My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin_main.cpp 239KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. /**
  70. * Look here for descriptions of G-codes:
  71. * - http://linuxcnc.org/handbook/gcode/g-code.html
  72. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  73. *
  74. * Help us document these G-codes online:
  75. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  76. * - http://reprap.org/wiki/G-code
  77. *
  78. * -----------------
  79. * Implemented Codes
  80. * -----------------
  81. *
  82. * "G" Codes
  83. *
  84. * G0 -> G1
  85. * G1 - Coordinated Movement X Y Z E
  86. * G2 - CW ARC
  87. * G3 - CCW ARC
  88. * G4 - Dwell S<seconds> or P<milliseconds>
  89. * G10 - retract filament according to settings of M207
  90. * G11 - retract recover filament according to settings of M208
  91. * G28 - Home one or more axes
  92. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  93. * G30 - Single Z probe, probes bed at current XY location.
  94. * G31 - Dock sled (Z_PROBE_SLED only)
  95. * G32 - Undock sled (Z_PROBE_SLED only)
  96. * G90 - Use Absolute Coordinates
  97. * G91 - Use Relative Coordinates
  98. * G92 - Set current position to coordinates given
  99. *
  100. * "M" Codes
  101. *
  102. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  103. * M1 - Same as M0
  104. * M17 - Enable/Power all stepper motors
  105. * M18 - Disable all stepper motors; same as M84
  106. * M20 - List SD card
  107. * M21 - Init SD card
  108. * M22 - Release SD card
  109. * M23 - Select SD file (M23 filename.g)
  110. * M24 - Start/resume SD print
  111. * M25 - Pause SD print
  112. * M26 - Set SD position in bytes (M26 S12345)
  113. * M27 - Report SD print status
  114. * M28 - Start SD write (M28 filename.g)
  115. * M29 - Stop SD write
  116. * M30 - Delete file from SD (M30 filename.g)
  117. * M31 - Output time since last M109 or SD card start to serial
  118. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  119. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  120. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  121. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  122. * M33 - Get the longname version of a path
  123. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  124. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  125. * M80 - Turn on Power Supply
  126. * M81 - Turn off Power Supply
  127. * M82 - Set E codes absolute (default)
  128. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  129. * M84 - Disable steppers until next move,
  130. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  131. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  132. * M92 - Set axis_steps_per_unit - same syntax as G92
  133. * M104 - Set extruder target temp
  134. * M105 - Read current temp
  135. * M106 - Fan on
  136. * M107 - Fan off
  137. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  138. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  139. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  140. * M110 - Set the current line number
  141. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  142. * M112 - Emergency stop
  143. * M114 - Output current position to serial port
  144. * M115 - Capabilities string
  145. * M117 - Display a message on the controller screen
  146. * M119 - Output Endstop status to serial port
  147. * M120 - Enable endstop detection
  148. * M121 - Disable endstop detection
  149. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  150. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  151. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  152. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. * M140 - Set bed target temp
  154. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  155. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  156. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  157. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  158. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  159. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  160. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  161. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  162. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  163. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  164. * M206 - Set additional homing offset
  165. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  166. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  167. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  168. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  169. * M220 - Set speed factor override percentage: S<factor in percent>
  170. * M221 - Set extrude factor override percentage: S<factor in percent>
  171. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  172. * M240 - Trigger a camera to take a photograph
  173. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  174. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  179. * M304 - Set bed PID parameters P I and D
  180. * M380 - Activate solenoid on active extruder
  181. * M381 - Disable all solenoids
  182. * M400 - Finish all moves
  183. * M401 - Lower Z probe if present
  184. * M402 - Raise Z probe if present
  185. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. * M406 - Turn off Filament Sensor extrusion control
  188. * M407 - Display measured filament diameter
  189. * M410 - Quickstop. Abort all the planned moves
  190. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  191. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  192. * M428 - Set the home_offset logically based on the current_position
  193. * M500 - Store parameters in EEPROM
  194. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  197. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  198. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  199. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  200. * M666 - Set delta endstop adjustment
  201. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  202. * M907 - Set digital trimpot motor current using axis codes.
  203. * M908 - Control digital trimpot directly.
  204. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  205. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  206. * M350 - Set microstepping mode.
  207. * M351 - Toggle MS1 MS2 pins directly.
  208. *
  209. * ************ SCARA Specific - This can change to suit future G-code regulations
  210. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  211. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  212. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  213. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  214. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  215. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  216. * ************* SCARA End ***************
  217. *
  218. * ************ Custom codes - This can change to suit future G-code regulations
  219. * M100 - Watch Free Memory (For Debugging Only)
  220. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  221. * M928 - Start SD logging (M928 filename.g) - ended by M29
  222. * M999 - Restart after being stopped by error
  223. *
  224. * "T" Codes
  225. *
  226. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  227. *
  228. */
  229. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  230. void gcode_M100();
  231. #endif
  232. #if ENABLED(SDSUPPORT)
  233. CardReader card;
  234. #endif
  235. bool Running = true;
  236. uint8_t marlin_debug_flags = DEBUG_INFO | DEBUG_ERRORS;
  237. static float feedrate = 1500.0, saved_feedrate;
  238. float current_position[NUM_AXIS] = { 0.0 };
  239. static float destination[NUM_AXIS] = { 0.0 };
  240. bool axis_known_position[3] = { false };
  241. bool axis_homed[3] = { false };
  242. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  243. static char* current_command, *current_command_args;
  244. static int cmd_queue_index_r = 0;
  245. static int cmd_queue_index_w = 0;
  246. static int commands_in_queue = 0;
  247. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  248. const float homing_feedrate[] = HOMING_FEEDRATE;
  249. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  250. int feedrate_multiplier = 100; //100->1 200->2
  251. int saved_feedrate_multiplier;
  252. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  253. bool volumetric_enabled = false;
  254. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  255. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  256. float home_offset[3] = { 0 };
  257. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  258. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  259. #if FAN_COUNT > 0
  260. int fanSpeeds[FAN_COUNT] = { 0 };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. bool cancel_heatup = false;
  264. const char errormagic[] PROGMEM = "Error:";
  265. const char echomagic[] PROGMEM = "echo:";
  266. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  267. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  268. static int serial_count = 0;
  269. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  270. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  271. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  272. // Inactivity shutdown
  273. millis_t previous_cmd_ms = 0;
  274. static millis_t max_inactive_time = 0;
  275. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  276. millis_t print_job_start_ms = 0; ///< Print job start time
  277. millis_t print_job_stop_ms = 0; ///< Print job stop time
  278. static uint8_t target_extruder;
  279. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  280. int xy_travel_speed = XY_TRAVEL_SPEED;
  281. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  282. #endif
  283. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  284. float z_endstop_adj = 0;
  285. #endif
  286. // Extruder offsets
  287. #if EXTRUDERS > 1
  288. #ifndef EXTRUDER_OFFSET_X
  289. #define EXTRUDER_OFFSET_X { 0 }
  290. #endif
  291. #ifndef EXTRUDER_OFFSET_Y
  292. #define EXTRUDER_OFFSET_Y { 0 }
  293. #endif
  294. float extruder_offset[][EXTRUDERS] = {
  295. EXTRUDER_OFFSET_X,
  296. EXTRUDER_OFFSET_Y
  297. #if ENABLED(DUAL_X_CARRIAGE)
  298. , { 0 } // supports offsets in XYZ plane
  299. #endif
  300. };
  301. #endif
  302. #if HAS_SERVO_ENDSTOPS
  303. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  304. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  305. #endif
  306. #if ENABLED(BARICUDA)
  307. int ValvePressure = 0;
  308. int EtoPPressure = 0;
  309. #endif
  310. #if ENABLED(FWRETRACT)
  311. bool autoretract_enabled = false;
  312. bool retracted[EXTRUDERS] = { false };
  313. bool retracted_swap[EXTRUDERS] = { false };
  314. float retract_length = RETRACT_LENGTH;
  315. float retract_length_swap = RETRACT_LENGTH_SWAP;
  316. float retract_feedrate = RETRACT_FEEDRATE;
  317. float retract_zlift = RETRACT_ZLIFT;
  318. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  319. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  320. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  321. #endif // FWRETRACT
  322. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  323. bool powersupply =
  324. #if ENABLED(PS_DEFAULT_OFF)
  325. false
  326. #else
  327. true
  328. #endif
  329. ;
  330. #endif
  331. #if ENABLED(DELTA)
  332. #define TOWER_1 X_AXIS
  333. #define TOWER_2 Y_AXIS
  334. #define TOWER_3 Z_AXIS
  335. float delta[3] = { 0 };
  336. #define SIN_60 0.8660254037844386
  337. #define COS_60 0.5
  338. float endstop_adj[3] = { 0 };
  339. // these are the default values, can be overriden with M665
  340. float delta_radius = DELTA_RADIUS;
  341. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  342. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  343. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  344. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  345. float delta_tower3_x = 0; // back middle tower
  346. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  347. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  348. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  349. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  350. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  351. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  352. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  353. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  354. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  355. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  357. int delta_grid_spacing[2] = { 0, 0 };
  358. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  359. #endif
  360. #else
  361. static bool home_all_axis = true;
  362. #endif
  363. #if ENABLED(SCARA)
  364. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  365. static float delta[3] = { 0 };
  366. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  367. #endif
  368. #if ENABLED(FILAMENT_SENSOR)
  369. //Variables for Filament Sensor input
  370. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  371. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  372. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  373. signed char measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  374. int delay_index1 = 0; //index into ring buffer
  375. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  376. float delay_dist = 0; //delay distance counter
  377. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  378. #endif
  379. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  380. static bool filrunoutEnqueued = false;
  381. #endif
  382. static bool send_ok[BUFSIZE];
  383. #if HAS_SERVOS
  384. Servo servo[NUM_SERVOS];
  385. #endif
  386. #ifdef CHDK
  387. unsigned long chdkHigh = 0;
  388. boolean chdkActive = false;
  389. #endif
  390. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  391. int lpq_len = 20;
  392. #endif
  393. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  394. // States for managing Marlin and host communication
  395. // Marlin sends messages if blocked or busy
  396. enum MarlinBusyState {
  397. NOT_BUSY, // Not in a handler
  398. IN_HANDLER, // Processing a GCode
  399. IN_PROCESS, // Known to be blocking command input (as in G29)
  400. PAUSED_FOR_USER, // Blocking pending any input
  401. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  402. };
  403. static MarlinBusyState busy_state = NOT_BUSY;
  404. static millis_t next_busy_signal_ms = -1;
  405. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  406. #else
  407. #define host_keepalive() ;
  408. #define KEEPALIVE_STATE(n) ;
  409. #endif // HOST_KEEPALIVE_FEATURE
  410. //===========================================================================
  411. //================================ Functions ================================
  412. //===========================================================================
  413. void process_next_command();
  414. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  415. bool setTargetedHotend(int code);
  416. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  417. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  418. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  419. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  421. void gcode_M114();
  422. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  423. float extrude_min_temp = EXTRUDE_MINTEMP;
  424. #endif
  425. #if ENABLED(HAS_Z_MIN_PROBE)
  426. extern volatile bool z_probe_is_active;
  427. #endif
  428. #if ENABLED(SDSUPPORT)
  429. #include "SdFatUtil.h"
  430. int freeMemory() { return SdFatUtil::FreeRam(); }
  431. #else
  432. extern "C" {
  433. extern unsigned int __bss_end;
  434. extern unsigned int __heap_start;
  435. extern void* __brkval;
  436. int freeMemory() {
  437. int free_memory;
  438. if ((int)__brkval == 0)
  439. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  440. else
  441. free_memory = ((int)&free_memory) - ((int)__brkval);
  442. return free_memory;
  443. }
  444. }
  445. #endif //!SDSUPPORT
  446. /**
  447. * Inject the next "immediate" command, when possible.
  448. * Return true if any immediate commands remain to inject.
  449. */
  450. static bool drain_queued_commands_P() {
  451. if (queued_commands_P != NULL) {
  452. size_t i = 0;
  453. char c, cmd[30];
  454. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  455. cmd[sizeof(cmd) - 1] = '\0';
  456. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  457. cmd[i] = '\0';
  458. if (enqueue_and_echo_command(cmd)) { // success?
  459. if (c) // newline char?
  460. queued_commands_P += i + 1; // advance to the next command
  461. else
  462. queued_commands_P = NULL; // nul char? no more commands
  463. }
  464. }
  465. return (queued_commands_P != NULL); // return whether any more remain
  466. }
  467. /**
  468. * Record one or many commands to run from program memory.
  469. * Aborts the current queue, if any.
  470. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  471. */
  472. void enqueue_and_echo_commands_P(const char* pgcode) {
  473. queued_commands_P = pgcode;
  474. drain_queued_commands_P(); // first command executed asap (when possible)
  475. }
  476. /**
  477. * Once a new command is in the ring buffer, call this to commit it
  478. */
  479. inline void _commit_command(bool say_ok) {
  480. send_ok[cmd_queue_index_w] = say_ok;
  481. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  482. commands_in_queue++;
  483. }
  484. /**
  485. * Copy a command directly into the main command buffer, from RAM.
  486. * Returns true if successfully adds the command
  487. */
  488. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  489. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  490. strcpy(command_queue[cmd_queue_index_w], cmd);
  491. _commit_command(say_ok);
  492. return true;
  493. }
  494. void enqueue_and_echo_command_now(const char* cmd) {
  495. while (!enqueue_and_echo_command(cmd)) idle();
  496. }
  497. /**
  498. * Enqueue with Serial Echo
  499. */
  500. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  501. if (_enqueuecommand(cmd, say_ok)) {
  502. SERIAL_ECHO_START;
  503. SERIAL_ECHOPGM(MSG_Enqueueing);
  504. SERIAL_ECHO(cmd);
  505. SERIAL_ECHOLNPGM("\"");
  506. return true;
  507. }
  508. return false;
  509. }
  510. void setup_killpin() {
  511. #if HAS_KILL
  512. SET_INPUT(KILL_PIN);
  513. WRITE(KILL_PIN, HIGH);
  514. #endif
  515. }
  516. void setup_filrunoutpin() {
  517. #if HAS_FILRUNOUT
  518. pinMode(FILRUNOUT_PIN, INPUT);
  519. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  520. WRITE(FILRUNOUT_PIN, HIGH);
  521. #endif
  522. #endif
  523. }
  524. // Set home pin
  525. void setup_homepin(void) {
  526. #if HAS_HOME
  527. SET_INPUT(HOME_PIN);
  528. WRITE(HOME_PIN, HIGH);
  529. #endif
  530. }
  531. void setup_photpin() {
  532. #if HAS_PHOTOGRAPH
  533. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  534. #endif
  535. }
  536. void setup_powerhold() {
  537. #if HAS_SUICIDE
  538. OUT_WRITE(SUICIDE_PIN, HIGH);
  539. #endif
  540. #if HAS_POWER_SWITCH
  541. #if ENABLED(PS_DEFAULT_OFF)
  542. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  543. #else
  544. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  545. #endif
  546. #endif
  547. }
  548. void suicide() {
  549. #if HAS_SUICIDE
  550. OUT_WRITE(SUICIDE_PIN, LOW);
  551. #endif
  552. }
  553. void servo_init() {
  554. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  555. servo[0].attach(SERVO0_PIN);
  556. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  557. #endif
  558. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  559. servo[1].attach(SERVO1_PIN);
  560. servo[1].detach();
  561. #endif
  562. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  563. servo[2].attach(SERVO2_PIN);
  564. servo[2].detach();
  565. #endif
  566. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  567. servo[3].attach(SERVO3_PIN);
  568. servo[3].detach();
  569. #endif
  570. #if HAS_SERVO_ENDSTOPS
  571. z_probe_is_active = false;
  572. /**
  573. * Set position of all defined Servo Endstops
  574. *
  575. * ** UNSAFE! - NEEDS UPDATE! **
  576. *
  577. * The servo might be deployed and positioned too low to stow
  578. * when starting up the machine or rebooting the board.
  579. * There's no way to know where the nozzle is positioned until
  580. * homing has been done - no homing with z-probe without init!
  581. *
  582. */
  583. for (int i = 0; i < 3; i++)
  584. if (servo_endstop_id[i] >= 0)
  585. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  586. #endif // HAS_SERVO_ENDSTOPS
  587. }
  588. /**
  589. * Stepper Reset (RigidBoard, et.al.)
  590. */
  591. #if HAS_STEPPER_RESET
  592. void disableStepperDrivers() {
  593. pinMode(STEPPER_RESET_PIN, OUTPUT);
  594. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  595. }
  596. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  597. #endif
  598. /**
  599. * Marlin entry-point: Set up before the program loop
  600. * - Set up the kill pin, filament runout, power hold
  601. * - Start the serial port
  602. * - Print startup messages and diagnostics
  603. * - Get EEPROM or default settings
  604. * - Initialize managers for:
  605. * • temperature
  606. * • planner
  607. * • watchdog
  608. * • stepper
  609. * • photo pin
  610. * • servos
  611. * • LCD controller
  612. * • Digipot I2C
  613. * • Z probe sled
  614. * • status LEDs
  615. */
  616. void setup() {
  617. #ifdef DISABLE_JTAG
  618. // Disable JTAG on AT90USB chips to free up pins for IO
  619. MCUCR = 0x80;
  620. MCUCR = 0x80;
  621. #endif
  622. setup_killpin();
  623. setup_filrunoutpin();
  624. setup_powerhold();
  625. #if HAS_STEPPER_RESET
  626. disableStepperDrivers();
  627. #endif
  628. MYSERIAL.begin(BAUDRATE);
  629. SERIAL_PROTOCOLLNPGM("start");
  630. SERIAL_ECHO_START;
  631. // Check startup - does nothing if bootloader sets MCUSR to 0
  632. byte mcu = MCUSR;
  633. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  634. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  635. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  636. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  637. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  638. MCUSR = 0;
  639. SERIAL_ECHOPGM(MSG_MARLIN);
  640. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  641. #ifdef STRING_DISTRIBUTION_DATE
  642. #ifdef STRING_CONFIG_H_AUTHOR
  643. SERIAL_ECHO_START;
  644. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  645. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  646. SERIAL_ECHOPGM(MSG_AUTHOR);
  647. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  648. SERIAL_ECHOPGM("Compiled: ");
  649. SERIAL_ECHOLNPGM(__DATE__);
  650. #endif // STRING_CONFIG_H_AUTHOR
  651. #endif // STRING_DISTRIBUTION_DATE
  652. SERIAL_ECHO_START;
  653. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  654. SERIAL_ECHO(freeMemory());
  655. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  656. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  657. // Send "ok" after commands by default
  658. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  659. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  660. Config_RetrieveSettings();
  661. lcd_init();
  662. tp_init(); // Initialize temperature loop
  663. plan_init(); // Initialize planner;
  664. #if ENABLED(USE_WATCHDOG)
  665. watchdog_init();
  666. #endif
  667. st_init(); // Initialize stepper, this enables interrupts!
  668. setup_photpin();
  669. servo_init();
  670. #if HAS_CONTROLLERFAN
  671. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  672. #endif
  673. #if HAS_STEPPER_RESET
  674. enableStepperDrivers();
  675. #endif
  676. #if ENABLED(DIGIPOT_I2C)
  677. digipot_i2c_init();
  678. #endif
  679. #if ENABLED(Z_PROBE_SLED)
  680. pinMode(SLED_PIN, OUTPUT);
  681. digitalWrite(SLED_PIN, LOW); // turn it off
  682. #endif // Z_PROBE_SLED
  683. setup_homepin();
  684. #ifdef STAT_LED_RED
  685. pinMode(STAT_LED_RED, OUTPUT);
  686. digitalWrite(STAT_LED_RED, LOW); // turn it off
  687. #endif
  688. #ifdef STAT_LED_BLUE
  689. pinMode(STAT_LED_BLUE, OUTPUT);
  690. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  691. #endif
  692. }
  693. /**
  694. * The main Marlin program loop
  695. *
  696. * - Save or log commands to SD
  697. * - Process available commands (if not saving)
  698. * - Call heater manager
  699. * - Call inactivity manager
  700. * - Call endstop manager
  701. * - Call LCD update
  702. */
  703. void loop() {
  704. if (commands_in_queue < BUFSIZE) get_command();
  705. #if ENABLED(SDSUPPORT)
  706. card.checkautostart(false);
  707. #endif
  708. if (commands_in_queue) {
  709. #if ENABLED(SDSUPPORT)
  710. if (card.saving) {
  711. char* command = command_queue[cmd_queue_index_r];
  712. if (strstr_P(command, PSTR("M29"))) {
  713. // M29 closes the file
  714. card.closefile();
  715. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  716. ok_to_send();
  717. }
  718. else {
  719. // Write the string from the read buffer to SD
  720. card.write_command(command);
  721. if (card.logging)
  722. process_next_command(); // The card is saving because it's logging
  723. else
  724. ok_to_send();
  725. }
  726. }
  727. else
  728. process_next_command();
  729. #else
  730. process_next_command();
  731. #endif // SDSUPPORT
  732. commands_in_queue--;
  733. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  734. }
  735. checkHitEndstops();
  736. idle();
  737. }
  738. void gcode_line_error(const char* err, bool doFlush = true) {
  739. SERIAL_ERROR_START;
  740. serialprintPGM(err);
  741. SERIAL_ERRORLN(gcode_LastN);
  742. //Serial.println(gcode_N);
  743. if (doFlush) FlushSerialRequestResend();
  744. serial_count = 0;
  745. }
  746. /**
  747. * Add to the circular command queue the next command from:
  748. * - The command-injection queue (queued_commands_P)
  749. * - The active serial input (usually USB)
  750. * - The SD card file being actively printed
  751. */
  752. void get_command() {
  753. static char serial_line_buffer[MAX_CMD_SIZE];
  754. static boolean serial_comment_mode = false;
  755. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  756. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  757. static millis_t last_command_time = 0;
  758. millis_t ms = millis();
  759. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  760. SERIAL_ECHOLNPGM(MSG_WAIT);
  761. last_command_time = ms;
  762. }
  763. #endif
  764. //
  765. // Loop while serial characters are incoming and the queue is not full
  766. //
  767. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  768. char serial_char = MYSERIAL.read();
  769. //
  770. // If the character ends the line
  771. //
  772. if (serial_char == '\n' || serial_char == '\r') {
  773. serial_comment_mode = false; // end of line == end of comment
  774. if (!serial_count) return; // empty lines just exit
  775. serial_line_buffer[serial_count] = 0; // terminate string
  776. serial_count = 0; //reset buffer
  777. char* command = serial_line_buffer;
  778. while (*command == ' ') command++; // skip any leading spaces
  779. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  780. char* apos = strchr(command, '*');
  781. if (npos) {
  782. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  783. if (M110) {
  784. char* n2pos = strchr(command + 4, 'N');
  785. if (n2pos) npos = n2pos;
  786. }
  787. gcode_N = strtol(npos + 1, NULL, 10);
  788. if (gcode_N != gcode_LastN + 1 && !M110) {
  789. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  790. return;
  791. }
  792. if (apos) {
  793. byte checksum = 0, count = 0;
  794. while (command[count] != '*') checksum ^= command[count++];
  795. if (strtol(apos + 1, NULL, 10) != checksum) {
  796. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  797. return;
  798. }
  799. // if no errors, continue parsing
  800. }
  801. else {
  802. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  803. return;
  804. }
  805. gcode_LastN = gcode_N;
  806. // if no errors, continue parsing
  807. }
  808. else if (apos) { // No '*' without 'N'
  809. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  810. return;
  811. }
  812. // Movement commands alert when stopped
  813. if (IsStopped()) {
  814. char* gpos = strchr(command, 'G');
  815. if (gpos) {
  816. int codenum = strtol(gpos + 1, NULL, 10);
  817. switch (codenum) {
  818. case 0:
  819. case 1:
  820. case 2:
  821. case 3:
  822. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  823. LCD_MESSAGEPGM(MSG_STOPPED);
  824. break;
  825. }
  826. }
  827. }
  828. // If command was e-stop process now
  829. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  830. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  831. last_command_time = ms;
  832. #endif
  833. // Add the command to the queue
  834. _enqueuecommand(serial_line_buffer, true);
  835. }
  836. else if (serial_count >= MAX_CMD_SIZE - 1) {
  837. // Keep fetching, but ignore normal characters beyond the max length
  838. // The command will be injected when EOL is reached
  839. }
  840. else if (serial_char == '\\') { // Handle escapes
  841. if (MYSERIAL.available() > 0) {
  842. // if we have one more character, copy it over
  843. serial_char = MYSERIAL.read();
  844. serial_line_buffer[serial_count++] = serial_char;
  845. }
  846. // otherwise do nothing
  847. }
  848. else { // it's not a newline, carriage return or escape char
  849. if (serial_char == ';') serial_comment_mode = true;
  850. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  851. }
  852. } // queue has space, serial has data
  853. #if ENABLED(SDSUPPORT)
  854. static bool stop_buffering = false,
  855. sd_comment_mode = false;
  856. if (!card.sdprinting) return;
  857. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  858. // if it occurs, stop_buffering is triggered and the buffer is run dry.
