My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 243KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M80 - Turn on Power Supply
  129. * M81 - Turn off Power Supply
  130. * M82 - Set E codes absolute (default)
  131. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. * M84 - Disable steppers until next move,
  133. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. * M92 - Set axis_steps_per_unit - same syntax as G92
  136. * M104 - Set extruder target temp
  137. * M105 - Read current temp
  138. * M106 - Fan on
  139. * M107 - Fan off
  140. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. * M110 - Set the current line number
  144. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  145. * M112 - Emergency stop
  146. * M114 - Output current position to serial port
  147. * M115 - Capabilities string
  148. * M117 - Display a message on the controller screen
  149. * M119 - Output Endstop status to serial port
  150. * M120 - Enable endstop detection
  151. * M121 - Disable endstop detection
  152. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. * M140 - Set bed target temp
  157. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  158. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  159. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  160. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  161. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  162. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  163. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  164. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  165. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  166. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  167. * M206 - Set additional homing offset
  168. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  169. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  170. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  171. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  172. * M220 - Set speed factor override percentage: S<factor in percent>
  173. * M221 - Set extrude factor override percentage: S<factor in percent>
  174. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  175. * M240 - Trigger a camera to take a photograph
  176. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  177. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  178. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  179. * M301 - Set PID parameters P I and D
  180. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  181. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  182. * M304 - Set bed PID parameters P I and D
  183. * M380 - Activate solenoid on active extruder
  184. * M381 - Disable all solenoids
  185. * M400 - Finish all moves
  186. * M401 - Lower Z probe if present
  187. * M402 - Raise Z probe if present
  188. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  189. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  190. * M406 - Turn off Filament Sensor extrusion control
  191. * M407 - Display measured filament diameter
  192. * M410 - Quickstop. Abort all the planned moves
  193. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  194. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  195. * M428 - Set the home_offset logically based on the current_position
  196. * M500 - Store parameters in EEPROM
  197. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  198. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  199. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  200. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  201. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  202. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  203. * M666 - Set delta endstop adjustment
  204. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  205. * M907 - Set digital trimpot motor current using axis codes.
  206. * M908 - Control digital trimpot directly.
  207. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  208. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  209. * M350 - Set microstepping mode.
  210. * M351 - Toggle MS1 MS2 pins directly.
  211. *
  212. * ************ SCARA Specific - This can change to suit future G-code regulations
  213. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  214. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  215. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  216. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  217. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  218. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  219. * ************* SCARA End ***************
  220. *
  221. * ************ Custom codes - This can change to suit future G-code regulations
  222. * M100 - Watch Free Memory (For Debugging Only)
  223. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  224. * M928 - Start SD logging (M928 filename.g) - ended by M29
  225. * M999 - Restart after being stopped by error
  226. *
  227. * "T" Codes
  228. *
  229. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  230. *
  231. */
  232. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  233. void gcode_M100();
  234. #endif
  235. #if ENABLED(SDSUPPORT)
  236. CardReader card;
  237. #endif
  238. #if ENABLED(EXPERIMENTAL_I2CBUS)
  239. TWIBus i2c;
  240. #endif
  241. bool Running = true;
  242. uint8_t marlin_debug_flags = DEBUG_NONE;
  243. static float feedrate = 1500.0, saved_feedrate;
  244. float current_position[NUM_AXIS] = { 0.0 };
  245. static float destination[NUM_AXIS] = { 0.0 };
  246. bool axis_known_position[3] = { false };
  247. bool axis_homed[3] = { false };
  248. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  249. static char* current_command, *current_command_args;
  250. static int cmd_queue_index_r = 0;
  251. static int cmd_queue_index_w = 0;
  252. static int commands_in_queue = 0;
  253. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  254. const float homing_feedrate[] = HOMING_FEEDRATE;
  255. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  256. int feedrate_multiplier = 100; //100->1 200->2
  257. int saved_feedrate_multiplier;
  258. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  259. bool volumetric_enabled = false;
  260. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  261. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  262. float home_offset[3] = { 0 };
  263. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  264. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  265. #if FAN_COUNT > 0
  266. int fanSpeeds[FAN_COUNT] = { 0 };
  267. #endif
  268. uint8_t active_extruder = 0;
  269. bool cancel_heatup = false;
  270. const char errormagic[] PROGMEM = "Error:";
  271. const char echomagic[] PROGMEM = "echo:";
  272. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  273. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  274. static int serial_count = 0;
  275. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  276. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  277. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  278. // Inactivity shutdown
  279. millis_t previous_cmd_ms = 0;
  280. static millis_t max_inactive_time = 0;
  281. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  282. Stopwatch print_job_timer = Stopwatch();
  283. static uint8_t target_extruder;
  284. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  285. int xy_travel_speed = XY_TRAVEL_SPEED;
  286. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  287. #endif
  288. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  289. float z_endstop_adj = 0;
  290. #endif
  291. // Extruder offsets
  292. #if EXTRUDERS > 1
  293. #ifndef EXTRUDER_OFFSET_X
  294. #define EXTRUDER_OFFSET_X { 0 }
  295. #endif
  296. #ifndef EXTRUDER_OFFSET_Y
  297. #define EXTRUDER_OFFSET_Y { 0 }
  298. #endif
  299. float extruder_offset[][EXTRUDERS] = {
  300. EXTRUDER_OFFSET_X,
  301. EXTRUDER_OFFSET_Y
  302. #if ENABLED(DUAL_X_CARRIAGE)
  303. , { 0 } // supports offsets in XYZ plane
  304. #endif
  305. };
  306. #endif
  307. #if HAS_SERVO_ENDSTOPS
  308. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  309. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  310. #endif
  311. #if ENABLED(BARICUDA)
  312. int ValvePressure = 0;
  313. int EtoPPressure = 0;
  314. #endif
  315. #if ENABLED(FWRETRACT)
  316. bool autoretract_enabled = false;
  317. bool retracted[EXTRUDERS] = { false };
  318. bool retracted_swap[EXTRUDERS] = { false };
  319. float retract_length = RETRACT_LENGTH;
  320. float retract_length_swap = RETRACT_LENGTH_SWAP;
  321. float retract_feedrate = RETRACT_FEEDRATE;
  322. float retract_zlift = RETRACT_ZLIFT;
  323. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  324. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  325. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  326. #endif // FWRETRACT
  327. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  328. bool powersupply =
  329. #if ENABLED(PS_DEFAULT_OFF)
  330. false
  331. #else
  332. true
  333. #endif
  334. ;
  335. #endif
  336. #if ENABLED(DELTA)
  337. #define TOWER_1 X_AXIS
  338. #define TOWER_2 Y_AXIS
  339. #define TOWER_3 Z_AXIS
  340. float delta[3] = { 0 };
  341. #define SIN_60 0.8660254037844386
  342. #define COS_60 0.5
  343. float endstop_adj[3] = { 0 };
  344. // these are the default values, can be overriden with M665
  345. float delta_radius = DELTA_RADIUS;
  346. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  347. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  348. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  349. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  350. float delta_tower3_x = 0; // back middle tower
  351. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  352. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  353. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  354. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  355. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  356. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  357. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  358. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  359. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  360. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  361. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  362. int delta_grid_spacing[2] = { 0, 0 };
  363. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  364. #endif
  365. #else
  366. static bool home_all_axis = true;
  367. #endif
  368. #if ENABLED(SCARA)
  369. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  370. static float delta[3] = { 0 };
  371. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  372. #endif
  373. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  374. //Variables for Filament Sensor input
  375. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  376. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  377. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  378. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  379. int filwidth_delay_index1 = 0; //index into ring buffer
  380. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  381. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  382. #endif
  383. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  384. static bool filrunoutEnqueued = false;
  385. #endif
  386. static bool send_ok[BUFSIZE];
  387. #if HAS_SERVOS
  388. Servo servo[NUM_SERVOS];
  389. #endif
  390. #ifdef CHDK
  391. unsigned long chdkHigh = 0;
  392. boolean chdkActive = false;
  393. #endif
  394. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  395. int lpq_len = 20;
  396. #endif
  397. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  398. // States for managing Marlin and host communication
  399. // Marlin sends messages if blocked or busy
  400. enum MarlinBusyState {
  401. NOT_BUSY, // Not in a handler
  402. IN_HANDLER, // Processing a GCode
  403. IN_PROCESS, // Known to be blocking command input (as in G29)
  404. PAUSED_FOR_USER, // Blocking pending any input
  405. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  406. };
  407. static MarlinBusyState busy_state = NOT_BUSY;
  408. static millis_t next_busy_signal_ms = -1;
  409. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  410. #else
  411. #define host_keepalive() ;
  412. #define KEEPALIVE_STATE(n) ;
  413. #endif // HOST_KEEPALIVE_FEATURE
  414. /**
  415. * ***************************************************************************
  416. * ******************************** FUNCTIONS ********************************
  417. * ***************************************************************************
  418. */
  419. void get_available_commands();
  420. void process_next_command();
  421. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  422. bool setTargetedHotend(int code);
  423. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  424. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  425. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  426. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void gcode_M114();
  429. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  430. float extrude_min_temp = EXTRUDE_MINTEMP;
  431. #endif
  432. #if ENABLED(HAS_Z_MIN_PROBE)
  433. extern volatile bool z_probe_is_active;
  434. #endif
  435. #if ENABLED(SDSUPPORT)
  436. #include "SdFatUtil.h"
  437. int freeMemory() { return SdFatUtil::FreeRam(); }
  438. #else
  439. extern "C" {
  440. extern unsigned int __bss_end;
  441. extern unsigned int __heap_start;
  442. extern void* __brkval;
  443. int freeMemory() {
  444. int free_memory;
  445. if ((int)__brkval == 0)
  446. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  447. else
  448. free_memory = ((int)&free_memory) - ((int)__brkval);
  449. return free_memory;
  450. }
  451. }
  452. #endif //!SDSUPPORT
  453. /**
  454. * Inject the next "immediate" command, when possible.
  455. * Return true if any immediate commands remain to inject.
  456. */
  457. static bool drain_queued_commands_P() {
  458. if (queued_commands_P != NULL) {
  459. size_t i = 0;
  460. char c, cmd[30];
  461. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  462. cmd[sizeof(cmd) - 1] = '\0';
  463. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  464. cmd[i] = '\0';
  465. if (enqueue_and_echo_command(cmd)) { // success?
  466. if (c) // newline char?
  467. queued_commands_P += i + 1; // advance to the next command
  468. else
  469. queued_commands_P = NULL; // nul char? no more commands
  470. }
  471. }
  472. return (queued_commands_P != NULL); // return whether any more remain
  473. }
  474. /**
  475. * Record one or many commands to run from program memory.
  476. * Aborts the current queue, if any.
  477. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  478. */
  479. void enqueue_and_echo_commands_P(const char* pgcode) {
  480. queued_commands_P = pgcode;
  481. drain_queued_commands_P(); // first command executed asap (when possible)
  482. }
  483. /**
  484. * Once a new command is in the ring buffer, call this to commit it
  485. */
  486. inline void _commit_command(bool say_ok) {
  487. send_ok[cmd_queue_index_w] = say_ok;
  488. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  489. commands_in_queue++;
  490. }
  491. /**
  492. * Copy a command directly into the main command buffer, from RAM.
  493. * Returns true if successfully adds the command
  494. */
  495. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  496. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  497. strcpy(command_queue[cmd_queue_index_w], cmd);
  498. _commit_command(say_ok);
  499. return true;
  500. }
  501. void enqueue_and_echo_command_now(const char* cmd) {
  502. while (!enqueue_and_echo_command(cmd)) idle();
  503. }
  504. /**
  505. * Enqueue with Serial Echo
  506. */
  507. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  508. if (_enqueuecommand(cmd, say_ok)) {
  509. SERIAL_ECHO_START;
  510. SERIAL_ECHOPGM(MSG_Enqueueing);
  511. SERIAL_ECHO(cmd);
  512. SERIAL_ECHOLNPGM("\"");
  513. return true;
  514. }
  515. return false;
  516. }
  517. void setup_killpin() {
  518. #if HAS_KILL
  519. SET_INPUT(KILL_PIN);
  520. WRITE(KILL_PIN, HIGH);
  521. #endif
  522. }
  523. void setup_filrunoutpin() {
  524. #if HAS_FILRUNOUT
  525. pinMode(FILRUNOUT_PIN, INPUT);
  526. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  527. WRITE(FILRUNOUT_PIN, HIGH);
  528. #endif
  529. #endif
  530. }
  531. // Set home pin
  532. void setup_homepin(void) {
  533. #if HAS_HOME
  534. SET_INPUT(HOME_PIN);
  535. WRITE(HOME_PIN, HIGH);
  536. #endif
  537. }
  538. void setup_photpin() {
  539. #if HAS_PHOTOGRAPH
  540. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  541. #endif
  542. }
  543. void setup_powerhold() {
  544. #if HAS_SUICIDE
  545. OUT_WRITE(SUICIDE_PIN, HIGH);
  546. #endif
  547. #if HAS_POWER_SWITCH
  548. #if ENABLED(PS_DEFAULT_OFF)
  549. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  550. #else
  551. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  552. #endif
  553. #endif
  554. }
  555. void suicide() {
  556. #if HAS_SUICIDE
  557. OUT_WRITE(SUICIDE_PIN, LOW);
  558. #endif
  559. }
  560. void servo_init() {
  561. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  562. servo[0].attach(SERVO0_PIN);
  563. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  564. #endif
  565. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  566. servo[1].attach(SERVO1_PIN);
  567. servo[1].detach();
  568. #endif
  569. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  570. servo[2].attach(SERVO2_PIN);
  571. servo[2].detach();
  572. #endif
  573. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  574. servo[3].attach(SERVO3_PIN);
  575. servo[3].detach();
  576. #endif
  577. #if HAS_SERVO_ENDSTOPS
  578. z_probe_is_active = false;
  579. /**
  580. * Set position of all defined Servo Endstops
  581. *
  582. * ** UNSAFE! - NEEDS UPDATE! **
  583. *
  584. * The servo might be deployed and positioned too low to stow
  585. * when starting up the machine or rebooting the board.
  586. * There's no way to know where the nozzle is positioned until
  587. * homing has been done - no homing with z-probe without init!
  588. *
  589. */
  590. for (int i = 0; i < 3; i++)
  591. if (servo_endstop_id[i] >= 0)
  592. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  593. #endif // HAS_SERVO_ENDSTOPS
  594. }
  595. /**
  596. * Stepper Reset (RigidBoard, et.al.)
  597. */
  598. #if HAS_STEPPER_RESET
  599. void disableStepperDrivers() {
  600. pinMode(STEPPER_RESET_PIN, OUTPUT);
  601. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  602. }
  603. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  604. #endif
  605. /**
  606. * Marlin entry-point: Set up before the program loop
  607. * - Set up the kill pin, filament runout, power hold
  608. * - Start the serial port
  609. * - Print startup messages and diagnostics
  610. * - Get EEPROM or default settings
  611. * - Initialize managers for:
  612. * • temperature
  613. * • planner
  614. * • watchdog
  615. * • stepper
  616. * • photo pin
  617. * • servos
  618. * • LCD controller
  619. * • Digipot I2C
  620. * • Z probe sled
  621. * • status LEDs
  622. */
  623. void setup() {
  624. #ifdef DISABLE_JTAG
  625. // Disable JTAG on AT90USB chips to free up pins for IO
  626. MCUCR = 0x80;
  627. MCUCR = 0x80;
  628. #endif
  629. setup_killpin();
  630. setup_filrunoutpin();
  631. setup_powerhold();
  632. #if HAS_STEPPER_RESET
  633. disableStepperDrivers();
  634. #endif
  635. MYSERIAL.begin(BAUDRATE);
  636. SERIAL_PROTOCOLLNPGM("start");
  637. SERIAL_ECHO_START;
  638. // Check startup - does nothing if bootloader sets MCUSR to 0
  639. byte mcu = MCUSR;
  640. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  641. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  642. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  643. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  644. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  645. MCUSR = 0;
  646. SERIAL_ECHOPGM(MSG_MARLIN);
  647. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  648. #ifdef STRING_DISTRIBUTION_DATE
  649. #ifdef STRING_CONFIG_H_AUTHOR
  650. SERIAL_ECHO_START;
  651. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  652. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  653. SERIAL_ECHOPGM(MSG_AUTHOR);
  654. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  655. SERIAL_ECHOPGM("Compiled: ");
  656. SERIAL_ECHOLNPGM(__DATE__);
  657. #endif // STRING_CONFIG_H_AUTHOR
  658. #endif // STRING_DISTRIBUTION_DATE
  659. SERIAL_ECHO_START;
  660. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  661. SERIAL_ECHO(freeMemory());
  662. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  663. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  664. // Send "ok" after commands by default
  665. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  666. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  667. Config_RetrieveSettings();
  668. lcd_init();
  669. tp_init(); // Initialize temperature loop
  670. plan_init(); // Initialize planner;
  671. #if ENABLED(USE_WATCHDOG)
  672. watchdog_init();
  673. #endif
  674. st_init(); // Initialize stepper, this enables interrupts!
  675. setup_photpin();
  676. servo_init();
  677. #if HAS_CONTROLLERFAN
  678. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  679. #endif
  680. #if HAS_STEPPER_RESET
  681. enableStepperDrivers();
  682. #endif
  683. #if ENABLED(DIGIPOT_I2C)
  684. digipot_i2c_init();
  685. #endif
  686. #if ENABLED(Z_PROBE_SLED)
  687. pinMode(SLED_PIN, OUTPUT);
  688. digitalWrite(SLED_PIN, LOW); // turn it off
  689. #endif // Z_PROBE_SLED
  690. setup_homepin();
  691. #ifdef STAT_LED_RED
  692. pinMode(STAT_LED_RED, OUTPUT);
  693. digitalWrite(STAT_LED_RED, LOW); // turn it off
  694. #endif
  695. #ifdef STAT_LED_BLUE
  696. pinMode(STAT_LED_BLUE, OUTPUT);
  697. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  698. #endif
  699. }
  700. /**
  701. * The main Marlin program loop
  702. *
  703. * - Save or log commands to SD
  704. * - Process available commands (if not saving)
  705. * - Call heater manager
  706. * - Call inactivity manager
  707. * - Call endstop manager
  708. * - Call LCD update
  709. */
  710. void loop() {
  711. if (commands_in_queue < BUFSIZE) get_available_commands();
  712. #if ENABLED(SDSUPPORT)
  713. card.checkautostart(false);
  714. #endif
  715. if (commands_in_queue) {
  716. #if ENABLED(SDSUPPORT)
  717. if (card.saving) {
  718. char* command = command_queue[cmd_queue_index_r];
  719. if (strstr_P(command, PSTR("M29"))) {
  720. // M29 closes the file
  721. card.closefile();
  722. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  723. ok_to_send();
  724. }
  725. else {
  726. // Write the string from the read buffer to SD
  727. card.write_command(command);
  728. if (card.logging)
  729. process_next_command(); // The card is saving because it's logging
  730. else
  731. ok_to_send();
  732. }
  733. }
  734. else
  735. process_next_command();
  736. #else
  737. process_next_command();
  738. #endif // SDSUPPORT
  739. commands_in_queue--;
  740. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  741. }
  742. checkHitEndstops();
  743. idle();
  744. }
  745. void gcode_line_error(const char* err, bool doFlush = true) {
  746. SERIAL_ERROR_START;
  747. serialprintPGM(err);
  748. SERIAL_ERRORLN(gcode_LastN);
  749. //Serial.println(gcode_N);
  750. if (doFlush) FlushSerialRequestResend();
  751. serial_count = 0;
  752. }
  753. inline void get_serial_commands() {
  754. static char serial_line_buffer[MAX_CMD_SIZE];
  755. static boolean serial_comment_mode = false;
  756. // If the command buffer is empty for too long,
  757. // send "wait" to indicate Marlin is still waiting.
  758. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  759. static millis_t last_command_time = 0;
  760. millis_t ms = millis();
  761. if (commands_in_queue == 0 && !MYSERIAL.available() && ms > last_command_time + NO_TIMEOUTS) {
  762. SERIAL_ECHOLNPGM(MSG_WAIT);
  763. last_command_time = ms;
  764. }
  765. #endif
  766. /**
  767. * Loop while serial characters are incoming and the queue is not full
  768. */
  769. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  770. char serial_char = MYSERIAL.read();
  771. /**
  772. * If the character ends the line
  773. */
  774. if (serial_char == '\n' || serial_char == '\r') {
  775. serial_comment_mode = false; // end of line == end of comment
  776. if (!serial_count) continue; // skip empty lines
  777. serial_line_buffer[serial_count] = 0; // terminate string
  778. serial_count = 0; //reset buffer
  779. char* command = serial_line_buffer;
  780. while (*command == ' ') command++; // skip any leading spaces
  781. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  782. char* apos = strchr(command, '*');
  783. if (npos) {
  784. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  785. if (M110) {
  786. char* n2pos = strchr(command + 4, 'N');
  787. if (n2pos) npos = n2pos;
  788. }
  789. gcode_N = strtol(npos + 1, NULL, 10);
  790. if (gcode_N != gcode_LastN + 1 && !M110) {
  791. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  792. return;
  793. }
  794. if (apos) {
  795. byte checksum = 0, count = 0;
  796. while (command[count] != '*') checksum ^= command[count++];
  797. if (strtol(apos + 1, NULL, 10) != checksum) {
  798. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  799. return;
  800. }
  801. // if no errors, continue parsing
  802. }
  803. else {
  804. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  805. return;
  806. }
  807. gcode_LastN = gcode_N;
  808. // if no errors, continue parsing
  809. }
  810. else if (apos) { // No '*' without 'N'
  811. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  812. return;
  813. }
  814. // Movement commands alert when stopped
  815. if (IsStopped()) {
  816. char* gpos = strchr(command, 'G');
  817. if (gpos) {
  818. int codenum = strtol(gpos + 1, NULL, 10);
  819. switch (codenum) {
  820. case 0:
  821. case 1:
  822. case 2:
  823. case 3:
  824. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  825. LCD_MESSAGEPGM(MSG_STOPPED);
  826. break;
  827. }
  828. }
  829. }
  830. // If command was e-stop process now
  831. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  832. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  833. last_command_time = ms;
  834. #endif
  835. // Add the command to the queue
  836. _enqueuecommand(serial_line_buffer, true);
  837. }
  838. else if (serial_count >= MAX_CMD_SIZE - 1) {
  839. // Keep fetching, but ignore normal characters beyond the max length
  840. // The command will be injected when EOL is reached
  841. }
  842. else if (serial_char == '\\') { // Handle escapes
  843. if (MYSERIAL.available() > 0) {
  844. // if we have one more character, copy it over
  845. serial_char = MYSERIAL.read();
  846. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  847. }
  848. // otherwise do nothing
  849. }
  850. else { // it's not a newline, carriage return or escape char
  851. if (serial_char == ';') serial_comment_mode = true;
  852. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  853. }
  854. } // queue has space, serial has data
  855. }
  856. #if ENABLED(SDSUPPORT)
  857. inline void get_sdcard_commands() {
  858. static bool stop_buffering = false,
  859. sd_comment_mode = false;
  860. if (!card.sdprinting) return;
  861. /**
  862. * '#' stops reading from SD to the buffer prematurely, so procedural
  863. * macro calls are possible. If it occurs, stop_buffering is triggered
  864. * and the buffer is run dry; this character _can_ occur in serial com
  865. * due to checksums, however, no checksums are used in SD printing.
