My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

planner.cpp 45KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp - Buffer movement commands and manage the acceleration profile plan
  24. * Part of Grbl
  25. *
  26. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  27. *
  28. * Grbl is free software: you can redistribute it and/or modify
  29. * it under the terms of the GNU General Public License as published by
  30. * the Free Software Foundation, either version 3 of the License, or
  31. * (at your option) any later version.
  32. *
  33. * Grbl is distributed in the hope that it will be useful,
  34. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  35. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  36. * GNU General Public License for more details.
  37. *
  38. * You should have received a copy of the GNU General Public License
  39. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  40. *
  41. *
  42. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  43. *
  44. *
  45. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  46. *
  47. * s == speed, a == acceleration, t == time, d == distance
  48. *
  49. * Basic definitions:
  50. * Speed[s_, a_, t_] := s + (a*t)
  51. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  52. *
  53. * Distance to reach a specific speed with a constant acceleration:
  54. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  55. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  56. *
  57. * Speed after a given distance of travel with constant acceleration:
  58. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  59. * m -> Sqrt[2 a d + s^2]
  60. *
  61. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  62. *
  63. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  64. * from initial speed s1 without ever stopping at a plateau:
  65. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  66. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  67. *
  68. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  69. *
  70. */
  71. #include "Marlin.h"
  72. #include "planner.h"
  73. #include "stepper.h"
  74. #include "temperature.h"
  75. #include "ultralcd.h"
  76. #include "language.h"
  77. #if ENABLED(MESH_BED_LEVELING)
  78. #include "mesh_bed_leveling.h"
  79. #endif
  80. //===========================================================================
  81. //============================= public variables ============================
  82. //===========================================================================
  83. millis_t minsegmenttime;
  84. float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
  85. float axis_steps_per_unit[NUM_AXIS];
  86. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  87. float minimumfeedrate;
  88. float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  89. float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  90. float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  91. float max_xy_jerk; // The largest speed change requiring no acceleration
  92. float max_z_jerk;
  93. float max_e_jerk;
  94. float mintravelfeedrate;
  95. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  96. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  97. // Transform required to compensate for bed level
  98. matrix_3x3 plan_bed_level_matrix = {
  99. 1.0, 0.0, 0.0,
  100. 0.0, 1.0, 0.0,
  101. 0.0, 0.0, 1.0
  102. };
  103. #endif // AUTO_BED_LEVELING_FEATURE
  104. #if ENABLED(AUTOTEMP)
  105. float autotemp_max = 250;
  106. float autotemp_min = 210;
  107. float autotemp_factor = 0.1;
  108. bool autotemp_enabled = false;
  109. #endif
  110. #if ENABLED(FAN_SOFT_PWM)
  111. extern unsigned char fanSpeedSoftPwm[FAN_COUNT];
  112. #endif
  113. //===========================================================================
  114. //============ semi-private variables, used in inline functions =============
  115. //===========================================================================
  116. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  117. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  118. volatile unsigned char block_buffer_tail; // Index of the block to process now
  119. //===========================================================================
  120. //============================ private variables ============================
  121. //===========================================================================
  122. // The current position of the tool in absolute steps
  123. long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode
  124. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  125. static float previous_nominal_speed; // Nominal speed of previous path line segment
  126. uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  127. #ifdef XY_FREQUENCY_LIMIT
  128. // Used for the frequency limit
  129. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  130. // Old direction bits. Used for speed calculations
  131. static unsigned char old_direction_bits = 0;
  132. // Segment times (in µs). Used for speed calculations
  133. static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
  134. #endif
  135. #if ENABLED(FILAMENT_SENSOR)
  136. static char meas_sample; //temporary variable to hold filament measurement sample
  137. #endif
  138. #if ENABLED(DUAL_X_CARRIAGE)
  139. extern bool extruder_duplication_enabled;
  140. #endif
  141. //===========================================================================
  142. //================================ functions ================================
  143. //===========================================================================
  144. // Get the next / previous index of the next block in the ring buffer
  145. // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
  146. FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  147. FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  148. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  149. // given acceleration:
  150. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
  151. if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
  152. return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
  153. }
  154. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  155. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  156. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  157. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  158. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
  159. if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
  160. return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
  161. }
  162. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  163. void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
  164. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
  165. unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
  166. // Limit minimal step rate (Otherwise the timer will overflow.)