  859. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  860. if (commands_in_queue == 0) stop_buffering = false;
  861. uint16_t sd_count = 0;
  862. bool card_eof = card.eof();
  863. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  864. int16_t n = card.get();
  865. char sd_char = (char)n;
  866. card_eof = card.eof();
  867. if (card_eof || n == -1
  868. || sd_char == '\n' || sd_char == '\r'
  869. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  870. ) {
  871. if (card_eof) {
  872. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  873. print_job_stop(true);
  874. char time[30];
  875. millis_t t = print_job_timer();
  876. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  877. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  878. SERIAL_ECHO_START;
  879. SERIAL_ECHOLN(time);
  880. lcd_setstatus(time, true);
  881. card.printingHasFinished();
  882. card.checkautostart(true);
  883. }
  884. if (sd_char == '#') stop_buffering = true;
  885. sd_comment_mode = false; //for new command
  886. if (!sd_count) continue; //skip empty lines
  887. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  888. sd_count = 0; //clear buffer
  889. _commit_command(false);
  890. }
  891. else if (sd_count >= MAX_CMD_SIZE - 1) {
  892. // Keep fetching, but ignore normal characters beyond the max length
  893. // The command will be injected when EOL is reached
  894. }
  895. else {
  896. if (sd_char == ';') sd_comment_mode = true;
  897. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  898. }
  899. }
  900. #endif // SDSUPPORT
  901. }
  902. bool code_has_value() {
  903. int i = 1;
  904. char c = seen_pointer[i];
  905. while (c == ' ') c = seen_pointer[++i];
  906. if (c == '-' || c == '+') c = seen_pointer[++i];
  907. if (c == '.') c = seen_pointer[++i];
  908. return (c >= '0' && c <= '9');
  909. }
  910. float code_value() {
  911. float ret;
  912. char* e = strchr(seen_pointer, 'E');
  913. if (e) {
  914. *e = 0;
  915. ret = strtod(seen_pointer + 1, NULL);
  916. *e = 'E';
  917. }
  918. else
  919. ret = strtod(seen_pointer + 1, NULL);
  920. return ret;
  921. }
  922. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  923. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  924. bool code_seen(char code) {
  925. seen_pointer = strchr(current_command_args, code);
  926. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  927. }
  928. #define DEFINE_PGM_READ_ANY(type, reader) \
  929. static inline type pgm_read_any(const type *p) \
  930. { return pgm_read_##reader##_near(p); }
  931. DEFINE_PGM_READ_ANY(float, float);
  932. DEFINE_PGM_READ_ANY(signed char, byte);
  933. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  934. static const PROGMEM type array##_P[3] = \
  935. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  936. static inline type array(int axis) \
  937. { return pgm_read_any(&array##_P[axis]); }
  938. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  939. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  940. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  941. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  942. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  943. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  944. #if ENABLED(DUAL_X_CARRIAGE)
  945. #define DXC_FULL_CONTROL_MODE 0
  946. #define DXC_AUTO_PARK_MODE 1
  947. #define DXC_DUPLICATION_MODE 2
  948. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  949. static float x_home_pos(int extruder) {
  950. if (extruder == 0)
  951. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  952. else
  953. // In dual carriage mode the extruder offset provides an override of the
  954. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  955. // This allow soft recalibration of the second extruder offset position without firmware reflash
  956. // (through the M218 command).
  957. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  958. }
  959. static int x_home_dir(int extruder) {
  960. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  961. }
  962. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  963. static bool active_extruder_parked = false; // used in mode 1 & 2
  964. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  965. static millis_t delayed_move_time = 0; // used in mode 1
  966. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  967. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  968. bool extruder_duplication_enabled = false; // used in mode 2
  969. #endif //DUAL_X_CARRIAGE
  970. #if ENABLED(DEBUG_LEVELING_FEATURE)
  971. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  972. SERIAL_ECHO(prefix);
  973. SERIAL_ECHOPAIR(": (", x);
  974. SERIAL_ECHOPAIR(", ", y);
  975. SERIAL_ECHOPAIR(", ", z);
  976. SERIAL_ECHOLNPGM(")");
  977. }
  978. void print_xyz(const char* prefix, const float xyz[]) {
  979. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  980. }
  981. #endif
  982. static void set_axis_is_at_home(AxisEnum axis) {
  983. #if ENABLED(DUAL_X_CARRIAGE)
  984. if (axis == X_AXIS) {
  985. if (active_extruder != 0) {
  986. current_position[X_AXIS] = x_home_pos(active_extruder);
  987. min_pos[X_AXIS] = X2_MIN_POS;
  988. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  989. return;
  990. }
  991. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  992. float xoff = home_offset[X_AXIS];
  993. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  994. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  995. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  996. return;
  997. }
  998. }
  999. #endif
  1000. #if ENABLED(SCARA)
  1001. if (axis == X_AXIS || axis == Y_AXIS) {
  1002. float homeposition[3];
  1003. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1004. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1005. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1006. // Works out real Homeposition angles using inverse kinematics,
  1007. // and calculates homing offset using forward kinematics
  1008. calculate_delta(homeposition);
  1009. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1010. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1011. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1012. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1013. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1014. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1015. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1016. calculate_SCARA_forward_Transform(delta);
  1017. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1018. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1019. current_position[axis] = delta[axis];
  1020. // SCARA home positions are based on configuration since the actual limits are determined by the
  1021. // inverse kinematic transform.
  1022. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1023. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1024. }
  1025. else
  1026. #endif
  1027. {
  1028. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1029. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1030. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1031. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1032. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  1033. #endif
  1034. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1035. if (marlin_debug_flags & DEBUG_LEVELING) {
  1036. SERIAL_ECHOPAIR("set_axis_is_at_home ", (unsigned long)axis);
  1037. SERIAL_ECHOPAIR(" > (home_offset[axis]==", home_offset[axis]);
  1038. print_xyz(") > current_position", current_position);
  1039. }
  1040. #endif
  1041. }
  1042. }
  1043. /**
  1044. * Some planner shorthand inline functions
  1045. */
  1046. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1047. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1048. int hbd = homing_bump_divisor[axis];
  1049. if (hbd < 1) {
  1050. hbd = 10;
  1051. SERIAL_ECHO_START;
  1052. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1053. }
  1054. feedrate = homing_feedrate[axis] / hbd;
  1055. }
  1056. inline void line_to_current_position() {
  1057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1058. }
  1059. inline void line_to_z(float zPosition) {
  1060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1061. }
  1062. inline void line_to_destination(float mm_m) {
  1063. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1064. }
  1065. inline void line_to_destination() {
  1066. line_to_destination(feedrate);
  1067. }
  1068. inline void sync_plan_position() {
  1069. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1070. }
  1071. #if ENABLED(DELTA) || ENABLED(SCARA)
  1072. inline void sync_plan_position_delta() {
  1073. calculate_delta(current_position);
  1074. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1075. }
  1076. #endif
  1077. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1078. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1079. static void setup_for_endstop_move() {
  1080. saved_feedrate = feedrate;
  1081. saved_feedrate_multiplier = feedrate_multiplier;
  1082. feedrate_multiplier = 100;
  1083. refresh_cmd_timeout();
  1084. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1085. if (marlin_debug_flags & DEBUG_LEVELING) {
  1086. SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1087. }
  1088. #endif
  1089. enable_endstops(true);
  1090. }
  1091. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1092. #if ENABLED(DELTA)
  1093. /**
  1094. * Calculate delta, start a line, and set current_position to destination
  1095. */
  1096. void prepare_move_raw() {
  1097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1098. if (marlin_debug_flags & DEBUG_LEVELING) {
  1099. print_xyz("prepare_move_raw > destination", destination);
  1100. }
  1101. #endif
  1102. refresh_cmd_timeout();
  1103. calculate_delta(destination);
  1104. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1105. set_current_to_destination();
  1106. }
  1107. #endif
  1108. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1109. #if DISABLED(DELTA)
  1110. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1111. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1112. planeNormal.debug("planeNormal");
  1113. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1114. //bedLevel.debug("bedLevel");
  1115. //plan_bed_level_matrix.debug("bed level before");
  1116. //vector_3 uncorrected_position = plan_get_position_mm();
  1117. //uncorrected_position.debug("position before");
  1118. vector_3 corrected_position = plan_get_position();
  1119. //corrected_position.debug("position after");
  1120. current_position[X_AXIS] = corrected_position.x;
  1121. current_position[Y_AXIS] = corrected_position.y;
  1122. current_position[Z_AXIS] = corrected_position.z;
  1123. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1124. if (marlin_debug_flags & DEBUG_LEVELING) {
  1125. print_xyz("set_bed_level_equation_lsq > current_position", current_position);
  1126. }
  1127. #endif
  1128. sync_plan_position();
  1129. }
  1130. #endif // !DELTA
  1131. #else // !AUTO_BED_LEVELING_GRID
  1132. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1133. plan_bed_level_matrix.set_to_identity();
  1134. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1135. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1136. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1137. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1138. if (planeNormal.z < 0) {
  1139. planeNormal.x = -planeNormal.x;
  1140. planeNormal.y = -planeNormal.y;
  1141. planeNormal.z = -planeNormal.z;
  1142. }
  1143. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1144. vector_3 corrected_position = plan_get_position();
  1145. current_position[X_AXIS] = corrected_position.x;
  1146. current_position[Y_AXIS] = corrected_position.y;
  1147. current_position[Z_AXIS] = corrected_position.z;
  1148. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1149. if (marlin_debug_flags & DEBUG_LEVELING) {
  1150. print_xyz("set_bed_level_equation_3pts > current_position", current_position);
  1151. }
  1152. #endif
  1153. sync_plan_position();
  1154. }
  1155. #endif // !AUTO_BED_LEVELING_GRID
  1156. static void run_z_probe() {
  1157. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1158. #if ENABLED(DELTA)
  1159. float start_z = current_position[Z_AXIS];
  1160. long start_steps = st_get_position(Z_AXIS);
  1161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1162. if (marlin_debug_flags & DEBUG_LEVELING) {
  1163. SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1164. }
  1165. #endif
  1166. // move down slowly until you find the bed
  1167. feedrate = homing_feedrate[Z_AXIS] / 4;
  1168. destination[Z_AXIS] = -10;
  1169. prepare_move_raw(); // this will also set_current_to_destination
  1170. st_synchronize();
  1171. endstops_hit_on_purpose(); // clear endstop hit flags
  1172. // we have to let the planner know where we are right now as it is not where we said to go.
  1173. long stop_steps = st_get_position(Z_AXIS);
  1174. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1175. current_position[Z_AXIS] = mm;
  1176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1177. if (marlin_debug_flags & DEBUG_LEVELING) {
  1178. print_xyz("run_z_probe (DELTA) 2 > current_position", current_position);
  1179. }
  1180. #endif
  1181. sync_plan_position_delta();
  1182. #else // !DELTA
  1183. plan_bed_level_matrix.set_to_identity();
  1184. feedrate = homing_feedrate[Z_AXIS];
  1185. // Move down until the Z probe (or endstop?) is triggered
  1186. float zPosition = -(Z_MAX_LENGTH + 10);
  1187. line_to_z(zPosition);
  1188. st_synchronize();
  1189. // Tell the planner where we ended up - Get this from the stepper handler
  1190. zPosition = st_get_axis_position_mm(Z_AXIS);
  1191. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1192. // move up the retract distance
  1193. zPosition += home_bump_mm(Z_AXIS);
  1194. line_to_z(zPosition);
  1195. st_synchronize();
  1196. endstops_hit_on_purpose(); // clear endstop hit flags
  1197. // move back down slowly to find bed
  1198. set_homing_bump_feedrate(Z_AXIS);
  1199. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1200. line_to_z(zPosition);
  1201. st_synchronize();
  1202. endstops_hit_on_purpose(); // clear endstop hit flags
  1203. // Get the current stepper position after bumping an endstop
  1204. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1205. sync_plan_position();
  1206. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1207. if (marlin_debug_flags & DEBUG_LEVELING) {
  1208. print_xyz("run_z_probe > current_position", current_position);
  1209. }
  1210. #endif
  1211. #endif // !DELTA
  1212. }
  1213. /**
  1214. * Plan a move to (X, Y, Z) and set the current_position
  1215. * The final current_position may not be the one that was requested
  1216. */
  1217. static void do_blocking_move_to(float x, float y, float z) {
  1218. float oldFeedRate = feedrate;
  1219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1220. if (marlin_debug_flags & DEBUG_LEVELING) {
  1221. print_xyz("do_blocking_move_to", x, y, z);
  1222. }
  1223. #endif
  1224. #if ENABLED(DELTA)
  1225. feedrate = XY_TRAVEL_SPEED;
  1226. destination[X_AXIS] = x;
  1227. destination[Y_AXIS] = y;
  1228. destination[Z_AXIS] = z;
  1229. prepare_move_raw(); // this will also set_current_to_destination
  1230. st_synchronize();
  1231. #else
  1232. feedrate = homing_feedrate[Z_AXIS];
  1233. current_position[Z_AXIS] = z;
  1234. line_to_current_position();
  1235. st_synchronize();
  1236. feedrate = xy_travel_speed;
  1237. current_position[X_AXIS] = x;
  1238. current_position[Y_AXIS] = y;
  1239. line_to_current_position();
  1240. st_synchronize();
  1241. #endif
  1242. feedrate = oldFeedRate;
  1243. }
  1244. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1245. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1246. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1247. inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); }
  1248. static void clean_up_after_endstop_move() {
  1249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1250. if (marlin_debug_flags & DEBUG_LEVELING) {
  1251. SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1252. }
  1253. #endif
  1254. endstops_not_homing();
  1255. feedrate = saved_feedrate;
  1256. feedrate_multiplier = saved_feedrate_multiplier;
  1257. refresh_cmd_timeout();
  1258. }
  1259. #if ENABLED(HAS_Z_MIN_PROBE)
  1260. static void deploy_z_probe() {
  1261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1262. if (marlin_debug_flags & DEBUG_LEVELING) {
  1263. print_xyz("deploy_z_probe > current_position", current_position);
  1264. }
  1265. #endif
  1266. if (z_probe_is_active) return;
  1267. #if HAS_SERVO_ENDSTOPS
  1268. // Engage Z Servo endstop if enabled
  1269. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1270. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1271. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1272. // If endstop is already false, the Z probe is deployed
  1273. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1274. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1275. if (z_probe_endstop)
  1276. #else
  1277. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1278. if (z_min_endstop)
  1279. #endif
  1280. {
  1281. // Move to the start position to initiate deployment
  1282. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1283. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1284. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1285. prepare_move_raw(); // this will also set_current_to_destination
  1286. // Move to engage deployment
  1287. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1288. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1289. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1290. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1291. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1292. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1293. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1294. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1295. prepare_move_raw();
  1296. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1297. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1298. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1299. // Move to trigger deployment
  1300. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1301. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1302. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1303. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1304. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1305. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1306. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1307. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1308. prepare_move_raw();
  1309. #endif
  1310. }
  1311. // Partially Home X,Y for safety
  1312. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1313. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1314. prepare_move_raw(); // this will also set_current_to_destination
  1315. st_synchronize();
  1316. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1317. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1318. if (z_probe_endstop)
  1319. #else
  1320. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1321. if (z_min_endstop)
  1322. #endif
  1323. {
  1324. if (IsRunning()) {
  1325. SERIAL_ERROR_START;
  1326. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1327. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1328. }
  1329. Stop();
  1330. }
  1331. #endif // Z_PROBE_ALLEN_KEY
  1332. #if ENABLED(FIX_MOUNTED_PROBE)
  1333. // Noting to be done. Just set z_probe_is_active
  1334. #endif
  1335. z_probe_is_active = true;
  1336. }
  1337. static void stow_z_probe(bool doRaise = true) {
  1338. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1339. if (marlin_debug_flags & DEBUG_LEVELING) {
  1340. print_xyz("stow_z_probe > current_position", current_position);
  1341. }
  1342. #endif
  1343. if (!z_probe_is_active) return;
  1344. #if HAS_SERVO_ENDSTOPS
  1345. // Retract Z Servo endstop if enabled
  1346. if (servo_endstop_id[Z_AXIS] >= 0) {
  1347. #if Z_RAISE_AFTER_PROBING > 0
  1348. if (doRaise) {
  1349. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1350. if (marlin_debug_flags & DEBUG_LEVELING) {
  1351. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1352. SERIAL_EOL;
  1353. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1354. SERIAL_EOL;
  1355. }
  1356. #endif
  1357. raise_z_after_probing(); // this also updates current_position
  1358. st_synchronize();
  1359. }
  1360. #endif
  1361. // Change the Z servo angle
  1362. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1363. }
  1364. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1365. // Move up for safety
  1366. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1367. #if Z_RAISE_AFTER_PROBING > 0
  1368. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1369. prepare_move_raw(); // this will also set_current_to_destination
  1370. #endif
  1371. // Move to the start position to initiate retraction
  1372. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1373. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1374. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1375. prepare_move_raw();
  1376. // Move the nozzle down to push the Z probe into retracted position
  1377. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1378. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1379. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1380. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1381. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1382. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1383. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1384. prepare_move_raw();
  1385. // Move up for safety
  1386. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1387. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1388. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1389. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1390. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1391. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1392. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1393. prepare_move_raw();
  1394. // Home XY for safety
  1395. feedrate = homing_feedrate[X_AXIS] / 2;
  1396. destination[X_AXIS] = 0;
  1397. destination[Y_AXIS] = 0;
  1398. prepare_move_raw(); // this will also set_current_to_destination
  1399. st_synchronize();
  1400. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1401. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1402. if (!z_probe_endstop)
  1403. #else
  1404. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1405. if (!z_min_endstop)
  1406. #endif
  1407. {
  1408. if (IsRunning()) {
  1409. SERIAL_ERROR_START;
  1410. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1411. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1412. }
  1413. Stop();
  1414. }
  1415. #endif // Z_PROBE_ALLEN_KEY
  1416. #if ENABLED(FIX_MOUNTED_PROBE)
  1417. // Noting to be done. Just set z_probe_is_active
  1418. #endif
  1419. z_probe_is_active = false;
  1420. }
  1421. #endif // HAS_Z_MIN_PROBE
  1422. enum ProbeAction {
  1423. ProbeStay = 0,
  1424. ProbeDeploy = _BV(0),
  1425. ProbeStow = _BV(1),
  1426. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1427. };
  1428. // Probe bed height at position (x,y), returns the measured z value
  1429. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1431. if (marlin_debug_flags & DEBUG_LEVELING) {
  1432. SERIAL_ECHOLNPGM("probe_pt >>>");
  1433. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1434. SERIAL_EOL;
  1435. print_xyz("> current_position", current_position);
  1436. }
  1437. #endif
  1438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1439. if (marlin_debug_flags & DEBUG_LEVELING) {
  1440. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1441. SERIAL_EOL;
  1442. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1443. SERIAL_EOL;
  1444. }
  1445. #endif
  1446. // Move Z up to the z_before height, then move the Z probe to the given XY
  1447. do_blocking_move_to_z(z_before); // this also updates current_position
  1448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1449. if (marlin_debug_flags & DEBUG_LEVELING) {
  1450. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1451. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1452. SERIAL_EOL;
  1453. }
  1454. #endif
  1455. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); // this also updates current_position
  1456. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1457. if (probe_action & ProbeDeploy) {
  1458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1459. if (marlin_debug_flags & DEBUG_LEVELING) {
  1460. SERIAL_ECHOLNPGM("> ProbeDeploy");
  1461. }
  1462. #endif
  1463. deploy_z_probe();
  1464. }
  1465. #endif
  1466. run_z_probe();
  1467. float measured_z = current_position[Z_AXIS];
  1468. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1469. if (probe_action & ProbeStow) {
  1470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1471. if (marlin_debug_flags & DEBUG_LEVELING) {
  1472. SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1473. }
  1474. #endif
  1475. stow_z_probe();
  1476. }
  1477. #endif
  1478. if (verbose_level > 2) {
  1479. SERIAL_PROTOCOLPGM("Bed X: ");
  1480. SERIAL_PROTOCOL_F(x, 3);
  1481. SERIAL_PROTOCOLPGM(" Y: ");
  1482. SERIAL_PROTOCOL_F(y, 3);
  1483. SERIAL_PROTOCOLPGM(" Z: ");
  1484. SERIAL_PROTOCOL_F(measured_z, 3);
  1485. SERIAL_EOL;
  1486. }
  1487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1488. if (marlin_debug_flags & DEBUG_LEVELING) {
  1489. SERIAL_ECHOLNPGM("<<< probe_pt");
  1490. }
  1491. #endif
  1492. return measured_z;
  1493. }
  1494. #if ENABLED(DELTA)
  1495. /**
  1496. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1497. */
  1498. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1499. if (bed_level[x][y] != 0.0) {
  1500. return; // Don't overwrite good values.
  1501. }
  1502. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1503. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1504. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1505. float median = c; // Median is robust (ignores outliers).
  1506. if (a < b) {
  1507. if (b < c) median = b;
  1508. if (c < a) median = a;
  1509. }
  1510. else { // b <= a
  1511. if (c < b) median = b;
  1512. if (a < c) median = a;
  1513. }
  1514. bed_level[x][y] = median;
  1515. }
  1516. // Fill in the unprobed points (corners of circular print surface)
  1517. // using linear extrapolation, away from the center.
  1518. static void extrapolate_unprobed_bed_level() {
  1519. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1520. for (int y = 0; y <= half; y++) {
  1521. for (int x = 0; x <= half; x++) {
  1522. if (x + y < 3) continue;
  1523. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1524. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1525. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1526. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1527. }
  1528. }
  1529. }
  1530. // Print calibration results for plotting or manual frame adjustment.
  1531. static void print_bed_level() {
  1532. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1533. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1534. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1535. SERIAL_PROTOCOLCHAR(' ');
  1536. }
  1537. SERIAL_EOL;
  1538. }
  1539. }
  1540. // Reset calibration results to zero.
  1541. void reset_bed_level() {
  1542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1543. if (marlin_debug_flags & DEBUG_LEVELING) {
  1544. SERIAL_ECHOLNPGM("reset_bed_level");
  1545. }
  1546. #endif
  1547. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1548. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1549. bed_level[x][y] = 0.0;
  1550. }
  1551. }
  1552. }
  1553. #endif // DELTA
  1554. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1555. void raise_z_for_servo() {
  1556. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1557. // The zprobe_zoffset is negative any switch below the nozzle, so
  1558. // multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1559. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1560. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1561. }
  1562. #endif
  1563. #endif // AUTO_BED_LEVELING_FEATURE
  1564. static void unknown_position_error() {
  1565. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1566. SERIAL_ECHO_START;
  1567. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1568. }
  1569. #if ENABLED(Z_PROBE_SLED)
  1570. #ifndef SLED_DOCKING_OFFSET
  1571. #define SLED_DOCKING_OFFSET 0
  1572. #endif
  1573. /**
  1574. * Method to dock/undock a sled designed by Charles Bell.