  866. */
  867. if (commands_in_queue == 0) stop_buffering = false;
  868. uint16_t sd_count = 0;
  869. bool card_eof = card.eof();
  870. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  871. int16_t n = card.get();
  872. char sd_char = (char)n;
  873. card_eof = card.eof();
  874. if (card_eof || n == -1
  875. || sd_char == '\n' || sd_char == '\r'
  876. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  877. ) {
  878. if (card_eof) {
  879. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  880. print_job_timer.stop();
  881. char time[30];
  882. millis_t t = print_job_timer.duration();
  883. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  884. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  885. SERIAL_ECHO_START;
  886. SERIAL_ECHOLN(time);
  887. lcd_setstatus(time, true);
  888. card.printingHasFinished();
  889. card.checkautostart(true);
  890. }
  891. if (sd_char == '#') stop_buffering = true;
  892. sd_comment_mode = false; //for new command
  893. if (!sd_count) continue; //skip empty lines
  894. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  895. sd_count = 0; //clear buffer
  896. _commit_command(false);
  897. }
  898. else if (sd_count >= MAX_CMD_SIZE - 1) {
  899. /**
  900. * Keep fetching, but ignore normal characters beyond the max length
  901. * The command will be injected when EOL is reached
  902. */
  903. }
  904. else {
  905. if (sd_char == ';') sd_comment_mode = true;
  906. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  907. }
  908. }
  909. }
  910. #endif // SDSUPPORT
  911. /**
  912. * Add to the circular command queue the next command from:
  913. * - The command-injection queue (queued_commands_P)
  914. * - The active serial input (usually USB)
  915. * - The SD card file being actively printed
  916. */
  917. void get_available_commands() {
  918. // if any immediate commands remain, don't get other commands yet
  919. if (drain_queued_commands_P()) return;
  920. get_serial_commands();
  921. #if ENABLED(SDSUPPORT)
  922. get_sdcard_commands();
  923. #endif
  924. }
  925. bool code_has_value() {
  926. int i = 1;
  927. char c = seen_pointer[i];
  928. while (c == ' ') c = seen_pointer[++i];
  929. if (c == '-' || c == '+') c = seen_pointer[++i];
  930. if (c == '.') c = seen_pointer[++i];
  931. return NUMERIC(c);
  932. }
  933. float code_value() {
  934. float ret;
  935. char* e = strchr(seen_pointer, 'E');
  936. if (e) {
  937. *e = 0;
  938. ret = strtod(seen_pointer + 1, NULL);
  939. *e = 'E';
  940. }
  941. else
  942. ret = strtod(seen_pointer + 1, NULL);
  943. return ret;
  944. }
  945. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  946. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  947. bool code_seen(char code) {
  948. seen_pointer = strchr(current_command_args, code);
  949. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  950. }
  951. #define DEFINE_PGM_READ_ANY(type, reader) \
  952. static inline type pgm_read_any(const type *p) \
  953. { return pgm_read_##reader##_near(p); }
  954. DEFINE_PGM_READ_ANY(float, float);
  955. DEFINE_PGM_READ_ANY(signed char, byte);
  956. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  957. static const PROGMEM type array##_P[3] = \
  958. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  959. static inline type array(int axis) \
  960. { return pgm_read_any(&array##_P[axis]); }
  961. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  962. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  963. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  964. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  965. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  966. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  967. #if ENABLED(DUAL_X_CARRIAGE)
  968. #define DXC_FULL_CONTROL_MODE 0
  969. #define DXC_AUTO_PARK_MODE 1
  970. #define DXC_DUPLICATION_MODE 2
  971. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  972. static float x_home_pos(int extruder) {
  973. if (extruder == 0)
  974. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  975. else
  976. /**
  977. * In dual carriage mode the extruder offset provides an override of the
  978. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  979. * This allow soft recalibration of the second extruder offset position
  980. * without firmware reflash (through the M218 command).
  981. */
  982. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  983. }
  984. static int x_home_dir(int extruder) {
  985. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  986. }
  987. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  988. static bool active_extruder_parked = false; // used in mode 1 & 2
  989. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  990. static millis_t delayed_move_time = 0; // used in mode 1
  991. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  992. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  993. bool extruder_duplication_enabled = false; // used in mode 2
  994. #endif //DUAL_X_CARRIAGE
  995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  996. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  997. SERIAL_ECHO(prefix);
  998. SERIAL_ECHOPAIR(": (", x);
  999. SERIAL_ECHOPAIR(", ", y);
  1000. SERIAL_ECHOPAIR(", ", z);
  1001. SERIAL_ECHOLNPGM(")");
  1002. }
  1003. void print_xyz(const char* prefix, const float xyz[]) {
  1004. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  1005. }
  1006. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  1007. #endif
  1008. static void set_axis_is_at_home(AxisEnum axis) {
  1009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1010. if (DEBUGGING(LEVELING)) {
  1011. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1012. SERIAL_ECHOLNPGM(") >>>");
  1013. }
  1014. #endif
  1015. #if ENABLED(DUAL_X_CARRIAGE)
  1016. if (axis == X_AXIS) {
  1017. if (active_extruder != 0) {
  1018. current_position[X_AXIS] = x_home_pos(active_extruder);
  1019. min_pos[X_AXIS] = X2_MIN_POS;
  1020. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1021. return;
  1022. }
  1023. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1024. float xoff = home_offset[X_AXIS];
  1025. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1026. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1027. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1028. return;
  1029. }
  1030. }
  1031. #endif
  1032. #if ENABLED(SCARA)
  1033. if (axis == X_AXIS || axis == Y_AXIS) {
  1034. float homeposition[3];
  1035. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1036. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1037. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1038. /**
  1039. * Works out real Homeposition angles using inverse kinematics,
  1040. * and calculates homing offset using forward kinematics
  1041. */
  1042. calculate_delta(homeposition);
  1043. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1044. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1045. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1046. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1047. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1048. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1049. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1050. calculate_SCARA_forward_Transform(delta);
  1051. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1052. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1053. current_position[axis] = delta[axis];
  1054. /**
  1055. * SCARA home positions are based on configuration since the actual
  1056. * limits are determined by the inverse kinematic transform.
  1057. */
  1058. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1059. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1060. }
  1061. else
  1062. #endif
  1063. {
  1064. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1065. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1066. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1067. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1068. if (axis == Z_AXIS) {
  1069. current_position[Z_AXIS] -= zprobe_zoffset;
  1070. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1071. if (DEBUGGING(LEVELING)) {
  1072. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1073. SERIAL_EOL;
  1074. }
  1075. #endif
  1076. }
  1077. #endif
  1078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1079. if (DEBUGGING(LEVELING)) {
  1080. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1081. DEBUG_POS("", current_position);
  1082. }
  1083. #endif
  1084. }
  1085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1086. if (DEBUGGING(LEVELING)) {
  1087. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1088. SERIAL_ECHOLNPGM(")");
  1089. }
  1090. #endif
  1091. }
  1092. /**
  1093. * Some planner shorthand inline functions
  1094. */
  1095. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1096. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1097. int hbd = homing_bump_divisor[axis];
  1098. if (hbd < 1) {
  1099. hbd = 10;
  1100. SERIAL_ECHO_START;
  1101. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1102. }
  1103. feedrate = homing_feedrate[axis] / hbd;
  1104. }
  1105. inline void line_to_current_position() {
  1106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1107. }
  1108. inline void line_to_z(float zPosition) {
  1109. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1110. }
  1111. inline void line_to_destination(float mm_m) {
  1112. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1113. }
  1114. inline void line_to_destination() {
  1115. line_to_destination(feedrate);
  1116. }
  1117. inline void sync_plan_position() {
  1118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1119. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1120. #endif
  1121. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1122. }
  1123. #if ENABLED(DELTA) || ENABLED(SCARA)
  1124. inline void sync_plan_position_delta() {
  1125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1126. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  1127. #endif
  1128. calculate_delta(current_position);
  1129. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1130. }
  1131. #endif
  1132. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1133. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1134. static void setup_for_endstop_move() {
  1135. saved_feedrate = feedrate;
  1136. saved_feedrate_multiplier = feedrate_multiplier;
  1137. feedrate_multiplier = 100;
  1138. refresh_cmd_timeout();
  1139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1140. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1141. #endif
  1142. enable_endstops(true);
  1143. }
  1144. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1145. #if ENABLED(DELTA)
  1146. /**
  1147. * Calculate delta, start a line, and set current_position to destination
  1148. */
  1149. void prepare_move_raw() {
  1150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1151. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1152. #endif
  1153. refresh_cmd_timeout();
  1154. calculate_delta(destination);
  1155. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1156. set_current_to_destination();
  1157. }
  1158. #endif
  1159. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1160. #if DISABLED(DELTA)
  1161. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1163. if (DEBUGGING(LEVELING)) DEBUG_POS("BEFORE set_bed_level_equation_lsq", current_position);
  1164. #endif
  1165. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1166. // planeNormal.debug("planeNormal");
  1167. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1168. //bedLevel.debug("bedLevel");
  1169. //plan_bed_level_matrix.debug("bed level before");
  1170. //vector_3 uncorrected_position = plan_get_position();
  1171. //uncorrected_position.debug("position before");
  1172. vector_3 corrected_position = plan_get_position();
  1173. //corrected_position.debug("position after");
  1174. current_position[X_AXIS] = corrected_position.x;
  1175. current_position[Y_AXIS] = corrected_position.y;
  1176. current_position[Z_AXIS] = corrected_position.z;
  1177. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1178. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER set_bed_level_equation_lsq", current_position);
  1179. #endif
  1180. sync_plan_position();
  1181. }
  1182. #endif // !DELTA
  1183. #else // !AUTO_BED_LEVELING_GRID
  1184. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1185. plan_bed_level_matrix.set_to_identity();
  1186. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1187. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1188. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1189. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1190. if (planeNormal.z < 0) {
  1191. planeNormal.x = -planeNormal.x;
  1192. planeNormal.y = -planeNormal.y;
  1193. planeNormal.z = -planeNormal.z;
  1194. }
  1195. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1196. vector_3 corrected_position = plan_get_position();
  1197. current_position[X_AXIS] = corrected_position.x;
  1198. current_position[Y_AXIS] = corrected_position.y;
  1199. current_position[Z_AXIS] = corrected_position.z;
  1200. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1201. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position);
  1202. #endif
  1203. sync_plan_position();
  1204. }
  1205. #endif // !AUTO_BED_LEVELING_GRID
  1206. static void run_z_probe() {
  1207. /**
  1208. * To prevent stepper_inactive_time from running out and
  1209. * EXTRUDER_RUNOUT_PREVENT from extruding
  1210. */
  1211. refresh_cmd_timeout();
  1212. #if ENABLED(DELTA)
  1213. float start_z = current_position[Z_AXIS];
  1214. long start_steps = st_get_position(Z_AXIS);
  1215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1216. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1217. #endif
  1218. // move down slowly until you find the bed
  1219. feedrate = homing_feedrate[Z_AXIS] / 4;
  1220. destination[Z_AXIS] = -10;
  1221. prepare_move_raw(); // this will also set_current_to_destination
  1222. st_synchronize();
  1223. endstops_hit_on_purpose(); // clear endstop hit flags
  1224. /**
  1225. * We have to let the planner know where we are right now as it
  1226. * is not where we said to go.
  1227. */
  1228. long stop_steps = st_get_position(Z_AXIS);
  1229. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1230. current_position[Z_AXIS] = mm;
  1231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1232. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1233. #endif
  1234. sync_plan_position_delta();
  1235. #else // !DELTA
  1236. plan_bed_level_matrix.set_to_identity();
  1237. feedrate = homing_feedrate[Z_AXIS];
  1238. // Move down until the Z probe (or endstop?) is triggered
  1239. float zPosition = -(Z_MAX_LENGTH + 10);
  1240. line_to_z(zPosition);
  1241. st_synchronize();
  1242. // Tell the planner where we ended up - Get this from the stepper handler
  1243. zPosition = st_get_axis_position_mm(Z_AXIS);
  1244. plan_set_position(
  1245. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1246. current_position[E_AXIS]
  1247. );
  1248. // move up the retract distance
  1249. zPosition += home_bump_mm(Z_AXIS);
  1250. line_to_z(zPosition);
  1251. st_synchronize();
  1252. endstops_hit_on_purpose(); // clear endstop hit flags
  1253. // move back down slowly to find bed
  1254. set_homing_bump_feedrate(Z_AXIS);
  1255. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1256. line_to_z(zPosition);
  1257. st_synchronize();
  1258. endstops_hit_on_purpose(); // clear endstop hit flags
  1259. // Get the current stepper position after bumping an endstop
  1260. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1261. sync_plan_position();
  1262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1263. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1264. #endif
  1265. #endif // !DELTA
  1266. }
  1267. /**
  1268. * Plan a move to (X, Y, Z) and set the current_position
  1269. * The final current_position may not be the one that was requested
  1270. */
  1271. static void do_blocking_move_to(float x, float y, float z) {
  1272. float oldFeedRate = feedrate;
  1273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1274. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1275. #endif
  1276. #if ENABLED(DELTA)
  1277. feedrate = XY_TRAVEL_SPEED;
  1278. destination[X_AXIS] = x;
  1279. destination[Y_AXIS] = y;
  1280. destination[Z_AXIS] = z;
  1281. prepare_move_raw(); // this will also set_current_to_destination
  1282. st_synchronize();
  1283. #else
  1284. feedrate = homing_feedrate[Z_AXIS];
  1285. current_position[Z_AXIS] = z;
  1286. line_to_current_position();
  1287. st_synchronize();
  1288. feedrate = xy_travel_speed;
  1289. current_position[X_AXIS] = x;
  1290. current_position[Y_AXIS] = y;
  1291. line_to_current_position();
  1292. st_synchronize();
  1293. #endif
  1294. feedrate = oldFeedRate;
  1295. }
  1296. inline void do_blocking_move_to_xy(float x, float y) {
  1297. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1298. }
  1299. inline void do_blocking_move_to_x(float x) {
  1300. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1301. }
  1302. inline void do_blocking_move_to_z(float z) {
  1303. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1304. }
  1305. inline void raise_z_after_probing() {
  1306. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1307. }
  1308. static void clean_up_after_endstop_move() {
  1309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1310. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1311. #endif
  1312. endstops_not_homing();
  1313. feedrate = saved_feedrate;
  1314. feedrate_multiplier = saved_feedrate_multiplier;
  1315. refresh_cmd_timeout();
  1316. }
  1317. #if ENABLED(HAS_Z_MIN_PROBE)
  1318. static void deploy_z_probe() {
  1319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1320. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1321. #endif
  1322. if (z_probe_is_active) return;
  1323. #if HAS_SERVO_ENDSTOPS
  1324. // Engage Z Servo endstop if enabled
  1325. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1326. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1327. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1328. // If endstop is already false, the Z probe is deployed
  1329. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1330. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1331. if (z_probe_endstop)
  1332. #else
  1333. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1334. if (z_min_endstop)
  1335. #endif
  1336. {
  1337. // Move to the start position to initiate deployment
  1338. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1339. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1340. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1341. prepare_move_raw(); // this will also set_current_to_destination
  1342. // Move to engage deployment
  1343. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1344. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1345. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1346. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1347. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1348. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1349. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1350. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1351. prepare_move_raw();
  1352. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1353. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1354. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1355. // Move to trigger deployment
  1356. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1357. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1358. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1359. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1360. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1361. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1362. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1363. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1364. prepare_move_raw();
  1365. #endif
  1366. }
  1367. // Partially Home X,Y for safety
  1368. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1369. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1370. prepare_move_raw(); // this will also set_current_to_destination
  1371. st_synchronize();
  1372. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1373. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1374. if (z_probe_endstop)
  1375. #else
  1376. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1377. if (z_min_endstop)
  1378. #endif
  1379. {
  1380. if (IsRunning()) {
  1381. SERIAL_ERROR_START;
  1382. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1383. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1384. }
  1385. Stop();
  1386. }
  1387. #endif // Z_PROBE_ALLEN_KEY
  1388. #if ENABLED(FIX_MOUNTED_PROBE)
  1389. // Noting to be done. Just set z_probe_is_active
  1390. #endif
  1391. z_probe_is_active = true;
  1392. }
  1393. static void stow_z_probe(bool doRaise = true) {
  1394. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1395. UNUSED(doRaise);
  1396. #endif
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1399. #endif
  1400. if (!z_probe_is_active) return;
  1401. #if HAS_SERVO_ENDSTOPS
  1402. // Retract Z Servo endstop if enabled
  1403. if (servo_endstop_id[Z_AXIS] >= 0) {
  1404. #if Z_RAISE_AFTER_PROBING > 0
  1405. if (doRaise) {
  1406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1407. if (DEBUGGING(LEVELING)) {
  1408. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1409. SERIAL_EOL;
  1410. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1411. SERIAL_EOL;
  1412. }
  1413. #endif
  1414. raise_z_after_probing(); // this also updates current_position
  1415. st_synchronize();
  1416. }
  1417. #endif
  1418. // Change the Z servo angle
  1419. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1420. }
  1421. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1422. // Move up for safety
  1423. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1424. #if Z_RAISE_AFTER_PROBING > 0
  1425. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1426. prepare_move_raw(); // this will also set_current_to_destination
  1427. #endif
  1428. // Move to the start position to initiate retraction
  1429. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1430. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1431. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1432. prepare_move_raw();
  1433. // Move the nozzle down to push the Z probe into retracted position
  1434. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1435. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1436. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1437. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1438. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1439. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1440. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1441. prepare_move_raw();
  1442. // Move up for safety
  1443. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1444. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1445. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1446. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1447. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1448. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1449. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1450. prepare_move_raw();
  1451. // Home XY for safety
  1452. feedrate = homing_feedrate[X_AXIS] / 2;
  1453. destination[X_AXIS] = 0;
  1454. destination[Y_AXIS] = 0;
  1455. prepare_move_raw(); // this will also set_current_to_destination
  1456. st_synchronize();
  1457. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1458. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1459. if (!z_probe_endstop)
  1460. #else
  1461. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1462. if (!z_min_endstop)
  1463. #endif
  1464. {
  1465. if (IsRunning()) {
  1466. SERIAL_ERROR_START;
  1467. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1468. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1469. }
  1470. Stop();
  1471. }
  1472. #endif // Z_PROBE_ALLEN_KEY
  1473. #if ENABLED(FIX_MOUNTED_PROBE)
  1474. // Noting to be done. Just set z_probe_is_active
  1475. #endif
  1476. z_probe_is_active = false;
  1477. }
  1478. #endif // HAS_Z_MIN_PROBE
  1479. enum ProbeAction {
  1480. ProbeStay = 0,
  1481. ProbeDeploy = _BV(0),
  1482. ProbeStow = _BV(1),
  1483. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1484. };
  1485. // Probe bed height at position (x,y), returns the measured z value
  1486. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1488. if (DEBUGGING(LEVELING)) {
  1489. SERIAL_ECHOLNPGM("probe_pt >>>");
  1490. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1491. SERIAL_EOL;
  1492. DEBUG_POS("", current_position);
  1493. }
  1494. #endif
  1495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1496. if (DEBUGGING(LEVELING)) {
  1497. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1498. SERIAL_EOL;
  1499. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1500. SERIAL_EOL;
  1501. }
  1502. #endif
  1503. // Move Z up to the z_before height, then move the Z probe to the given XY
  1504. do_blocking_move_to_z(z_before); // this also updates current_position
  1505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1506. if (DEBUGGING(LEVELING)) {
  1507. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1508. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1509. SERIAL_EOL;
  1510. }
  1511. #endif
  1512. // this also updates current_position
  1513. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1514. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1515. if (probe_action & ProbeDeploy) {
  1516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1517. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1518. #endif
  1519. deploy_z_probe();
  1520. }
  1521. #endif
  1522. run_z_probe();
  1523. float measured_z = current_position[Z_AXIS];
  1524. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1525. if (probe_action & ProbeStow) {
  1526. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1527. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1528. #endif
  1529. stow_z_probe();
  1530. }
  1531. #endif
  1532. if (verbose_level > 2) {
  1533. SERIAL_PROTOCOLPGM("Bed X: ");
  1534. SERIAL_PROTOCOL_F(x, 3);
  1535. SERIAL_PROTOCOLPGM(" Y: ");
  1536. SERIAL_PROTOCOL_F(y, 3);
  1537. SERIAL_PROTOCOLPGM(" Z: ");
  1538. SERIAL_PROTOCOL_F(measured_z, 3);
  1539. SERIAL_EOL;
  1540. }
  1541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1542. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1543. #endif
  1544. return measured_z;
  1545. }
  1546. #if ENABLED(DELTA)
  1547. /**
  1548. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1549. */
  1550. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1551. if (bed_level[x][y] != 0.0) {
  1552. return; // Don't overwrite good values.
  1553. }
  1554. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1555. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1556. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1557. float median = c; // Median is robust (ignores outliers).
  1558. if (a < b) {
  1559. if (b < c) median = b;
  1560. if (c < a) median = a;
  1561. }
  1562. else { // b <= a
  1563. if (c < b) median = b;
  1564. if (a < c) median = a;
  1565. }
  1566. bed_level[x][y] = median;
  1567. }
  1568. /**
  1569. * Fill in the unprobed points (corners of circular print surface)
  1570. * using linear extrapolation, away from the center.
  1571. */
  1572. static void extrapolate_unprobed_bed_level() {
  1573. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1574. for (int y = 0; y <= half; y++) {
  1575. for (int x = 0; x <= half; x++) {
  1576. if (x + y < 3) continue;
  1577. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1578. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1579. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1580. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1581. }
  1582. }
  1583. }
  1584. /**
  1585. * Print calibration results for plotting or manual frame adjustment.
  1586. */
  1587. static void print_bed_level() {
  1588. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1589. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1590. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1591. SERIAL_PROTOCOLCHAR(' ');
  1592. }
  1593. SERIAL_EOL;
  1594. }
  1595. }
  1596. /**
  1597. * Reset calibration results to zero.
  1598. */
  1599. void reset_bed_level() {
  1600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1601. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1602. #endif
  1603. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1604. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1605. bed_level[x][y] = 0.0;
  1606. }
  1607. }
  1608. }
  1609. #endif // DELTA
  1610. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1611. void raise_z_for_servo() {
  1612. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1613. /**
  1614. * The zprobe_zoffset is negative any switch below the nozzle, so
  1615. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1616. */
  1617. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1618. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1619. }
  1620. #endif
  1621. #endif // AUTO_BED_LEVELING_FEATURE
  1622. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1623. static void axis_unhomed_error() {
  1624. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1625. SERIAL_ECHO_START;
  1626. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1627. }
  1628. #endif
  1629. #if ENABLED(Z_PROBE_SLED)
  1630. #ifndef SLED_DOCKING_OFFSET
  1631. #define SLED_DOCKING_OFFSET 0
  1632. #endif
  1633. /**
  1634. * Method to dock/undock a sled designed by Charles Bell.
  1635. *
  1636. * dock[in] If true, move to MAX_X and engage the electromagnet
  1637. * offset[in] The additional distance to move to adjust docking location
  1638. */
  1639. static void dock_sled(bool dock, int offset = 0) {
  1640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1641. if (DEBUGGING(LEVELING)) {
  1642. SERIAL_ECHOPAIR("dock_sled(", dock);
  1643. SERIAL_ECHOLNPGM(")");
  1644. }
  1645. #endif
  1646. if (z_probe_is_active == dock) return;
  1647. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1648. axis_unhomed_error();
  1649. return;
  1650. }
  1651. float oldXpos = current_position[X_AXIS]; // save x position
  1652. if (dock) {
  1653. #if Z_RAISE_AFTER_PROBING > 0
  1654. raise_z_after_probing(); // raise Z
  1655. #endif
  1656. // Dock sled a bit closer to ensure proper capturing
  1657. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1658. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1659. }
  1660. else {
  1661. float z_loc = current_position[Z_AXIS];
  1662. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1663. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1664. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1665. }
  1666. do_blocking_move_to_x(oldXpos); // return to position before docking
  1667. z_probe_is_active = dock;
  1668. }
  1669. #endif // Z_PROBE_SLED
  1670. /**
  1671. * Home an individual axis
  1672. */
  1673. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1674. static void homeaxis(AxisEnum axis) {
  1675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1676. if (DEBUGGING(LEVELING)) {
  1677. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1678. SERIAL_ECHOLNPGM(")");
  1679. }
  1680. #endif
  1681. #define HOMEAXIS_DO(LETTER) \
  1682. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1683. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1684. int axis_home_dir =
  1685. #if ENABLED(DUAL_X_CARRIAGE)
  1686. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1687. #endif
  1688. home_dir(axis);
  1689. // Set the axis position as setup for the move
  1690. current_position[axis] = 0;
  1691. sync_plan_position();
  1692. #if ENABLED(Z_PROBE_SLED)
  1693. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1694. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1695. #define _Z_DEPLOY (dock_sled(false))
  1696. #define _Z_STOW (dock_sled(true))
  1697. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1698. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1699. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1700. #define _Z_DEPLOY (deploy_z_probe())
  1701. #define _Z_STOW (stow_z_probe())
  1702. #elif HAS_SERVO_ENDSTOPS
  1703. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1704. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1705. #endif
  1706. if (axis == Z_AXIS) {
  1707. // If there's a Z probe that needs deployment...
  1708. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1709. // ...and homing Z towards the bed? Deploy it.