  167. NOLESS(initial_rate, 120);
  168. NOLESS(final_rate, 120);
  169. long acceleration = block->acceleration_st;
  170. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  171. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  172. // Calculate the size of Plateau of Nominal Rate.
  173. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  174. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  175. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  176. // in order to reach the final_rate exactly at the end of this block.
  177. if (plateau_steps < 0) {
  178. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  179. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  180. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  181. plateau_steps = 0;
  182. }
  183. #if ENABLED(ADVANCE)
  184. volatile long initial_advance = block->advance * entry_factor * entry_factor;
  185. volatile long final_advance = block->advance * exit_factor * exit_factor;
  186. #endif // ADVANCE
  187. // block->accelerate_until = accelerate_steps;
  188. // block->decelerate_after = accelerate_steps+plateau_steps;
  189. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  190. if (!block->busy) { // Don't update variables if block is busy.
  191. block->accelerate_until = accelerate_steps;
  192. block->decelerate_after = accelerate_steps + plateau_steps;
  193. block->initial_rate = initial_rate;
  194. block->final_rate = final_rate;
  195. #if ENABLED(ADVANCE)
  196. block->initial_advance = initial_advance;
  197. block->final_advance = final_advance;
  198. #endif
  199. }
  200. CRITICAL_SECTION_END;
  201. }
  202. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  203. // acceleration within the allotted distance.
  204. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  205. return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
  206. }
  207. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  208. // This method will calculate the junction jerk as the euclidean distance between the nominal
  209. // velocities of the respective blocks.
  210. //inline float junction_jerk(block_t *before, block_t *after) {
  211. // return sqrt(
  212. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  213. //}
  214. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  215. void planner_reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  216. if (!current) return;
  217. UNUSED(previous);
  218. if (next) {
  219. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  220. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  221. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  222. float max_entry_speed = current->max_entry_speed;
  223. if (current->entry_speed != max_entry_speed) {
  224. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  225. // for max allowable speed if block is decelerating and nominal length is false.
  226. if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
  227. current->entry_speed = min(max_entry_speed,
  228. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  229. }
  230. else {
  231. current->entry_speed = max_entry_speed;
  232. }
  233. current->recalculate_flag = true;
  234. }
  235. } // Skip last block. Already initialized and set for recalculation.
  236. }
  237. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  238. // implements the reverse pass.
  239. void planner_reverse_pass() {
  240. uint8_t block_index = block_buffer_head;
  241. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  242. CRITICAL_SECTION_START;
  243. unsigned char tail = block_buffer_tail;
  244. CRITICAL_SECTION_END
  245. if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
  246. block_index = BLOCK_MOD(block_buffer_head - 3);
  247. block_t* block[3] = { NULL, NULL, NULL };
  248. while (block_index != tail) {
  249. block_index = prev_block_index(block_index);
  250. block[2] = block[1];
  251. block[1] = block[0];
  252. block[0] = &block_buffer[block_index];
  253. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  254. }
  255. }
  256. }
  257. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  258. void planner_forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  259. if (!previous) return;
  260. UNUSED(next);
  261. // If the previous block is an acceleration block, but it is not long enough to complete the
  262. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  263. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  264. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  265. if (!previous->nominal_length_flag) {
  266. if (previous->entry_speed < current->entry_speed) {
  267. double entry_speed = min(current->entry_speed,
  268. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  269. // Check for junction speed change
  270. if (current->entry_speed != entry_speed) {
  271. current->entry_speed = entry_speed;
  272. current->recalculate_flag = true;
  273. }
  274. }
  275. }
  276. }
  277. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  278. // implements the forward pass.
