeedrate = feedrate;
  1404. set_destination_to_current();
  1405. if (retracting) {
  1406. feedrate = retract_feedrate * 60;
  1407. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1408. plan_set_e_position(current_position[E_AXIS]);
  1409. prepare_move();
  1410. if (retract_zlift > 0.01) {
  1411. current_position[Z_AXIS] -= retract_zlift;
  1412. #ifdef DELTA
  1413. sync_plan_position_delta();
  1414. #else
  1415. sync_plan_position();
  1416. #endif
  1417. prepare_move();
  1418. }
  1419. }
  1420. else {
  1421. if (retract_zlift > 0.01) {
  1422. current_position[Z_AXIS] += retract_zlift;
  1423. #ifdef DELTA
  1424. sync_plan_position_delta();
  1425. #else
  1426. sync_plan_position();
  1427. #endif
  1428. //prepare_move();
  1429. }
  1430. feedrate = retract_recover_feedrate * 60;
  1431. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1432. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1433. plan_set_e_position(current_position[E_AXIS]);
  1434. prepare_move();
  1435. }
  1436. feedrate = oldFeedrate;
  1437. retracted[active_extruder] = retracting;
  1438. } // retract()
  1439. #endif // FWRETRACT
  1440. #ifdef Z_PROBE_SLED
  1441. #ifndef SLED_DOCKING_OFFSET
  1442. #define SLED_DOCKING_OFFSET 0
  1443. #endif
  1444. /**
  1445. * Method to dock/undock a sled designed by Charles Bell.
  1446. *
  1447. * dock[in] If true, move to MAX_X and engage the electromagnet
  1448. * offset[in] The additional distance to move to adjust docking location
  1449. */
  1450. static void dock_sled(bool dock, int offset=0) {
  1451. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1452. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1453. SERIAL_ECHO_START;
  1454. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1455. return;
  1456. }
  1457. if (dock) {
  1458. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1459. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1460. } else {
  1461. float z_loc = current_position[Z_AXIS];
  1462. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1463. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1464. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1465. }
  1466. }
  1467. #endif // Z_PROBE_SLED
  1468. /**
  1469. *
  1470. * G-Code Handler functions
  1471. *
  1472. */
  1473. /**
  1474. * G0, G1: Coordinated movement of X Y Z E axes
  1475. */
  1476. inline void gcode_G0_G1() {
  1477. if (IsRunning()) {
  1478. get_coordinates(); // For X Y Z E F
  1479. #ifdef FWRETRACT
  1480. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1481. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1482. // Is this move an attempt to retract or recover?
  1483. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1484. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1485. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1486. retract(!retracted[active_extruder]);
  1487. return;
  1488. }
  1489. }
  1490. #endif //FWRETRACT
  1491. prepare_move();
  1492. //ClearToSend();
  1493. }
  1494. }
  1495. /**
  1496. * G2: Clockwise Arc
  1497. * G3: Counterclockwise Arc
  1498. */
  1499. inline void gcode_G2_G3(bool clockwise) {
  1500. if (IsRunning()) {
  1501. get_arc_coordinates();
  1502. prepare_arc_move(clockwise);
  1503. }
  1504. }
  1505. /**
  1506. * G4: Dwell S<seconds> or P<milliseconds>
  1507. */
  1508. inline void gcode_G4() {
  1509. millis_t codenum = 0;
  1510. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1511. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1512. st_synchronize();
  1513. refresh_cmd_timeout();
  1514. codenum += previous_cmd_ms; // keep track of when we started waiting
  1515. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1516. while (millis() < codenum) {
  1517. manage_heater();
  1518. manage_inactivity();
  1519. lcd_update();
  1520. }
  1521. }
  1522. #ifdef FWRETRACT
  1523. /**
  1524. * G10 - Retract filament according to settings of M207
  1525. * G11 - Recover filament according to settings of M208
  1526. */
  1527. inline void gcode_G10_G11(bool doRetract=false) {
  1528. #if EXTRUDERS > 1
  1529. if (doRetract) {
  1530. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1531. }
  1532. #endif
  1533. retract(doRetract
  1534. #if EXTRUDERS > 1
  1535. , retracted_swap[active_extruder]
  1536. #endif
  1537. );
  1538. }
  1539. #endif //FWRETRACT
  1540. /**
  1541. * G28: Home all axes according to settings
  1542. *
  1543. * Parameters
  1544. *
  1545. * None Home to all axes with no parameters.
  1546. * With QUICK_HOME enabled XY will home together, then Z.
  1547. *
  1548. * Cartesian parameters
  1549. *
  1550. * X Home to the X endstop
  1551. * Y Home to the Y endstop
  1552. * Z Home to the Z endstop
  1553. *
  1554. */
  1555. inline void gcode_G28() {
  1556. // Wait for planner moves to finish!
  1557. st_synchronize();
  1558. // For auto bed leveling, clear the level matrix
  1559. #ifdef ENABLE_AUTO_BED_LEVELING
  1560. plan_bed_level_matrix.set_to_identity();
  1561. #ifdef DELTA
  1562. reset_bed_level();
  1563. #endif
  1564. #endif
  1565. // For manual bed leveling deactivate the matrix temporarily
  1566. #ifdef MESH_BED_LEVELING
  1567. uint8_t mbl_was_active = mbl.active;
  1568. mbl.active = 0;
  1569. #endif
  1570. setup_for_endstop_move();
  1571. set_destination_to_current();
  1572. feedrate = 0.0;
  1573. #ifdef DELTA
  1574. // A delta can only safely home all axis at the same time
  1575. // all axis have to home at the same time
  1576. // Pretend the current position is 0,0,0
  1577. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1578. sync_plan_position();
  1579. // Move all carriages up together until the first endstop is hit.
  1580. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1581. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1582. line_to_destination();
  1583. st_synchronize();
  1584. endstops_hit_on_purpose(); // clear endstop hit flags
  1585. // Destination reached
  1586. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1587. // take care of back off and rehome now we are all at the top
  1588. HOMEAXIS(X);
  1589. HOMEAXIS(Y);
  1590. HOMEAXIS(Z);
  1591. sync_plan_position_delta();
  1592. #else // NOT DELTA
  1593. bool homeX = code_seen(axis_codes[X_AXIS]),
  1594. homeY = code_seen(axis_codes[Y_AXIS]),
  1595. homeZ = code_seen(axis_codes[Z_AXIS]);
  1596. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1597. if (home_all_axis || homeZ) {
  1598. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1599. HOMEAXIS(Z);
  1600. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1601. // Raise Z before homing any other axes
  1602. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1603. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1604. feedrate = max_feedrate[Z_AXIS] * 60;
  1605. line_to_destination();
  1606. st_synchronize();
  1607. #endif
  1608. } // home_all_axis || homeZ
  1609. #ifdef QUICK_HOME
  1610. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1611. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1612. #ifdef DUAL_X_CARRIAGE
  1613. int x_axis_home_dir = x_home_dir(active_extruder);
  1614. extruder_duplication_enabled = false;
  1615. #else
  1616. int x_axis_home_dir = home_dir(X_AXIS);
  1617. #endif
  1618. sync_plan_position();
  1619. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1620. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1621. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1622. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1623. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1624. line_to_destination();
  1625. st_synchronize();
  1626. axis_is_at_home(X_AXIS);
  1627. axis_is_at_home(Y_AXIS);
  1628. sync_plan_position();
  1629. destination[X_AXIS] = current_position[X_AXIS];
  1630. destination[Y_AXIS] = current_position[Y_AXIS];
  1631. line_to_destination();
  1632. feedrate = 0.0;
  1633. st_synchronize();
  1634. endstops_hit_on_purpose(); // clear endstop hit flags
  1635. current_position[X_AXIS] = destination[X_AXIS];
  1636. current_position[Y_AXIS] = destination[Y_AXIS];
  1637. #ifndef SCARA
  1638. current_position[Z_AXIS] = destination[Z_AXIS];
  1639. #endif
  1640. }
  1641. #endif // QUICK_HOME
  1642. #ifdef HOME_Y_BEFORE_X
  1643. // Home Y
  1644. if (home_all_axis || homeY) HOMEAXIS(Y);
  1645. #endif
  1646. // Home X
  1647. if (home_all_axis || homeX) {
  1648. #ifdef DUAL_X_CARRIAGE
  1649. int tmp_extruder = active_extruder;
  1650. extruder_duplication_enabled = false;
  1651. active_extruder = !active_extruder;
  1652. HOMEAXIS(X);
  1653. inactive_extruder_x_pos = current_position[X_AXIS];
  1654. active_extruder = tmp_extruder;
  1655. HOMEAXIS(X);
  1656. // reset state used by the different modes
  1657. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1658. delayed_move_time = 0;
  1659. active_extruder_parked = true;
  1660. #else
  1661. HOMEAXIS(X);
  1662. #endif
  1663. }
  1664. #ifndef HOME_Y_BEFORE_X
  1665. // Home Y
  1666. if (home_all_axis || homeY) HOMEAXIS(Y);
  1667. #endif
  1668. // Home Z last if homing towards the bed
  1669. #if Z_HOME_DIR < 0
  1670. if (home_all_axis || homeZ) {
  1671. #ifdef Z_SAFE_HOMING
  1672. if (home_all_axis) {
  1673. current_position[Z_AXIS] = 0;
  1674. sync_plan_position();
  1675. //
  1676. // Set the probe (or just the nozzle) destination to the safe homing point
  1677. //
  1678. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1679. // then this may not work as expected.
  1680. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1681. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1682. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1683. feedrate = XY_TRAVEL_SPEED;
  1684. // This could potentially move X, Y, Z all together
  1685. line_to_destination();
  1686. st_synchronize();
  1687. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1688. current_position[X_AXIS] = destination[X_AXIS];
  1689. current_position[Y_AXIS] = destination[Y_AXIS];
  1690. // Home the Z axis
  1691. HOMEAXIS(Z);
  1692. }
  1693. else if (homeZ) { // Don't need to Home Z twice
  1694. // Let's see if X and Y are homed
  1695. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1696. // Make sure the probe is within the physical limits
  1697. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1698. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1699. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1700. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1701. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1702. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1703. // Set the plan current position to X, Y, 0
  1704. current_position[Z_AXIS] = 0;
  1705. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1706. // Set Z destination away from bed and raise the axis
  1707. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1708. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1709. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1710. line_to_destination();
  1711. st_synchronize();
  1712. // Home the Z axis
  1713. HOMEAXIS(Z);
  1714. }
  1715. else {
  1716. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1717. SERIAL_ECHO_START;
  1718. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1719. }
  1720. }
  1721. else {
  1722. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1723. SERIAL_ECHO_START;
  1724. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1725. }
  1726. } // !home_all_axes && homeZ
  1727. #else // !Z_SAFE_HOMING
  1728. HOMEAXIS(Z);
  1729. #endif // !Z_SAFE_HOMING
  1730. } // home_all_axis || homeZ
  1731. #endif // Z_HOME_DIR < 0
  1732. sync_plan_position();
  1733. #endif // else DELTA
  1734. #ifdef SCARA
  1735. sync_plan_position_delta();
  1736. #endif
  1737. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1738. enable_endstops(false);
  1739. #endif
  1740. // For manual leveling move back to 0,0
  1741. #ifdef MESH_BED_LEVELING
  1742. if (mbl_was_active) {
  1743. current_position[X_AXIS] = mbl.get_x(0);
  1744. current_position[Y_AXIS] = mbl.get_y(0);
  1745. set_destination_to_current();
  1746. feedrate = homing_feedrate[X_AXIS];
  1747. line_to_destination();
  1748. st_synchronize();
  1749. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1750. sync_plan_position();
  1751. mbl.active = 1;
  1752. }
  1753. #endif
  1754. feedrate = saved_feedrate;
  1755. feedrate_multiplier = saved_feedrate_multiplier;
  1756. refresh_cmd_timeout();
  1757. endstops_hit_on_purpose(); // clear endstop hit flags
  1758. }
  1759. #ifdef MESH_BED_LEVELING
  1760. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1761. /**
  1762. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1763. * mesh to compensate for variable bed height
  1764. *
  1765. * Parameters With MESH_BED_LEVELING:
  1766. *
  1767. * S0 Produce a mesh report
  1768. * S1 Start probing mesh points
  1769. * S2 Probe the next mesh point
  1770. * S3 Xn Yn Zn.nn Manually modify a single point
  1771. *
  1772. * The S0 report the points as below
  1773. *
  1774. * +----> X-axis
  1775. * |
  1776. * |
  1777. * v Y-axis
  1778. *
  1779. */
  1780. inline void gcode_G29() {
  1781. static int probe_point = -1;
  1782. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1783. if (state < 0 || state > 3) {
  1784. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1785. return;
  1786. }
  1787. int ix, iy;
  1788. float z;
  1789. switch(state) {
  1790. case MeshReport:
  1791. if (mbl.active) {
  1792. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1793. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1794. SERIAL_PROTOCOLCHAR(',');
  1795. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1796. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1797. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1798. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1799. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1800. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1801. SERIAL_PROTOCOLPGM(" ");
  1802. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1803. }
  1804. SERIAL_EOL;
  1805. }
  1806. }
  1807. else
  1808. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1809. break;
  1810. case MeshStart:
  1811. mbl.reset();
  1812. probe_point = 0;
  1813. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1814. break;
  1815. case MeshNext:
  1816. if (probe_point < 0) {
  1817. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1818. return;
  1819. }
  1820. if (probe_point == 0) {
  1821. // Set Z to a positive value before recording the first Z.
  1822. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1823. sync_plan_position();
  1824. }
  1825. else {
  1826. // For others, save the Z of the previous point, then raise Z again.
  1827. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1828. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1829. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1830. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1831. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1833. st_synchronize();
  1834. }
  1835. // Is there another point to sample? Move there.
  1836. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1837. ix = probe_point % MESH_NUM_X_POINTS;
  1838. iy = probe_point / MESH_NUM_X_POINTS;
  1839. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1840. current_position[X_AXIS] = mbl.get_x(ix);
  1841. current_position[Y_AXIS] = mbl.get_y(iy);
  1842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1843. st_synchronize();
  1844. probe_point++;
  1845. }
  1846. else {
  1847. // After recording the last point, activate the mbl and home
  1848. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1849. probe_point = -1;
  1850. mbl.active = 1;
  1851. enqueuecommands_P(PSTR("G28"));
  1852. }
  1853. break;
  1854. case MeshSet:
  1855. if (code_seen('X') || code_seen('x')) {
  1856. ix = code_value_long()-1;
  1857. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1858. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1859. return;
  1860. }
  1861. } else {
  1862. SERIAL_PROTOCOLPGM("X not entered.\n");
  1863. return;
  1864. }
  1865. if (code_seen('Y') || code_seen('y')) {
  1866. iy = code_value_long()-1;
  1867. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1868. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1869. return;
  1870. }
  1871. } else {
  1872. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1873. return;
  1874. }
  1875. if (code_seen('Z') || code_seen('z')) {
  1876. z = code_value();
  1877. } else {
  1878. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1879. return;
  1880. }
  1881. mbl.z_values[iy][ix] = z;
  1882. } // switch(state)
  1883. }
  1884. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1885. /**
  1886. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1887. * Will fail if the printer has not been homed with G28.
  1888. *
  1889. * Enhanced G29 Auto Bed Leveling Probe Routine
  1890. *
  1891. * Parameters With AUTO_BED_LEVELING_GRID:
  1892. *
  1893. * P Set the size of the grid that will be probed (P x P points).
  1894. * Not supported by non-linear delta printer bed leveling.