  1710. if (axis_home_dir < 0) _Z_DEPLOY;
  1711. #endif
  1712. }
  1713. #if HAS_SERVO_ENDSTOPS
  1714. // Engage an X or Y Servo endstop if enabled
  1715. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1716. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1717. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1718. }
  1719. #endif
  1720. // Set a flag for Z motor locking
  1721. #if ENABLED(Z_DUAL_ENDSTOPS)
  1722. if (axis == Z_AXIS) In_Homing_Process(true);
  1723. #endif
  1724. // Move towards the endstop until an endstop is triggered
  1725. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1726. feedrate = homing_feedrate[axis];
  1727. line_to_destination();
  1728. st_synchronize();
  1729. // Set the axis position as setup for the move
  1730. current_position[axis] = 0;
  1731. sync_plan_position();
  1732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1733. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1734. #endif
  1735. enable_endstops(false); // Disable endstops while moving away
  1736. // Move away from the endstop by the axis HOME_BUMP_MM
  1737. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1738. line_to_destination();
  1739. st_synchronize();
  1740. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1741. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1742. #endif
  1743. enable_endstops(true); // Enable endstops for next homing move
  1744. // Slow down the feedrate for the next move
  1745. set_homing_bump_feedrate(axis);
  1746. // Move slowly towards the endstop until triggered
  1747. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1748. line_to_destination();
  1749. st_synchronize();
  1750. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1751. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1752. #endif
  1753. #if ENABLED(Z_DUAL_ENDSTOPS)
  1754. if (axis == Z_AXIS) {
  1755. float adj = fabs(z_endstop_adj);
  1756. bool lockZ1;
  1757. if (axis_home_dir > 0) {
  1758. adj = -adj;
  1759. lockZ1 = (z_endstop_adj > 0);
  1760. }
  1761. else
  1762. lockZ1 = (z_endstop_adj < 0);
  1763. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1764. sync_plan_position();
  1765. // Move to the adjusted endstop height
  1766. feedrate = homing_feedrate[axis];
  1767. destination[Z_AXIS] = adj;
  1768. line_to_destination();
  1769. st_synchronize();
  1770. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1771. In_Homing_Process(false);
  1772. } // Z_AXIS
  1773. #endif
  1774. #if ENABLED(DELTA)
  1775. // retrace by the amount specified in endstop_adj
  1776. if (endstop_adj[axis] * axis_home_dir < 0) {
  1777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1778. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1779. #endif
  1780. enable_endstops(false); // Disable endstops while moving away
  1781. sync_plan_position();
  1782. destination[axis] = endstop_adj[axis];
  1783. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1784. if (DEBUGGING(LEVELING)) {
  1785. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1786. DEBUG_POS("", destination);
  1787. }
  1788. #endif
  1789. line_to_destination();
  1790. st_synchronize();
  1791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1792. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1793. #endif
  1794. enable_endstops(true); // Enable endstops for next homing move
  1795. }
  1796. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1797. else {
  1798. if (DEBUGGING(LEVELING)) {
  1799. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1800. SERIAL_EOL;
  1801. }
  1802. }
  1803. #endif
  1804. #endif
  1805. // Set the axis position to its home position (plus home offsets)
  1806. set_axis_is_at_home(axis);
  1807. sync_plan_position();
  1808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1809. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1810. #endif
  1811. destination[axis] = current_position[axis];
  1812. feedrate = 0.0;
  1813. endstops_hit_on_purpose(); // clear endstop hit flags
  1814. axis_known_position[axis] = true;
  1815. axis_homed[axis] = true;
  1816. // Put away the Z probe
  1817. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1818. if (axis == Z_AXIS && axis_home_dir < 0) {
  1819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1820. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1821. #endif
  1822. _Z_STOW;
  1823. }
  1824. #endif
  1825. // Retract Servo endstop if enabled
  1826. #if HAS_SERVO_ENDSTOPS
  1827. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1829. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1830. #endif
  1831. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1832. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1833. }
  1834. #endif
  1835. }
  1836. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1837. if (DEBUGGING(LEVELING)) {
  1838. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1839. SERIAL_ECHOLNPGM(")");
  1840. }
  1841. #endif
  1842. }
  1843. #if ENABLED(FWRETRACT)
  1844. void retract(bool retracting, bool swapping = false) {
  1845. if (retracting == retracted[active_extruder]) return;
  1846. float oldFeedrate = feedrate;
  1847. set_destination_to_current();
  1848. if (retracting) {
  1849. feedrate = retract_feedrate * 60;
  1850. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1851. plan_set_e_position(current_position[E_AXIS]);
  1852. prepare_move();
  1853. if (retract_zlift > 0.01) {
  1854. current_position[Z_AXIS] -= retract_zlift;
  1855. #if ENABLED(DELTA)
  1856. sync_plan_position_delta();
  1857. #else
  1858. sync_plan_position();
  1859. #endif
  1860. prepare_move();
  1861. }
  1862. }
  1863. else {
  1864. if (retract_zlift > 0.01) {
  1865. current_position[Z_AXIS] += retract_zlift;
  1866. #if ENABLED(DELTA)
  1867. sync_plan_position_delta();
  1868. #else
  1869. sync_plan_position();
  1870. #endif
  1871. //prepare_move();
  1872. }
  1873. feedrate = retract_recover_feedrate * 60;
  1874. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1875. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1876. plan_set_e_position(current_position[E_AXIS]);
  1877. prepare_move();
  1878. }
  1879. feedrate = oldFeedrate;
  1880. retracted[active_extruder] = retracting;
  1881. } // retract()
  1882. #endif // FWRETRACT
  1883. /**
  1884. * ***************************************************************************
  1885. * ***************************** G-CODE HANDLING *****************************
  1886. * ***************************************************************************
  1887. */
  1888. /**
  1889. * Set XYZE destination and feedrate from the current GCode command
  1890. *
  1891. * - Set destination from included axis codes
  1892. * - Set to current for missing axis codes
  1893. * - Set the feedrate, if included
  1894. */
  1895. void gcode_get_destination() {
  1896. for (int i = 0; i < NUM_AXIS; i++) {
  1897. if (code_seen(axis_codes[i]))
  1898. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1899. else
  1900. destination[i] = current_position[i];
  1901. }
  1902. if (code_seen('F')) {
  1903. float next_feedrate = code_value();
  1904. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1905. }
  1906. }
  1907. void unknown_command_error() {
  1908. SERIAL_ECHO_START;
  1909. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1910. SERIAL_ECHO(current_command);
  1911. SERIAL_ECHOPGM("\"\n");
  1912. }
  1913. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1914. /**
  1915. * Output a "busy" message at regular intervals
  1916. * while the machine is not accepting commands.
  1917. */
  1918. void host_keepalive() {
  1919. millis_t ms = millis();
  1920. if (busy_state != NOT_BUSY) {
  1921. if (ms < next_busy_signal_ms) return;
  1922. switch (busy_state) {
  1923. case IN_HANDLER:
  1924. case IN_PROCESS:
  1925. SERIAL_ECHO_START;
  1926. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1927. break;
  1928. case PAUSED_FOR_USER:
  1929. SERIAL_ECHO_START;
  1930. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1931. break;
  1932. case PAUSED_FOR_INPUT:
  1933. SERIAL_ECHO_START;
  1934. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1935. break;
  1936. default:
  1937. break;
  1938. }
  1939. }
  1940. next_busy_signal_ms = ms + 10000UL; // "busy: ..." message every 10s
  1941. }
  1942. #endif //HOST_KEEPALIVE_FEATURE
  1943. /**
  1944. * G0, G1: Coordinated movement of X Y Z E axes
  1945. */
  1946. inline void gcode_G0_G1() {
  1947. if (IsRunning()) {
  1948. gcode_get_destination(); // For X Y Z E F
  1949. #if ENABLED(FWRETRACT)
  1950. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1951. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1952. // Is this move an attempt to retract or recover?
  1953. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1954. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1955. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1956. retract(!retracted[active_extruder]);
  1957. return;
  1958. }
  1959. }
  1960. #endif //FWRETRACT
  1961. prepare_move();
  1962. }
  1963. }
  1964. /**
  1965. * G2: Clockwise Arc
  1966. * G3: Counterclockwise Arc
  1967. */
  1968. inline void gcode_G2_G3(bool clockwise) {
  1969. if (IsRunning()) {
  1970. #if ENABLED(SF_ARC_FIX)
  1971. bool relative_mode_backup = relative_mode;
  1972. relative_mode = true;
  1973. #endif
  1974. gcode_get_destination();
  1975. #if ENABLED(SF_ARC_FIX)
  1976. relative_mode = relative_mode_backup;
  1977. #endif
  1978. // Center of arc as offset from current_position
  1979. float arc_offset[2] = {
  1980. code_seen('I') ? code_value() : 0,
  1981. code_seen('J') ? code_value() : 0
  1982. };
  1983. // Send an arc to the planner
  1984. plan_arc(destination, arc_offset, clockwise);
  1985. refresh_cmd_timeout();
  1986. }
  1987. }
  1988. /**
  1989. * G4: Dwell S<seconds> or P<milliseconds>
  1990. */
  1991. inline void gcode_G4() {
  1992. millis_t codenum = 0;
  1993. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1994. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1995. st_synchronize();
  1996. refresh_cmd_timeout();
  1997. codenum += previous_cmd_ms; // keep track of when we started waiting
  1998. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1999. while (millis() < codenum) idle();
  2000. }
  2001. #if ENABLED(FWRETRACT)
  2002. /**
  2003. * G10 - Retract filament according to settings of M207
  2004. * G11 - Recover filament according to settings of M208
  2005. */
  2006. inline void gcode_G10_G11(bool doRetract=false) {
  2007. #if EXTRUDERS > 1
  2008. if (doRetract) {
  2009. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2010. }
  2011. #endif
  2012. retract(doRetract
  2013. #if EXTRUDERS > 1
  2014. , retracted_swap[active_extruder]
  2015. #endif
  2016. );
  2017. }
  2018. #endif //FWRETRACT
  2019. /**
  2020. * G28: Home all axes according to settings
  2021. *
  2022. * Parameters
  2023. *
  2024. * None Home to all axes with no parameters.
  2025. * With QUICK_HOME enabled XY will home together, then Z.
  2026. *
  2027. * Cartesian parameters
  2028. *
  2029. * X Home to the X endstop
  2030. * Y Home to the Y endstop
  2031. * Z Home to the Z endstop
  2032. *
  2033. */
  2034. inline void gcode_G28() {
  2035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2036. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2037. #endif
  2038. // Wait for planner moves to finish!
  2039. st_synchronize();
  2040. // For auto bed leveling, clear the level matrix
  2041. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2042. plan_bed_level_matrix.set_to_identity();
  2043. #if ENABLED(DELTA)
  2044. reset_bed_level();
  2045. #endif
  2046. #endif
  2047. /**
  2048. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2049. * on again when homing all axis
  2050. */
  2051. #if ENABLED(MESH_BED_LEVELING)
  2052. uint8_t mbl_was_active = mbl.active;
  2053. mbl.active = 0;
  2054. #endif
  2055. setup_for_endstop_move();
  2056. /**
  2057. * Directly after a reset this is all 0. Later we get a hint if we have
  2058. * to raise z or not.
  2059. */
  2060. set_destination_to_current();
  2061. feedrate = 0.0;
  2062. #if ENABLED(DELTA)
  2063. /**
  2064. * A delta can only safely home all axis at the same time
  2065. * all axis have to home at the same time
  2066. */
  2067. // Pretend the current position is 0,0,0
  2068. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2069. sync_plan_position();
  2070. // Move all carriages up together until the first endstop is hit.
  2071. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2072. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2073. line_to_destination();
  2074. st_synchronize();
  2075. endstops_hit_on_purpose(); // clear endstop hit flags
  2076. // Destination reached
  2077. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2078. // take care of back off and rehome now we are all at the top
  2079. HOMEAXIS(X);
  2080. HOMEAXIS(Y);
  2081. HOMEAXIS(Z);
  2082. sync_plan_position_delta();
  2083. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2084. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2085. #endif
  2086. #else // NOT DELTA
  2087. bool homeX = code_seen(axis_codes[X_AXIS]),
  2088. homeY = code_seen(axis_codes[Y_AXIS]),
  2089. homeZ = code_seen(axis_codes[Z_AXIS]);
  2090. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2091. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2092. if (home_all_axis || homeZ) {
  2093. HOMEAXIS(Z);
  2094. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2095. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2096. #endif
  2097. }
  2098. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2099. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2100. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2101. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2102. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2104. if (DEBUGGING(LEVELING)) {
  2105. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2106. SERIAL_EOL;
  2107. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2108. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2109. }
  2110. #endif
  2111. line_to_destination();
  2112. st_synchronize();
  2113. /**
  2114. * Update the current Z position even if it currently not real from
  2115. * Z-home otherwise each call to line_to_destination() will want to
  2116. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2117. */
  2118. current_position[Z_AXIS] = destination[Z_AXIS];
  2119. }
  2120. #endif
  2121. #if ENABLED(QUICK_HOME)
  2122. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2123. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2124. #if ENABLED(DUAL_X_CARRIAGE)
  2125. int x_axis_home_dir = x_home_dir(active_extruder);
  2126. extruder_duplication_enabled = false;
  2127. #else
  2128. int x_axis_home_dir = home_dir(X_AXIS);
  2129. #endif
  2130. sync_plan_position();
  2131. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2132. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2133. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2134. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2135. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2136. line_to_destination();
  2137. st_synchronize();
  2138. set_axis_is_at_home(X_AXIS);
  2139. set_axis_is_at_home(Y_AXIS);
  2140. sync_plan_position();
  2141. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2142. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2143. #endif
  2144. destination[X_AXIS] = current_position[X_AXIS];
  2145. destination[Y_AXIS] = current_position[Y_AXIS];
  2146. line_to_destination();
  2147. feedrate = 0.0;
  2148. st_synchronize();
  2149. endstops_hit_on_purpose(); // clear endstop hit flags
  2150. current_position[X_AXIS] = destination[X_AXIS];
  2151. current_position[Y_AXIS] = destination[Y_AXIS];
  2152. #if DISABLED(SCARA)
  2153. current_position[Z_AXIS] = destination[Z_AXIS];
  2154. #endif
  2155. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2156. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2157. #endif
  2158. }
  2159. #endif // QUICK_HOME
  2160. #if ENABLED(HOME_Y_BEFORE_X)
  2161. // Home Y
  2162. if (home_all_axis || homeY) HOMEAXIS(Y);
  2163. #endif
  2164. // Home X
  2165. if (home_all_axis || homeX) {
  2166. #if ENABLED(DUAL_X_CARRIAGE)
  2167. int tmp_extruder = active_extruder;
  2168. extruder_duplication_enabled = false;
  2169. active_extruder = !active_extruder;
  2170. HOMEAXIS(X);
  2171. inactive_extruder_x_pos = current_position[X_AXIS];
  2172. active_extruder = tmp_extruder;
  2173. HOMEAXIS(X);
  2174. // reset state used by the different modes
  2175. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2176. delayed_move_time = 0;
  2177. active_extruder_parked = true;
  2178. #else
  2179. HOMEAXIS(X);
  2180. #endif
  2181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2182. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2183. #endif
  2184. }
  2185. #if DISABLED(HOME_Y_BEFORE_X)
  2186. // Home Y
  2187. if (home_all_axis || homeY) {
  2188. HOMEAXIS(Y);
  2189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2190. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2191. #endif
  2192. }
  2193. #endif
  2194. // Home Z last if homing towards the bed
  2195. #if Z_HOME_DIR < 0
  2196. if (home_all_axis || homeZ) {
  2197. #if ENABLED(Z_SAFE_HOMING)
  2198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2199. if (DEBUGGING(LEVELING)) {
  2200. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2201. }
  2202. #endif
  2203. if (home_all_axis) {
  2204. /**
  2205. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2206. * No need to move Z any more as this height should already be safe
  2207. * enough to reach Z_SAFE_HOMING XY positions.
  2208. * Just make sure the planner is in sync.
  2209. */
  2210. sync_plan_position();
  2211. /**
  2212. * Set the Z probe (or just the nozzle) destination to the safe
  2213. * homing point
  2214. */
  2215. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2216. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2217. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2218. feedrate = XY_TRAVEL_SPEED;
  2219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2220. if (DEBUGGING(LEVELING)) {
  2221. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2222. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2223. }
  2224. #endif
  2225. // Move in the XY plane
  2226. line_to_destination();
  2227. st_synchronize();
  2228. /**
  2229. * Update the current positions for XY, Z is still at least at
  2230. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2231. */
  2232. current_position[X_AXIS] = destination[X_AXIS];
  2233. current_position[Y_AXIS] = destination[Y_AXIS];
  2234. // Home the Z axis
  2235. HOMEAXIS(Z);
  2236. }
  2237. else if (homeZ) { // Don't need to Home Z twice
  2238. // Let's see if X and Y are homed
  2239. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2240. /**
  2241. * Make sure the Z probe is within the physical limits
  2242. * NOTE: This doesn't necessarily ensure the Z probe is also
  2243. * within the bed!
  2244. */
  2245. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2246. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2247. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2248. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2249. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2250. // Home the Z axis
  2251. HOMEAXIS(Z);
  2252. }
  2253. else {
  2254. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2255. SERIAL_ECHO_START;
  2256. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2257. }
  2258. }
  2259. else {
  2260. axis_unhomed_error();
  2261. }
  2262. } // !home_all_axes && homeZ
  2263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2264. if (DEBUGGING(LEVELING)) {
  2265. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2266. }
  2267. #endif
  2268. #else // !Z_SAFE_HOMING
  2269. HOMEAXIS(Z);
  2270. #endif // !Z_SAFE_HOMING
  2271. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2272. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2273. #endif
  2274. } // home_all_axis || homeZ
  2275. #endif // Z_HOME_DIR < 0
  2276. sync_plan_position();
  2277. #endif // else DELTA
  2278. #if ENABLED(SCARA)
  2279. sync_plan_position_delta();
  2280. #endif
  2281. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2282. enable_endstops(false);
  2283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2284. if (DEBUGGING(LEVELING)) {
  2285. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2286. }
  2287. #endif
  2288. #endif
  2289. // For mesh leveling move back to Z=0
  2290. #if ENABLED(MESH_BED_LEVELING)
  2291. if (mbl_was_active && home_all_axis) {
  2292. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2293. sync_plan_position();
  2294. mbl.active = 1;
  2295. current_position[Z_AXIS] = 0.0;
  2296. set_destination_to_current();
  2297. feedrate = homing_feedrate[Z_AXIS];
  2298. line_to_destination();
  2299. st_synchronize();
  2300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2301. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2302. #endif
  2303. }
  2304. #endif
  2305. feedrate = saved_feedrate;
  2306. feedrate_multiplier = saved_feedrate_multiplier;
  2307. refresh_cmd_timeout();
  2308. endstops_hit_on_purpose(); // clear endstop hit flags
  2309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2310. if (DEBUGGING(LEVELING)) {
  2311. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2312. }
  2313. #endif
  2314. gcode_M114(); // Send end position to RepetierHost
  2315. }
  2316. #if ENABLED(MESH_BED_LEVELING)
  2317. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2318. /**
  2319. * G29: Mesh-based Z probe, probes a grid and produces a
  2320. * mesh to compensate for variable bed height
  2321. *
  2322. * Parameters With MESH_BED_LEVELING:
  2323. *
  2324. * S0 Produce a mesh report
  2325. * S1 Start probing mesh points
  2326. * S2 Probe the next mesh point
  2327. * S3 Xn Yn Zn.nn Manually modify a single point
  2328. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2329. *
  2330. * The S0 report the points as below
  2331. *
  2332. * +----> X-axis 1-n
  2333. * |
  2334. * |
  2335. * v Y-axis 1-n
  2336. *
  2337. */
  2338. inline void gcode_G29() {
  2339. static int probe_point = -1;
  2340. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2341. if (state < 0 || state > 4) {
  2342. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2343. return;
  2344. }
  2345. int ix, iy;
  2346. float z;
  2347. switch (state) {
  2348. case MeshReport:
  2349. if (mbl.active) {
  2350. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2351. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2352. SERIAL_PROTOCOLCHAR(',');
  2353. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2354. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2355. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2356. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2357. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2358. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2359. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2360. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2361. SERIAL_PROTOCOLPGM(" ");
  2362. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2363. }
  2364. SERIAL_EOL;
  2365. }
  2366. }
  2367. else
  2368. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2369. break;
  2370. case MeshStart:
  2371. mbl.reset();
  2372. probe_point = 0;
  2373. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2374. break;
  2375. case MeshNext:
  2376. if (probe_point < 0) {
  2377. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2378. return;
  2379. }
  2380. if (probe_point == 0) {
  2381. // Set Z to a positive value before recording the first Z.
  2382. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2383. sync_plan_position();
  2384. }
  2385. else {
  2386. // For others, save the Z of the previous point, then raise Z again.
  2387. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2388. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2389. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2390. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2391. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2393. st_synchronize();
  2394. }
  2395. // Is there another point to sample? Move there.
  2396. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2397. ix = probe_point % (MESH_NUM_X_POINTS);
  2398. iy = probe_point / (MESH_NUM_X_POINTS);
  2399. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2400. current_position[X_AXIS] = mbl.get_x(ix);
  2401. current_position[Y_AXIS] = mbl.get_y(iy);
  2402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2403. st_synchronize();
  2404. probe_point++;
  2405. }
  2406. else {
  2407. // After recording the last point, activate the mbl and home
  2408. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2409. probe_point = -1;
  2410. mbl.active = 1;
  2411. enqueue_and_echo_commands_P(PSTR("G28"));
  2412. }
  2413. break;
  2414. case MeshSet:
  2415. if (code_seen('X')) {
  2416. ix = code_value_long() - 1;
  2417. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2418. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2419. return;
  2420. }
  2421. }
  2422. else {
  2423. SERIAL_PROTOCOLPGM("X not entered.\n");
  2424. return;
  2425. }
  2426. if (code_seen('Y')) {
  2427. iy = code_value_long() - 1;
  2428. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2429. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2430. return;
  2431. }
  2432. }
  2433. else {
  2434. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2435. return;
  2436. }
  2437. if (code_seen('Z')) {
  2438. z = code_value();
  2439. }
  2440. else {
  2441. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2442. return;
  2443. }
  2444. mbl.z_values[iy][ix] = z;
  2445. break;
  2446. case MeshSetZOffset:
  2447. if (code_seen('Z')) {
  2448. z = code_value();
  2449. }
  2450. else {
  2451. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2452. return;
  2453. }
  2454. mbl.z_offset = z;
  2455. } // switch(state)
  2456. }
  2457. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2458. void out_of_range_error(const char* p_edge) {
  2459. SERIAL_PROTOCOLPGM("?Probe ");
  2460. serialprintPGM(p_edge);
  2461. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2462. }
  2463. /**
  2464. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2465. * Will fail if the printer has not been homed with G28.
  2466. *
  2467. * Enhanced G29 Auto Bed Leveling Probe Routine
  2468. *
  2469. * Parameters With AUTO_BED_LEVELING_GRID:
  2470. *
  2471. * P Set the size of the grid that will be probed (P x P points).
  2472. * Not supported by non-linear delta printer bed leveling.
  2473. * Example: "G29 P4"
  2474. *
  2475. * S Set the XY travel speed between probe points (in mm/min)
  2476. *
  2477. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2478. * or clean the rotation Matrix. Useful to check the topology
  2479. * after a first run of G29.
  2480. *
  2481. * V Set the verbose level (0-4). Example: "G29 V3"
  2482. *
  2483. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2484. * This is useful for manual bed leveling and finding flaws in the bed (to
  2485. * assist with part placement).
  2486. * Not supported by non-linear delta printer bed leveling.
  2487. *
  2488. * F Set the Front limit of the probing grid
  2489. * B Set the Back limit of the probing grid
  2490. * L Set the Left limit of the probing grid
  2491. * R Set the Right limit of the probing grid
  2492. *
  2493. * Global Parameters:
  2494. *
  2495. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2496. * Include "E" to engage/disengage the Z probe for each sample.
  2497. * There's no extra effect if you have a fixed Z probe.