  279. void planner_forward_pass() {
  280. uint8_t block_index = block_buffer_tail;
  281. block_t* block[3] = { NULL, NULL, NULL };
  282. while (block_index != block_buffer_head) {
  283. block[0] = block[1];
  284. block[1] = block[2];
  285. block[2] = &block_buffer[block_index];
  286. planner_forward_pass_kernel(block[0], block[1], block[2]);
  287. block_index = next_block_index(block_index);
  288. }
  289. planner_forward_pass_kernel(block[1], block[2], NULL);
  290. }
  291. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  292. // entry_factor for each junction. Must be called by planner_recalculate() after
  293. // updating the blocks.
  294. void planner_recalculate_trapezoids() {
  295. int8_t block_index = block_buffer_tail;
  296. block_t* current;
  297. block_t* next = NULL;
  298. while (block_index != block_buffer_head) {
  299. current = next;
  300. next = &block_buffer[block_index];
  301. if (current) {
  302. // Recalculate if current block entry or exit junction speed has changed.
  303. if (current->recalculate_flag || next->recalculate_flag) {
  304. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  305. float nom = current->nominal_speed;
  306. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  307. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  308. }
  309. }
  310. block_index = next_block_index(block_index);
  311. }
  312. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  313. if (next) {
  314. float nom = next->nominal_speed;
  315. calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
  316. next->recalculate_flag = false;
  317. }
  318. }
  319. // Recalculates the motion plan according to the following algorithm:
  320. //
  321. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  322. // so that:
  323. // a. The junction jerk is within the set limit
  324. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  325. // acceleration.
  326. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  327. // a. The speed increase within one block would require faster acceleration than the one, true
  328. // constant acceleration.
  329. //
  330. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  331. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  332. // the set limit. Finally it will:
  333. //
  334. // 3. Recalculate trapezoids for all blocks.
  335. void planner_recalculate() {
  336. planner_reverse_pass();
  337. planner_forward_pass();
  338. planner_recalculate_trapezoids();
  339. }
  340. void plan_init() {
  341. block_buffer_head = block_buffer_tail = 0;
  342. memset(position, 0, sizeof(position)); // clear position
  343. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  344. previous_nominal_speed = 0.0;
  345. }
  346. #if ENABLED(AUTOTEMP)
  347. void getHighESpeed() {
  348. static float oldt = 0;
  349. if (!autotemp_enabled) return;
  350. if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
  351. float high = 0.0;
  352. uint8_t block_index = block_buffer_tail;
  353. while (block_index != block_buffer_head) {
  354. block_t* block = &block_buffer[block_index];
  355. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  356. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  357. NOLESS(high, se);
  358. }
  359. block_index = next_block_index(block_index);
  360. }
  361. float t = autotemp_min + high * autotemp_factor;
  362. t = constrain(t, autotemp_min, autotemp_max);
  363. if (oldt > t) {
  364. t *= (1 - (AUTOTEMP_OLDWEIGHT));
  365. t += (AUTOTEMP_OLDWEIGHT) * oldt;
  366. }
  367. oldt = t;
  368. setTargetHotend0(t);
  369. }
  370. #endif //AUTOTEMP
  371. void check_axes_activity() {
  372. unsigned char axis_active[NUM_AXIS] = { 0 },
  373. tail_fan_speed[FAN_COUNT];
  374. #if FAN_COUNT > 0
  375. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
  376. #endif
  377. #if ENABLED(BARICUDA)
