My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 182KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Display measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  185. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  186. int feedmultiply = 100; //100->1 200->2
  187. int saved_feedmultiply;
  188. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  189. bool volumetric_enabled = false;
  190. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  191. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  192. float current_position[NUM_AXIS] = { 0.0 };
  193. float home_offset[3] = { 0 };
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = { false };
  197. uint8_t active_extruder = 0;
  198. int fanSpeed = 0;
  199. bool cancel_heatup = false;
  200. const char errormagic[] PROGMEM = "Error:";
  201. const char echomagic[] PROGMEM = "echo:";
  202. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  203. static float destination[NUM_AXIS] = { 0 };
  204. static float offset[3] = { 0 };
  205. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  206. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  207. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  208. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  209. static int bufindr = 0;
  210. static int bufindw = 0;
  211. static int buflen = 0;
  212. static char serial_char;
  213. static int serial_count = 0;
  214. static boolean comment_mode = false;
  215. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  216. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  217. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  218. // Inactivity shutdown
  219. static unsigned long previous_millis_cmd = 0;
  220. static unsigned long max_inactive_time = 0;
  221. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  222. unsigned long starttime = 0; ///< Print job start time
  223. unsigned long stoptime = 0; ///< Print job stop time
  224. static uint8_t tmp_extruder;
  225. bool Stopped = false;
  226. bool CooldownNoWait = true;
  227. bool target_direction;
  228. #ifdef ENABLE_AUTO_BED_LEVELING
  229. int xy_travel_speed = XY_TRAVEL_SPEED;
  230. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  231. #endif
  232. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  233. float z_endstop_adj = 0;
  234. #endif
  235. // Extruder offsets
  236. #if EXTRUDERS > 1
  237. #ifndef EXTRUDER_OFFSET_X
  238. #define EXTRUDER_OFFSET_X { 0 }
  239. #endif
  240. #ifndef EXTRUDER_OFFSET_Y
  241. #define EXTRUDER_OFFSET_Y { 0 }
  242. #endif
  243. float extruder_offset[][EXTRUDERS] = {
  244. EXTRUDER_OFFSET_X,
  245. EXTRUDER_OFFSET_Y
  246. #ifdef DUAL_X_CARRIAGE
  247. , { 0 } // supports offsets in XYZ plane
  248. #endif
  249. };
  250. #endif
  251. #ifdef SERVO_ENDSTOPS
  252. int servo_endstops[] = SERVO_ENDSTOPS;
  253. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  254. #endif
  255. #ifdef BARICUDA
  256. int ValvePressure = 0;
  257. int EtoPPressure = 0;
  258. #endif
  259. #ifdef FWRETRACT
  260. bool autoretract_enabled = false;
  261. bool retracted[EXTRUDERS] = { false };
  262. bool retracted_swap[EXTRUDERS] = { false };
  263. float retract_length = RETRACT_LENGTH;
  264. float retract_length_swap = RETRACT_LENGTH_SWAP;
  265. float retract_feedrate = RETRACT_FEEDRATE;
  266. float retract_zlift = RETRACT_ZLIFT;
  267. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  268. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  269. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  270. #endif // FWRETRACT
  271. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  272. bool powersupply =
  273. #ifdef PS_DEFAULT_OFF
  274. false
  275. #else
  276. true
  277. #endif
  278. ;
  279. #endif
  280. #ifdef DELTA
  281. float delta[3] = { 0 };
  282. #define SIN_60 0.8660254037844386
  283. #define COS_60 0.5
  284. float endstop_adj[3] = { 0 };
  285. // these are the default values, can be overriden with M665
  286. float delta_radius = DELTA_RADIUS;
  287. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  288. float delta_tower1_y = -COS_60 * delta_radius;
  289. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  290. float delta_tower2_y = -COS_60 * delta_radius;
  291. float delta_tower3_x = 0; // back middle tower
  292. float delta_tower3_y = delta_radius;
  293. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  294. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  295. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  296. #ifdef ENABLE_AUTO_BED_LEVELING
  297. int delta_grid_spacing[2] = { 0, 0 };
  298. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  299. #endif
  300. #else
  301. static bool home_all_axis = true;
  302. #endif
  303. #ifdef SCARA
  304. static float delta[3] = { 0 };
  305. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  306. #endif
  307. #ifdef FILAMENT_SENSOR
  308. //Variables for Filament Sensor input
  309. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  310. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  311. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  312. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  313. int delay_index1 = 0; //index into ring buffer
  314. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  315. float delay_dist = 0; //delay distance counter
  316. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  317. #endif
  318. #ifdef FILAMENT_RUNOUT_SENSOR
  319. static bool filrunoutEnqued = false;
  320. #endif
  321. #ifdef SDSUPPORT
  322. static bool fromsd[BUFSIZE];
  323. #endif
  324. #if NUM_SERVOS > 0
  325. Servo servos[NUM_SERVOS];
  326. #endif
  327. #ifdef CHDK
  328. unsigned long chdkHigh = 0;
  329. boolean chdkActive = false;
  330. #endif
  331. //===========================================================================
  332. //================================ Functions ================================
  333. //===========================================================================
  334. void get_arc_coordinates();
  335. bool setTargetedHotend(int code);
  336. void serial_echopair_P(const char *s_P, float v)
  337. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  338. void serial_echopair_P(const char *s_P, double v)
  339. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  340. void serial_echopair_P(const char *s_P, unsigned long v)
  341. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  342. #ifdef SDSUPPORT
  343. #include "SdFatUtil.h"
  344. int freeMemory() { return SdFatUtil::FreeRam(); }
  345. #else
  346. extern "C" {
  347. extern unsigned int __bss_end;
  348. extern unsigned int __heap_start;
  349. extern void *__brkval;
  350. int freeMemory() {
  351. int free_memory;
  352. if ((int)__brkval == 0)
  353. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  354. else
  355. free_memory = ((int)&free_memory) - ((int)__brkval);
  356. return free_memory;
  357. }
  358. }
  359. #endif //!SDSUPPORT
  360. //Injects the next command from the pending sequence of commands, when possible
  361. //Return false if and only if no command was pending
  362. static bool drain_queued_commands_P() {
  363. if (!queued_commands_P) return false;
  364. // Get the next 30 chars from the sequence of gcodes to run
  365. char cmd[30];
  366. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  367. cmd[sizeof(cmd) - 1] = '\0';
  368. // Look for the end of line, or the end of sequence
  369. size_t i = 0;
  370. char c;
  371. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  372. cmd[i] = '\0';
  373. if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
  374. if (c)
  375. queued_commands_P += i + 1; // move to next command
  376. else
  377. queued_commands_P = NULL; // will have no more commands in the sequence
  378. }
  379. return true;
  380. }
  381. //Record one or many commands to run from program memory.
  382. //Aborts the current queue, if any.
  383. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  384. void enquecommands_P(const char* pgcode) {
  385. queued_commands_P = pgcode;
  386. drain_queued_commands_P(); // first command executed asap (when possible)
  387. }
  388. //adds a single command to the main command buffer, from RAM
  389. //that is really done in a non-safe way.
  390. //needs overworking someday
  391. //Returns false if it failed to do so
  392. bool enquecommand(const char *cmd)
  393. {
  394. if(*cmd==';')
  395. return false;
  396. if(buflen >= BUFSIZE)
  397. return false;
  398. //this is dangerous if a mixing of serial and this happens
  399. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  400. SERIAL_ECHO_START;
  401. SERIAL_ECHOPGM(MSG_Enqueing);
  402. SERIAL_ECHO(cmdbuffer[bufindw]);
  403. SERIAL_ECHOLNPGM("\"");
  404. bufindw= (bufindw + 1)%BUFSIZE;
  405. buflen += 1;
  406. return true;
  407. }
  408. void setup_killpin()
  409. {
  410. #if HAS_KILL
  411. SET_INPUT(KILL_PIN);
  412. WRITE(KILL_PIN, HIGH);
  413. #endif
  414. }
  415. void setup_filrunoutpin()
  416. {
  417. #if HAS_FILRUNOUT
  418. pinMode(FILRUNOUT_PIN, INPUT);
  419. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  420. WRITE(FILLRUNOUT_PIN, HIGH);
  421. #endif
  422. #endif
  423. }
  424. // Set home pin
  425. void setup_homepin(void)
  426. {
  427. #if HAS_HOME
  428. SET_INPUT(HOME_PIN);
  429. WRITE(HOME_PIN, HIGH);
  430. #endif
  431. }
  432. void setup_photpin()
  433. {
  434. #if HAS_PHOTOGRAPH
  435. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  436. #endif
  437. }
  438. void setup_powerhold()
  439. {
  440. #if HAS_SUICIDE
  441. OUT_WRITE(SUICIDE_PIN, HIGH);
  442. #endif
  443. #if HAS_POWER_SWITCH
  444. #ifdef PS_DEFAULT_OFF
  445. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if HAS_SUICIDE
  454. OUT_WRITE(SUICIDE_PIN, LOW);
  455. #endif
  456. }
  457. void servo_init()
  458. {
  459. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  460. servos[0].attach(SERVO0_PIN);
  461. #endif
  462. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  463. servos[1].attach(SERVO1_PIN);
  464. #endif
  465. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  466. servos[2].attach(SERVO2_PIN);
  467. #endif
  468. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  469. servos[3].attach(SERVO3_PIN);
  470. #endif
  471. // Set position of Servo Endstops that are defined
  472. #ifdef SERVO_ENDSTOPS
  473. for (int i = 0; i < 3; i++)
  474. if (servo_endstops[i] >= 0)
  475. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  476. #endif
  477. #if SERVO_LEVELING
  478. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  479. servos[servo_endstops[Z_AXIS]].detach();
  480. #endif
  481. }
  482. void setup()
  483. {
  484. setup_killpin();
  485. setup_filrunoutpin();
  486. setup_powerhold();
  487. MYSERIAL.begin(BAUDRATE);
  488. SERIAL_PROTOCOLLNPGM("start");
  489. SERIAL_ECHO_START;
  490. // Check startup - does nothing if bootloader sets MCUSR to 0
  491. byte mcu = MCUSR;
  492. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  493. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  494. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  495. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  496. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  497. MCUSR=0;
  498. SERIAL_ECHOPGM(MSG_MARLIN);
  499. SERIAL_ECHOLNPGM(STRING_VERSION);
  500. #ifdef STRING_VERSION_CONFIG_H
  501. #ifdef STRING_CONFIG_H_AUTHOR
  502. SERIAL_ECHO_START;
  503. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  504. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  505. SERIAL_ECHOPGM(MSG_AUTHOR);
  506. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  507. SERIAL_ECHOPGM("Compiled: ");
  508. SERIAL_ECHOLNPGM(__DATE__);
  509. #endif // STRING_CONFIG_H_AUTHOR
  510. #endif // STRING_VERSION_CONFIG_H
  511. SERIAL_ECHO_START;
  512. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  513. SERIAL_ECHO(freeMemory());
  514. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  515. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  516. #ifdef SDSUPPORT
  517. for(int8_t i = 0; i < BUFSIZE; i++)
  518. {
  519. fromsd[i] = false;
  520. }
  521. #endif //!SDSUPPORT
  522. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  523. Config_RetrieveSettings();
  524. tp_init(); // Initialize temperature loop
  525. plan_init(); // Initialize planner;
  526. watchdog_init();
  527. st_init(); // Initialize stepper, this enables interrupts!
  528. setup_photpin();
  529. servo_init();
  530. lcd_init();
  531. _delay_ms(1000); // wait 1sec to display the splash screen
  532. #if HAS_CONTROLLERFAN
  533. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  534. #endif
  535. #ifdef DIGIPOT_I2C
  536. digipot_i2c_init();
  537. #endif
  538. #ifdef Z_PROBE_SLED
  539. pinMode(SERVO0_PIN, OUTPUT);
  540. digitalWrite(SERVO0_PIN, LOW); // turn it off
  541. #endif // Z_PROBE_SLED
  542. setup_homepin();
  543. #ifdef STAT_LED_RED
  544. pinMode(STAT_LED_RED, OUTPUT);
  545. digitalWrite(STAT_LED_RED, LOW); // turn it off
  546. #endif
  547. #ifdef STAT_LED_BLUE
  548. pinMode(STAT_LED_BLUE, OUTPUT);
  549. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  550. #endif
  551. }
  552. void loop() {
  553. if (buflen < BUFSIZE - 1) get_command();
  554. #ifdef SDSUPPORT
  555. card.checkautostart(false);
  556. #endif
  557. if (buflen) {
  558. #ifdef SDSUPPORT
  559. if (card.saving) {
  560. if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
  561. card.write_command(cmdbuffer[bufindr]);
  562. if (card.logging)
  563. process_commands();
  564. else
  565. SERIAL_PROTOCOLLNPGM(MSG_OK);
  566. }
  567. else {
  568. card.closefile();
  569. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  570. }
  571. }
  572. else
  573. process_commands();
  574. #else
  575. process_commands();
  576. #endif // SDSUPPORT
  577. buflen--;
  578. bufindr = (bufindr + 1) % BUFSIZE;
  579. }
  580. // Check heater every n milliseconds
  581. manage_heater();
  582. manage_inactivity();
  583. checkHitEndstops();
  584. lcd_update();
  585. }
  586. void get_command()
  587. {
  588. if (drain_queued_commands_P()) // priority is given to non-serial commands
  589. return;
  590. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  591. serial_char = MYSERIAL.read();
  592. if(serial_char == '\n' ||
  593. serial_char == '\r' ||
  594. serial_count >= (MAX_CMD_SIZE - 1) )
  595. {
  596. // end of line == end of comment
  597. comment_mode = false;
  598. if(!serial_count) {
  599. // short cut for empty lines
  600. return;
  601. }
  602. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  603. #ifdef SDSUPPORT
  604. fromsd[bufindw] = false;
  605. #endif //!SDSUPPORT
  606. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  607. {
  608. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  609. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  610. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  611. SERIAL_ERROR_START;
  612. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  613. SERIAL_ERRORLN(gcode_LastN);
  614. //Serial.println(gcode_N);
  615. FlushSerialRequestResend();
  616. serial_count = 0;
  617. return;
  618. }
  619. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  620. {
  621. byte checksum = 0;
  622. byte count = 0;
  623. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  624. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  625. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  626. SERIAL_ERROR_START;
  627. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  628. SERIAL_ERRORLN(gcode_LastN);
  629. FlushSerialRequestResend();
  630. serial_count = 0;
  631. return;
  632. }
  633. //if no errors, continue parsing
  634. }
  635. else
  636. {
  637. SERIAL_ERROR_START;
  638. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  639. SERIAL_ERRORLN(gcode_LastN);
  640. FlushSerialRequestResend();
  641. serial_count = 0;
  642. return;
  643. }
  644. gcode_LastN = gcode_N;
  645. //if no errors, continue parsing
  646. }
  647. else // if we don't receive 'N' but still see '*'
  648. {
  649. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  650. {
  651. SERIAL_ERROR_START;
  652. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  653. SERIAL_ERRORLN(gcode_LastN);
  654. serial_count = 0;
  655. return;
  656. }
  657. }
  658. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  659. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  660. switch(strtol(strchr_pointer + 1, NULL, 10)){
  661. case 0:
  662. case 1:
  663. case 2:
  664. case 3:
  665. if (Stopped == true) {
  666. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  667. LCD_MESSAGEPGM(MSG_STOPPED);
  668. }
  669. break;
  670. default:
  671. break;
  672. }
  673. }
  674. //If command was e-stop process now
  675. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  676. kill();
  677. bufindw = (bufindw + 1)%BUFSIZE;
  678. buflen += 1;
  679. serial_count = 0; //clear buffer
  680. }
  681. else if(serial_char == '\\') { //Handle escapes
  682. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  683. // if we have one more character, copy it over
  684. serial_char = MYSERIAL.read();
  685. cmdbuffer[bufindw][serial_count++] = serial_char;
  686. }
  687. //otherwise do nothing
  688. }
  689. else { // its not a newline, carriage return or escape char
  690. if(serial_char == ';') comment_mode = true;
  691. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  692. }
  693. }
  694. #ifdef SDSUPPORT
  695. if(!card.sdprinting || serial_count!=0){
  696. return;
  697. }
  698. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  699. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  700. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  701. static bool stop_buffering=false;
  702. if(buflen==0) stop_buffering=false;
  703. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  704. int16_t n=card.get();
  705. serial_char = (char)n;
  706. if(serial_char == '\n' ||
  707. serial_char == '\r' ||
  708. (serial_char == '#' && comment_mode == false) ||
  709. (serial_char == ':' && comment_mode == false) ||
  710. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  711. {
  712. if(card.eof()){
  713. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  714. stoptime=millis();
  715. char time[30];
  716. unsigned long t=(stoptime-starttime)/1000;
  717. int hours, minutes;
  718. minutes=(t/60)%60;
  719. hours=t/60/60;
  720. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  721. SERIAL_ECHO_START;
  722. SERIAL_ECHOLN(time);
  723. lcd_setstatus(time, true);
  724. card.printingHasFinished();
  725. card.checkautostart(true);
  726. }
  727. if(serial_char=='#')
  728. stop_buffering=true;
  729. if(!serial_count)
  730. {
  731. comment_mode = false; //for new command
  732. return; //if empty line
  733. }
  734. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  735. // if(!comment_mode){
  736. fromsd[bufindw] = true;
  737. buflen += 1;
  738. bufindw = (bufindw + 1)%BUFSIZE;
  739. // }
  740. comment_mode = false; //for new command
  741. serial_count = 0; //clear buffer
  742. }
  743. else
  744. {
  745. if(serial_char == ';') comment_mode = true;
  746. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  747. }
  748. }
  749. #endif //SDSUPPORT
  750. }
  751. float code_value() {
  752. float ret;
  753. char *e = strchr(strchr_pointer, 'E');
  754. if (e) {
  755. *e = 0;
  756. ret = strtod(strchr_pointer+1, NULL);
  757. *e = 'E';
  758. }
  759. else
  760. ret = strtod(strchr_pointer+1, NULL);
  761. return ret;
  762. }
  763. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  764. bool code_seen(char code) {
  765. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  766. return (strchr_pointer != NULL); //Return True if a character was found
  767. }
  768. #define DEFINE_PGM_READ_ANY(type, reader) \
  769. static inline type pgm_read_any(const type *p) \
  770. { return pgm_read_##reader##_near(p); }
  771. DEFINE_PGM_READ_ANY(float, float);
  772. DEFINE_PGM_READ_ANY(signed char, byte);
  773. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  774. static const PROGMEM type array##_P[3] = \
  775. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  776. static inline type array(int axis) \
  777. { return pgm_read_any(&array##_P[axis]); }
  778. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  779. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  780. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  781. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  782. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  783. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  784. #ifdef DUAL_X_CARRIAGE
  785. #define DXC_FULL_CONTROL_MODE 0
  786. #define DXC_AUTO_PARK_MODE 1
  787. #define DXC_DUPLICATION_MODE 2
  788. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  789. static float x_home_pos(int extruder) {
  790. if (extruder == 0)
  791. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  792. else
  793. // In dual carriage mode the extruder offset provides an override of the
  794. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  795. // This allow soft recalibration of the second extruder offset position without firmware reflash
  796. // (through the M218 command).