  1895. * Example: "G29 P4"
  1896. *
  1897. * S Set the XY travel speed between probe points (in mm/min)
  1898. *
  1899. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1900. * or clean the rotation Matrix. Useful to check the topology
  1901. * after a first run of G29.
  1902. *
  1903. * V Set the verbose level (0-4). Example: "G29 V3"
  1904. *
  1905. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1906. * This is useful for manual bed leveling and finding flaws in the bed (to
  1907. * assist with part placement).
  1908. * Not supported by non-linear delta printer bed leveling.
  1909. *
  1910. * F Set the Front limit of the probing grid
  1911. * B Set the Back limit of the probing grid
  1912. * L Set the Left limit of the probing grid
  1913. * R Set the Right limit of the probing grid
  1914. *
  1915. * Global Parameters:
  1916. *
  1917. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1918. * Include "E" to engage/disengage the probe for each sample.
  1919. * There's no extra effect if you have a fixed probe.
  1920. * Usage: "G29 E" or "G29 e"
  1921. *
  1922. */
  1923. inline void gcode_G29() {
  1924. // Don't allow auto-leveling without homing first
  1925. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1926. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1927. SERIAL_ECHO_START;
  1928. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1929. return;
  1930. }
  1931. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1932. if (verbose_level < 0 || verbose_level > 4) {
  1933. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1934. return;
  1935. }
  1936. bool dryrun = code_seen('D') || code_seen('d'),
  1937. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1938. #ifdef AUTO_BED_LEVELING_GRID
  1939. #ifndef DELTA
  1940. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1941. #endif
  1942. if (verbose_level > 0) {
  1943. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1944. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1945. }
  1946. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1947. #ifndef DELTA
  1948. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1949. if (auto_bed_leveling_grid_points < 2) {
  1950. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1951. return;
  1952. }
  1953. #endif
  1954. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1955. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1956. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1957. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1958. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1959. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1960. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1961. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1962. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1963. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1964. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1965. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1966. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1967. if (left_out || right_out || front_out || back_out) {
  1968. if (left_out) {
  1969. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1970. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1971. }
  1972. if (right_out) {
  1973. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1974. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1975. }
  1976. if (front_out) {
  1977. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1978. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1979. }
  1980. if (back_out) {
  1981. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1982. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1983. }
  1984. return;
  1985. }
  1986. #endif // AUTO_BED_LEVELING_GRID
  1987. #ifdef Z_PROBE_SLED
  1988. dock_sled(false); // engage (un-dock) the probe
  1989. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1990. deploy_z_probe();
  1991. #endif
  1992. st_synchronize();
  1993. if (!dryrun) {
  1994. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1995. plan_bed_level_matrix.set_to_identity();
  1996. #ifdef DELTA
  1997. reset_bed_level();
  1998. #else //!DELTA
  1999. //vector_3 corrected_position = plan_get_position_mm();
  2000. //corrected_position.debug("position before G29");
  2001. vector_3 uncorrected_position = plan_get_position();
  2002. //uncorrected_position.debug("position during G29");
  2003. current_position[X_AXIS] = uncorrected_position.x;
  2004. current_position[Y_AXIS] = uncorrected_position.y;
  2005. current_position[Z_AXIS] = uncorrected_position.z;
  2006. sync_plan_position();
  2007. #endif // !DELTA
  2008. }
  2009. setup_for_endstop_move();
  2010. feedrate = homing_feedrate[Z_AXIS];
  2011. #ifdef AUTO_BED_LEVELING_GRID
  2012. // probe at the points of a lattice grid
  2013. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2014. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2015. #ifdef DELTA
  2016. delta_grid_spacing[0] = xGridSpacing;
  2017. delta_grid_spacing[1] = yGridSpacing;
  2018. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2019. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2020. #else // !DELTA
  2021. // solve the plane equation ax + by + d = z
  2022. // A is the matrix with rows [x y 1] for all the probed points
  2023. // B is the vector of the Z positions
  2024. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2025. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2026. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2027. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2028. eqnBVector[abl2], // "B" vector of Z points
  2029. mean = 0.0;
  2030. #endif // !DELTA
  2031. int probePointCounter = 0;
  2032. bool zig = true;
  2033. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2034. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2035. int xStart, xStop, xInc;
  2036. if (zig) {
  2037. xStart = 0;
  2038. xStop = auto_bed_leveling_grid_points;
  2039. xInc = 1;
  2040. }
  2041. else {
  2042. xStart = auto_bed_leveling_grid_points - 1;
  2043. xStop = -1;
  2044. xInc = -1;
  2045. }
  2046. #ifndef DELTA
  2047. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2048. // This gets the probe points in more readable order.
  2049. if (!do_topography_map) zig = !zig;
  2050. #endif
  2051. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2052. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2053. // raise extruder
  2054. float measured_z,
  2055. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2056. #ifdef DELTA
  2057. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2058. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2059. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2060. #endif //DELTA
  2061. ProbeAction act;
  2062. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2063. act = ProbeDeployAndStow;
  2064. else if (yCount == 0 && xCount == xStart)
  2065. act = ProbeDeploy;
  2066. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2067. act = ProbeStow;
  2068. else
  2069. act = ProbeStay;
  2070. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2071. #ifndef DELTA
  2072. mean += measured_z;
  2073. eqnBVector[probePointCounter] = measured_z;
  2074. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2075. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2076. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2077. #else
  2078. bed_level[xCount][yCount] = measured_z + z_offset;
  2079. #endif
  2080. probePointCounter++;
  2081. manage_heater();
  2082. manage_inactivity();
  2083. lcd_update();
  2084. } //xProbe
  2085. } //yProbe
  2086. clean_up_after_endstop_move();
  2087. #ifdef DELTA
  2088. if (!dryrun) extrapolate_unprobed_bed_level();
  2089. print_bed_level();
  2090. #else // !DELTA
  2091. // solve lsq problem
  2092. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2093. mean /= abl2;
  2094. if (verbose_level) {
  2095. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2096. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2097. SERIAL_PROTOCOLPGM(" b: ");
  2098. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2099. SERIAL_PROTOCOLPGM(" d: ");
  2100. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2101. SERIAL_EOL;
  2102. if (verbose_level > 2) {
  2103. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2104. SERIAL_PROTOCOL_F(mean, 8);
  2105. SERIAL_EOL;
  2106. }
  2107. }
  2108. // Show the Topography map if enabled
  2109. if (do_topography_map) {
  2110. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2111. SERIAL_PROTOCOLPGM("+-----------+\n");
  2112. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2113. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2114. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2115. SERIAL_PROTOCOLPGM("+-----------+\n");
  2116. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2117. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2118. int ind = yy * auto_bed_leveling_grid_points + xx;
  2119. float diff = eqnBVector[ind] - mean;
  2120. if (diff >= 0.0)
  2121. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2122. else
  2123. SERIAL_PROTOCOLCHAR(' ');
  2124. SERIAL_PROTOCOL_F(diff, 5);
  2125. } // xx
  2126. SERIAL_EOL;
  2127. } // yy
  2128. SERIAL_EOL;
  2129. } //do_topography_map
  2130. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2131. free(plane_equation_coefficients);
  2132. #endif //!DELTA
  2133. #else // !AUTO_BED_LEVELING_GRID
  2134. // Actions for each probe
  2135. ProbeAction p1, p2, p3;
  2136. if (deploy_probe_for_each_reading)
  2137. p1 = p2 = p3 = ProbeDeployAndStow;
  2138. else
  2139. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2140. // Probe at 3 arbitrary points
  2141. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2142. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2143. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2144. clean_up_after_endstop_move();
  2145. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2146. #endif // !AUTO_BED_LEVELING_GRID
  2147. #ifndef DELTA
  2148. if (verbose_level > 0)
  2149. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2150. if (!dryrun) {
  2151. // Correct the Z height difference from z-probe position and hotend tip position.
  2152. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2153. // When the bed is uneven, this height must be corrected.
  2154. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2155. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2156. z_tmp = current_position[Z_AXIS],
  2157. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2158. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2159. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2160. sync_plan_position();
  2161. }
  2162. #endif // !DELTA
  2163. #ifdef Z_PROBE_SLED
  2164. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2165. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2166. stow_z_probe();
  2167. #endif
  2168. #ifdef Z_PROBE_END_SCRIPT
  2169. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2170. st_synchronize();
  2171. #endif
  2172. }
  2173. #ifndef Z_PROBE_SLED
  2174. inline void gcode_G30() {
  2175. deploy_z_probe(); // Engage Z Servo endstop if available
  2176. st_synchronize();
  2177. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2178. setup_for_endstop_move();
  2179. feedrate = homing_feedrate[Z_AXIS];
  2180. run_z_probe();
  2181. SERIAL_PROTOCOLPGM("Bed");
  2182. SERIAL_PROTOCOLPGM(" X: ");
  2183. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2184. SERIAL_PROTOCOLPGM(" Y: ");
  2185. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2186. SERIAL_PROTOCOLPGM(" Z: ");
  2187. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2188. SERIAL_EOL;
  2189. clean_up_after_endstop_move();
  2190. stow_z_probe(); // Retract Z Servo endstop if available
  2191. }
  2192. #endif //!Z_PROBE_SLED
  2193. #endif //ENABLE_AUTO_BED_LEVELING
  2194. /**
  2195. * G92: Set current position to given X Y Z E
  2196. */
  2197. inline void gcode_G92() {
  2198. if (!code_seen(axis_codes[E_AXIS]))
  2199. st_synchronize();
  2200. bool didXYZ = false;
  2201. for (int i = 0; i < NUM_AXIS; i++) {
  2202. if (code_seen(axis_codes[i])) {
  2203. float v = current_position[i] = code_value();
  2204. if (i == E_AXIS)
  2205. plan_set_e_position(v);
  2206. else
  2207. didXYZ = true;
  2208. }
  2209. }
  2210. if (didXYZ) sync_plan_position();
  2211. }
  2212. #ifdef ULTIPANEL
  2213. /**
  2214. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2215. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2216. */
  2217. inline void gcode_M0_M1() {
  2218. char *src = strchr_pointer + 2;
  2219. millis_t codenum = 0;
  2220. bool hasP = false, hasS = false;
  2221. if (code_seen('P')) {
  2222. codenum = code_value_short(); // milliseconds to wait
  2223. hasP = codenum > 0;
  2224. }
  2225. if (code_seen('S')) {
  2226. codenum = code_value_short() * 1000UL; // seconds to wait
  2227. hasS = codenum > 0;
  2228. }
  2229. char* starpos = strchr(src, '*');
  2230. if (starpos != NULL) *(starpos) = '\0';
  2231. while (*src == ' ') ++src;
  2232. if (!hasP && !hasS && *src != '\0')
  2233. lcd_setstatus(src, true);
  2234. else {
  2235. LCD_MESSAGEPGM(MSG_USERWAIT);
  2236. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2237. dontExpireStatus();
  2238. #endif
  2239. }
  2240. lcd_ignore_click();
  2241. st_synchronize();
  2242. refresh_cmd_timeout();
  2243. if (codenum > 0) {
  2244. codenum += previous_cmd_ms; // keep track of when we started waiting
  2245. while(millis() < codenum && !lcd_clicked()) {
  2246. manage_heater();
  2247. manage_inactivity();
  2248. lcd_update();
  2249. }
  2250. lcd_ignore_click(false);
  2251. }
  2252. else {
  2253. if (!lcd_detected()) return;
  2254. while (!lcd_clicked()) {
  2255. manage_heater();
  2256. manage_inactivity();
  2257. lcd_update();
  2258. }
  2259. }
  2260. if (IS_SD_PRINTING)
  2261. LCD_MESSAGEPGM(MSG_RESUMING);
  2262. else
  2263. LCD_MESSAGEPGM(WELCOME_MSG);
  2264. }
  2265. #endif // ULTIPANEL
  2266. /**
  2267. * M17: Enable power on all stepper motors
  2268. */
  2269. inline void gcode_M17() {
  2270. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2271. enable_all_steppers();
  2272. }
  2273. #ifdef SDSUPPORT
  2274. /**
  2275. * M20: List SD card to serial output
  2276. */
  2277. inline void gcode_M20() {
  2278. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2279. card.ls();
  2280. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2281. }
  2282. /**
  2283. * M21: Init SD Card
  2284. */
  2285. inline void gcode_M21() {
  2286. card.initsd();
  2287. }
  2288. /**
  2289. * M22: Release SD Card
  2290. */
  2291. inline void gcode_M22() {
  2292. card.release();
  2293. }
  2294. /**
  2295. * M23: Select a file
  2296. */
  2297. inline void gcode_M23() {
  2298. char* codepos = strchr_pointer + 4;
  2299. char* starpos = strchr(codepos, '*');
  2300. if (starpos) *starpos = '\0';
  2301. card.openFile(codepos, true);
  2302. }
  2303. /**
  2304. * M24: Start SD Print
  2305. */
  2306. inline void gcode_M24() {
  2307. card.startFileprint();
  2308. print_job_start_ms = millis();
  2309. }
  2310. /**
  2311. * M25: Pause SD Print
  2312. */
  2313. inline void gcode_M25() {
  2314. card.pauseSDPrint();
  2315. }
  2316. /**
  2317. * M26: Set SD Card file index
  2318. */
  2319. inline void gcode_M26() {
  2320. if (card.cardOK && code_seen('S'))
  2321. card.setIndex(code_value_short());
  2322. }
  2323. /**
  2324. * M27: Get SD Card status
  2325. */
  2326. inline void gcode_M27() {
  2327. card.getStatus();
  2328. }
  2329. /**
  2330. * M28: Start SD Write
  2331. */
  2332. inline void gcode_M28() {
  2333. char* codepos = strchr_pointer + 4;
  2334. char* starpos = strchr(codepos, '*');
  2335. if (starpos) {
  2336. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2337. strchr_pointer = strchr(npos, ' ') + 1;
  2338. *(starpos) = '\0';
  2339. }
  2340. card.openFile(codepos, false);
  2341. }
  2342. /**
  2343. * M29: Stop SD Write
  2344. * Processed in write to file routine above
  2345. */
  2346. inline void gcode_M29() {
  2347. // card.saving = false;
  2348. }
  2349. /**
  2350. * M30 <filename>: Delete SD Card file
  2351. */
  2352. inline void gcode_M30() {
  2353. if (card.cardOK) {
  2354. card.closefile();
  2355. char* starpos = strchr(strchr_pointer + 4, '*');
  2356. if (starpos) {
  2357. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2358. strchr_pointer = strchr(npos, ' ') + 1;
  2359. *(starpos) = '\0';
  2360. }
  2361. card.removeFile(strchr_pointer + 4);
  2362. }
  2363. }
  2364. #endif
  2365. /**
  2366. * M31: Get the time since the start of SD Print (or last M109)
  2367. */
  2368. inline void gcode_M31() {
  2369. print_job_stop_ms = millis();
  2370. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2371. int min = t / 60, sec = t % 60;
  2372. char time[30];
  2373. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2374. SERIAL_ECHO_START;
  2375. SERIAL_ECHOLN(time);
  2376. lcd_setstatus(time);
  2377. autotempShutdown();
  2378. }
  2379. #ifdef SDSUPPORT
  2380. /**
  2381. * M32: Select file and start SD Print
  2382. */
  2383. inline void gcode_M32() {
  2384. if (card.sdprinting)
  2385. st_synchronize();
  2386. char* codepos = strchr_pointer + 4;
  2387. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2388. if (! namestartpos)
  2389. namestartpos = codepos; //default name position, 4 letters after the M
  2390. else
  2391. namestartpos++; //to skip the '!'