  1575. *
  1576. * dock[in] If true, move to MAX_X and engage the electromagnet
  1577. * offset[in] The additional distance to move to adjust docking location
  1578. */
  1579. static void dock_sled(bool dock, int offset = 0) {
  1580. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1581. if (marlin_debug_flags & DEBUG_LEVELING) {
  1582. SERIAL_ECHOPAIR("dock_sled", dock);
  1583. SERIAL_EOL;
  1584. }
  1585. #endif
  1586. if (z_probe_is_active == dock) return;
  1587. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1588. unknown_position_error();
  1589. return;
  1590. }
  1591. float oldXpos = current_position[X_AXIS]; // save x position
  1592. if (dock) {
  1593. #if Z_RAISE_AFTER_PROBING > 0
  1594. raise_z_after_probing(); // raise Z
  1595. #endif
  1596. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1597. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1598. }
  1599. else {
  1600. float z_loc = current_position[Z_AXIS];
  1601. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1602. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1603. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1604. }
  1605. do_blocking_move_to_x(oldXpos); // return to position before docking
  1606. z_probe_is_active = dock;
  1607. }
  1608. #endif // Z_PROBE_SLED
  1609. /**
  1610. * Home an individual axis
  1611. */
  1612. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1613. static void homeaxis(AxisEnum axis) {
  1614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1615. if (marlin_debug_flags & DEBUG_LEVELING) {
  1616. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1617. SERIAL_CHAR(')');
  1618. SERIAL_EOL;
  1619. }
  1620. #endif
  1621. #define HOMEAXIS_DO(LETTER) \
  1622. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1623. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1624. int axis_home_dir =
  1625. #if ENABLED(DUAL_X_CARRIAGE)
  1626. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1627. #endif
  1628. home_dir(axis);
  1629. // Set the axis position as setup for the move
  1630. current_position[axis] = 0;
  1631. sync_plan_position();
  1632. #if ENABLED(Z_PROBE_SLED)
  1633. // Get Probe
  1634. if (axis == Z_AXIS) {
  1635. if (axis_home_dir < 0) dock_sled(false);
  1636. }
  1637. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1638. // Deploy a Z probe if there is one, and homing towards the bed
  1639. if (axis == Z_AXIS) {
  1640. if (axis_home_dir < 0) deploy_z_probe();
  1641. }
  1642. #endif
  1643. #if HAS_SERVO_ENDSTOPS
  1644. // Engage Servo endstop if enabled
  1645. if (axis != Z_AXIS && servo_endstop_id[axis] >= 0) {
  1646. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1647. z_probe_is_active = true;
  1648. }
  1649. #endif
  1650. // Set a flag for Z motor locking
  1651. #if ENABLED(Z_DUAL_ENDSTOPS)
  1652. if (axis == Z_AXIS) In_Homing_Process(true);
  1653. #endif
  1654. // Move towards the endstop until an endstop is triggered
  1655. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1656. feedrate = homing_feedrate[axis];
  1657. line_to_destination();
  1658. st_synchronize();
  1659. // Set the axis position as setup for the move
  1660. current_position[axis] = 0;
  1661. sync_plan_position();
  1662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1663. if (marlin_debug_flags & DEBUG_LEVELING) {
  1664. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1665. }
  1666. #endif
  1667. enable_endstops(false); // Disable endstops while moving away
  1668. // Move away from the endstop by the axis HOME_BUMP_MM
  1669. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1670. line_to_destination();
  1671. st_synchronize();
  1672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1673. if (marlin_debug_flags & DEBUG_LEVELING) {
  1674. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1675. }
  1676. #endif
  1677. enable_endstops(true); // Enable endstops for next homing move
  1678. // Slow down the feedrate for the next move
  1679. set_homing_bump_feedrate(axis);
  1680. // Move slowly towards the endstop until triggered
  1681. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1682. line_to_destination();
  1683. st_synchronize();
  1684. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1685. if (marlin_debug_flags & DEBUG_LEVELING) {
  1686. print_xyz("> TRIGGER ENDSTOP > current_position", current_position);
  1687. }
  1688. #endif
  1689. #if ENABLED(Z_DUAL_ENDSTOPS)
  1690. if (axis == Z_AXIS) {
  1691. float adj = fabs(z_endstop_adj);
  1692. bool lockZ1;
  1693. if (axis_home_dir > 0) {
  1694. adj = -adj;
  1695. lockZ1 = (z_endstop_adj > 0);
  1696. }
  1697. else
  1698. lockZ1 = (z_endstop_adj < 0);
  1699. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1700. sync_plan_position();
  1701. // Move to the adjusted endstop height
  1702. feedrate = homing_feedrate[axis];
  1703. destination[Z_AXIS] = adj;
  1704. line_to_destination();
  1705. st_synchronize();
  1706. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1707. In_Homing_Process(false);
  1708. } // Z_AXIS
  1709. #endif
  1710. #if ENABLED(DELTA)
  1711. // retrace by the amount specified in endstop_adj
  1712. if (endstop_adj[axis] * axis_home_dir < 0) {
  1713. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1714. if (marlin_debug_flags & DEBUG_LEVELING) {
  1715. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1716. }
  1717. #endif
  1718. enable_endstops(false); // Disable endstops while moving away
  1719. sync_plan_position();
  1720. destination[axis] = endstop_adj[axis];
  1721. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1722. if (marlin_debug_flags & DEBUG_LEVELING) {
  1723. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1724. print_xyz(" > destination", destination);
  1725. }
  1726. #endif
  1727. line_to_destination();
  1728. st_synchronize();
  1729. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1730. if (marlin_debug_flags & DEBUG_LEVELING) {
  1731. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1732. }
  1733. #endif
  1734. enable_endstops(true); // Enable endstops for next homing move
  1735. }
  1736. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1737. else {
  1738. if (marlin_debug_flags & DEBUG_LEVELING) {
  1739. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1740. SERIAL_EOL;
  1741. }
  1742. }
  1743. #endif
  1744. #endif
  1745. // Set the axis position to its home position (plus home offsets)
  1746. set_axis_is_at_home(axis);
  1747. sync_plan_position();
  1748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1749. if (marlin_debug_flags & DEBUG_LEVELING) {
  1750. print_xyz("> AFTER set_axis_is_at_home > current_position", current_position);
  1751. }
  1752. #endif
  1753. destination[axis] = current_position[axis];
  1754. feedrate = 0.0;
  1755. endstops_hit_on_purpose(); // clear endstop hit flags
  1756. axis_known_position[axis] = true;
  1757. axis_homed[axis] = true;
  1758. #if ENABLED(Z_PROBE_SLED)
  1759. // bring Z probe back
  1760. if (axis == Z_AXIS) {
  1761. if (axis_home_dir < 0) dock_sled(true);
  1762. }
  1763. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1764. // Deploy a Z probe if there is one, and homing towards the bed
  1765. if (axis == Z_AXIS) {
  1766. if (axis_home_dir < 0) {
  1767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1768. if (marlin_debug_flags & DEBUG_LEVELING) {
  1769. SERIAL_ECHOLNPGM("> SERVO_LEVELING > stow_z_probe");
  1770. }
  1771. #endif
  1772. stow_z_probe();
  1773. }
  1774. }
  1775. else
  1776. #endif
  1777. {
  1778. #if HAS_SERVO_ENDSTOPS
  1779. // Retract Servo endstop if enabled
  1780. if (servo_endstop_id[axis] >= 0) {
  1781. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1782. if (marlin_debug_flags & DEBUG_LEVELING) {
  1783. SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1784. }
  1785. #endif
  1786. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1787. z_probe_is_active = false;
  1788. }
  1789. #endif
  1790. }
  1791. }
  1792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1793. if (marlin_debug_flags & DEBUG_LEVELING) {
  1794. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1795. SERIAL_CHAR(')');
  1796. SERIAL_EOL;
  1797. }
  1798. #endif
  1799. }
  1800. #if ENABLED(FWRETRACT)
  1801. void retract(bool retracting, bool swapping = false) {
  1802. if (retracting == retracted[active_extruder]) return;
  1803. float oldFeedrate = feedrate;
  1804. set_destination_to_current();
  1805. if (retracting) {
  1806. feedrate = retract_feedrate * 60;
  1807. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1808. plan_set_e_position(current_position[E_AXIS]);
  1809. prepare_move();
  1810. if (retract_zlift > 0.01) {
  1811. current_position[Z_AXIS] -= retract_zlift;
  1812. #if ENABLED(DELTA)
  1813. sync_plan_position_delta();
  1814. #else
  1815. sync_plan_position();
  1816. #endif
  1817. prepare_move();
  1818. }
  1819. }
  1820. else {
  1821. if (retract_zlift > 0.01) {
  1822. current_position[Z_AXIS] += retract_zlift;
  1823. #if ENABLED(DELTA)
  1824. sync_plan_position_delta();
  1825. #else
  1826. sync_plan_position();
  1827. #endif
  1828. //prepare_move();
  1829. }
  1830. feedrate = retract_recover_feedrate * 60;
  1831. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1832. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1833. plan_set_e_position(current_position[E_AXIS]);
  1834. prepare_move();
  1835. }
  1836. feedrate = oldFeedrate;
  1837. retracted[active_extruder] = retracting;
  1838. } // retract()
  1839. #endif // FWRETRACT
  1840. /**
  1841. *
  1842. * G-Code Handler functions
  1843. *
  1844. */
  1845. /**
  1846. * Set XYZE destination and feedrate from the current GCode command
  1847. *
  1848. * - Set destination from included axis codes
  1849. * - Set to current for missing axis codes
  1850. * - Set the feedrate, if included
  1851. */
  1852. void gcode_get_destination() {
  1853. for (int i = 0; i < NUM_AXIS; i++) {
  1854. if (code_seen(axis_codes[i]))
  1855. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1856. else
  1857. destination[i] = current_position[i];
  1858. }
  1859. if (code_seen('F')) {
  1860. float next_feedrate = code_value();
  1861. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1862. }
  1863. }
  1864. void unknown_command_error() {
  1865. SERIAL_ECHO_START;
  1866. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1867. SERIAL_ECHO(current_command);
  1868. SERIAL_ECHOPGM("\"\n");
  1869. }
  1870. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1871. void host_keepalive() {
  1872. millis_t ms = millis();
  1873. if (busy_state != NOT_BUSY) {
  1874. if (ms < next_busy_signal_ms) return;
  1875. switch (busy_state) {
  1876. case NOT_BUSY:
  1877. break;
  1878. case IN_HANDLER:
  1879. case IN_PROCESS:
  1880. SERIAL_ECHO_START;
  1881. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1882. break;
  1883. case PAUSED_FOR_USER:
  1884. SERIAL_ECHO_START;
  1885. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1886. break;
  1887. case PAUSED_FOR_INPUT:
  1888. SERIAL_ECHO_START;
  1889. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1890. break;
  1891. }
  1892. }
  1893. next_busy_signal_ms = ms + 2000UL;
  1894. }
  1895. #endif //HOST_KEEPALIVE_FEATURE
  1896. /**
  1897. * G0, G1: Coordinated movement of X Y Z E axes
  1898. */
  1899. inline void gcode_G0_G1() {
  1900. if (IsRunning()) {
  1901. gcode_get_destination(); // For X Y Z E F
  1902. #if ENABLED(FWRETRACT)
  1903. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1904. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1905. // Is this move an attempt to retract or recover?
  1906. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1907. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1908. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1909. retract(!retracted[active_extruder]);
  1910. return;
  1911. }
  1912. }
  1913. #endif //FWRETRACT
  1914. prepare_move();
  1915. }
  1916. }
  1917. /**
  1918. * G2: Clockwise Arc
  1919. * G3: Counterclockwise Arc
  1920. */
  1921. inline void gcode_G2_G3(bool clockwise) {
  1922. if (IsRunning()) {
  1923. #if ENABLED(SF_ARC_FIX)
  1924. bool relative_mode_backup = relative_mode;
  1925. relative_mode = true;
  1926. #endif
  1927. gcode_get_destination();
  1928. #if ENABLED(SF_ARC_FIX)
  1929. relative_mode = relative_mode_backup;
  1930. #endif
  1931. // Center of arc as offset from current_position
  1932. float arc_offset[2] = {
  1933. code_seen('I') ? code_value() : 0,
  1934. code_seen('J') ? code_value() : 0
  1935. };
  1936. // Send an arc to the planner
  1937. plan_arc(destination, arc_offset, clockwise);
  1938. refresh_cmd_timeout();
  1939. }
  1940. }
  1941. /**
  1942. * G4: Dwell S<seconds> or P<milliseconds>
  1943. */
  1944. inline void gcode_G4() {
  1945. millis_t codenum = 0;
  1946. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1947. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1948. st_synchronize();
  1949. refresh_cmd_timeout();
  1950. codenum += previous_cmd_ms; // keep track of when we started waiting
  1951. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1952. while (millis() < codenum) idle();
  1953. }
  1954. #if ENABLED(FWRETRACT)
  1955. /**
  1956. * G10 - Retract filament according to settings of M207
  1957. * G11 - Recover filament according to settings of M208
  1958. */
  1959. inline void gcode_G10_G11(bool doRetract=false) {
  1960. #if EXTRUDERS > 1
  1961. if (doRetract) {
  1962. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1963. }
  1964. #endif
  1965. retract(doRetract
  1966. #if EXTRUDERS > 1
  1967. , retracted_swap[active_extruder]
  1968. #endif
  1969. );
  1970. }
  1971. #endif //FWRETRACT
  1972. /**
  1973. * G28: Home all axes according to settings
  1974. *
  1975. * Parameters
  1976. *
  1977. * None Home to all axes with no parameters.
  1978. * With QUICK_HOME enabled XY will home together, then Z.
  1979. *
  1980. * Cartesian parameters
  1981. *
  1982. * X Home to the X endstop
  1983. * Y Home to the Y endstop
  1984. * Z Home to the Z endstop
  1985. *
  1986. */
  1987. inline void gcode_G28() {
  1988. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1989. if (marlin_debug_flags & DEBUG_LEVELING) {
  1990. SERIAL_ECHOLNPGM("gcode_G28 >>>");
  1991. }
  1992. #endif
  1993. // Wait for planner moves to finish!
  1994. st_synchronize();
  1995. // For auto bed leveling, clear the level matrix
  1996. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1997. plan_bed_level_matrix.set_to_identity();
  1998. #if ENABLED(DELTA)
  1999. reset_bed_level();
  2000. #endif
  2001. #endif
  2002. // For manual bed leveling deactivate the matrix temporarily
  2003. #if ENABLED(MESH_BED_LEVELING)
  2004. uint8_t mbl_was_active = mbl.active;
  2005. mbl.active = 0;
  2006. #endif
  2007. setup_for_endstop_move();
  2008. set_destination_to_current(); // Directly after a reset this is all 0. Later we get a hint if we have to raise z or not.
  2009. feedrate = 0.0;
  2010. #if ENABLED(DELTA)
  2011. // A delta can only safely home all axis at the same time
  2012. // all axis have to home at the same time
  2013. // Pretend the current position is 0,0,0
  2014. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2015. sync_plan_position();
  2016. // Move all carriages up together until the first endstop is hit.
  2017. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2018. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2019. line_to_destination();
  2020. st_synchronize();
  2021. endstops_hit_on_purpose(); // clear endstop hit flags
  2022. // Destination reached
  2023. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2024. // take care of back off and rehome now we are all at the top
  2025. HOMEAXIS(X);
  2026. HOMEAXIS(Y);
  2027. HOMEAXIS(Z);
  2028. sync_plan_position_delta();
  2029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2030. if (marlin_debug_flags & DEBUG_LEVELING) {
  2031. print_xyz("(DELTA) > current_position", current_position);
  2032. }
  2033. #endif
  2034. #else // NOT DELTA
  2035. bool homeX = code_seen(axis_codes[X_AXIS]),
  2036. homeY = code_seen(axis_codes[Y_AXIS]),
  2037. homeZ = code_seen(axis_codes[Z_AXIS]);
  2038. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2039. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2040. if (home_all_axis || homeZ) {
  2041. HOMEAXIS(Z);
  2042. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2043. if (marlin_debug_flags & DEBUG_LEVELING) {
  2044. print_xyz("> HOMEAXIS(Z) > current_position", current_position);
  2045. }
  2046. #endif
  2047. }
  2048. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2049. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2050. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2051. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2052. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2053. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2054. if (marlin_debug_flags & DEBUG_LEVELING) {
  2055. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  2056. SERIAL_EOL;
  2057. print_xyz("> (home_all_axis || homeZ) > current_position", current_position);
  2058. print_xyz("> (home_all_axis || homeZ) > destination", destination);
  2059. }
  2060. #endif
  2061. line_to_destination();
  2062. st_synchronize();
  2063. // Update the current Z position even if it currently not real from Z-home
  2064. // otherwise each call to line_to_destination() will want to move Z-axis
  2065. // by MIN_Z_HEIGHT_FOR_HOMING.
  2066. current_position[Z_AXIS] = destination[Z_AXIS];
  2067. }
  2068. #endif
  2069. #if ENABLED(QUICK_HOME)
  2070. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2071. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2072. #if ENABLED(DUAL_X_CARRIAGE)
  2073. int x_axis_home_dir = x_home_dir(active_extruder);
  2074. extruder_duplication_enabled = false;
  2075. #else
  2076. int x_axis_home_dir = home_dir(X_AXIS);
  2077. #endif
  2078. sync_plan_position();
  2079. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2080. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2081. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2082. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2083. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2084. line_to_destination();
  2085. st_synchronize();
  2086. set_axis_is_at_home(X_AXIS);
  2087. set_axis_is_at_home(Y_AXIS);
  2088. sync_plan_position();
  2089. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2090. if (marlin_debug_flags & DEBUG_LEVELING) {
  2091. print_xyz("> QUICK_HOME > current_position 1", current_position);
  2092. }
  2093. #endif
  2094. destination[X_AXIS] = current_position[X_AXIS];
  2095. destination[Y_AXIS] = current_position[Y_AXIS];
  2096. line_to_destination();
  2097. feedrate = 0.0;
  2098. st_synchronize();
  2099. endstops_hit_on_purpose(); // clear endstop hit flags
  2100. current_position[X_AXIS] = destination[X_AXIS];
  2101. current_position[Y_AXIS] = destination[Y_AXIS];
  2102. #if DISABLED(SCARA)
  2103. current_position[Z_AXIS] = destination[Z_AXIS];
  2104. #endif
  2105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2106. if (marlin_debug_flags & DEBUG_LEVELING) {
  2107. print_xyz("> QUICK_HOME > current_position 2", current_position);
  2108. }
  2109. #endif
  2110. }
  2111. #endif // QUICK_HOME
  2112. #if ENABLED(HOME_Y_BEFORE_X)
  2113. // Home Y
  2114. if (home_all_axis || homeY) HOMEAXIS(Y);
  2115. #endif
  2116. // Home X
  2117. if (home_all_axis || homeX) {
  2118. #if ENABLED(DUAL_X_CARRIAGE)
  2119. int tmp_extruder = active_extruder;
  2120. extruder_duplication_enabled = false;
  2121. active_extruder = !active_extruder;
  2122. HOMEAXIS(X);
  2123. inactive_extruder_x_pos = current_position[X_AXIS];
  2124. active_extruder = tmp_extruder;
  2125. HOMEAXIS(X);
  2126. // reset state used by the different modes
  2127. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2128. delayed_move_time = 0;
  2129. active_extruder_parked = true;
  2130. #else
  2131. HOMEAXIS(X);
  2132. #endif
  2133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2134. if (marlin_debug_flags & DEBUG_LEVELING) {
  2135. print_xyz("> homeX", current_position);
  2136. }
  2137. #endif
  2138. }
  2139. #if DISABLED(HOME_Y_BEFORE_X)
  2140. // Home Y
  2141. if (home_all_axis || homeY) {
  2142. HOMEAXIS(Y);
  2143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2144. if (marlin_debug_flags & DEBUG_LEVELING) {
  2145. print_xyz("> homeY", current_position);
  2146. }
  2147. #endif
  2148. }
  2149. #endif
  2150. // Home Z last if homing towards the bed
  2151. #if Z_HOME_DIR < 0
  2152. if (home_all_axis || homeZ) {
  2153. #if ENABLED(Z_SAFE_HOMING)
  2154. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2155. if (marlin_debug_flags & DEBUG_LEVELING) {
  2156. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2157. }
  2158. #endif
  2159. if (home_all_axis) {
  2160. // At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2161. // No need to move Z any more as this height should already be safe
  2162. // enough to reach Z_SAFE_HOMING XY positions.
  2163. // Just make sure the planner is in sync.
  2164. sync_plan_position();
  2165. //
  2166. // Set the Z probe (or just the nozzle) destination to the safe homing point
  2167. //
  2168. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2169. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2170. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2171. feedrate = XY_TRAVEL_SPEED;
  2172. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2173. if (marlin_debug_flags & DEBUG_LEVELING) {
  2174. print_xyz("> Z_SAFE_HOMING > home_all_axis > current_position", current_position);
  2175. print_xyz("> Z_SAFE_HOMING > home_all_axis > destination", destination);
  2176. }
  2177. #endif
  2178. // Move in the XY plane
  2179. line_to_destination();
  2180. st_synchronize();
  2181. // Update the current positions for XY, Z is still at least at
  2182. // MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2183. current_position[X_AXIS] = destination[X_AXIS];
  2184. current_position[Y_AXIS] = destination[Y_AXIS];
  2185. // Home the Z axis
  2186. HOMEAXIS(Z);
  2187. }
  2188. else if (homeZ) { // Don't need to Home Z twice
  2189. // Let's see if X and Y are homed
  2190. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  2191. // Make sure the Z probe is within the physical limits
  2192. // NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
  2193. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2194. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2195. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2196. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2197. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2198. // Home the Z axis
  2199. HOMEAXIS(Z);
  2200. }
  2201. else {
  2202. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2203. SERIAL_ECHO_START;
  2204. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2205. }
  2206. }
  2207. else {
  2208. unknown_position_error();
  2209. }
  2210. } // !home_all_axes && homeZ
  2211. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2212. if (marlin_debug_flags & DEBUG_LEVELING) {
  2213. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2214. }
  2215. #endif
  2216. #else // !Z_SAFE_HOMING
  2217. HOMEAXIS(Z);
  2218. #endif // !Z_SAFE_HOMING
  2219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2220. if (marlin_debug_flags & DEBUG_LEVELING) {
  2221. print_xyz("> (home_all_axis || homeZ) > final", current_position);
  2222. }
  2223. #endif
  2224. } // home_all_axis || homeZ
  2225. #endif // Z_HOME_DIR < 0
  2226. sync_plan_position();
  2227. #endif // else DELTA
  2228. #if ENABLED(SCARA)
  2229. sync_plan_position_delta();
  2230. #endif
  2231. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2232. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2233. if (marlin_debug_flags & DEBUG_LEVELING) {
  2234. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2235. }
  2236. #endif
  2237. enable_endstops(false);
  2238. #endif
  2239. // For manual leveling move back to 0,0
  2240. #if ENABLED(MESH_BED_LEVELING)
  2241. if (mbl_was_active) {
  2242. current_position[X_AXIS] = mbl.get_x(0);
  2243. current_position[Y_AXIS] = mbl.get_y(0);
  2244. set_destination_to_current();
  2245. feedrate = homing_feedrate[X_AXIS];
  2246. line_to_destination();
  2247. st_synchronize();
  2248. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2249. sync_plan_position();
  2250. mbl.active = 1;
  2251. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2252. if (marlin_debug_flags & DEBUG_LEVELING) {
  2253. print_xyz("mbl_was_active > current_position", current_position);
  2254. }
  2255. #endif
  2256. }
  2257. #endif
  2258. feedrate = saved_feedrate;
  2259. feedrate_multiplier = saved_feedrate_multiplier;
  2260. refresh_cmd_timeout();
  2261. endstops_hit_on_purpose(); // clear endstop hit flags
  2262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2263. if (marlin_debug_flags & DEBUG_LEVELING) {
  2264. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2265. }
  2266. #endif
  2267. gcode_M114(); // Send end position to RepetierHost
  2268. }
  2269. #if ENABLED(MESH_BED_LEVELING)
  2270. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  2271. /**
  2272. * G29: Mesh-based Z probe, probes a grid and produces a
  2273. * mesh to compensate for variable bed height
  2274. *
  2275. * Parameters With MESH_BED_LEVELING:
  2276. *
  2277. * S0 Produce a mesh report
  2278. * S1 Start probing mesh points
  2279. * S2 Probe the next mesh point
  2280. * S3 Xn Yn Zn.nn Manually modify a single point
  2281. *
  2282. * The S0 report the points as below
  2283. *
  2284. * +----> X-axis
  2285. * |
  2286. * |
  2287. * v Y-axis
  2288. *
  2289. */
  2290. inline void gcode_G29() {
  2291. static int probe_point = -1;
  2292. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2293. if (state < 0 || state > 3) {
  2294. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  2295. return;
  2296. }
  2297. int ix, iy;
  2298. float z;
  2299. switch (state) {
  2300. case MeshReport:
  2301. if (mbl.active) {
  2302. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2303. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2304. SERIAL_PROTOCOLCHAR(',');
  2305. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2306. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2307. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2308. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2309. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2310. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2311. SERIAL_PROTOCOLPGM(" ");
  2312. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2313. }
  2314. SERIAL_EOL;
  2315. }
  2316. }
  2317. else
  2318. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2319. break;
  2320. case MeshStart:
  2321. mbl.reset();
  2322. probe_point = 0;
  2323. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2324. break;
  2325. case MeshNext:
  2326. if (probe_point < 0) {
  2327. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2328. return;
  2329. }
  2330. if (probe_point == 0) {
  2331. // Set Z to a positive value before recording the first Z.
  2332. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2333. sync_plan_position();
  2334. }
  2335. else {
  2336. // For others, save the Z of the previous point, then raise Z again.
  2337. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2338. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2339. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2340. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2341. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2342. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2343. st_synchronize();
  2344. }
  2345. // Is there another point to sample? Move there.
  2346. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2347. ix = probe_point % (MESH_NUM_X_POINTS);
  2348. iy = probe_point / (MESH_NUM_X_POINTS);
  2349. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2350. current_position[X_AXIS] = mbl.get_x(ix);
  2351. current_position[Y_AXIS] = mbl.get_y(iy);
  2352. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2353. st_synchronize();
  2354. probe_point++;
  2355. }
  2356. else {
  2357. // After recording the last point, activate the mbl and home
  2358. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2359. probe_point = -1;
  2360. mbl.active = 1;
  2361. enqueue_and_echo_commands_P(PSTR("G28"));
  2362. }
  2363. break;
  2364. case MeshSet:
  2365. if (code_seen('X')) {
  2366. ix = code_value_long() - 1;
  2367. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2368. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2369. return;
  2370. }
  2371. }
  2372. else {
  2373. SERIAL_PROTOCOLPGM("X not entered.\n");
  2374. return;
  2375. }
  2376. if (code_seen('Y')) {
  2377. iy = code_value_long() - 1;
  2378. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2379. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2380. return;
  2381. }
  2382. }
  2383. else {
  2384. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2385. return;
  2386. }
  2387. if (code_seen('Z')) {
  2388. z = code_value();
  2389. }
  2390. else {
  2391. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2392. return;
  2393. }
  2394. mbl.z_values[iy][ix] = z;
  2395. } // switch(state)
  2396. }
  2397. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2398. void out_of_range_error(const char* p_edge) {
  2399. SERIAL_PROTOCOLPGM("?Probe ");
  2400. serialprintPGM(p_edge);
  2401. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2402. }
  2403. /**
  2404. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2405. * Will fail if the printer has not been homed with G28.
  2406. *
  2407. * Enhanced G29 Auto Bed Leveling Probe Routine
  2408. *
  2409. * Parameters With AUTO_BED_LEVELING_GRID:
  2410. *
  2411. * P Set the size of the grid that will be probed (P x P points).
  2412. * Not supported by non-linear delta printer bed leveling.
  2413. * Example: "G29 P4"
  2414. *
  2415. * S Set the XY travel speed between probe points (in mm/min)
  2416. *
  2417. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2418. * or clean the rotation Matrix. Useful to check the topology
  2419. * after a first run of G29.