  797. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  798. }
  799. static int x_home_dir(int extruder) {
  800. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  801. }
  802. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  803. static bool active_extruder_parked = false; // used in mode 1 & 2
  804. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  805. static unsigned long delayed_move_time = 0; // used in mode 1
  806. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  807. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  808. bool extruder_duplication_enabled = false; // used in mode 2
  809. #endif //DUAL_X_CARRIAGE
  810. static void axis_is_at_home(int axis) {
  811. #ifdef DUAL_X_CARRIAGE
  812. if (axis == X_AXIS) {
  813. if (active_extruder != 0) {
  814. current_position[X_AXIS] = x_home_pos(active_extruder);
  815. min_pos[X_AXIS] = X2_MIN_POS;
  816. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  817. return;
  818. }
  819. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  820. float xoff = home_offset[X_AXIS];
  821. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  822. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  823. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  824. return;
  825. }
  826. }
  827. #endif
  828. #ifdef SCARA
  829. float homeposition[3];
  830. if (axis < 2) {
  831. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  832. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  833. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  834. // Works out real Homeposition angles using inverse kinematics,
  835. // and calculates homing offset using forward kinematics
  836. calculate_delta(homeposition);
  837. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  838. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  839. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  840. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  841. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  842. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  843. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  844. calculate_SCARA_forward_Transform(delta);
  845. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  846. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  847. current_position[axis] = delta[axis];
  848. // SCARA home positions are based on configuration since the actual limits are determined by the
  849. // inverse kinematic transform.
  850. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  851. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  852. }
  853. else {
  854. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  855. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  856. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  857. }
  858. #else
  859. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  860. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  861. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  862. #endif
  863. }
  864. inline void refresh_cmd_timeout() { previous_millis_cmd = millis(); }
  865. /**
  866. * Some planner shorthand inline functions
  867. */
  868. inline void line_to_current_position() {
  869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  870. }
  871. inline void line_to_z(float zPosition) {
  872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  873. }
  874. inline void line_to_destination() {
  875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  876. }
  877. inline void sync_plan_position() {
  878. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  879. }
  880. #if defined(DELTA) || defined(SCARA)
  881. inline void sync_plan_position_delta() {
  882. calculate_delta(current_position);
  883. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  884. }
  885. #endif
  886. #ifdef ENABLE_AUTO_BED_LEVELING
  887. #ifdef DELTA
  888. /**
  889. * Calculate delta, start a line, and set current_position to destination
  890. */
  891. void prepare_move_raw() {
  892. refresh_cmd_timeout();
  893. calculate_delta(destination);
  894. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  895. for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
  896. }
  897. #endif
  898. #ifdef AUTO_BED_LEVELING_GRID
  899. #ifndef DELTA
  900. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  901. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  902. planeNormal.debug("planeNormal");
  903. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  904. //bedLevel.debug("bedLevel");
  905. //plan_bed_level_matrix.debug("bed level before");
  906. //vector_3 uncorrected_position = plan_get_position_mm();
  907. //uncorrected_position.debug("position before");
  908. vector_3 corrected_position = plan_get_position();
  909. //corrected_position.debug("position after");
  910. current_position[X_AXIS] = corrected_position.x;
  911. current_position[Y_AXIS] = corrected_position.y;
  912. current_position[Z_AXIS] = corrected_position.z;
  913. sync_plan_position();
  914. }
  915. #endif // !DELTA
  916. #else // !AUTO_BED_LEVELING_GRID
  917. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  918. plan_bed_level_matrix.set_to_identity();
  919. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  920. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  921. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  922. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  923. if (planeNormal.z < 0) {
  924. planeNormal.x = -planeNormal.x;
  925. planeNormal.y = -planeNormal.y;
  926. planeNormal.z = -planeNormal.z;
  927. }
  928. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  929. vector_3 corrected_position = plan_get_position();
  930. current_position[X_AXIS] = corrected_position.x;
  931. current_position[Y_AXIS] = corrected_position.y;
  932. current_position[Z_AXIS] = corrected_position.z;
  933. sync_plan_position();
  934. }
  935. #endif // !AUTO_BED_LEVELING_GRID
  936. static void run_z_probe() {
  937. #ifdef DELTA
  938. float start_z = current_position[Z_AXIS];
  939. long start_steps = st_get_position(Z_AXIS);
  940. // move down slowly until you find the bed
  941. feedrate = homing_feedrate[Z_AXIS] / 4;
  942. destination[Z_AXIS] = -10;
  943. prepare_move_raw();
  944. st_synchronize();
  945. endstops_hit_on_purpose(); // clear endstop hit flags
  946. // we have to let the planner know where we are right now as it is not where we said to go.
  947. long stop_steps = st_get_position(Z_AXIS);
  948. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  949. current_position[Z_AXIS] = mm;
  950. sync_plan_position_delta();
  951. #else // !DELTA
  952. plan_bed_level_matrix.set_to_identity();
  953. feedrate = homing_feedrate[Z_AXIS];
  954. // move down until you find the bed
  955. float zPosition = -10;
  956. line_to_z(zPosition);
  957. st_synchronize();
  958. // we have to let the planner know where we are right now as it is not where we said to go.
  959. zPosition = st_get_position_mm(Z_AXIS);
  960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  961. // move up the retract distance
  962. zPosition += home_bump_mm(Z_AXIS);
  963. line_to_z(zPosition);
  964. st_synchronize();
  965. endstops_hit_on_purpose(); // clear endstop hit flags
  966. // move back down slowly to find bed
  967. if (homing_bump_divisor[Z_AXIS] >= 1)
  968. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  969. else {
  970. feedrate = homing_feedrate[Z_AXIS] / 10;
  971. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  972. }
  973. zPosition -= home_bump_mm(Z_AXIS) * 2;
  974. line_to_z(zPosition);
  975. st_synchronize();
  976. endstops_hit_on_purpose(); // clear endstop hit flags
  977. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  978. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  979. sync_plan_position();
  980. #endif // !DELTA
  981. }
  982. /**
  983. *
  984. */
  985. static void do_blocking_move_to(float x, float y, float z) {
  986. float oldFeedRate = feedrate;
  987. #ifdef DELTA
  988. feedrate = XY_TRAVEL_SPEED;
  989. destination[X_AXIS] = x;
  990. destination[Y_AXIS] = y;
  991. destination[Z_AXIS] = z;
  992. prepare_move_raw();
  993. st_synchronize();
  994. #else
  995. feedrate = homing_feedrate[Z_AXIS];
  996. current_position[Z_AXIS] = z;
  997. line_to_current_position();
  998. st_synchronize();
  999. feedrate = xy_travel_speed;
  1000. current_position[X_AXIS] = x;
  1001. current_position[Y_AXIS] = y;
  1002. line_to_current_position();
  1003. st_synchronize();
  1004. #endif
  1005. feedrate = oldFeedRate;
  1006. }
  1007. static void setup_for_endstop_move() {
  1008. saved_feedrate = feedrate;
  1009. saved_feedmultiply = feedmultiply;
  1010. feedmultiply = 100;
  1011. refresh_cmd_timeout();
  1012. enable_endstops(true);
  1013. }
  1014. static void clean_up_after_endstop_move() {
  1015. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1016. enable_endstops(false);
  1017. #endif
  1018. feedrate = saved_feedrate;
  1019. feedmultiply = saved_feedmultiply;
  1020. refresh_cmd_timeout();
  1021. }
  1022. static void deploy_z_probe() {
  1023. #ifdef SERVO_ENDSTOPS
  1024. // Engage Z Servo endstop if enabled
  1025. if (servo_endstops[Z_AXIS] >= 0) {
  1026. #if SERVO_LEVELING
  1027. servos[servo_endstops[Z_AXIS]].attach(0);
  1028. #endif
  1029. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1030. #if SERVO_LEVELING
  1031. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1032. servos[servo_endstops[Z_AXIS]].detach();
  1033. #endif
  1034. }
  1035. #elif defined(Z_PROBE_ALLEN_KEY)
  1036. feedrate = homing_feedrate[X_AXIS];
  1037. // Move to the start position to initiate deployment
  1038. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1039. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1040. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1041. prepare_move_raw();
  1042. // Home X to touch the belt
  1043. feedrate = homing_feedrate[X_AXIS]/10;
  1044. destination[X_AXIS] = 0;
  1045. prepare_move_raw();
  1046. // Home Y for safety
  1047. feedrate = homing_feedrate[X_AXIS]/2;
  1048. destination[Y_AXIS] = 0;
  1049. prepare_move_raw();
  1050. st_synchronize();
  1051. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1052. if (z_min_endstop) {
  1053. if (!Stopped) {
  1054. SERIAL_ERROR_START;
  1055. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1056. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1057. }
  1058. Stop();
  1059. }
  1060. #endif // Z_PROBE_ALLEN_KEY
  1061. }
  1062. static void stow_z_probe() {
  1063. #ifdef SERVO_ENDSTOPS
  1064. // Retract Z Servo endstop if enabled
  1065. if (servo_endstops[Z_AXIS] >= 0) {
  1066. #if Z_RAISE_AFTER_PROBING > 0
  1067. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1068. st_synchronize();
  1069. #endif
  1070. #if SERVO_LEVELING
  1071. servos[servo_endstops[Z_AXIS]].attach(0);
  1072. #endif
  1073. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1074. #if SERVO_LEVELING
  1075. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1076. servos[servo_endstops[Z_AXIS]].detach();
  1077. #endif
  1078. }
  1079. #elif defined(Z_PROBE_ALLEN_KEY)
  1080. // Move up for safety
  1081. feedrate = homing_feedrate[X_AXIS];
  1082. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1083. prepare_move_raw();
  1084. // Move to the start position to initiate retraction
  1085. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1086. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1087. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1088. prepare_move_raw();
  1089. // Move the nozzle down to push the probe into retracted position
  1090. feedrate = homing_feedrate[Z_AXIS]/10;
  1091. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1092. prepare_move_raw();
  1093. // Move up for safety
  1094. feedrate = homing_feedrate[Z_AXIS]/2;
  1095. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1096. prepare_move_raw();
  1097. // Home XY for safety
  1098. feedrate = homing_feedrate[X_AXIS]/2;
  1099. destination[X_AXIS] = 0;
  1100. destination[Y_AXIS] = 0;
  1101. prepare_move_raw();
  1102. st_synchronize();
  1103. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1104. if (!z_min_endstop) {
  1105. if (!Stopped) {
  1106. SERIAL_ERROR_START;
  1107. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1108. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1109. }
  1110. Stop();
  1111. }
  1112. #endif
  1113. }
  1114. enum ProbeAction {
  1115. ProbeStay = 0,
  1116. ProbeEngage = BIT(0),
  1117. ProbeRetract = BIT(1),
  1118. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1119. };
  1120. // Probe bed height at position (x,y), returns the measured z value
  1121. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1122. // move to right place
  1123. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1124. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1125. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1126. if (retract_action & ProbeEngage) deploy_z_probe();
  1127. #endif
  1128. run_z_probe();
  1129. float measured_z = current_position[Z_AXIS];
  1130. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1131. if (retract_action == ProbeStay) {
  1132. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1133. st_synchronize();
  1134. }
  1135. #endif
  1136. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1137. if (retract_action & ProbeRetract) stow_z_probe();
  1138. #endif
  1139. if (verbose_level > 2) {
  1140. SERIAL_PROTOCOLPGM(MSG_BED);
  1141. SERIAL_PROTOCOLPGM(" X: ");
  1142. SERIAL_PROTOCOL_F(x, 3);
  1143. SERIAL_PROTOCOLPGM(" Y: ");
  1144. SERIAL_PROTOCOL_F(y, 3);
  1145. SERIAL_PROTOCOLPGM(" Z: ");
  1146. SERIAL_PROTOCOL_F(measured_z, 3);
  1147. SERIAL_EOL;
  1148. }
  1149. return measured_z;
  1150. }
  1151. #ifdef DELTA
  1152. /**
  1153. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1154. */
  1155. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1156. if (bed_level[x][y] != 0.0) {
  1157. return; // Don't overwrite good values.
  1158. }
  1159. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1160. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1161. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1162. float median = c; // Median is robust (ignores outliers).
  1163. if (a < b) {
  1164. if (b < c) median = b;
  1165. if (c < a) median = a;
  1166. } else { // b <= a
  1167. if (c < b) median = b;
  1168. if (a < c) median = a;
  1169. }
  1170. bed_level[x][y] = median;
  1171. }
  1172. // Fill in the unprobed points (corners of circular print surface)
  1173. // using linear extrapolation, away from the center.