  2392. char* starpos = strchr(codepos, '*');
  2393. if (starpos) *(starpos) = '\0';
  2394. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2395. if (card.cardOK) {
  2396. card.openFile(namestartpos, true, !call_procedure);
  2397. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2398. card.setIndex(code_value_short());
  2399. card.startFileprint();
  2400. if (!call_procedure)
  2401. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2402. }
  2403. }
  2404. /**
  2405. * M928: Start SD Write
  2406. */
  2407. inline void gcode_M928() {
  2408. char* starpos = strchr(strchr_pointer + 5, '*');
  2409. if (starpos) {
  2410. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2411. strchr_pointer = strchr(npos, ' ') + 1;
  2412. *(starpos) = '\0';
  2413. }
  2414. card.openLogFile(strchr_pointer + 5);
  2415. }
  2416. #endif // SDSUPPORT
  2417. /**
  2418. * M42: Change pin status via GCode
  2419. */
  2420. inline void gcode_M42() {
  2421. if (code_seen('S')) {
  2422. int pin_status = code_value_short(),
  2423. pin_number = LED_PIN;
  2424. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2425. pin_number = code_value_short();
  2426. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2427. if (sensitive_pins[i] == pin_number) {
  2428. pin_number = -1;
  2429. break;
  2430. }
  2431. }
  2432. #if HAS_FAN
  2433. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2434. #endif
  2435. if (pin_number > -1) {
  2436. pinMode(pin_number, OUTPUT);
  2437. digitalWrite(pin_number, pin_status);
  2438. analogWrite(pin_number, pin_status);
  2439. }
  2440. } // code_seen('S')
  2441. }
  2442. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2443. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2444. #ifdef Z_PROBE_ENDSTOP
  2445. #if !HAS_Z_PROBE
  2446. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2447. #endif
  2448. #elif !HAS_Z_MIN
  2449. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2450. #endif
  2451. /**
  2452. * M48: Z-Probe repeatability measurement function.
  2453. *
  2454. * Usage:
  2455. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2456. * P = Number of sampled points (4-50, default 10)
  2457. * X = Sample X position
  2458. * Y = Sample Y position
  2459. * V = Verbose level (0-4, default=1)
  2460. * E = Engage probe for each reading
  2461. * L = Number of legs of movement before probe
  2462. *
  2463. * This function assumes the bed has been homed. Specifically, that a G28 command
  2464. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2465. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2466. * regenerated.
  2467. */
  2468. inline void gcode_M48() {
  2469. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2470. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2471. if (code_seen('V') || code_seen('v')) {
  2472. verbose_level = code_value_short();
  2473. if (verbose_level < 0 || verbose_level > 4 ) {
  2474. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2475. return;
  2476. }
  2477. }
  2478. if (verbose_level > 0)
  2479. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2480. if (code_seen('P') || code_seen('p')) {
  2481. n_samples = code_value_short();
  2482. if (n_samples < 4 || n_samples > 50) {
  2483. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2484. return;
  2485. }
  2486. }
  2487. double X_current = st_get_position_mm(X_AXIS),
  2488. Y_current = st_get_position_mm(Y_AXIS),
  2489. Z_current = st_get_position_mm(Z_AXIS),
  2490. E_current = st_get_position_mm(E_AXIS),
  2491. X_probe_location = X_current, Y_probe_location = Y_current,
  2492. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2493. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2494. if (code_seen('X') || code_seen('x')) {
  2495. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2496. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2497. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2498. return;
  2499. }
  2500. }
  2501. if (code_seen('Y') || code_seen('y')) {
  2502. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2503. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2504. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2505. return;
  2506. }
  2507. }
  2508. if (code_seen('L') || code_seen('l')) {
  2509. n_legs = code_value_short();
  2510. if (n_legs == 1) n_legs = 2;
  2511. if (n_legs < 0 || n_legs > 15) {
  2512. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2513. return;
  2514. }
  2515. }
  2516. //
  2517. // Do all the preliminary setup work. First raise the probe.
  2518. //
  2519. st_synchronize();
  2520. plan_bed_level_matrix.set_to_identity();
  2521. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2522. st_synchronize();
  2523. //
  2524. // Now get everything to the specified probe point So we can safely do a probe to
  2525. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2526. // use that as a starting point for each probe.
  2527. //
  2528. if (verbose_level > 2)
  2529. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2530. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2531. E_current,
  2532. homing_feedrate[X_AXIS]/60,
  2533. active_extruder);
  2534. st_synchronize();
  2535. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2536. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2537. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2538. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2539. //
  2540. // OK, do the initial probe to get us close to the bed.
  2541. // Then retrace the right amount and use that in subsequent probes
  2542. //
  2543. deploy_z_probe();
  2544. setup_for_endstop_move();
  2545. run_z_probe();
  2546. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2547. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2548. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2549. E_current,
  2550. homing_feedrate[X_AXIS]/60,
  2551. active_extruder);
  2552. st_synchronize();
  2553. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2554. if (deploy_probe_for_each_reading) stow_z_probe();
  2555. for (uint8_t n=0; n < n_samples; n++) {
  2556. // Make sure we are at the probe location
  2557. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2558. if (n_legs) {
  2559. millis_t ms = millis();
  2560. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2561. theta = RADIANS(ms % 360L);
  2562. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2563. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2564. //SERIAL_ECHOPAIR(" theta: ",theta);
  2565. //SERIAL_ECHOPAIR(" direction: ",dir);
  2566. //SERIAL_EOL;
  2567. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2568. ms = millis();
  2569. theta += RADIANS(dir * (ms % 20L));
  2570. radius += (ms % 10L) - 5L;
  2571. if (radius < 0.0) radius = -radius;
  2572. X_current = X_probe_location + cos(theta) * radius;
  2573. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2574. Y_current = Y_probe_location + sin(theta) * radius;
  2575. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2576. if (verbose_level > 3) {
  2577. SERIAL_ECHOPAIR("x: ", X_current);
  2578. SERIAL_ECHOPAIR("y: ", Y_current);
  2579. SERIAL_EOL;
  2580. }
  2581. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2582. } // n_legs loop
  2583. // Go back to the probe location
  2584. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2585. } // n_legs
  2586. if (deploy_probe_for_each_reading) {
  2587. deploy_z_probe();
  2588. delay(1000);
  2589. }
  2590. setup_for_endstop_move();
  2591. run_z_probe();
  2592. sample_set[n] = current_position[Z_AXIS];
  2593. //
  2594. // Get the current mean for the data points we have so far
  2595. //
  2596. sum = 0.0;
  2597. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2598. mean = sum / (n + 1);
  2599. //
  2600. // Now, use that mean to calculate the standard deviation for the
  2601. // data points we have so far
  2602. //
  2603. sum = 0.0;
  2604. for (uint8_t j = 0; j <= n; j++) {
  2605. float ss = sample_set[j] - mean;
  2606. sum += ss * ss;
  2607. }
  2608. sigma = sqrt(sum / (n + 1));
  2609. if (verbose_level > 1) {
  2610. SERIAL_PROTOCOL(n+1);
  2611. SERIAL_PROTOCOLPGM(" of ");
  2612. SERIAL_PROTOCOL(n_samples);
  2613. SERIAL_PROTOCOLPGM(" z: ");
  2614. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2615. if (verbose_level > 2) {
  2616. SERIAL_PROTOCOLPGM(" mean: ");
  2617. SERIAL_PROTOCOL_F(mean,6);
  2618. SERIAL_PROTOCOLPGM(" sigma: ");
  2619. SERIAL_PROTOCOL_F(sigma,6);
  2620. }
  2621. }
  2622. if (verbose_level > 0) SERIAL_EOL;
  2623. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2624. st_synchronize();
  2625. // Stow between
  2626. if (deploy_probe_for_each_reading) {
  2627. stow_z_probe();
  2628. delay(1000);
  2629. }
  2630. }
  2631. // Stow after
  2632. if (!deploy_probe_for_each_reading) {
  2633. stow_z_probe();
  2634. delay(1000);
  2635. }
  2636. clean_up_after_endstop_move();
  2637. if (verbose_level > 0) {
  2638. SERIAL_PROTOCOLPGM("Mean: ");
  2639. SERIAL_PROTOCOL_F(mean, 6);
  2640. SERIAL_EOL;
  2641. }
  2642. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2643. SERIAL_PROTOCOL_F(sigma, 6);
  2644. SERIAL_EOL; SERIAL_EOL;
  2645. }
  2646. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2647. /**
  2648. * M104: Set hot end temperature
  2649. */
  2650. inline void gcode_M104() {
  2651. if (setTargetedHotend(104)) return;
  2652. if (code_seen('S')) {
  2653. float temp = code_value();
  2654. setTargetHotend(temp, target_extruder);
  2655. #ifdef DUAL_X_CARRIAGE
  2656. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2657. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2658. #endif
  2659. #ifdef WATCH_TEMP_PERIOD
  2660. start_watching_heater(target_extruder);
  2661. #endif
  2662. }
  2663. }
  2664. /**
  2665. * M105: Read hot end and bed temperature
  2666. */
  2667. inline void gcode_M105() {
  2668. if (setTargetedHotend(105)) return;
  2669. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2670. SERIAL_PROTOCOLPGM("ok");
  2671. #if HAS_TEMP_0
  2672. SERIAL_PROTOCOLPGM(" T:");
  2673. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2674. SERIAL_PROTOCOLPGM(" /");
  2675. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2676. #endif
  2677. #if HAS_TEMP_BED
  2678. SERIAL_PROTOCOLPGM(" B:");
  2679. SERIAL_PROTOCOL_F(degBed(), 1);
  2680. SERIAL_PROTOCOLPGM(" /");
  2681. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2682. #endif
  2683. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2684. SERIAL_PROTOCOLPGM(" T");
  2685. SERIAL_PROTOCOL(e);
  2686. SERIAL_PROTOCOLCHAR(':');
  2687. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2688. SERIAL_PROTOCOLPGM(" /");
  2689. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2690. }
  2691. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2692. SERIAL_ERROR_START;
  2693. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2694. #endif
  2695. SERIAL_PROTOCOLPGM(" @:");
  2696. #ifdef EXTRUDER_WATTS
  2697. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2698. SERIAL_PROTOCOLCHAR('W');
  2699. #else
  2700. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2701. #endif
  2702. SERIAL_PROTOCOLPGM(" B@:");
  2703. #ifdef BED_WATTS
  2704. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2705. SERIAL_PROTOCOLCHAR('W');
  2706. #else
  2707. SERIAL_PROTOCOL(getHeaterPower(-1));
  2708. #endif
  2709. #ifdef SHOW_TEMP_ADC_VALUES
  2710. #if HAS_TEMP_BED
  2711. SERIAL_PROTOCOLPGM(" ADC B:");
  2712. SERIAL_PROTOCOL_F(degBed(),1);
  2713. SERIAL_PROTOCOLPGM("C->");
  2714. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2715. #endif
  2716. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2717. SERIAL_PROTOCOLPGM(" T");
  2718. SERIAL_PROTOCOL(cur_extruder);
  2719. SERIAL_PROTOCOLCHAR(':');
  2720. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2721. SERIAL_PROTOCOLPGM("C->");
  2722. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2723. }
  2724. #endif
  2725. SERIAL_EOL;
  2726. }
  2727. #if HAS_FAN
  2728. /**
  2729. * M106: Set Fan Speed
  2730. */
  2731. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2732. /**
  2733. * M107: Fan Off
  2734. */
  2735. inline void gcode_M107() { fanSpeed = 0; }
  2736. #endif // HAS_FAN
  2737. /**
  2738. * M109: Wait for extruder(s) to reach temperature
  2739. */
  2740. inline void gcode_M109() {
  2741. if (setTargetedHotend(109)) return;
  2742. LCD_MESSAGEPGM(MSG_HEATING);
  2743. no_wait_for_cooling = code_seen('S');
  2744. if (no_wait_for_cooling || code_seen('R')) {
  2745. float temp = code_value();
  2746. setTargetHotend(temp, target_extruder);
  2747. #ifdef DUAL_X_CARRIAGE
  2748. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2749. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2750. #endif
  2751. }
  2752. #ifdef AUTOTEMP
  2753. autotemp_enabled = code_seen('F');
  2754. if (autotemp_enabled) autotemp_factor = code_value();
  2755. if (code_seen('S')) autotemp_min = code_value();
  2756. if (code_seen('B')) autotemp_max = code_value();
  2757. #endif
  2758. #ifdef WATCH_TEMP_PERIOD
  2759. start_watching_heater(target_extruder);
  2760. #endif
  2761. millis_t temp_ms = millis();
  2762. /* See if we are heating up or cooling down */
  2763. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2764. cancel_heatup = false;
  2765. #ifdef TEMP_RESIDENCY_TIME
  2766. long residency_start_ms = -1;
  2767. /* continue to loop until we have reached the target temp
  2768. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2769. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2770. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2771. #else
  2772. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2773. #endif //TEMP_RESIDENCY_TIME
  2774. { // while loop
  2775. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2776. SERIAL_PROTOCOLPGM("T:");
  2777. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2778. SERIAL_PROTOCOLPGM(" E:");
  2779. SERIAL_PROTOCOL((int)target_extruder);
  2780. #ifdef TEMP_RESIDENCY_TIME
  2781. SERIAL_PROTOCOLPGM(" W:");
  2782. if (residency_start_ms > -1) {
  2783. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2784. SERIAL_PROTOCOLLN(temp_ms);
  2785. }
  2786. else {
  2787. SERIAL_PROTOCOLLNPGM("?");
  2788. }
  2789. #else
  2790. SERIAL_EOL;
  2791. #endif
  2792. temp_ms = millis();
  2793. }
  2794. manage_heater();
  2795. manage_inactivity();
  2796. lcd_update();
  2797. #ifdef TEMP_RESIDENCY_TIME
  2798. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2799. // or when current temp falls outside the hysteresis after target temp was reached
  2800. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2801. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2802. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2803. {
  2804. residency_start_ms = millis();
  2805. }
  2806. #endif //TEMP_RESIDENCY_TIME
  2807. }
  2808. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2809. refresh_cmd_timeout();
  2810. print_job_start_ms = previous_cmd_ms;
  2811. }
  2812. #if HAS_TEMP_BED
  2813. /**
  2814. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2815. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2816. */
  2817. inline void gcode_M190() {
  2818. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2819. no_wait_for_cooling = code_seen('S');
  2820. if (no_wait_for_cooling || code_seen('R'))
  2821. setTargetBed(code_value());
  2822. millis_t temp_ms = millis();
  2823. cancel_heatup = false;
  2824. target_direction = isHeatingBed(); // true if heating, false if cooling
  2825. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2826. millis_t ms = millis();
  2827. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2828. temp_ms = ms;
  2829. float tt = degHotend(active_extruder);
  2830. SERIAL_PROTOCOLPGM("T:");
  2831. SERIAL_PROTOCOL(tt);
  2832. SERIAL_PROTOCOLPGM(" E:");
  2833. SERIAL_PROTOCOL((int)active_extruder);
  2834. SERIAL_PROTOCOLPGM(" B:");
  2835. SERIAL_PROTOCOL_F(degBed(), 1);
  2836. SERIAL_EOL;
  2837. }
  2838. manage_heater();
  2839. manage_inactivity();
  2840. lcd_update();
  2841. }
  2842. LCD_MESSAGEPGM(MSG_BED_DONE);
  2843. refresh_cmd_timeout();
  2844. }
  2845. #endif // HAS_TEMP_BED
  2846. /**
  2847. * M111: Set the debug level
  2848. */
  2849. inline void gcode_M111() {
  2850. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2851. }
  2852. /**
  2853. * M112: Emergency Stop
  2854. */
  2855. inline void gcode_M112() { kill(); }
  2856. #ifdef BARICUDA
  2857. #if HAS_HEATER_1
  2858. /**
  2859. * M126: Heater 1 valve open
  2860. */
  2861. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2862. /**
  2863. * M127: Heater 1 valve close
  2864. */
  2865. inline void gcode_M127() { ValvePressure = 0; }
  2866. #endif
  2867. #if HAS_HEATER_2
  2868. /**
  2869. * M128: Heater 2 valve open
  2870. */
  2871. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2872. /**
  2873. * M129: Heater 2 valve close
  2874. */
  2875. inline void gcode_M129() { EtoPPressure = 0; }
  2876. #endif
  2877. #endif //BARICUDA
  2878. /**
  2879. * M140: Set bed temperature
  2880. */
  2881. inline void gcode_M140() {
  2882. if (code_seen('S')) setTargetBed(code_value());
  2883. }
  2884. #ifdef ULTIPANEL
  2885. /**
  2886. * M145: Set the heatup state for a material in the LCD menu
  2887. * S<material> (0=PLA, 1=ABS)
  2888. * H<hotend temp>
  2889. * B<bed temp>
  2890. * F<fan speed>
  2891. */
  2892. inline void gcode_M145() {
  2893. uint8_t material = code_seen('S') ? code_value_short() : 0;
  2894. if (material < 0 || material > 1) {
  2895. SERIAL_ERROR_START;
  2896. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  2897. }
  2898. else {
  2899. int v;
  2900. switch (material) {
  2901. case 0:
  2902. if (code_seen('H')) {
  2903. v = code_value_short();
  2904. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2905. }
  2906. if (code_seen('F')) {
  2907. v = code_value_short();
  2908. plaPreheatFanSpeed = constrain(v, 0, 255);
  2909. }
  2910. #if TEMP_SENSOR_BED != 0
  2911. if (code_seen('B')) {
  2912. v = code_value_short();
  2913. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2914. }
  2915. #endif
  2916. break;
  2917. case 1:
  2918. if (code_seen('H')) {
  2919. v = code_value_short();
  2920. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2921. }
  2922. if (code_seen('F')) {
  2923. v = code_value_short();
  2924. absPreheatFanSpeed = constrain(v, 0, 255);
  2925. }
  2926. #if TEMP_SENSOR_BED != 0
  2927. if (code_seen('B')) {
  2928. v = code_value_short();
  2929. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2930. }
  2931. #endif
  2932. break;
  2933. }
  2934. }
  2935. }
  2936. #endif
  2937. #if HAS_POWER_SWITCH
  2938. /**
  2939. * M80: Turn on Power Supply
  2940. */
  2941. inline void gcode_M80() {
  2942. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2943. // If you have a switch on suicide pin, this is useful
  2944. // if you want to start another print with suicide feature after
  2945. // a print without suicide...