  378. unsigned char tail_valve_pressure = ValvePressure,
  379. tail_e_to_p_pressure = EtoPPressure;
  380. #endif
  381. block_t* block;
  382. if (blocks_queued()) {
  383. uint8_t block_index = block_buffer_tail;
  384. #if FAN_COUNT > 0
  385. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_index].fan_speed[i];
  386. #endif
  387. #if ENABLED(BARICUDA)
  388. block = &block_buffer[block_index];
  389. tail_valve_pressure = block->valve_pressure;
  390. tail_e_to_p_pressure = block->e_to_p_pressure;
  391. #endif
  392. while (block_index != block_buffer_head) {
  393. block = &block_buffer[block_index];
  394. for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
  395. block_index = next_block_index(block_index);
  396. }
  397. }
  398. #if ENABLED(DISABLE_X)
  399. if (!axis_active[X_AXIS]) disable_x();
  400. #endif
  401. #if ENABLED(DISABLE_Y)
  402. if (!axis_active[Y_AXIS]) disable_y();
  403. #endif
  404. #if ENABLED(DISABLE_Z)
  405. if (!axis_active[Z_AXIS]) disable_z();
  406. #endif
  407. #if ENABLED(DISABLE_E)
  408. if (!axis_active[E_AXIS]) {
  409. disable_e0();
  410. disable_e1();
  411. disable_e2();
  412. disable_e3();
  413. }
  414. #endif
  415. #if FAN_COUNT > 0
  416. #if defined(FAN_MIN_PWM)
  417. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  418. #else
  419. #define CALC_FAN_SPEED(f) tail_fan_speed[f]
  420. #endif
  421. #ifdef FAN_KICKSTART_TIME
  422. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  423. #define KICKSTART_FAN(f) \
  424. if (tail_fan_speed[f]) { \
  425. millis_t ms = millis(); \
  426. if (fan_kick_end[f] == 0) { \
  427. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  428. tail_fan_speed[f] = 255; \
  429. } else { \
  430. if (fan_kick_end[f] > ms) { \
  431. tail_fan_speed[f] = 255; \
  432. } \
  433. } \
  434. } else { \
  435. fan_kick_end[f] = 0; \
  436. }
  437. #if HAS_FAN0
  438. KICKSTART_FAN(0);
  439. #endif
  440. #if HAS_FAN1
  441. KICKSTART_FAN(1);
  442. #endif
  443. #if HAS_FAN2
  444. KICKSTART_FAN(2);
  445. #endif
  446. #endif //FAN_KICKSTART_TIME
  447. #if ENABLED(FAN_SOFT_PWM)
  448. #if HAS_FAN0
  449. fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
  450. #endif
  451. #if HAS_FAN1
  452. fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
  453. #endif
  454. #if HAS_FAN2
  455. fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
  456. #endif
  457. #else
  458. #if HAS_FAN0
  459. analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
  460. #endif
  461. #if HAS_FAN1
  462. analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
  463. #endif
  464. #if HAS_FAN2
  465. analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
  466. #endif
  467. #endif
  468. #endif // FAN_COUNT > 0
  469. #if ENABLED(AUTOTEMP)
  470. getHighESpeed();
  471. #endif
  472. #if ENABLED(BARICUDA)
  473. #if HAS_HEATER_1
  474. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  475. #endif
  476. #if HAS_HEATER_2
  477. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  478. #endif
  479. #endif
  480. }
  481. float junction_deviation = 0.1;
  482. // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
  483. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  484. // calculation the caller must also provide the physical length of the line in millimeters.
  485. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  486. void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
  487. #else
  488. void plan_buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
  489. #endif // AUTO_BED_LEVELING_FEATURE
  490. {
  491. // Calculate the buffer head after we push this byte
  492. int next_buffer_head = next_block_index(block_buffer_head);
  493. // If the buffer is full: good! That means we are well ahead of the robot.
  494. // Rest here until there is room in the buffer.