  2420. *
  2421. * V Set the verbose level (0-4). Example: "G29 V3"
  2422. *
  2423. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2424. * This is useful for manual bed leveling and finding flaws in the bed (to
  2425. * assist with part placement).
  2426. * Not supported by non-linear delta printer bed leveling.
  2427. *
  2428. * F Set the Front limit of the probing grid
  2429. * B Set the Back limit of the probing grid
  2430. * L Set the Left limit of the probing grid
  2431. * R Set the Right limit of the probing grid
  2432. *
  2433. * Global Parameters:
  2434. *
  2435. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2436. * Include "E" to engage/disengage the Z probe for each sample.
  2437. * There's no extra effect if you have a fixed Z probe.
  2438. * Usage: "G29 E" or "G29 e"
  2439. *
  2440. */
  2441. inline void gcode_G29() {
  2442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2443. if (marlin_debug_flags & DEBUG_LEVELING) {
  2444. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2445. }
  2446. #endif
  2447. // Don't allow auto-leveling without homing first
  2448. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2449. unknown_position_error();
  2450. return;
  2451. }
  2452. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2453. if (verbose_level < 0 || verbose_level > 4) {
  2454. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2455. return;
  2456. }
  2457. bool dryrun = code_seen('D'),
  2458. deploy_probe_for_each_reading = code_seen('E');
  2459. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2460. #if DISABLED(DELTA)
  2461. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2462. #endif
  2463. if (verbose_level > 0) {
  2464. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2465. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2466. }
  2467. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2468. #if DISABLED(DELTA)
  2469. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2470. if (auto_bed_leveling_grid_points < 2) {
  2471. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2472. return;
  2473. }
  2474. #endif
  2475. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2476. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2477. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2478. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2479. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2480. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2481. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2482. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2483. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2484. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2485. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2486. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2487. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2488. if (left_out || right_out || front_out || back_out) {
  2489. if (left_out) {
  2490. out_of_range_error(PSTR("(L)eft"));
  2491. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2492. }
  2493. if (right_out) {
  2494. out_of_range_error(PSTR("(R)ight"));
  2495. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2496. }
  2497. if (front_out) {
  2498. out_of_range_error(PSTR("(F)ront"));
  2499. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2500. }
  2501. if (back_out) {
  2502. out_of_range_error(PSTR("(B)ack"));
  2503. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2504. }
  2505. return;
  2506. }
  2507. #endif // AUTO_BED_LEVELING_GRID
  2508. #if ENABLED(Z_PROBE_SLED)
  2509. dock_sled(false); // engage (un-dock) the Z probe
  2510. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2511. deploy_z_probe();
  2512. #endif
  2513. st_synchronize();
  2514. if (!dryrun) {
  2515. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2516. plan_bed_level_matrix.set_to_identity();
  2517. #if ENABLED(DELTA)
  2518. reset_bed_level();
  2519. #else //!DELTA
  2520. //vector_3 corrected_position = plan_get_position_mm();
  2521. //corrected_position.debug("position before G29");
  2522. vector_3 uncorrected_position = plan_get_position();
  2523. //uncorrected_position.debug("position during G29");
  2524. current_position[X_AXIS] = uncorrected_position.x;
  2525. current_position[Y_AXIS] = uncorrected_position.y;
  2526. current_position[Z_AXIS] = uncorrected_position.z;
  2527. sync_plan_position();
  2528. #endif // !DELTA
  2529. }
  2530. setup_for_endstop_move();
  2531. feedrate = homing_feedrate[Z_AXIS];
  2532. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2533. // probe at the points of a lattice grid
  2534. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2535. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2536. #if ENABLED(DELTA)
  2537. delta_grid_spacing[0] = xGridSpacing;
  2538. delta_grid_spacing[1] = yGridSpacing;
  2539. float z_offset = zprobe_zoffset;
  2540. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2541. #else // !DELTA
  2542. // solve the plane equation ax + by + d = z
  2543. // A is the matrix with rows [x y 1] for all the probed points
  2544. // B is the vector of the Z positions
  2545. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2546. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2547. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2548. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2549. eqnBVector[abl2], // "B" vector of Z points
  2550. mean = 0.0;
  2551. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2552. #endif // !DELTA
  2553. int probePointCounter = 0;
  2554. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2555. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2556. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2557. int xStart, xStop, xInc;
  2558. if (zig) {
  2559. xStart = 0;
  2560. xStop = auto_bed_leveling_grid_points;
  2561. xInc = 1;
  2562. }
  2563. else {
  2564. xStart = auto_bed_leveling_grid_points - 1;
  2565. xStop = -1;
  2566. xInc = -1;
  2567. }
  2568. zig = !zig;
  2569. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2570. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2571. // raise extruder
  2572. float measured_z,
  2573. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2574. if (probePointCounter) {
  2575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2576. if (marlin_debug_flags & DEBUG_LEVELING) {
  2577. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2578. SERIAL_EOL;
  2579. }
  2580. #endif
  2581. }
  2582. else {
  2583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2584. if (marlin_debug_flags & DEBUG_LEVELING) {
  2585. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2586. SERIAL_EOL;
  2587. }
  2588. #endif
  2589. }
  2590. #if ENABLED(DELTA)
  2591. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2592. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2593. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2594. #endif //DELTA
  2595. ProbeAction act;
  2596. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2597. act = ProbeDeployAndStow;
  2598. else if (yCount == 0 && xCount == xStart)
  2599. act = ProbeDeploy;
  2600. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2601. act = ProbeStow;
  2602. else
  2603. act = ProbeStay;
  2604. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2605. #if DISABLED(DELTA)
  2606. mean += measured_z;
  2607. eqnBVector[probePointCounter] = measured_z;
  2608. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2609. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2610. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2611. indexIntoAB[xCount][yCount] = probePointCounter;
  2612. #else
  2613. bed_level[xCount][yCount] = measured_z + z_offset;
  2614. #endif
  2615. probePointCounter++;
  2616. idle();
  2617. } //xProbe
  2618. } //yProbe
  2619. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2620. if (marlin_debug_flags & DEBUG_LEVELING) {
  2621. print_xyz("> probing complete > current_position", current_position);
  2622. }
  2623. #endif
  2624. clean_up_after_endstop_move();
  2625. #if ENABLED(DELTA)
  2626. if (!dryrun) extrapolate_unprobed_bed_level();
  2627. print_bed_level();
  2628. #else // !DELTA
  2629. // solve lsq problem
  2630. double plane_equation_coefficients[3];
  2631. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2632. mean /= abl2;
  2633. if (verbose_level) {
  2634. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2635. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2636. SERIAL_PROTOCOLPGM(" b: ");
  2637. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2638. SERIAL_PROTOCOLPGM(" d: ");
  2639. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2640. SERIAL_EOL;
  2641. if (verbose_level > 2) {
  2642. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2643. SERIAL_PROTOCOL_F(mean, 8);
  2644. SERIAL_EOL;
  2645. }
  2646. }
  2647. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2648. // Show the Topography map if enabled
  2649. if (do_topography_map) {
  2650. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2651. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2652. SERIAL_PROTOCOLPGM(" | |\n");
  2653. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2654. SERIAL_PROTOCOLPGM(" E | | I\n");
  2655. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2656. SERIAL_PROTOCOLPGM(" T | | H\n");
  2657. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2658. SERIAL_PROTOCOLPGM(" | |\n");
  2659. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2660. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2661. float min_diff = 999;
  2662. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2663. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2664. int ind = indexIntoAB[xx][yy];
  2665. float diff = eqnBVector[ind] - mean;
  2666. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2667. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2668. z_tmp = 0;
  2669. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2670. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2671. if (diff >= 0.0)
  2672. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2673. else
  2674. SERIAL_PROTOCOLCHAR(' ');
  2675. SERIAL_PROTOCOL_F(diff, 5);
  2676. } // xx
  2677. SERIAL_EOL;
  2678. } // yy
  2679. SERIAL_EOL;
  2680. if (verbose_level > 3) {
  2681. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2682. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2683. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2684. int ind = indexIntoAB[xx][yy];
  2685. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2686. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2687. z_tmp = 0;
  2688. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2689. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2690. if (diff >= 0.0)
  2691. SERIAL_PROTOCOLPGM(" +");
  2692. // Include + for column alignment
  2693. else
  2694. SERIAL_PROTOCOLCHAR(' ');
  2695. SERIAL_PROTOCOL_F(diff, 5);
  2696. } // xx
  2697. SERIAL_EOL;
  2698. } // yy
  2699. SERIAL_EOL;
  2700. }
  2701. } //do_topography_map
  2702. #endif //!DELTA
  2703. #else // !AUTO_BED_LEVELING_GRID
  2704. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2705. if (marlin_debug_flags & DEBUG_LEVELING) {
  2706. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2707. }
  2708. #endif
  2709. // Actions for each probe
  2710. ProbeAction p1, p2, p3;
  2711. if (deploy_probe_for_each_reading)
  2712. p1 = p2 = p3 = ProbeDeployAndStow;
  2713. else
  2714. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2715. // Probe at 3 arbitrary points
  2716. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2717. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2718. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2719. clean_up_after_endstop_move();
  2720. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2721. #endif // !AUTO_BED_LEVELING_GRID
  2722. #if ENABLED(DELTA)
  2723. // Allen Key Probe for Delta
  2724. #if ENABLED(Z_PROBE_ALLEN_KEY)
  2725. stow_z_probe();
  2726. #elif Z_RAISE_AFTER_PROBING > 0
  2727. raise_z_after_probing(); // ???
  2728. #endif
  2729. #else // !DELTA
  2730. if (verbose_level > 0)
  2731. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2732. if (!dryrun) {
  2733. // Correct the Z height difference from Z probe position and nozzle tip position.
  2734. // The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
  2735. // When the bed is uneven, this height must be corrected.
  2736. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2737. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2738. z_tmp = current_position[Z_AXIS],
  2739. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2740. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2741. if (marlin_debug_flags & DEBUG_LEVELING) {
  2742. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2743. SERIAL_EOL;
  2744. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2745. SERIAL_EOL;
  2746. }
  2747. #endif
  2748. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
  2749. // Get the current Z position and send it to the planner.
  2750. //
  2751. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2752. //
  2753. // >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
  2754. //
  2755. // >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
  2756. //
  2757. // >> Should home_offset[Z_AXIS] be included?
  2758. //
  2759. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2760. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2761. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2762. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2763. // added here, it could be seen as a compensating factor for the Z probe.
  2764. //
  2765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2766. if (marlin_debug_flags & DEBUG_LEVELING) {
  2767. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2768. SERIAL_EOL;
  2769. }
  2770. #endif
  2771. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2772. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2773. + Z_RAISE_AFTER_PROBING
  2774. #endif
  2775. ;
  2776. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2777. sync_plan_position();
  2778. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2779. if (marlin_debug_flags & DEBUG_LEVELING) {
  2780. print_xyz("> corrected Z in G29", current_position);
  2781. }
  2782. #endif
  2783. }
  2784. // Sled assembly for Cartesian bots
  2785. #if ENABLED(Z_PROBE_SLED)
  2786. dock_sled(true); // dock the sled
  2787. #elif Z_RAISE_AFTER_PROBING > 0
  2788. // Raise Z axis for non-delta and non servo based probes
  2789. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2790. raise_z_after_probing();
  2791. #endif
  2792. #endif
  2793. #endif // !DELTA
  2794. #ifdef Z_PROBE_END_SCRIPT
  2795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2796. if (marlin_debug_flags & DEBUG_LEVELING) {
  2797. SERIAL_ECHO("Z Probe End Script: ");
  2798. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2799. }
  2800. #endif
  2801. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2802. #if ENABLED(HAS_Z_MIN_PROBE)
  2803. z_probe_is_active = false;
  2804. #endif
  2805. st_synchronize();
  2806. #endif
  2807. KEEPALIVE_STATE(IN_HANDLER);
  2808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2809. if (marlin_debug_flags & DEBUG_LEVELING) {
  2810. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2811. }
  2812. #endif
  2813. gcode_M114(); // Send end position to RepetierHost
  2814. }
  2815. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2816. /**
  2817. * G30: Do a single Z probe at the current XY
  2818. */
  2819. inline void gcode_G30() {
  2820. #if HAS_SERVO_ENDSTOPS
  2821. raise_z_for_servo();
  2822. #endif
  2823. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed her.
  2824. st_synchronize();
  2825. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2826. setup_for_endstop_move(); // to late. Must be done before deploying.
  2827. feedrate = homing_feedrate[Z_AXIS];
  2828. run_z_probe();
  2829. SERIAL_PROTOCOLPGM("Bed X: ");
  2830. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2831. SERIAL_PROTOCOLPGM(" Y: ");
  2832. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2833. SERIAL_PROTOCOLPGM(" Z: ");
  2834. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2835. SERIAL_EOL;
  2836. clean_up_after_endstop_move(); // to early. must be done after the stowing.
  2837. #if HAS_SERVO_ENDSTOPS
  2838. raise_z_for_servo();
  2839. #endif
  2840. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed her.
  2841. gcode_M114(); // Send end position to RepetierHost
  2842. }
  2843. #endif //!Z_PROBE_SLED
  2844. #endif //AUTO_BED_LEVELING_FEATURE
  2845. /**
  2846. * G92: Set current position to given X Y Z E
  2847. */
  2848. inline void gcode_G92() {
  2849. if (!code_seen(axis_codes[E_AXIS]))
  2850. st_synchronize();
  2851. bool didXYZ = false;
  2852. for (int i = 0; i < NUM_AXIS; i++) {
  2853. if (code_seen(axis_codes[i])) {
  2854. float v = current_position[i] = code_value();
  2855. if (i == E_AXIS)
  2856. plan_set_e_position(v);
  2857. else
  2858. didXYZ = true;
  2859. }
  2860. }
  2861. if (didXYZ) {
  2862. #if ENABLED(DELTA) || ENABLED(SCARA)
  2863. sync_plan_position_delta();
  2864. #else
  2865. sync_plan_position();
  2866. #endif
  2867. }
  2868. }
  2869. #if ENABLED(ULTIPANEL)
  2870. /**
  2871. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2872. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2873. */
  2874. inline void gcode_M0_M1() {
  2875. char* args = current_command_args;
  2876. millis_t codenum = 0;
  2877. bool hasP = false, hasS = false;
  2878. if (code_seen('P')) {
  2879. codenum = code_value_short(); // milliseconds to wait
  2880. hasP = codenum > 0;
  2881. }
  2882. if (code_seen('S')) {
  2883. codenum = code_value() * 1000; // seconds to wait
  2884. hasS = codenum > 0;
  2885. }
  2886. if (!hasP && !hasS && *args != '\0')
  2887. lcd_setstatus(args, true);
  2888. else {
  2889. LCD_MESSAGEPGM(MSG_USERWAIT);
  2890. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2891. dontExpireStatus();
  2892. #endif
  2893. }
  2894. lcd_ignore_click();
  2895. st_synchronize();
  2896. refresh_cmd_timeout();
  2897. if (codenum > 0) {
  2898. codenum += previous_cmd_ms; // wait until this time for a click
  2899. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2900. while (millis() < codenum && !lcd_clicked()) idle();
  2901. KEEPALIVE_STATE(IN_HANDLER);
  2902. lcd_ignore_click(false);
  2903. }
  2904. else {
  2905. if (!lcd_detected()) return;
  2906. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2907. while (!lcd_clicked()) idle();
  2908. KEEPALIVE_STATE(IN_HANDLER);
  2909. }
  2910. if (IS_SD_PRINTING)
  2911. LCD_MESSAGEPGM(MSG_RESUMING);
  2912. else
  2913. LCD_MESSAGEPGM(WELCOME_MSG);
  2914. }
  2915. #endif // ULTIPANEL
  2916. /**
  2917. * M17: Enable power on all stepper motors
  2918. */
  2919. inline void gcode_M17() {
  2920. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2921. enable_all_steppers();
  2922. }
  2923. #if ENABLED(SDSUPPORT)
  2924. /**
  2925. * M20: List SD card to serial output
  2926. */
  2927. inline void gcode_M20() {
  2928. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2929. card.ls();
  2930. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2931. }
  2932. /**
  2933. * M21: Init SD Card
  2934. */
  2935. inline void gcode_M21() {
  2936. card.initsd();
  2937. }
  2938. /**
  2939. * M22: Release SD Card
  2940. */
  2941. inline void gcode_M22() {
  2942. card.release();
  2943. }
  2944. /**
  2945. * M23: Open a file
  2946. */
  2947. inline void gcode_M23() {
  2948. card.openFile(current_command_args, true);
  2949. }
  2950. /**
  2951. * M24: Start SD Print
  2952. */
  2953. inline void gcode_M24() {
  2954. card.startFileprint();
  2955. print_job_start();
  2956. }
  2957. /**
  2958. * M25: Pause SD Print
  2959. */
  2960. inline void gcode_M25() {
  2961. card.pauseSDPrint();
  2962. }
  2963. /**
  2964. * M26: Set SD Card file index
  2965. */
  2966. inline void gcode_M26() {
  2967. if (card.cardOK && code_seen('S'))
  2968. card.setIndex(code_value_short());
  2969. }
  2970. /**
  2971. * M27: Get SD Card status
  2972. */
  2973. inline void gcode_M27() {
  2974. card.getStatus();
  2975. }
  2976. /**
  2977. * M28: Start SD Write
  2978. */
  2979. inline void gcode_M28() {
  2980. card.openFile(current_command_args, false);
  2981. }
  2982. /**
  2983. * M29: Stop SD Write
  2984. * Processed in write to file routine above
  2985. */
  2986. inline void gcode_M29() {
  2987. // card.saving = false;
  2988. }
  2989. /**
  2990. * M30 <filename>: Delete SD Card file
  2991. */
  2992. inline void gcode_M30() {
  2993. if (card.cardOK) {
  2994. card.closefile();
  2995. card.removeFile(current_command_args);
  2996. }
  2997. }
  2998. #endif //SDSUPPORT
  2999. /**
  3000. * M31: Get the time since the start of SD Print (or last M109)
  3001. */
  3002. inline void gcode_M31() {
  3003. millis_t t = print_job_timer();
  3004. int min = t / 60, sec = t % 60;
  3005. char time[30];
  3006. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3007. SERIAL_ECHO_START;
  3008. SERIAL_ECHOLN(time);
  3009. lcd_setstatus(time);
  3010. autotempShutdown();
  3011. }
  3012. #if ENABLED(SDSUPPORT)
  3013. /**
  3014. * M32: Select file and start SD Print
  3015. */
  3016. inline void gcode_M32() {
  3017. if (card.sdprinting)
  3018. st_synchronize();
  3019. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3020. if (!namestartpos)
  3021. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3022. else
  3023. namestartpos++; //to skip the '!'
  3024. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3025. if (card.cardOK) {
  3026. card.openFile(namestartpos, true, !call_procedure);
  3027. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3028. card.setIndex(code_value_short());
  3029. card.startFileprint();
  3030. // Procedure calls count as normal print time.
  3031. if (!call_procedure) print_job_start();
  3032. }
  3033. }
  3034. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3035. /**
  3036. * M33: Get the long full path of a file or folder
  3037. *
  3038. * Parameters:
  3039. * <dospath> Case-insensitive DOS-style path to a file or folder
  3040. *
  3041. * Example:
  3042. * M33 miscel~1/armchair/armcha~1.gco
  3043. *
  3044. * Output:
  3045. * /Miscellaneous/Armchair/Armchair.gcode
  3046. */
  3047. inline void gcode_M33() {
  3048. card.printLongPath(current_command_args);
  3049. }
  3050. #endif
  3051. /**
  3052. * M928: Start SD Write
  3053. */
  3054. inline void gcode_M928() {
  3055. card.openLogFile(current_command_args);
  3056. }
  3057. #endif // SDSUPPORT
  3058. /**
  3059. * M42: Change pin status via GCode
  3060. *
  3061. * P<pin> Pin number (LED if omitted)
  3062. * S<byte> Pin status from 0 - 255
  3063. */
  3064. inline void gcode_M42() {
  3065. if (code_seen('S')) {
  3066. int pin_status = code_value_short();
  3067. if (pin_status < 0 || pin_status > 255) return;
  3068. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3069. if (pin_number < 0) return;
  3070. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3071. if (pin_number == sensitive_pins[i]) return;
  3072. pinMode(pin_number, OUTPUT);
  3073. digitalWrite(pin_number, pin_status);
  3074. analogWrite(pin_number, pin_status);
  3075. #if FAN_COUNT > 0
  3076. switch (pin_number) {
  3077. #if HAS_FAN0
  3078. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3079. #endif
  3080. #if HAS_FAN1
  3081. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3082. #endif
  3083. #if HAS_FAN2
  3084. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3085. #endif
  3086. }
  3087. #endif
  3088. } // code_seen('S')
  3089. }
  3090. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3091. // This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
  3092. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3093. #if !HAS_Z_PROBE
  3094. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3095. #endif
  3096. #elif !HAS_Z_MIN
  3097. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3098. #endif
  3099. /**
  3100. * M48: Z probe repeatability measurement function.
  3101. *
  3102. * Usage:
  3103. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3104. * P = Number of sampled points (4-50, default 10)
  3105. * X = Sample X position
  3106. * Y = Sample Y position
  3107. * V = Verbose level (0-4, default=1)
  3108. * E = Engage Z probe for each reading
  3109. * L = Number of legs of movement before probe
  3110. * S = Schizoid (Or Star if you prefer)
  3111. *
  3112. * This function assumes the bed has been homed. Specifically, that a G28 command
  3113. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3114. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3115. * regenerated.
  3116. */
  3117. inline void gcode_M48() {
  3118. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS] || !axis_known_position[Z_AXIS]) {
  3119. unknown_position_error();
  3120. return;
  3121. }
  3122. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3123. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3124. if (code_seen('V')) {
  3125. verbose_level = code_value_short();
  3126. if (verbose_level < 0 || verbose_level > 4) {
  3127. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3128. return;
  3129. }
  3130. }
  3131. if (verbose_level > 0)
  3132. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3133. if (code_seen('P')) {
  3134. n_samples = code_value_short();
  3135. if (n_samples < 4 || n_samples > 50) {
  3136. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3137. return;
  3138. }
  3139. }
  3140. float X_current = current_position[X_AXIS],
  3141. Y_current = current_position[Y_AXIS],
  3142. Z_current = current_position[Z_AXIS],
  3143. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3144. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3145. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3146. bool deploy_probe_for_each_reading = code_seen('E');
  3147. if (code_seen('X')) {
  3148. X_probe_location = code_value();
  3149. #if DISABLED(DELTA)
  3150. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3151. out_of_range_error(PSTR("X"));
  3152. return;
  3153. }
  3154. #endif
  3155. }
  3156. if (code_seen('Y')) {
  3157. Y_probe_location = code_value();
  3158. #if DISABLED(DELTA)
  3159. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3160. out_of_range_error(PSTR("Y"));
  3161. return;
  3162. }
  3163. #endif
  3164. }
  3165. #if ENABLED(DELTA)
  3166. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3167. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3168. return;
  3169. }
  3170. #endif
  3171. bool seen_L = code_seen('L');
  3172. if (seen_L) {
  3173. n_legs = code_value_short();
  3174. if (n_legs < 0 || n_legs > 15) {
  3175. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3176. return;
  3177. }
  3178. if (n_legs == 1) n_legs = 2;
  3179. }
  3180. if (code_seen('S')) {
  3181. schizoid_flag++;
  3182. if (!seen_L) n_legs = 7;
  3183. }
  3184. // Now get everything to the specified probe point So we can safely do a probe to
  3185. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3186. // use that as a starting point for each probe.
  3187. //
  3188. if (verbose_level > 2)
  3189. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3190. #if ENABLED(DELTA)
  3191. reset_bed_level(); // we don't do bed level correction in M48 because we want the raw data when we probe
  3192. #else
  3193. plan_bed_level_matrix.set_to_identity(); // we don't do bed level correction in M48 because we wantthe raw data when we probe
  3194. #endif
  3195. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3196. do_blocking_move_to_z(Z_start_location);
  3197. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3198. //
  3199. // OK, do the initial probe to get us close to the bed.
  3200. // Then retrace the right amount and use that in subsequent probes
  3201. //
  3202. setup_for_endstop_move();
  3203. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3204. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3205. verbose_level);
  3206. raise_z_after_probing();
  3207. for (uint8_t n = 0; n < n_samples; n++) {
  3208. randomSeed(millis());
  3209. delay(500);
  3210. if (n_legs) {
  3211. float radius, angle = random(0.0, 360.0);
  3212. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3213. radius = random(
  3214. #if ENABLED(DELTA)
  3215. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3216. #else
  3217. 5, X_MAX_LENGTH / 8
  3218. #endif
  3219. );
  3220. if (verbose_level > 3) {
  3221. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3222. SERIAL_ECHOPAIR(" angle: ", angle);
  3223. delay(100);
  3224. if (dir > 0)
  3225. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3226. else
  3227. SERIAL_ECHO(" Direction: Clockwise \n");
  3228. delay(100);
  3229. }
  3230. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3231. double delta_angle;
  3232. if (schizoid_flag)
  3233. delta_angle = dir * 2.0 * 72.0; // The points of a 5 point star are 72 degrees apart. We need to
  3234. // skip a point and go to the next one on the star.