  2946. #if HAS_SUICIDE
  2947. OUT_WRITE(SUICIDE_PIN, HIGH);
  2948. #endif
  2949. #ifdef ULTIPANEL
  2950. powersupply = true;
  2951. LCD_MESSAGEPGM(WELCOME_MSG);
  2952. lcd_update();
  2953. #endif
  2954. }
  2955. #endif // HAS_POWER_SWITCH
  2956. /**
  2957. * M81: Turn off Power, including Power Supply, if there is one.
  2958. *
  2959. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2960. */
  2961. inline void gcode_M81() {
  2962. disable_all_heaters();
  2963. st_synchronize();
  2964. disable_e0();
  2965. disable_e1();
  2966. disable_e2();
  2967. disable_e3();
  2968. finishAndDisableSteppers();
  2969. fanSpeed = 0;
  2970. delay(1000); // Wait 1 second before switching off
  2971. #if HAS_SUICIDE
  2972. st_synchronize();
  2973. suicide();
  2974. #elif HAS_POWER_SWITCH
  2975. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2976. #endif
  2977. #ifdef ULTIPANEL
  2978. #if HAS_POWER_SWITCH
  2979. powersupply = false;
  2980. #endif
  2981. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2982. lcd_update();
  2983. #endif
  2984. }
  2985. /**
  2986. * M82: Set E codes absolute (default)
  2987. */
  2988. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2989. /**
  2990. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2991. */
  2992. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2993. /**
  2994. * M18, M84: Disable all stepper motors
  2995. */
  2996. inline void gcode_M18_M84() {
  2997. if (code_seen('S')) {
  2998. stepper_inactive_time = code_value() * 1000;
  2999. }
  3000. else {
  3001. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3002. if (all_axis) {
  3003. st_synchronize();
  3004. disable_e0();
  3005. disable_e1();
  3006. disable_e2();
  3007. disable_e3();
  3008. finishAndDisableSteppers();
  3009. }
  3010. else {
  3011. st_synchronize();
  3012. if (code_seen('X')) disable_x();
  3013. if (code_seen('Y')) disable_y();
  3014. if (code_seen('Z')) disable_z();
  3015. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3016. if (code_seen('E')) {
  3017. disable_e0();
  3018. disable_e1();
  3019. disable_e2();
  3020. disable_e3();
  3021. }
  3022. #endif
  3023. }
  3024. }
  3025. }
  3026. /**
  3027. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3028. */
  3029. inline void gcode_M85() {
  3030. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3031. }
  3032. /**
  3033. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3034. * (Follows the same syntax as G92)
  3035. */
  3036. inline void gcode_M92() {
  3037. for(int8_t i=0; i < NUM_AXIS; i++) {
  3038. if (code_seen(axis_codes[i])) {
  3039. if (i == E_AXIS) {
  3040. float value = code_value();
  3041. if (value < 20.0) {
  3042. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3043. max_e_jerk *= factor;
  3044. max_feedrate[i] *= factor;
  3045. axis_steps_per_sqr_second[i] *= factor;
  3046. }
  3047. axis_steps_per_unit[i] = value;
  3048. }
  3049. else {
  3050. axis_steps_per_unit[i] = code_value();
  3051. }
  3052. }
  3053. }
  3054. }
  3055. /**
  3056. * M114: Output current position to serial port
  3057. */
  3058. inline void gcode_M114() {
  3059. SERIAL_PROTOCOLPGM("X:");
  3060. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3061. SERIAL_PROTOCOLPGM(" Y:");
  3062. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3063. SERIAL_PROTOCOLPGM(" Z:");
  3064. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3065. SERIAL_PROTOCOLPGM(" E:");
  3066. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3067. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3068. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3069. SERIAL_PROTOCOLPGM(" Y:");
  3070. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3071. SERIAL_PROTOCOLPGM(" Z:");
  3072. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3073. SERIAL_EOL;
  3074. #ifdef SCARA
  3075. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3076. SERIAL_PROTOCOL(delta[X_AXIS]);
  3077. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3078. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3079. SERIAL_EOL;
  3080. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3081. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3082. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3083. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3084. SERIAL_EOL;
  3085. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3086. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3087. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3088. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3089. SERIAL_EOL; SERIAL_EOL;
  3090. #endif
  3091. }
  3092. /**
  3093. * M115: Capabilities string
  3094. */
  3095. inline void gcode_M115() {
  3096. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3097. }
  3098. /**
  3099. * M117: Set LCD Status Message
  3100. */
  3101. inline void gcode_M117() {
  3102. char* codepos = strchr_pointer + 5;
  3103. char* starpos = strchr(codepos, '*');
  3104. if (starpos) *starpos = '\0';
  3105. lcd_setstatus(codepos);
  3106. }
  3107. /**
  3108. * M119: Output endstop states to serial output
  3109. */
  3110. inline void gcode_M119() {
  3111. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3112. #if HAS_X_MIN
  3113. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3114. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3115. #endif
  3116. #if HAS_X_MAX
  3117. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3118. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3119. #endif
  3120. #if HAS_Y_MIN
  3121. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3122. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3123. #endif
  3124. #if HAS_Y_MAX
  3125. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3126. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3127. #endif
  3128. #if HAS_Z_MIN
  3129. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3130. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3131. #endif
  3132. #if HAS_Z_MAX
  3133. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3134. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3135. #endif
  3136. #if HAS_Z2_MAX
  3137. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3138. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3139. #endif
  3140. #if HAS_Z_PROBE
  3141. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3142. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3143. #endif
  3144. }
  3145. /**
  3146. * M120: Enable endstops
  3147. */
  3148. inline void gcode_M120() { enable_endstops(false); }
  3149. /**
  3150. * M121: Disable endstops
  3151. */
  3152. inline void gcode_M121() { enable_endstops(true); }
  3153. #ifdef BLINKM
  3154. /**
  3155. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3156. */
  3157. inline void gcode_M150() {
  3158. SendColors(
  3159. code_seen('R') ? (byte)code_value_short() : 0,
  3160. code_seen('U') ? (byte)code_value_short() : 0,
  3161. code_seen('B') ? (byte)code_value_short() : 0
  3162. );
  3163. }
  3164. #endif // BLINKM
  3165. /**
  3166. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3167. * T<extruder>
  3168. * D<millimeters>
  3169. */
  3170. inline void gcode_M200() {
  3171. int tmp_extruder = active_extruder;
  3172. if (code_seen('T')) {
  3173. tmp_extruder = code_value_short();
  3174. if (tmp_extruder >= EXTRUDERS) {
  3175. SERIAL_ECHO_START;
  3176. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3177. return;
  3178. }
  3179. }
  3180. if (code_seen('D')) {
  3181. float diameter = code_value();
  3182. // setting any extruder filament size disables volumetric on the assumption that
  3183. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3184. // for all extruders
  3185. volumetric_enabled = (diameter != 0.0);
  3186. if (volumetric_enabled) {
  3187. filament_size[tmp_extruder] = diameter;
  3188. // make sure all extruders have some sane value for the filament size
  3189. for (int i=0; i<EXTRUDERS; i++)
  3190. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3191. }
  3192. }
  3193. else {
  3194. //reserved for setting filament diameter via UFID or filament measuring device
  3195. return;
  3196. }
  3197. calculate_volumetric_multipliers();
  3198. }
  3199. /**
  3200. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3201. */
  3202. inline void gcode_M201() {
  3203. for (int8_t i=0; i < NUM_AXIS; i++) {
  3204. if (code_seen(axis_codes[i])) {
  3205. max_acceleration_units_per_sq_second[i] = code_value();
  3206. }
  3207. }
  3208. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3209. reset_acceleration_rates();
  3210. }
  3211. #if 0 // Not used for Sprinter/grbl gen6
  3212. inline void gcode_M202() {
  3213. for(int8_t i=0; i < NUM_AXIS; i++) {
  3214. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3215. }
  3216. }
  3217. #endif
  3218. /**
  3219. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3220. */
  3221. inline void gcode_M203() {
  3222. for (int8_t i=0; i < NUM_AXIS; i++) {
  3223. if (code_seen(axis_codes[i])) {
  3224. max_feedrate[i] = code_value();
  3225. }
  3226. }
  3227. }
  3228. /**
  3229. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3230. *
  3231. * P = Printing moves
  3232. * R = Retract only (no X, Y, Z) moves
  3233. * T = Travel (non printing) moves
  3234. *
  3235. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3236. */
  3237. inline void gcode_M204() {
  3238. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3239. acceleration = code_value();
  3240. travel_acceleration = acceleration;
  3241. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3242. SERIAL_EOL;
  3243. }
  3244. if (code_seen('P')) {
  3245. acceleration = code_value();
  3246. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3247. SERIAL_EOL;
  3248. }
  3249. if (code_seen('R')) {
  3250. retract_acceleration = code_value();
  3251. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3252. SERIAL_EOL;
  3253. }
  3254. if (code_seen('T')) {
  3255. travel_acceleration = code_value();
  3256. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3257. SERIAL_EOL;
  3258. }
  3259. }
  3260. /**
  3261. * M205: Set Advanced Settings
  3262. *
  3263. * S = Min Feed Rate (mm/s)
  3264. * T = Min Travel Feed Rate (mm/s)
  3265. * B = Min Segment Time (µs)
  3266. * X = Max XY Jerk (mm/s/s)
  3267. * Z = Max Z Jerk (mm/s/s)
  3268. * E = Max E Jerk (mm/s/s)
  3269. */
  3270. inline void gcode_M205() {
  3271. if (code_seen('S')) minimumfeedrate = code_value();
  3272. if (code_seen('T')) mintravelfeedrate = code_value();
  3273. if (code_seen('B')) minsegmenttime = code_value();
  3274. if (code_seen('X')) max_xy_jerk = code_value();
  3275. if (code_seen('Z')) max_z_jerk = code_value();
  3276. if (code_seen('E')) max_e_jerk = code_value();
  3277. }
  3278. /**
  3279. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3280. */
  3281. inline void gcode_M206() {
  3282. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3283. if (code_seen(axis_codes[i])) {
  3284. home_offset[i] = code_value();
  3285. }
  3286. }
  3287. #ifdef SCARA
  3288. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3289. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3290. #endif
  3291. }
  3292. #ifdef DELTA
  3293. /**
  3294. * M665: Set delta configurations
  3295. *
  3296. * L = diagonal rod
  3297. * R = delta radius
  3298. * S = segments per second
  3299. */
  3300. inline void gcode_M665() {
  3301. if (code_seen('L')) delta_diagonal_rod = code_value();
  3302. if (code_seen('R')) delta_radius = code_value();
  3303. if (code_seen('S')) delta_segments_per_second = code_value();
  3304. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3305. }
  3306. /**
  3307. * M666: Set delta endstop adjustment
  3308. */
  3309. inline void gcode_M666() {
  3310. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3311. if (code_seen(axis_codes[i])) {
  3312. endstop_adj[i] = code_value();
  3313. }
  3314. }
  3315. }
  3316. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3317. /**
  3318. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3319. */
  3320. inline void gcode_M666() {
  3321. if (code_seen('Z')) z_endstop_adj = code_value();
  3322. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3323. SERIAL_EOL;
  3324. }
  3325. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3326. #ifdef FWRETRACT
  3327. /**
  3328. * M207: Set firmware retraction values
  3329. *
  3330. * S[+mm] retract_length
  3331. * W[+mm] retract_length_swap (multi-extruder)
  3332. * F[mm/min] retract_feedrate
  3333. * Z[mm] retract_zlift
  3334. */
  3335. inline void gcode_M207() {
  3336. if (code_seen('S')) retract_length = code_value();
  3337. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3338. if (code_seen('Z')) retract_zlift = code_value();
  3339. #if EXTRUDERS > 1
  3340. if (code_seen('W')) retract_length_swap = code_value();
  3341. #endif
  3342. }
  3343. /**
  3344. * M208: Set firmware un-retraction values
  3345. *
  3346. * S[+mm] retract_recover_length (in addition to M207 S*)
  3347. * W[+mm] retract_recover_length_swap (multi-extruder)
  3348. * F[mm/min] retract_recover_feedrate
  3349. */
  3350. inline void gcode_M208() {
  3351. if (code_seen('S')) retract_recover_length = code_value();
  3352. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3353. #if EXTRUDERS > 1
  3354. if (code_seen('W')) retract_recover_length_swap = code_value();
  3355. #endif
  3356. }
  3357. /**
  3358. * M209: Enable automatic retract (M209 S1)
  3359. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3360. */
  3361. inline void gcode_M209() {
  3362. if (code_seen('S')) {
  3363. int t = code_value_short();
  3364. switch(t) {
  3365. case 0:
  3366. autoretract_enabled = false;
  3367. break;
  3368. case 1:
  3369. autoretract_enabled = true;
  3370. break;
  3371. default:
  3372. SERIAL_ECHO_START;
  3373. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3374. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3375. SERIAL_ECHOLNPGM("\"");
  3376. return;
  3377. }
  3378. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3379. }
  3380. }
  3381. #endif // FWRETRACT
  3382. #if EXTRUDERS > 1
  3383. /**
  3384. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3385. */
  3386. inline void gcode_M218() {
  3387. if (setTargetedHotend(218)) return;
  3388. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3389. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3390. #ifdef DUAL_X_CARRIAGE
  3391. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3392. #endif
  3393. SERIAL_ECHO_START;
  3394. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3395. for (int e = 0; e < EXTRUDERS; e++) {
  3396. SERIAL_CHAR(' ');
  3397. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3398. SERIAL_CHAR(',');