  2498. * Usage: "G29 E" or "G29 e"
  2499. *
  2500. */
  2501. inline void gcode_G29() {
  2502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2503. if (DEBUGGING(LEVELING)) {
  2504. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2505. DEBUG_POS("", current_position);
  2506. }
  2507. #endif
  2508. // Don't allow auto-leveling without homing first
  2509. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2510. axis_unhomed_error();
  2511. return;
  2512. }
  2513. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2514. if (verbose_level < 0 || verbose_level > 4) {
  2515. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2516. return;
  2517. }
  2518. bool dryrun = code_seen('D'),
  2519. deploy_probe_for_each_reading = code_seen('E');
  2520. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2521. #if DISABLED(DELTA)
  2522. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2523. #endif
  2524. if (verbose_level > 0) {
  2525. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2526. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2527. }
  2528. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2529. #if DISABLED(DELTA)
  2530. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2531. if (auto_bed_leveling_grid_points < 2) {
  2532. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2533. return;
  2534. }
  2535. #endif
  2536. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2537. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2538. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2539. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2540. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2541. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2542. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2543. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2544. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2545. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2546. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2547. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2548. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2549. if (left_out || right_out || front_out || back_out) {
  2550. if (left_out) {
  2551. out_of_range_error(PSTR("(L)eft"));
  2552. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2553. }
  2554. if (right_out) {
  2555. out_of_range_error(PSTR("(R)ight"));
  2556. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2557. }
  2558. if (front_out) {
  2559. out_of_range_error(PSTR("(F)ront"));
  2560. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2561. }
  2562. if (back_out) {
  2563. out_of_range_error(PSTR("(B)ack"));
  2564. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2565. }
  2566. return;
  2567. }
  2568. #endif // AUTO_BED_LEVELING_GRID
  2569. if (!dryrun) {
  2570. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2571. plan_bed_level_matrix.set_to_identity();
  2572. #if ENABLED(DELTA)
  2573. reset_bed_level();
  2574. #else //!DELTA
  2575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2576. if (DEBUGGING(LEVELING)) DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2577. #endif
  2578. //vector_3 corrected_position = plan_get_position();
  2579. //corrected_position.debug("position before G29");
  2580. vector_3 uncorrected_position = plan_get_position();
  2581. //uncorrected_position.debug("position during G29");
  2582. current_position[X_AXIS] = uncorrected_position.x;
  2583. current_position[Y_AXIS] = uncorrected_position.y;
  2584. current_position[Z_AXIS] = uncorrected_position.z;
  2585. sync_plan_position();
  2586. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2587. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", current_position);
  2588. #endif
  2589. #endif // !DELTA
  2590. }
  2591. #if ENABLED(Z_PROBE_SLED)
  2592. dock_sled(false); // engage (un-dock) the Z probe
  2593. #elif ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2594. deploy_z_probe();
  2595. #endif
  2596. st_synchronize();
  2597. setup_for_endstop_move();
  2598. feedrate = homing_feedrate[Z_AXIS];
  2599. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2600. // probe at the points of a lattice grid
  2601. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2602. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2603. #if ENABLED(DELTA)
  2604. delta_grid_spacing[0] = xGridSpacing;
  2605. delta_grid_spacing[1] = yGridSpacing;
  2606. float z_offset = zprobe_zoffset;
  2607. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2608. #else // !DELTA
  2609. /**
  2610. * solve the plane equation ax + by + d = z
  2611. * A is the matrix with rows [x y 1] for all the probed points
  2612. * B is the vector of the Z positions
  2613. * the normal vector to the plane is formed by the coefficients of the
  2614. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2615. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2616. */
  2617. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2618. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2619. eqnBVector[abl2], // "B" vector of Z points
  2620. mean = 0.0;
  2621. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2622. #endif // !DELTA
  2623. int probePointCounter = 0;
  2624. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2625. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2626. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2627. int xStart, xStop, xInc;
  2628. if (zig) {
  2629. xStart = 0;
  2630. xStop = auto_bed_leveling_grid_points;
  2631. xInc = 1;
  2632. }
  2633. else {
  2634. xStart = auto_bed_leveling_grid_points - 1;
  2635. xStop = -1;
  2636. xInc = -1;
  2637. }
  2638. zig = !zig;
  2639. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2640. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2641. // raise extruder
  2642. float measured_z,
  2643. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2644. if (probePointCounter) {
  2645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2646. if (DEBUGGING(LEVELING)) {
  2647. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2648. SERIAL_EOL;
  2649. }
  2650. #endif
  2651. }
  2652. else {
  2653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2654. if (DEBUGGING(LEVELING)) {
  2655. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING);
  2656. SERIAL_EOL;
  2657. }
  2658. #endif
  2659. }
  2660. #if ENABLED(DELTA)
  2661. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2662. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2663. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2664. #endif //DELTA
  2665. ProbeAction act;
  2666. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2667. act = ProbeDeployAndStow;
  2668. else if (yCount == 0 && xCount == xStart)
  2669. act = ProbeDeploy;
  2670. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2671. act = ProbeStow;
  2672. else
  2673. act = ProbeStay;
  2674. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2675. #if DISABLED(DELTA)
  2676. mean += measured_z;
  2677. eqnBVector[probePointCounter] = measured_z;
  2678. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2679. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2680. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2681. indexIntoAB[xCount][yCount] = probePointCounter;
  2682. #else
  2683. bed_level[xCount][yCount] = measured_z + z_offset;
  2684. #endif
  2685. probePointCounter++;
  2686. idle();
  2687. } //xProbe
  2688. } //yProbe
  2689. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2690. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2691. #endif
  2692. clean_up_after_endstop_move();
  2693. #if ENABLED(DELTA)
  2694. if (!dryrun) extrapolate_unprobed_bed_level();
  2695. print_bed_level();
  2696. #else // !DELTA
  2697. // solve lsq problem
  2698. double plane_equation_coefficients[3];
  2699. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2700. mean /= abl2;
  2701. if (verbose_level) {
  2702. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2703. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2704. SERIAL_PROTOCOLPGM(" b: ");
  2705. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2706. SERIAL_PROTOCOLPGM(" d: ");
  2707. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2708. SERIAL_EOL;
  2709. if (verbose_level > 2) {
  2710. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2711. SERIAL_PROTOCOL_F(mean, 8);
  2712. SERIAL_EOL;
  2713. }
  2714. }
  2715. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2716. // Show the Topography map if enabled
  2717. if (do_topography_map) {
  2718. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2719. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2720. SERIAL_PROTOCOLPGM(" | |\n");
  2721. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2722. SERIAL_PROTOCOLPGM(" E | | I\n");
  2723. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2724. SERIAL_PROTOCOLPGM(" T | | H\n");
  2725. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2726. SERIAL_PROTOCOLPGM(" | |\n");
  2727. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2728. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2729. float min_diff = 999;
  2730. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2731. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2732. int ind = indexIntoAB[xx][yy];
  2733. float diff = eqnBVector[ind] - mean;
  2734. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2735. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2736. z_tmp = 0;
  2737. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2738. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2739. if (diff >= 0.0)
  2740. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2741. else
  2742. SERIAL_PROTOCOLCHAR(' ');
  2743. SERIAL_PROTOCOL_F(diff, 5);
  2744. } // xx
  2745. SERIAL_EOL;
  2746. } // yy
  2747. SERIAL_EOL;
  2748. if (verbose_level > 3) {
  2749. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2750. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2751. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2752. int ind = indexIntoAB[xx][yy];
  2753. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2754. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2755. z_tmp = 0;
  2756. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2757. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2758. if (diff >= 0.0)
  2759. SERIAL_PROTOCOLPGM(" +");
  2760. // Include + for column alignment
  2761. else
  2762. SERIAL_PROTOCOLCHAR(' ');
  2763. SERIAL_PROTOCOL_F(diff, 5);
  2764. } // xx
  2765. SERIAL_EOL;
  2766. } // yy
  2767. SERIAL_EOL;
  2768. }
  2769. } //do_topography_map
  2770. #endif //!DELTA
  2771. #else // !AUTO_BED_LEVELING_GRID
  2772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2773. if (DEBUGGING(LEVELING)) {
  2774. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2775. }
  2776. #endif
  2777. // Actions for each probe
  2778. ProbeAction p1, p2, p3;
  2779. if (deploy_probe_for_each_reading)
  2780. p1 = p2 = p3 = ProbeDeployAndStow;
  2781. else
  2782. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2783. // Probe at 3 arbitrary points
  2784. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2785. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2786. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2787. clean_up_after_endstop_move();
  2788. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2789. #endif // !AUTO_BED_LEVELING_GRID
  2790. #if ENABLED(DELTA)
  2791. // Allen Key Probe for Delta
  2792. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2793. stow_z_probe();
  2794. #elif Z_RAISE_AFTER_PROBING > 0
  2795. raise_z_after_probing(); // ???
  2796. #endif
  2797. #else // !DELTA
  2798. if (verbose_level > 0)
  2799. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2800. if (!dryrun) {
  2801. /**
  2802. * Correct the Z height difference from Z probe position and nozzle tip position.
  2803. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2804. * from the nozzle. When the bed is uneven, this height must be corrected.
  2805. */
  2806. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2807. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2808. z_tmp = current_position[Z_AXIS],
  2809. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2810. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2811. if (DEBUGGING(LEVELING)) {
  2812. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2813. SERIAL_EOL;
  2814. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2815. SERIAL_EOL;
  2816. }
  2817. #endif
  2818. // Apply the correction sending the Z probe offset
  2819. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2820. /*
  2821. * Get the current Z position and send it to the planner.
  2822. *
  2823. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2824. * (most recent plan_set_position/sync_plan_position)
  2825. *
  2826. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2827. * (set by default, M851, EEPROM, or Menu)
  2828. *
  2829. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2830. * after the last probe
  2831. *
  2832. * >> Should home_offset[Z_AXIS] be included?
  2833. *
  2834. *
  2835. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2836. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2837. * not actually "homing" Z... then perhaps it should not be included
  2838. * here. The purpose of home_offset[] is to adjust for inaccurate
  2839. * endstops, not for reasonably accurate probes. If it were added
  2840. * here, it could be seen as a compensating factor for the Z probe.
  2841. */
  2842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2843. if (DEBUGGING(LEVELING)) {
  2844. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2845. SERIAL_EOL;
  2846. }
  2847. #endif
  2848. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2849. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2850. + Z_RAISE_AFTER_PROBING
  2851. #endif
  2852. ;
  2853. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2854. sync_plan_position();
  2855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2856. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2857. #endif
  2858. }
  2859. // Sled assembly for Cartesian bots
  2860. #if ENABLED(Z_PROBE_SLED)
  2861. dock_sled(true); // dock the sled
  2862. #elif Z_RAISE_AFTER_PROBING > 0
  2863. // Raise Z axis for non-delta and non servo based probes
  2864. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2865. raise_z_after_probing();
  2866. #endif
  2867. #endif
  2868. #endif // !DELTA
  2869. #ifdef Z_PROBE_END_SCRIPT
  2870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2871. if (DEBUGGING(LEVELING)) {
  2872. SERIAL_ECHO("Z Probe End Script: ");
  2873. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2874. }
  2875. #endif
  2876. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2877. #if ENABLED(HAS_Z_MIN_PROBE)
  2878. z_probe_is_active = false;
  2879. #endif
  2880. st_synchronize();
  2881. #endif
  2882. KEEPALIVE_STATE(IN_HANDLER);
  2883. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2884. if (DEBUGGING(LEVELING)) {
  2885. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2886. }
  2887. #endif
  2888. gcode_M114(); // Send end position to RepetierHost
  2889. }
  2890. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2891. /**
  2892. * G30: Do a single Z probe at the current XY
  2893. */
  2894. inline void gcode_G30() {
  2895. #if HAS_SERVO_ENDSTOPS
  2896. raise_z_for_servo();
  2897. #endif
  2898. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2899. st_synchronize();
  2900. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2901. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2902. feedrate = homing_feedrate[Z_AXIS];
  2903. run_z_probe();
  2904. SERIAL_PROTOCOLPGM("Bed X: ");
  2905. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2906. SERIAL_PROTOCOLPGM(" Y: ");
  2907. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2908. SERIAL_PROTOCOLPGM(" Z: ");
  2909. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2910. SERIAL_EOL;
  2911. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2912. #if HAS_SERVO_ENDSTOPS
  2913. raise_z_for_servo();
  2914. #endif
  2915. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2916. gcode_M114(); // Send end position to RepetierHost
  2917. }
  2918. #endif //!Z_PROBE_SLED
  2919. #endif //AUTO_BED_LEVELING_FEATURE
  2920. /**
  2921. * G92: Set current position to given X Y Z E
  2922. */
  2923. inline void gcode_G92() {
  2924. if (!code_seen(axis_codes[E_AXIS]))
  2925. st_synchronize();
  2926. bool didXYZ = false;
  2927. for (int i = 0; i < NUM_AXIS; i++) {
  2928. if (code_seen(axis_codes[i])) {
  2929. float v = current_position[i] = code_value();
  2930. if (i == E_AXIS)
  2931. plan_set_e_position(v);
  2932. else
  2933. didXYZ = true;
  2934. }
  2935. }
  2936. if (didXYZ) {
  2937. #if ENABLED(DELTA) || ENABLED(SCARA)
  2938. sync_plan_position_delta();
  2939. #else
  2940. sync_plan_position();
  2941. #endif
  2942. }
  2943. }
  2944. #if ENABLED(ULTIPANEL)
  2945. /**
  2946. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2947. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2948. */
  2949. inline void gcode_M0_M1() {
  2950. char* args = current_command_args;
  2951. uint8_t test_value = 12;
  2952. SERIAL_ECHOPAIR("TEST", test_value);
  2953. millis_t codenum = 0;
  2954. bool hasP = false, hasS = false;
  2955. if (code_seen('P')) {
  2956. codenum = code_value_short(); // milliseconds to wait
  2957. hasP = codenum > 0;
  2958. }
  2959. if (code_seen('S')) {
  2960. codenum = code_value() * 1000; // seconds to wait
  2961. hasS = codenum > 0;
  2962. }
  2963. if (!hasP && !hasS && *args != '\0')
  2964. lcd_setstatus(args, true);
  2965. else {
  2966. LCD_MESSAGEPGM(MSG_USERWAIT);
  2967. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2968. dontExpireStatus();
  2969. #endif
  2970. }
  2971. lcd_ignore_click();
  2972. st_synchronize();
  2973. refresh_cmd_timeout();
  2974. if (codenum > 0) {
  2975. codenum += previous_cmd_ms; // wait until this time for a click
  2976. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2977. while (millis() < codenum && !lcd_clicked()) idle();
  2978. KEEPALIVE_STATE(IN_HANDLER);
  2979. lcd_ignore_click(false);
  2980. }
  2981. else {
  2982. if (!lcd_detected()) return;
  2983. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2984. while (!lcd_clicked()) idle();
  2985. KEEPALIVE_STATE(IN_HANDLER);
  2986. }
  2987. if (IS_SD_PRINTING)
  2988. LCD_MESSAGEPGM(MSG_RESUMING);
  2989. else
  2990. LCD_MESSAGEPGM(WELCOME_MSG);
  2991. }
  2992. #endif // ULTIPANEL
  2993. /**
  2994. * M17: Enable power on all stepper motors
  2995. */
  2996. inline void gcode_M17() {
  2997. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2998. enable_all_steppers();
  2999. }
  3000. #if ENABLED(SDSUPPORT)
  3001. /**
  3002. * M20: List SD card to serial output
  3003. */
  3004. inline void gcode_M20() {
  3005. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3006. card.ls();
  3007. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3008. }
  3009. /**
  3010. * M21: Init SD Card
  3011. */
  3012. inline void gcode_M21() {
  3013. card.initsd();
  3014. }
  3015. /**
  3016. * M22: Release SD Card
  3017. */
  3018. inline void gcode_M22() {
  3019. card.release();
  3020. }
  3021. /**
  3022. * M23: Open a file
  3023. */
  3024. inline void gcode_M23() {
  3025. card.openFile(current_command_args, true);
  3026. }
  3027. /**
  3028. * M24: Start SD Print
  3029. */
  3030. inline void gcode_M24() {
  3031. card.startFileprint();
  3032. print_job_timer.start();
  3033. }
  3034. /**
  3035. * M25: Pause SD Print
  3036. */
  3037. inline void gcode_M25() {
  3038. card.pauseSDPrint();
  3039. }
  3040. /**
  3041. * M26: Set SD Card file index
  3042. */
  3043. inline void gcode_M26() {
  3044. if (card.cardOK && code_seen('S'))
  3045. card.setIndex(code_value_short());
  3046. }
  3047. /**
  3048. * M27: Get SD Card status
  3049. */
  3050. inline void gcode_M27() {
  3051. card.getStatus();
  3052. }
  3053. /**
  3054. * M28: Start SD Write
  3055. */
  3056. inline void gcode_M28() {
  3057. card.openFile(current_command_args, false);
  3058. }
  3059. /**
  3060. * M29: Stop SD Write
  3061. * Processed in write to file routine above
  3062. */
  3063. inline void gcode_M29() {
  3064. // card.saving = false;
  3065. }
  3066. /**
  3067. * M30 <filename>: Delete SD Card file
  3068. */
  3069. inline void gcode_M30() {
  3070. if (card.cardOK) {
  3071. card.closefile();
  3072. card.removeFile(current_command_args);
  3073. }
  3074. }
  3075. #endif //SDSUPPORT
  3076. /**
  3077. * M31: Get the time since the start of SD Print (or last M109)
  3078. */
  3079. inline void gcode_M31() {
  3080. millis_t t = print_job_timer.duration();
  3081. int min = t / 60, sec = t % 60;
  3082. char time[30];
  3083. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3084. SERIAL_ECHO_START;
  3085. SERIAL_ECHOLN(time);
  3086. lcd_setstatus(time);
  3087. autotempShutdown();
  3088. }
  3089. #if ENABLED(SDSUPPORT)
  3090. /**
  3091. * M32: Select file and start SD Print
  3092. */
  3093. inline void gcode_M32() {
  3094. if (card.sdprinting)
  3095. st_synchronize();
  3096. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3097. if (!namestartpos)
  3098. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3099. else
  3100. namestartpos++; //to skip the '!'
  3101. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3102. if (card.cardOK) {
  3103. card.openFile(namestartpos, true, call_procedure);
  3104. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3105. card.setIndex(code_value_short());
  3106. card.startFileprint();
  3107. // Procedure calls count as normal print time.
  3108. if (!call_procedure) print_job_timer.start();
  3109. }
  3110. }
  3111. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3112. /**
  3113. * M33: Get the long full path of a file or folder
  3114. *
  3115. * Parameters:
  3116. * <dospath> Case-insensitive DOS-style path to a file or folder
  3117. *
  3118. * Example:
  3119. * M33 miscel~1/armchair/armcha~1.gco
  3120. *
  3121. * Output:
  3122. * /Miscellaneous/Armchair/Armchair.gcode
  3123. */
  3124. inline void gcode_M33() {
  3125. card.printLongPath(current_command_args);
  3126. }
  3127. #endif
  3128. /**
  3129. * M928: Start SD Write
  3130. */
  3131. inline void gcode_M928() {
  3132. card.openLogFile(current_command_args);
  3133. }
  3134. #endif // SDSUPPORT
  3135. /**
  3136. * M42: Change pin status via GCode
  3137. *
  3138. * P<pin> Pin number (LED if omitted)
  3139. * S<byte> Pin status from 0 - 255
  3140. */
  3141. inline void gcode_M42() {
  3142. if (code_seen('S')) {
  3143. int pin_status = code_value_short();
  3144. if (pin_status < 0 || pin_status > 255) return;
  3145. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3146. if (pin_number < 0) return;
  3147. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3148. if (pin_number == sensitive_pins[i]) return;
  3149. pinMode(pin_number, OUTPUT);
  3150. digitalWrite(pin_number, pin_status);
  3151. analogWrite(pin_number, pin_status);
  3152. #if FAN_COUNT > 0
  3153. switch (pin_number) {
  3154. #if HAS_FAN0
  3155. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3156. #endif
  3157. #if HAS_FAN1
  3158. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3159. #endif
  3160. #if HAS_FAN2
  3161. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3162. #endif
  3163. }
  3164. #endif
  3165. } // code_seen('S')
  3166. }
  3167. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3168. /**
  3169. * This is redundant since the SanityCheck.h already checks for a valid
  3170. * Z_MIN_PROBE_PIN, but here for clarity.
  3171. */
  3172. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3173. #if !HAS_Z_PROBE
  3174. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3175. #endif
  3176. #elif !HAS_Z_MIN
  3177. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3178. #endif
  3179. /**
  3180. * M48: Z probe repeatability measurement function.
  3181. *
  3182. * Usage:
  3183. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3184. * P = Number of sampled points (4-50, default 10)
  3185. * X = Sample X position
  3186. * Y = Sample Y position
  3187. * V = Verbose level (0-4, default=1)
  3188. * E = Engage Z probe for each reading
  3189. * L = Number of legs of movement before probe
  3190. * S = Schizoid (Or Star if you prefer)
  3191. *
  3192. * This function assumes the bed has been homed. Specifically, that a G28 command
  3193. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3194. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3195. * regenerated.
  3196. */
  3197. inline void gcode_M48() {
  3198. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3199. axis_unhomed_error();
  3200. return;
  3201. }
  3202. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3203. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3204. if (code_seen('V')) {
  3205. verbose_level = code_value_short();
  3206. if (verbose_level < 0 || verbose_level > 4) {
  3207. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3208. return;
  3209. }
  3210. }
  3211. if (verbose_level > 0)
  3212. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3213. if (code_seen('P')) {
  3214. n_samples = code_value_short();
  3215. if (n_samples < 4 || n_samples > 50) {
  3216. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3217. return;
  3218. }
  3219. }
  3220. float X_current = current_position[X_AXIS],
  3221. Y_current = current_position[Y_AXIS],
  3222. Z_current = current_position[Z_AXIS],
  3223. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3224. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3225. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3226. bool deploy_probe_for_each_reading = code_seen('E');
  3227. if (code_seen('X')) {
  3228. X_probe_location = code_value();
  3229. #if DISABLED(DELTA)
  3230. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3231. out_of_range_error(PSTR("X"));
  3232. return;
  3233. }
  3234. #endif
  3235. }
  3236. if (code_seen('Y')) {
  3237. Y_probe_location = code_value();
  3238. #if DISABLED(DELTA)
  3239. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3240. out_of_range_error(PSTR("Y"));
  3241. return;
  3242. }
  3243. #endif
  3244. }
  3245. #if ENABLED(DELTA)
  3246. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3247. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3248. return;
  3249. }
  3250. #endif
  3251. bool seen_L = code_seen('L');
  3252. if (seen_L) {
  3253. n_legs = code_value_short();
  3254. if (n_legs < 0 || n_legs > 15) {
  3255. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3256. return;
  3257. }
  3258. if (n_legs == 1) n_legs = 2;
  3259. }
  3260. if (code_seen('S')) {
  3261. schizoid_flag++;
  3262. if (!seen_L) n_legs = 7;
  3263. }
  3264. /**
  3265. * Now get everything to the specified probe point So we can safely do a
  3266. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3267. * we don't want to use that as a starting point for each probe.
  3268. */
  3269. if (verbose_level > 2)
  3270. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3271. #if ENABLED(DELTA)
  3272. // we don't do bed level correction in M48 because we want the raw data when we probe
  3273. reset_bed_level();
  3274. #else
  3275. // we don't do bed level correction in M48 because we want the raw data when we probe
  3276. plan_bed_level_matrix.set_to_identity();
  3277. #endif
  3278. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3279. do_blocking_move_to_z(Z_start_location);
  3280. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3281. /**
  3282. * OK, do the initial probe to get us close to the bed.
  3283. * Then retrace the right amount and use that in subsequent probes
  3284. */
  3285. setup_for_endstop_move();
  3286. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3287. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3288. verbose_level);
  3289. raise_z_after_probing();
  3290. for (uint8_t n = 0; n < n_samples; n++) {
  3291. randomSeed(millis());
  3292. delay(500);
  3293. if (n_legs) {
  3294. float radius, angle = random(0.0, 360.0);
  3295. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3296. radius = random(
  3297. #if ENABLED(DELTA)
  3298. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3299. #else
  3300. 5, X_MAX_LENGTH / 8
  3301. #endif
  3302. );
  3303. if (verbose_level > 3) {
  3304. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3305. SERIAL_ECHOPAIR(" angle: ", angle);
  3306. delay(100);
  3307. if (dir > 0)
  3308. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3309. else
  3310. SERIAL_ECHO(" Direction: Clockwise \n");
  3311. delay(100);
  3312. }
  3313. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3314. double delta_angle;
  3315. if (schizoid_flag)
  3316. // The points of a 5 point star are 72 degrees apart. We need to
  3317. // skip a point and go to the next one on the star.
  3318. delta_angle = dir * 2.0 * 72.0;
  3319. else
  3320. // If we do this line, we are just trying to move further
  3321. // around the circle.
  3322. delta_angle = dir * (float) random(25, 45);
  3323. angle += delta_angle;
  3324. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3325. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3326. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3327. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3328. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3329. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3330. #if DISABLED(DELTA)
  3331. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3332. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3333. #else
  3334. // If we have gone out too far, we can do a simple fix and scale the numbers
  3335. // back in closer to the origin.
  3336. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3337. X_current /= 1.25;
  3338. Y_current /= 1.25;
  3339. if (verbose_level > 3) {
  3340. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3341. SERIAL_ECHOPAIR(", ", Y_current);
  3342. SERIAL_EOL;
  3343. delay(50);
  3344. }
  3345. }
  3346. #endif
  3347. if (verbose_level > 3) {
  3348. SERIAL_PROTOCOL("Going to:");
  3349. SERIAL_ECHOPAIR("x: ", X_current);
  3350. SERIAL_ECHOPAIR("y: ", Y_current);
  3351. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3352. SERIAL_EOL;
  3353. delay(55);
  3354. }
  3355. do_blocking_move_to_xy(X_current, Y_current);
  3356. } // n_legs loop
  3357. } // n_legs
  3358. /**
  3359. * We don't really have to do this move, but if we don't we can see a
  3360. * funny shift in the Z Height because the user might not have the
  3361. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3362. * height. This gets us back to the probe location at the same height that
  3363. * we have been running around the circle at.