  1174. static void extrapolate_unprobed_bed_level() {
  1175. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1176. for (int y = 0; y <= half; y++) {
  1177. for (int x = 0; x <= half; x++) {
  1178. if (x + y < 3) continue;
  1179. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1180. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1181. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1182. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1183. }
  1184. }
  1185. }
  1186. // Print calibration results for plotting or manual frame adjustment.
  1187. static void print_bed_level() {
  1188. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1189. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1190. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1191. SERIAL_PROTOCOLPGM(" ");
  1192. }
  1193. SERIAL_ECHOLN("");
  1194. }
  1195. }
  1196. // Reset calibration results to zero.
  1197. void reset_bed_level() {
  1198. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1199. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1200. bed_level[x][y] = 0.0;
  1201. }
  1202. }
  1203. }
  1204. #endif // DELTA
  1205. #endif // ENABLE_AUTO_BED_LEVELING
  1206. /**
  1207. * Home an individual axis
  1208. */
  1209. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1210. static void homeaxis(int axis) {
  1211. #define HOMEAXIS_DO(LETTER) \
  1212. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1213. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1214. int axis_home_dir;
  1215. #ifdef DUAL_X_CARRIAGE
  1216. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1217. #else
  1218. axis_home_dir = home_dir(axis);
  1219. #endif
  1220. // Set the axis position as setup for the move
  1221. current_position[axis] = 0;
  1222. sync_plan_position();
  1223. // Engage Servo endstop if enabled
  1224. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1225. #if SERVO_LEVELING
  1226. if (axis == Z_AXIS) deploy_z_probe(); else
  1227. #endif
  1228. {
  1229. if (servo_endstops[axis] > -1)
  1230. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1231. }
  1232. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1233. #ifdef Z_DUAL_ENDSTOPS
  1234. if (axis == Z_AXIS) In_Homing_Process(true);
  1235. #endif
  1236. // Move towards the endstop until an endstop is triggered
  1237. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1238. feedrate = homing_feedrate[axis];
  1239. line_to_destination();
  1240. st_synchronize();
  1241. // Set the axis position as setup for the move
  1242. current_position[axis] = 0;
  1243. sync_plan_position();
  1244. // Move away from the endstop by the axis HOME_BUMP_MM
  1245. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1246. line_to_destination();
  1247. st_synchronize();
  1248. // Slow down the feedrate for the next move
  1249. if (homing_bump_divisor[axis] >= 1)
  1250. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1251. else {
  1252. feedrate = homing_feedrate[axis] / 10;
  1253. SERIAL_ECHOLNPGM("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1254. }
  1255. // Move slowly towards the endstop until triggered
  1256. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1257. line_to_destination();
  1258. st_synchronize();
  1259. #ifdef Z_DUAL_ENDSTOPS
  1260. if (axis == Z_AXIS) {
  1261. float adj = fabs(z_endstop_adj);
  1262. bool lockZ1;
  1263. if (axis_home_dir > 0) {
  1264. adj = -adj;
  1265. lockZ1 = (z_endstop_adj > 0);
  1266. }
  1267. else
  1268. lockZ1 = (z_endstop_adj < 0);
  1269. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1270. sync_plan_position();
  1271. // Move to the adjusted endstop height
  1272. feedrate = homing_feedrate[axis];
  1273. destination[Z_AXIS] = adj;
  1274. line_to_destination();
  1275. st_synchronize();
  1276. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1277. In_Homing_Process(false);
  1278. } // Z_AXIS
  1279. #endif
  1280. #ifdef DELTA
  1281. // retrace by the amount specified in endstop_adj
  1282. if (endstop_adj[axis] * axis_home_dir < 0) {
  1283. sync_plan_position();
  1284. destination[axis] = endstop_adj[axis];
  1285. line_to_destination();
  1286. st_synchronize();
  1287. }
  1288. #endif
  1289. // Set the axis position to its home position (plus home offsets)
  1290. axis_is_at_home(axis);
  1291. destination[axis] = current_position[axis];
  1292. feedrate = 0.0;
  1293. endstops_hit_on_purpose(); // clear endstop hit flags
  1294. axis_known_position[axis] = true;
  1295. // Retract Servo endstop if enabled
  1296. #ifdef SERVO_ENDSTOPS
  1297. if (servo_endstops[axis] > -1)
  1298. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1299. #endif
  1300. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1301. if (axis == Z_AXIS) stow_z_probe();
  1302. #endif
  1303. }
  1304. }
  1305. #ifdef FWRETRACT
  1306. void retract(bool retracting, bool swapretract = false) {
  1307. if (retracting == retracted[active_extruder]) return;
  1308. float oldFeedrate = feedrate;
  1309. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1310. if (retracting) {
  1311. feedrate = retract_feedrate * 60;
  1312. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1313. plan_set_e_position(current_position[E_AXIS]);
  1314. prepare_move();
  1315. if (retract_zlift > 0.01) {
  1316. current_position[Z_AXIS] -= retract_zlift;
  1317. #ifdef DELTA
  1318. sync_plan_position_delta();
  1319. #else
  1320. sync_plan_position();
  1321. #endif
  1322. prepare_move();
  1323. }
  1324. }
  1325. else {
  1326. if (retract_zlift > 0.01) {
  1327. current_position[Z_AXIS] += retract_zlift;
  1328. #ifdef DELTA
  1329. sync_plan_position_delta();
  1330. #else
  1331. sync_plan_position();
  1332. #endif
  1333. //prepare_move();
  1334. }
  1335. feedrate = retract_recover_feedrate * 60;
  1336. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1337. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1338. plan_set_e_position(current_position[E_AXIS]);
  1339. prepare_move();
  1340. }
  1341. feedrate = oldFeedrate;
  1342. retracted[active_extruder] = retract;
  1343. } // retract()
  1344. #endif // FWRETRACT
  1345. #ifdef Z_PROBE_SLED
  1346. #ifndef SLED_DOCKING_OFFSET
  1347. #define SLED_DOCKING_OFFSET 0
  1348. #endif
  1349. //
  1350. // Method to dock/undock a sled designed by Charles Bell.
  1351. //
  1352. // dock[in] If true, move to MAX_X and engage the electromagnet
  1353. // offset[in] The additional distance to move to adjust docking location
  1354. //
  1355. static void dock_sled(bool dock, int offset=0) {
  1356. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1357. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1358. SERIAL_ECHO_START;
  1359. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1360. return;
  1361. }
  1362. if (dock) {
  1363. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
  1364. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1365. } else {
  1366. float z_loc = current_position[Z_AXIS];
  1367. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1368. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1369. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1370. }
  1371. }
  1372. #endif // Z_PROBE_SLED
  1373. /**
  1374. *
  1375. * G-Code Handler functions
  1376. *
  1377. */
  1378. /**
  1379. * G0, G1: Coordinated movement of X Y Z E axes
  1380. */
  1381. inline void gcode_G0_G1() {
  1382. if (!Stopped) {
  1383. get_coordinates(); // For X Y Z E F
  1384. #ifdef FWRETRACT
  1385. if (autoretract_enabled)
  1386. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1387. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1388. // Is this move an attempt to retract or recover?
  1389. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1390. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1391. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1392. retract(!retracted[active_extruder]);
  1393. return;
  1394. }
  1395. }
  1396. #endif //FWRETRACT
  1397. prepare_move();
  1398. //ClearToSend();
  1399. }
  1400. }
  1401. /**
  1402. * G2: Clockwise Arc
  1403. * G3: Counterclockwise Arc
  1404. */
  1405. inline void gcode_G2_G3(bool clockwise) {
  1406. if (!Stopped) {
  1407. get_arc_coordinates();
  1408. prepare_arc_move(clockwise);
  1409. }
  1410. }
  1411. /**
  1412. * G4: Dwell S<seconds> or P<milliseconds>
  1413. */
  1414. inline void gcode_G4() {
  1415. unsigned long codenum=0;
  1416. LCD_MESSAGEPGM(MSG_DWELL);
  1417. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1418. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1419. st_synchronize();
  1420. refresh_cmd_timeout();
  1421. codenum += previous_millis_cmd; // keep track of when we started waiting
  1422. while (millis() < codenum) {
  1423. manage_heater();
  1424. manage_inactivity();
  1425. lcd_update();
  1426. }
  1427. }
  1428. #ifdef FWRETRACT
  1429. /**
  1430. * G10 - Retract filament according to settings of M207
  1431. * G11 - Recover filament according to settings of M208
  1432. */
  1433. inline void gcode_G10_G11(bool doRetract=false) {
  1434. #if EXTRUDERS > 1
  1435. if (doRetract) {
  1436. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1437. }
  1438. #endif
  1439. retract(doRetract
  1440. #if EXTRUDERS > 1
  1441. , retracted_swap[active_extruder]
  1442. #endif
  1443. );
  1444. }
  1445. #endif //FWRETRACT
  1446. /**
  1447. * G28: Home all axes according to settings
  1448. *
  1449. * Parameters
  1450. *
  1451. * None Home to all axes with no parameters.
  1452. * With QUICK_HOME enabled XY will home together, then Z.
  1453. *
  1454. * Cartesian parameters
  1455. *
  1456. * X Home to the X endstop
  1457. * Y Home to the Y endstop
  1458. * Z Home to the Z endstop
  1459. *
  1460. * If numbers are included with XYZ set the position as with G92
  1461. * Currently adds the home_offset, which may be wrong and removed soon.
  1462. *
  1463. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1464. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1465. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1466. */
  1467. inline void gcode_G28() {
  1468. // For auto bed leveling, clear the level matrix
  1469. #ifdef ENABLE_AUTO_BED_LEVELING
  1470. plan_bed_level_matrix.set_to_identity();
  1471. #ifdef DELTA
  1472. reset_bed_level();
  1473. #endif
  1474. #endif
  1475. // For manual bed leveling deactivate the matrix temporarily
  1476. #ifdef MESH_BED_LEVELING
  1477. uint8_t mbl_was_active = mbl.active;
  1478. mbl.active = 0;
  1479. #endif
  1480. saved_feedrate = feedrate;
  1481. saved_feedmultiply = feedmultiply;
  1482. feedmultiply = 100;
  1483. refresh_cmd_timeout();
  1484. enable_endstops(true);
  1485. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1486. feedrate = 0.0;
  1487. #ifdef DELTA
  1488. // A delta can only safely home all axis at the same time
  1489. // all axis have to home at the same time
  1490. // Pretend the current position is 0,0,0
  1491. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1492. sync_plan_position();
  1493. // Move all carriages up together until the first endstop is hit.
  1494. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1495. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1496. line_to_destination();
  1497. st_synchronize();
  1498. endstops_hit_on_purpose(); // clear endstop hit flags
  1499. // Destination reached
  1500. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1501. // take care of back off and rehome now we are all at the top
  1502. HOMEAXIS(X);
  1503. HOMEAXIS(Y);
  1504. HOMEAXIS(Z);
  1505. sync_plan_position_delta();
  1506. #else // NOT DELTA
  1507. bool homeX = code_seen(axis_codes[X_AXIS]),
  1508. homeY = code_seen(axis_codes[Y_AXIS]),
  1509. homeZ = code_seen(axis_codes[Z_AXIS]);
  1510. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1511. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1512. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1513. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1514. // Raise Z before homing any other axes
  1515. if (home_all_axis || homeZ) {
  1516. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1517. feedrate = max_feedrate[Z_AXIS];
  1518. line_to_destination();
  1519. st_synchronize();
  1520. }
  1521. #endif
  1522. #ifdef QUICK_HOME
  1523. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1524. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1525. #ifdef DUAL_X_CARRIAGE
  1526. int x_axis_home_dir = x_home_dir(active_extruder);
  1527. extruder_duplication_enabled = false;
  1528. #else
  1529. int x_axis_home_dir = home_dir(X_AXIS);
  1530. #endif
  1531. sync_plan_position();
  1532. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1533. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1534. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1535. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1536. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1537. line_to_destination();
  1538. st_synchronize();
  1539. axis_is_at_home(X_AXIS);
  1540. axis_is_at_home(Y_AXIS);
  1541. sync_plan_position();
  1542. destination[X_AXIS] = current_position[X_AXIS];
  1543. destination[Y_AXIS] = current_position[Y_AXIS];
  1544. line_to_destination();
  1545. feedrate = 0.0;
  1546. st_synchronize();
  1547. endstops_hit_on_purpose(); // clear endstop hit flags
  1548. current_position[X_AXIS] = destination[X_AXIS];
  1549. current_position[Y_AXIS] = destination[Y_AXIS];
  1550. #ifndef SCARA
  1551. current_position[Z_AXIS] = destination[Z_AXIS];
  1552. #endif
  1553. }
  1554. #endif // QUICK_HOME
  1555. // Home X
  1556. if (home_all_axis || homeX) {
  1557. #ifdef DUAL_X_CARRIAGE
  1558. int tmp_extruder = active_extruder;
  1559. extruder_duplication_enabled = false;
  1560. active_extruder = !active_extruder;
  1561. HOMEAXIS(X);
  1562. inactive_extruder_x_pos = current_position[X_AXIS];
  1563. active_extruder = tmp_extruder;
  1564. HOMEAXIS(X);
  1565. // reset state used by the different modes
  1566. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1567. delayed_move_time = 0;
  1568. active_extruder_parked = true;
  1569. #else
  1570. HOMEAXIS(X);
  1571. #endif
  1572. }
  1573. // Home Y
  1574. if (home_all_axis || homeY) HOMEAXIS(Y);
  1575. // Set the X position, if included
  1576. // Adds the home_offset as well, which may be wrong
  1577. if (code_seen(axis_codes[X_AXIS])) {
  1578. float v = code_value();
  1579. if (v) current_position[X_AXIS] = v
  1580. #ifndef SCARA
  1581. + home_offset[X_AXIS]
  1582. #endif
  1583. ;
  1584. }
  1585. // Set the Y position, if included
  1586. // Adds the home_offset as well, which may be wrong
  1587. if (code_seen(axis_codes[Y_AXIS])) {
  1588. float v = code_value();
  1589. if (v) current_position[Y_AXIS] = v
  1590. #ifndef SCARA
  1591. + home_offset[Y_AXIS]
  1592. #endif
  1593. ;
  1594. }
  1595. // Home Z last if homing towards the bed
  1596. #if Z_HOME_DIR < 0
  1597. #ifndef Z_SAFE_HOMING
  1598. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1599. #else // Z_SAFE_HOMING
  1600. if (home_all_axis) {
  1601. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1602. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1603. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1604. feedrate = XY_TRAVEL_SPEED;
  1605. current_position[Z_AXIS] = 0;
  1606. sync_plan_position();
  1607. line_to_destination();
  1608. st_synchronize();
  1609. current_position[X_AXIS] = destination[X_AXIS];
  1610. current_position[Y_AXIS] = destination[Y_AXIS];
  1611. HOMEAXIS(Z);
  1612. }
  1613. // Let's see if X and Y are homed and probe is inside bed area.