  3399. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3400. #ifdef DUAL_X_CARRIAGE
  3401. SERIAL_CHAR(',');
  3402. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3403. #endif
  3404. }
  3405. SERIAL_EOL;
  3406. }
  3407. #endif // EXTRUDERS > 1
  3408. /**
  3409. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3410. */
  3411. inline void gcode_M220() {
  3412. if (code_seen('S')) feedrate_multiplier = code_value();
  3413. }
  3414. /**
  3415. * M221: Set extrusion percentage (M221 T0 S95)
  3416. */
  3417. inline void gcode_M221() {
  3418. if (code_seen('S')) {
  3419. int sval = code_value();
  3420. if (code_seen('T')) {
  3421. if (setTargetedHotend(221)) return;
  3422. extruder_multiply[target_extruder] = sval;
  3423. }
  3424. else {
  3425. extruder_multiply[active_extruder] = sval;
  3426. }
  3427. }
  3428. }
  3429. /**
  3430. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3431. */
  3432. inline void gcode_M226() {
  3433. if (code_seen('P')) {
  3434. int pin_number = code_value();
  3435. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3436. if (pin_state >= -1 && pin_state <= 1) {
  3437. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3438. if (sensitive_pins[i] == pin_number) {
  3439. pin_number = -1;
  3440. break;
  3441. }
  3442. }
  3443. if (pin_number > -1) {
  3444. int target = LOW;
  3445. st_synchronize();
  3446. pinMode(pin_number, INPUT);
  3447. switch(pin_state){
  3448. case 1:
  3449. target = HIGH;
  3450. break;
  3451. case 0:
  3452. target = LOW;
  3453. break;
  3454. case -1:
  3455. target = !digitalRead(pin_number);
  3456. break;
  3457. }
  3458. while(digitalRead(pin_number) != target) {
  3459. manage_heater();
  3460. manage_inactivity();
  3461. lcd_update();
  3462. }
  3463. } // pin_number > -1
  3464. } // pin_state -1 0 1
  3465. } // code_seen('P')
  3466. }
  3467. #if NUM_SERVOS > 0
  3468. /**
  3469. * M280: Get or set servo position. P<index> S<angle>
  3470. */
  3471. inline void gcode_M280() {
  3472. int servo_index = code_seen('P') ? code_value_short() : -1;
  3473. int servo_position = 0;
  3474. if (code_seen('S')) {
  3475. servo_position = code_value_short();
  3476. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3477. Servo *srv = &servo[servo_index];
  3478. #if SERVO_LEVELING
  3479. srv->attach(0);
  3480. #endif
  3481. srv->write(servo_position);
  3482. #if SERVO_LEVELING
  3483. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3484. srv->detach();
  3485. #endif
  3486. }
  3487. else {
  3488. SERIAL_ECHO_START;
  3489. SERIAL_ECHO("Servo ");
  3490. SERIAL_ECHO(servo_index);
  3491. SERIAL_ECHOLN(" out of range");
  3492. }
  3493. }
  3494. else if (servo_index >= 0) {
  3495. SERIAL_PROTOCOL(MSG_OK);
  3496. SERIAL_PROTOCOL(" Servo ");
  3497. SERIAL_PROTOCOL(servo_index);
  3498. SERIAL_PROTOCOL(": ");
  3499. SERIAL_PROTOCOL(servo[servo_index].read());
  3500. SERIAL_EOL;
  3501. }
  3502. }
  3503. #endif // NUM_SERVOS > 0
  3504. #if HAS_LCD_BUZZ
  3505. /**
  3506. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3507. */
  3508. inline void gcode_M300() {
  3509. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3510. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3511. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3512. lcd_buzz(beepP, beepS);
  3513. }
  3514. #endif // HAS_LCD_BUZZ
  3515. #ifdef PIDTEMP
  3516. /**
  3517. * M301: Set PID parameters P I D (and optionally C)
  3518. */
  3519. inline void gcode_M301() {
  3520. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3521. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3522. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3523. if (e < EXTRUDERS) { // catch bad input value
  3524. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3525. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3526. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3527. #ifdef PID_ADD_EXTRUSION_RATE
  3528. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3529. #endif
  3530. updatePID();
  3531. SERIAL_PROTOCOL(MSG_OK);
  3532. #ifdef PID_PARAMS_PER_EXTRUDER
  3533. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3534. SERIAL_PROTOCOL(e);
  3535. #endif // PID_PARAMS_PER_EXTRUDER
  3536. SERIAL_PROTOCOL(" p:");
  3537. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3538. SERIAL_PROTOCOL(" i:");
  3539. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3540. SERIAL_PROTOCOL(" d:");
  3541. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3542. #ifdef PID_ADD_EXTRUSION_RATE
  3543. SERIAL_PROTOCOL(" c:");
  3544. //Kc does not have scaling applied above, or in resetting defaults
  3545. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3546. #endif
  3547. SERIAL_EOL;
  3548. }
  3549. else {
  3550. SERIAL_ECHO_START;
  3551. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3552. }
  3553. }
  3554. #endif // PIDTEMP
  3555. #ifdef PIDTEMPBED
  3556. inline void gcode_M304() {
  3557. if (code_seen('P')) bedKp = code_value();
  3558. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3559. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3560. updatePID();
  3561. SERIAL_PROTOCOL(MSG_OK);
  3562. SERIAL_PROTOCOL(" p:");
  3563. SERIAL_PROTOCOL(bedKp);
  3564. SERIAL_PROTOCOL(" i:");
  3565. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3566. SERIAL_PROTOCOL(" d:");
  3567. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3568. SERIAL_EOL;
  3569. }
  3570. #endif // PIDTEMPBED
  3571. #if defined(CHDK) || HAS_PHOTOGRAPH
  3572. /**
  3573. * M240: Trigger a camera by emulating a Canon RC-1
  3574. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3575. */
  3576. inline void gcode_M240() {
  3577. #ifdef CHDK
  3578. OUT_WRITE(CHDK, HIGH);
  3579. chdkHigh = millis();
  3580. chdkActive = true;
  3581. #elif HAS_PHOTOGRAPH
  3582. const uint8_t NUM_PULSES = 16;
  3583. const float PULSE_LENGTH = 0.01524;
  3584. for (int i = 0; i < NUM_PULSES; i++) {
  3585. WRITE(PHOTOGRAPH_PIN, HIGH);
  3586. _delay_ms(PULSE_LENGTH);
  3587. WRITE(PHOTOGRAPH_PIN, LOW);
  3588. _delay_ms(PULSE_LENGTH);
  3589. }
  3590. delay(7.33);
  3591. for (int i = 0; i < NUM_PULSES; i++) {
  3592. WRITE(PHOTOGRAPH_PIN, HIGH);
  3593. _delay_ms(PULSE_LENGTH);
  3594. WRITE(PHOTOGRAPH_PIN, LOW);
  3595. _delay_ms(PULSE_LENGTH);
  3596. }
  3597. #endif // !CHDK && HAS_PHOTOGRAPH
  3598. }
  3599. #endif // CHDK || PHOTOGRAPH_PIN
  3600. #ifdef HAS_LCD_CONTRAST
  3601. /**
  3602. * M250: Read and optionally set the LCD contrast
  3603. */
  3604. inline void gcode_M250() {
  3605. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3606. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3607. SERIAL_PROTOCOL(lcd_contrast);
  3608. SERIAL_EOL;
  3609. }
  3610. #endif // HAS_LCD_CONTRAST
  3611. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3612. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3613. /**
  3614. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3615. */
  3616. inline void gcode_M302() {
  3617. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3618. }
  3619. #endif // PREVENT_DANGEROUS_EXTRUDE
  3620. /**
  3621. * M303: PID relay autotune
  3622. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3623. * E<extruder> (-1 for the bed)
  3624. * C<cycles>
  3625. */
  3626. inline void gcode_M303() {
  3627. int e = code_seen('E') ? code_value_short() : 0;
  3628. int c = code_seen('C') ? code_value_short() : 5;
  3629. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3630. PID_autotune(temp, e, c);
  3631. }
  3632. #ifdef SCARA
  3633. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3634. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3635. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3636. if (IsRunning()) {
  3637. //get_coordinates(); // For X Y Z E F
  3638. delta[X_AXIS] = delta_x;
  3639. delta[Y_AXIS] = delta_y;
  3640. calculate_SCARA_forward_Transform(delta);
  3641. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3642. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3643. prepare_move();
  3644. //ClearToSend();
  3645. return true;
  3646. }
  3647. return false;
  3648. }
  3649. /**
  3650. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3651. */
  3652. inline bool gcode_M360() {
  3653. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3654. return SCARA_move_to_cal(0, 120);
  3655. }
  3656. /**
  3657. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3658. */
  3659. inline bool gcode_M361() {
  3660. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3661. return SCARA_move_to_cal(90, 130);
  3662. }
  3663. /**
  3664. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3665. */
  3666. inline bool gcode_M362() {
  3667. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3668. return SCARA_move_to_cal(60, 180);
  3669. }
  3670. /**
  3671. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3672. */
  3673. inline bool gcode_M363() {
  3674. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3675. return SCARA_move_to_cal(50, 90);
  3676. }
  3677. /**
  3678. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3679. */
  3680. inline bool gcode_M364() {
  3681. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3682. return SCARA_move_to_cal(45, 135);
  3683. }
  3684. /**
  3685. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3686. */
  3687. inline void gcode_M365() {
  3688. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3689. if (code_seen(axis_codes[i])) {
  3690. axis_scaling[i] = code_value();
  3691. }
  3692. }
  3693. }
  3694. #endif // SCARA
  3695. #ifdef EXT_SOLENOID
  3696. void enable_solenoid(uint8_t num) {
  3697. switch(num) {
  3698. case 0:
  3699. OUT_WRITE(SOL0_PIN, HIGH);
  3700. break;
  3701. #if HAS_SOLENOID_1
  3702. case 1:
  3703. OUT_WRITE(SOL1_PIN, HIGH);
  3704. break;
  3705. #endif
  3706. #if HAS_SOLENOID_2
  3707. case 2:
  3708. OUT_WRITE(SOL2_PIN, HIGH);
  3709. break;
  3710. #endif
  3711. #if HAS_SOLENOID_3
  3712. case 3:
  3713. OUT_WRITE(SOL3_PIN, HIGH);
  3714. break;
  3715. #endif
  3716. default:
  3717. SERIAL_ECHO_START;
  3718. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3719. break;
  3720. }
  3721. }
  3722. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3723. void disable_all_solenoids() {
  3724. OUT_WRITE(SOL0_PIN, LOW);
  3725. OUT_WRITE(SOL1_PIN, LOW);
  3726. OUT_WRITE(SOL2_PIN, LOW);
  3727. OUT_WRITE(SOL3_PIN, LOW);
  3728. }
  3729. /**
  3730. * M380: Enable solenoid on the active extruder
  3731. */
  3732. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3733. /**
  3734. * M381: Disable all solenoids
  3735. */
  3736. inline void gcode_M381() { disable_all_solenoids(); }
  3737. #endif // EXT_SOLENOID
  3738. /**
  3739. * M400: Finish all moves
  3740. */
  3741. inline void gcode_M400() { st_synchronize(); }
  3742. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3743. #ifdef SERVO_ENDSTOPS
  3744. void raise_z_for_servo() {
  3745. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3746. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3747. if (zpos < z_dest)
  3748. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3749. }
  3750. #endif
  3751. /**
  3752. * M401: Engage Z Servo endstop if available
  3753. */
  3754. inline void gcode_M401() {
  3755. #ifdef SERVO_ENDSTOPS
  3756. raise_z_for_servo();
  3757. #endif
  3758. deploy_z_probe();
  3759. }
  3760. /**
  3761. * M402: Retract Z Servo endstop if enabled
  3762. */
  3763. inline void gcode_M402() {
  3764. #ifdef SERVO_ENDSTOPS
  3765. raise_z_for_servo();
  3766. #endif
  3767. stow_z_probe(false);
  3768. }
  3769. #endif
  3770. #ifdef FILAMENT_SENSOR
  3771. /**
  3772. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3773. */
  3774. inline void gcode_M404() {
  3775. #if HAS_FILWIDTH
  3776. if (code_seen('W')) {
  3777. filament_width_nominal = code_value();
  3778. }
  3779. else {
  3780. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3781. SERIAL_PROTOCOLLN(filament_width_nominal);
  3782. }
  3783. #endif
  3784. }
  3785. /**
  3786. * M405: Turn on filament sensor for control
  3787. */
  3788. inline void gcode_M405() {
  3789. if (code_seen('D')) meas_delay_cm = code_value();
  3790. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3791. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3792. int temp_ratio = widthFil_to_size_ratio();
  3793. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3794. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3795. delay_index1 = delay_index2 = 0;
  3796. }
  3797. filament_sensor = true;
  3798. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3799. //SERIAL_PROTOCOL(filament_width_meas);
  3800. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3801. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3802. }
  3803. /**
  3804. * M406: Turn off filament sensor for control
  3805. */
  3806. inline void gcode_M406() { filament_sensor = false; }
  3807. /**
  3808. * M407: Get measured filament diameter on serial output
  3809. */
  3810. inline void gcode_M407() {
  3811. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3812. SERIAL_PROTOCOLLN(filament_width_meas);
  3813. }
  3814. #endif // FILAMENT_SENSOR
  3815. /**
  3816. * M410: Quickstop - Abort all planned moves
  3817. *
  3818. * This will stop the carriages mid-move, so most likely they
  3819. * will be out of sync with the stepper position after this.
  3820. */
  3821. inline void gcode_M410() { quickStop(); }
  3822. #ifdef MESH_BED_LEVELING
  3823. /**
  3824. * M420: Enable/Disable Mesh Bed Leveling
  3825. */
  3826. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3827. /**
  3828. * M421: Set a single Mesh Bed Leveling Z coordinate
  3829. */
  3830. inline void gcode_M421() {
  3831. float x, y, z;
  3832. bool err = false, hasX, hasY, hasZ;
  3833. if ((hasX = code_seen('X'))) x = code_value();
  3834. if ((hasY = code_seen('Y'))) y = code_value();
  3835. if ((hasZ = code_seen('Z'))) z = code_value();
  3836. if (!hasX || !hasY || !hasZ) {
  3837. SERIAL_ERROR_START;
  3838. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3839. err = true;
  3840. }
  3841. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3842. SERIAL_ERROR_START;
  3843. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3844. err = true;
  3845. }
  3846. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3847. }
  3848. #endif
  3849. /**
  3850. * M428: Set home_offset based on the distance between the
  3851. * current_position and the nearest "reference point."
  3852. * If an axis is past center its endstop position
  3853. * is the reference-point. Otherwise it uses 0. This allows
  3854. * the Z offset to be set near the bed when using a max endstop.
  3855. *
  3856. * M428 can't be used more than 2cm away from 0 or an endstop.
  3857. *
  3858. * Use M206 to set these values directly.