  3364. */
  3365. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3366. if (deploy_probe_for_each_reading)
  3367. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3368. else {
  3369. if (n == n_samples - 1)
  3370. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3371. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3372. }
  3373. /**
  3374. * Get the current mean for the data points we have so far
  3375. */
  3376. sum = 0.0;
  3377. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3378. mean = sum / (n + 1);
  3379. /**
  3380. * Now, use that mean to calculate the standard deviation for the
  3381. * data points we have so far
  3382. */
  3383. sum = 0.0;
  3384. for (uint8_t j = 0; j <= n; j++) {
  3385. float ss = sample_set[j] - mean;
  3386. sum += ss * ss;
  3387. }
  3388. sigma = sqrt(sum / (n + 1));
  3389. if (verbose_level > 1) {
  3390. SERIAL_PROTOCOL(n + 1);
  3391. SERIAL_PROTOCOLPGM(" of ");
  3392. SERIAL_PROTOCOL((int)n_samples);
  3393. SERIAL_PROTOCOLPGM(" z: ");
  3394. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3395. delay(50);
  3396. if (verbose_level > 2) {
  3397. SERIAL_PROTOCOLPGM(" mean: ");
  3398. SERIAL_PROTOCOL_F(mean, 6);
  3399. SERIAL_PROTOCOLPGM(" sigma: ");
  3400. SERIAL_PROTOCOL_F(sigma, 6);
  3401. }
  3402. }
  3403. if (verbose_level > 0) SERIAL_EOL;
  3404. delay(50);
  3405. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3406. } // End of probe loop code
  3407. // raise_z_after_probing();
  3408. if (verbose_level > 0) {
  3409. SERIAL_PROTOCOLPGM("Mean: ");
  3410. SERIAL_PROTOCOL_F(mean, 6);
  3411. SERIAL_EOL;
  3412. delay(25);
  3413. }
  3414. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3415. SERIAL_PROTOCOL_F(sigma, 6);
  3416. SERIAL_EOL; SERIAL_EOL;
  3417. delay(25);
  3418. clean_up_after_endstop_move();
  3419. gcode_M114(); // Send end position to RepetierHost
  3420. }
  3421. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3422. /**
  3423. * M75: Start print timer
  3424. */
  3425. inline void gcode_M75() {
  3426. print_job_timer.start();
  3427. }
  3428. /**
  3429. * M76: Pause print timer
  3430. */
  3431. inline void gcode_M76() {
  3432. print_job_timer.pause();
  3433. }
  3434. /**
  3435. * M77: Stop print timer
  3436. */
  3437. inline void gcode_M77() {
  3438. print_job_timer.stop();
  3439. }
  3440. /**
  3441. * M104: Set hot end temperature
  3442. */
  3443. inline void gcode_M104() {
  3444. if (setTargetedHotend(104)) return;
  3445. if (DEBUGGING(DRYRUN)) return;
  3446. if (code_seen('S')) {
  3447. float temp = code_value();
  3448. setTargetHotend(temp, target_extruder);
  3449. #if ENABLED(DUAL_X_CARRIAGE)
  3450. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3451. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3452. #endif
  3453. /**
  3454. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3455. * stand by mode, for instance in a dual extruder setup, without affecting
  3456. * the running print timer.
  3457. */
  3458. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3459. print_job_timer.stop();
  3460. LCD_MESSAGEPGM(WELCOME_MSG);
  3461. }
  3462. /**
  3463. * We do not check if the timer is already running because this check will
  3464. * be done for us inside the Stopwatch::start() method thus a running timer
  3465. * will not restart.
  3466. */
  3467. else print_job_timer.start();
  3468. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3469. }
  3470. }
  3471. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3472. void print_heaterstates() {
  3473. #if HAS_TEMP_HOTEND
  3474. SERIAL_PROTOCOLPGM(" T:");
  3475. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3476. SERIAL_PROTOCOLPGM(" /");
  3477. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3478. #endif
  3479. #if HAS_TEMP_BED
  3480. SERIAL_PROTOCOLPGM(" B:");
  3481. SERIAL_PROTOCOL_F(degBed(), 1);
  3482. SERIAL_PROTOCOLPGM(" /");
  3483. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3484. #endif
  3485. #if EXTRUDERS > 1
  3486. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3487. SERIAL_PROTOCOLPGM(" T");
  3488. SERIAL_PROTOCOL(e);
  3489. SERIAL_PROTOCOLCHAR(':');
  3490. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3491. SERIAL_PROTOCOLPGM(" /");
  3492. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3493. }
  3494. #endif
  3495. #if HAS_TEMP_BED
  3496. SERIAL_PROTOCOLPGM(" B@:");
  3497. #ifdef BED_WATTS
  3498. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3499. SERIAL_PROTOCOLCHAR('W');
  3500. #else
  3501. SERIAL_PROTOCOL(getHeaterPower(-1));
  3502. #endif
  3503. #endif
  3504. SERIAL_PROTOCOLPGM(" @:");
  3505. #ifdef EXTRUDER_WATTS
  3506. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3507. SERIAL_PROTOCOLCHAR('W');
  3508. #else
  3509. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3510. #endif
  3511. #if EXTRUDERS > 1
  3512. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3513. SERIAL_PROTOCOLPGM(" @");
  3514. SERIAL_PROTOCOL(e);
  3515. SERIAL_PROTOCOLCHAR(':');
  3516. #ifdef EXTRUDER_WATTS
  3517. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3518. SERIAL_PROTOCOLCHAR('W');
  3519. #else
  3520. SERIAL_PROTOCOL(getHeaterPower(e));
  3521. #endif
  3522. }
  3523. #endif
  3524. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3525. #if HAS_TEMP_BED
  3526. SERIAL_PROTOCOLPGM(" ADC B:");
  3527. SERIAL_PROTOCOL_F(degBed(), 1);
  3528. SERIAL_PROTOCOLPGM("C->");
  3529. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3530. #endif
  3531. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3532. SERIAL_PROTOCOLPGM(" T");
  3533. SERIAL_PROTOCOL(cur_extruder);
  3534. SERIAL_PROTOCOLCHAR(':');
  3535. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3536. SERIAL_PROTOCOLPGM("C->");
  3537. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3538. }
  3539. #endif
  3540. }
  3541. #endif
  3542. /**
  3543. * M105: Read hot end and bed temperature
  3544. */
  3545. inline void gcode_M105() {
  3546. if (setTargetedHotend(105)) return;
  3547. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3548. SERIAL_PROTOCOLPGM(MSG_OK);
  3549. print_heaterstates();
  3550. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3551. SERIAL_ERROR_START;
  3552. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3553. #endif
  3554. SERIAL_EOL;
  3555. }
  3556. #if FAN_COUNT > 0
  3557. /**
  3558. * M106: Set Fan Speed
  3559. *
  3560. * S<int> Speed between 0-255
  3561. * P<index> Fan index, if more than one fan
  3562. */
  3563. inline void gcode_M106() {
  3564. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3565. p = code_seen('P') ? code_value_short() : 0;
  3566. NOMORE(s, 255);
  3567. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3568. }
  3569. /**
  3570. * M107: Fan Off
  3571. */
  3572. inline void gcode_M107() {
  3573. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3574. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3575. }
  3576. #endif // FAN_COUNT > 0
  3577. /**
  3578. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3579. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3580. */
  3581. inline void gcode_M109() {
  3582. bool no_wait_for_cooling = true;
  3583. if (setTargetedHotend(109)) return;
  3584. if (DEBUGGING(DRYRUN)) return;
  3585. no_wait_for_cooling = code_seen('S');
  3586. if (no_wait_for_cooling || code_seen('R')) {
  3587. float temp = code_value();
  3588. setTargetHotend(temp, target_extruder);
  3589. #if ENABLED(DUAL_X_CARRIAGE)
  3590. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3591. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3592. #endif
  3593. /**
  3594. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3595. * stand by mode, for instance in a dual extruder setup, without affecting
  3596. * the running print timer.
  3597. */
  3598. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3599. print_job_timer.stop();
  3600. LCD_MESSAGEPGM(WELCOME_MSG);
  3601. }
  3602. /**
  3603. * We do not check if the timer is already running because this check will
  3604. * be done for us inside the Stopwatch::start() method thus a running timer
  3605. * will not restart.
  3606. */
  3607. else print_job_timer.start();
  3608. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3609. }
  3610. #if ENABLED(AUTOTEMP)
  3611. autotemp_enabled = code_seen('F');
  3612. if (autotemp_enabled) autotemp_factor = code_value();
  3613. if (code_seen('S')) autotemp_min = code_value();
  3614. if (code_seen('B')) autotemp_max = code_value();
  3615. #endif
  3616. // Exit if the temperature is above target and not waiting for cooling
  3617. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3618. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3619. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3620. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3621. #ifdef TEMP_RESIDENCY_TIME
  3622. long residency_start_ms = -1;
  3623. // Loop until the temperature has stabilized
  3624. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3625. #else
  3626. // Loop until the temperature is very close target
  3627. #define TEMP_CONDITIONS (isHeatingHotend(target_extruder))
  3628. #endif //TEMP_RESIDENCY_TIME
  3629. cancel_heatup = false;
  3630. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3631. while (!cancel_heatup && TEMP_CONDITIONS) {
  3632. now = millis();
  3633. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3634. next_temp_ms = now + 1000UL;
  3635. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3636. print_heaterstates();
  3637. #endif
  3638. #ifdef TEMP_RESIDENCY_TIME
  3639. SERIAL_PROTOCOLPGM(" W:");
  3640. if (residency_start_ms >= 0) {
  3641. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3642. SERIAL_PROTOCOLLN(rem);
  3643. }
  3644. else {
  3645. SERIAL_PROTOCOLLNPGM("?");
  3646. }
  3647. #else
  3648. SERIAL_EOL;
  3649. #endif
  3650. }
  3651. idle();
  3652. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3653. #ifdef TEMP_RESIDENCY_TIME
  3654. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3655. // Restart the timer whenever the temperature falls outside the hysteresis.
  3656. if ((residency_start_ms <= 0 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) < TEMP_WINDOW) ||
  3657. (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS)))
  3658. residency_start_ms = millis();
  3659. #endif //TEMP_RESIDENCY_TIME
  3660. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3661. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3662. }
  3663. #if HAS_TEMP_BED
  3664. /**
  3665. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3666. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3667. */
  3668. inline void gcode_M190() {
  3669. if (DEBUGGING(DRYRUN)) return;
  3670. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3671. bool no_wait_for_cooling = code_seen('S');
  3672. if (no_wait_for_cooling || code_seen('R'))
  3673. setTargetBed(code_value());
  3674. // Exit if the temperature is above target and not waiting for cooling
  3675. if (no_wait_for_cooling && !isHeatingBed()) return;
  3676. cancel_heatup = false;
  3677. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3678. while (!cancel_heatup && isHeatingBed()) {
  3679. millis_t now = millis();
  3680. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3681. next_temp_ms = now + 1000UL;
  3682. print_heaterstates();
  3683. SERIAL_EOL;
  3684. }
  3685. idle();
  3686. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3687. }
  3688. LCD_MESSAGEPGM(MSG_BED_DONE);
  3689. }
  3690. #endif // HAS_TEMP_BED
  3691. /**
  3692. * M110: Set Current Line Number
  3693. */
  3694. inline void gcode_M110() {
  3695. if (code_seen('N')) gcode_N = code_value_long();
  3696. }
  3697. /**
  3698. * M111: Set the debug level
  3699. */
  3700. inline void gcode_M111() {
  3701. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3702. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3703. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3704. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3705. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3706. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3707. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3708. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3709. #endif
  3710. const static char* const debug_strings[] PROGMEM = {
  3711. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3713. str_debug_32
  3714. #endif
  3715. };
  3716. SERIAL_ECHO_START;
  3717. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3718. if (marlin_debug_flags) {
  3719. uint8_t comma = 0;
  3720. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3721. if (TEST(marlin_debug_flags, i)) {
  3722. if (comma++) SERIAL_CHAR(',');
  3723. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3724. }
  3725. }
  3726. }
  3727. else {
  3728. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3729. }
  3730. SERIAL_EOL;
  3731. }
  3732. /**
  3733. * M112: Emergency Stop
  3734. */
  3735. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3736. #if ENABLED(BARICUDA)
  3737. #if HAS_HEATER_1
  3738. /**
  3739. * M126: Heater 1 valve open
  3740. */
  3741. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3742. /**
  3743. * M127: Heater 1 valve close
  3744. */
  3745. inline void gcode_M127() { ValvePressure = 0; }
  3746. #endif
  3747. #if HAS_HEATER_2
  3748. /**
  3749. * M128: Heater 2 valve open
  3750. */
  3751. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3752. /**
  3753. * M129: Heater 2 valve close
  3754. */
  3755. inline void gcode_M129() { EtoPPressure = 0; }
  3756. #endif
  3757. #endif //BARICUDA
  3758. /**
  3759. * M140: Set bed temperature
  3760. */
  3761. inline void gcode_M140() {
  3762. if (DEBUGGING(DRYRUN)) return;
  3763. if (code_seen('S')) setTargetBed(code_value());
  3764. }
  3765. #if ENABLED(ULTIPANEL)
  3766. /**
  3767. * M145: Set the heatup state for a material in the LCD menu
  3768. * S<material> (0=PLA, 1=ABS)
  3769. * H<hotend temp>
  3770. * B<bed temp>
  3771. * F<fan speed>
  3772. */
  3773. inline void gcode_M145() {
  3774. int8_t material = code_seen('S') ? code_value_short() : 0;
  3775. if (material < 0 || material > 1) {
  3776. SERIAL_ERROR_START;
  3777. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3778. }
  3779. else {
  3780. int v;
  3781. switch (material) {
  3782. case 0:
  3783. if (code_seen('H')) {
  3784. v = code_value_short();
  3785. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3786. }
  3787. if (code_seen('F')) {
  3788. v = code_value_short();
  3789. plaPreheatFanSpeed = constrain(v, 0, 255);
  3790. }
  3791. #if TEMP_SENSOR_BED != 0
  3792. if (code_seen('B')) {
  3793. v = code_value_short();
  3794. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3795. }
  3796. #endif
  3797. break;
  3798. case 1:
  3799. if (code_seen('H')) {
  3800. v = code_value_short();
  3801. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3802. }
  3803. if (code_seen('F')) {
  3804. v = code_value_short();
  3805. absPreheatFanSpeed = constrain(v, 0, 255);
  3806. }
  3807. #if TEMP_SENSOR_BED != 0
  3808. if (code_seen('B')) {
  3809. v = code_value_short();
  3810. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3811. }
  3812. #endif
  3813. break;
  3814. }
  3815. }
  3816. }
  3817. #endif
  3818. #if HAS_POWER_SWITCH
  3819. /**
  3820. * M80: Turn on Power Supply
  3821. */
  3822. inline void gcode_M80() {
  3823. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3824. /**
  3825. * If you have a switch on suicide pin, this is useful
  3826. * if you want to start another print with suicide feature after
  3827. * a print without suicide...
  3828. */
  3829. #if HAS_SUICIDE
  3830. OUT_WRITE(SUICIDE_PIN, HIGH);
  3831. #endif
  3832. #if ENABLED(ULTIPANEL)
  3833. powersupply = true;
  3834. LCD_MESSAGEPGM(WELCOME_MSG);
  3835. lcd_update();
  3836. #endif
  3837. }
  3838. #endif // HAS_POWER_SWITCH
  3839. /**
  3840. * M81: Turn off Power, including Power Supply, if there is one.
  3841. *
  3842. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3843. */
  3844. inline void gcode_M81() {
  3845. disable_all_heaters();
  3846. finishAndDisableSteppers();
  3847. #if FAN_COUNT > 0
  3848. #if FAN_COUNT > 1
  3849. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3850. #else
  3851. fanSpeeds[0] = 0;
  3852. #endif
  3853. #endif
  3854. delay(1000); // Wait 1 second before switching off
  3855. #if HAS_SUICIDE
  3856. st_synchronize();
  3857. suicide();
  3858. #elif HAS_POWER_SWITCH
  3859. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3860. #endif
  3861. #if ENABLED(ULTIPANEL)
  3862. #if HAS_POWER_SWITCH
  3863. powersupply = false;
  3864. #endif
  3865. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3866. lcd_update();
  3867. #endif
  3868. }
  3869. /**
  3870. * M82: Set E codes absolute (default)
  3871. */
  3872. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3873. /**
  3874. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3875. */
  3876. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3877. /**
  3878. * M18, M84: Disable all stepper motors
  3879. */
  3880. inline void gcode_M18_M84() {
  3881. if (code_seen('S')) {
  3882. stepper_inactive_time = code_value() * 1000;
  3883. }
  3884. else {
  3885. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3886. if (all_axis) {
  3887. finishAndDisableSteppers();
  3888. }
  3889. else {
  3890. st_synchronize();
  3891. if (code_seen('X')) disable_x();
  3892. if (code_seen('Y')) disable_y();
  3893. if (code_seen('Z')) disable_z();
  3894. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3895. if (code_seen('E')) {
  3896. disable_e0();
  3897. disable_e1();
  3898. disable_e2();
  3899. disable_e3();
  3900. }
  3901. #endif
  3902. }
  3903. }
  3904. }
  3905. /**
  3906. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3907. */
  3908. inline void gcode_M85() {
  3909. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3910. }
  3911. /**
  3912. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3913. * (Follows the same syntax as G92)
  3914. */
  3915. inline void gcode_M92() {
  3916. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3917. if (code_seen(axis_codes[i])) {
  3918. if (i == E_AXIS) {
  3919. float value = code_value();
  3920. if (value < 20.0) {
  3921. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3922. max_e_jerk *= factor;
  3923. max_feedrate[i] *= factor;
  3924. axis_steps_per_sqr_second[i] *= factor;
  3925. }
  3926. axis_steps_per_unit[i] = value;
  3927. }
  3928. else {
  3929. axis_steps_per_unit[i] = code_value();
  3930. }
  3931. }
  3932. }
  3933. }
  3934. /**
  3935. * M114: Output current position to serial port
  3936. */
  3937. inline void gcode_M114() {
  3938. SERIAL_PROTOCOLPGM("X:");
  3939. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3940. SERIAL_PROTOCOLPGM(" Y:");
  3941. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3942. SERIAL_PROTOCOLPGM(" Z:");
  3943. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3944. SERIAL_PROTOCOLPGM(" E:");
  3945. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3946. CRITICAL_SECTION_START;
  3947. extern volatile long count_position[NUM_AXIS];
  3948. long xpos = count_position[X_AXIS],
  3949. ypos = count_position[Y_AXIS],
  3950. zpos = count_position[Z_AXIS];
  3951. CRITICAL_SECTION_END;
  3952. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3953. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3954. #else
  3955. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3956. #endif
  3957. SERIAL_PROTOCOL(xpos);
  3958. #if ENABLED(COREXY)
  3959. SERIAL_PROTOCOLPGM(" B:");
  3960. #else
  3961. SERIAL_PROTOCOLPGM(" Y:");
  3962. #endif
  3963. SERIAL_PROTOCOL(ypos);
  3964. #if ENABLED(COREXZ)
  3965. SERIAL_PROTOCOLPGM(" C:");
  3966. #else
  3967. SERIAL_PROTOCOLPGM(" Z:");
  3968. #endif
  3969. SERIAL_PROTOCOL(zpos);
  3970. SERIAL_EOL;
  3971. #if ENABLED(SCARA)
  3972. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3973. SERIAL_PROTOCOL(delta[X_AXIS]);
  3974. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3975. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3976. SERIAL_EOL;
  3977. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3978. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3979. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3980. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3981. SERIAL_EOL;
  3982. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3983. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3984. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3985. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3986. SERIAL_EOL; SERIAL_EOL;
  3987. #endif
  3988. }
  3989. /**
  3990. * M115: Capabilities string
  3991. */
  3992. inline void gcode_M115() {
  3993. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3994. }
  3995. /**
  3996. * M117: Set LCD Status Message
  3997. */
  3998. inline void gcode_M117() {
  3999. lcd_setstatus(current_command_args);
  4000. }
  4001. /**
  4002. * M119: Output endstop states to serial output
  4003. */
  4004. inline void gcode_M119() {
  4005. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4006. #if HAS_X_MIN
  4007. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4008. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4009. #endif
  4010. #if HAS_X_MAX
  4011. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4012. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4013. #endif
  4014. #if HAS_Y_MIN
  4015. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4016. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4017. #endif
  4018. #if HAS_Y_MAX
  4019. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4020. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4021. #endif
  4022. #if HAS_Z_MIN
  4023. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4024. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4025. #endif
  4026. #if HAS_Z_MAX
  4027. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4028. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4029. #endif
  4030. #if HAS_Z2_MAX
  4031. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4032. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4033. #endif
  4034. #if HAS_Z_PROBE
  4035. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4036. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4037. #endif
  4038. }
  4039. /**
  4040. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4041. */
  4042. inline void gcode_M120() { enable_endstops_globally(true); }
  4043. /**
  4044. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4045. */
  4046. inline void gcode_M121() { enable_endstops_globally(false); }
  4047. #if ENABLED(BLINKM)
  4048. /**
  4049. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4050. */
  4051. inline void gcode_M150() {
  4052. SendColors(
  4053. code_seen('R') ? (byte)code_value_short() : 0,
  4054. code_seen('U') ? (byte)code_value_short() : 0,
  4055. code_seen('B') ? (byte)code_value_short() : 0
  4056. );
  4057. }
  4058. #endif // BLINKM
  4059. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4060. /**
  4061. * M155: Send data to a I2C slave device
  4062. *
  4063. * This is a PoC, the formating and arguments for the GCODE will
  4064. * change to be more compatible, the current proposal is:
  4065. *
  4066. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4067. *
  4068. * M155 B<byte-1 value in base 10>
  4069. * M155 B<byte-2 value in base 10>
  4070. * M155 B<byte-3 value in base 10>
  4071. *
  4072. * M155 S1 ; Send the buffered data and reset the buffer
  4073. * M155 R1 ; Reset the buffer without sending data
  4074. *
  4075. */
  4076. inline void gcode_M155() {
  4077. // Set the target address
  4078. if (code_seen('A'))
  4079. i2c.address((uint8_t) code_value_short());
  4080. // Add a new byte to the buffer
  4081. else if (code_seen('B'))
  4082. i2c.addbyte((int) code_value_short());
  4083. // Flush the buffer to the bus
  4084. else if (code_seen('S')) i2c.send();
  4085. // Reset and rewind the buffer
  4086. else if (code_seen('R')) i2c.reset();
  4087. }
  4088. /**
  4089. * M156: Request X bytes from I2C slave device
  4090. *
  4091. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4092. */
  4093. inline void gcode_M156() {
  4094. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4095. int bytes = code_seen('B') ? code_value_short() : 0;
  4096. if (addr && bytes) {
  4097. i2c.address(addr);
  4098. i2c.reqbytes(bytes);
  4099. }
  4100. }
  4101. #endif //EXPERIMENTAL_I2CBUS
  4102. /**
  4103. * M200: Set filament diameter and set E axis units to cubic millimeters
  4104. *
  4105. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4106. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4107. */
  4108. inline void gcode_M200() {
  4109. if (setTargetedHotend(200)) return;
  4110. if (code_seen('D')) {
  4111. float diameter = code_value();
  4112. // setting any extruder filament size disables volumetric on the assumption that
  4113. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4114. // for all extruders
  4115. volumetric_enabled = (diameter != 0.0);
  4116. if (volumetric_enabled) {
  4117. filament_size[target_extruder] = diameter;
  4118. // make sure all extruders have some sane value for the filament size
  4119. for (int i = 0; i < EXTRUDERS; i++)
  4120. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4121. }
  4122. }
  4123. else {
  4124. //reserved for setting filament diameter via UFID or filament measuring device
  4125. return;
  4126. }
  4127. calculate_volumetric_multipliers();
  4128. }
  4129. /**
  4130. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4131. */
  4132. inline void gcode_M201() {
  4133. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4134. if (code_seen(axis_codes[i])) {
  4135. max_acceleration_units_per_sq_second[i] = code_value();
  4136. }
  4137. }
  4138. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4139. reset_acceleration_rates();
  4140. }
  4141. #if 0 // Not used for Sprinter/grbl gen6
  4142. inline void gcode_M202() {
  4143. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4144. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4145. }
  4146. }
  4147. #endif
  4148. /**
  4149. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4150. */
  4151. inline void gcode_M203() {
  4152. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4153. if (code_seen(axis_codes[i])) {
  4154. max_feedrate[i] = code_value();
  4155. }
  4156. }
  4157. }
  4158. /**
  4159. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4160. *
  4161. * P = Printing moves
  4162. * R = Retract only (no X, Y, Z) moves
  4163. * T = Travel (non printing) moves
  4164. *
  4165. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4166. */
  4167. inline void gcode_M204() {
  4168. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4169. travel_acceleration = acceleration = code_value();
  4170. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4171. SERIAL_EOL;
  4172. }
  4173. if (code_seen('P')) {
  4174. acceleration = code_value();
  4175. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4176. SERIAL_EOL;
  4177. }
  4178. if (code_seen('R')) {
  4179. retract_acceleration = code_value();
  4180. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4181. SERIAL_EOL;
  4182. }
  4183. if (code_seen('T')) {
  4184. travel_acceleration = code_value();
  4185. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4186. SERIAL_EOL;
  4187. }
  4188. }
  4189. /**
  4190. * M205: Set Advanced Settings
  4191. *
  4192. * S = Min Feed Rate (mm/s)
  4193. * T = Min Travel Feed Rate (mm/s)
  4194. * B = Min Segment Time (µs)
  4195. * X = Max XY Jerk (mm/s/s)
  4196. * Z = Max Z Jerk (mm/s/s)
  4197. * E = Max E Jerk (mm/s/s)