  1614. if (homeZ) {
  1615. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1616. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1617. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1618. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1619. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1620. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1621. current_position[Z_AXIS] = 0;
  1622. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
  1623. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1624. feedrate = max_feedrate[Z_AXIS];
  1625. line_to_destination();
  1626. st_synchronize();
  1627. HOMEAXIS(Z);
  1628. }
  1629. else {
  1630. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1631. SERIAL_ECHO_START;
  1632. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1633. }
  1634. }
  1635. else {
  1636. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1637. SERIAL_ECHO_START;
  1638. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1639. }
  1640. }
  1641. #endif // Z_SAFE_HOMING
  1642. #endif // Z_HOME_DIR < 0
  1643. // Set the Z position, if included
  1644. // Adds the home_offset as well, which may be wrong
  1645. if (code_seen(axis_codes[Z_AXIS])) {
  1646. float v = code_value();
  1647. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1648. }
  1649. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1650. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1651. #endif
  1652. sync_plan_position();
  1653. #endif // else DELTA
  1654. #ifdef SCARA
  1655. sync_plan_position_delta();
  1656. #endif
  1657. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1658. enable_endstops(false);
  1659. #endif
  1660. // For manual leveling move back to 0,0
  1661. #ifdef MESH_BED_LEVELING
  1662. if (mbl_was_active) {
  1663. current_position[X_AXIS] = mbl.get_x(0);
  1664. current_position[Y_AXIS] = mbl.get_y(0);
  1665. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1666. feedrate = homing_feedrate[X_AXIS];
  1667. line_to_destination();
  1668. st_synchronize();
  1669. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1670. sync_plan_position();
  1671. mbl.active = 1;
  1672. }
  1673. #endif
  1674. feedrate = saved_feedrate;
  1675. feedmultiply = saved_feedmultiply;
  1676. refresh_cmd_timeout();
  1677. endstops_hit_on_purpose(); // clear endstop hit flags
  1678. }
  1679. #ifdef MESH_BED_LEVELING
  1680. enum MeshLevelingState { MeshReport, MeshStart, MeshNext };
  1681. /**
  1682. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1683. * mesh to compensate for variable bed height
  1684. *
  1685. * Parameters With MESH_BED_LEVELING:
  1686. *
  1687. * S0 Produce a mesh report
  1688. * S1 Start probing mesh points
  1689. * S2 Probe the next mesh point
  1690. *
  1691. */
  1692. inline void gcode_G29() {
  1693. static int probe_point = -1;
  1694. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_long() : MeshReport;
  1695. if (state < 0 || state > 2) {
  1696. SERIAL_PROTOCOLLNPGM("S out of range (0-2).");
  1697. return;
  1698. }
  1699. switch(state) {
  1700. case MeshReport:
  1701. if (mbl.active) {
  1702. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1703. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1704. SERIAL_PROTOCOLPGM(",");
  1705. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1706. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1707. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1708. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1709. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1710. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1711. SERIAL_PROTOCOLPGM(" ");
  1712. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1713. }
  1714. SERIAL_EOL;
  1715. }
  1716. }
  1717. else
  1718. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1719. break;
  1720. case MeshStart:
  1721. mbl.reset();
  1722. probe_point = 0;
  1723. enquecommands_P(PSTR("G28\nG29 S2"));
  1724. break;
  1725. case MeshNext:
  1726. if (probe_point < 0) {
  1727. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1728. return;
  1729. }
  1730. int ix, iy;
  1731. if (probe_point == 0) {
  1732. // Set Z to a positive value before recording the first Z.
  1733. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1734. sync_plan_position();
  1735. }
  1736. else {
  1737. // For others, save the Z of the previous point, then raise Z again.
  1738. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1739. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1740. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1741. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1742. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1744. st_synchronize();
  1745. }
  1746. // Is there another point to sample? Move there.
  1747. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1748. ix = probe_point % MESH_NUM_X_POINTS;
  1749. iy = probe_point / MESH_NUM_X_POINTS;
  1750. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1751. current_position[X_AXIS] = mbl.get_x(ix);
  1752. current_position[Y_AXIS] = mbl.get_y(iy);
  1753. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1754. st_synchronize();
  1755. probe_point++;
  1756. }
  1757. else {
  1758. // After recording the last point, activate the mbl and home
  1759. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1760. probe_point = -1;
  1761. mbl.active = 1;
  1762. enquecommands_P(PSTR("G28"));
  1763. }
  1764. } // switch(state)
  1765. }
  1766. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1767. /**
  1768. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1769. * Will fail if the printer has not been homed with G28.
  1770. *
  1771. * Enhanced G29 Auto Bed Leveling Probe Routine
  1772. *
  1773. * Parameters With AUTO_BED_LEVELING_GRID:
  1774. *
  1775. * P Set the size of the grid that will be probed (P x P points).
  1776. * Not supported by non-linear delta printer bed leveling.
  1777. * Example: "G29 P4"
  1778. *
  1779. * S Set the XY travel speed between probe points (in mm/min)
  1780. *
  1781. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1782. * or clean the rotation Matrix. Useful to check the topology
  1783. * after a first run of G29.
  1784. *
  1785. * V Set the verbose level (0-4). Example: "G29 V3"
  1786. *
  1787. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1788. * This is useful for manual bed leveling and finding flaws in the bed (to
  1789. * assist with part placement).
  1790. * Not supported by non-linear delta printer bed leveling.
  1791. *
  1792. * F Set the Front limit of the probing grid
  1793. * B Set the Back limit of the probing grid
  1794. * L Set the Left limit of the probing grid
  1795. * R Set the Right limit of the probing grid
  1796. *
  1797. * Global Parameters:
  1798. *
  1799. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1800. * Include "E" to engage/disengage the probe for each sample.
  1801. * There's no extra effect if you have a fixed probe.
  1802. * Usage: "G29 E" or "G29 e"
  1803. *
  1804. */
  1805. inline void gcode_G29() {
  1806. // Don't allow auto-leveling without homing first
  1807. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1808. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1809. SERIAL_ECHO_START;
  1810. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1811. return;
  1812. }
  1813. int verbose_level = code_seen('V') || code_seen('v') ? code_value_long() : 1;
  1814. if (verbose_level < 0 || verbose_level > 4) {
  1815. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1816. return;
  1817. }
  1818. bool dryrun = code_seen('D') || code_seen('d'),
  1819. engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1820. #ifdef AUTO_BED_LEVELING_GRID
  1821. #ifndef DELTA
  1822. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1823. #endif
  1824. if (verbose_level > 0) {
  1825. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1826. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1827. }
  1828. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1829. #ifndef DELTA
  1830. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1831. if (auto_bed_leveling_grid_points < 2) {
  1832. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1833. return;
  1834. }
  1835. #endif
  1836. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1837. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1838. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1839. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1840. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1841. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1842. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1843. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1844. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1845. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1846. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1847. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1848. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1849. if (left_out || right_out || front_out || back_out) {
  1850. if (left_out) {
  1851. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1852. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1853. }
  1854. if (right_out) {
  1855. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1856. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1857. }
  1858. if (front_out) {
  1859. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1860. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1861. }
  1862. if (back_out) {
  1863. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1864. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1865. }
  1866. return;
  1867. }
  1868. #endif // AUTO_BED_LEVELING_GRID
  1869. #ifdef Z_PROBE_SLED
  1870. dock_sled(false); // engage (un-dock) the probe
  1871. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1872. deploy_z_probe();
  1873. #endif
  1874. st_synchronize();
  1875. if (!dryrun) {
  1876. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1877. plan_bed_level_matrix.set_to_identity();
  1878. #ifdef DELTA
  1879. reset_bed_level();
  1880. #else //!DELTA
  1881. //vector_3 corrected_position = plan_get_position_mm();
  1882. //corrected_position.debug("position before G29");
  1883. vector_3 uncorrected_position = plan_get_position();
  1884. //uncorrected_position.debug("position during G29");
  1885. current_position[X_AXIS] = uncorrected_position.x;
  1886. current_position[Y_AXIS] = uncorrected_position.y;
  1887. current_position[Z_AXIS] = uncorrected_position.z;
  1888. sync_plan_position();
  1889. #endif // !DELTA
  1890. }
  1891. setup_for_endstop_move();
  1892. feedrate = homing_feedrate[Z_AXIS];
  1893. #ifdef AUTO_BED_LEVELING_GRID
  1894. // probe at the points of a lattice grid
  1895. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1896. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1897. #ifdef DELTA
  1898. delta_grid_spacing[0] = xGridSpacing;
  1899. delta_grid_spacing[1] = yGridSpacing;
  1900. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1901. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1902. #else // !DELTA
  1903. // solve the plane equation ax + by + d = z
  1904. // A is the matrix with rows [x y 1] for all the probed points
  1905. // B is the vector of the Z positions
  1906. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1907. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1908. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1909. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1910. eqnBVector[abl2], // "B" vector of Z points
  1911. mean = 0.0;
  1912. #endif // !DELTA
  1913. int probePointCounter = 0;
  1914. bool zig = true;
  1915. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1916. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1917. int xStart, xStop, xInc;
  1918. if (zig) {
  1919. xStart = 0;
  1920. xStop = auto_bed_leveling_grid_points;
  1921. xInc = 1;
  1922. }
  1923. else {
  1924. xStart = auto_bed_leveling_grid_points - 1;
  1925. xStop = -1;
  1926. xInc = -1;
  1927. }
  1928. #ifndef DELTA
  1929. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1930. // This gets the probe points in more readable order.
  1931. if (!do_topography_map) zig = !zig;
  1932. #endif
  1933. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1934. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1935. // raise extruder
  1936. float measured_z,
  1937. z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
  1938. #ifdef DELTA
  1939. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1940. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1941. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1942. #endif //DELTA
  1943. // Enhanced G29 - Do not retract servo between probes
  1944. ProbeAction act;
  1945. if (engage_probe_for_each_reading)
  1946. act = ProbeEngageAndRetract;
  1947. else if (yProbe == front_probe_bed_position && xCount == 0)
  1948. act = ProbeEngage;
  1949. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1950. act = ProbeRetract;
  1951. else
  1952. act = ProbeStay;
  1953. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1954. #ifndef DELTA
  1955. mean += measured_z;
  1956. eqnBVector[probePointCounter] = measured_z;
  1957. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1958. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1959. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1960. #else
  1961. bed_level[xCount][yCount] = measured_z + z_offset;
  1962. #endif
  1963. probePointCounter++;
  1964. manage_heater();
  1965. manage_inactivity();
  1966. lcd_update();
  1967. } //xProbe
  1968. } //yProbe
  1969. clean_up_after_endstop_move();
  1970. #ifdef DELTA
  1971. if (!dryrun) extrapolate_unprobed_bed_level();
  1972. print_bed_level();
  1973. #else // !DELTA
  1974. // solve lsq problem
  1975. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1976. mean /= abl2;
  1977. if (verbose_level) {
  1978. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1979. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1980. SERIAL_PROTOCOLPGM(" b: ");
  1981. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1982. SERIAL_PROTOCOLPGM(" d: ");
  1983. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1984. SERIAL_EOL;
  1985. if (verbose_level > 2) {
  1986. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1987. SERIAL_PROTOCOL_F(mean, 8);
  1988. SERIAL_EOL;
  1989. }
  1990. }
  1991. // Show the Topography map if enabled
  1992. if (do_topography_map) {
  1993. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1994. SERIAL_PROTOCOLPGM("+-----------+\n");
  1995. SERIAL_PROTOCOLPGM("|...Back....|\n");
  1996. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  1997. SERIAL_PROTOCOLPGM("|...Front...|\n");
  1998. SERIAL_PROTOCOLPGM("+-----------+\n");
  1999. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2000. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2001. int ind = yy * auto_bed_leveling_grid_points + xx;
  2002. float diff = eqnBVector[ind] - mean;
  2003. if (diff >= 0.0)
  2004. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2005. else
  2006. SERIAL_PROTOCOLPGM(" ");
  2007. SERIAL_PROTOCOL_F(diff, 5);
  2008. } // xx
  2009. SERIAL_EOL;
  2010. } // yy
  2011. SERIAL_EOL;
  2012. } //do_topography_map
  2013. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2014. free(plane_equation_coefficients);
  2015. #endif //!DELTA
  2016. #else // !AUTO_BED_LEVELING_GRID
  2017. // Actions for each probe
  2018. ProbeAction p1, p2, p3;
  2019. if (engage_probe_for_each_reading)
  2020. p1 = p2 = p3 = ProbeEngageAndRetract;
  2021. else
  2022. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2023. // Probe at 3 arbitrary points
  2024. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2025. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2026. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2027. clean_up_after_endstop_move();
  2028. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2029. #endif // !AUTO_BED_LEVELING_GRID
  2030. #ifndef DELTA
  2031. if (verbose_level > 0)
  2032. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2033. if (!dryrun) {
  2034. // Correct the Z height difference from z-probe position and hotend tip position.
  2035. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2036. // When the bed is uneven, this height must be corrected.