  3859. */
  3860. inline void gcode_M428() {
  3861. bool err = false;
  3862. float new_offs[3], new_pos[3];
  3863. memcpy(new_pos, current_position, sizeof(new_pos));
  3864. memcpy(new_offs, home_offset, sizeof(new_offs));
  3865. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3866. if (axis_known_position[i]) {
  3867. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3868. diff = new_pos[i] - base;
  3869. if (diff > -20 && diff < 20) {
  3870. new_offs[i] -= diff;
  3871. new_pos[i] = base;
  3872. }
  3873. else {
  3874. SERIAL_ERROR_START;
  3875. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3876. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3877. #if HAS_LCD_BUZZ
  3878. enqueuecommands_P(PSTR("M300 S40 P200"));
  3879. #endif
  3880. err = true;
  3881. break;
  3882. }
  3883. }
  3884. }
  3885. if (!err) {
  3886. memcpy(current_position, new_pos, sizeof(new_pos));
  3887. memcpy(home_offset, new_offs, sizeof(new_offs));
  3888. sync_plan_position();
  3889. LCD_ALERTMESSAGEPGM("Offset applied.");
  3890. #if HAS_LCD_BUZZ
  3891. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  3892. #endif
  3893. }
  3894. }
  3895. /**
  3896. * M500: Store settings in EEPROM
  3897. */
  3898. inline void gcode_M500() {
  3899. Config_StoreSettings();
  3900. }
  3901. /**
  3902. * M501: Read settings from EEPROM
  3903. */
  3904. inline void gcode_M501() {
  3905. Config_RetrieveSettings();
  3906. }
  3907. /**
  3908. * M502: Revert to default settings
  3909. */
  3910. inline void gcode_M502() {
  3911. Config_ResetDefault();
  3912. }
  3913. /**
  3914. * M503: print settings currently in memory
  3915. */
  3916. inline void gcode_M503() {
  3917. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3918. }
  3919. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3920. /**
  3921. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3922. */
  3923. inline void gcode_M540() {
  3924. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3925. }
  3926. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3927. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3928. inline void gcode_SET_Z_PROBE_OFFSET() {
  3929. float value;
  3930. if (code_seen('Z')) {
  3931. value = code_value();
  3932. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3933. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  3934. SERIAL_ECHO_START;
  3935. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3936. SERIAL_EOL;
  3937. }
  3938. else {
  3939. SERIAL_ECHO_START;
  3940. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3941. SERIAL_ECHOPGM(MSG_Z_MIN);
  3942. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3943. SERIAL_ECHOPGM(MSG_Z_MAX);
  3944. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3945. SERIAL_EOL;
  3946. }
  3947. }
  3948. else {
  3949. SERIAL_ECHO_START;
  3950. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3951. SERIAL_ECHO(-zprobe_zoffset);
  3952. SERIAL_EOL;
  3953. }
  3954. }
  3955. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3956. #ifdef FILAMENTCHANGEENABLE
  3957. /**
  3958. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3959. */
  3960. inline void gcode_M600() {
  3961. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3962. for (int i=0; i<NUM_AXIS; i++)
  3963. target[i] = lastpos[i] = current_position[i];
  3964. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3965. #ifdef DELTA
  3966. #define RUNPLAN calculate_delta(target); BASICPLAN
  3967. #else
  3968. #define RUNPLAN BASICPLAN
  3969. #endif
  3970. //retract by E
  3971. if (code_seen('E')) target[E_AXIS] += code_value();
  3972. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3973. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3974. #endif
  3975. RUNPLAN;
  3976. //lift Z
  3977. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3978. #ifdef FILAMENTCHANGE_ZADD
  3979. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3980. #endif
  3981. RUNPLAN;
  3982. //move xy
  3983. if (code_seen('X')) target[X_AXIS] = code_value();
  3984. #ifdef FILAMENTCHANGE_XPOS
  3985. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3986. #endif
  3987. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3988. #ifdef FILAMENTCHANGE_YPOS
  3989. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3990. #endif
  3991. RUNPLAN;
  3992. if (code_seen('L')) target[E_AXIS] += code_value();
  3993. #ifdef FILAMENTCHANGE_FINALRETRACT
  3994. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3995. #endif
  3996. RUNPLAN;
  3997. //finish moves
  3998. st_synchronize();
  3999. //disable extruder steppers so filament can be removed
  4000. disable_e0();
  4001. disable_e1();
  4002. disable_e2();
  4003. disable_e3();
  4004. delay(100);
  4005. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4006. uint8_t cnt = 0;
  4007. while (!lcd_clicked()) {
  4008. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4009. manage_heater();
  4010. manage_inactivity(true);
  4011. lcd_update();
  4012. } // while(!lcd_clicked)
  4013. //return to normal
  4014. if (code_seen('L')) target[E_AXIS] -= code_value();
  4015. #ifdef FILAMENTCHANGE_FINALRETRACT
  4016. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4017. #endif
  4018. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4019. plan_set_e_position(current_position[E_AXIS]);
  4020. RUNPLAN; //should do nothing
  4021. lcd_reset_alert_level();
  4022. #ifdef DELTA
  4023. calculate_delta(lastpos);
  4024. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4025. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4026. #else
  4027. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4028. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4029. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4030. #endif
  4031. #ifdef FILAMENT_RUNOUT_SENSOR
  4032. filrunoutEnqueued = false;
  4033. #endif
  4034. }
  4035. #endif // FILAMENTCHANGEENABLE
  4036. #ifdef DUAL_X_CARRIAGE
  4037. /**
  4038. * M605: Set dual x-carriage movement mode
  4039. *
  4040. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4041. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4042. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4043. * millimeters x-offset and an optional differential hotend temperature of
  4044. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4045. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4046. *
  4047. * Note: the X axis should be homed after changing dual x-carriage mode.
  4048. */
  4049. inline void gcode_M605() {
  4050. st_synchronize();
  4051. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4052. switch(dual_x_carriage_mode) {
  4053. case DXC_DUPLICATION_MODE:
  4054. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4055. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4056. SERIAL_ECHO_START;
  4057. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4058. SERIAL_CHAR(' ');
  4059. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4060. SERIAL_CHAR(',');
  4061. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4062. SERIAL_CHAR(' ');
  4063. SERIAL_ECHO(duplicate_extruder_x_offset);
  4064. SERIAL_CHAR(',');
  4065. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4066. break;
  4067. case DXC_FULL_CONTROL_MODE:
  4068. case DXC_AUTO_PARK_MODE:
  4069. break;
  4070. default:
  4071. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4072. break;
  4073. }
  4074. active_extruder_parked = false;
  4075. extruder_duplication_enabled = false;
  4076. delayed_move_time = 0;
  4077. }
  4078. #endif // DUAL_X_CARRIAGE
  4079. /**
  4080. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4081. */
  4082. inline void gcode_M907() {
  4083. #if HAS_DIGIPOTSS
  4084. for (int i=0;i<NUM_AXIS;i++)
  4085. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4086. if (code_seen('B')) digipot_current(4, code_value());
  4087. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4088. #endif
  4089. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4090. if (code_seen('X')) digipot_current(0, code_value());
  4091. #endif
  4092. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4093. if (code_seen('Z')) digipot_current(1, code_value());
  4094. #endif
  4095. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4096. if (code_seen('E')) digipot_current(2, code_value());
  4097. #endif
  4098. #ifdef DIGIPOT_I2C
  4099. // this one uses actual amps in floating point
  4100. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4101. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4102. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4103. #endif
  4104. }
  4105. #if HAS_DIGIPOTSS
  4106. /**
  4107. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4108. */
  4109. inline void gcode_M908() {
  4110. digitalPotWrite(
  4111. code_seen('P') ? code_value() : 0,
  4112. code_seen('S') ? code_value() : 0
  4113. );
  4114. }
  4115. #endif // HAS_DIGIPOTSS
  4116. #if HAS_MICROSTEPS
  4117. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4118. inline void gcode_M350() {
  4119. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4120. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4121. if(code_seen('B')) microstep_mode(4,code_value());
  4122. microstep_readings();
  4123. }
  4124. /**
  4125. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4126. * S# determines MS1 or MS2, X# sets the pin high/low.
  4127. */
  4128. inline void gcode_M351() {
  4129. if (code_seen('S')) switch(code_value_short()) {
  4130. case 1:
  4131. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4132. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4133. break;
  4134. case 2:
  4135. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4136. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4137. break;
  4138. }
  4139. microstep_readings();
  4140. }
  4141. #endif // HAS_MICROSTEPS
  4142. /**
  4143. * M999: Restart after being stopped
  4144. */
  4145. inline void gcode_M999() {
  4146. Running = true;
  4147. lcd_reset_alert_level();
  4148. gcode_LastN = Stopped_gcode_LastN;
  4149. FlushSerialRequestResend();
  4150. }
  4151. /**
  4152. * T0-T3: Switch tool, usually switching extruders
  4153. */
  4154. inline void gcode_T() {
  4155. int tmp_extruder = code_value();
  4156. if (tmp_extruder >= EXTRUDERS) {
  4157. SERIAL_ECHO_START;
  4158. SERIAL_CHAR('T');
  4159. SERIAL_ECHO(tmp_extruder);
  4160. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4161. }
  4162. else {
  4163. target_extruder = tmp_extruder;
  4164. #if EXTRUDERS > 1
  4165. bool make_move = false;
  4166. #endif
  4167. if (code_seen('F')) {
  4168. #if EXTRUDERS > 1
  4169. make_move = true;
  4170. #endif
  4171. next_feedrate = code_value();
  4172. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4173. }
  4174. #if EXTRUDERS > 1
  4175. if (tmp_extruder != active_extruder) {
  4176. // Save current position to return to after applying extruder offset
  4177. set_destination_to_current();
  4178. #ifdef DUAL_X_CARRIAGE
  4179. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4180. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4181. // Park old head: 1) raise 2) move to park position 3) lower
  4182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4183. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4184. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4185. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4186. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4187. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4188. st_synchronize();
  4189. }
  4190. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4191. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4192. extruder_offset[Y_AXIS][active_extruder] +
  4193. extruder_offset[Y_AXIS][tmp_extruder];
  4194. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4195. extruder_offset[Z_AXIS][active_extruder] +
  4196. extruder_offset[Z_AXIS][tmp_extruder];
  4197. active_extruder = tmp_extruder;
  4198. // This function resets the max/min values - the current position may be overwritten below.
  4199. axis_is_at_home(X_AXIS);
  4200. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4201. current_position[X_AXIS] = inactive_extruder_x_pos;
  4202. inactive_extruder_x_pos = destination[X_AXIS];
  4203. }
  4204. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4205. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4206. if (active_extruder == 0 || active_extruder_parked)
  4207. current_position[X_AXIS] = inactive_extruder_x_pos;
  4208. else
  4209. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4210. inactive_extruder_x_pos = destination[X_AXIS];
  4211. extruder_duplication_enabled = false;
  4212. }
  4213. else {
  4214. // record raised toolhead position for use by unpark
  4215. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4216. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4217. active_extruder_parked = true;
  4218. delayed_move_time = 0;
  4219. }
  4220. #else // !DUAL_X_CARRIAGE
  4221. // Offset extruder (only by XY)
  4222. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4223. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4224. // Set the new active extruder and position
  4225. active_extruder = tmp_extruder;
  4226. #endif // !DUAL_X_CARRIAGE
  4227. #ifdef DELTA
  4228. sync_plan_position_delta();
  4229. #else
  4230. sync_plan_position();
  4231. #endif
  4232. // Move to the old position if 'F' was in the parameters
  4233. if (make_move && IsRunning()) prepare_move();
  4234. }
  4235. #ifdef EXT_SOLENOID
  4236. st_synchronize();
  4237. disable_all_solenoids();
  4238. enable_solenoid_on_active_extruder();
  4239. #endif // EXT_SOLENOID
  4240. #endif // EXTRUDERS > 1
  4241. SERIAL_ECHO_START;
  4242. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4243. SERIAL_PROTOCOLLN((int)active_extruder);
  4244. }
  4245. }
  4246. /**
  4247. * Process Commands and dispatch them to handlers
  4248. * This is called from the main loop()
  4249. */
  4250. void process_commands() {
  4251. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4252. SERIAL_ECHO_START;
  4253. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4254. }
  4255. if (code_seen('G')) {
  4256. int gCode = code_value_short();
  4257. switch(gCode) {
  4258. // G0, G1
  4259. case 0:
  4260. case 1:
  4261. gcode_G0_G1();
  4262. break;
  4263. // G2, G3
  4264. #ifndef SCARA
  4265. case 2: // G2 - CW ARC
  4266. case 3: // G3 - CCW ARC
  4267. gcode_G2_G3(gCode == 2);
  4268. break;
  4269. #endif
  4270. // G4 Dwell
  4271. case 4:
  4272. gcode_G4();
  4273. break;
  4274. #ifdef FWRETRACT
  4275. case 10: // G10: retract
  4276. case 11: // G11: retract_recover
  4277. gcode_G10_G11(gCode == 10);
  4278. break;
  4279. #endif //FWRETRACT
  4280. case 28: // G28: Home all axes, one at a time
  4281. gcode_G28();
  4282. break;
  4283. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4284. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4285. gcode_G29();
  4286. break;
  4287. #endif
  4288. #ifdef ENABLE_AUTO_BED_LEVELING
  4289. #ifndef Z_PROBE_SLED
  4290. case 30: // G30 Single Z Probe
  4291. gcode_G30();
  4292. break;
  4293. #else // Z_PROBE_SLED
  4294. case 31: // G31: dock the sled
  4295. case 32: // G32: undock the sled
  4296. dock_sled(gCode == 31);
  4297. break;
  4298. #endif // Z_PROBE_SLED
  4299. #endif // ENABLE_AUTO_BED_LEVELING
  4300. case 90: // G90
  4301. relative_mode = false;
  4302. break;
  4303. case 91: // G91
  4304. relative_mode = true;
  4305. break;
  4306. case 92: // G92
  4307. gcode_G92();
  4308. break;
  4309. }
  4310. }
  4311. else if (code_seen('M')) {
  4312. switch(code_value_short()) {
  4313. #ifdef ULTIPANEL
  4314. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4315. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4316. gcode_M0_M1();
  4317. break;
  4318. #endif // ULTIPANEL
  4319. case 17:
  4320. gcode_M17();
  4321. break;
  4322. #ifdef SDSUPPORT
  4323. case 20: // M20 - list SD card
  4324. gcode_M20(); break;
  4325. case 21: // M21 - init SD card
  4326. gcode_M21(); break;
  4327. case 22: //M22 - release SD card
  4328. gcode_M22(); break;
  4329. case 23: //M23 - Select file
  4330. gcode_M23(); break;
  4331. case 24: //M24 - Start SD print
  4332. gcode_M24(); break;
  4333. case 25: //M25 - Pause SD print
  4334. gcode_M25(); break;
  4335. case 26: //M26 - Set SD index
  4336. gcode_M26(); break;
  4337. case 27: //M27 - Get SD status
  4338. gcode_M27(); break;
  4339. case 28: //M28 - Start SD write
  4340. gcode_M28(); break;
  4341. case 29: //M29 - Stop SD write
  4342. gcode_M29(); break;
  4343. case 30: //M30 <filename> Delete File
  4344. gcode_M30(); break;
  4345. case 32: //M32 - Select file and start SD print
  4346. gcode_M32(); break;
  4347. case 928: //M928 - Start SD write
  4348. gcode_M928(); break;
  4349. #endif //SDSUPPORT
  4350. case 31: //M31 take time since the start of the SD print or an M109 command
  4351. gcode_M31();
  4352. break;
  4353. case 42: //M42 -Change pin status via gcode
  4354. gcode_M42();
  4355. break;
  4356. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4357. case 48: // M48 Z-Probe repeatability
  4358. gcode_M48();
  4359. break;
  4360. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4361. case 104: // M104
  4362. gcode_M104();
  4363. break;
  4364. case 111: // M111: Set debug level
  4365. gcode_M111();
  4366. break;
  4367. case 112: // M112: Emergency Stop
  4368. gcode_M112();
  4369. break;
  4370. case 140: // M140: Set bed temp
  4371. gcode_M140();
  4372. break;
  4373. case 105: // M105: Read current temperature
  4374. gcode_M105();
  4375. return;
  4376. break;
  4377. case 109: // M109: Wait for temperature
  4378. gcode_M109();
  4379. break;
  4380. #if HAS_TEMP_BED
  4381. case 190: // M190: Wait for bed heater to reach target
  4382. gcode_M190();
  4383. break;
  4384. #endif // HAS_TEMP_BED
  4385. #if HAS_FAN
  4386. case 106: // M106: Fan On
  4387. gcode_M106();
  4388. break;
  4389. case 107: // M107: Fan Off
  4390. gcode_M107();
  4391. break;
  4392. #endif // HAS_FAN
  4393. #ifdef BARICUDA
  4394. // PWM for HEATER_1_PIN
  4395. #if HAS_HEATER_1
  4396. case 126: // M126: valve open
  4397. gcode_M126();
  4398. break;
  4399. case 127: // M127: valve closed
  4400. gcode_M127();
  4401. break;
  4402. #endif // HAS_HEATER_1
  4403. // PWM for HEATER_2_PIN
  4404. #if HAS_HEATER_2
  4405. case 128: // M128: valve open
  4406. gcode_M128();
  4407. break;
  4408. case 129: // M129: valve closed
  4409. gcode_M129();
  4410. break;
  4411. #endif // HAS_HEATER_2
  4412. #endif // BARICUDA
  4413. #if HAS_POWER_SWITCH
  4414. case 80: // M80: Turn on Power Supply
  4415. gcode_M80();
  4416. break;
  4417. #endif // HAS_POWER_SWITCH
  4418. case 81: // M81: Turn off Power, including Power Supply, if possible
  4419. gcode_M81();
  4420. break;
  4421. case 82:
  4422. gcode_M82();
  4423. break;
  4424. case 83:
  4425. gcode_M83();
  4426. break;