  495. while (block_buffer_tail == next_buffer_head) idle();
  496. #if ENABLED(MESH_BED_LEVELING)
  497. if (mbl.active) z += mbl.get_z(x, y);
  498. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  499. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  500. #endif
  501. // The target position of the tool in absolute steps
  502. // Calculate target position in absolute steps
  503. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  504. long target[NUM_AXIS];
  505. target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  506. target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  507. target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
  508. target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  509. long dx = target[X_AXIS] - position[X_AXIS],
  510. dy = target[Y_AXIS] - position[Y_AXIS],
  511. dz = target[Z_AXIS] - position[Z_AXIS];
  512. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  513. if (marlin_debug_flags & DEBUG_DRYRUN)
  514. position[E_AXIS] = target[E_AXIS];
  515. long de = target[E_AXIS] - position[E_AXIS];
  516. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  517. if (de) {
  518. if (degHotend(extruder) < extrude_min_temp) {
  519. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  520. de = 0; // no difference
  521. SERIAL_ECHO_START;
  522. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  523. }
  524. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  525. if (labs(de) > axis_steps_per_unit[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
  526. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  527. de = 0; // no difference
  528. SERIAL_ECHO_START;
  529. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  530. }
  531. #endif
  532. }
  533. #endif
  534. // Prepare to set up new block
  535. block_t* block = &block_buffer[block_buffer_head];
  536. // Mark block as not busy (Not executed by the stepper interrupt)
  537. block->busy = false;
  538. // Number of steps for each axis
  539. #if ENABLED(COREXY)
  540. // corexy planning
  541. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  542. block->steps[A_AXIS] = labs(dx + dy);
  543. block->steps[B_AXIS] = labs(dx - dy);
  544. block->steps[Z_AXIS] = labs(dz);
  545. #elif ENABLED(COREXZ)
  546. // corexz planning
  547. block->steps[A_AXIS] = labs(dx + dz);
  548. block->steps[Y_AXIS] = labs(dy);
  549. block->steps[C_AXIS] = labs(dx - dz);
  550. #else
  551. // default non-h-bot planning
  552. block->steps[X_AXIS] = labs(dx);
  553. block->steps[Y_AXIS] = labs(dy);
  554. block->steps[Z_AXIS] = labs(dz);
  555. #endif
  556. block->steps[E_AXIS] = labs(de);
  557. block->steps[E_AXIS] *= volumetric_multiplier[extruder];
  558. block->steps[E_AXIS] *= extruder_multiplier[extruder];
  559. block->steps[E_AXIS] /= 100;
  560. block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
  561. // Bail if this is a zero-length block
  562. if (block->step_event_count <= dropsegments) return;
  563. #if FAN_COUNT > 0
  564. for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
  565. #endif
  566. #if ENABLED(BARICUDA)
  567. block->valve_pressure = ValvePressure;
  568. block->e_to_p_pressure = EtoPPressure;
  569. #endif
  570. // Compute direction bits for this block
  571. uint8_t db = 0;
  572. #if ENABLED(COREXY)
  573. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  574. if (dy < 0) SBI(db, Y_HEAD); // ...and Y
  575. if (dz < 0) SBI(db, Z_AXIS);
  576. if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
  577. if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
  578. #elif ENABLED(COREXZ)
  579. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  580. if (dy < 0) SBI(db, Y_AXIS);
  581. if (dz < 0) SBI(db, Z_HEAD); // ...and Z
  582. if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
  583. if (dx - dz < 0) SBI(db, C_AXIS); // Motor B direction
  584. #else
  585. if (dx < 0) SBI(db, X_AXIS);
  586. if (dy < 0) SBI(db, Y_AXIS);
  587. if (dz < 0) SBI(db, Z_AXIS);
  588. #endif
  589. if (de < 0) SBI(db, E_AXIS);
  590. block->direction_bits = db;
  591. block->active_extruder = extruder;
  592. //enable active axes
  593. #if ENABLED(COREXY)
  594. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  595. enable_x();
  596. enable_y();
  597. }
  598. #if DISABLED(Z_LATE_ENABLE)
  599. if (block->steps[Z_AXIS]) enable_z();
  600. #endif
  601. #elif ENABLED(COREXZ)
  602. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  603. enable_x();
  604. enable_z();
  605. }
  606. if (block->steps[Y_AXIS]) enable_y();
  607. #else
  608. if (block->steps[X_AXIS]) enable_x();
  609. if (block->steps[Y_AXIS]) enable_y();
  610. #if DISABLED(Z_LATE_ENABLE)
  611. if (block->steps[Z_AXIS]) enable_z();
  612. #endif
  613. #endif
  614. // Enable extruder(s)
  615. if (block->steps[E_AXIS]) {
  616. if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
  617. for (int i = 0; i < EXTRUDERS; i++)
  618. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  619. switch(extruder) {
  620. case 0:
  621. enable_e0();
  622. #if ENABLED(DUAL_X_CARRIAGE)
  623. if (extruder_duplication_enabled) {
  624. enable_e1();
  625. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  626. }
  627. #endif
  628. g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
  629. #if EXTRUDERS > 1
  630. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  631. #if EXTRUDERS > 2
  632. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  633. #if EXTRUDERS > 3
  634. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  635. #endif
  636. #endif
  637. #endif
  638. break;
  639. #if EXTRUDERS > 1
  640. case 1:
  641. enable_e1();