  2037. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2038. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2039. z_tmp = current_position[Z_AXIS],
  2040. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2041. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2042. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2043. sync_plan_position();
  2044. }
  2045. #endif // !DELTA
  2046. #ifdef Z_PROBE_SLED
  2047. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2048. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2049. stow_z_probe();
  2050. #endif
  2051. #ifdef Z_PROBE_END_SCRIPT
  2052. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2053. st_synchronize();
  2054. #endif
  2055. }
  2056. #ifndef Z_PROBE_SLED
  2057. inline void gcode_G30() {
  2058. deploy_z_probe(); // Engage Z Servo endstop if available
  2059. st_synchronize();
  2060. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2061. setup_for_endstop_move();
  2062. feedrate = homing_feedrate[Z_AXIS];
  2063. run_z_probe();
  2064. SERIAL_PROTOCOLPGM(MSG_BED);
  2065. SERIAL_PROTOCOLPGM(" X: ");
  2066. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2067. SERIAL_PROTOCOLPGM(" Y: ");
  2068. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2069. SERIAL_PROTOCOLPGM(" Z: ");
  2070. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2071. SERIAL_EOL;
  2072. clean_up_after_endstop_move();
  2073. stow_z_probe(); // Retract Z Servo endstop if available
  2074. }
  2075. #endif //!Z_PROBE_SLED
  2076. #endif //ENABLE_AUTO_BED_LEVELING
  2077. /**
  2078. * G92: Set current position to given X Y Z E
  2079. */
  2080. inline void gcode_G92() {
  2081. if (!code_seen(axis_codes[E_AXIS]))
  2082. st_synchronize();
  2083. bool didXYZ = false;
  2084. for (int i = 0; i < NUM_AXIS; i++) {
  2085. if (code_seen(axis_codes[i])) {
  2086. float v = current_position[i] = code_value();
  2087. if (i == E_AXIS)
  2088. plan_set_e_position(v);
  2089. else
  2090. didXYZ = true;
  2091. }
  2092. }
  2093. if (didXYZ) sync_plan_position();
  2094. }
  2095. #ifdef ULTIPANEL
  2096. /**
  2097. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2098. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2099. */
  2100. inline void gcode_M0_M1() {
  2101. char *src = strchr_pointer + 2;
  2102. unsigned long codenum = 0;
  2103. bool hasP = false, hasS = false;
  2104. if (code_seen('P')) {
  2105. codenum = code_value(); // milliseconds to wait
  2106. hasP = codenum > 0;
  2107. }
  2108. if (code_seen('S')) {
  2109. codenum = code_value() * 1000; // seconds to wait
  2110. hasS = codenum > 0;
  2111. }
  2112. char* starpos = strchr(src, '*');
  2113. if (starpos != NULL) *(starpos) = '\0';
  2114. while (*src == ' ') ++src;
  2115. if (!hasP && !hasS && *src != '\0')
  2116. lcd_setstatus(src, true);
  2117. else {
  2118. LCD_MESSAGEPGM(MSG_USERWAIT);
  2119. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2120. dontExpireStatus();
  2121. #endif
  2122. }
  2123. lcd_ignore_click();
  2124. st_synchronize();
  2125. refresh_cmd_timeout();
  2126. if (codenum > 0) {
  2127. codenum += previous_millis_cmd; // keep track of when we started waiting
  2128. while(millis() < codenum && !lcd_clicked()) {
  2129. manage_heater();
  2130. manage_inactivity();
  2131. lcd_update();
  2132. }
  2133. lcd_ignore_click(false);
  2134. }
  2135. else {
  2136. if (!lcd_detected()) return;
  2137. while (!lcd_clicked()) {
  2138. manage_heater();
  2139. manage_inactivity();
  2140. lcd_update();
  2141. }
  2142. }
  2143. if (IS_SD_PRINTING)
  2144. LCD_MESSAGEPGM(MSG_RESUMING);
  2145. else
  2146. LCD_MESSAGEPGM(WELCOME_MSG);
  2147. }
  2148. #endif // ULTIPANEL
  2149. /**
  2150. * M17: Enable power on all stepper motors
  2151. */
  2152. inline void gcode_M17() {
  2153. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2154. enable_x();
  2155. enable_y();
  2156. enable_z();
  2157. enable_e0();
  2158. enable_e1();
  2159. enable_e2();
  2160. enable_e3();
  2161. }
  2162. #ifdef SDSUPPORT
  2163. /**
  2164. * M20: List SD card to serial output
  2165. */
  2166. inline void gcode_M20() {
  2167. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2168. card.ls();
  2169. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2170. }
  2171. /**
  2172. * M21: Init SD Card
  2173. */
  2174. inline void gcode_M21() {
  2175. card.initsd();
  2176. }
  2177. /**
  2178. * M22: Release SD Card
  2179. */
  2180. inline void gcode_M22() {
  2181. card.release();
  2182. }
  2183. /**
  2184. * M23: Select a file
  2185. */
  2186. inline void gcode_M23() {
  2187. char* codepos = strchr_pointer + 4;
  2188. char* starpos = strchr(codepos, '*');
  2189. if (starpos) *starpos = '\0';
  2190. card.openFile(codepos, true);
  2191. }
  2192. /**
  2193. * M24: Start SD Print
  2194. */
  2195. inline void gcode_M24() {
  2196. card.startFileprint();
  2197. starttime = millis();
  2198. }
  2199. /**
  2200. * M25: Pause SD Print
  2201. */
  2202. inline void gcode_M25() {
  2203. card.pauseSDPrint();
  2204. }
  2205. /**
  2206. * M26: Set SD Card file index
  2207. */
  2208. inline void gcode_M26() {
  2209. if (card.cardOK && code_seen('S'))
  2210. card.setIndex(code_value_long());
  2211. }
  2212. /**
  2213. * M27: Get SD Card status
  2214. */
  2215. inline void gcode_M27() {
  2216. card.getStatus();
  2217. }
  2218. /**
  2219. * M28: Start SD Write
  2220. */
  2221. inline void gcode_M28() {
  2222. char* codepos = strchr_pointer + 4;
  2223. char* starpos = strchr(codepos, '*');
  2224. if (starpos) {
  2225. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2226. strchr_pointer = strchr(npos, ' ') + 1;
  2227. *(starpos) = '\0';
  2228. }
  2229. card.openFile(codepos, false);
  2230. }
  2231. /**
  2232. * M29: Stop SD Write
  2233. * Processed in write to file routine above
  2234. */
  2235. inline void gcode_M29() {
  2236. // card.saving = false;
  2237. }
  2238. /**
  2239. * M30 <filename>: Delete SD Card file
  2240. */
  2241. inline void gcode_M30() {
  2242. if (card.cardOK) {
  2243. card.closefile();
  2244. char* starpos = strchr(strchr_pointer + 4, '*');
  2245. if (starpos) {
  2246. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2247. strchr_pointer = strchr(npos, ' ') + 1;
  2248. *(starpos) = '\0';
  2249. }
  2250. card.removeFile(strchr_pointer + 4);
  2251. }
  2252. }
  2253. #endif
  2254. /**
  2255. * M31: Get the time since the start of SD Print (or last M109)
  2256. */
  2257. inline void gcode_M31() {
  2258. stoptime = millis();
  2259. unsigned long t = (stoptime - starttime) / 1000;
  2260. int min = t / 60, sec = t % 60;
  2261. char time[30];
  2262. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2263. SERIAL_ECHO_START;
  2264. SERIAL_ECHOLN(time);
  2265. lcd_setstatus(time);
  2266. autotempShutdown();
  2267. }
  2268. #ifdef SDSUPPORT
  2269. /**
  2270. * M32: Select file and start SD Print
  2271. */
  2272. inline void gcode_M32() {
  2273. if (card.sdprinting)
  2274. st_synchronize();
  2275. char* codepos = strchr_pointer + 4;
  2276. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2277. if (! namestartpos)
  2278. namestartpos = codepos; //default name position, 4 letters after the M
  2279. else
  2280. namestartpos++; //to skip the '!'
  2281. char* starpos = strchr(codepos, '*');
  2282. if (starpos) *(starpos) = '\0';
  2283. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2284. if (card.cardOK) {
  2285. card.openFile(namestartpos, true, !call_procedure);
  2286. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2287. card.setIndex(code_value_long());
  2288. card.startFileprint();
  2289. if (!call_procedure)
  2290. starttime = millis(); //procedure calls count as normal print time.
  2291. }
  2292. }
  2293. /**
  2294. * M928: Start SD Write
  2295. */
  2296. inline void gcode_M928() {
  2297. char* starpos = strchr(strchr_pointer + 5, '*');
  2298. if (starpos) {
  2299. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2300. strchr_pointer = strchr(npos, ' ') + 1;
  2301. *(starpos) = '\0';
  2302. }
  2303. card.openLogFile(strchr_pointer + 5);
  2304. }
  2305. #endif // SDSUPPORT
  2306. /**
  2307. * M42: Change pin status via GCode
  2308. */
  2309. inline void gcode_M42() {
  2310. if (code_seen('S')) {
  2311. int pin_status = code_value(),
  2312. pin_number = LED_PIN;
  2313. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2314. pin_number = code_value();
  2315. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2316. if (sensitive_pins[i] == pin_number) {
  2317. pin_number = -1;
  2318. break;
  2319. }
  2320. }
  2321. #if HAS_FAN
  2322. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2323. #endif
  2324. if (pin_number > -1) {
  2325. pinMode(pin_number, OUTPUT);
  2326. digitalWrite(pin_number, pin_status);
  2327. analogWrite(pin_number, pin_status);
  2328. }
  2329. } // code_seen('S')
  2330. }
  2331. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2332. #if Z_MIN_PIN == -1
  2333. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2334. #endif
  2335. /**
  2336. * M48: Z-Probe repeatability measurement function.
  2337. *
  2338. * Usage:
  2339. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2340. * P = Number of sampled points (4-50, default 10)
  2341. * X = Sample X position
  2342. * Y = Sample Y position
  2343. * V = Verbose level (0-4, default=1)
  2344. * E = Engage probe for each reading
  2345. * L = Number of legs of movement before probe
  2346. *
  2347. * This function assumes the bed has been homed. Specifically, that a G28 command
  2348. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2349. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2350. * regenerated.
  2351. *
  2352. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2353. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2354. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2355. */
  2356. inline void gcode_M48() {
  2357. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2358. int verbose_level = 1, n_samples = 10, n_legs = 0;
  2359. if (code_seen('V') || code_seen('v')) {
  2360. verbose_level = code_value();
  2361. if (verbose_level < 0 || verbose_level > 4 ) {
  2362. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2363. return;
  2364. }
  2365. }
  2366. if (verbose_level > 0)
  2367. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2368. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2369. n_samples = code_value();
  2370. if (n_samples < 4 || n_samples > 50) {
  2371. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2372. return;
  2373. }
  2374. }
  2375. double X_probe_location, Y_probe_location,
  2376. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2377. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2378. Z_current = st_get_position_mm(Z_AXIS),
  2379. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2380. ext_position = st_get_position_mm(E_AXIS);
  2381. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  2382. if (code_seen('X') || code_seen('x')) {
  2383. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2384. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2385. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2386. return;
  2387. }
  2388. }
  2389. if (code_seen('Y') || code_seen('y')) {
  2390. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2391. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2392. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2393. return;
  2394. }
  2395. }
  2396. if (code_seen('L') || code_seen('l')) {
  2397. n_legs = code_value();
  2398. if (n_legs == 1) n_legs = 2;
  2399. if (n_legs < 0 || n_legs > 15) {
  2400. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2401. return;
  2402. }
  2403. }
  2404. //
  2405. // Do all the preliminary setup work. First raise the probe.
  2406. //
  2407. st_synchronize();
  2408. plan_bed_level_matrix.set_to_identity();
  2409. plan_buffer_line(X_current, Y_current, Z_start_location,
  2410. ext_position,
  2411. homing_feedrate[Z_AXIS] / 60,
  2412. active_extruder);
  2413. st_synchronize();
  2414. //
  2415. // Now get everything to the specified probe point So we can safely do a probe to
  2416. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2417. // use that as a starting point for each probe.
  2418. //
  2419. if (verbose_level > 2)
  2420. SERIAL_PROTOCOL("Positioning the probe...\n");
  2421. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2422. ext_position,
  2423. homing_feedrate[X_AXIS]/60,
  2424. active_extruder);
  2425. st_synchronize();
  2426. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2427. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2428. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2429. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2430. //
  2431. // OK, do the inital probe to get us close to the bed.
  2432. // Then retrace the right amount and use that in subsequent probes
  2433. //
  2434. deploy_z_probe();
  2435. setup_for_endstop_move();
  2436. run_z_probe();
  2437. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2438. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2439. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2440. ext_position,
  2441. homing_feedrate[X_AXIS]/60,
  2442. active_extruder);
  2443. st_synchronize();
  2444. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2445. if (engage_probe_for_each_reading) stow_z_probe();
  2446. for (uint16_t n=0; n < n_samples; n++) {
  2447. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2448. if (n_legs) {
  2449. unsigned long ms = millis();
  2450. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2451. theta = RADIANS(ms % 360L);
  2452. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2453. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2454. //SERIAL_ECHOPAIR(" theta: ",theta);
  2455. //SERIAL_ECHOPAIR(" direction: ",dir);
  2456. //SERIAL_EOL;
  2457. for (int l = 0; l < n_legs - 1; l++) {
  2458. ms = millis();
  2459. theta += RADIANS(dir * (ms % 20L));
  2460. radius += (ms % 10L) - 5L;
  2461. if (radius < 0.0) radius = -radius;
  2462. X_current = X_probe_location + cos(theta) * radius;
  2463. Y_current = Y_probe_location + sin(theta) * radius;
  2464. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2465. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2466. if (verbose_level > 3) {
  2467. SERIAL_ECHOPAIR("x: ", X_current);
  2468. SERIAL_ECHOPAIR("y: ", Y_current);
  2469. SERIAL_EOL;
  2470. }
  2471. do_blocking_move_to(X_current, Y_current, Z_current);
  2472. } // n_legs loop
  2473. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2474. } // n_legs
  2475. if (engage_probe_for_each_reading) {
  2476. deploy_z_probe();
  2477. delay(1000);
  2478. }
  2479. setup_for_endstop_move();
  2480. run_z_probe();
  2481. sample_set[n] = current_position[Z_AXIS];
  2482. //
  2483. // Get the current mean for the data points we have so far
  2484. //
  2485. sum = 0.0;
  2486. for (int j = 0; j <= n; j++) sum += sample_set[j];
  2487. mean = sum / (n + 1);
  2488. //
  2489. // Now, use that mean to calculate the standard deviation for the
  2490. // data points we have so far
  2491. //
  2492. sum = 0.0;
  2493. for (int j = 0; j <= n; j++) {
  2494. float ss = sample_set[j] - mean;
  2495. sum += ss * ss;
  2496. }
  2497. sigma = sqrt(sum / (n + 1));
  2498. if (verbose_level > 1) {
  2499. SERIAL_PROTOCOL(n+1);
  2500. SERIAL_PROTOCOLPGM(" of ");
  2501. SERIAL_PROTOCOL(n_samples);
  2502. SERIAL_PROTOCOLPGM(" z: ");
  2503. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2504. if (verbose_level > 2) {
  2505. SERIAL_PROTOCOLPGM(" mean: ");
  2506. SERIAL_PROTOCOL_F(mean,6);
  2507. SERIAL_PROTOCOLPGM(" sigma: ");
  2508. SERIAL_PROTOCOL_F(sigma,6);
  2509. }
  2510. }
  2511. if (verbose_level > 0) SERIAL_EOL;
  2512. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2513. st_synchronize();
  2514. if (engage_probe_for_each_reading) {
  2515. stow_z_probe();
  2516. delay(1000);
  2517. }
  2518. }
  2519. if (!engage_probe_for_each_reading) {
  2520. stow_z_probe();
  2521. delay(1000);
  2522. }
  2523. clean_up_after_endstop_move();
  2524. // enable_endstops(true);
  2525. if (verbose_level > 0) {
  2526. SERIAL_PROTOCOLPGM("Mean: ");
  2527. SERIAL_PROTOCOL_F(mean, 6);
  2528. SERIAL_EOL;
  2529. }
  2530. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2531. SERIAL_PROTOCOL_F(sigma, 6);
  2532. SERIAL_EOL; SERIAL_EOL;
  2533. }
  2534. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2535. /**
  2536. * M104: Set hot end temperature
  2537. */
  2538. inline void gcode_M104() {
  2539. if (setTargetedHotend(104)) return;
  2540. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2541. #ifdef DUAL_X_CARRIAGE
  2542. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2543. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2544. #endif
  2545. setWatch();
  2546. }
  2547. /**
  2548. * M105: Read hot end and bed temperature
  2549. */
  2550. inline void gcode_M105() {
  2551. if (setTargetedHotend(105)) return;
  2552. #if HAS_TEMP_0
  2553. SERIAL_PROTOCOLPGM("ok T:");
  2554. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2555. SERIAL_PROTOCOLPGM(" /");
  2556. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2557. #if HAS_TEMP_BED
  2558. SERIAL_PROTOCOLPGM(" B:");
  2559. SERIAL_PROTOCOL_F(degBed(),1);
  2560. SERIAL_PROTOCOLPGM(" /");
  2561. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2562. #endif // HAS_TEMP_BED
  2563. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2564. SERIAL_PROTOCOLPGM(" T");
  2565. SERIAL_PROTOCOL(cur_extruder);
  2566. SERIAL_PROTOCOLPGM(":");
  2567. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2568. SERIAL_PROTOCOLPGM(" /");
  2569. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2570. }
  2571. #else // !HAS_TEMP_0
  2572. SERIAL_ERROR_START;
  2573. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2574. #endif
  2575. SERIAL_PROTOCOLPGM(" @:");
  2576. #ifdef EXTRUDER_WATTS
  2577. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2578. SERIAL_PROTOCOLPGM("W");
  2579. #else
  2580. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2581. #endif
  2582. SERIAL_PROTOCOLPGM(" B@:");
  2583. #ifdef BED_WATTS
  2584. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2585. SERIAL_PROTOCOLPGM("W");
  2586. #else
  2587. SERIAL_PROTOCOL(getHeaterPower(-1));
  2588. #endif
  2589. #ifdef SHOW_TEMP_ADC_VALUES
  2590. #if HAS_TEMP_BED
  2591. SERIAL_PROTOCOLPGM(" ADC B:");
  2592. SERIAL_PROTOCOL_F(degBed(),1);
  2593. SERIAL_PROTOCOLPGM("C->");
  2594. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2595. #endif
  2596. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2597. SERIAL_PROTOCOLPGM(" T");
  2598. SERIAL_PROTOCOL(cur_extruder);
  2599. SERIAL_PROTOCOLPGM(":");
  2600. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2601. SERIAL_PROTOCOLPGM("C->");
  2602. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2603. }
  2604. #endif