  3235. else
  3236. delta_angle = dir * (float) random(25, 45); // If we do this line, we are just trying to move further
  3237. // around the circle.
  3238. angle += delta_angle;
  3239. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3240. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3241. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3242. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3243. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3244. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3245. #if DISABLED(DELTA)
  3246. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3247. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3248. #else
  3249. // If we have gone out too far, we can do a simple fix and scale the numbers
  3250. // back in closer to the origin.
  3251. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3252. X_current /= 1.25;
  3253. Y_current /= 1.25;
  3254. if (verbose_level > 3) {
  3255. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3256. SERIAL_ECHOPAIR(", ", Y_current);
  3257. SERIAL_EOL;
  3258. delay(50);
  3259. }
  3260. }
  3261. #endif
  3262. if (verbose_level > 3) {
  3263. SERIAL_PROTOCOL("Going to:");
  3264. SERIAL_ECHOPAIR("x: ", X_current);
  3265. SERIAL_ECHOPAIR("y: ", Y_current);
  3266. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3267. SERIAL_EOL;
  3268. delay(55);
  3269. }
  3270. do_blocking_move_to_xy(X_current, Y_current);
  3271. } // n_legs loop
  3272. } // n_legs
  3273. // We don't really have to do this move, but if we don't we can see a funny shift in the Z Height
  3274. // Because the user might not have the Z_RAISE_BEFORE_PROBING height identical to the
  3275. // Z_RAISE_BETWEEN_PROBING height. This gets us back to the probe location at the same height that
  3276. // we have been running around the circle at.
  3277. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3278. if (deploy_probe_for_each_reading)
  3279. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3280. else {
  3281. if (n == n_samples - 1)
  3282. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3283. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3284. }
  3285. //
  3286. // Get the current mean for the data points we have so far
  3287. //
  3288. sum = 0.0;
  3289. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3290. mean = sum / (n + 1);
  3291. //
  3292. // Now, use that mean to calculate the standard deviation for the
  3293. // data points we have so far
  3294. //
  3295. sum = 0.0;
  3296. for (uint8_t j = 0; j <= n; j++) {
  3297. float ss = sample_set[j] - mean;
  3298. sum += ss * ss;
  3299. }
  3300. sigma = sqrt(sum / (n + 1));
  3301. if (verbose_level > 1) {
  3302. SERIAL_PROTOCOL(n + 1);
  3303. SERIAL_PROTOCOLPGM(" of ");
  3304. SERIAL_PROTOCOL((int)n_samples);
  3305. SERIAL_PROTOCOLPGM(" z: ");
  3306. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3307. delay(50);
  3308. if (verbose_level > 2) {
  3309. SERIAL_PROTOCOLPGM(" mean: ");
  3310. SERIAL_PROTOCOL_F(mean, 6);
  3311. SERIAL_PROTOCOLPGM(" sigma: ");
  3312. SERIAL_PROTOCOL_F(sigma, 6);
  3313. }
  3314. }
  3315. if (verbose_level > 0) SERIAL_EOL;
  3316. delay(50);
  3317. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3318. } // End of probe loop code
  3319. // raise_z_after_probing();
  3320. if (verbose_level > 0) {
  3321. SERIAL_PROTOCOLPGM("Mean: ");
  3322. SERIAL_PROTOCOL_F(mean, 6);
  3323. SERIAL_EOL;
  3324. delay(25);
  3325. }
  3326. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3327. SERIAL_PROTOCOL_F(sigma, 6);
  3328. SERIAL_EOL; SERIAL_EOL;
  3329. delay(25);
  3330. clean_up_after_endstop_move();
  3331. gcode_M114(); // Send end position to RepetierHost
  3332. }
  3333. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3334. /**
  3335. * M104: Set hot end temperature
  3336. */
  3337. inline void gcode_M104() {
  3338. if (setTargetedHotend(104)) return;
  3339. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3340. if (code_seen('S')) {
  3341. float temp = code_value();
  3342. setTargetHotend(temp, target_extruder);
  3343. #if ENABLED(DUAL_X_CARRIAGE)
  3344. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3345. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3346. #endif
  3347. }
  3348. print_job_stop();
  3349. }
  3350. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3351. void print_heaterstates() {
  3352. #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
  3353. SERIAL_PROTOCOLPGM(" T:");
  3354. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3355. SERIAL_PROTOCOLPGM(" /");
  3356. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3357. #endif
  3358. #if HAS_TEMP_BED
  3359. SERIAL_PROTOCOLPGM(" B:");
  3360. SERIAL_PROTOCOL_F(degBed(), 1);
  3361. SERIAL_PROTOCOLPGM(" /");
  3362. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3363. #endif
  3364. #if EXTRUDERS > 1
  3365. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3366. SERIAL_PROTOCOLPGM(" T");
  3367. SERIAL_PROTOCOL(e);
  3368. SERIAL_PROTOCOLCHAR(':');
  3369. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3370. SERIAL_PROTOCOLPGM(" /");
  3371. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3372. }
  3373. #endif
  3374. #if HAS_TEMP_BED
  3375. SERIAL_PROTOCOLPGM(" B@:");
  3376. #ifdef BED_WATTS
  3377. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3378. SERIAL_PROTOCOLCHAR('W');
  3379. #else
  3380. SERIAL_PROTOCOL(getHeaterPower(-1));
  3381. #endif
  3382. #endif
  3383. SERIAL_PROTOCOLPGM(" @:");
  3384. #ifdef EXTRUDER_WATTS
  3385. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3386. SERIAL_PROTOCOLCHAR('W');
  3387. #else
  3388. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3389. #endif
  3390. #if EXTRUDERS > 1
  3391. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3392. SERIAL_PROTOCOLPGM(" @");
  3393. SERIAL_PROTOCOL(e);
  3394. SERIAL_PROTOCOLCHAR(':');
  3395. #ifdef EXTRUDER_WATTS
  3396. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3397. SERIAL_PROTOCOLCHAR('W');
  3398. #else
  3399. SERIAL_PROTOCOL(getHeaterPower(e));
  3400. #endif
  3401. }
  3402. #endif
  3403. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3404. #if HAS_TEMP_BED
  3405. SERIAL_PROTOCOLPGM(" ADC B:");
  3406. SERIAL_PROTOCOL_F(degBed(), 1);
  3407. SERIAL_PROTOCOLPGM("C->");
  3408. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3409. #endif
  3410. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3411. SERIAL_PROTOCOLPGM(" T");
  3412. SERIAL_PROTOCOL(cur_extruder);
  3413. SERIAL_PROTOCOLCHAR(':');
  3414. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3415. SERIAL_PROTOCOLPGM("C->");
  3416. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3417. }
  3418. #endif
  3419. }
  3420. #endif
  3421. /**
  3422. * M105: Read hot end and bed temperature
  3423. */
  3424. inline void gcode_M105() {
  3425. if (setTargetedHotend(105)) return;
  3426. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3427. SERIAL_PROTOCOLPGM(MSG_OK);
  3428. print_heaterstates();
  3429. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  3430. SERIAL_ERROR_START;
  3431. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3432. #endif
  3433. SERIAL_EOL;
  3434. }
  3435. #if FAN_COUNT > 0
  3436. /**
  3437. * M106: Set Fan Speed
  3438. *
  3439. * S<int> Speed between 0-255
  3440. * P<index> Fan index, if more than one fan
  3441. */
  3442. inline void gcode_M106() {
  3443. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3444. p = code_seen('P') ? code_value_short() : 0;
  3445. NOMORE(s, 255);
  3446. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3447. }
  3448. /**
  3449. * M107: Fan Off
  3450. */
  3451. inline void gcode_M107() {
  3452. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3453. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3454. }
  3455. #endif // FAN_COUNT > 0
  3456. /**
  3457. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3458. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3459. */
  3460. inline void gcode_M109() {
  3461. bool no_wait_for_cooling = true;
  3462. // Start hook must happen before setTargetHotend()
  3463. print_job_start();
  3464. if (setTargetedHotend(109)) return;
  3465. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3466. no_wait_for_cooling = code_seen('S');
  3467. if (no_wait_for_cooling || code_seen('R')) {
  3468. float temp = code_value();
  3469. setTargetHotend(temp, target_extruder);
  3470. #if ENABLED(DUAL_X_CARRIAGE)
  3471. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3472. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3473. #endif
  3474. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3475. }
  3476. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3477. #if ENABLED(AUTOTEMP)
  3478. autotemp_enabled = code_seen('F');
  3479. if (autotemp_enabled) autotemp_factor = code_value();
  3480. if (code_seen('S')) autotemp_min = code_value();
  3481. if (code_seen('B')) autotemp_max = code_value();
  3482. #endif
  3483. // Exit if the temperature is above target and not waiting for cooling
  3484. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3485. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3486. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3487. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP/2)) return;
  3488. #ifdef TEMP_RESIDENCY_TIME
  3489. long residency_start_ms = -1;
  3490. // Loop until the temperature has stabilized
  3491. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3492. #else
  3493. // Loop until the temperature is very close target
  3494. #define TEMP_CONDITIONS (fabs(degHotend(target_extruder) - degTargetHotend(target_extruder)) < 0.75f)
  3495. #endif //TEMP_RESIDENCY_TIME
  3496. cancel_heatup = false;
  3497. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3498. while (!cancel_heatup && TEMP_CONDITIONS) {
  3499. now = millis();
  3500. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3501. next_temp_ms = now + 1000UL;
  3502. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3503. print_heaterstates();
  3504. #endif
  3505. #ifdef TEMP_RESIDENCY_TIME
  3506. SERIAL_PROTOCOLPGM(" W:");
  3507. if (residency_start_ms >= 0) {
  3508. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3509. SERIAL_PROTOCOLLN(rem);
  3510. }
  3511. else {
  3512. SERIAL_PROTOCOLLNPGM("?");
  3513. }
  3514. #else
  3515. SERIAL_EOL;
  3516. #endif
  3517. }
  3518. idle();
  3519. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3520. #ifdef TEMP_RESIDENCY_TIME
  3521. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3522. // Restart the timer whenever the temperature falls outside the hysteresis.
  3523. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3524. residency_start_ms = millis();
  3525. #endif //TEMP_RESIDENCY_TIME
  3526. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3527. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3528. }
  3529. #if HAS_TEMP_BED
  3530. /**
  3531. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3532. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3533. */
  3534. inline void gcode_M190() {
  3535. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3536. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3537. bool no_wait_for_cooling = code_seen('S');
  3538. if (no_wait_for_cooling || code_seen('R'))
  3539. setTargetBed(code_value());
  3540. // Exit if the temperature is above target and not waiting for cooling
  3541. if (no_wait_for_cooling && !isHeatingBed()) return;
  3542. cancel_heatup = false;
  3543. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3544. while (!cancel_heatup && degTargetBed() != degBed()) {
  3545. millis_t now = millis();
  3546. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3547. next_temp_ms = now + 1000UL;
  3548. print_heaterstates();
  3549. SERIAL_EOL;
  3550. }
  3551. idle();
  3552. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3553. }
  3554. LCD_MESSAGEPGM(MSG_BED_DONE);
  3555. }
  3556. #endif // HAS_TEMP_BED
  3557. /**
  3558. * M110: Set Current Line Number
  3559. */
  3560. inline void gcode_M110() {
  3561. if (code_seen('N')) gcode_N = code_value_long();
  3562. }
  3563. /**
  3564. * M111: Set the debug level
  3565. */
  3566. inline void gcode_M111() {
  3567. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO | DEBUG_COMMUNICATION;
  3568. if (marlin_debug_flags & DEBUG_ECHO) {
  3569. SERIAL_ECHO_START;
  3570. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3571. }
  3572. // FOR MOMENT NOT ACTIVE
  3573. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3574. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3575. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3576. SERIAL_ECHO_START;
  3577. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3578. disable_all_heaters();
  3579. }
  3580. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3581. if (marlin_debug_flags & DEBUG_LEVELING) {
  3582. SERIAL_ECHO_START;
  3583. SERIAL_ECHOLNPGM(MSG_DEBUG_LEVELING);
  3584. }
  3585. #endif
  3586. }
  3587. /**
  3588. * M112: Emergency Stop
  3589. */
  3590. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3591. #if ENABLED(BARICUDA)
  3592. #if HAS_HEATER_1
  3593. /**
  3594. * M126: Heater 1 valve open
  3595. */
  3596. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3597. /**
  3598. * M127: Heater 1 valve close
  3599. */
  3600. inline void gcode_M127() { ValvePressure = 0; }
  3601. #endif
  3602. #if HAS_HEATER_2
  3603. /**
  3604. * M128: Heater 2 valve open
  3605. */
  3606. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3607. /**
  3608. * M129: Heater 2 valve close
  3609. */
  3610. inline void gcode_M129() { EtoPPressure = 0; }
  3611. #endif
  3612. #endif //BARICUDA
  3613. /**
  3614. * M140: Set bed temperature
  3615. */
  3616. inline void gcode_M140() {
  3617. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3618. if (code_seen('S')) setTargetBed(code_value());
  3619. }
  3620. #if ENABLED(ULTIPANEL)
  3621. /**
  3622. * M145: Set the heatup state for a material in the LCD menu
  3623. * S<material> (0=PLA, 1=ABS)
  3624. * H<hotend temp>
  3625. * B<bed temp>
  3626. * F<fan speed>
  3627. */
  3628. inline void gcode_M145() {
  3629. int8_t material = code_seen('S') ? code_value_short() : 0;
  3630. if (material < 0 || material > 1) {
  3631. SERIAL_ERROR_START;
  3632. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3633. }
  3634. else {
  3635. int v;
  3636. switch (material) {
  3637. case 0:
  3638. if (code_seen('H')) {
  3639. v = code_value_short();
  3640. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3641. }
  3642. if (code_seen('F')) {
  3643. v = code_value_short();
  3644. plaPreheatFanSpeed = constrain(v, 0, 255);
  3645. }
  3646. #if TEMP_SENSOR_BED != 0
  3647. if (code_seen('B')) {
  3648. v = code_value_short();
  3649. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3650. }
  3651. #endif
  3652. break;
  3653. case 1:
  3654. if (code_seen('H')) {
  3655. v = code_value_short();
  3656. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3657. }
  3658. if (code_seen('F')) {
  3659. v = code_value_short();
  3660. absPreheatFanSpeed = constrain(v, 0, 255);
  3661. }
  3662. #if TEMP_SENSOR_BED != 0
  3663. if (code_seen('B')) {
  3664. v = code_value_short();
  3665. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3666. }
  3667. #endif
  3668. break;
  3669. }
  3670. }
  3671. }
  3672. #endif
  3673. #if HAS_POWER_SWITCH
  3674. /**
  3675. * M80: Turn on Power Supply
  3676. */
  3677. inline void gcode_M80() {
  3678. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3679. // If you have a switch on suicide pin, this is useful
  3680. // if you want to start another print with suicide feature after
  3681. // a print without suicide...
  3682. #if HAS_SUICIDE
  3683. OUT_WRITE(SUICIDE_PIN, HIGH);
  3684. #endif
  3685. #if ENABLED(ULTIPANEL)
  3686. powersupply = true;
  3687. LCD_MESSAGEPGM(WELCOME_MSG);
  3688. lcd_update();
  3689. #endif
  3690. }
  3691. #endif // HAS_POWER_SWITCH
  3692. /**
  3693. * M81: Turn off Power, including Power Supply, if there is one.
  3694. *
  3695. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3696. */
  3697. inline void gcode_M81() {
  3698. disable_all_heaters();
  3699. finishAndDisableSteppers();
  3700. #if FAN_COUNT > 0
  3701. #if FAN_COUNT > 1
  3702. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3703. #else
  3704. fanSpeeds[0] = 0;
  3705. #endif
  3706. #endif
  3707. delay(1000); // Wait 1 second before switching off
  3708. #if HAS_SUICIDE
  3709. st_synchronize();
  3710. suicide();
  3711. #elif HAS_POWER_SWITCH
  3712. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3713. #endif
  3714. #if ENABLED(ULTIPANEL)
  3715. #if HAS_POWER_SWITCH
  3716. powersupply = false;
  3717. #endif
  3718. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3719. lcd_update();
  3720. #endif
  3721. }
  3722. /**
  3723. * M82: Set E codes absolute (default)
  3724. */
  3725. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3726. /**
  3727. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3728. */
  3729. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3730. /**
  3731. * M18, M84: Disable all stepper motors
  3732. */
  3733. inline void gcode_M18_M84() {
  3734. if (code_seen('S')) {
  3735. stepper_inactive_time = code_value() * 1000;
  3736. }
  3737. else {
  3738. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3739. if (all_axis) {
  3740. finishAndDisableSteppers();
  3741. }
  3742. else {
  3743. st_synchronize();
  3744. if (code_seen('X')) disable_x();
  3745. if (code_seen('Y')) disable_y();
  3746. if (code_seen('Z')) disable_z();
  3747. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3748. if (code_seen('E')) {
  3749. disable_e0();
  3750. disable_e1();
  3751. disable_e2();
  3752. disable_e3();
  3753. }
  3754. #endif
  3755. }
  3756. }
  3757. }
  3758. /**
  3759. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3760. */
  3761. inline void gcode_M85() {
  3762. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3763. }
  3764. /**
  3765. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3766. * (Follows the same syntax as G92)
  3767. */
  3768. inline void gcode_M92() {
  3769. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3770. if (code_seen(axis_codes[i])) {
  3771. if (i == E_AXIS) {
  3772. float value = code_value();
  3773. if (value < 20.0) {
  3774. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3775. max_e_jerk *= factor;
  3776. max_feedrate[i] *= factor;
  3777. axis_steps_per_sqr_second[i] *= factor;
  3778. }
  3779. axis_steps_per_unit[i] = value;
  3780. }
  3781. else {
  3782. axis_steps_per_unit[i] = code_value();
  3783. }
  3784. }
  3785. }
  3786. }
  3787. /**
  3788. * M114: Output current position to serial port
  3789. */
  3790. inline void gcode_M114() {
  3791. SERIAL_PROTOCOLPGM("X:");
  3792. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3793. SERIAL_PROTOCOLPGM(" Y:");
  3794. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3795. SERIAL_PROTOCOLPGM(" Z:");
  3796. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3797. SERIAL_PROTOCOLPGM(" E:");
  3798. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3799. CRITICAL_SECTION_START;
  3800. extern volatile long count_position[NUM_AXIS];
  3801. long xpos = count_position[X_AXIS],
  3802. ypos = count_position[Y_AXIS],
  3803. zpos = count_position[Z_AXIS];
  3804. CRITICAL_SECTION_END;
  3805. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3806. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3807. #else
  3808. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3809. #endif
  3810. SERIAL_PROTOCOL(xpos);
  3811. #if ENABLED(COREXY)
  3812. SERIAL_PROTOCOLPGM(" B:");
  3813. #else
  3814. SERIAL_PROTOCOLPGM(" Y:");
  3815. #endif
  3816. SERIAL_PROTOCOL(ypos);
  3817. #if ENABLED(COREXZ)
  3818. SERIAL_PROTOCOLPGM(" C:");
  3819. #else
  3820. SERIAL_PROTOCOLPGM(" Z:");
  3821. #endif
  3822. SERIAL_PROTOCOL(zpos);
  3823. SERIAL_EOL;
  3824. #if ENABLED(SCARA)
  3825. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3826. SERIAL_PROTOCOL(delta[X_AXIS]);
  3827. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3828. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3829. SERIAL_EOL;
  3830. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3831. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3832. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3833. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3834. SERIAL_EOL;
  3835. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3836. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3837. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3838. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3839. SERIAL_EOL; SERIAL_EOL;
  3840. #endif
  3841. }
  3842. /**
  3843. * M115: Capabilities string
  3844. */
  3845. inline void gcode_M115() {
  3846. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3847. }
  3848. /**
  3849. * M117: Set LCD Status Message
  3850. */
  3851. inline void gcode_M117() {
  3852. lcd_setstatus(current_command_args);
  3853. }
  3854. /**
  3855. * M119: Output endstop states to serial output
  3856. */
  3857. inline void gcode_M119() {
  3858. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3859. #if HAS_X_MIN
  3860. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3861. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3862. #endif
  3863. #if HAS_X_MAX
  3864. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3865. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3866. #endif
  3867. #if HAS_Y_MIN
  3868. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3869. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3870. #endif
  3871. #if HAS_Y_MAX
  3872. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3873. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3874. #endif
  3875. #if HAS_Z_MIN
  3876. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3877. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3878. #endif
  3879. #if HAS_Z_MAX
  3880. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3881. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3882. #endif
  3883. #if HAS_Z2_MAX
  3884. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3885. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3886. #endif
  3887. #if HAS_Z_PROBE
  3888. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3889. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3890. #endif
  3891. }
  3892. /**
  3893. * M120: Enable endstops and set non-homing endstop state to "enabled"
  3894. */
  3895. inline void gcode_M120() { enable_endstops_globally(true); }
  3896. /**
  3897. * M121: Disable endstops and set non-homing endstop state to "disabled"
  3898. */
  3899. inline void gcode_M121() { enable_endstops_globally(false); }
  3900. #if ENABLED(BLINKM)
  3901. /**
  3902. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3903. */
  3904. inline void gcode_M150() {
  3905. SendColors(
  3906. code_seen('R') ? (byte)code_value_short() : 0,
  3907. code_seen('U') ? (byte)code_value_short() : 0,
  3908. code_seen('B') ? (byte)code_value_short() : 0
  3909. );
  3910. }
  3911. #endif // BLINKM
  3912. /**
  3913. * M200: Set filament diameter and set E axis units to cubic millimeters
  3914. *
  3915. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3916. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3917. */
  3918. inline void gcode_M200() {
  3919. if (setTargetedHotend(200)) return;
  3920. if (code_seen('D')) {
  3921. float diameter = code_value();
  3922. // setting any extruder filament size disables volumetric on the assumption that
  3923. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3924. // for all extruders
  3925. volumetric_enabled = (diameter != 0.0);
  3926. if (volumetric_enabled) {
  3927. filament_size[target_extruder] = diameter;
  3928. // make sure all extruders have some sane value for the filament size
  3929. for (int i = 0; i < EXTRUDERS; i++)
  3930. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3931. }
  3932. }
  3933. else {
  3934. //reserved for setting filament diameter via UFID or filament measuring device
  3935. return;
  3936. }
  3937. calculate_volumetric_multipliers();
  3938. }
  3939. /**
  3940. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3941. */
  3942. inline void gcode_M201() {
  3943. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3944. if (code_seen(axis_codes[i])) {
  3945. max_acceleration_units_per_sq_second[i] = code_value();
  3946. }
  3947. }
  3948. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3949. reset_acceleration_rates();
  3950. }
  3951. #if 0 // Not used for Sprinter/grbl gen6
  3952. inline void gcode_M202() {
  3953. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3954. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3955. }
  3956. }
  3957. #endif
  3958. /**
  3959. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3960. */
  3961. inline void gcode_M203() {
  3962. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3963. if (code_seen(axis_codes[i])) {
  3964. max_feedrate[i] = code_value();
  3965. }
  3966. }
  3967. }
  3968. /**
  3969. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3970. *
  3971. * P = Printing moves
  3972. * R = Retract only (no X, Y, Z) moves
  3973. * T = Travel (non printing) moves
  3974. *
  3975. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3976. */
  3977. inline void gcode_M204() {
  3978. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3979. travel_acceleration = acceleration = code_value();
  3980. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3981. SERIAL_EOL;
  3982. }
  3983. if (code_seen('P')) {
  3984. acceleration = code_value();
  3985. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  3986. SERIAL_EOL;
  3987. }
  3988. if (code_seen('R')) {
  3989. retract_acceleration = code_value();
  3990. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  3991. SERIAL_EOL;
  3992. }
  3993. if (code_seen('T')) {
  3994. travel_acceleration = code_value();
  3995. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  3996. SERIAL_EOL;
  3997. }
  3998. }
  3999. /**
  4000. * M205: Set Advanced Settings
  4001. *
  4002. * S = Min Feed Rate (mm/s)
  4003. * T = Min Travel Feed Rate (mm/s)
  4004. * B = Min Segment Time (µs)
  4005. * X = Max XY Jerk (mm/s/s)
  4006. * Z = Max Z Jerk (mm/s/s)
  4007. * E = Max E Jerk (mm/s/s)
  4008. */
  4009. inline void gcode_M205() {
  4010. if (code_seen('S')) minimumfeedrate = code_value();
  4011. if (code_seen('T')) mintravelfeedrate = code_value();
  4012. if (code_seen('B')) minsegmenttime = code_value();
  4013. if (code_seen('X')) max_xy_jerk = code_value();
  4014. if (code_seen('Z')) max_z_jerk = code_value();
  4015. if (code_seen('E')) max_e_jerk = code_value();
  4016. }
  4017. /**
  4018. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4019. */
  4020. inline void gcode_M206() {
  4021. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4022. if (code_seen(axis_codes[i])) {
  4023. home_offset[i] = code_value();