  642. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  643. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  644. #if EXTRUDERS > 2
  645. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  646. #if EXTRUDERS > 3
  647. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  648. #endif
  649. #endif
  650. break;
  651. #if EXTRUDERS > 2
  652. case 2:
  653. enable_e2();
  654. g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
  655. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  656. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  657. #if EXTRUDERS > 3
  658. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  659. #endif
  660. break;
  661. #if EXTRUDERS > 3
  662. case 3:
  663. enable_e3();
  664. g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
  665. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  666. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  667. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  668. break;
  669. #endif // EXTRUDERS > 3
  670. #endif // EXTRUDERS > 2
  671. #endif // EXTRUDERS > 1
  672. }
  673. }
  674. else { // enable all
  675. enable_e0();
  676. enable_e1();
  677. enable_e2();
  678. enable_e3();
  679. }
  680. }
  681. if (block->steps[E_AXIS])
  682. NOLESS(feed_rate, minimumfeedrate);
  683. else
  684. NOLESS(feed_rate, mintravelfeedrate);
  685. /**
  686. * This part of the code calculates the total length of the movement.
  687. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  688. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  689. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  690. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  691. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  692. */
  693. #if ENABLED(COREXY)
  694. float delta_mm[6];
  695. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  696. delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
  697. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  698. delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
  699. delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
  700. #elif ENABLED(COREXZ)
  701. float delta_mm[6];
  702. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  703. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  704. delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
  705. delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
  706. delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
  707. #else
  708. float delta_mm[4];
  709. delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
  710. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  711. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  712. #endif
  713. delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
  714. if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
  715. block->millimeters = fabs(delta_mm[E_AXIS]);
  716. }
  717. else {
  718. block->millimeters = sqrt(
  719. #if ENABLED(COREXY)
  720. square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
  721. #elif ENABLED(COREXZ)
  722. square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
  723. #else
  724. square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
  725. #endif
  726. );
  727. }
  728. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  729. // Calculate moves/second for this move. No divide by zero due to previous checks.
  730. float inverse_second = feed_rate * inverse_millimeters;
  731. int moves_queued = movesplanned();
  732. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  733. #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
  734. bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
  735. #if ENABLED(OLD_SLOWDOWN)
  736. if (mq) feed_rate *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
  737. #endif
  738. #if ENABLED(SLOWDOWN)
  739. // segment time im micro seconds
  740. unsigned long segment_time = lround(1000000.0/inverse_second);
  741. if (mq) {
  742. if (segment_time < minsegmenttime) {
  743. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  744. inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
  745. #ifdef XY_FREQUENCY_LIMIT
  746. segment_time = lround(1000000.0 / inverse_second);
  747. #endif
  748. }
  749. }
  750. #endif
  751. #endif
  752. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  753. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  754. #if ENABLED(FILAMENT_SENSOR)
  755. //FMM update ring buffer used for delay with filament measurements
  756. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
  757. const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
  758. delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
  759. while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
  760. while (delay_dist < 0) delay_dist += MMD10;
  761. delay_index1 = delay_dist / 10.0; // calculate index
  762. delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
  763. if (delay_index1 != delay_index2) { // moved index
  764. meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  765. while (delay_index1 != delay_index2) {
  766. // Increment and loop around buffer
  767. if (++delay_index2 >= MMD) delay_index2 -= MMD;
  768. delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
  769. measurement_delay[delay_index2] = meas_sample;
  770. }
  771. }
  772. }
  773. #endif
  774. // Calculate and limit speed in mm/sec for each axis
  775. float current_speed[NUM_AXIS];
  776. float speed_factor = 1.0; //factor <=1 do decrease speed
  777. for (int i = 0; i < NUM_AXIS; i++) {
  778. current_speed[i] = delta_mm[i] * inverse_second;
  779. float cs = fabs(current_speed[i]), mf = max_feedrate[i];
  780. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  781. }
  782. // Max segement time in us.