  2605. SERIAL_PROTOCOLLN("");
  2606. }
  2607. #if HAS_FAN
  2608. /**
  2609. * M106: Set Fan Speed
  2610. */
  2611. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2612. /**
  2613. * M107: Fan Off
  2614. */
  2615. inline void gcode_M107() { fanSpeed = 0; }
  2616. #endif //FAN_PIN
  2617. /**
  2618. * M109: Wait for extruder(s) to reach temperature
  2619. */
  2620. inline void gcode_M109() {
  2621. if (setTargetedHotend(109)) return;
  2622. LCD_MESSAGEPGM(MSG_HEATING);
  2623. CooldownNoWait = code_seen('S');
  2624. if (CooldownNoWait || code_seen('R')) {
  2625. setTargetHotend(code_value(), tmp_extruder);
  2626. #ifdef DUAL_X_CARRIAGE
  2627. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2628. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2629. #endif
  2630. }
  2631. #ifdef AUTOTEMP
  2632. autotemp_enabled = code_seen('F');
  2633. if (autotemp_enabled) autotemp_factor = code_value();
  2634. if (code_seen('S')) autotemp_min = code_value();
  2635. if (code_seen('B')) autotemp_max = code_value();
  2636. #endif
  2637. setWatch();
  2638. unsigned long timetemp = millis();
  2639. /* See if we are heating up or cooling down */
  2640. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2641. cancel_heatup = false;
  2642. #ifdef TEMP_RESIDENCY_TIME
  2643. long residencyStart = -1;
  2644. /* continue to loop until we have reached the target temp
  2645. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2646. while((!cancel_heatup)&&((residencyStart == -1) ||
  2647. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2648. #else
  2649. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2650. #endif //TEMP_RESIDENCY_TIME
  2651. { // while loop
  2652. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2653. SERIAL_PROTOCOLPGM("T:");
  2654. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2655. SERIAL_PROTOCOLPGM(" E:");
  2656. SERIAL_PROTOCOL((int)tmp_extruder);
  2657. #ifdef TEMP_RESIDENCY_TIME
  2658. SERIAL_PROTOCOLPGM(" W:");
  2659. if (residencyStart > -1) {
  2660. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2661. SERIAL_PROTOCOLLN( timetemp );
  2662. }
  2663. else {
  2664. SERIAL_PROTOCOLLN( "?" );
  2665. }
  2666. #else
  2667. SERIAL_PROTOCOLLN("");
  2668. #endif
  2669. timetemp = millis();
  2670. }
  2671. manage_heater();
  2672. manage_inactivity();
  2673. lcd_update();
  2674. #ifdef TEMP_RESIDENCY_TIME
  2675. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2676. // or when current temp falls outside the hysteresis after target temp was reached
  2677. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2678. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2679. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2680. {
  2681. residencyStart = millis();
  2682. }
  2683. #endif //TEMP_RESIDENCY_TIME
  2684. }
  2685. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2686. refresh_cmd_timeout();
  2687. starttime = previous_millis_cmd;
  2688. }
  2689. #if HAS_TEMP_BED
  2690. /**
  2691. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2692. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2693. */
  2694. inline void gcode_M190() {
  2695. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2696. CooldownNoWait = code_seen('S');
  2697. if (CooldownNoWait || code_seen('R'))
  2698. setTargetBed(code_value());
  2699. unsigned long timetemp = millis();
  2700. cancel_heatup = false;
  2701. target_direction = isHeatingBed(); // true if heating, false if cooling
  2702. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2703. unsigned long ms = millis();
  2704. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2705. timetemp = ms;
  2706. float tt = degHotend(active_extruder);
  2707. SERIAL_PROTOCOLPGM("T:");
  2708. SERIAL_PROTOCOL(tt);
  2709. SERIAL_PROTOCOLPGM(" E:");
  2710. SERIAL_PROTOCOL((int)active_extruder);
  2711. SERIAL_PROTOCOLPGM(" B:");
  2712. SERIAL_PROTOCOL_F(degBed(), 1);
  2713. SERIAL_PROTOCOLLN("");
  2714. }
  2715. manage_heater();
  2716. manage_inactivity();
  2717. lcd_update();
  2718. }
  2719. LCD_MESSAGEPGM(MSG_BED_DONE);
  2720. refresh_cmd_timeout();
  2721. }
  2722. #endif // HAS_TEMP_BED
  2723. /**
  2724. * M112: Emergency Stop
  2725. */
  2726. inline void gcode_M112() {
  2727. kill();
  2728. }
  2729. #ifdef BARICUDA
  2730. #if HAS_HEATER_1
  2731. /**
  2732. * M126: Heater 1 valve open
  2733. */
  2734. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2735. /**
  2736. * M127: Heater 1 valve close
  2737. */
  2738. inline void gcode_M127() { ValvePressure = 0; }
  2739. #endif
  2740. #if HAS_HEATER_2
  2741. /**
  2742. * M128: Heater 2 valve open
  2743. */
  2744. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2745. /**
  2746. * M129: Heater 2 valve close
  2747. */
  2748. inline void gcode_M129() { EtoPPressure = 0; }
  2749. #endif
  2750. #endif //BARICUDA
  2751. /**
  2752. * M140: Set bed temperature
  2753. */
  2754. inline void gcode_M140() {
  2755. if (code_seen('S')) setTargetBed(code_value());
  2756. }
  2757. #if HAS_POWER_SWITCH
  2758. /**
  2759. * M80: Turn on Power Supply
  2760. */
  2761. inline void gcode_M80() {
  2762. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2763. // If you have a switch on suicide pin, this is useful
  2764. // if you want to start another print with suicide feature after
  2765. // a print without suicide...
  2766. #if HAS_SUICIDE
  2767. OUT_WRITE(SUICIDE_PIN, HIGH);
  2768. #endif
  2769. #ifdef ULTIPANEL
  2770. powersupply = true;
  2771. LCD_MESSAGEPGM(WELCOME_MSG);
  2772. lcd_update();
  2773. #endif
  2774. }
  2775. #endif // HAS_POWER_SWITCH
  2776. /**
  2777. * M81: Turn off Power, including Power Supply, if there is one.
  2778. *
  2779. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2780. */
  2781. inline void gcode_M81() {
  2782. disable_heater();
  2783. st_synchronize();
  2784. disable_e0();
  2785. disable_e1();
  2786. disable_e2();
  2787. disable_e3();
  2788. finishAndDisableSteppers();
  2789. fanSpeed = 0;
  2790. delay(1000); // Wait 1 second before switching off
  2791. #if HAS_SUICIDE
  2792. st_synchronize();
  2793. suicide();
  2794. #elif HAS_POWER_SWITCH
  2795. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2796. #endif
  2797. #ifdef ULTIPANEL
  2798. #if HAS_POWER_SWITCH
  2799. powersupply = false;
  2800. #endif
  2801. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2802. lcd_update();
  2803. #endif
  2804. }
  2805. /**
  2806. * M82: Set E codes absolute (default)
  2807. */
  2808. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2809. /**
  2810. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2811. */
  2812. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2813. /**
  2814. * M18, M84: Disable all stepper motors
  2815. */
  2816. inline void gcode_M18_M84() {
  2817. if (code_seen('S')) {
  2818. stepper_inactive_time = code_value() * 1000;
  2819. }
  2820. else {
  2821. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2822. if (all_axis) {
  2823. st_synchronize();
  2824. disable_e0();
  2825. disable_e1();
  2826. disable_e2();
  2827. disable_e3();
  2828. finishAndDisableSteppers();
  2829. }
  2830. else {
  2831. st_synchronize();
  2832. if (code_seen('X')) disable_x();
  2833. if (code_seen('Y')) disable_y();
  2834. if (code_seen('Z')) disable_z();
  2835. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2836. if (code_seen('E')) {
  2837. disable_e0();
  2838. disable_e1();
  2839. disable_e2();
  2840. disable_e3();
  2841. }
  2842. #endif
  2843. }
  2844. }
  2845. }
  2846. /**
  2847. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2848. */
  2849. inline void gcode_M85() {
  2850. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2851. }
  2852. /**
  2853. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2854. */
  2855. inline void gcode_M92() {
  2856. for(int8_t i=0; i < NUM_AXIS; i++) {
  2857. if (code_seen(axis_codes[i])) {
  2858. if (i == E_AXIS) {
  2859. float value = code_value();
  2860. if (value < 20.0) {
  2861. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2862. max_e_jerk *= factor;
  2863. max_feedrate[i] *= factor;
  2864. axis_steps_per_sqr_second[i] *= factor;
  2865. }
  2866. axis_steps_per_unit[i] = value;
  2867. }
  2868. else {
  2869. axis_steps_per_unit[i] = code_value();
  2870. }
  2871. }
  2872. }
  2873. }
  2874. /**
  2875. * M114: Output current position to serial port
  2876. */
  2877. inline void gcode_M114() {
  2878. SERIAL_PROTOCOLPGM("X:");
  2879. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2880. SERIAL_PROTOCOLPGM(" Y:");
  2881. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2882. SERIAL_PROTOCOLPGM(" Z:");
  2883. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2884. SERIAL_PROTOCOLPGM(" E:");
  2885. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2886. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2887. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2888. SERIAL_PROTOCOLPGM(" Y:");
  2889. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2890. SERIAL_PROTOCOLPGM(" Z:");
  2891. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2892. SERIAL_PROTOCOLLN("");
  2893. #ifdef SCARA
  2894. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2895. SERIAL_PROTOCOL(delta[X_AXIS]);
  2896. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2897. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2898. SERIAL_PROTOCOLLN("");
  2899. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2900. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2901. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2902. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2903. SERIAL_PROTOCOLLN("");
  2904. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2905. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2906. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2907. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2908. SERIAL_PROTOCOLLN("");
  2909. SERIAL_PROTOCOLLN("");
  2910. #endif
  2911. }
  2912. /**
  2913. * M115: Capabilities string
  2914. */
  2915. inline void gcode_M115() {
  2916. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2917. }
  2918. /**
  2919. * M117: Set LCD Status Message
  2920. */
  2921. inline void gcode_M117() {
  2922. char* codepos = strchr_pointer + 5;
  2923. char* starpos = strchr(codepos, '*');
  2924. if (starpos) *starpos = '\0';
  2925. lcd_setstatus(codepos);
  2926. }
  2927. /**
  2928. * M119: Output endstop states to serial output
  2929. */
  2930. inline void gcode_M119() {
  2931. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2932. #if HAS_X_MIN
  2933. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2934. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2935. #endif
  2936. #if HAS_X_MAX
  2937. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2938. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2939. #endif
  2940. #if HAS_Y_MIN
  2941. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2942. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2943. #endif
  2944. #if HAS_Y_MAX
  2945. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2946. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2947. #endif
  2948. #if HAS_Z_MIN
  2949. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2950. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2951. #endif
  2952. #if HAS_Z_MAX
  2953. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2954. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2955. #endif
  2956. #if HAS_Z2_MAX
  2957. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2958. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2959. #endif
  2960. }
  2961. /**
  2962. * M120: Enable endstops
  2963. */
  2964. inline void gcode_M120() { enable_endstops(false); }
  2965. /**
  2966. * M121: Disable endstops
  2967. */
  2968. inline void gcode_M121() { enable_endstops(true); }
  2969. #ifdef BLINKM
  2970. /**
  2971. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2972. */
  2973. inline void gcode_M150() {
  2974. SendColors(
  2975. code_seen('R') ? (byte)code_value() : 0,
  2976. code_seen('U') ? (byte)code_value() : 0,
  2977. code_seen('B') ? (byte)code_value() : 0
  2978. );
  2979. }
  2980. #endif // BLINKM
  2981. /**
  2982. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2983. * T<extruder>
  2984. * D<millimeters>
  2985. */
  2986. inline void gcode_M200() {
  2987. tmp_extruder = active_extruder;
  2988. if (code_seen('T')) {
  2989. tmp_extruder = code_value();
  2990. if (tmp_extruder >= EXTRUDERS) {
  2991. SERIAL_ECHO_START;
  2992. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2993. return;
  2994. }
  2995. }
  2996. if (code_seen('D')) {
  2997. float diameter = code_value();
  2998. // setting any extruder filament size disables volumetric on the assumption that
  2999. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3000. // for all extruders
  3001. volumetric_enabled = (diameter != 0.0);
  3002. if (volumetric_enabled) {
  3003. filament_size[tmp_extruder] = diameter;
  3004. // make sure all extruders have some sane value for the filament size
  3005. for (int i=0; i<EXTRUDERS; i++)
  3006. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3007. }
  3008. }
  3009. else {
  3010. //reserved for setting filament diameter via UFID or filament measuring device
  3011. return;
  3012. }
  3013. calculate_volumetric_multipliers();
  3014. }
  3015. /**
  3016. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3017. */
  3018. inline void gcode_M201() {
  3019. for (int8_t i=0; i < NUM_AXIS; i++) {
  3020. if (code_seen(axis_codes[i])) {
  3021. max_acceleration_units_per_sq_second[i] = code_value();
  3022. }
  3023. }
  3024. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3025. reset_acceleration_rates();
  3026. }
  3027. #if 0 // Not used for Sprinter/grbl gen6
  3028. inline void gcode_M202() {
  3029. for(int8_t i=0; i < NUM_AXIS; i++) {
  3030. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3031. }
  3032. }
  3033. #endif
  3034. /**
  3035. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3036. */
  3037. inline void gcode_M203() {
  3038. for (int8_t i=0; i < NUM_AXIS; i++) {
  3039. if (code_seen(axis_codes[i])) {
  3040. max_feedrate[i] = code_value();
  3041. }
  3042. }
  3043. }
  3044. /**
  3045. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3046. *
  3047. * P = Printing moves
  3048. * R = Retract only (no X, Y, Z) moves
  3049. * T = Travel (non printing) moves
  3050. *
  3051. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3052. */
  3053. inline void gcode_M204() {
  3054. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3055. {
  3056. acceleration = code_value();
  3057. travel_acceleration = acceleration;
  3058. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3059. SERIAL_EOL;
  3060. }
  3061. if (code_seen('P'))
  3062. {
  3063. acceleration = code_value();
  3064. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3065. SERIAL_EOL;
  3066. }
  3067. if (code_seen('R'))
  3068. {
  3069. retract_acceleration = code_value();
  3070. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3071. SERIAL_EOL;
  3072. }
  3073. if (code_seen('T'))
  3074. {
  3075. travel_acceleration = code_value();
  3076. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3077. SERIAL_EOL;
  3078. }
  3079. }
  3080. /**
  3081. * M205: Set Advanced Settings
  3082. *
  3083. * S = Min Feed Rate (mm/s)
  3084. * T = Min Travel Feed Rate (mm/s)
  3085. * B = Min Segment Time (µs)
  3086. * X = Max XY Jerk (mm/s/s)
  3087. * Z = Max Z Jerk (mm/s/s)
  3088. * E = Max E Jerk (mm/s/s)
  3089. */
  3090. inline void gcode_M205() {
  3091. if (code_seen('S')) minimumfeedrate = code_value();
  3092. if (code_seen('T')) mintravelfeedrate = code_value();
  3093. if (code_seen('B')) minsegmenttime = code_value();
  3094. if (code_seen('X')) max_xy_jerk = code_value();
  3095. if (code_seen('Z')) max_z_jerk = code_value();
  3096. if (code_seen('E')) max_e_jerk = code_value();
  3097. }
  3098. /**
  3099. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3100. */
  3101. inline void gcode_M206() {
  3102. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3103. if (code_seen(axis_codes[i])) {
  3104. home_offset[i] = code_value();
  3105. }
  3106. }
  3107. #ifdef SCARA
  3108. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3109. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3110. #endif
  3111. }
  3112. #ifdef DELTA
  3113. /**
  3114. * M665: Set delta configurations
  3115. *
  3116. * L = diagonal rod
  3117. * R = delta radius
  3118. * S = segments per second
  3119. */
  3120. inline void gcode_M665() {
  3121. if (code_seen('L')) delta_diagonal_rod = code_value();
  3122. if (code_seen('R')) delta_radius = code_value();
  3123. if (code_seen('S')) delta_segments_per_second = code_value();
  3124. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3125. }
  3126. /**
  3127. * M666: Set delta endstop adjustment
  3128. */
  3129. inline void gcode_M666() {
  3130. for (int8_t i = 0; i < 3; i++) {
  3131. if (code_seen(axis_codes[i])) {
  3132. endstop_adj[i] = code_value();
  3133. }
  3134. }
  3135. }
  3136. #elif defined(Z_DUAL_ENDSTOPS)
  3137. /**
  3138. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3139. */
  3140. inline void gcode_M666() {
  3141. if (code_seen('Z')) z_endstop_adj = code_value();
  3142. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3143. SERIAL_EOL;
  3144. }
  3145. #endif // DELTA
  3146. #ifdef FWRETRACT
  3147. /**
  3148. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3149. */
  3150. inline void gcode_M207() {
  3151. if (code_seen('S')) retract_length = code_value();
  3152. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3153. if (code_seen('Z')) retract_zlift = code_value();
  3154. }
  3155. /**
  3156. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3157. */
  3158. inline void gcode_M208() {
  3159. if (code_seen('S')) retract_recover_length = code_value();
  3160. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3161. }
  3162. /**
  3163. * M209: Enable automatic retract (M209 S1)
  3164. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3165. */
  3166. inline void gcode_M209() {
  3167. if (code_seen('S')) {
  3168. int t = code_value();
  3169. switch(t) {
  3170. case 0:
  3171. autoretract_enabled = false;
  3172. break;
  3173. case 1:
  3174. autoretract_enabled = true;
  3175. break;
  3176. default:
  3177. SERIAL_ECHO_START;
  3178. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3179. SERIAL_ECHO(cmdbuffer[bufindr]);
  3180. SERIAL_ECHOLNPGM("\"");
  3181. return;
  3182. }
  3183. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3184. }
  3185. }
  3186. #endif // FWRETRACT
  3187. #if EXTRUDERS > 1
  3188. /**
  3189. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3190. */
  3191. inline void gcode_M218() {
  3192. if (setTargetedHotend(218)) return;
  3193. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3194. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3195. #ifdef DUAL_X_CARRIAGE