  4198. */
  4199. inline void gcode_M205() {
  4200. if (code_seen('S')) minimumfeedrate = code_value();
  4201. if (code_seen('T')) mintravelfeedrate = code_value();
  4202. if (code_seen('B')) minsegmenttime = code_value();
  4203. if (code_seen('X')) max_xy_jerk = code_value();
  4204. if (code_seen('Z')) max_z_jerk = code_value();
  4205. if (code_seen('E')) max_e_jerk = code_value();
  4206. }
  4207. /**
  4208. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4209. */
  4210. inline void gcode_M206() {
  4211. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4212. if (code_seen(axis_codes[i])) {
  4213. home_offset[i] = code_value();
  4214. }
  4215. }
  4216. #if ENABLED(SCARA)
  4217. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4218. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4219. #endif
  4220. }
  4221. #if ENABLED(DELTA)
  4222. /**
  4223. * M665: Set delta configurations
  4224. *
  4225. * L = diagonal rod
  4226. * R = delta radius
  4227. * S = segments per second
  4228. * A = Alpha (Tower 1) diagonal rod trim
  4229. * B = Beta (Tower 2) diagonal rod trim
  4230. * C = Gamma (Tower 3) diagonal rod trim
  4231. */
  4232. inline void gcode_M665() {
  4233. if (code_seen('L')) delta_diagonal_rod = code_value();
  4234. if (code_seen('R')) delta_radius = code_value();
  4235. if (code_seen('S')) delta_segments_per_second = code_value();
  4236. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4237. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4238. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4239. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4240. }
  4241. /**
  4242. * M666: Set delta endstop adjustment
  4243. */
  4244. inline void gcode_M666() {
  4245. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4246. if (DEBUGGING(LEVELING)) {
  4247. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4248. }
  4249. #endif
  4250. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4251. if (code_seen(axis_codes[i])) {
  4252. endstop_adj[i] = code_value();
  4253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4254. if (DEBUGGING(LEVELING)) {
  4255. SERIAL_ECHOPGM("endstop_adj[");
  4256. SERIAL_ECHO(axis_codes[i]);
  4257. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4258. SERIAL_EOL;
  4259. }
  4260. #endif
  4261. }
  4262. }
  4263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4264. if (DEBUGGING(LEVELING)) {
  4265. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4266. }
  4267. #endif
  4268. }
  4269. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4270. /**
  4271. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4272. */
  4273. inline void gcode_M666() {
  4274. if (code_seen('Z')) z_endstop_adj = code_value();
  4275. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4276. SERIAL_EOL;
  4277. }
  4278. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4279. #if ENABLED(FWRETRACT)
  4280. /**
  4281. * M207: Set firmware retraction values
  4282. *
  4283. * S[+mm] retract_length
  4284. * W[+mm] retract_length_swap (multi-extruder)
  4285. * F[mm/min] retract_feedrate
  4286. * Z[mm] retract_zlift
  4287. */
  4288. inline void gcode_M207() {
  4289. if (code_seen('S')) retract_length = code_value();
  4290. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4291. if (code_seen('Z')) retract_zlift = code_value();
  4292. #if EXTRUDERS > 1
  4293. if (code_seen('W')) retract_length_swap = code_value();
  4294. #endif
  4295. }
  4296. /**
  4297. * M208: Set firmware un-retraction values
  4298. *
  4299. * S[+mm] retract_recover_length (in addition to M207 S*)
  4300. * W[+mm] retract_recover_length_swap (multi-extruder)
  4301. * F[mm/min] retract_recover_feedrate
  4302. */
  4303. inline void gcode_M208() {
  4304. if (code_seen('S')) retract_recover_length = code_value();
  4305. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4306. #if EXTRUDERS > 1
  4307. if (code_seen('W')) retract_recover_length_swap = code_value();
  4308. #endif
  4309. }
  4310. /**
  4311. * M209: Enable automatic retract (M209 S1)
  4312. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4313. */
  4314. inline void gcode_M209() {
  4315. if (code_seen('S')) {
  4316. int t = code_value_short();
  4317. switch (t) {
  4318. case 0:
  4319. autoretract_enabled = false;
  4320. break;
  4321. case 1:
  4322. autoretract_enabled = true;
  4323. break;
  4324. default:
  4325. unknown_command_error();
  4326. return;
  4327. }
  4328. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4329. }
  4330. }
  4331. #endif // FWRETRACT
  4332. #if EXTRUDERS > 1
  4333. /**
  4334. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4335. */
  4336. inline void gcode_M218() {
  4337. if (setTargetedHotend(218)) return;
  4338. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4339. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4340. #if ENABLED(DUAL_X_CARRIAGE)
  4341. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4342. #endif
  4343. SERIAL_ECHO_START;
  4344. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4345. for (int e = 0; e < EXTRUDERS; e++) {
  4346. SERIAL_CHAR(' ');
  4347. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4348. SERIAL_CHAR(',');
  4349. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4350. #if ENABLED(DUAL_X_CARRIAGE)
  4351. SERIAL_CHAR(',');
  4352. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4353. #endif
  4354. }
  4355. SERIAL_EOL;
  4356. }
  4357. #endif // EXTRUDERS > 1
  4358. /**
  4359. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4360. */
  4361. inline void gcode_M220() {
  4362. if (code_seen('S')) feedrate_multiplier = code_value();
  4363. }
  4364. /**
  4365. * M221: Set extrusion percentage (M221 T0 S95)
  4366. */
  4367. inline void gcode_M221() {
  4368. if (code_seen('S')) {
  4369. int sval = code_value();
  4370. if (setTargetedHotend(221)) return;
  4371. extruder_multiplier[target_extruder] = sval;
  4372. }
  4373. }
  4374. /**
  4375. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4376. */
  4377. inline void gcode_M226() {
  4378. if (code_seen('P')) {
  4379. int pin_number = code_value();
  4380. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4381. if (pin_state >= -1 && pin_state <= 1) {
  4382. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4383. if (sensitive_pins[i] == pin_number) {
  4384. pin_number = -1;
  4385. break;
  4386. }
  4387. }
  4388. if (pin_number > -1) {
  4389. int target = LOW;
  4390. st_synchronize();
  4391. pinMode(pin_number, INPUT);
  4392. switch (pin_state) {
  4393. case 1:
  4394. target = HIGH;
  4395. break;
  4396. case 0:
  4397. target = LOW;
  4398. break;
  4399. case -1:
  4400. target = !digitalRead(pin_number);
  4401. break;
  4402. }
  4403. while (digitalRead(pin_number) != target) idle();
  4404. } // pin_number > -1
  4405. } // pin_state -1 0 1
  4406. } // code_seen('P')
  4407. }
  4408. #if HAS_SERVOS
  4409. /**
  4410. * M280: Get or set servo position. P<index> S<angle>
  4411. */
  4412. inline void gcode_M280() {
  4413. int servo_index = code_seen('P') ? code_value_short() : -1;
  4414. int servo_position = 0;
  4415. if (code_seen('S')) {
  4416. servo_position = code_value_short();
  4417. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4418. servo[servo_index].move(servo_position);
  4419. else {
  4420. SERIAL_ERROR_START;
  4421. SERIAL_ERROR("Servo ");
  4422. SERIAL_ERROR(servo_index);
  4423. SERIAL_ERRORLN(" out of range");
  4424. }
  4425. }
  4426. else if (servo_index >= 0) {
  4427. SERIAL_ECHO_START;
  4428. SERIAL_ECHO(" Servo ");
  4429. SERIAL_ECHO(servo_index);
  4430. SERIAL_ECHO(": ");
  4431. SERIAL_ECHOLN(servo[servo_index].read());
  4432. }
  4433. }
  4434. #endif // HAS_SERVOS
  4435. #if HAS_BUZZER
  4436. /**
  4437. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4438. */
  4439. inline void gcode_M300() {
  4440. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4441. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4442. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4443. buzz(beepP, beepS);
  4444. }
  4445. #endif // HAS_BUZZER
  4446. #if ENABLED(PIDTEMP)
  4447. /**
  4448. * M301: Set PID parameters P I D (and optionally C, L)
  4449. *
  4450. * P[float] Kp term
  4451. * I[float] Ki term (unscaled)
  4452. * D[float] Kd term (unscaled)
  4453. *
  4454. * With PID_ADD_EXTRUSION_RATE:
  4455. *
  4456. * C[float] Kc term
  4457. * L[float] LPQ length
  4458. */
  4459. inline void gcode_M301() {
  4460. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4461. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4462. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4463. if (e < EXTRUDERS) { // catch bad input value
  4464. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4465. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4466. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4467. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4468. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4469. if (code_seen('L')) lpq_len = code_value();
  4470. NOMORE(lpq_len, LPQ_MAX_LEN);
  4471. #endif
  4472. updatePID();
  4473. SERIAL_ECHO_START;
  4474. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4475. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4476. SERIAL_ECHO(e);
  4477. #endif // PID_PARAMS_PER_EXTRUDER
  4478. SERIAL_ECHO(" p:");
  4479. SERIAL_ECHO(PID_PARAM(Kp, e));
  4480. SERIAL_ECHO(" i:");
  4481. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4482. SERIAL_ECHO(" d:");
  4483. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4484. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4485. SERIAL_ECHO(" c:");
  4486. //Kc does not have scaling applied above, or in resetting defaults
  4487. SERIAL_ECHO(PID_PARAM(Kc, e));
  4488. #endif
  4489. SERIAL_EOL;
  4490. }
  4491. else {
  4492. SERIAL_ERROR_START;
  4493. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4494. }
  4495. }
  4496. #endif // PIDTEMP
  4497. #if ENABLED(PIDTEMPBED)
  4498. inline void gcode_M304() {
  4499. if (code_seen('P')) bedKp = code_value();
  4500. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4501. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4502. updatePID();
  4503. SERIAL_ECHO_START;
  4504. SERIAL_ECHO(" p:");
  4505. SERIAL_ECHO(bedKp);
  4506. SERIAL_ECHO(" i:");
  4507. SERIAL_ECHO(unscalePID_i(bedKi));
  4508. SERIAL_ECHO(" d:");
  4509. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4510. }
  4511. #endif // PIDTEMPBED
  4512. #if defined(CHDK) || HAS_PHOTOGRAPH
  4513. /**
  4514. * M240: Trigger a camera by emulating a Canon RC-1
  4515. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4516. */
  4517. inline void gcode_M240() {
  4518. #ifdef CHDK
  4519. OUT_WRITE(CHDK, HIGH);
  4520. chdkHigh = millis();
  4521. chdkActive = true;
  4522. #elif HAS_PHOTOGRAPH
  4523. const uint8_t NUM_PULSES = 16;
  4524. const float PULSE_LENGTH = 0.01524;
  4525. for (int i = 0; i < NUM_PULSES; i++) {
  4526. WRITE(PHOTOGRAPH_PIN, HIGH);
  4527. _delay_ms(PULSE_LENGTH);
  4528. WRITE(PHOTOGRAPH_PIN, LOW);
  4529. _delay_ms(PULSE_LENGTH);
  4530. }
  4531. delay(7.33);
  4532. for (int i = 0; i < NUM_PULSES; i++) {
  4533. WRITE(PHOTOGRAPH_PIN, HIGH);
  4534. _delay_ms(PULSE_LENGTH);
  4535. WRITE(PHOTOGRAPH_PIN, LOW);
  4536. _delay_ms(PULSE_LENGTH);
  4537. }
  4538. #endif // !CHDK && HAS_PHOTOGRAPH
  4539. }
  4540. #endif // CHDK || PHOTOGRAPH_PIN
  4541. #if ENABLED(HAS_LCD_CONTRAST)
  4542. /**
  4543. * M250: Read and optionally set the LCD contrast
  4544. */
  4545. inline void gcode_M250() {
  4546. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4547. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4548. SERIAL_PROTOCOL(lcd_contrast);
  4549. SERIAL_EOL;
  4550. }
  4551. #endif // HAS_LCD_CONTRAST
  4552. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4553. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4554. /**
  4555. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4556. */
  4557. inline void gcode_M302() {
  4558. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4559. }
  4560. #endif // PREVENT_DANGEROUS_EXTRUDE
  4561. /**
  4562. * M303: PID relay autotune
  4563. *
  4564. * S<temperature> sets the target temperature. (default 150C)
  4565. * E<extruder> (-1 for the bed) (default 0)
  4566. * C<cycles>
  4567. * U<bool> with a non-zero value will apply the result to current settings
  4568. */
  4569. inline void gcode_M303() {
  4570. int e = code_seen('E') ? code_value_short() : 0;
  4571. int c = code_seen('C') ? code_value_short() : 5;
  4572. bool u = code_seen('U') && code_value_short() != 0;
  4573. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4574. if (e >= 0 && e < EXTRUDERS)
  4575. target_extruder = e;
  4576. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4577. PID_autotune(temp, e, c, u);
  4578. KEEPALIVE_STATE(IN_HANDLER);
  4579. }
  4580. #if ENABLED(SCARA)
  4581. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4582. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4583. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4584. if (IsRunning()) {
  4585. //gcode_get_destination(); // For X Y Z E F
  4586. delta[X_AXIS] = delta_x;
  4587. delta[Y_AXIS] = delta_y;
  4588. calculate_SCARA_forward_Transform(delta);
  4589. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4590. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4591. prepare_move();
  4592. //ok_to_send();
  4593. return true;
  4594. }
  4595. return false;
  4596. }
  4597. /**
  4598. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4599. */
  4600. inline bool gcode_M360() {
  4601. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4602. return SCARA_move_to_cal(0, 120);
  4603. }
  4604. /**
  4605. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4606. */
  4607. inline bool gcode_M361() {
  4608. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4609. return SCARA_move_to_cal(90, 130);
  4610. }
  4611. /**
  4612. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4613. */
  4614. inline bool gcode_M362() {
  4615. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4616. return SCARA_move_to_cal(60, 180);
  4617. }
  4618. /**
  4619. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4620. */
  4621. inline bool gcode_M363() {
  4622. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4623. return SCARA_move_to_cal(50, 90);
  4624. }
  4625. /**
  4626. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4627. */
  4628. inline bool gcode_M364() {
  4629. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4630. return SCARA_move_to_cal(45, 135);
  4631. }
  4632. /**
  4633. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4634. */
  4635. inline void gcode_M365() {
  4636. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4637. if (code_seen(axis_codes[i])) {
  4638. axis_scaling[i] = code_value();
  4639. }
  4640. }
  4641. }
  4642. #endif // SCARA
  4643. #if ENABLED(EXT_SOLENOID)
  4644. void enable_solenoid(uint8_t num) {
  4645. switch (num) {
  4646. case 0:
  4647. OUT_WRITE(SOL0_PIN, HIGH);
  4648. break;
  4649. #if HAS_SOLENOID_1
  4650. case 1:
  4651. OUT_WRITE(SOL1_PIN, HIGH);
  4652. break;
  4653. #endif
  4654. #if HAS_SOLENOID_2
  4655. case 2:
  4656. OUT_WRITE(SOL2_PIN, HIGH);
  4657. break;
  4658. #endif
  4659. #if HAS_SOLENOID_3
  4660. case 3:
  4661. OUT_WRITE(SOL3_PIN, HIGH);
  4662. break;
  4663. #endif
  4664. default:
  4665. SERIAL_ECHO_START;
  4666. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4667. break;
  4668. }
  4669. }
  4670. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4671. void disable_all_solenoids() {
  4672. OUT_WRITE(SOL0_PIN, LOW);
  4673. OUT_WRITE(SOL1_PIN, LOW);
  4674. OUT_WRITE(SOL2_PIN, LOW);
  4675. OUT_WRITE(SOL3_PIN, LOW);
  4676. }
  4677. /**
  4678. * M380: Enable solenoid on the active extruder
  4679. */
  4680. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4681. /**
  4682. * M381: Disable all solenoids
  4683. */
  4684. inline void gcode_M381() { disable_all_solenoids(); }
  4685. #endif // EXT_SOLENOID
  4686. /**
  4687. * M400: Finish all moves
  4688. */
  4689. inline void gcode_M400() { st_synchronize(); }
  4690. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4691. /**
  4692. * M401: Engage Z Servo endstop if available
  4693. */
  4694. inline void gcode_M401() {
  4695. #if HAS_SERVO_ENDSTOPS
  4696. raise_z_for_servo();
  4697. #endif
  4698. deploy_z_probe();
  4699. }
  4700. /**
  4701. * M402: Retract Z Servo endstop if enabled
  4702. */
  4703. inline void gcode_M402() {
  4704. #if HAS_SERVO_ENDSTOPS
  4705. raise_z_for_servo();
  4706. #endif
  4707. stow_z_probe(false);
  4708. }
  4709. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4710. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4711. /**
  4712. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4713. */
  4714. inline void gcode_M404() {
  4715. if (code_seen('W')) {
  4716. filament_width_nominal = code_value();
  4717. }
  4718. else {
  4719. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4720. SERIAL_PROTOCOLLN(filament_width_nominal);
  4721. }
  4722. }
  4723. /**
  4724. * M405: Turn on filament sensor for control
  4725. */
  4726. inline void gcode_M405() {
  4727. if (code_seen('D')) meas_delay_cm = code_value();
  4728. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4729. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4730. int temp_ratio = widthFil_to_size_ratio();
  4731. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4732. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4733. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4734. }
  4735. filament_sensor = true;
  4736. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4737. //SERIAL_PROTOCOL(filament_width_meas);
  4738. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4739. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4740. }
  4741. /**
  4742. * M406: Turn off filament sensor for control
  4743. */
  4744. inline void gcode_M406() { filament_sensor = false; }
  4745. /**
  4746. * M407: Get measured filament diameter on serial output
  4747. */
  4748. inline void gcode_M407() {
  4749. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4750. SERIAL_PROTOCOLLN(filament_width_meas);
  4751. }
  4752. #endif // FILAMENT_WIDTH_SENSOR
  4753. /**
  4754. * M410: Quickstop - Abort all planned moves
  4755. *
  4756. * This will stop the carriages mid-move, so most likely they
  4757. * will be out of sync with the stepper position after this.
  4758. */
  4759. inline void gcode_M410() { quickStop(); }
  4760. #if ENABLED(MESH_BED_LEVELING)
  4761. /**
  4762. * M420: Enable/Disable Mesh Bed Leveling
  4763. */
  4764. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4765. /**
  4766. * M421: Set a single Mesh Bed Leveling Z coordinate
  4767. */
  4768. inline void gcode_M421() {
  4769. float x = 0, y = 0, z = 0;
  4770. bool err = false, hasX, hasY, hasZ;
  4771. if ((hasX = code_seen('X'))) x = code_value();
  4772. if ((hasY = code_seen('Y'))) y = code_value();
  4773. if ((hasZ = code_seen('Z'))) z = code_value();
  4774. if (!hasX || !hasY || !hasZ) {
  4775. SERIAL_ERROR_START;
  4776. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4777. err = true;
  4778. }
  4779. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4780. SERIAL_ERROR_START;
  4781. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4782. err = true;
  4783. }
  4784. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4785. }
  4786. #endif
  4787. /**
  4788. * M428: Set home_offset based on the distance between the
  4789. * current_position and the nearest "reference point."
  4790. * If an axis is past center its endstop position
  4791. * is the reference-point. Otherwise it uses 0. This allows
  4792. * the Z offset to be set near the bed when using a max endstop.
  4793. *
  4794. * M428 can't be used more than 2cm away from 0 or an endstop.
  4795. *
  4796. * Use M206 to set these values directly.
  4797. */
  4798. inline void gcode_M428() {
  4799. bool err = false;
  4800. float new_offs[3], new_pos[3];
  4801. memcpy(new_pos, current_position, sizeof(new_pos));
  4802. memcpy(new_offs, home_offset, sizeof(new_offs));
  4803. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4804. if (axis_homed[i]) {
  4805. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4806. diff = new_pos[i] - base;
  4807. if (diff > -20 && diff < 20) {
  4808. new_offs[i] -= diff;
  4809. new_pos[i] = base;
  4810. }
  4811. else {
  4812. SERIAL_ERROR_START;
  4813. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4814. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4815. #if HAS_BUZZER
  4816. buzz(200, 40);
  4817. #endif
  4818. err = true;
  4819. break;
  4820. }
  4821. }
  4822. }
  4823. if (!err) {
  4824. memcpy(current_position, new_pos, sizeof(new_pos));
  4825. memcpy(home_offset, new_offs, sizeof(new_offs));
  4826. sync_plan_position();
  4827. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4828. #if HAS_BUZZER
  4829. buzz(200, 659);
  4830. buzz(200, 698);
  4831. #endif
  4832. }
  4833. }
  4834. /**
  4835. * M500: Store settings in EEPROM
  4836. */
  4837. inline void gcode_M500() {
  4838. Config_StoreSettings();
  4839. }
  4840. /**
  4841. * M501: Read settings from EEPROM
  4842. */
  4843. inline void gcode_M501() {
  4844. Config_RetrieveSettings();
  4845. }
  4846. /**
  4847. * M502: Revert to default settings
  4848. */
  4849. inline void gcode_M502() {
  4850. Config_ResetDefault();
  4851. }
  4852. /**
  4853. * M503: print settings currently in memory
  4854. */
  4855. inline void gcode_M503() {
  4856. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4857. }
  4858. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4859. /**
  4860. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4861. */
  4862. inline void gcode_M540() {
  4863. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4864. }
  4865. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4866. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4867. inline void gcode_SET_Z_PROBE_OFFSET() {
  4868. SERIAL_ECHO_START;
  4869. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4870. SERIAL_CHAR(' ');
  4871. if (code_seen('Z')) {
  4872. float value = code_value();
  4873. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4874. zprobe_zoffset = value;
  4875. SERIAL_ECHO(zprobe_zoffset);
  4876. }
  4877. else {
  4878. SERIAL_ECHOPGM(MSG_Z_MIN);
  4879. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4880. SERIAL_ECHOPGM(MSG_Z_MAX);
  4881. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4882. }
  4883. }
  4884. else {
  4885. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4886. }
  4887. SERIAL_EOL;
  4888. }
  4889. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4890. #if ENABLED(FILAMENTCHANGEENABLE)
  4891. /**
  4892. * M600: Pause for filament change
  4893. *
  4894. * E[distance] - Retract the filament this far (negative value)
  4895. * Z[distance] - Move the Z axis by this distance
  4896. * X[position] - Move to this X position, with Y
  4897. * Y[position] - Move to this Y position, with X
  4898. * L[distance] - Retract distance for removal (manual reload)
  4899. *
  4900. * Default values are used for omitted arguments.
  4901. *
  4902. */
  4903. inline void gcode_M600() {
  4904. if (degHotend(active_extruder) < extrude_min_temp) {
  4905. SERIAL_ERROR_START;
  4906. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4907. return;
  4908. }
  4909. float lastpos[NUM_AXIS];
  4910. #if ENABLED(DELTA)
  4911. float fr60 = feedrate / 60;
  4912. #endif
  4913. for (int i = 0; i < NUM_AXIS; i++)
  4914. lastpos[i] = destination[i] = current_position[i];
  4915. #if ENABLED(DELTA)
  4916. #define RUNPLAN calculate_delta(destination); \
  4917. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4918. #else
  4919. #define RUNPLAN line_to_destination();
  4920. #endif
  4921. //retract by E
  4922. if (code_seen('E')) destination[E_AXIS] += code_value();
  4923. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4924. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4925. #endif
  4926. RUNPLAN;
  4927. //lift Z
  4928. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4929. #ifdef FILAMENTCHANGE_ZADD
  4930. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4931. #endif
  4932. RUNPLAN;
  4933. //move xy
  4934. if (code_seen('X')) destination[X_AXIS] = code_value();
  4935. #ifdef FILAMENTCHANGE_XPOS
  4936. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4937. #endif
  4938. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4939. #ifdef FILAMENTCHANGE_YPOS
  4940. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4941. #endif
  4942. RUNPLAN;
  4943. if (code_seen('L')) destination[E_AXIS] += code_value();
  4944. #ifdef FILAMENTCHANGE_FINALRETRACT
  4945. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4946. #endif
  4947. RUNPLAN;
  4948. //finish moves
  4949. st_synchronize();
  4950. //disable extruder steppers so filament can be removed
  4951. disable_e0();
  4952. disable_e1();
  4953. disable_e2();
  4954. disable_e3();
  4955. delay(100);
  4956. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4957. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4958. millis_t next_tick = 0;
  4959. #endif
  4960. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4961. while (!lcd_clicked()) {
  4962. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4963. millis_t ms = millis();
  4964. if (ms >= next_tick) {
  4965. lcd_quick_feedback();
  4966. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4967. }
  4968. idle(true);
  4969. #else
  4970. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4971. destination[E_AXIS] = current_position[E_AXIS];
  4972. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4973. st_synchronize();
  4974. #endif
  4975. } // while(!lcd_clicked)
  4976. KEEPALIVE_STATE(IN_HANDLER);
  4977. lcd_quick_feedback(); // click sound feedback
  4978. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4979. current_position[E_AXIS] = 0;
  4980. st_synchronize();
  4981. #endif
  4982. //return to normal
  4983. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4984. #ifdef FILAMENTCHANGE_FINALRETRACT
  4985. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4986. #endif
  4987. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4988. plan_set_e_position(current_position[E_AXIS]);
  4989. RUNPLAN; //should do nothing
  4990. lcd_reset_alert_level();
  4991. #if ENABLED(DELTA)
  4992. // Move XYZ to starting position, then E
  4993. calculate_delta(lastpos);
  4994. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4995. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4996. #else
  4997. // Move XY to starting position, then Z, then E
  4998. destination[X_AXIS] = lastpos[X_AXIS];
  4999. destination[Y_AXIS] = lastpos[Y_AXIS];
  5000. line_to_destination();
  5001. destination[Z_AXIS] = lastpos[Z_AXIS];
  5002. line_to_destination();
  5003. destination[E_AXIS] = lastpos[E_AXIS];
  5004. line_to_destination();
  5005. #endif
  5006. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5007. filrunoutEnqueued = false;
  5008. #endif
  5009. }
  5010. #endif // FILAMENTCHANGEENABLE
  5011. #if ENABLED(DUAL_X_CARRIAGE)
  5012. /**
  5013. * M605: Set dual x-carriage movement mode
  5014. *
  5015. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5016. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5017. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5018. * millimeters x-offset and an optional differential hotend temperature of
  5019. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5020. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5021. *
  5022. * Note: the X axis should be homed after changing dual x-carriage mode.