  783. #ifdef XY_FREQUENCY_LIMIT
  784. // Check and limit the xy direction change frequency
  785. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  786. old_direction_bits = block->direction_bits;
  787. segment_time = lround((float)segment_time / speed_factor);
  788. long xs0 = axis_segment_time[X_AXIS][0],
  789. xs1 = axis_segment_time[X_AXIS][1],
  790. xs2 = axis_segment_time[X_AXIS][2],
  791. ys0 = axis_segment_time[Y_AXIS][0],
  792. ys1 = axis_segment_time[Y_AXIS][1],
  793. ys2 = axis_segment_time[Y_AXIS][2];
  794. if (TEST(direction_change, X_AXIS)) {
  795. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  796. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  797. xs0 = 0;
  798. }
  799. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  800. if (TEST(direction_change, Y_AXIS)) {
  801. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  802. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  803. ys0 = 0;
  804. }
  805. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  806. long max_x_segment_time = max(xs0, max(xs1, xs2)),
  807. max_y_segment_time = max(ys0, max(ys1, ys2)),
  808. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  809. if (min_xy_segment_time < MAX_FREQ_TIME) {
  810. float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
  811. speed_factor = min(speed_factor, low_sf);
  812. }
  813. #endif // XY_FREQUENCY_LIMIT
  814. // Correct the speed
  815. if (speed_factor < 1.0) {
  816. for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
  817. block->nominal_speed *= speed_factor;
  818. block->nominal_rate *= speed_factor;
  819. }
  820. // Compute and limit the acceleration rate for the trapezoid generator.
  821. float steps_per_mm = block->step_event_count / block->millimeters;
  822. unsigned long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  823. if (bsx == 0 && bsy == 0 && bsz == 0) {
  824. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  825. }
  826. else if (bse == 0) {
  827. block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  828. }
  829. else {
  830. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  831. }
  832. // Limit acceleration per axis
  833. unsigned long acc_st = block->acceleration_st,
  834. xsteps = axis_steps_per_sqr_second[X_AXIS],
  835. ysteps = axis_steps_per_sqr_second[Y_AXIS],
  836. zsteps = axis_steps_per_sqr_second[Z_AXIS],
  837. esteps = axis_steps_per_sqr_second[E_AXIS],
  838. allsteps = block->step_event_count;
  839. if (xsteps < (acc_st * bsx) / allsteps) acc_st = (xsteps * allsteps) / bsx;
  840. if (ysteps < (acc_st * bsy) / allsteps) acc_st = (ysteps * allsteps) / bsy;
  841. if (zsteps < (acc_st * bsz) / allsteps) acc_st = (zsteps * allsteps) / bsz;
  842. if (esteps < (acc_st * bse) / allsteps) acc_st = (esteps * allsteps) / bse;
  843. block->acceleration_st = acc_st;
  844. block->acceleration = acc_st / steps_per_mm;
  845. block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
  846. #if 0 // Use old jerk for now
  847. // Compute path unit vector
  848. double unit_vec[3];
  849. unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
  850. unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
  851. unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
  852. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  853. // Let a circle be tangent to both previous and current path line segments, where the junction
  854. // deviation is defined as the distance from the junction to the closest edge of the circle,
  855. // collinear with the circle center. The circular segment joining the two paths represents the
  856. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  857. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  858. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  859. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  860. // nonlinearities of both the junction angle and junction velocity.