  3196. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3197. #endif
  3198. SERIAL_ECHO_START;
  3199. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3200. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3201. SERIAL_ECHO(" ");
  3202. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3203. SERIAL_ECHO(",");
  3204. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3205. #ifdef DUAL_X_CARRIAGE
  3206. SERIAL_ECHO(",");
  3207. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3208. #endif
  3209. }
  3210. SERIAL_EOL;
  3211. }
  3212. #endif // EXTRUDERS > 1
  3213. /**
  3214. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3215. */
  3216. inline void gcode_M220() {
  3217. if (code_seen('S')) feedmultiply = code_value();
  3218. }
  3219. /**
  3220. * M221: Set extrusion percentage (M221 T0 S95)
  3221. */
  3222. inline void gcode_M221() {
  3223. if (code_seen('S')) {
  3224. int sval = code_value();
  3225. if (code_seen('T')) {
  3226. if (setTargetedHotend(221)) return;
  3227. extruder_multiply[tmp_extruder] = sval;
  3228. }
  3229. else {
  3230. extruder_multiply[active_extruder] = sval;
  3231. }
  3232. }
  3233. }
  3234. /**
  3235. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3236. */
  3237. inline void gcode_M226() {
  3238. if (code_seen('P')) {
  3239. int pin_number = code_value();
  3240. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3241. if (pin_state >= -1 && pin_state <= 1) {
  3242. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3243. if (sensitive_pins[i] == pin_number) {
  3244. pin_number = -1;
  3245. break;
  3246. }
  3247. }
  3248. if (pin_number > -1) {
  3249. int target = LOW;
  3250. st_synchronize();
  3251. pinMode(pin_number, INPUT);
  3252. switch(pin_state){
  3253. case 1:
  3254. target = HIGH;
  3255. break;
  3256. case 0:
  3257. target = LOW;
  3258. break;
  3259. case -1:
  3260. target = !digitalRead(pin_number);
  3261. break;
  3262. }
  3263. while(digitalRead(pin_number) != target) {
  3264. manage_heater();
  3265. manage_inactivity();
  3266. lcd_update();
  3267. }
  3268. } // pin_number > -1
  3269. } // pin_state -1 0 1
  3270. } // code_seen('P')
  3271. }
  3272. #if NUM_SERVOS > 0
  3273. /**
  3274. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3275. */
  3276. inline void gcode_M280() {
  3277. int servo_index = code_seen('P') ? code_value() : -1;
  3278. int servo_position = 0;
  3279. if (code_seen('S')) {
  3280. servo_position = code_value();
  3281. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3282. #if SERVO_LEVELING
  3283. servos[servo_index].attach(0);
  3284. #endif
  3285. servos[servo_index].write(servo_position);
  3286. #if SERVO_LEVELING
  3287. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3288. servos[servo_index].detach();
  3289. #endif
  3290. }
  3291. else {
  3292. SERIAL_ECHO_START;
  3293. SERIAL_ECHO("Servo ");
  3294. SERIAL_ECHO(servo_index);
  3295. SERIAL_ECHOLN(" out of range");
  3296. }
  3297. }
  3298. else if (servo_index >= 0) {
  3299. SERIAL_PROTOCOL(MSG_OK);
  3300. SERIAL_PROTOCOL(" Servo ");
  3301. SERIAL_PROTOCOL(servo_index);
  3302. SERIAL_PROTOCOL(": ");
  3303. SERIAL_PROTOCOL(servos[servo_index].read());
  3304. SERIAL_PROTOCOLLN("");
  3305. }
  3306. }
  3307. #endif // NUM_SERVOS > 0
  3308. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3309. /**
  3310. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3311. */
  3312. inline void gcode_M300() {
  3313. int beepS = code_seen('S') ? code_value() : 110;
  3314. int beepP = code_seen('P') ? code_value() : 1000;
  3315. if (beepS > 0) {
  3316. #if BEEPER > 0
  3317. tone(BEEPER, beepS);
  3318. delay(beepP);
  3319. noTone(BEEPER);
  3320. #elif defined(ULTRALCD)
  3321. lcd_buzz(beepS, beepP);
  3322. #elif defined(LCD_USE_I2C_BUZZER)
  3323. lcd_buzz(beepP, beepS);
  3324. #endif
  3325. }
  3326. else {
  3327. delay(beepP);
  3328. }
  3329. }
  3330. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3331. #ifdef PIDTEMP
  3332. /**
  3333. * M301: Set PID parameters P I D (and optionally C)
  3334. */
  3335. inline void gcode_M301() {
  3336. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3337. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3338. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3339. if (e < EXTRUDERS) { // catch bad input value
  3340. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3341. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3342. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3343. #ifdef PID_ADD_EXTRUSION_RATE
  3344. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3345. #endif
  3346. updatePID();
  3347. SERIAL_PROTOCOL(MSG_OK);
  3348. #ifdef PID_PARAMS_PER_EXTRUDER
  3349. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3350. SERIAL_PROTOCOL(e);
  3351. #endif // PID_PARAMS_PER_EXTRUDER
  3352. SERIAL_PROTOCOL(" p:");
  3353. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3354. SERIAL_PROTOCOL(" i:");
  3355. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3356. SERIAL_PROTOCOL(" d:");
  3357. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3358. #ifdef PID_ADD_EXTRUSION_RATE
  3359. SERIAL_PROTOCOL(" c:");
  3360. //Kc does not have scaling applied above, or in resetting defaults
  3361. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3362. #endif
  3363. SERIAL_PROTOCOLLN("");
  3364. }
  3365. else {
  3366. SERIAL_ECHO_START;
  3367. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3368. }
  3369. }
  3370. #endif // PIDTEMP
  3371. #ifdef PIDTEMPBED
  3372. inline void gcode_M304() {
  3373. if (code_seen('P')) bedKp = code_value();
  3374. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3375. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3376. updatePID();
  3377. SERIAL_PROTOCOL(MSG_OK);
  3378. SERIAL_PROTOCOL(" p:");
  3379. SERIAL_PROTOCOL(bedKp);
  3380. SERIAL_PROTOCOL(" i:");
  3381. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3382. SERIAL_PROTOCOL(" d:");
  3383. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3384. SERIAL_PROTOCOLLN("");
  3385. }
  3386. #endif // PIDTEMPBED
  3387. #if defined(CHDK) || HAS_PHOTOGRAPH
  3388. /**
  3389. * M240: Trigger a camera by emulating a Canon RC-1
  3390. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3391. */
  3392. inline void gcode_M240() {
  3393. #ifdef CHDK
  3394. OUT_WRITE(CHDK, HIGH);
  3395. chdkHigh = millis();
  3396. chdkActive = true;
  3397. #elif HAS_PHOTOGRAPH
  3398. const uint8_t NUM_PULSES = 16;
  3399. const float PULSE_LENGTH = 0.01524;
  3400. for (int i = 0; i < NUM_PULSES; i++) {
  3401. WRITE(PHOTOGRAPH_PIN, HIGH);
  3402. _delay_ms(PULSE_LENGTH);
  3403. WRITE(PHOTOGRAPH_PIN, LOW);
  3404. _delay_ms(PULSE_LENGTH);
  3405. }
  3406. delay(7.33);
  3407. for (int i = 0; i < NUM_PULSES; i++) {
  3408. WRITE(PHOTOGRAPH_PIN, HIGH);
  3409. _delay_ms(PULSE_LENGTH);
  3410. WRITE(PHOTOGRAPH_PIN, LOW);
  3411. _delay_ms(PULSE_LENGTH);
  3412. }
  3413. #endif // !CHDK && HAS_PHOTOGRAPH
  3414. }
  3415. #endif // CHDK || PHOTOGRAPH_PIN
  3416. #ifdef DOGLCD
  3417. /**
  3418. * M250: Read and optionally set the LCD contrast
  3419. */
  3420. inline void gcode_M250() {
  3421. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3422. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3423. SERIAL_PROTOCOL(lcd_contrast);
  3424. SERIAL_PROTOCOLLN("");
  3425. }
  3426. #endif // DOGLCD
  3427. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3428. /**
  3429. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3430. */
  3431. inline void gcode_M302() {
  3432. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3433. }
  3434. #endif // PREVENT_DANGEROUS_EXTRUDE
  3435. /**
  3436. * M303: PID relay autotune
  3437. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3438. * E<extruder> (-1 for the bed)
  3439. * C<cycles>
  3440. */
  3441. inline void gcode_M303() {
  3442. int e = code_seen('E') ? code_value_long() : 0;
  3443. int c = code_seen('C') ? code_value_long() : 5;
  3444. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3445. PID_autotune(temp, e, c);
  3446. }
  3447. #ifdef SCARA
  3448. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3449. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3450. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3451. if (! Stopped) {
  3452. //get_coordinates(); // For X Y Z E F
  3453. delta[X_AXIS] = delta_x;
  3454. delta[Y_AXIS] = delta_y;
  3455. calculate_SCARA_forward_Transform(delta);
  3456. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3457. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3458. prepare_move();
  3459. //ClearToSend();
  3460. return true;
  3461. }
  3462. return false;
  3463. }
  3464. /**
  3465. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3466. */
  3467. inline bool gcode_M360() {
  3468. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3469. return SCARA_move_to_cal(0, 120);
  3470. }
  3471. /**
  3472. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3473. */
  3474. inline bool gcode_M361() {
  3475. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3476. return SCARA_move_to_cal(90, 130);
  3477. }
  3478. /**
  3479. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3480. */
  3481. inline bool gcode_M362() {
  3482. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3483. return SCARA_move_to_cal(60, 180);
  3484. }
  3485. /**
  3486. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3487. */
  3488. inline bool gcode_M363() {
  3489. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3490. return SCARA_move_to_cal(50, 90);
  3491. }
  3492. /**
  3493. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3494. */
  3495. inline bool gcode_M364() {
  3496. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3497. return SCARA_move_to_cal(45, 135);
  3498. }
  3499. /**
  3500. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3501. */
  3502. inline void gcode_M365() {
  3503. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3504. if (code_seen(axis_codes[i])) {
  3505. axis_scaling[i] = code_value();
  3506. }
  3507. }
  3508. }
  3509. #endif // SCARA
  3510. #ifdef EXT_SOLENOID
  3511. void enable_solenoid(uint8_t num) {
  3512. switch(num) {
  3513. case 0:
  3514. OUT_WRITE(SOL0_PIN, HIGH);
  3515. break;
  3516. #if HAS_SOLENOID_1
  3517. case 1:
  3518. OUT_WRITE(SOL1_PIN, HIGH);
  3519. break;
  3520. #endif
  3521. #if HAS_SOLENOID_2
  3522. case 2:
  3523. OUT_WRITE(SOL2_PIN, HIGH);
  3524. break;
  3525. #endif
  3526. #if HAS_SOLENOID_3
  3527. case 3:
  3528. OUT_WRITE(SOL3_PIN, HIGH);
  3529. break;
  3530. #endif
  3531. default:
  3532. SERIAL_ECHO_START;
  3533. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3534. break;
  3535. }
  3536. }
  3537. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3538. void disable_all_solenoids() {
  3539. OUT_WRITE(SOL0_PIN, LOW);
  3540. OUT_WRITE(SOL1_PIN, LOW);
  3541. OUT_WRITE(SOL2_PIN, LOW);
  3542. OUT_WRITE(SOL3_PIN, LOW);
  3543. }
  3544. /**
  3545. * M380: Enable solenoid on the active extruder
  3546. */
  3547. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3548. /**
  3549. * M381: Disable all solenoids
  3550. */
  3551. inline void gcode_M381() { disable_all_solenoids(); }
  3552. #endif // EXT_SOLENOID
  3553. /**
  3554. * M400: Finish all moves
  3555. */
  3556. inline void gcode_M400() { st_synchronize(); }
  3557. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3558. /**
  3559. * M401: Engage Z Servo endstop if available
  3560. */
  3561. inline void gcode_M401() { deploy_z_probe(); }
  3562. /**
  3563. * M402: Retract Z Servo endstop if enabled
  3564. */
  3565. inline void gcode_M402() { stow_z_probe(); }
  3566. #endif
  3567. #ifdef FILAMENT_SENSOR
  3568. /**
  3569. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3570. */
  3571. inline void gcode_M404() {
  3572. #if HAS_FILWIDTH
  3573. if (code_seen('W')) {
  3574. filament_width_nominal = code_value();
  3575. }
  3576. else {
  3577. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3578. SERIAL_PROTOCOLLN(filament_width_nominal);
  3579. }
  3580. #endif
  3581. }
  3582. /**
  3583. * M405: Turn on filament sensor for control
  3584. */
  3585. inline void gcode_M405() {
  3586. if (code_seen('D')) meas_delay_cm = code_value();
  3587. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3588. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3589. int temp_ratio = widthFil_to_size_ratio();
  3590. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3591. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3592. delay_index1 = delay_index2 = 0;
  3593. }
  3594. filament_sensor = true;
  3595. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3596. //SERIAL_PROTOCOL(filament_width_meas);
  3597. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3598. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3599. }
  3600. /**
  3601. * M406: Turn off filament sensor for control
  3602. */
  3603. inline void gcode_M406() { filament_sensor = false; }
  3604. /**
  3605. * M407: Get measured filament diameter on serial output
  3606. */
  3607. inline void gcode_M407() {
  3608. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3609. SERIAL_PROTOCOLLN(filament_width_meas);
  3610. }
  3611. #endif // FILAMENT_SENSOR
  3612. /**
  3613. * M500: Store settings in EEPROM
  3614. */
  3615. inline void gcode_M500() {
  3616. Config_StoreSettings();
  3617. }
  3618. /**
  3619. * M501: Read settings from EEPROM
  3620. */
  3621. inline void gcode_M501() {
  3622. Config_RetrieveSettings();
  3623. }
  3624. /**
  3625. * M502: Revert to default settings
  3626. */
  3627. inline void gcode_M502() {
  3628. Config_ResetDefault();
  3629. }
  3630. /**
  3631. * M503: print settings currently in memory
  3632. */
  3633. inline void gcode_M503() {
  3634. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3635. }
  3636. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3637. /**
  3638. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3639. */
  3640. inline void gcode_M540() {
  3641. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3642. }
  3643. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3644. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3645. inline void gcode_SET_Z_PROBE_OFFSET() {
  3646. float value;
  3647. if (code_seen('Z')) {
  3648. value = code_value();
  3649. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3650. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3651. SERIAL_ECHO_START;
  3652. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3653. SERIAL_PROTOCOLLN("");
  3654. }
  3655. else {
  3656. SERIAL_ECHO_START;
  3657. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3658. SERIAL_ECHOPGM(MSG_Z_MIN);
  3659. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3660. SERIAL_ECHOPGM(MSG_Z_MAX);
  3661. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3662. SERIAL_PROTOCOLLN("");
  3663. }
  3664. }
  3665. else {
  3666. SERIAL_ECHO_START;
  3667. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3668. SERIAL_ECHO(-zprobe_zoffset);
  3669. SERIAL_PROTOCOLLN("");
  3670. }
  3671. }
  3672. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3673. #ifdef FILAMENTCHANGEENABLE
  3674. /**
  3675. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3676. */
  3677. inline void gcode_M600() {
  3678. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3679. for (int i=0; i<NUM_AXIS; i++)
  3680. target[i] = lastpos[i] = current_position[i];
  3681. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3682. #ifdef DELTA
  3683. #define RUNPLAN calculate_delta(target); BASICPLAN
  3684. #else
  3685. #define RUNPLAN BASICPLAN
  3686. #endif
  3687. //retract by E
  3688. if (code_seen('E')) target[E_AXIS] += code_value();
  3689. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3690. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3691. #endif
  3692. RUNPLAN;
  3693. //lift Z
  3694. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3695. #ifdef FILAMENTCHANGE_ZADD
  3696. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3697. #endif
  3698. RUNPLAN;
  3699. //move xy
  3700. if (code_seen('X')) target[X_AXIS] = code_value();
  3701. #ifdef FILAMENTCHANGE_XPOS
  3702. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3703. #endif
  3704. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3705. #ifdef FILAMENTCHANGE_YPOS
  3706. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3707. #endif
  3708. RUNPLAN;
  3709. if (code_seen('L')) target[E_AXIS] += code_value();
  3710. #ifdef FILAMENTCHANGE_FINALRETRACT
  3711. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3712. #endif
  3713. RUNPLAN;
  3714. //finish moves
  3715. st_synchronize();
  3716. //disable extruder steppers so filament can be removed
  3717. disable_e0();
  3718. disable_e1();
  3719. disable_e2();
  3720. disable_e3();
  3721. delay(100);
  3722. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3723. uint8_t cnt = 0;
  3724. while (!lcd_clicked()) {
  3725. cnt++;
  3726. manage_heater();
  3727. manage_inactivity(true);
  3728. lcd_update();
  3729. if (cnt == 0) {
  3730. #if BEEPER > 0
  3731. OUT_WRITE(BEEPER,HIGH);
  3732. delay(3);
  3733. WRITE(BEEPER,LOW);
  3734. delay(3);
  3735. #else
  3736. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3737. lcd_buzz(1000/6, 100);
  3738. #else
  3739. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3740. #endif
  3741. #endif
  3742. }
  3743. } // while(!lcd_clicked)
  3744. //return to normal
  3745. if (code_seen('L')) target[E_AXIS] -= code_value();
  3746. #ifdef FILAMENTCHANGE_FINALRETRACT
  3747. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3748. #endif
  3749. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3750. plan_set_e_position(current_position[E_AXIS]);
  3751. RUNPLAN; //should do nothing
  3752. lcd_reset_alert_level();
  3753. #ifdef DELTA
  3754. calculate_delta(lastpos);
  3755. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3756. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3757. #else
  3758. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3759. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3760. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3761. #endif
  3762. #ifdef FILAMENT_RUNOUT_SENSOR
  3763. filrunoutEnqued = false;
  3764. #endif
  3765. }
  3766. #endif // FILAMENTCHANGEENABLE
  3767. #ifdef DUAL_X_CARRIAGE
  3768. /**
  3769. * M605: Set dual x-carriage movement mode
  3770. *
  3771. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3772. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3773. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3774. * millimeters x-offset and an optional differential hotend temperature of
  3775. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3776. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3777. *
  3778. * Note: the X axis should be homed after changing dual x-carriage mode.