  4024. }
  4025. }
  4026. #if ENABLED(SCARA)
  4027. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4028. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4029. #endif
  4030. }
  4031. #if ENABLED(DELTA)
  4032. /**
  4033. * M665: Set delta configurations
  4034. *
  4035. * L = diagonal rod
  4036. * R = delta radius
  4037. * S = segments per second
  4038. * A = Alpha (Tower 1) diagonal rod trim
  4039. * B = Beta (Tower 2) diagonal rod trim
  4040. * C = Gamma (Tower 3) diagonal rod trim
  4041. */
  4042. inline void gcode_M665() {
  4043. if (code_seen('L')) delta_diagonal_rod = code_value();
  4044. if (code_seen('R')) delta_radius = code_value();
  4045. if (code_seen('S')) delta_segments_per_second = code_value();
  4046. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4047. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4048. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4049. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4050. }
  4051. /**
  4052. * M666: Set delta endstop adjustment
  4053. */
  4054. inline void gcode_M666() {
  4055. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4056. if (marlin_debug_flags & DEBUG_LEVELING) {
  4057. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4058. }
  4059. #endif
  4060. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4061. if (code_seen(axis_codes[i])) {
  4062. endstop_adj[i] = code_value();
  4063. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4064. if (marlin_debug_flags & DEBUG_LEVELING) {
  4065. SERIAL_ECHOPGM("endstop_adj[");
  4066. SERIAL_ECHO(axis_codes[i]);
  4067. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4068. SERIAL_EOL;
  4069. }
  4070. #endif
  4071. }
  4072. }
  4073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4074. if (marlin_debug_flags & DEBUG_LEVELING) {
  4075. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4076. }
  4077. #endif
  4078. }
  4079. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4080. /**
  4081. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4082. */
  4083. inline void gcode_M666() {
  4084. if (code_seen('Z')) z_endstop_adj = code_value();
  4085. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4086. SERIAL_EOL;
  4087. }
  4088. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4089. #if ENABLED(FWRETRACT)
  4090. /**
  4091. * M207: Set firmware retraction values
  4092. *
  4093. * S[+mm] retract_length
  4094. * W[+mm] retract_length_swap (multi-extruder)
  4095. * F[mm/min] retract_feedrate
  4096. * Z[mm] retract_zlift
  4097. */
  4098. inline void gcode_M207() {
  4099. if (code_seen('S')) retract_length = code_value();
  4100. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4101. if (code_seen('Z')) retract_zlift = code_value();
  4102. #if EXTRUDERS > 1
  4103. if (code_seen('W')) retract_length_swap = code_value();
  4104. #endif
  4105. }
  4106. /**
  4107. * M208: Set firmware un-retraction values
  4108. *
  4109. * S[+mm] retract_recover_length (in addition to M207 S*)
  4110. * W[+mm] retract_recover_length_swap (multi-extruder)
  4111. * F[mm/min] retract_recover_feedrate
  4112. */
  4113. inline void gcode_M208() {
  4114. if (code_seen('S')) retract_recover_length = code_value();
  4115. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4116. #if EXTRUDERS > 1
  4117. if (code_seen('W')) retract_recover_length_swap = code_value();
  4118. #endif
  4119. }
  4120. /**
  4121. * M209: Enable automatic retract (M209 S1)
  4122. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4123. */
  4124. inline void gcode_M209() {
  4125. if (code_seen('S')) {
  4126. int t = code_value_short();
  4127. switch (t) {
  4128. case 0:
  4129. autoretract_enabled = false;
  4130. break;
  4131. case 1:
  4132. autoretract_enabled = true;
  4133. break;
  4134. default:
  4135. unknown_command_error();
  4136. return;
  4137. }
  4138. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4139. }
  4140. }
  4141. #endif // FWRETRACT
  4142. #if EXTRUDERS > 1
  4143. /**
  4144. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4145. */
  4146. inline void gcode_M218() {
  4147. if (setTargetedHotend(218)) return;
  4148. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4149. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4150. #if ENABLED(DUAL_X_CARRIAGE)
  4151. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4152. #endif
  4153. SERIAL_ECHO_START;
  4154. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4155. for (int e = 0; e < EXTRUDERS; e++) {
  4156. SERIAL_CHAR(' ');
  4157. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4158. SERIAL_CHAR(',');
  4159. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4160. #if ENABLED(DUAL_X_CARRIAGE)
  4161. SERIAL_CHAR(',');
  4162. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4163. #endif
  4164. }
  4165. SERIAL_EOL;
  4166. }
  4167. #endif // EXTRUDERS > 1
  4168. /**
  4169. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4170. */
  4171. inline void gcode_M220() {
  4172. if (code_seen('S')) feedrate_multiplier = code_value();
  4173. }
  4174. /**
  4175. * M221: Set extrusion percentage (M221 T0 S95)
  4176. */
  4177. inline void gcode_M221() {
  4178. if (code_seen('S')) {
  4179. int sval = code_value();
  4180. if (setTargetedHotend(221)) return;
  4181. extruder_multiplier[target_extruder] = sval;
  4182. }
  4183. }
  4184. /**
  4185. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4186. */
  4187. inline void gcode_M226() {
  4188. if (code_seen('P')) {
  4189. int pin_number = code_value();
  4190. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4191. if (pin_state >= -1 && pin_state <= 1) {
  4192. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4193. if (sensitive_pins[i] == pin_number) {
  4194. pin_number = -1;
  4195. break;
  4196. }
  4197. }
  4198. if (pin_number > -1) {
  4199. int target = LOW;
  4200. st_synchronize();
  4201. pinMode(pin_number, INPUT);
  4202. switch (pin_state) {
  4203. case 1:
  4204. target = HIGH;
  4205. break;
  4206. case 0:
  4207. target = LOW;
  4208. break;
  4209. case -1:
  4210. target = !digitalRead(pin_number);
  4211. break;
  4212. }
  4213. while (digitalRead(pin_number) != target) idle();
  4214. } // pin_number > -1
  4215. } // pin_state -1 0 1
  4216. } // code_seen('P')
  4217. }
  4218. #if HAS_SERVOS
  4219. /**
  4220. * M280: Get or set servo position. P<index> S<angle>
  4221. */
  4222. inline void gcode_M280() {
  4223. int servo_index = code_seen('P') ? code_value_short() : -1;
  4224. int servo_position = 0;
  4225. if (code_seen('S')) {
  4226. servo_position = code_value_short();
  4227. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4228. servo[servo_index].move(servo_position);
  4229. else {
  4230. SERIAL_ERROR_START;
  4231. SERIAL_ERROR("Servo ");
  4232. SERIAL_ERROR(servo_index);
  4233. SERIAL_ERRORLN(" out of range");
  4234. }
  4235. }
  4236. else if (servo_index >= 0) {
  4237. SERIAL_ECHO_START;
  4238. SERIAL_ECHO(" Servo ");
  4239. SERIAL_ECHO(servo_index);
  4240. SERIAL_ECHO(": ");
  4241. SERIAL_ECHOLN(servo[servo_index].read());
  4242. }
  4243. }
  4244. #endif // HAS_SERVOS
  4245. #if HAS_BUZZER
  4246. /**
  4247. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4248. */
  4249. inline void gcode_M300() {
  4250. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4251. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4252. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4253. buzz(beepP, beepS);
  4254. }
  4255. #endif // HAS_BUZZER
  4256. #if ENABLED(PIDTEMP)
  4257. /**
  4258. * M301: Set PID parameters P I D (and optionally C, L)
  4259. *
  4260. * P[float] Kp term
  4261. * I[float] Ki term (unscaled)
  4262. * D[float] Kd term (unscaled)
  4263. *
  4264. * With PID_ADD_EXTRUSION_RATE:
  4265. *
  4266. * C[float] Kc term
  4267. * L[float] LPQ length
  4268. */
  4269. inline void gcode_M301() {
  4270. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4271. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4272. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4273. if (e < EXTRUDERS) { // catch bad input value
  4274. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4275. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4276. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4277. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4278. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4279. if (code_seen('L')) lpq_len = code_value();
  4280. NOMORE(lpq_len, LPQ_MAX_LEN);
  4281. #endif
  4282. updatePID();
  4283. SERIAL_ECHO_START;
  4284. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4285. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4286. SERIAL_ECHO(e);
  4287. #endif // PID_PARAMS_PER_EXTRUDER
  4288. SERIAL_ECHO(" p:");
  4289. SERIAL_ECHO(PID_PARAM(Kp, e));
  4290. SERIAL_ECHO(" i:");
  4291. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4292. SERIAL_ECHO(" d:");
  4293. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4294. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4295. SERIAL_ECHO(" c:");
  4296. //Kc does not have scaling applied above, or in resetting defaults
  4297. SERIAL_ECHO(PID_PARAM(Kc, e));
  4298. #endif
  4299. SERIAL_EOL;
  4300. }
  4301. else {
  4302. SERIAL_ERROR_START;
  4303. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4304. }
  4305. }
  4306. #endif // PIDTEMP
  4307. #if ENABLED(PIDTEMPBED)
  4308. inline void gcode_M304() {
  4309. if (code_seen('P')) bedKp = code_value();
  4310. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4311. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4312. updatePID();
  4313. SERIAL_ECHO_START;
  4314. SERIAL_ECHO(" p:");
  4315. SERIAL_ECHO(bedKp);
  4316. SERIAL_ECHO(" i:");
  4317. SERIAL_ECHO(unscalePID_i(bedKi));
  4318. SERIAL_ECHO(" d:");
  4319. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4320. }
  4321. #endif // PIDTEMPBED
  4322. #if defined(CHDK) || HAS_PHOTOGRAPH
  4323. /**
  4324. * M240: Trigger a camera by emulating a Canon RC-1
  4325. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4326. */
  4327. inline void gcode_M240() {
  4328. #ifdef CHDK
  4329. OUT_WRITE(CHDK, HIGH);
  4330. chdkHigh = millis();
  4331. chdkActive = true;
  4332. #elif HAS_PHOTOGRAPH
  4333. const uint8_t NUM_PULSES = 16;
  4334. const float PULSE_LENGTH = 0.01524;
  4335. for (int i = 0; i < NUM_PULSES; i++) {
  4336. WRITE(PHOTOGRAPH_PIN, HIGH);
  4337. _delay_ms(PULSE_LENGTH);
  4338. WRITE(PHOTOGRAPH_PIN, LOW);
  4339. _delay_ms(PULSE_LENGTH);
  4340. }
  4341. delay(7.33);
  4342. for (int i = 0; i < NUM_PULSES; i++) {
  4343. WRITE(PHOTOGRAPH_PIN, HIGH);
  4344. _delay_ms(PULSE_LENGTH);
  4345. WRITE(PHOTOGRAPH_PIN, LOW);
  4346. _delay_ms(PULSE_LENGTH);
  4347. }
  4348. #endif // !CHDK && HAS_PHOTOGRAPH
  4349. }
  4350. #endif // CHDK || PHOTOGRAPH_PIN
  4351. #if ENABLED(HAS_LCD_CONTRAST)
  4352. /**
  4353. * M250: Read and optionally set the LCD contrast
  4354. */
  4355. inline void gcode_M250() {
  4356. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4357. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4358. SERIAL_PROTOCOL(lcd_contrast);
  4359. SERIAL_EOL;
  4360. }
  4361. #endif // HAS_LCD_CONTRAST
  4362. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4363. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4364. /**
  4365. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4366. */
  4367. inline void gcode_M302() {
  4368. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4369. }
  4370. #endif // PREVENT_DANGEROUS_EXTRUDE
  4371. /**
  4372. * M303: PID relay autotune
  4373. *
  4374. * S<temperature> sets the target temperature. (default 150C)
  4375. * E<extruder> (-1 for the bed) (default 0)
  4376. * C<cycles>
  4377. * U<bool> with a non-zero value will apply the result to current settings
  4378. */
  4379. inline void gcode_M303() {
  4380. int e = code_seen('E') ? code_value_short() : 0;
  4381. int c = code_seen('C') ? code_value_short() : 5;
  4382. bool u = code_seen('U') && code_value_short() != 0;
  4383. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4384. if (e >= 0 && e < EXTRUDERS)
  4385. target_extruder = e;
  4386. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4387. PID_autotune(temp, e, c, u);
  4388. KEEPALIVE_STATE(IN_HANDLER);
  4389. }
  4390. #if ENABLED(SCARA)
  4391. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4392. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4393. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4394. if (IsRunning()) {
  4395. //gcode_get_destination(); // For X Y Z E F
  4396. delta[X_AXIS] = delta_x;
  4397. delta[Y_AXIS] = delta_y;
  4398. calculate_SCARA_forward_Transform(delta);
  4399. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4400. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4401. prepare_move();
  4402. //ok_to_send();
  4403. return true;
  4404. }
  4405. return false;
  4406. }
  4407. /**
  4408. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4409. */
  4410. inline bool gcode_M360() {
  4411. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4412. return SCARA_move_to_cal(0, 120);
  4413. }
  4414. /**
  4415. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4416. */
  4417. inline bool gcode_M361() {
  4418. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4419. return SCARA_move_to_cal(90, 130);
  4420. }
  4421. /**
  4422. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4423. */
  4424. inline bool gcode_M362() {
  4425. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4426. return SCARA_move_to_cal(60, 180);
  4427. }
  4428. /**
  4429. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4430. */
  4431. inline bool gcode_M363() {
  4432. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4433. return SCARA_move_to_cal(50, 90);
  4434. }
  4435. /**
  4436. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4437. */
  4438. inline bool gcode_M364() {
  4439. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4440. return SCARA_move_to_cal(45, 135);
  4441. }
  4442. /**
  4443. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4444. */
  4445. inline void gcode_M365() {
  4446. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4447. if (code_seen(axis_codes[i])) {
  4448. axis_scaling[i] = code_value();
  4449. }
  4450. }
  4451. }
  4452. #endif // SCARA
  4453. #if ENABLED(EXT_SOLENOID)
  4454. void enable_solenoid(uint8_t num) {
  4455. switch (num) {
  4456. case 0:
  4457. OUT_WRITE(SOL0_PIN, HIGH);
  4458. break;
  4459. #if HAS_SOLENOID_1
  4460. case 1:
  4461. OUT_WRITE(SOL1_PIN, HIGH);
  4462. break;
  4463. #endif
  4464. #if HAS_SOLENOID_2
  4465. case 2:
  4466. OUT_WRITE(SOL2_PIN, HIGH);
  4467. break;
  4468. #endif
  4469. #if HAS_SOLENOID_3
  4470. case 3:
  4471. OUT_WRITE(SOL3_PIN, HIGH);
  4472. break;
  4473. #endif
  4474. default:
  4475. SERIAL_ECHO_START;
  4476. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4477. break;
  4478. }
  4479. }
  4480. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4481. void disable_all_solenoids() {
  4482. OUT_WRITE(SOL0_PIN, LOW);
  4483. OUT_WRITE(SOL1_PIN, LOW);
  4484. OUT_WRITE(SOL2_PIN, LOW);
  4485. OUT_WRITE(SOL3_PIN, LOW);
  4486. }
  4487. /**
  4488. * M380: Enable solenoid on the active extruder
  4489. */
  4490. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4491. /**
  4492. * M381: Disable all solenoids
  4493. */
  4494. inline void gcode_M381() { disable_all_solenoids(); }
  4495. #endif // EXT_SOLENOID
  4496. /**
  4497. * M400: Finish all moves
  4498. */
  4499. inline void gcode_M400() { st_synchronize(); }
  4500. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4501. /**
  4502. * M401: Engage Z Servo endstop if available
  4503. */
  4504. inline void gcode_M401() {
  4505. #if HAS_SERVO_ENDSTOPS
  4506. raise_z_for_servo();
  4507. #endif
  4508. deploy_z_probe();
  4509. }
  4510. /**
  4511. * M402: Retract Z Servo endstop if enabled
  4512. */
  4513. inline void gcode_M402() {
  4514. #if HAS_SERVO_ENDSTOPS
  4515. raise_z_for_servo();
  4516. #endif
  4517. stow_z_probe(false);
  4518. }
  4519. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4520. #if ENABLED(FILAMENT_SENSOR)
  4521. /**
  4522. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4523. */
  4524. inline void gcode_M404() {
  4525. #if HAS_FILWIDTH
  4526. if (code_seen('W')) {
  4527. filament_width_nominal = code_value();
  4528. }
  4529. else {
  4530. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4531. SERIAL_PROTOCOLLN(filament_width_nominal);
  4532. }
  4533. #endif
  4534. }
  4535. /**
  4536. * M405: Turn on filament sensor for control
  4537. */
  4538. inline void gcode_M405() {
  4539. if (code_seen('D')) meas_delay_cm = code_value();
  4540. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4541. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  4542. int temp_ratio = widthFil_to_size_ratio();
  4543. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  4544. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4545. delay_index1 = delay_index2 = 0;
  4546. }
  4547. filament_sensor = true;
  4548. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4549. //SERIAL_PROTOCOL(filament_width_meas);
  4550. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4551. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4552. }
  4553. /**
  4554. * M406: Turn off filament sensor for control
  4555. */
  4556. inline void gcode_M406() { filament_sensor = false; }
  4557. /**
  4558. * M407: Get measured filament diameter on serial output
  4559. */
  4560. inline void gcode_M407() {
  4561. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4562. SERIAL_PROTOCOLLN(filament_width_meas);
  4563. }
  4564. #endif // FILAMENT_SENSOR
  4565. /**
  4566. * M410: Quickstop - Abort all planned moves
  4567. *
  4568. * This will stop the carriages mid-move, so most likely they
  4569. * will be out of sync with the stepper position after this.
  4570. */
  4571. inline void gcode_M410() { quickStop(); }
  4572. #if ENABLED(MESH_BED_LEVELING)
  4573. /**
  4574. * M420: Enable/Disable Mesh Bed Leveling
  4575. */
  4576. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4577. /**
  4578. * M421: Set a single Mesh Bed Leveling Z coordinate
  4579. */
  4580. inline void gcode_M421() {
  4581. float x, y, z;
  4582. bool err = false, hasX, hasY, hasZ;
  4583. if ((hasX = code_seen('X'))) x = code_value();
  4584. if ((hasY = code_seen('Y'))) y = code_value();
  4585. if ((hasZ = code_seen('Z'))) z = code_value();
  4586. if (!hasX || !hasY || !hasZ) {
  4587. SERIAL_ERROR_START;
  4588. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4589. err = true;
  4590. }
  4591. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4592. SERIAL_ERROR_START;
  4593. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4594. err = true;
  4595. }
  4596. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4597. }
  4598. #endif
  4599. /**
  4600. * M428: Set home_offset based on the distance between the
  4601. * current_position and the nearest "reference point."
  4602. * If an axis is past center its endstop position
  4603. * is the reference-point. Otherwise it uses 0. This allows
  4604. * the Z offset to be set near the bed when using a max endstop.
  4605. *
  4606. * M428 can't be used more than 2cm away from 0 or an endstop.
  4607. *
  4608. * Use M206 to set these values directly.
  4609. */
  4610. inline void gcode_M428() {
  4611. bool err = false;
  4612. float new_offs[3], new_pos[3];
  4613. memcpy(new_pos, current_position, sizeof(new_pos));
  4614. memcpy(new_offs, home_offset, sizeof(new_offs));
  4615. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4616. if (axis_known_position[i]) {
  4617. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4618. diff = new_pos[i] - base;
  4619. if (diff > -20 && diff < 20) {
  4620. new_offs[i] -= diff;
  4621. new_pos[i] = base;
  4622. }
  4623. else {
  4624. SERIAL_ERROR_START;
  4625. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4626. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4627. #if HAS_BUZZER
  4628. buzz(200, 40);
  4629. #endif
  4630. err = true;
  4631. break;
  4632. }
  4633. }
  4634. }
  4635. if (!err) {
  4636. memcpy(current_position, new_pos, sizeof(new_pos));
  4637. memcpy(home_offset, new_offs, sizeof(new_offs));
  4638. sync_plan_position();
  4639. LCD_ALERTMESSAGEPGM("Offset applied.");
  4640. #if HAS_BUZZER
  4641. buzz(200, 659);
  4642. buzz(200, 698);
  4643. #endif
  4644. }
  4645. }
  4646. /**
  4647. * M500: Store settings in EEPROM
  4648. */
  4649. inline void gcode_M500() {
  4650. Config_StoreSettings();
  4651. }
  4652. /**
  4653. * M501: Read settings from EEPROM
  4654. */
  4655. inline void gcode_M501() {
  4656. Config_RetrieveSettings();
  4657. }
  4658. /**
  4659. * M502: Revert to default settings
  4660. */
  4661. inline void gcode_M502() {
  4662. Config_ResetDefault();
  4663. }
  4664. /**
  4665. * M503: print settings currently in memory
  4666. */
  4667. inline void gcode_M503() {
  4668. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4669. }
  4670. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4671. /**
  4672. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4673. */
  4674. inline void gcode_M540() {
  4675. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4676. }
  4677. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4678. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4679. inline void gcode_SET_Z_PROBE_OFFSET() {
  4680. SERIAL_ECHO_START;
  4681. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4682. SERIAL_CHAR(' ');
  4683. if (code_seen('Z')) {
  4684. float value = code_value();
  4685. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4686. zprobe_zoffset = value;
  4687. SERIAL_ECHO(zprobe_zoffset);
  4688. }
  4689. else {
  4690. SERIAL_ECHOPGM(MSG_Z_MIN);
  4691. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4692. SERIAL_ECHOPGM(MSG_Z_MAX);
  4693. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4694. }
  4695. }
  4696. else {
  4697. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4698. }
  4699. SERIAL_EOL;
  4700. }
  4701. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4702. #if ENABLED(FILAMENTCHANGEENABLE)
  4703. /**
  4704. * M600: Pause for filament change
  4705. *
  4706. * E[distance] - Retract the filament this far (negative value)
  4707. * Z[distance] - Move the Z axis by this distance
  4708. * X[position] - Move to this X position, with Y
  4709. * Y[position] - Move to this Y position, with X
  4710. * L[distance] - Retract distance for removal (manual reload)
  4711. *
  4712. * Default values are used for omitted arguments.
  4713. *
  4714. */
  4715. inline void gcode_M600() {
  4716. if (degHotend(active_extruder) < extrude_min_temp) {
  4717. SERIAL_ERROR_START;
  4718. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4719. return;
  4720. }
  4721. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4722. for (int i = 0; i < NUM_AXIS; i++)
  4723. lastpos[i] = destination[i] = current_position[i];
  4724. #if ENABLED(DELTA)
  4725. #define RUNPLAN calculate_delta(destination); \
  4726. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4727. #else
  4728. #define RUNPLAN line_to_destination();
  4729. #endif
  4730. //retract by E
  4731. if (code_seen('E')) destination[E_AXIS] += code_value();
  4732. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4733. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4734. #endif
  4735. RUNPLAN;
  4736. //lift Z
  4737. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4738. #ifdef FILAMENTCHANGE_ZADD
  4739. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4740. #endif
  4741. RUNPLAN;
  4742. //move xy
  4743. if (code_seen('X')) destination[X_AXIS] = code_value();
  4744. #ifdef FILAMENTCHANGE_XPOS
  4745. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4746. #endif
  4747. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4748. #ifdef FILAMENTCHANGE_YPOS
  4749. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4750. #endif
  4751. RUNPLAN;
  4752. if (code_seen('L')) destination[E_AXIS] += code_value();
  4753. #ifdef FILAMENTCHANGE_FINALRETRACT
  4754. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4755. #endif
  4756. RUNPLAN;
  4757. //finish moves
  4758. st_synchronize();
  4759. //disable extruder steppers so filament can be removed
  4760. disable_e0();
  4761. disable_e1();
  4762. disable_e2();
  4763. disable_e3();
  4764. delay(100);
  4765. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4766. millis_t next_tick = 0;
  4767. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4768. while (!lcd_clicked()) {
  4769. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4770. millis_t ms = millis();
  4771. if (ms >= next_tick) {
  4772. lcd_quick_feedback();
  4773. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4774. }
  4775. idle(true);
  4776. #else
  4777. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4778. destination[E_AXIS] = current_position[E_AXIS];
  4779. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4780. st_synchronize();
  4781. #endif
  4782. } // while(!lcd_clicked)
  4783. KEEPALIVE_STATE(IN_HANDLER);
  4784. lcd_quick_feedback(); // click sound feedback
  4785. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4786. current_position[E_AXIS] = 0;
  4787. st_synchronize();
  4788. #endif
  4789. //return to normal
  4790. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4791. #ifdef FILAMENTCHANGE_FINALRETRACT
  4792. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4793. #endif
  4794. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4795. plan_set_e_position(current_position[E_AXIS]);
  4796. RUNPLAN; //should do nothing
  4797. lcd_reset_alert_level();
  4798. #if ENABLED(DELTA)
  4799. // Move XYZ to starting position, then E
  4800. calculate_delta(lastpos);
  4801. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4802. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4803. #else
  4804. // Move XY to starting position, then Z, then E
  4805. destination[X_AXIS] = lastpos[X_AXIS];
  4806. destination[Y_AXIS] = lastpos[Y_AXIS];
  4807. line_to_destination();
  4808. destination[Z_AXIS] = lastpos[Z_AXIS];
  4809. line_to_destination();
  4810. destination[E_AXIS] = lastpos[E_AXIS];
  4811. line_to_destination();
  4812. #endif
  4813. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4814. filrunoutEnqueued = false;
  4815. #endif
  4816. }
  4817. #endif // FILAMENTCHANGEENABLE
  4818. #if ENABLED(DUAL_X_CARRIAGE)
  4819. /**
  4820. * M605: Set dual x-carriage movement mode
  4821. *
  4822. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4823. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4824. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4825. * millimeters x-offset and an optional differential hotend temperature of
  4826. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4827. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4828. *
  4829. * Note: the X axis should be homed after changing dual x-carriage mode.