  4427. case 18: // (for compatibility)
  4428. case 84: // M84
  4429. gcode_M18_M84();
  4430. break;
  4431. case 85: // M85
  4432. gcode_M85();
  4433. break;
  4434. case 92: // M92: Set the steps-per-unit for one or more axes
  4435. gcode_M92();
  4436. break;
  4437. case 115: // M115: Report capabilities
  4438. gcode_M115();
  4439. break;
  4440. case 117: // M117: Set LCD message text
  4441. gcode_M117();
  4442. break;
  4443. case 114: // M114: Report current position
  4444. gcode_M114();
  4445. break;
  4446. case 120: // M120: Enable endstops
  4447. gcode_M120();
  4448. break;
  4449. case 121: // M121: Disable endstops
  4450. gcode_M121();
  4451. break;
  4452. case 119: // M119: Report endstop states
  4453. gcode_M119();
  4454. break;
  4455. #ifdef ULTIPANEL
  4456. case 145: // M145: Set material heatup parameters
  4457. gcode_M145();
  4458. break;
  4459. #endif
  4460. #ifdef BLINKM
  4461. case 150: // M150
  4462. gcode_M150();
  4463. break;
  4464. #endif //BLINKM
  4465. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4466. gcode_M200();
  4467. break;
  4468. case 201: // M201
  4469. gcode_M201();
  4470. break;
  4471. #if 0 // Not used for Sprinter/grbl gen6
  4472. case 202: // M202
  4473. gcode_M202();
  4474. break;
  4475. #endif
  4476. case 203: // M203 max feedrate mm/sec
  4477. gcode_M203();
  4478. break;
  4479. case 204: // M204 acclereration S normal moves T filmanent only moves
  4480. gcode_M204();
  4481. break;
  4482. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4483. gcode_M205();
  4484. break;
  4485. case 206: // M206 additional homing offset
  4486. gcode_M206();
  4487. break;
  4488. #ifdef DELTA
  4489. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4490. gcode_M665();
  4491. break;
  4492. #endif
  4493. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4494. case 666: // M666 set delta / dual endstop adjustment
  4495. gcode_M666();
  4496. break;
  4497. #endif
  4498. #ifdef FWRETRACT
  4499. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4500. gcode_M207();
  4501. break;
  4502. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4503. gcode_M208();
  4504. break;
  4505. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4506. gcode_M209();
  4507. break;
  4508. #endif // FWRETRACT
  4509. #if EXTRUDERS > 1
  4510. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4511. gcode_M218();
  4512. break;
  4513. #endif
  4514. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4515. gcode_M220();
  4516. break;
  4517. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4518. gcode_M221();
  4519. break;
  4520. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4521. gcode_M226();
  4522. break;
  4523. #if NUM_SERVOS > 0
  4524. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4525. gcode_M280();
  4526. break;
  4527. #endif // NUM_SERVOS > 0
  4528. #if HAS_LCD_BUZZ
  4529. case 300: // M300 - Play beep tone
  4530. gcode_M300();
  4531. break;
  4532. #endif // HAS_LCD_BUZZ
  4533. #ifdef PIDTEMP
  4534. case 301: // M301
  4535. gcode_M301();
  4536. break;
  4537. #endif // PIDTEMP
  4538. #ifdef PIDTEMPBED
  4539. case 304: // M304
  4540. gcode_M304();
  4541. break;
  4542. #endif // PIDTEMPBED
  4543. #if defined(CHDK) || HAS_PHOTOGRAPH
  4544. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4545. gcode_M240();
  4546. break;
  4547. #endif // CHDK || PHOTOGRAPH_PIN
  4548. #ifdef HAS_LCD_CONTRAST
  4549. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4550. gcode_M250();
  4551. break;
  4552. #endif // HAS_LCD_CONTRAST
  4553. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4554. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4555. gcode_M302();
  4556. break;
  4557. #endif // PREVENT_DANGEROUS_EXTRUDE
  4558. case 303: // M303 PID autotune
  4559. gcode_M303();
  4560. break;
  4561. #ifdef SCARA
  4562. case 360: // M360 SCARA Theta pos1
  4563. if (gcode_M360()) return;
  4564. break;
  4565. case 361: // M361 SCARA Theta pos2
  4566. if (gcode_M361()) return;
  4567. break;
  4568. case 362: // M362 SCARA Psi pos1
  4569. if (gcode_M362()) return;
  4570. break;
  4571. case 363: // M363 SCARA Psi pos2
  4572. if (gcode_M363()) return;
  4573. break;
  4574. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4575. if (gcode_M364()) return;
  4576. break;
  4577. case 365: // M365 Set SCARA scaling for X Y Z
  4578. gcode_M365();
  4579. break;
  4580. #endif // SCARA
  4581. case 400: // M400 finish all moves
  4582. gcode_M400();
  4583. break;
  4584. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4585. case 401:
  4586. gcode_M401();
  4587. break;
  4588. case 402:
  4589. gcode_M402();
  4590. break;
  4591. #endif
  4592. #ifdef FILAMENT_SENSOR
  4593. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4594. gcode_M404();
  4595. break;
  4596. case 405: //M405 Turn on filament sensor for control
  4597. gcode_M405();
  4598. break;
  4599. case 406: //M406 Turn off filament sensor for control
  4600. gcode_M406();
  4601. break;
  4602. case 407: //M407 Display measured filament diameter
  4603. gcode_M407();
  4604. break;
  4605. #endif // FILAMENT_SENSOR
  4606. case 410: // M410 quickstop - Abort all the planned moves.
  4607. gcode_M410();
  4608. break;
  4609. #ifdef MESH_BED_LEVELING
  4610. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4611. gcode_M420();
  4612. break;
  4613. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4614. gcode_M421();
  4615. break;
  4616. #endif
  4617. case 428: // M428 Apply current_position to home_offset
  4618. gcode_M428();
  4619. break;
  4620. case 500: // M500 Store settings in EEPROM
  4621. gcode_M500();
  4622. break;
  4623. case 501: // M501 Read settings from EEPROM
  4624. gcode_M501();
  4625. break;
  4626. case 502: // M502 Revert to default settings
  4627. gcode_M502();
  4628. break;
  4629. case 503: // M503 print settings currently in memory
  4630. gcode_M503();
  4631. break;
  4632. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4633. case 540:
  4634. gcode_M540();
  4635. break;
  4636. #endif
  4637. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4638. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4639. gcode_SET_Z_PROBE_OFFSET();
  4640. break;
  4641. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4642. #ifdef FILAMENTCHANGEENABLE
  4643. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4644. gcode_M600();
  4645. break;
  4646. #endif // FILAMENTCHANGEENABLE
  4647. #ifdef DUAL_X_CARRIAGE
  4648. case 605:
  4649. gcode_M605();
  4650. break;
  4651. #endif // DUAL_X_CARRIAGE
  4652. case 907: // M907 Set digital trimpot motor current using axis codes.
  4653. gcode_M907();
  4654. break;
  4655. #if HAS_DIGIPOTSS
  4656. case 908: // M908 Control digital trimpot directly.
  4657. gcode_M908();
  4658. break;
  4659. #endif // HAS_DIGIPOTSS
  4660. #if HAS_MICROSTEPS
  4661. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4662. gcode_M350();
  4663. break;
  4664. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4665. gcode_M351();
  4666. break;
  4667. #endif // HAS_MICROSTEPS
  4668. case 999: // M999: Restart after being Stopped
  4669. gcode_M999();
  4670. break;
  4671. }
  4672. }
  4673. else if (code_seen('T')) {
  4674. gcode_T();
  4675. }
  4676. else {
  4677. SERIAL_ECHO_START;
  4678. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4679. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4680. SERIAL_ECHOLNPGM("\"");
  4681. }
  4682. ClearToSend();
  4683. }
  4684. void FlushSerialRequestResend() {
  4685. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4686. MYSERIAL.flush();
  4687. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4688. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4689. ClearToSend();
  4690. }
  4691. void ClearToSend() {
  4692. refresh_cmd_timeout();
  4693. #ifdef SDSUPPORT
  4694. if (fromsd[cmd_queue_index_r]) return;
  4695. #endif
  4696. SERIAL_PROTOCOLPGM(MSG_OK);
  4697. #ifdef ADVANCED_OK
  4698. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4699. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4700. #endif
  4701. SERIAL_EOL;
  4702. }
  4703. void get_coordinates() {
  4704. for (int i = 0; i < NUM_AXIS; i++) {
  4705. if (code_seen(axis_codes[i]))
  4706. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4707. else
  4708. destination[i] = current_position[i];
  4709. }
  4710. if (code_seen('F')) {
  4711. next_feedrate = code_value();
  4712. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4713. }
  4714. }
  4715. void get_arc_coordinates() {
  4716. #ifdef SF_ARC_FIX
  4717. bool relative_mode_backup = relative_mode;
  4718. relative_mode = true;
  4719. #endif
  4720. get_coordinates();
  4721. #ifdef SF_ARC_FIX
  4722. relative_mode = relative_mode_backup;
  4723. #endif
  4724. offset[0] = code_seen('I') ? code_value() : 0;
  4725. offset[1] = code_seen('J') ? code_value() : 0;
  4726. }
  4727. void clamp_to_software_endstops(float target[3]) {
  4728. if (min_software_endstops) {
  4729. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4730. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4731. float negative_z_offset = 0;
  4732. #ifdef ENABLE_AUTO_BED_LEVELING
  4733. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4734. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4735. #endif
  4736. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4737. }
  4738. if (max_software_endstops) {
  4739. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4740. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4741. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4742. }
  4743. }
  4744. #ifdef DELTA
  4745. void recalc_delta_settings(float radius, float diagonal_rod) {
  4746. delta_tower1_x = -SIN_60 * radius; // front left tower
  4747. delta_tower1_y = -COS_60 * radius;
  4748. delta_tower2_x = SIN_60 * radius; // front right tower
  4749. delta_tower2_y = -COS_60 * radius;
  4750. delta_tower3_x = 0.0; // back middle tower
  4751. delta_tower3_y = radius;
  4752. delta_diagonal_rod_2 = sq(diagonal_rod);
  4753. }
  4754. void calculate_delta(float cartesian[3]) {
  4755. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4756. - sq(delta_tower1_x-cartesian[X_AXIS])
  4757. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4758. ) + cartesian[Z_AXIS];
  4759. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4760. - sq(delta_tower2_x-cartesian[X_AXIS])
  4761. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4762. ) + cartesian[Z_AXIS];
  4763. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4764. - sq(delta_tower3_x-cartesian[X_AXIS])
  4765. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4766. ) + cartesian[Z_AXIS];
  4767. /*
  4768. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4769. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4770. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4771. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4772. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4773. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4774. */
  4775. }
  4776. #ifdef ENABLE_AUTO_BED_LEVELING
  4777. // Adjust print surface height by linear interpolation over the bed_level array.
  4778. void adjust_delta(float cartesian[3]) {
  4779. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4780. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4781. float h1 = 0.001 - half, h2 = half - 0.001,
  4782. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4783. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4784. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4785. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4786. z1 = bed_level[floor_x + half][floor_y + half],
  4787. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4788. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4789. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4790. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4791. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4792. offset = (1 - ratio_x) * left + ratio_x * right;
  4793. delta[X_AXIS] += offset;
  4794. delta[Y_AXIS] += offset;
  4795. delta[Z_AXIS] += offset;
  4796. /*
  4797. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4798. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4799. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4800. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4801. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4802. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4803. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4804. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4805. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4806. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4807. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4808. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4809. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4810. */
  4811. }
  4812. #endif // ENABLE_AUTO_BED_LEVELING
  4813. #endif // DELTA
  4814. #ifdef MESH_BED_LEVELING
  4815. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4816. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4817. {
  4818. if (!mbl.active) {
  4819. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4820. set_current_to_destination();
  4821. return;
  4822. }
  4823. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4824. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4825. int ix = mbl.select_x_index(x);
  4826. int iy = mbl.select_y_index(y);
  4827. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4828. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4829. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4830. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4831. if (pix == ix && piy == iy) {
  4832. // Start and end on same mesh square
  4833. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4834. set_current_to_destination();
  4835. return;
  4836. }
  4837. float nx, ny, ne, normalized_dist;
  4838. if (ix > pix && (x_splits) & BIT(ix)) {
  4839. nx = mbl.get_x(ix);
  4840. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4841. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4842. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4843. x_splits ^= BIT(ix);
  4844. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4845. nx = mbl.get_x(pix);
  4846. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4847. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4848. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4849. x_splits ^= BIT(pix);
  4850. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4851. ny = mbl.get_y(iy);
  4852. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4853. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4854. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4855. y_splits ^= BIT(iy);
  4856. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4857. ny = mbl.get_y(piy);
  4858. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4859. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4860. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4861. y_splits ^= BIT(piy);
  4862. } else {
  4863. // Already split on a border
  4864. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4865. set_current_to_destination();
  4866. return;
  4867. }
  4868. // Do the split and look for more borders
  4869. destination[X_AXIS] = nx;
  4870. destination[Y_AXIS] = ny;
  4871. destination[E_AXIS] = ne;
  4872. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4873. destination[X_AXIS] = x;
  4874. destination[Y_AXIS] = y;
  4875. destination[E_AXIS] = e;
  4876. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4877. }
  4878. #endif // MESH_BED_LEVELING
  4879. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4880. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4881. float de = dest_e - curr_e;
  4882. if (de) {
  4883. if (degHotend(active_extruder) < extrude_min_temp) {
  4884. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4885. SERIAL_ECHO_START;
  4886. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4887. }
  4888. #ifdef PREVENT_LENGTHY_EXTRUDE
  4889. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4890. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4891. SERIAL_ECHO_START;
  4892. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4893. }
  4894. #endif
  4895. }
  4896. }
  4897. #endif // PREVENT_DANGEROUS_EXTRUDE
  4898. void prepare_move() {
  4899. clamp_to_software_endstops(destination);
  4900. refresh_cmd_timeout();
  4901. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4902. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4903. #endif
  4904. #ifdef SCARA //for now same as delta-code
  4905. float difference[NUM_AXIS];
  4906. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4907. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4908. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4909. if (cartesian_mm < 0.000001) { return; }
  4910. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4911. int steps = max(1, int(scara_segments_per_second * seconds));
  4912. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4913. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4914. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4915. for (int s = 1; s <= steps; s++) {
  4916. float fraction = float(s) / float(steps);
  4917. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4918. calculate_delta(destination);
  4919. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4920. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4921. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4922. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4923. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4924. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4925. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4926. }
  4927. #endif // SCARA
  4928. #ifdef DELTA
  4929. float difference[NUM_AXIS];
  4930. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4931. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4932. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4933. if (cartesian_mm < 0.000001) return;
  4934. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4935. int steps = max(1, int(delta_segments_per_second * seconds));
  4936. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4937. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4938. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4939. for (int s = 1; s <= steps; s++) {
  4940. float fraction = float(s) / float(steps);
  4941. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4942. calculate_delta(destination);
  4943. #ifdef ENABLE_AUTO_BED_LEVELING
  4944. adjust_delta(destination);
  4945. #endif
  4946. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4947. }
  4948. #endif // DELTA
  4949. #ifdef DUAL_X_CARRIAGE
  4950. if (active_extruder_parked) {
  4951. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4952. // move duplicate extruder into correct duplication position.