  861. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  862. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  863. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  864. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  865. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  866. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  867. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  868. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  869. // Skip and use default max junction speed for 0 degree acute junction.
  870. if (cos_theta < 0.95) {
  871. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  872. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  873. if (cos_theta > -0.95) {
  874. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  875. double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  876. vmax_junction = min(vmax_junction,
  877. sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  878. }
  879. }
  880. }
  881. #endif
  882. // Start with a safe speed
  883. float vmax_junction = max_xy_jerk / 2;
  884. float vmax_junction_factor = 1.0;
  885. float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  886. float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  887. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  888. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  889. vmax_junction = min(vmax_junction, block->nominal_speed);
  890. float safe_speed = vmax_junction;
  891. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  892. float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  893. dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  894. dsz = fabs(csz - previous_speed[Z_AXIS]),
  895. dse = fabs(cse - previous_speed[E_AXIS]),
  896. jerk = sqrt(dsx * dsx + dsy * dsy);
  897. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  898. vmax_junction = block->nominal_speed;
  899. // }
  900. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  901. if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz);
  902. if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse);
  903. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  904. }
  905. block->max_entry_speed = vmax_junction;
  906. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  907. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  908. block->entry_speed = min(vmax_junction, v_allowable);
  909. // Initialize planner efficiency flags
  910. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  911. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  912. // the current block and next block junction speeds are guaranteed to always be at their maximum
  913. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  914. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  915. // the reverse and forward planners, the corresponding block junction speed will always be at the
  916. // the maximum junction speed and may always be ignored for any speed reduction checks.
  917. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  918. block->recalculate_flag = true; // Always calculate trapezoid for new block
  919. // Update previous path unit_vector and nominal speed
  920. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  921. previous_nominal_speed = block->nominal_speed;
  922. #if ENABLED(ADVANCE)
  923. // Calculate advance rate
  924. if (!bse || (!bsx && !bsy && !bsz)) {
  925. block->advance_rate = 0;
  926. block->advance = 0;
  927. }
  928. else {
  929. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  930. float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
  931. block->advance = advance;
  932. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  933. }
  934. /**
  935. SERIAL_ECHO_START;
  936. SERIAL_ECHOPGM("advance :");
  937. SERIAL_ECHO(block->advance/256.0);
  938. SERIAL_ECHOPGM("advance rate :");
  939. SERIAL_ECHOLN(block->advance_rate/256.0);
  940. */
  941. #endif // ADVANCE
  942. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  943. // Move buffer head
  944. block_buffer_head = next_buffer_head;
  945. // Update position
  946. for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
  947. planner_recalculate();
  948. st_wake_up();
  949. } // plan_buffer_line()
  950. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
  951. vector_3 plan_get_position() {
  952. vector_3 position = vector_3(st_get_axis_position_mm(X_AXIS), st_get_axis_position_mm(Y_AXIS), st_get_axis_position_mm(Z_AXIS));
  953. //position.debug("in plan_get position");
  954. //plan_bed_level_matrix.debug("in plan_get_position");
  955. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  956. //inverse.debug("in plan_get inverse");
  957. position.apply_rotation(inverse);
  958. //position.debug("after rotation");
  959. return position;
  960. }
  961. #endif // AUTO_BED_LEVELING_FEATURE && !DELTA
  962. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  963. void plan_set_position(float x, float y, float z, const float& e)
  964. #else
  965. void plan_set_position(const float& x, const float& y, const float& z, const float& e)
  966. #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
  967. {
  968. #if ENABLED(MESH_BED_LEVELING)
  969. if (mbl.active) z += mbl.get_z(x, y);
  970. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  971. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  972. #endif
  973. long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
  974. ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
  975. nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
  976. ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  977. st_set_position(nx, ny, nz, ne);
  978. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  979. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  980. }
  981. void plan_set_e_position(const float& e) {
  982. position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  983. st_set_e_position(position[E_AXIS]);
  984. }
  985. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  986. void reset_acceleration_rates() {
  987. for (int i = 0; i < NUM_AXIS; i++)
  988. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  989. }