  4830. */
  4831. inline void gcode_M605() {
  4832. st_synchronize();
  4833. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4834. switch (dual_x_carriage_mode) {
  4835. case DXC_DUPLICATION_MODE:
  4836. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4837. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4838. SERIAL_ECHO_START;
  4839. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4840. SERIAL_CHAR(' ');
  4841. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4842. SERIAL_CHAR(',');
  4843. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4844. SERIAL_CHAR(' ');
  4845. SERIAL_ECHO(duplicate_extruder_x_offset);
  4846. SERIAL_CHAR(',');
  4847. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4848. break;
  4849. case DXC_FULL_CONTROL_MODE:
  4850. case DXC_AUTO_PARK_MODE:
  4851. break;
  4852. default:
  4853. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4854. break;
  4855. }
  4856. active_extruder_parked = false;
  4857. extruder_duplication_enabled = false;
  4858. delayed_move_time = 0;
  4859. }
  4860. #endif // DUAL_X_CARRIAGE
  4861. /**
  4862. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4863. */
  4864. inline void gcode_M907() {
  4865. #if HAS_DIGIPOTSS
  4866. for (int i = 0; i < NUM_AXIS; i++)
  4867. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4868. if (code_seen('B')) digipot_current(4, code_value());
  4869. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  4870. #endif
  4871. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4872. if (code_seen('X')) digipot_current(0, code_value());
  4873. #endif
  4874. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4875. if (code_seen('Z')) digipot_current(1, code_value());
  4876. #endif
  4877. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4878. if (code_seen('E')) digipot_current(2, code_value());
  4879. #endif
  4880. #if ENABLED(DIGIPOT_I2C)
  4881. // this one uses actual amps in floating point
  4882. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4883. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4884. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  4885. #endif
  4886. #if ENABLED(DAC_STEPPER_CURRENT)
  4887. if (code_seen('S')) {
  4888. float dac_percent = code_value();
  4889. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  4890. }
  4891. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  4892. #endif
  4893. }
  4894. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  4895. /**
  4896. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4897. */
  4898. inline void gcode_M908() {
  4899. #if HAS_DIGIPOTSS
  4900. digitalPotWrite(
  4901. code_seen('P') ? code_value() : 0,
  4902. code_seen('S') ? code_value() : 0
  4903. );
  4904. #endif
  4905. #ifdef DAC_STEPPER_CURRENT
  4906. dac_current_raw(
  4907. code_seen('P') ? code_value_long() : -1,
  4908. code_seen('S') ? code_value_short() : 0
  4909. );
  4910. #endif
  4911. }
  4912. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  4913. inline void gcode_M909() { dac_print_values(); }
  4914. inline void gcode_M910() { dac_commit_eeprom(); }
  4915. #endif
  4916. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  4917. #if HAS_MICROSTEPS
  4918. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4919. inline void gcode_M350() {
  4920. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  4921. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  4922. if (code_seen('B')) microstep_mode(4, code_value());
  4923. microstep_readings();
  4924. }
  4925. /**
  4926. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4927. * S# determines MS1 or MS2, X# sets the pin high/low.
  4928. */
  4929. inline void gcode_M351() {
  4930. if (code_seen('S')) switch (code_value_short()) {
  4931. case 1:
  4932. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4933. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4934. break;
  4935. case 2:
  4936. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4937. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4938. break;
  4939. }
  4940. microstep_readings();
  4941. }
  4942. #endif // HAS_MICROSTEPS
  4943. /**
  4944. * M999: Restart after being stopped
  4945. */
  4946. inline void gcode_M999() {
  4947. Running = true;
  4948. lcd_reset_alert_level();
  4949. // gcode_LastN = Stopped_gcode_LastN;
  4950. FlushSerialRequestResend();
  4951. }
  4952. /**
  4953. * T0-T3: Switch tool, usually switching extruders
  4954. *
  4955. * F[mm/min] Set the movement feedrate
  4956. */
  4957. inline void gcode_T(uint8_t tmp_extruder) {
  4958. if (tmp_extruder >= EXTRUDERS) {
  4959. SERIAL_ECHO_START;
  4960. SERIAL_CHAR('T');
  4961. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  4962. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4963. }
  4964. else {
  4965. target_extruder = tmp_extruder;
  4966. #if EXTRUDERS > 1
  4967. bool make_move = false;
  4968. #endif
  4969. if (code_seen('F')) {
  4970. #if EXTRUDERS > 1
  4971. make_move = true;
  4972. #endif
  4973. float next_feedrate = code_value();
  4974. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4975. }
  4976. #if EXTRUDERS > 1
  4977. if (tmp_extruder != active_extruder) {
  4978. // Save current position to return to after applying extruder offset
  4979. set_destination_to_current();
  4980. #if ENABLED(DUAL_X_CARRIAGE)
  4981. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4982. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4983. // Park old head: 1) raise 2) move to park position 3) lower
  4984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4985. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4986. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4987. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4988. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4989. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4990. st_synchronize();
  4991. }
  4992. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4993. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  4994. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  4995. active_extruder = tmp_extruder;
  4996. // This function resets the max/min values - the current position may be overwritten below.
  4997. set_axis_is_at_home(X_AXIS);
  4998. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4999. current_position[X_AXIS] = inactive_extruder_x_pos;
  5000. inactive_extruder_x_pos = destination[X_AXIS];
  5001. }
  5002. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5003. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5004. if (active_extruder == 0 || active_extruder_parked)
  5005. current_position[X_AXIS] = inactive_extruder_x_pos;
  5006. else
  5007. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5008. inactive_extruder_x_pos = destination[X_AXIS];
  5009. extruder_duplication_enabled = false;
  5010. }
  5011. else {
  5012. // record raised toolhead position for use by unpark
  5013. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5014. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5015. active_extruder_parked = true;
  5016. delayed_move_time = 0;
  5017. }
  5018. #else // !DUAL_X_CARRIAGE
  5019. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5020. // Offset extruder, make sure to apply the bed level rotation matrix
  5021. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5022. extruder_offset[Y_AXIS][tmp_extruder],
  5023. extruder_offset[Z_AXIS][tmp_extruder]),
  5024. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5025. extruder_offset[Y_AXIS][active_extruder],
  5026. extruder_offset[Z_AXIS][active_extruder]),
  5027. offset_vec = tmp_offset_vec - act_offset_vec;
  5028. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5029. current_position[X_AXIS] += offset_vec.x;
  5030. current_position[Y_AXIS] += offset_vec.y;
  5031. current_position[Z_AXIS] += offset_vec.z;
  5032. #else // !AUTO_BED_LEVELING_FEATURE
  5033. // Offset extruder (only by XY)
  5034. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5035. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5036. #endif // !AUTO_BED_LEVELING_FEATURE
  5037. // Set the new active extruder and position
  5038. active_extruder = tmp_extruder;
  5039. #endif // !DUAL_X_CARRIAGE
  5040. #if ENABLED(DELTA)
  5041. sync_plan_position_delta();
  5042. #else
  5043. sync_plan_position();
  5044. #endif
  5045. // Move to the old position if 'F' was in the parameters
  5046. if (make_move && IsRunning()) prepare_move();
  5047. }
  5048. #if ENABLED(EXT_SOLENOID)
  5049. st_synchronize();
  5050. disable_all_solenoids();
  5051. enable_solenoid_on_active_extruder();
  5052. #endif // EXT_SOLENOID
  5053. #endif // EXTRUDERS > 1
  5054. SERIAL_ECHO_START;
  5055. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5056. SERIAL_PROTOCOLLN((int)active_extruder);
  5057. }
  5058. }
  5059. /**
  5060. * Process a single command and dispatch it to its handler
  5061. * This is called from the main loop()
  5062. */
  5063. void process_next_command() {
  5064. current_command = command_queue[cmd_queue_index_r];
  5065. if ((marlin_debug_flags & DEBUG_ECHO)) {
  5066. SERIAL_ECHO_START;
  5067. SERIAL_ECHOLN(current_command);
  5068. }
  5069. // Sanitize the current command:
  5070. // - Skip leading spaces
  5071. // - Bypass N[-0-9][0-9]*[ ]*
  5072. // - Overwrite * with nul to mark the end
  5073. while (*current_command == ' ') ++current_command;
  5074. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  5075. current_command += 2; // skip N[-0-9]
  5076. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  5077. while (*current_command == ' ') ++current_command; // skip [ ]*
  5078. }
  5079. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5080. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5081. // Get the command code, which must be G, M, or T
  5082. char command_code = *current_command;
  5083. // Skip the letter-code and spaces to get the numeric part
  5084. current_command_args = current_command + 1;
  5085. while (*current_command_args == ' ') ++current_command_args;
  5086. // The code must have a numeric value
  5087. bool code_is_good = (*current_command_args >= '0' && *current_command_args <= '9');
  5088. int codenum; // define ahead of goto
  5089. // Bail early if there's no code
  5090. if (!code_is_good) goto ExitUnknownCommand;
  5091. // Args pointer optimizes code_seen, especially those taking XYZEF
  5092. // This wastes a little cpu on commands that expect no arguments.
  5093. while (*current_command_args == ' ' || (*current_command_args >= '0' && *current_command_args <= '9')) ++current_command_args;
  5094. // Interpret the code int
  5095. seen_pointer = current_command;
  5096. codenum = code_value_short();
  5097. KEEPALIVE_STATE(IN_HANDLER);
  5098. // Handle a known G, M, or T
  5099. switch (command_code) {
  5100. case 'G': switch (codenum) {
  5101. // G0, G1
  5102. case 0:
  5103. case 1:
  5104. gcode_G0_G1();
  5105. break;
  5106. // G2, G3
  5107. #if DISABLED(SCARA)
  5108. case 2: // G2 - CW ARC
  5109. case 3: // G3 - CCW ARC
  5110. gcode_G2_G3(codenum == 2);
  5111. break;
  5112. #endif
  5113. // G4 Dwell
  5114. case 4:
  5115. gcode_G4();
  5116. break;
  5117. #if ENABLED(FWRETRACT)
  5118. case 10: // G10: retract
  5119. case 11: // G11: retract_recover
  5120. gcode_G10_G11(codenum == 10);
  5121. break;
  5122. #endif //FWRETRACT
  5123. case 28: // G28: Home all axes, one at a time
  5124. gcode_G28();
  5125. break;
  5126. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5127. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5128. gcode_G29();
  5129. break;
  5130. #endif
  5131. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5132. #if DISABLED(Z_PROBE_SLED)
  5133. case 30: // G30 Single Z probe
  5134. gcode_G30();
  5135. break;
  5136. #else // Z_PROBE_SLED
  5137. case 31: // G31: dock the sled
  5138. case 32: // G32: undock the sled
  5139. dock_sled(codenum == 31);
  5140. break;
  5141. #endif // Z_PROBE_SLED
  5142. #endif // AUTO_BED_LEVELING_FEATURE
  5143. case 90: // G90
  5144. relative_mode = false;
  5145. break;
  5146. case 91: // G91
  5147. relative_mode = true;
  5148. break;
  5149. case 92: // G92
  5150. gcode_G92();
  5151. break;
  5152. }
  5153. break;
  5154. case 'M': switch (codenum) {
  5155. #if ENABLED(ULTIPANEL)
  5156. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5157. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5158. gcode_M0_M1();
  5159. break;
  5160. #endif // ULTIPANEL
  5161. case 17:
  5162. gcode_M17();
  5163. break;
  5164. #if ENABLED(SDSUPPORT)
  5165. case 20: // M20 - list SD card
  5166. gcode_M20(); break;
  5167. case 21: // M21 - init SD card
  5168. gcode_M21(); break;
  5169. case 22: //M22 - release SD card
  5170. gcode_M22(); break;
  5171. case 23: //M23 - Select file
  5172. gcode_M23(); break;
  5173. case 24: //M24 - Start SD print
  5174. gcode_M24(); break;
  5175. case 25: //M25 - Pause SD print
  5176. gcode_M25(); break;
  5177. case 26: //M26 - Set SD index
  5178. gcode_M26(); break;
  5179. case 27: //M27 - Get SD status
  5180. gcode_M27(); break;
  5181. case 28: //M28 - Start SD write
  5182. gcode_M28(); break;
  5183. case 29: //M29 - Stop SD write
  5184. gcode_M29(); break;
  5185. case 30: //M30 <filename> Delete File
  5186. gcode_M30(); break;
  5187. case 32: //M32 - Select file and start SD print
  5188. gcode_M32(); break;
  5189. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5190. case 33: //M33 - Get the long full path to a file or folder
  5191. gcode_M33(); break;
  5192. #endif // LONG_FILENAME_HOST_SUPPORT
  5193. case 928: //M928 - Start SD write
  5194. gcode_M928(); break;
  5195. #endif //SDSUPPORT
  5196. case 31: //M31 take time since the start of the SD print or an M109 command
  5197. gcode_M31();
  5198. break;
  5199. case 42: //M42 -Change pin status via gcode
  5200. gcode_M42();
  5201. break;
  5202. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5203. case 48: // M48 Z probe repeatability
  5204. gcode_M48();
  5205. break;
  5206. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5207. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5208. case 100:
  5209. gcode_M100();
  5210. break;
  5211. #endif
  5212. case 104: // M104
  5213. gcode_M104();
  5214. break;
  5215. case 110: // M110: Set Current Line Number
  5216. gcode_M110();
  5217. break;
  5218. case 111: // M111: Set debug level
  5219. gcode_M111();
  5220. break;
  5221. case 112: // M112: Emergency Stop
  5222. gcode_M112();
  5223. break;
  5224. case 140: // M140: Set bed temp
  5225. gcode_M140();
  5226. break;
  5227. case 105: // M105: Read current temperature
  5228. gcode_M105();
  5229. KEEPALIVE_STATE(NOT_BUSY);
  5230. return; // "ok" already printed
  5231. case 109: // M109: Wait for temperature
  5232. gcode_M109();
  5233. break;
  5234. #if HAS_TEMP_BED
  5235. case 190: // M190: Wait for bed heater to reach target
  5236. gcode_M190();
  5237. break;
  5238. #endif // HAS_TEMP_BED
  5239. #if FAN_COUNT > 0
  5240. case 106: // M106: Fan On
  5241. gcode_M106();
  5242. break;
  5243. case 107: // M107: Fan Off
  5244. gcode_M107();
  5245. break;
  5246. #endif // FAN_COUNT > 0
  5247. #if ENABLED(BARICUDA)
  5248. // PWM for HEATER_1_PIN
  5249. #if HAS_HEATER_1
  5250. case 126: // M126: valve open
  5251. gcode_M126();
  5252. break;
  5253. case 127: // M127: valve closed
  5254. gcode_M127();
  5255. break;
  5256. #endif // HAS_HEATER_1
  5257. // PWM for HEATER_2_PIN
  5258. #if HAS_HEATER_2
  5259. case 128: // M128: valve open
  5260. gcode_M128();
  5261. break;
  5262. case 129: // M129: valve closed
  5263. gcode_M129();
  5264. break;
  5265. #endif // HAS_HEATER_2
  5266. #endif // BARICUDA
  5267. #if HAS_POWER_SWITCH
  5268. case 80: // M80: Turn on Power Supply
  5269. gcode_M80();
  5270. break;
  5271. #endif // HAS_POWER_SWITCH
  5272. case 81: // M81: Turn off Power, including Power Supply, if possible
  5273. gcode_M81();
  5274. break;
  5275. case 82:
  5276. gcode_M82();
  5277. break;
  5278. case 83:
  5279. gcode_M83();
  5280. break;
  5281. case 18: // (for compatibility)
  5282. case 84: // M84
  5283. gcode_M18_M84();
  5284. break;
  5285. case 85: // M85
  5286. gcode_M85();
  5287. break;
  5288. case 92: // M92: Set the steps-per-unit for one or more axes
  5289. gcode_M92();
  5290. break;
  5291. case 115: // M115: Report capabilities
  5292. gcode_M115();
  5293. break;
  5294. case 117: // M117: Set LCD message text, if possible
  5295. gcode_M117();
  5296. break;
  5297. case 114: // M114: Report current position
  5298. gcode_M114();
  5299. break;
  5300. case 120: // M120: Enable endstops
  5301. gcode_M120();
  5302. break;
  5303. case 121: // M121: Disable endstops
  5304. gcode_M121();
  5305. break;
  5306. case 119: // M119: Report endstop states
  5307. gcode_M119();
  5308. break;
  5309. #if ENABLED(ULTIPANEL)
  5310. case 145: // M145: Set material heatup parameters
  5311. gcode_M145();
  5312. break;
  5313. #endif
  5314. #if ENABLED(BLINKM)
  5315. case 150: // M150
  5316. gcode_M150();
  5317. break;
  5318. #endif //BLINKM
  5319. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5320. gcode_M200();
  5321. break;
  5322. case 201: // M201
  5323. gcode_M201();
  5324. break;
  5325. #if 0 // Not used for Sprinter/grbl gen6
  5326. case 202: // M202
  5327. gcode_M202();
  5328. break;
  5329. #endif
  5330. case 203: // M203 max feedrate mm/sec
  5331. gcode_M203();
  5332. break;
  5333. case 204: // M204 acclereration S normal moves T filmanent only moves
  5334. gcode_M204();
  5335. break;
  5336. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5337. gcode_M205();
  5338. break;
  5339. case 206: // M206 additional homing offset
  5340. gcode_M206();
  5341. break;
  5342. #if ENABLED(DELTA)
  5343. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5344. gcode_M665();
  5345. break;
  5346. #endif
  5347. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5348. case 666: // M666 set delta / dual endstop adjustment
  5349. gcode_M666();
  5350. break;
  5351. #endif
  5352. #if ENABLED(FWRETRACT)
  5353. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5354. gcode_M207();
  5355. break;
  5356. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5357. gcode_M208();
  5358. break;
  5359. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5360. gcode_M209();
  5361. break;
  5362. #endif // FWRETRACT
  5363. #if EXTRUDERS > 1
  5364. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5365. gcode_M218();
  5366. break;
  5367. #endif
  5368. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5369. gcode_M220();
  5370. break;
  5371. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5372. gcode_M221();
  5373. break;
  5374. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5375. gcode_M226();
  5376. break;
  5377. #if HAS_SERVOS
  5378. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5379. gcode_M280();
  5380. break;
  5381. #endif // HAS_SERVOS
  5382. #if HAS_BUZZER
  5383. case 300: // M300 - Play beep tone
  5384. gcode_M300();
  5385. break;
  5386. #endif // HAS_BUZZER
  5387. #if ENABLED(PIDTEMP)
  5388. case 301: // M301
  5389. gcode_M301();
  5390. break;
  5391. #endif // PIDTEMP
  5392. #if ENABLED(PIDTEMPBED)
  5393. case 304: // M304
  5394. gcode_M304();
  5395. break;
  5396. #endif // PIDTEMPBED
  5397. #if defined(CHDK) || HAS_PHOTOGRAPH
  5398. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5399. gcode_M240();
  5400. break;
  5401. #endif // CHDK || PHOTOGRAPH_PIN
  5402. #if ENABLED(HAS_LCD_CONTRAST)
  5403. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5404. gcode_M250();
  5405. break;
  5406. #endif // HAS_LCD_CONTRAST
  5407. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5408. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5409. gcode_M302();
  5410. break;
  5411. #endif // PREVENT_DANGEROUS_EXTRUDE
  5412. case 303: // M303 PID autotune
  5413. gcode_M303();
  5414. break;
  5415. #if ENABLED(SCARA)
  5416. case 360: // M360 SCARA Theta pos1
  5417. if (gcode_M360()) return;
  5418. break;
  5419. case 361: // M361 SCARA Theta pos2
  5420. if (gcode_M361()) return;
  5421. break;
  5422. case 362: // M362 SCARA Psi pos1
  5423. if (gcode_M362()) return;
  5424. break;
  5425. case 363: // M363 SCARA Psi pos2
  5426. if (gcode_M363()) return;
  5427. break;
  5428. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5429. if (gcode_M364()) return;
  5430. break;
  5431. case 365: // M365 Set SCARA scaling for X Y Z
  5432. gcode_M365();
  5433. break;
  5434. #endif // SCARA
  5435. case 400: // M400 finish all moves
  5436. gcode_M400();
  5437. break;
  5438. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5439. case 401:
  5440. gcode_M401();
  5441. break;
  5442. case 402:
  5443. gcode_M402();
  5444. break;
  5445. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5446. #if ENABLED(FILAMENT_SENSOR)
  5447. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5448. gcode_M404();
  5449. break;
  5450. case 405: //M405 Turn on filament sensor for control
  5451. gcode_M405();
  5452. break;
  5453. case 406: //M406 Turn off filament sensor for control
  5454. gcode_M406();
  5455. break;
  5456. case 407: //M407 Display measured filament diameter
  5457. gcode_M407();
  5458. break;
  5459. #endif // FILAMENT_SENSOR
  5460. case 410: // M410 quickstop - Abort all the planned moves.
  5461. gcode_M410();
  5462. break;
  5463. #if ENABLED(MESH_BED_LEVELING)
  5464. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5465. gcode_M420();
  5466. break;
  5467. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5468. gcode_M421();
  5469. break;
  5470. #endif
  5471. case 428: // M428 Apply current_position to home_offset
  5472. gcode_M428();
  5473. break;
  5474. case 500: // M500 Store settings in EEPROM
  5475. gcode_M500();
  5476. break;
  5477. case 501: // M501 Read settings from EEPROM
  5478. gcode_M501();
  5479. break;
  5480. case 502: // M502 Revert to default settings
  5481. gcode_M502();
  5482. break;
  5483. case 503: // M503 print settings currently in memory
  5484. gcode_M503();
  5485. break;
  5486. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5487. case 540:
  5488. gcode_M540();
  5489. break;
  5490. #endif
  5491. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5492. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5493. gcode_SET_Z_PROBE_OFFSET();
  5494. break;
  5495. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5496. #if ENABLED(FILAMENTCHANGEENABLE)
  5497. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5498. gcode_M600();
  5499. break;
  5500. #endif // FILAMENTCHANGEENABLE
  5501. #if ENABLED(DUAL_X_CARRIAGE)
  5502. case 605:
  5503. gcode_M605();
  5504. break;
  5505. #endif // DUAL_X_CARRIAGE
  5506. case 907: // M907 Set digital trimpot motor current using axis codes.
  5507. gcode_M907();
  5508. break;
  5509. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5510. case 908: // M908 Control digital trimpot directly.
  5511. gcode_M908();
  5512. break;
  5513. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5514. case 909: // M909 Print digipot/DAC current value
  5515. gcode_M909();
  5516. break;
  5517. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5518. gcode_M910();
  5519. break;
  5520. #endif
  5521. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5522. #if HAS_MICROSTEPS
  5523. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5524. gcode_M350();
  5525. break;
  5526. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5527. gcode_M351();
  5528. break;
  5529. #endif // HAS_MICROSTEPS
  5530. case 999: // M999: Restart after being Stopped
  5531. gcode_M999();
  5532. break;
  5533. }
  5534. break;
  5535. case 'T':
  5536. gcode_T(codenum);
  5537. break;
  5538. default: code_is_good = false;
  5539. }
  5540. KEEPALIVE_STATE(NOT_BUSY);
  5541. ExitUnknownCommand:
  5542. // Still unknown command? Throw an error
  5543. if (!code_is_good) unknown_command_error();
  5544. ok_to_send();
  5545. }
  5546. void FlushSerialRequestResend() {
  5547. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5548. MYSERIAL.flush();
  5549. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5550. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5551. ok_to_send();
  5552. }
  5553. void ok_to_send() {
  5554. refresh_cmd_timeout();
  5555. if (!send_ok[cmd_queue_index_r]) return;
  5556. SERIAL_PROTOCOLPGM(MSG_OK);
  5557. #if ENABLED(ADVANCED_OK)
  5558. char* p = command_queue[cmd_queue_index_r];
  5559. if (*p == 'N') {
  5560. SERIAL_PROTOCOL(' ');
  5561. SERIAL_ECHO(*p++);
  5562. while ((*p >= '0' && *p <= '9') || *p == '-')
  5563. SERIAL_ECHO(*p++);
  5564. }
  5565. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5566. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5567. #endif
  5568. SERIAL_EOL;
  5569. }
  5570. void clamp_to_software_endstops(float target[3]) {
  5571. if (min_software_endstops) {
  5572. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5573. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5574. float negative_z_offset = 0;
  5575. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5576. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5577. if (home_offset[Z_AXIS] < 0) {
  5578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5579. if (marlin_debug_flags & DEBUG_LEVELING) {
  5580. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5581. SERIAL_EOL;
  5582. }
  5583. #endif
  5584. negative_z_offset += home_offset[Z_AXIS];
  5585. }
  5586. #endif
  5587. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5588. }
  5589. if (max_software_endstops) {
  5590. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5591. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5592. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5593. }
  5594. }
  5595. #if ENABLED(DELTA)
  5596. void recalc_delta_settings(float radius, float diagonal_rod) {
  5597. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5598. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5599. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5600. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5601. delta_tower3_x = 0.0; // back middle tower
  5602. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5603. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5604. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5605. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5606. }
  5607. void calculate_delta(float cartesian[3]) {
  5608. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5609. - sq(delta_tower1_x - cartesian[X_AXIS])
  5610. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5611. ) + cartesian[Z_AXIS];
  5612. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5613. - sq(delta_tower2_x - cartesian[X_AXIS])
  5614. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5615. ) + cartesian[Z_AXIS];
  5616. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5617. - sq(delta_tower3_x - cartesian[X_AXIS])
  5618. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5619. ) + cartesian[Z_AXIS];
  5620. /**
  5621. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5622. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5623. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5624. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5625. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5626. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5627. */
  5628. }
  5629. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5630. // Adjust print surface height by linear interpolation over the bed_level array.