  5023. */
  5024. inline void gcode_M605() {
  5025. st_synchronize();
  5026. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5027. switch (dual_x_carriage_mode) {
  5028. case DXC_DUPLICATION_MODE:
  5029. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5030. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5031. SERIAL_ECHO_START;
  5032. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5033. SERIAL_CHAR(' ');
  5034. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5035. SERIAL_CHAR(',');
  5036. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5037. SERIAL_CHAR(' ');
  5038. SERIAL_ECHO(duplicate_extruder_x_offset);
  5039. SERIAL_CHAR(',');
  5040. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5041. break;
  5042. case DXC_FULL_CONTROL_MODE:
  5043. case DXC_AUTO_PARK_MODE:
  5044. break;
  5045. default:
  5046. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5047. break;
  5048. }
  5049. active_extruder_parked = false;
  5050. extruder_duplication_enabled = false;
  5051. delayed_move_time = 0;
  5052. }
  5053. #endif // DUAL_X_CARRIAGE
  5054. /**
  5055. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5056. */
  5057. inline void gcode_M907() {
  5058. #if HAS_DIGIPOTSS
  5059. for (int i = 0; i < NUM_AXIS; i++)
  5060. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5061. if (code_seen('B')) digipot_current(4, code_value());
  5062. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5063. #endif
  5064. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5065. if (code_seen('X')) digipot_current(0, code_value());
  5066. #endif
  5067. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5068. if (code_seen('Z')) digipot_current(1, code_value());
  5069. #endif
  5070. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5071. if (code_seen('E')) digipot_current(2, code_value());
  5072. #endif
  5073. #if ENABLED(DIGIPOT_I2C)
  5074. // this one uses actual amps in floating point
  5075. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5076. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5077. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5078. #endif
  5079. #if ENABLED(DAC_STEPPER_CURRENT)
  5080. if (code_seen('S')) {
  5081. float dac_percent = code_value();
  5082. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5083. }
  5084. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5085. #endif
  5086. }
  5087. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5088. /**
  5089. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5090. */
  5091. inline void gcode_M908() {
  5092. #if HAS_DIGIPOTSS
  5093. digitalPotWrite(
  5094. code_seen('P') ? code_value() : 0,
  5095. code_seen('S') ? code_value() : 0
  5096. );
  5097. #endif
  5098. #ifdef DAC_STEPPER_CURRENT
  5099. dac_current_raw(
  5100. code_seen('P') ? code_value_long() : -1,
  5101. code_seen('S') ? code_value_short() : 0
  5102. );
  5103. #endif
  5104. }
  5105. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5106. inline void gcode_M909() { dac_print_values(); }
  5107. inline void gcode_M910() { dac_commit_eeprom(); }
  5108. #endif
  5109. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5110. #if HAS_MICROSTEPS
  5111. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5112. inline void gcode_M350() {
  5113. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5114. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5115. if (code_seen('B')) microstep_mode(4, code_value());
  5116. microstep_readings();
  5117. }
  5118. /**
  5119. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5120. * S# determines MS1 or MS2, X# sets the pin high/low.
  5121. */
  5122. inline void gcode_M351() {
  5123. if (code_seen('S')) switch (code_value_short()) {
  5124. case 1:
  5125. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5126. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5127. break;
  5128. case 2:
  5129. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5130. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5131. break;
  5132. }
  5133. microstep_readings();
  5134. }
  5135. #endif // HAS_MICROSTEPS
  5136. /**
  5137. * M999: Restart after being stopped
  5138. */
  5139. inline void gcode_M999() {
  5140. Running = true;
  5141. lcd_reset_alert_level();
  5142. // gcode_LastN = Stopped_gcode_LastN;
  5143. FlushSerialRequestResend();
  5144. }
  5145. /**
  5146. * T0-T3: Switch tool, usually switching extruders
  5147. *
  5148. * F[mm/min] Set the movement feedrate
  5149. */
  5150. inline void gcode_T(uint8_t tmp_extruder) {
  5151. if (tmp_extruder >= EXTRUDERS) {
  5152. SERIAL_ECHO_START;
  5153. SERIAL_CHAR('T');
  5154. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5155. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5156. }
  5157. else {
  5158. target_extruder = tmp_extruder;
  5159. #if EXTRUDERS > 1
  5160. bool make_move = false;
  5161. #endif
  5162. if (code_seen('F')) {
  5163. #if EXTRUDERS > 1
  5164. make_move = true;
  5165. #endif
  5166. float next_feedrate = code_value();
  5167. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5168. }
  5169. #if EXTRUDERS > 1
  5170. if (tmp_extruder != active_extruder) {
  5171. // Save current position to return to after applying extruder offset
  5172. set_destination_to_current();
  5173. #if ENABLED(DUAL_X_CARRIAGE)
  5174. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5175. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5176. // Park old head: 1) raise 2) move to park position 3) lower
  5177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5178. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5179. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5180. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5181. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5182. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5183. st_synchronize();
  5184. }
  5185. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5186. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5187. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5188. active_extruder = tmp_extruder;
  5189. // This function resets the max/min values - the current position may be overwritten below.
  5190. set_axis_is_at_home(X_AXIS);
  5191. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5192. current_position[X_AXIS] = inactive_extruder_x_pos;
  5193. inactive_extruder_x_pos = destination[X_AXIS];
  5194. }
  5195. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5196. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5197. if (active_extruder == 0 || active_extruder_parked)
  5198. current_position[X_AXIS] = inactive_extruder_x_pos;
  5199. else
  5200. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5201. inactive_extruder_x_pos = destination[X_AXIS];
  5202. extruder_duplication_enabled = false;
  5203. }
  5204. else {
  5205. // record raised toolhead position for use by unpark
  5206. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5207. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5208. active_extruder_parked = true;
  5209. delayed_move_time = 0;
  5210. }
  5211. #else // !DUAL_X_CARRIAGE
  5212. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5213. // Offset extruder, make sure to apply the bed level rotation matrix
  5214. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5215. extruder_offset[Y_AXIS][tmp_extruder],
  5216. extruder_offset[Z_AXIS][tmp_extruder]),
  5217. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5218. extruder_offset[Y_AXIS][active_extruder],
  5219. extruder_offset[Z_AXIS][active_extruder]),
  5220. offset_vec = tmp_offset_vec - act_offset_vec;
  5221. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5222. current_position[X_AXIS] += offset_vec.x;
  5223. current_position[Y_AXIS] += offset_vec.y;
  5224. current_position[Z_AXIS] += offset_vec.z;
  5225. #else // !AUTO_BED_LEVELING_FEATURE
  5226. // Offset extruder (only by XY)
  5227. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5228. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5229. #endif // !AUTO_BED_LEVELING_FEATURE
  5230. // Set the new active extruder and position
  5231. active_extruder = tmp_extruder;
  5232. #endif // !DUAL_X_CARRIAGE
  5233. #if ENABLED(DELTA)
  5234. sync_plan_position_delta();
  5235. #else
  5236. sync_plan_position();
  5237. #endif
  5238. // Move to the old position if 'F' was in the parameters
  5239. if (make_move && IsRunning()) prepare_move();
  5240. }
  5241. #if ENABLED(EXT_SOLENOID)
  5242. st_synchronize();
  5243. disable_all_solenoids();
  5244. enable_solenoid_on_active_extruder();
  5245. #endif // EXT_SOLENOID
  5246. #endif // EXTRUDERS > 1
  5247. SERIAL_ECHO_START;
  5248. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5249. SERIAL_PROTOCOLLN((int)active_extruder);
  5250. }
  5251. }
  5252. /**
  5253. * Process a single command and dispatch it to its handler
  5254. * This is called from the main loop()
  5255. */
  5256. void process_next_command() {
  5257. current_command = command_queue[cmd_queue_index_r];
  5258. if (DEBUGGING(ECHO)) {
  5259. SERIAL_ECHO_START;
  5260. SERIAL_ECHOLN(current_command);
  5261. }
  5262. // Sanitize the current command:
  5263. // - Skip leading spaces
  5264. // - Bypass N[-0-9][0-9]*[ ]*
  5265. // - Overwrite * with nul to mark the end
  5266. while (*current_command == ' ') ++current_command;
  5267. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5268. current_command += 2; // skip N[-0-9]
  5269. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5270. while (*current_command == ' ') ++current_command; // skip [ ]*
  5271. }
  5272. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5273. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5274. char *cmd_ptr = current_command;
  5275. // Get the command code, which must be G, M, or T
  5276. char command_code = *cmd_ptr++;
  5277. // Skip spaces to get the numeric part
  5278. while (*cmd_ptr == ' ') cmd_ptr++;
  5279. uint16_t codenum = 0; // define ahead of goto
  5280. // Bail early if there's no code
  5281. bool code_is_good = NUMERIC(*cmd_ptr);
  5282. if (!code_is_good) goto ExitUnknownCommand;
  5283. // Get and skip the code number
  5284. do {
  5285. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5286. cmd_ptr++;
  5287. } while (NUMERIC(*cmd_ptr));
  5288. // Skip all spaces to get to the first argument, or nul
  5289. while (*cmd_ptr == ' ') cmd_ptr++;
  5290. // The command's arguments (if any) start here, for sure!
  5291. current_command_args = cmd_ptr;
  5292. KEEPALIVE_STATE(IN_HANDLER);
  5293. // Handle a known G, M, or T
  5294. switch (command_code) {
  5295. case 'G': switch (codenum) {
  5296. // G0, G1
  5297. case 0:
  5298. case 1:
  5299. gcode_G0_G1();
  5300. break;
  5301. // G2, G3
  5302. #if DISABLED(SCARA)
  5303. case 2: // G2 - CW ARC
  5304. case 3: // G3 - CCW ARC
  5305. gcode_G2_G3(codenum == 2);
  5306. break;
  5307. #endif
  5308. // G4 Dwell
  5309. case 4:
  5310. gcode_G4();
  5311. break;
  5312. #if ENABLED(FWRETRACT)
  5313. case 10: // G10: retract
  5314. case 11: // G11: retract_recover
  5315. gcode_G10_G11(codenum == 10);
  5316. break;
  5317. #endif //FWRETRACT
  5318. case 28: // G28: Home all axes, one at a time
  5319. gcode_G28();
  5320. break;
  5321. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5322. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5323. gcode_G29();
  5324. break;
  5325. #endif
  5326. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5327. #if DISABLED(Z_PROBE_SLED)
  5328. case 30: // G30 Single Z probe
  5329. gcode_G30();
  5330. break;
  5331. #else // Z_PROBE_SLED
  5332. case 31: // G31: dock the sled
  5333. case 32: // G32: undock the sled
  5334. dock_sled(codenum == 31);
  5335. break;
  5336. #endif // Z_PROBE_SLED
  5337. #endif // AUTO_BED_LEVELING_FEATURE
  5338. case 90: // G90
  5339. relative_mode = false;
  5340. break;
  5341. case 91: // G91
  5342. relative_mode = true;
  5343. break;
  5344. case 92: // G92
  5345. gcode_G92();
  5346. break;
  5347. }
  5348. break;
  5349. case 'M': switch (codenum) {
  5350. #if ENABLED(ULTIPANEL)
  5351. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5352. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5353. gcode_M0_M1();
  5354. break;
  5355. #endif // ULTIPANEL
  5356. case 17:
  5357. gcode_M17();
  5358. break;
  5359. #if ENABLED(SDSUPPORT)
  5360. case 20: // M20 - list SD card
  5361. gcode_M20(); break;
  5362. case 21: // M21 - init SD card
  5363. gcode_M21(); break;
  5364. case 22: //M22 - release SD card
  5365. gcode_M22(); break;
  5366. case 23: //M23 - Select file
  5367. gcode_M23(); break;
  5368. case 24: //M24 - Start SD print
  5369. gcode_M24(); break;
  5370. case 25: //M25 - Pause SD print
  5371. gcode_M25(); break;
  5372. case 26: //M26 - Set SD index
  5373. gcode_M26(); break;
  5374. case 27: //M27 - Get SD status
  5375. gcode_M27(); break;
  5376. case 28: //M28 - Start SD write
  5377. gcode_M28(); break;
  5378. case 29: //M29 - Stop SD write
  5379. gcode_M29(); break;
  5380. case 30: //M30 <filename> Delete File
  5381. gcode_M30(); break;
  5382. case 32: //M32 - Select file and start SD print
  5383. gcode_M32(); break;
  5384. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5385. case 33: //M33 - Get the long full path to a file or folder
  5386. gcode_M33(); break;
  5387. #endif // LONG_FILENAME_HOST_SUPPORT
  5388. case 928: //M928 - Start SD write
  5389. gcode_M928(); break;
  5390. #endif //SDSUPPORT
  5391. case 31: //M31 take time since the start of the SD print or an M109 command
  5392. gcode_M31();
  5393. break;
  5394. case 42: //M42 -Change pin status via gcode
  5395. gcode_M42();
  5396. break;
  5397. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5398. case 48: // M48 Z probe repeatability
  5399. gcode_M48();
  5400. break;
  5401. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5402. case 75: // Start print timer
  5403. gcode_M75();
  5404. break;
  5405. case 76: // Pause print timer
  5406. gcode_M76();
  5407. break;
  5408. case 77: // Stop print timer
  5409. gcode_M77();
  5410. break;
  5411. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5412. case 100:
  5413. gcode_M100();
  5414. break;
  5415. #endif
  5416. case 104: // M104
  5417. gcode_M104();
  5418. break;
  5419. case 110: // M110: Set Current Line Number
  5420. gcode_M110();
  5421. break;
  5422. case 111: // M111: Set debug level
  5423. gcode_M111();
  5424. break;
  5425. case 112: // M112: Emergency Stop
  5426. gcode_M112();
  5427. break;
  5428. case 140: // M140: Set bed temp
  5429. gcode_M140();
  5430. break;
  5431. case 105: // M105: Read current temperature
  5432. gcode_M105();
  5433. KEEPALIVE_STATE(NOT_BUSY);
  5434. return; // "ok" already printed
  5435. case 109: // M109: Wait for temperature
  5436. gcode_M109();
  5437. break;
  5438. #if HAS_TEMP_BED
  5439. case 190: // M190: Wait for bed heater to reach target
  5440. gcode_M190();
  5441. break;
  5442. #endif // HAS_TEMP_BED
  5443. #if FAN_COUNT > 0
  5444. case 106: // M106: Fan On
  5445. gcode_M106();
  5446. break;
  5447. case 107: // M107: Fan Off
  5448. gcode_M107();
  5449. break;
  5450. #endif // FAN_COUNT > 0
  5451. #if ENABLED(BARICUDA)
  5452. // PWM for HEATER_1_PIN
  5453. #if HAS_HEATER_1
  5454. case 126: // M126: valve open
  5455. gcode_M126();
  5456. break;
  5457. case 127: // M127: valve closed
  5458. gcode_M127();
  5459. break;
  5460. #endif // HAS_HEATER_1
  5461. // PWM for HEATER_2_PIN
  5462. #if HAS_HEATER_2
  5463. case 128: // M128: valve open
  5464. gcode_M128();
  5465. break;
  5466. case 129: // M129: valve closed
  5467. gcode_M129();
  5468. break;
  5469. #endif // HAS_HEATER_2
  5470. #endif // BARICUDA
  5471. #if HAS_POWER_SWITCH
  5472. case 80: // M80: Turn on Power Supply
  5473. gcode_M80();
  5474. break;
  5475. #endif // HAS_POWER_SWITCH
  5476. case 81: // M81: Turn off Power, including Power Supply, if possible
  5477. gcode_M81();
  5478. break;
  5479. case 82:
  5480. gcode_M82();
  5481. break;
  5482. case 83:
  5483. gcode_M83();
  5484. break;
  5485. case 18: // (for compatibility)
  5486. case 84: // M84
  5487. gcode_M18_M84();
  5488. break;
  5489. case 85: // M85
  5490. gcode_M85();
  5491. break;
  5492. case 92: // M92: Set the steps-per-unit for one or more axes
  5493. gcode_M92();
  5494. break;
  5495. case 115: // M115: Report capabilities
  5496. gcode_M115();
  5497. break;
  5498. case 117: // M117: Set LCD message text, if possible
  5499. gcode_M117();
  5500. break;
  5501. case 114: // M114: Report current position
  5502. gcode_M114();
  5503. break;
  5504. case 120: // M120: Enable endstops
  5505. gcode_M120();
  5506. break;
  5507. case 121: // M121: Disable endstops
  5508. gcode_M121();
  5509. break;
  5510. case 119: // M119: Report endstop states
  5511. gcode_M119();
  5512. break;
  5513. #if ENABLED(ULTIPANEL)
  5514. case 145: // M145: Set material heatup parameters
  5515. gcode_M145();
  5516. break;
  5517. #endif
  5518. #if ENABLED(BLINKM)
  5519. case 150: // M150
  5520. gcode_M150();
  5521. break;
  5522. #endif //BLINKM
  5523. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5524. case 155:
  5525. gcode_M155();
  5526. break;
  5527. case 156:
  5528. gcode_M156();
  5529. break;
  5530. #endif //EXPERIMENTAL_I2CBUS
  5531. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5532. gcode_M200();
  5533. break;
  5534. case 201: // M201
  5535. gcode_M201();
  5536. break;
  5537. #if 0 // Not used for Sprinter/grbl gen6
  5538. case 202: // M202
  5539. gcode_M202();
  5540. break;
  5541. #endif
  5542. case 203: // M203 max feedrate mm/sec
  5543. gcode_M203();
  5544. break;
  5545. case 204: // M204 acclereration S normal moves T filmanent only moves
  5546. gcode_M204();
  5547. break;
  5548. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5549. gcode_M205();
  5550. break;
  5551. case 206: // M206 additional homing offset
  5552. gcode_M206();
  5553. break;
  5554. #if ENABLED(DELTA)
  5555. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5556. gcode_M665();
  5557. break;
  5558. #endif
  5559. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5560. case 666: // M666 set delta / dual endstop adjustment
  5561. gcode_M666();
  5562. break;
  5563. #endif
  5564. #if ENABLED(FWRETRACT)
  5565. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5566. gcode_M207();
  5567. break;
  5568. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5569. gcode_M208();
  5570. break;
  5571. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5572. gcode_M209();
  5573. break;
  5574. #endif // FWRETRACT
  5575. #if EXTRUDERS > 1
  5576. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5577. gcode_M218();
  5578. break;
  5579. #endif
  5580. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5581. gcode_M220();
  5582. break;
  5583. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5584. gcode_M221();
  5585. break;
  5586. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5587. gcode_M226();
  5588. break;
  5589. #if HAS_SERVOS
  5590. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5591. gcode_M280();
  5592. break;
  5593. #endif // HAS_SERVOS
  5594. #if HAS_BUZZER
  5595. case 300: // M300 - Play beep tone
  5596. gcode_M300();
  5597. break;
  5598. #endif // HAS_BUZZER
  5599. #if ENABLED(PIDTEMP)
  5600. case 301: // M301
  5601. gcode_M301();
  5602. break;
  5603. #endif // PIDTEMP
  5604. #if ENABLED(PIDTEMPBED)
  5605. case 304: // M304
  5606. gcode_M304();
  5607. break;
  5608. #endif // PIDTEMPBED
  5609. #if defined(CHDK) || HAS_PHOTOGRAPH
  5610. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5611. gcode_M240();
  5612. break;
  5613. #endif // CHDK || PHOTOGRAPH_PIN
  5614. #if ENABLED(HAS_LCD_CONTRAST)
  5615. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5616. gcode_M250();
  5617. break;
  5618. #endif // HAS_LCD_CONTRAST
  5619. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5620. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5621. gcode_M302();
  5622. break;
  5623. #endif // PREVENT_DANGEROUS_EXTRUDE
  5624. case 303: // M303 PID autotune
  5625. gcode_M303();
  5626. break;
  5627. #if ENABLED(SCARA)
  5628. case 360: // M360 SCARA Theta pos1
  5629. if (gcode_M360()) return;
  5630. break;
  5631. case 361: // M361 SCARA Theta pos2
  5632. if (gcode_M361()) return;
  5633. break;
  5634. case 362: // M362 SCARA Psi pos1
  5635. if (gcode_M362()) return;
  5636. break;
  5637. case 363: // M363 SCARA Psi pos2
  5638. if (gcode_M363()) return;
  5639. break;
  5640. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5641. if (gcode_M364()) return;
  5642. break;
  5643. case 365: // M365 Set SCARA scaling for X Y Z
  5644. gcode_M365();
  5645. break;
  5646. #endif // SCARA
  5647. case 400: // M400 finish all moves
  5648. gcode_M400();
  5649. break;
  5650. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5651. case 401:
  5652. gcode_M401();
  5653. break;
  5654. case 402:
  5655. gcode_M402();
  5656. break;
  5657. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5658. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5659. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5660. gcode_M404();
  5661. break;
  5662. case 405: //M405 Turn on filament sensor for control
  5663. gcode_M405();
  5664. break;
  5665. case 406: //M406 Turn off filament sensor for control
  5666. gcode_M406();
  5667. break;
  5668. case 407: //M407 Display measured filament diameter
  5669. gcode_M407();
  5670. break;
  5671. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5672. case 410: // M410 quickstop - Abort all the planned moves.
  5673. gcode_M410();
  5674. break;
  5675. #if ENABLED(MESH_BED_LEVELING)
  5676. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5677. gcode_M420();
  5678. break;
  5679. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5680. gcode_M421();
  5681. break;
  5682. #endif
  5683. case 428: // M428 Apply current_position to home_offset
  5684. gcode_M428();
  5685. break;
  5686. case 500: // M500 Store settings in EEPROM
  5687. gcode_M500();
  5688. break;
  5689. case 501: // M501 Read settings from EEPROM
  5690. gcode_M501();
  5691. break;
  5692. case 502: // M502 Revert to default settings
  5693. gcode_M502();
  5694. break;
  5695. case 503: // M503 print settings currently in memory
  5696. gcode_M503();
  5697. break;
  5698. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5699. case 540:
  5700. gcode_M540();
  5701. break;
  5702. #endif
  5703. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5704. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5705. gcode_SET_Z_PROBE_OFFSET();
  5706. break;
  5707. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5708. #if ENABLED(FILAMENTCHANGEENABLE)
  5709. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5710. gcode_M600();
  5711. break;
  5712. #endif // FILAMENTCHANGEENABLE
  5713. #if ENABLED(DUAL_X_CARRIAGE)
  5714. case 605:
  5715. gcode_M605();
  5716. break;
  5717. #endif // DUAL_X_CARRIAGE
  5718. case 907: // M907 Set digital trimpot motor current using axis codes.
  5719. gcode_M907();
  5720. break;
  5721. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5722. case 908: // M908 Control digital trimpot directly.