  4953. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4954. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4955. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4956. sync_plan_position();
  4957. st_synchronize();
  4958. extruder_duplication_enabled = true;
  4959. active_extruder_parked = false;
  4960. }
  4961. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4962. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4963. // This is a travel move (with no extrusion)
  4964. // Skip it, but keep track of the current position
  4965. // (so it can be used as the start of the next non-travel move)
  4966. if (delayed_move_time != 0xFFFFFFFFUL) {
  4967. set_current_to_destination();
  4968. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4969. delayed_move_time = millis();
  4970. return;
  4971. }
  4972. }
  4973. delayed_move_time = 0;
  4974. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4975. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4978. active_extruder_parked = false;
  4979. }
  4980. }
  4981. #endif // DUAL_X_CARRIAGE
  4982. #if !defined(DELTA) && !defined(SCARA)
  4983. // Do not use feedrate_multiplier for E or Z only moves
  4984. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4985. line_to_destination();
  4986. }
  4987. else {
  4988. #ifdef MESH_BED_LEVELING
  4989. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4990. return;
  4991. #else
  4992. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4993. #endif // MESH_BED_LEVELING
  4994. }
  4995. #endif // !(DELTA || SCARA)
  4996. set_current_to_destination();
  4997. }
  4998. void prepare_arc_move(char isclockwise) {
  4999. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5000. // Trace the arc
  5001. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  5002. // As far as the parser is concerned, the position is now == target. In reality the
  5003. // motion control system might still be processing the action and the real tool position
  5004. // in any intermediate location.
  5005. set_current_to_destination();
  5006. refresh_cmd_timeout();
  5007. }
  5008. #if HAS_CONTROLLERFAN
  5009. millis_t lastMotor = 0; // Last time a motor was turned on
  5010. millis_t lastMotorCheck = 0; // Last time the state was checked
  5011. void controllerFan() {
  5012. millis_t ms = millis();
  5013. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5014. lastMotorCheck = ms;
  5015. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5016. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5017. #if EXTRUDERS > 1
  5018. || E1_ENABLE_READ == E_ENABLE_ON
  5019. #if HAS_X2_ENABLE
  5020. || X2_ENABLE_READ == X_ENABLE_ON
  5021. #endif
  5022. #if EXTRUDERS > 2
  5023. || E2_ENABLE_READ == E_ENABLE_ON
  5024. #if EXTRUDERS > 3
  5025. || E3_ENABLE_READ == E_ENABLE_ON
  5026. #endif
  5027. #endif
  5028. #endif
  5029. ) {
  5030. lastMotor = ms; //... set time to NOW so the fan will turn on
  5031. }
  5032. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5033. // allows digital or PWM fan output to be used (see M42 handling)
  5034. digitalWrite(CONTROLLERFAN_PIN, speed);
  5035. analogWrite(CONTROLLERFAN_PIN, speed);
  5036. }
  5037. }
  5038. #endif
  5039. #ifdef SCARA
  5040. void calculate_SCARA_forward_Transform(float f_scara[3])
  5041. {
  5042. // Perform forward kinematics, and place results in delta[3]
  5043. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5044. float x_sin, x_cos, y_sin, y_cos;
  5045. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5046. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5047. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5048. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5049. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5050. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5051. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5052. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5053. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5054. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5055. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5056. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5057. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5058. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5059. }
  5060. void calculate_delta(float cartesian[3]){
  5061. //reverse kinematics.
  5062. // Perform reversed kinematics, and place results in delta[3]
  5063. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5064. float SCARA_pos[2];
  5065. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5066. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5067. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5068. #if (Linkage_1 == Linkage_2)
  5069. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5070. #else
  5071. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5072. #endif
  5073. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5074. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5075. SCARA_K2 = Linkage_2 * SCARA_S2;
  5076. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5077. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5078. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5079. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5080. delta[Z_AXIS] = cartesian[Z_AXIS];
  5081. /*
  5082. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5083. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5084. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5085. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5086. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5087. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5088. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5089. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5090. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5091. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5092. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5093. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5094. SERIAL_ECHOLN(" ");*/
  5095. }
  5096. #endif
  5097. #ifdef TEMP_STAT_LEDS
  5098. static bool red_led = false;
  5099. static millis_t next_status_led_update_ms = 0;
  5100. void handle_status_leds(void) {
  5101. float max_temp = 0.0;
  5102. if (millis() > next_status_led_update_ms) {
  5103. next_status_led_update_ms += 500; // Update every 0.5s
  5104. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5105. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5106. #if HAS_TEMP_BED
  5107. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5108. #endif
  5109. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5110. if (new_led != red_led) {
  5111. red_led = new_led;
  5112. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5113. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5114. }
  5115. }
  5116. }
  5117. #endif
  5118. void enable_all_steppers() {
  5119. enable_x();
  5120. enable_y();
  5121. enable_z();
  5122. enable_e0();
  5123. enable_e1();
  5124. enable_e2();
  5125. enable_e3();
  5126. }
  5127. void disable_all_steppers() {
  5128. disable_x();
  5129. disable_y();
  5130. disable_z();
  5131. disable_e0();
  5132. disable_e1();
  5133. disable_e2();
  5134. disable_e3();
  5135. }
  5136. /**
  5137. * Manage several activities:
  5138. * - Check for Filament Runout
  5139. * - Keep the command buffer full
  5140. * - Check for maximum inactive time between commands
  5141. * - Check for maximum inactive time between stepper commands
  5142. * - Check if pin CHDK needs to go LOW
  5143. * - Check for KILL button held down
  5144. * - Check for HOME button held down
  5145. * - Check if cooling fan needs to be switched on
  5146. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5147. */
  5148. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5149. #if HAS_FILRUNOUT
  5150. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5151. filrunout();
  5152. #endif
  5153. if (commands_in_queue < BUFSIZE - 1) get_command();
  5154. millis_t ms = millis();
  5155. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5156. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5157. && !ignore_stepper_queue && !blocks_queued())
  5158. disable_all_steppers();
  5159. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5160. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5161. chdkActive = false;
  5162. WRITE(CHDK, LOW);
  5163. }
  5164. #endif
  5165. #if HAS_KILL
  5166. // Check if the kill button was pressed and wait just in case it was an accidental
  5167. // key kill key press
  5168. // -------------------------------------------------------------------------------
  5169. static int killCount = 0; // make the inactivity button a bit less responsive
  5170. const int KILL_DELAY = 750;
  5171. if (!READ(KILL_PIN))
  5172. killCount++;
  5173. else if (killCount > 0)
  5174. killCount--;
  5175. // Exceeded threshold and we can confirm that it was not accidental
  5176. // KILL the machine
  5177. // ----------------------------------------------------------------
  5178. if (killCount >= KILL_DELAY) kill();
  5179. #endif
  5180. #if HAS_HOME
  5181. // Check to see if we have to home, use poor man's debouncer
  5182. // ---------------------------------------------------------
  5183. static int homeDebounceCount = 0; // poor man's debouncing count
  5184. const int HOME_DEBOUNCE_DELAY = 750;
  5185. if (!READ(HOME_PIN)) {
  5186. if (!homeDebounceCount) {
  5187. enqueuecommands_P(PSTR("G28"));
  5188. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5189. }
  5190. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5191. homeDebounceCount++;
  5192. else
  5193. homeDebounceCount = 0;
  5194. }
  5195. #endif
  5196. #if HAS_CONTROLLERFAN
  5197. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5198. #endif
  5199. #ifdef EXTRUDER_RUNOUT_PREVENT
  5200. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5201. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5202. bool oldstatus;
  5203. switch(active_extruder) {
  5204. case 0:
  5205. oldstatus = E0_ENABLE_READ;
  5206. enable_e0();
  5207. break;
  5208. #if EXTRUDERS > 1
  5209. case 1:
  5210. oldstatus = E1_ENABLE_READ;
  5211. enable_e1();
  5212. break;
  5213. #if EXTRUDERS > 2
  5214. case 2:
  5215. oldstatus = E2_ENABLE_READ;
  5216. enable_e2();
  5217. break;
  5218. #if EXTRUDERS > 3
  5219. case 3:
  5220. oldstatus = E3_ENABLE_READ;
  5221. enable_e3();
  5222. break;
  5223. #endif
  5224. #endif
  5225. #endif
  5226. }
  5227. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5228. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5229. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5230. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5231. current_position[E_AXIS] = oldepos;
  5232. destination[E_AXIS] = oldedes;
  5233. plan_set_e_position(oldepos);
  5234. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5235. st_synchronize();
  5236. switch(active_extruder) {
  5237. case 0:
  5238. E0_ENABLE_WRITE(oldstatus);
  5239. break;
  5240. #if EXTRUDERS > 1
  5241. case 1:
  5242. E1_ENABLE_WRITE(oldstatus);
  5243. break;
  5244. #if EXTRUDERS > 2
  5245. case 2:
  5246. E2_ENABLE_WRITE(oldstatus);
  5247. break;
  5248. #if EXTRUDERS > 3
  5249. case 3:
  5250. E3_ENABLE_WRITE(oldstatus);
  5251. break;
  5252. #endif
  5253. #endif
  5254. #endif
  5255. }
  5256. }
  5257. #endif
  5258. #ifdef DUAL_X_CARRIAGE
  5259. // handle delayed move timeout
  5260. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5261. // travel moves have been received so enact them
  5262. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5263. set_destination_to_current();
  5264. prepare_move();
  5265. }
  5266. #endif
  5267. #ifdef TEMP_STAT_LEDS
  5268. handle_status_leds();
  5269. #endif
  5270. check_axes_activity();
  5271. }
  5272. void kill()
  5273. {
  5274. cli(); // Stop interrupts
  5275. disable_all_heaters();
  5276. disable_all_steppers();
  5277. #if HAS_POWER_SWITCH
  5278. pinMode(PS_ON_PIN, INPUT);
  5279. #endif
  5280. SERIAL_ERROR_START;
  5281. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5282. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5283. // FMC small patch to update the LCD before ending
  5284. sei(); // enable interrupts
  5285. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5286. cli(); // disable interrupts
  5287. suicide();
  5288. while(1) { /* Intentionally left empty */ } // Wait for reset
  5289. }
  5290. #ifdef FILAMENT_RUNOUT_SENSOR
  5291. void filrunout() {
  5292. if (!filrunoutEnqueued) {
  5293. filrunoutEnqueued = true;
  5294. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5295. st_synchronize();
  5296. }
  5297. }
  5298. #endif
  5299. void Stop() {
  5300. disable_all_heaters();
  5301. if (IsRunning()) {
  5302. Running = false;
  5303. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5304. SERIAL_ERROR_START;
  5305. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5306. LCD_MESSAGEPGM(MSG_STOPPED);
  5307. }
  5308. }
  5309. #ifdef FAST_PWM_FAN
  5310. void setPwmFrequency(uint8_t pin, int val)
  5311. {
  5312. val &= 0x07;
  5313. switch(digitalPinToTimer(pin))
  5314. {
  5315. #if defined(TCCR0A)
  5316. case TIMER0A:
  5317. case TIMER0B:
  5318. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5319. // TCCR0B |= val;
  5320. break;
  5321. #endif
  5322. #if defined(TCCR1A)
  5323. case TIMER1A:
  5324. case TIMER1B:
  5325. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5326. // TCCR1B |= val;
  5327. break;
  5328. #endif
  5329. #if defined(TCCR2)
  5330. case TIMER2:
  5331. case TIMER2:
  5332. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5333. TCCR2 |= val;
  5334. break;
  5335. #endif
  5336. #if defined(TCCR2A)
  5337. case TIMER2A:
  5338. case TIMER2B:
  5339. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5340. TCCR2B |= val;
  5341. break;
  5342. #endif
  5343. #if defined(TCCR3A)
  5344. case TIMER3A:
  5345. case TIMER3B:
  5346. case TIMER3C:
  5347. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5348. TCCR3B |= val;
  5349. break;
  5350. #endif
  5351. #if defined(TCCR4A)
  5352. case TIMER4A:
  5353. case TIMER4B:
  5354. case TIMER4C:
  5355. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5356. TCCR4B |= val;
  5357. break;
  5358. #endif
  5359. #if defined(TCCR5A)
  5360. case TIMER5A:
  5361. case TIMER5B:
  5362. case TIMER5C:
  5363. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5364. TCCR5B |= val;
  5365. break;
  5366. #endif
  5367. }
  5368. }
  5369. #endif //FAST_PWM_FAN
  5370. bool setTargetedHotend(int code){
  5371. target_extruder = active_extruder;
  5372. if (code_seen('T')) {
  5373. target_extruder = code_value_short();
  5374. if (target_extruder >= EXTRUDERS) {
  5375. SERIAL_ECHO_START;
  5376. switch(code){
  5377. case 104:
  5378. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5379. break;
  5380. case 105:
  5381. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5382. break;
  5383. case 109:
  5384. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5385. break;
  5386. case 218:
  5387. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5388. break;
  5389. case 221:
  5390. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5391. break;
  5392. }
  5393. SERIAL_ECHOLN(target_extruder);
  5394. return true;
  5395. }
  5396. }
  5397. return false;
  5398. }
  5399. float calculate_volumetric_multiplier(float diameter) {
  5400. if (!volumetric_enabled || diameter == 0) return 1.0;
  5401. float d2 = diameter * 0.5;
  5402. return 1.0 / (M_PI * d2 * d2);
  5403. }
  5404. void calculate_volumetric_multipliers() {
  5405. for (int i=0; i<EXTRUDERS; i++)
  5406. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5407. }