  5631. void adjust_delta(float cartesian[3]) {
  5632. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5633. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5634. float h1 = 0.001 - half, h2 = half - 0.001,
  5635. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5636. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5637. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5638. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5639. z1 = bed_level[floor_x + half][floor_y + half],
  5640. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5641. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5642. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5643. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5644. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5645. offset = (1 - ratio_x) * left + ratio_x * right;
  5646. delta[X_AXIS] += offset;
  5647. delta[Y_AXIS] += offset;
  5648. delta[Z_AXIS] += offset;
  5649. /**
  5650. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5651. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5652. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5653. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5654. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5655. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5656. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5657. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5658. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5659. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5660. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5661. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5662. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5663. */
  5664. }
  5665. #endif // AUTO_BED_LEVELING_FEATURE
  5666. #endif // DELTA
  5667. #if ENABLED(MESH_BED_LEVELING)
  5668. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5669. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5670. if (!mbl.active) {
  5671. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5672. set_current_to_destination();
  5673. return;
  5674. }
  5675. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5676. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5677. int ix = mbl.select_x_index(x);
  5678. int iy = mbl.select_y_index(y);
  5679. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5680. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5681. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5682. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5683. if (pix == ix && piy == iy) {
  5684. // Start and end on same mesh square
  5685. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5686. set_current_to_destination();
  5687. return;
  5688. }
  5689. float nx, ny, nz, ne, normalized_dist;
  5690. if (ix > pix && TEST(x_splits, ix)) {
  5691. nx = mbl.get_x(ix);
  5692. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5693. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5694. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5695. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5696. CBI(x_splits, ix);
  5697. }
  5698. else if (ix < pix && TEST(x_splits, pix)) {
  5699. nx = mbl.get_x(pix);
  5700. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5701. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5702. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5703. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5704. CBI(x_splits, pix);
  5705. }
  5706. else if (iy > piy && TEST(y_splits, iy)) {
  5707. ny = mbl.get_y(iy);
  5708. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5709. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5710. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5711. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5712. CBI(y_splits, iy);
  5713. }
  5714. else if (iy < piy && TEST(y_splits, piy)) {
  5715. ny = mbl.get_y(piy);
  5716. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5717. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5718. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5719. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5720. CBI(y_splits, piy);
  5721. }
  5722. else {
  5723. // Already split on a border
  5724. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5725. set_current_to_destination();
  5726. return;
  5727. }
  5728. // Do the split and look for more borders
  5729. destination[X_AXIS] = nx;
  5730. destination[Y_AXIS] = ny;
  5731. destination[Z_AXIS] = nz;
  5732. destination[E_AXIS] = ne;
  5733. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5734. destination[X_AXIS] = x;
  5735. destination[Y_AXIS] = y;
  5736. destination[Z_AXIS] = z;
  5737. destination[E_AXIS] = e;
  5738. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5739. }
  5740. #endif // MESH_BED_LEVELING
  5741. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5742. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5743. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5744. float de = dest_e - curr_e;
  5745. if (de) {
  5746. if (degHotend(active_extruder) < extrude_min_temp) {
  5747. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5748. SERIAL_ECHO_START;
  5749. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5750. }
  5751. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5752. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5753. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5754. SERIAL_ECHO_START;
  5755. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5756. }
  5757. #endif
  5758. }
  5759. }
  5760. #endif // PREVENT_DANGEROUS_EXTRUDE
  5761. #if ENABLED(DELTA) || ENABLED(SCARA)
  5762. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5763. float difference[NUM_AXIS];
  5764. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5765. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5766. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5767. if (cartesian_mm < 0.000001) return false;
  5768. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5769. int steps = max(1, int(delta_segments_per_second * seconds));
  5770. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5771. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5772. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5773. for (int s = 1; s <= steps; s++) {
  5774. float fraction = float(s) / float(steps);
  5775. for (int8_t i = 0; i < NUM_AXIS; i++)
  5776. target[i] = current_position[i] + difference[i] * fraction;
  5777. calculate_delta(target);
  5778. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5779. adjust_delta(target);
  5780. #endif
  5781. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5782. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5783. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5784. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5785. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5786. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5787. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5788. }
  5789. return true;
  5790. }
  5791. #endif // DELTA || SCARA
  5792. #if ENABLED(SCARA)
  5793. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5794. #endif
  5795. #if ENABLED(DUAL_X_CARRIAGE)
  5796. inline bool prepare_move_dual_x_carriage() {
  5797. if (active_extruder_parked) {
  5798. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5799. // move duplicate extruder into correct duplication position.
  5800. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5801. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5802. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5803. sync_plan_position();
  5804. st_synchronize();
  5805. extruder_duplication_enabled = true;
  5806. active_extruder_parked = false;
  5807. }
  5808. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5809. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5810. // This is a travel move (with no extrusion)
  5811. // Skip it, but keep track of the current position
  5812. // (so it can be used as the start of the next non-travel move)
  5813. if (delayed_move_time != 0xFFFFFFFFUL) {
  5814. set_current_to_destination();
  5815. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5816. delayed_move_time = millis();
  5817. return false;
  5818. }
  5819. }
  5820. delayed_move_time = 0;
  5821. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5822. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5825. active_extruder_parked = false;
  5826. }
  5827. }
  5828. return true;
  5829. }
  5830. #endif // DUAL_X_CARRIAGE
  5831. #if DISABLED(DELTA) && DISABLED(SCARA)
  5832. inline bool prepare_move_cartesian() {
  5833. // Do not use feedrate_multiplier for E or Z only moves
  5834. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5835. line_to_destination();
  5836. }
  5837. else {
  5838. #if ENABLED(MESH_BED_LEVELING)
  5839. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5840. return false;
  5841. #else
  5842. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5843. #endif
  5844. }
  5845. return true;
  5846. }
  5847. #endif // !DELTA && !SCARA
  5848. /**
  5849. * Prepare a single move and get ready for the next one
  5850. *
  5851. * (This may call plan_buffer_line several times to put
  5852. * smaller moves into the planner for DELTA or SCARA.)
  5853. */
  5854. void prepare_move() {
  5855. clamp_to_software_endstops(destination);
  5856. refresh_cmd_timeout();
  5857. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5858. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5859. #endif
  5860. #if ENABLED(SCARA)
  5861. if (!prepare_move_scara(destination)) return;
  5862. #elif ENABLED(DELTA)
  5863. if (!prepare_move_delta(destination)) return;
  5864. #endif
  5865. #if ENABLED(DUAL_X_CARRIAGE)
  5866. if (!prepare_move_dual_x_carriage()) return;
  5867. #endif
  5868. #if DISABLED(DELTA) && DISABLED(SCARA)
  5869. if (!prepare_move_cartesian()) return;
  5870. #endif
  5871. set_current_to_destination();
  5872. }
  5873. /**
  5874. * Plan an arc in 2 dimensions
  5875. *
  5876. * The arc is approximated by generating many small linear segments.
  5877. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5878. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5879. * larger segments will tend to be more efficient. Your slicer should have
  5880. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5881. */
  5882. void plan_arc(
  5883. float target[NUM_AXIS], // Destination position
  5884. float* offset, // Center of rotation relative to current_position
  5885. uint8_t clockwise // Clockwise?
  5886. ) {
  5887. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5888. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5889. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5890. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5891. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5892. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5893. r_axis1 = -offset[Y_AXIS],
  5894. rt_axis0 = target[X_AXIS] - center_axis0,
  5895. rt_axis1 = target[Y_AXIS] - center_axis1;
  5896. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5897. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  5898. if (angular_travel < 0) angular_travel += RADIANS(360);
  5899. if (clockwise) angular_travel -= RADIANS(360);
  5900. // Make a circle if the angular rotation is 0
  5901. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5902. angular_travel += RADIANS(360);
  5903. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  5904. if (mm_of_travel < 0.001) return;
  5905. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  5906. if (segments == 0) segments = 1;
  5907. float theta_per_segment = angular_travel / segments;
  5908. float linear_per_segment = linear_travel / segments;
  5909. float extruder_per_segment = extruder_travel / segments;
  5910. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5911. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5912. r_T = [cos(phi) -sin(phi);
  5913. sin(phi) cos(phi] * r ;
  5914. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5915. defined from the circle center to the initial position. Each line segment is formed by successive
  5916. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5917. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5918. all double numbers are single precision on the Arduino. (True double precision will not have
  5919. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5920. tool precision in some cases. Therefore, arc path correction is implemented.
  5921. Small angle approximation may be used to reduce computation overhead further. This approximation
  5922. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5923. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5924. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5925. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5926. issue for CNC machines with the single precision Arduino calculations.
  5927. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5928. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5929. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5930. This is important when there are successive arc motions.
  5931. */
  5932. // Vector rotation matrix values
  5933. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  5934. float sin_T = theta_per_segment;
  5935. float arc_target[NUM_AXIS];
  5936. float sin_Ti;
  5937. float cos_Ti;
  5938. float r_axisi;
  5939. uint16_t i;
  5940. int8_t count = 0;
  5941. // Initialize the linear axis
  5942. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5943. // Initialize the extruder axis
  5944. arc_target[E_AXIS] = current_position[E_AXIS];
  5945. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  5946. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5947. if (count < N_ARC_CORRECTION) {
  5948. // Apply vector rotation matrix to previous r_axis0 / 1
  5949. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  5950. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  5951. r_axis1 = r_axisi;
  5952. count++;
  5953. }
  5954. else {
  5955. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5956. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5957. cos_Ti = cos(i * theta_per_segment);
  5958. sin_Ti = sin(i * theta_per_segment);
  5959. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  5960. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  5961. count = 0;
  5962. }
  5963. // Update arc_target location
  5964. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5965. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5966. arc_target[Z_AXIS] += linear_per_segment;
  5967. arc_target[E_AXIS] += extruder_per_segment;
  5968. clamp_to_software_endstops(arc_target);
  5969. #if ENABLED(DELTA) || ENABLED(SCARA)
  5970. calculate_delta(arc_target);
  5971. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5972. adjust_delta(arc_target);
  5973. #endif
  5974. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5975. #else
  5976. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5977. #endif
  5978. }
  5979. // Ensure last segment arrives at target location.
  5980. #if ENABLED(DELTA) || ENABLED(SCARA)
  5981. calculate_delta(target);
  5982. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5983. adjust_delta(target);
  5984. #endif
  5985. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5986. #else
  5987. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5988. #endif
  5989. // As far as the parser is concerned, the position is now == target. In reality the
  5990. // motion control system might still be processing the action and the real tool position
  5991. // in any intermediate location.
  5992. set_current_to_destination();
  5993. }
  5994. #if HAS_CONTROLLERFAN
  5995. void controllerFan() {
  5996. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  5997. static millis_t nextMotorCheck = 0; // Last time the state was checked
  5998. millis_t ms = millis();
  5999. if (ms >= nextMotorCheck) {
  6000. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6001. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6002. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6003. #if EXTRUDERS > 1
  6004. || E1_ENABLE_READ == E_ENABLE_ON
  6005. #if HAS_X2_ENABLE
  6006. || X2_ENABLE_READ == X_ENABLE_ON
  6007. #endif
  6008. #if EXTRUDERS > 2
  6009. || E2_ENABLE_READ == E_ENABLE_ON
  6010. #if EXTRUDERS > 3
  6011. || E3_ENABLE_READ == E_ENABLE_ON
  6012. #endif
  6013. #endif
  6014. #endif
  6015. ) {
  6016. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6017. }
  6018. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6019. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6020. // allows digital or PWM fan output to be used (see M42 handling)
  6021. digitalWrite(CONTROLLERFAN_PIN, speed);
  6022. analogWrite(CONTROLLERFAN_PIN, speed);
  6023. }
  6024. }
  6025. #endif // HAS_CONTROLLERFAN
  6026. #if ENABLED(SCARA)
  6027. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6028. // Perform forward kinematics, and place results in delta[3]
  6029. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6030. float x_sin, x_cos, y_sin, y_cos;
  6031. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6032. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6033. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6034. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6035. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6036. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6037. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6038. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6039. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6040. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6041. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6042. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6043. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6044. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6045. }
  6046. void calculate_delta(float cartesian[3]) {
  6047. //reverse kinematics.
  6048. // Perform reversed kinematics, and place results in delta[3]
  6049. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6050. float SCARA_pos[2];
  6051. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6052. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6053. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6054. #if (Linkage_1 == Linkage_2)
  6055. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6056. #else
  6057. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6058. #endif
  6059. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6060. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6061. SCARA_K2 = Linkage_2 * SCARA_S2;
  6062. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6063. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6064. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6065. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6066. delta[Z_AXIS] = cartesian[Z_AXIS];
  6067. /**
  6068. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6069. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6070. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6071. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6072. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6073. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6074. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6075. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6076. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6077. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6078. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6079. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6080. SERIAL_EOL;
  6081. */
  6082. }
  6083. #endif // SCARA
  6084. #if ENABLED(TEMP_STAT_LEDS)
  6085. static bool red_led = false;
  6086. static millis_t next_status_led_update_ms = 0;
  6087. void handle_status_leds(void) {
  6088. float max_temp = 0.0;
  6089. if (millis() > next_status_led_update_ms) {
  6090. next_status_led_update_ms += 500; // Update every 0.5s
  6091. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6092. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6093. #if HAS_TEMP_BED
  6094. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6095. #endif
  6096. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6097. if (new_led != red_led) {
  6098. red_led = new_led;
  6099. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6100. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6101. }
  6102. }
  6103. }
  6104. #endif
  6105. void enable_all_steppers() {
  6106. enable_x();
  6107. enable_y();
  6108. enable_z();
  6109. enable_e0();
  6110. enable_e1();
  6111. enable_e2();
  6112. enable_e3();
  6113. }
  6114. void disable_all_steppers() {
  6115. disable_x();
  6116. disable_y();
  6117. disable_z();
  6118. disable_e0();
  6119. disable_e1();
  6120. disable_e2();
  6121. disable_e3();
  6122. }
  6123. /**
  6124. * Standard idle routine keeps the machine alive
  6125. */
  6126. void idle(
  6127. #if ENABLED(FILAMENTCHANGEENABLE)
  6128. bool no_stepper_sleep/*=false*/
  6129. #endif
  6130. ) {
  6131. manage_heater();
  6132. manage_inactivity(
  6133. #if ENABLED(FILAMENTCHANGEENABLE)
  6134. no_stepper_sleep
  6135. #endif
  6136. );
  6137. host_keepalive();
  6138. lcd_update();
  6139. }
  6140. /**
  6141. * Manage several activities:
  6142. * - Check for Filament Runout
  6143. * - Keep the command buffer full
  6144. * - Check for maximum inactive time between commands
  6145. * - Check for maximum inactive time between stepper commands
  6146. * - Check if pin CHDK needs to go LOW
  6147. * - Check for KILL button held down
  6148. * - Check for HOME button held down
  6149. * - Check if cooling fan needs to be switched on
  6150. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6151. */
  6152. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6153. #if HAS_FILRUNOUT
  6154. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6155. filrunout();
  6156. #endif
  6157. if (commands_in_queue < BUFSIZE) get_command();
  6158. millis_t ms = millis();
  6159. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6160. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6161. && !ignore_stepper_queue && !blocks_queued()) {
  6162. #if ENABLED(DISABLE_INACTIVE_X)
  6163. disable_x();
  6164. #endif
  6165. #if ENABLED(DISABLE_INACTIVE_Y)
  6166. disable_y();
  6167. #endif
  6168. #if ENABLED(DISABLE_INACTIVE_Z)
  6169. disable_z();
  6170. #endif
  6171. #if ENABLED(DISABLE_INACTIVE_E)
  6172. disable_e0();
  6173. disable_e1();
  6174. disable_e2();
  6175. disable_e3();
  6176. #endif
  6177. }
  6178. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6179. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6180. chdkActive = false;
  6181. WRITE(CHDK, LOW);
  6182. }
  6183. #endif
  6184. #if HAS_KILL
  6185. // Check if the kill button was pressed and wait just in case it was an accidental
  6186. // key kill key press
  6187. // -------------------------------------------------------------------------------
  6188. static int killCount = 0; // make the inactivity button a bit less responsive
  6189. const int KILL_DELAY = 750;
  6190. if (!READ(KILL_PIN))
  6191. killCount++;
  6192. else if (killCount > 0)
  6193. killCount--;
  6194. // Exceeded threshold and we can confirm that it was not accidental
  6195. // KILL the machine
  6196. // ----------------------------------------------------------------
  6197. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6198. #endif
  6199. #if HAS_HOME
  6200. // Check to see if we have to home, use poor man's debouncer
  6201. // ---------------------------------------------------------
  6202. static int homeDebounceCount = 0; // poor man's debouncing count
  6203. const int HOME_DEBOUNCE_DELAY = 2500;
  6204. if (!READ(HOME_PIN)) {
  6205. if (!homeDebounceCount) {
  6206. enqueue_and_echo_commands_P(PSTR("G28"));
  6207. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6208. }
  6209. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6210. homeDebounceCount++;
  6211. else
  6212. homeDebounceCount = 0;
  6213. }
  6214. #endif
  6215. #if HAS_CONTROLLERFAN
  6216. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6217. #endif
  6218. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6219. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6220. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6221. bool oldstatus;
  6222. switch (active_extruder) {
  6223. case 0:
  6224. oldstatus = E0_ENABLE_READ;
  6225. enable_e0();
  6226. break;
  6227. #if EXTRUDERS > 1
  6228. case 1:
  6229. oldstatus = E1_ENABLE_READ;
  6230. enable_e1();
  6231. break;
  6232. #if EXTRUDERS > 2
  6233. case 2:
  6234. oldstatus = E2_ENABLE_READ;
  6235. enable_e2();
  6236. break;
  6237. #if EXTRUDERS > 3
  6238. case 3:
  6239. oldstatus = E3_ENABLE_READ;
  6240. enable_e3();
  6241. break;
  6242. #endif
  6243. #endif
  6244. #endif
  6245. }
  6246. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6247. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6248. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6249. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6250. current_position[E_AXIS] = oldepos;
  6251. destination[E_AXIS] = oldedes;
  6252. plan_set_e_position(oldepos);
  6253. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6254. st_synchronize();
  6255. switch (active_extruder) {
  6256. case 0:
  6257. E0_ENABLE_WRITE(oldstatus);
  6258. break;
  6259. #if EXTRUDERS > 1
  6260. case 1:
  6261. E1_ENABLE_WRITE(oldstatus);
  6262. break;
  6263. #if EXTRUDERS > 2
  6264. case 2:
  6265. E2_ENABLE_WRITE(oldstatus);
  6266. break;
  6267. #if EXTRUDERS > 3
  6268. case 3:
  6269. E3_ENABLE_WRITE(oldstatus);
  6270. break;
  6271. #endif
  6272. #endif
  6273. #endif
  6274. }
  6275. }
  6276. #endif
  6277. #if ENABLED(DUAL_X_CARRIAGE)
  6278. // handle delayed move timeout
  6279. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6280. // travel moves have been received so enact them
  6281. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6282. set_destination_to_current();
  6283. prepare_move();
  6284. }
  6285. #endif
  6286. #if ENABLED(TEMP_STAT_LEDS)
  6287. handle_status_leds();
  6288. #endif
  6289. check_axes_activity();
  6290. }
  6291. void kill(const char* lcd_msg) {
  6292. #if ENABLED(ULTRA_LCD)
  6293. lcd_setalertstatuspgm(lcd_msg);
  6294. #else
  6295. UNUSED(lcd_msg);
  6296. #endif
  6297. cli(); // Stop interrupts
  6298. disable_all_heaters();
  6299. disable_all_steppers();
  6300. #if HAS_POWER_SWITCH
  6301. pinMode(PS_ON_PIN, INPUT);
  6302. #endif
  6303. SERIAL_ERROR_START;
  6304. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6305. // FMC small patch to update the LCD before ending
  6306. sei(); // enable interrupts
  6307. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6308. cli(); // disable interrupts
  6309. suicide();
  6310. while (1) {
  6311. #if ENABLED(USE_WATCHDOG)
  6312. watchdog_reset();
  6313. #endif
  6314. } // Wait for reset
  6315. }
  6316. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6317. void filrunout() {
  6318. if (!filrunoutEnqueued) {
  6319. filrunoutEnqueued = true;
  6320. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6321. st_synchronize();
  6322. }
  6323. }
  6324. #endif // FILAMENT_RUNOUT_SENSOR
  6325. #if ENABLED(FAST_PWM_FAN)
  6326. void setPwmFrequency(uint8_t pin, int val) {
  6327. val &= 0x07;
  6328. switch (digitalPinToTimer(pin)) {
  6329. #if defined(TCCR0A)
  6330. case TIMER0A:
  6331. case TIMER0B:
  6332. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6333. // TCCR0B |= val;
  6334. break;
  6335. #endif
  6336. #if defined(TCCR1A)
  6337. case TIMER1A:
  6338. case TIMER1B:
  6339. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6340. // TCCR1B |= val;
  6341. break;
  6342. #endif
  6343. #if defined(TCCR2)
  6344. case TIMER2:
  6345. case TIMER2:
  6346. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6347. TCCR2 |= val;
  6348. break;
  6349. #endif
  6350. #if defined(TCCR2A)
  6351. case TIMER2A:
  6352. case TIMER2B:
  6353. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6354. TCCR2B |= val;
  6355. break;
  6356. #endif
  6357. #if defined(TCCR3A)
  6358. case TIMER3A:
  6359. case TIMER3B:
  6360. case TIMER3C:
  6361. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6362. TCCR3B |= val;
  6363. break;
  6364. #endif
  6365. #if defined(TCCR4A)
  6366. case TIMER4A:
  6367. case TIMER4B:
  6368. case TIMER4C:
  6369. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6370. TCCR4B |= val;
  6371. break;
  6372. #endif
  6373. #if defined(TCCR5A)
  6374. case TIMER5A:
  6375. case TIMER5B:
  6376. case TIMER5C:
  6377. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6378. TCCR5B |= val;
  6379. break;
  6380. #endif
  6381. }
  6382. }
  6383. #endif // FAST_PWM_FAN
  6384. void Stop() {
  6385. disable_all_heaters();
  6386. if (IsRunning()) {
  6387. Running = false;
  6388. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6389. SERIAL_ERROR_START;
  6390. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6391. LCD_MESSAGEPGM(MSG_STOPPED);
  6392. }
  6393. }
  6394. /**
  6395. * Set target_extruder from the T parameter or the active_extruder
  6396. *
  6397. * Returns TRUE if the target is invalid
  6398. */
  6399. bool setTargetedHotend(int code) {
  6400. target_extruder = active_extruder;
  6401. if (code_seen('T')) {
  6402. target_extruder = code_value_short();
  6403. if (target_extruder >= EXTRUDERS) {
  6404. SERIAL_ECHO_START;
  6405. SERIAL_CHAR('M');
  6406. SERIAL_ECHO(code);
  6407. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6408. SERIAL_ECHOLN((int)target_extruder);
  6409. return true;
  6410. }
  6411. }
  6412. return false;
  6413. }
  6414. float calculate_volumetric_multiplier(float diameter) {
  6415. if (!volumetric_enabled || diameter == 0) return 1.0;
  6416. float d2 = diameter * 0.5;
  6417. return 1.0 / (M_PI * d2 * d2);
  6418. }
  6419. void calculate_volumetric_multipliers() {
  6420. for (int i = 0; i < EXTRUDERS; i++)
  6421. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6422. }
  6423. /**
  6424. * Start the print job timer
  6425. *
  6426. * The print job is only started if all extruders have their target temp at zero
  6427. * otherwise the print job timew would be reset everytime a M109 is received.
  6428. *
  6429. * @param t start timer timestamp
  6430. *
  6431. * @return true if the timer was started at function call
  6432. */
  6433. bool print_job_start(millis_t t /* = 0 */) {
  6434. for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6435. print_job_start_ms = (t) ? t : millis();
  6436. print_job_stop_ms = 0;
  6437. return true;
  6438. }
  6439. /**
  6440. * Output the print job timer in seconds
  6441. *
  6442. * @return the number of seconds
  6443. */
  6444. millis_t print_job_timer() {
  6445. if (!print_job_start_ms) return 0;
  6446. return (((print_job_stop_ms > print_job_start_ms)
  6447. ? print_job_stop_ms : millis()) - print_job_start_ms) / 1000;
  6448. }
  6449. /**
  6450. * Check if the running print job has finished and stop the timer
  6451. *
  6452. * When the target temperature for all extruders is zero then we assume that the
  6453. * print job has finished printing. There are some special conditions under which
  6454. * this assumption may not be valid: If during a print job for some reason the
  6455. * user decides to bring a nozzle temp down and only then heat the other afterwards.
  6456. *
  6457. * @param force stops the timer ignoring all pre-checks
  6458. *
  6459. * @return boolean true if the print job has finished printing
  6460. */
  6461. bool print_job_stop(bool force /* = false */) {
  6462. if (!print_job_start_ms) return false;
  6463. if (!force) for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6464. print_job_stop_ms = millis();
  6465. return true;
  6466. }