  5723. gcode_M908();
  5724. break;
  5725. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5726. case 909: // M909 Print digipot/DAC current value
  5727. gcode_M909();
  5728. break;
  5729. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5730. gcode_M910();
  5731. break;
  5732. #endif
  5733. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5734. #if HAS_MICROSTEPS
  5735. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5736. gcode_M350();
  5737. break;
  5738. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5739. gcode_M351();
  5740. break;
  5741. #endif // HAS_MICROSTEPS
  5742. case 999: // M999: Restart after being Stopped
  5743. gcode_M999();
  5744. break;
  5745. }
  5746. break;
  5747. case 'T':
  5748. gcode_T(codenum);
  5749. break;
  5750. default: code_is_good = false;
  5751. }
  5752. KEEPALIVE_STATE(NOT_BUSY);
  5753. ExitUnknownCommand:
  5754. // Still unknown command? Throw an error
  5755. if (!code_is_good) unknown_command_error();
  5756. ok_to_send();
  5757. }
  5758. void FlushSerialRequestResend() {
  5759. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5760. MYSERIAL.flush();
  5761. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5762. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5763. ok_to_send();
  5764. }
  5765. void ok_to_send() {
  5766. refresh_cmd_timeout();
  5767. if (!send_ok[cmd_queue_index_r]) return;
  5768. SERIAL_PROTOCOLPGM(MSG_OK);
  5769. #if ENABLED(ADVANCED_OK)
  5770. char* p = command_queue[cmd_queue_index_r];
  5771. if (*p == 'N') {
  5772. SERIAL_PROTOCOL(' ');
  5773. SERIAL_ECHO(*p++);
  5774. while (NUMERIC_SIGNED(*p))
  5775. SERIAL_ECHO(*p++);
  5776. }
  5777. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5778. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5779. #endif
  5780. SERIAL_EOL;
  5781. }
  5782. void clamp_to_software_endstops(float target[3]) {
  5783. if (min_software_endstops) {
  5784. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5785. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5786. float negative_z_offset = 0;
  5787. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5788. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5789. if (home_offset[Z_AXIS] < 0) {
  5790. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5791. if (DEBUGGING(LEVELING)) {
  5792. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5793. SERIAL_EOL;
  5794. }
  5795. #endif
  5796. negative_z_offset += home_offset[Z_AXIS];
  5797. }
  5798. #endif
  5799. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5800. }
  5801. if (max_software_endstops) {
  5802. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5803. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5804. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5805. }
  5806. }
  5807. #if ENABLED(DELTA)
  5808. void recalc_delta_settings(float radius, float diagonal_rod) {
  5809. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5810. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5811. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5812. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5813. delta_tower3_x = 0.0; // back middle tower
  5814. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5815. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5816. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5817. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5818. }
  5819. void calculate_delta(float cartesian[3]) {
  5820. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5821. - sq(delta_tower1_x - cartesian[X_AXIS])
  5822. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5823. ) + cartesian[Z_AXIS];
  5824. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5825. - sq(delta_tower2_x - cartesian[X_AXIS])
  5826. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5827. ) + cartesian[Z_AXIS];
  5828. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5829. - sq(delta_tower3_x - cartesian[X_AXIS])
  5830. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5831. ) + cartesian[Z_AXIS];
  5832. /**
  5833. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5834. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5835. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5836. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5837. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5838. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5839. */
  5840. }
  5841. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5842. // Adjust print surface height by linear interpolation over the bed_level array.
  5843. void adjust_delta(float cartesian[3]) {
  5844. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5845. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5846. float h1 = 0.001 - half, h2 = half - 0.001,
  5847. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5848. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5849. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5850. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5851. z1 = bed_level[floor_x + half][floor_y + half],
  5852. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5853. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5854. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5855. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5856. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5857. offset = (1 - ratio_x) * left + ratio_x * right;
  5858. delta[X_AXIS] += offset;
  5859. delta[Y_AXIS] += offset;
  5860. delta[Z_AXIS] += offset;
  5861. /**
  5862. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5863. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5864. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5865. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5866. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5867. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5868. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5869. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5870. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5871. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5872. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5873. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5874. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5875. */
  5876. }
  5877. #endif // AUTO_BED_LEVELING_FEATURE
  5878. #endif // DELTA
  5879. #if ENABLED(MESH_BED_LEVELING)
  5880. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5881. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5882. if (!mbl.active) {
  5883. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5884. set_current_to_destination();
  5885. return;
  5886. }
  5887. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5888. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5889. int ix = mbl.select_x_index(x);
  5890. int iy = mbl.select_y_index(y);
  5891. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5892. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5893. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5894. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5895. if (pix == ix && piy == iy) {
  5896. // Start and end on same mesh square
  5897. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5898. set_current_to_destination();
  5899. return;
  5900. }
  5901. float nx, ny, nz, ne, normalized_dist;
  5902. if (ix > pix && TEST(x_splits, ix)) {
  5903. nx = mbl.get_x(ix);
  5904. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5905. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5906. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5907. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5908. CBI(x_splits, ix);
  5909. }
  5910. else if (ix < pix && TEST(x_splits, pix)) {
  5911. nx = mbl.get_x(pix);
  5912. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5913. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5914. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5915. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5916. CBI(x_splits, pix);
  5917. }
  5918. else if (iy > piy && TEST(y_splits, iy)) {
  5919. ny = mbl.get_y(iy);
  5920. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5921. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5922. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5923. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5924. CBI(y_splits, iy);
  5925. }
  5926. else if (iy < piy && TEST(y_splits, piy)) {
  5927. ny = mbl.get_y(piy);
  5928. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5929. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5930. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5931. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5932. CBI(y_splits, piy);
  5933. }
  5934. else {
  5935. // Already split on a border
  5936. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5937. set_current_to_destination();
  5938. return;
  5939. }
  5940. // Do the split and look for more borders
  5941. destination[X_AXIS] = nx;
  5942. destination[Y_AXIS] = ny;
  5943. destination[Z_AXIS] = nz;
  5944. destination[E_AXIS] = ne;
  5945. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5946. destination[X_AXIS] = x;
  5947. destination[Y_AXIS] = y;
  5948. destination[Z_AXIS] = z;
  5949. destination[E_AXIS] = e;
  5950. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5951. }
  5952. #endif // MESH_BED_LEVELING
  5953. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5954. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5955. if (DEBUGGING(DRYRUN)) return;
  5956. float de = dest_e - curr_e;
  5957. if (de) {
  5958. if (degHotend(active_extruder) < extrude_min_temp) {
  5959. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5960. SERIAL_ECHO_START;
  5961. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5962. }
  5963. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5964. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5965. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5966. SERIAL_ECHO_START;
  5967. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5968. }
  5969. #endif
  5970. }
  5971. }
  5972. #endif // PREVENT_DANGEROUS_EXTRUDE
  5973. #if ENABLED(DELTA) || ENABLED(SCARA)
  5974. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5975. float difference[NUM_AXIS];
  5976. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5977. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5978. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5979. if (cartesian_mm < 0.000001) return false;
  5980. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5981. int steps = max(1, int(delta_segments_per_second * seconds));
  5982. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5983. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5984. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5985. for (int s = 1; s <= steps; s++) {
  5986. float fraction = float(s) / float(steps);
  5987. for (int8_t i = 0; i < NUM_AXIS; i++)
  5988. target[i] = current_position[i] + difference[i] * fraction;
  5989. calculate_delta(target);
  5990. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5991. adjust_delta(target);
  5992. #endif
  5993. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5994. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5995. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5996. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5997. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5998. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5999. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6000. }
  6001. return true;
  6002. }
  6003. #endif // DELTA || SCARA
  6004. #if ENABLED(SCARA)
  6005. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6006. #endif
  6007. #if ENABLED(DUAL_X_CARRIAGE)
  6008. inline bool prepare_move_dual_x_carriage() {
  6009. if (active_extruder_parked) {
  6010. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6011. // move duplicate extruder into correct duplication position.
  6012. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6013. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6014. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6015. sync_plan_position();
  6016. st_synchronize();
  6017. extruder_duplication_enabled = true;
  6018. active_extruder_parked = false;
  6019. }
  6020. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6021. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6022. // This is a travel move (with no extrusion)
  6023. // Skip it, but keep track of the current position
  6024. // (so it can be used as the start of the next non-travel move)
  6025. if (delayed_move_time != 0xFFFFFFFFUL) {
  6026. set_current_to_destination();
  6027. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6028. delayed_move_time = millis();
  6029. return false;
  6030. }
  6031. }
  6032. delayed_move_time = 0;
  6033. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6034. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6037. active_extruder_parked = false;
  6038. }
  6039. }
  6040. return true;
  6041. }
  6042. #endif // DUAL_X_CARRIAGE
  6043. #if DISABLED(DELTA) && DISABLED(SCARA)
  6044. inline bool prepare_move_cartesian() {
  6045. // Do not use feedrate_multiplier for E or Z only moves
  6046. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6047. line_to_destination();
  6048. }
  6049. else {
  6050. #if ENABLED(MESH_BED_LEVELING)
  6051. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6052. return false;
  6053. #else
  6054. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6055. #endif
  6056. }
  6057. return true;
  6058. }
  6059. #endif // !DELTA && !SCARA
  6060. /**
  6061. * Prepare a single move and get ready for the next one
  6062. *
  6063. * (This may call plan_buffer_line several times to put
  6064. * smaller moves into the planner for DELTA or SCARA.)
  6065. */
  6066. void prepare_move() {
  6067. clamp_to_software_endstops(destination);
  6068. refresh_cmd_timeout();
  6069. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6070. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6071. #endif
  6072. #if ENABLED(SCARA)
  6073. if (!prepare_move_scara(destination)) return;
  6074. #elif ENABLED(DELTA)
  6075. if (!prepare_move_delta(destination)) return;
  6076. #endif
  6077. #if ENABLED(DUAL_X_CARRIAGE)
  6078. if (!prepare_move_dual_x_carriage()) return;
  6079. #endif
  6080. #if DISABLED(DELTA) && DISABLED(SCARA)
  6081. if (!prepare_move_cartesian()) return;
  6082. #endif
  6083. set_current_to_destination();
  6084. }
  6085. /**
  6086. * Plan an arc in 2 dimensions
  6087. *
  6088. * The arc is approximated by generating many small linear segments.
  6089. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6090. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6091. * larger segments will tend to be more efficient. Your slicer should have
  6092. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6093. */
  6094. void plan_arc(
  6095. float target[NUM_AXIS], // Destination position
  6096. float* offset, // Center of rotation relative to current_position
  6097. uint8_t clockwise // Clockwise?
  6098. ) {
  6099. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6100. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  6101. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  6102. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6103. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6104. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  6105. r_axis1 = -offset[Y_AXIS],
  6106. rt_axis0 = target[X_AXIS] - center_axis0,
  6107. rt_axis1 = target[Y_AXIS] - center_axis1;
  6108. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6109. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  6110. if (angular_travel < 0) angular_travel += RADIANS(360);
  6111. if (clockwise) angular_travel -= RADIANS(360);
  6112. // Make a circle if the angular rotation is 0
  6113. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  6114. angular_travel += RADIANS(360);
  6115. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6116. if (mm_of_travel < 0.001) return;
  6117. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6118. if (segments == 0) segments = 1;
  6119. float theta_per_segment = angular_travel / segments;
  6120. float linear_per_segment = linear_travel / segments;
  6121. float extruder_per_segment = extruder_travel / segments;
  6122. /**
  6123. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6124. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6125. * r_T = [cos(phi) -sin(phi);
  6126. * sin(phi) cos(phi] * r ;
  6127. *
  6128. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6129. * defined from the circle center to the initial position. Each line segment is formed by successive
  6130. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6131. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6132. * all double numbers are single precision on the Arduino. (True double precision will not have
  6133. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6134. * tool precision in some cases. Therefore, arc path correction is implemented.
  6135. *
  6136. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6137. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6138. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6139. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6140. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6141. * issue for CNC machines with the single precision Arduino calculations.
  6142. *
  6143. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6144. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6145. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6146. * This is important when there are successive arc motions.
  6147. */
  6148. // Vector rotation matrix values
  6149. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6150. float sin_T = theta_per_segment;
  6151. float arc_target[NUM_AXIS];
  6152. float sin_Ti;
  6153. float cos_Ti;
  6154. float r_axisi;
  6155. uint16_t i;
  6156. int8_t count = 0;
  6157. // Initialize the linear axis
  6158. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6159. // Initialize the extruder axis
  6160. arc_target[E_AXIS] = current_position[E_AXIS];
  6161. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6162. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6163. if (count < N_ARC_CORRECTION) {
  6164. // Apply vector rotation matrix to previous r_axis0 / 1
  6165. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6166. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6167. r_axis1 = r_axisi;
  6168. count++;
  6169. }
  6170. else {
  6171. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6172. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6173. cos_Ti = cos(i * theta_per_segment);
  6174. sin_Ti = sin(i * theta_per_segment);
  6175. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6176. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6177. count = 0;
  6178. }
  6179. // Update arc_target location
  6180. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6181. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6182. arc_target[Z_AXIS] += linear_per_segment;
  6183. arc_target[E_AXIS] += extruder_per_segment;
  6184. clamp_to_software_endstops(arc_target);
  6185. #if ENABLED(DELTA) || ENABLED(SCARA)
  6186. calculate_delta(arc_target);
  6187. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6188. adjust_delta(arc_target);
  6189. #endif
  6190. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6191. #else
  6192. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6193. #endif
  6194. }
  6195. // Ensure last segment arrives at target location.
  6196. #if ENABLED(DELTA) || ENABLED(SCARA)
  6197. calculate_delta(target);
  6198. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6199. adjust_delta(target);
  6200. #endif
  6201. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6202. #else
  6203. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6204. #endif
  6205. // As far as the parser is concerned, the position is now == target. In reality the
  6206. // motion control system might still be processing the action and the real tool position
  6207. // in any intermediate location.
  6208. set_current_to_destination();
  6209. }
  6210. #if HAS_CONTROLLERFAN
  6211. void controllerFan() {
  6212. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6213. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6214. millis_t ms = millis();
  6215. if (ms >= nextMotorCheck) {
  6216. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6217. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6218. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6219. #if EXTRUDERS > 1
  6220. || E1_ENABLE_READ == E_ENABLE_ON
  6221. #if HAS_X2_ENABLE
  6222. || X2_ENABLE_READ == X_ENABLE_ON
  6223. #endif
  6224. #if EXTRUDERS > 2
  6225. || E2_ENABLE_READ == E_ENABLE_ON
  6226. #if EXTRUDERS > 3
  6227. || E3_ENABLE_READ == E_ENABLE_ON
  6228. #endif
  6229. #endif
  6230. #endif
  6231. ) {
  6232. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6233. }
  6234. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6235. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6236. // allows digital or PWM fan output to be used (see M42 handling)
  6237. digitalWrite(CONTROLLERFAN_PIN, speed);
  6238. analogWrite(CONTROLLERFAN_PIN, speed);
  6239. }
  6240. }
  6241. #endif // HAS_CONTROLLERFAN
  6242. #if ENABLED(SCARA)
  6243. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6244. // Perform forward kinematics, and place results in delta[3]
  6245. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6246. float x_sin, x_cos, y_sin, y_cos;
  6247. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6248. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6249. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6250. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6251. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6252. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6253. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6254. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6255. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6256. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6257. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6258. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6259. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6260. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6261. }
  6262. void calculate_delta(float cartesian[3]) {
  6263. //reverse kinematics.
  6264. // Perform reversed kinematics, and place results in delta[3]
  6265. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6266. float SCARA_pos[2];
  6267. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6268. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6269. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6270. #if (Linkage_1 == Linkage_2)
  6271. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6272. #else
  6273. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6274. #endif
  6275. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6276. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6277. SCARA_K2 = Linkage_2 * SCARA_S2;
  6278. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6279. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6280. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6281. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6282. delta[Z_AXIS] = cartesian[Z_AXIS];
  6283. /**
  6284. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6285. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6286. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6287. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6288. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6289. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6290. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6291. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6292. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6293. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6294. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6295. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6296. SERIAL_EOL;
  6297. */
  6298. }
  6299. #endif // SCARA
  6300. #if ENABLED(TEMP_STAT_LEDS)
  6301. static bool red_led = false;
  6302. static millis_t next_status_led_update_ms = 0;
  6303. void handle_status_leds(void) {
  6304. float max_temp = 0.0;
  6305. if (millis() > next_status_led_update_ms) {
  6306. next_status_led_update_ms += 500; // Update every 0.5s
  6307. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6308. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6309. #if HAS_TEMP_BED
  6310. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6311. #endif
  6312. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6313. if (new_led != red_led) {
  6314. red_led = new_led;
  6315. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6316. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6317. }
  6318. }
  6319. }
  6320. #endif
  6321. void enable_all_steppers() {
  6322. enable_x();
  6323. enable_y();
  6324. enable_z();
  6325. enable_e0();
  6326. enable_e1();
  6327. enable_e2();
  6328. enable_e3();
  6329. }
  6330. void disable_all_steppers() {
  6331. disable_x();
  6332. disable_y();
  6333. disable_z();
  6334. disable_e0();
  6335. disable_e1();
  6336. disable_e2();
  6337. disable_e3();
  6338. }
  6339. /**
  6340. * Standard idle routine keeps the machine alive
  6341. */
  6342. void idle(
  6343. #if ENABLED(FILAMENTCHANGEENABLE)
  6344. bool no_stepper_sleep/*=false*/
  6345. #endif
  6346. ) {
  6347. manage_heater();
  6348. manage_inactivity(
  6349. #if ENABLED(FILAMENTCHANGEENABLE)
  6350. no_stepper_sleep
  6351. #endif
  6352. );
  6353. host_keepalive();
  6354. lcd_update();
  6355. }
  6356. /**
  6357. * Manage several activities:
  6358. * - Check for Filament Runout
  6359. * - Keep the command buffer full
  6360. * - Check for maximum inactive time between commands
  6361. * - Check for maximum inactive time between stepper commands
  6362. * - Check if pin CHDK needs to go LOW
  6363. * - Check for KILL button held down
  6364. * - Check for HOME button held down
  6365. * - Check if cooling fan needs to be switched on
  6366. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6367. */
  6368. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6369. #if HAS_FILRUNOUT
  6370. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6371. filrunout();
  6372. #endif
  6373. if (commands_in_queue < BUFSIZE) get_available_commands();
  6374. millis_t ms = millis();
  6375. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6376. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6377. && !ignore_stepper_queue && !blocks_queued()) {
  6378. #if ENABLED(DISABLE_INACTIVE_X)
  6379. disable_x();
  6380. #endif
  6381. #if ENABLED(DISABLE_INACTIVE_Y)
  6382. disable_y();
  6383. #endif
  6384. #if ENABLED(DISABLE_INACTIVE_Z)
  6385. disable_z();
  6386. #endif
  6387. #if ENABLED(DISABLE_INACTIVE_E)
  6388. disable_e0();
  6389. disable_e1();
  6390. disable_e2();
  6391. disable_e3();
  6392. #endif
  6393. }
  6394. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6395. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6396. chdkActive = false;
  6397. WRITE(CHDK, LOW);
  6398. }
  6399. #endif
  6400. #if HAS_KILL
  6401. // Check if the kill button was pressed and wait just in case it was an accidental
  6402. // key kill key press
  6403. // -------------------------------------------------------------------------------
  6404. static int killCount = 0; // make the inactivity button a bit less responsive
  6405. const int KILL_DELAY = 750;
  6406. if (!READ(KILL_PIN))
  6407. killCount++;
  6408. else if (killCount > 0)
  6409. killCount--;
  6410. // Exceeded threshold and we can confirm that it was not accidental
  6411. // KILL the machine
  6412. // ----------------------------------------------------------------
  6413. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6414. #endif
  6415. #if HAS_HOME
  6416. // Check to see if we have to home, use poor man's debouncer
  6417. // ---------------------------------------------------------
  6418. static int homeDebounceCount = 0; // poor man's debouncing count
  6419. const int HOME_DEBOUNCE_DELAY = 2500;
  6420. if (!READ(HOME_PIN)) {
  6421. if (!homeDebounceCount) {
  6422. enqueue_and_echo_commands_P(PSTR("G28"));
  6423. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6424. }
  6425. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6426. homeDebounceCount++;
  6427. else
  6428. homeDebounceCount = 0;
  6429. }
  6430. #endif
  6431. #if HAS_CONTROLLERFAN
  6432. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6433. #endif
  6434. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6435. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6436. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6437. bool oldstatus;
  6438. switch (active_extruder) {
  6439. case 0:
  6440. oldstatus = E0_ENABLE_READ;
  6441. enable_e0();
  6442. break;
  6443. #if EXTRUDERS > 1
  6444. case 1:
  6445. oldstatus = E1_ENABLE_READ;
  6446. enable_e1();
  6447. break;
  6448. #if EXTRUDERS > 2
  6449. case 2:
  6450. oldstatus = E2_ENABLE_READ;
  6451. enable_e2();
  6452. break;
  6453. #if EXTRUDERS > 3
  6454. case 3:
  6455. oldstatus = E3_ENABLE_READ;
  6456. enable_e3();
  6457. break;
  6458. #endif
  6459. #endif
  6460. #endif
  6461. }
  6462. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6463. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6464. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6465. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6466. current_position[E_AXIS] = oldepos;
  6467. destination[E_AXIS] = oldedes;
  6468. plan_set_e_position(oldepos);
  6469. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6470. st_synchronize();
  6471. switch (active_extruder) {
  6472. case 0:
  6473. E0_ENABLE_WRITE(oldstatus);
  6474. break;
  6475. #if EXTRUDERS > 1
  6476. case 1:
  6477. E1_ENABLE_WRITE(oldstatus);
  6478. break;
  6479. #if EXTRUDERS > 2
  6480. case 2:
  6481. E2_ENABLE_WRITE(oldstatus);
  6482. break;
  6483. #if EXTRUDERS > 3
  6484. case 3:
  6485. E3_ENABLE_WRITE(oldstatus);
  6486. break;
  6487. #endif
  6488. #endif
  6489. #endif
  6490. }
  6491. }
  6492. #endif
  6493. #if ENABLED(DUAL_X_CARRIAGE)
  6494. // handle delayed move timeout
  6495. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6496. // travel moves have been received so enact them
  6497. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6498. set_destination_to_current();
  6499. prepare_move();
  6500. }
  6501. #endif
  6502. #if ENABLED(TEMP_STAT_LEDS)
  6503. handle_status_leds();
  6504. #endif
  6505. check_axes_activity();
  6506. }
  6507. void kill(const char* lcd_msg) {
  6508. #if ENABLED(ULTRA_LCD)
  6509. lcd_setalertstatuspgm(lcd_msg);
  6510. #else
  6511. UNUSED(lcd_msg);
  6512. #endif
  6513. cli(); // Stop interrupts
  6514. disable_all_heaters();
  6515. disable_all_steppers();
  6516. #if HAS_POWER_SWITCH
  6517. pinMode(PS_ON_PIN, INPUT);
  6518. #endif
  6519. SERIAL_ERROR_START;
  6520. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6521. // FMC small patch to update the LCD before ending
  6522. sei(); // enable interrupts
  6523. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6524. cli(); // disable interrupts
  6525. suicide();
  6526. while (1) {
  6527. #if ENABLED(USE_WATCHDOG)
  6528. watchdog_reset();
  6529. #endif
  6530. } // Wait for reset
  6531. }
  6532. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6533. void filrunout() {
  6534. if (!filrunoutEnqueued) {
  6535. filrunoutEnqueued = true;
  6536. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6537. st_synchronize();
  6538. }
  6539. }
  6540. #endif // FILAMENT_RUNOUT_SENSOR
  6541. #if ENABLED(FAST_PWM_FAN)
  6542. void setPwmFrequency(uint8_t pin, int val) {
  6543. val &= 0x07;
  6544. switch (digitalPinToTimer(pin)) {
  6545. #if defined(TCCR0A)
  6546. case TIMER0A:
  6547. case TIMER0B:
  6548. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6549. // TCCR0B |= val;
  6550. break;
  6551. #endif
  6552. #if defined(TCCR1A)
  6553. case TIMER1A:
  6554. case TIMER1B:
  6555. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6556. // TCCR1B |= val;
  6557. break;
  6558. #endif
  6559. #if defined(TCCR2)
  6560. case TIMER2:
  6561. case TIMER2:
  6562. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6563. TCCR2 |= val;
  6564. break;
  6565. #endif
  6566. #if defined(TCCR2A)
  6567. case TIMER2A:
  6568. case TIMER2B:
  6569. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6570. TCCR2B |= val;
  6571. break;
  6572. #endif
  6573. #if defined(TCCR3A)
  6574. case TIMER3A:
  6575. case TIMER3B:
  6576. case TIMER3C:
  6577. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6578. TCCR3B |= val;
  6579. break;
  6580. #endif
  6581. #if defined(TCCR4A)
  6582. case TIMER4A:
  6583. case TIMER4B:
  6584. case TIMER4C:
  6585. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6586. TCCR4B |= val;
  6587. break;
  6588. #endif
  6589. #if defined(TCCR5A)
  6590. case TIMER5A:
  6591. case TIMER5B:
  6592. case TIMER5C:
  6593. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6594. TCCR5B |= val;
  6595. break;
  6596. #endif
  6597. }
  6598. }
  6599. #endif // FAST_PWM_FAN
  6600. void Stop() {
  6601. disable_all_heaters();
  6602. if (IsRunning()) {
  6603. Running = false;
  6604. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6605. SERIAL_ERROR_START;
  6606. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6607. LCD_MESSAGEPGM(MSG_STOPPED);
  6608. }
  6609. }
  6610. /**
  6611. * Set target_extruder from the T parameter or the active_extruder
  6612. *
  6613. * Returns TRUE if the target is invalid
  6614. */
  6615. bool setTargetedHotend(int code) {
  6616. target_extruder = active_extruder;
  6617. if (code_seen('T')) {
  6618. target_extruder = code_value_short();
  6619. if (target_extruder >= EXTRUDERS) {
  6620. SERIAL_ECHO_START;
  6621. SERIAL_CHAR('M');
  6622. SERIAL_ECHO(code);
  6623. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6624. SERIAL_ECHOLN((int)target_extruder);
  6625. return true;
  6626. }
  6627. }
  6628. return false;
  6629. }
  6630. float calculate_volumetric_multiplier(float diameter) {
  6631. if (!volumetric_enabled || diameter == 0) return 1.0;
  6632. float d2 = diameter * 0.5;
  6633. return 1.0 / (M_PI * d2 * d2);
  6634. }
  6635. void calculate_volumetric_multipliers() {
  6636. for (int i = 0; i < EXTRUDERS; i++)
  6637. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6638. }