  3779. */
  3780. inline void gcode_M605() {
  3781. st_synchronize();
  3782. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3783. switch(dual_x_carriage_mode) {
  3784. case DXC_DUPLICATION_MODE:
  3785. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3786. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3787. SERIAL_ECHO_START;
  3788. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3789. SERIAL_ECHO(" ");
  3790. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3791. SERIAL_ECHO(",");
  3792. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3793. SERIAL_ECHO(" ");
  3794. SERIAL_ECHO(duplicate_extruder_x_offset);
  3795. SERIAL_ECHO(",");
  3796. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3797. break;
  3798. case DXC_FULL_CONTROL_MODE:
  3799. case DXC_AUTO_PARK_MODE:
  3800. break;
  3801. default:
  3802. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3803. break;
  3804. }
  3805. active_extruder_parked = false;
  3806. extruder_duplication_enabled = false;
  3807. delayed_move_time = 0;
  3808. }
  3809. #endif // DUAL_X_CARRIAGE
  3810. /**
  3811. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3812. */
  3813. inline void gcode_M907() {
  3814. #if HAS_DIGIPOTSS
  3815. for (int i=0;i<NUM_AXIS;i++)
  3816. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3817. if (code_seen('B')) digipot_current(4, code_value());
  3818. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3819. #endif
  3820. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3821. if (code_seen('X')) digipot_current(0, code_value());
  3822. #endif
  3823. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3824. if (code_seen('Z')) digipot_current(1, code_value());
  3825. #endif
  3826. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3827. if (code_seen('E')) digipot_current(2, code_value());
  3828. #endif
  3829. #ifdef DIGIPOT_I2C
  3830. // this one uses actual amps in floating point
  3831. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3832. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3833. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3834. #endif
  3835. }
  3836. #if HAS_DIGIPOTSS
  3837. /**
  3838. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3839. */
  3840. inline void gcode_M908() {
  3841. digitalPotWrite(
  3842. code_seen('P') ? code_value() : 0,
  3843. code_seen('S') ? code_value() : 0
  3844. );
  3845. }
  3846. #endif // HAS_DIGIPOTSS
  3847. #if HAS_MICROSTEPS
  3848. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3849. inline void gcode_M350() {
  3850. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3851. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3852. if(code_seen('B')) microstep_mode(4,code_value());
  3853. microstep_readings();
  3854. }
  3855. /**
  3856. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3857. * S# determines MS1 or MS2, X# sets the pin high/low.
  3858. */
  3859. inline void gcode_M351() {
  3860. if (code_seen('S')) switch(code_value_long()) {
  3861. case 1:
  3862. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3863. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3864. break;
  3865. case 2:
  3866. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3867. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3868. break;
  3869. }
  3870. microstep_readings();
  3871. }
  3872. #endif // HAS_MICROSTEPS
  3873. /**
  3874. * M999: Restart after being stopped
  3875. */
  3876. inline void gcode_M999() {
  3877. Stopped = false;
  3878. lcd_reset_alert_level();
  3879. gcode_LastN = Stopped_gcode_LastN;
  3880. FlushSerialRequestResend();
  3881. }
  3882. inline void gcode_T() {
  3883. tmp_extruder = code_value();
  3884. if (tmp_extruder >= EXTRUDERS) {
  3885. SERIAL_ECHO_START;
  3886. SERIAL_ECHO("T");
  3887. SERIAL_ECHO(tmp_extruder);
  3888. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3889. }
  3890. else {
  3891. #if EXTRUDERS > 1
  3892. bool make_move = false;
  3893. #endif
  3894. if (code_seen('F')) {
  3895. #if EXTRUDERS > 1
  3896. make_move = true;
  3897. #endif
  3898. next_feedrate = code_value();
  3899. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3900. }
  3901. #if EXTRUDERS > 1
  3902. if (tmp_extruder != active_extruder) {
  3903. // Save current position to return to after applying extruder offset
  3904. memcpy(destination, current_position, sizeof(destination));
  3905. #ifdef DUAL_X_CARRIAGE
  3906. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3907. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3908. // Park old head: 1) raise 2) move to park position 3) lower
  3909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3910. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3911. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3912. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3913. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3914. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3915. st_synchronize();
  3916. }
  3917. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3918. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3919. extruder_offset[Y_AXIS][active_extruder] +
  3920. extruder_offset[Y_AXIS][tmp_extruder];
  3921. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3922. extruder_offset[Z_AXIS][active_extruder] +
  3923. extruder_offset[Z_AXIS][tmp_extruder];
  3924. active_extruder = tmp_extruder;
  3925. // This function resets the max/min values - the current position may be overwritten below.
  3926. axis_is_at_home(X_AXIS);
  3927. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3928. current_position[X_AXIS] = inactive_extruder_x_pos;
  3929. inactive_extruder_x_pos = destination[X_AXIS];
  3930. }
  3931. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3932. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3933. if (active_extruder == 0 || active_extruder_parked)
  3934. current_position[X_AXIS] = inactive_extruder_x_pos;
  3935. else
  3936. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3937. inactive_extruder_x_pos = destination[X_AXIS];
  3938. extruder_duplication_enabled = false;
  3939. }
  3940. else {
  3941. // record raised toolhead position for use by unpark
  3942. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3943. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3944. active_extruder_parked = true;
  3945. delayed_move_time = 0;
  3946. }
  3947. #else // !DUAL_X_CARRIAGE
  3948. // Offset extruder (only by XY)
  3949. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3950. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3951. // Set the new active extruder and position
  3952. active_extruder = tmp_extruder;
  3953. #endif // !DUAL_X_CARRIAGE
  3954. #ifdef DELTA
  3955. sync_plan_position_delta();
  3956. #else
  3957. sync_plan_position();
  3958. #endif
  3959. // Move to the old position if 'F' was in the parameters
  3960. if (make_move && !Stopped) prepare_move();
  3961. }
  3962. #ifdef EXT_SOLENOID
  3963. st_synchronize();
  3964. disable_all_solenoids();
  3965. enable_solenoid_on_active_extruder();
  3966. #endif // EXT_SOLENOID
  3967. #endif // EXTRUDERS > 1
  3968. SERIAL_ECHO_START;
  3969. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3970. SERIAL_PROTOCOLLN((int)active_extruder);
  3971. }
  3972. }
  3973. /**
  3974. * Process Commands and dispatch them to handlers
  3975. * This is called from the main loop()
  3976. */
  3977. void process_commands() {
  3978. if (code_seen('G')) {
  3979. int gCode = code_value_long();
  3980. switch(gCode) {
  3981. // G0, G1
  3982. case 0:
  3983. case 1:
  3984. gcode_G0_G1();
  3985. break;
  3986. // G2, G3
  3987. #ifndef SCARA
  3988. case 2: // G2 - CW ARC
  3989. case 3: // G3 - CCW ARC
  3990. gcode_G2_G3(gCode == 2);
  3991. break;
  3992. #endif
  3993. // G4 Dwell
  3994. case 4:
  3995. gcode_G4();
  3996. break;
  3997. #ifdef FWRETRACT
  3998. case 10: // G10: retract
  3999. case 11: // G11: retract_recover
  4000. gcode_G10_G11(gCode == 10);
  4001. break;
  4002. #endif //FWRETRACT
  4003. case 28: // G28: Home all axes, one at a time
  4004. gcode_G28();
  4005. break;
  4006. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4007. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4008. gcode_G29();
  4009. break;
  4010. #endif
  4011. #ifdef ENABLE_AUTO_BED_LEVELING
  4012. #ifndef Z_PROBE_SLED
  4013. case 30: // G30 Single Z Probe
  4014. gcode_G30();
  4015. break;
  4016. #else // Z_PROBE_SLED
  4017. case 31: // G31: dock the sled
  4018. case 32: // G32: undock the sled
  4019. dock_sled(gCode == 31);
  4020. break;
  4021. #endif // Z_PROBE_SLED
  4022. #endif // ENABLE_AUTO_BED_LEVELING
  4023. case 90: // G90
  4024. relative_mode = false;
  4025. break;
  4026. case 91: // G91
  4027. relative_mode = true;
  4028. break;
  4029. case 92: // G92
  4030. gcode_G92();
  4031. break;
  4032. }
  4033. }
  4034. else if (code_seen('M')) {
  4035. switch( code_value_long() ) {
  4036. #ifdef ULTIPANEL
  4037. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4038. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4039. gcode_M0_M1();
  4040. break;
  4041. #endif // ULTIPANEL
  4042. case 17:
  4043. gcode_M17();
  4044. break;
  4045. #ifdef SDSUPPORT
  4046. case 20: // M20 - list SD card
  4047. gcode_M20(); break;
  4048. case 21: // M21 - init SD card
  4049. gcode_M21(); break;
  4050. case 22: //M22 - release SD card
  4051. gcode_M22(); break;
  4052. case 23: //M23 - Select file
  4053. gcode_M23(); break;
  4054. case 24: //M24 - Start SD print
  4055. gcode_M24(); break;
  4056. case 25: //M25 - Pause SD print
  4057. gcode_M25(); break;
  4058. case 26: //M26 - Set SD index
  4059. gcode_M26(); break;
  4060. case 27: //M27 - Get SD status
  4061. gcode_M27(); break;
  4062. case 28: //M28 - Start SD write
  4063. gcode_M28(); break;
  4064. case 29: //M29 - Stop SD write
  4065. gcode_M29(); break;
  4066. case 30: //M30 <filename> Delete File
  4067. gcode_M30(); break;
  4068. case 32: //M32 - Select file and start SD print
  4069. gcode_M32(); break;
  4070. case 928: //M928 - Start SD write
  4071. gcode_M928(); break;
  4072. #endif //SDSUPPORT
  4073. case 31: //M31 take time since the start of the SD print or an M109 command
  4074. gcode_M31();
  4075. break;
  4076. case 42: //M42 -Change pin status via gcode
  4077. gcode_M42();
  4078. break;
  4079. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4080. case 48: // M48 Z-Probe repeatability
  4081. gcode_M48();
  4082. break;
  4083. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4084. case 104: // M104
  4085. gcode_M104();
  4086. break;
  4087. case 112: // M112 Emergency Stop
  4088. gcode_M112();
  4089. break;
  4090. case 140: // M140 Set bed temp
  4091. gcode_M140();
  4092. break;
  4093. case 105: // M105 Read current temperature
  4094. gcode_M105();
  4095. return;
  4096. break;
  4097. case 109: // M109 Wait for temperature
  4098. gcode_M109();
  4099. break;
  4100. #if HAS_TEMP_BED
  4101. case 190: // M190 - Wait for bed heater to reach target.
  4102. gcode_M190();
  4103. break;
  4104. #endif // HAS_TEMP_BED
  4105. #if HAS_FAN
  4106. case 106: //M106 Fan On
  4107. gcode_M106();
  4108. break;
  4109. case 107: //M107 Fan Off
  4110. gcode_M107();
  4111. break;
  4112. #endif // HAS_FAN
  4113. #ifdef BARICUDA
  4114. // PWM for HEATER_1_PIN
  4115. #if HAS_HEATER_1
  4116. case 126: // M126 valve open
  4117. gcode_M126();
  4118. break;
  4119. case 127: // M127 valve closed
  4120. gcode_M127();
  4121. break;
  4122. #endif // HAS_HEATER_1
  4123. // PWM for HEATER_2_PIN
  4124. #if HAS_HEATER_2
  4125. case 128: // M128 valve open
  4126. gcode_M128();
  4127. break;
  4128. case 129: // M129 valve closed
  4129. gcode_M129();
  4130. break;
  4131. #endif // HAS_HEATER_2
  4132. #endif // BARICUDA
  4133. #if HAS_POWER_SWITCH
  4134. case 80: // M80 - Turn on Power Supply
  4135. gcode_M80();
  4136. break;
  4137. #endif // HAS_POWER_SWITCH
  4138. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4139. gcode_M81();
  4140. break;
  4141. case 82:
  4142. gcode_M82();
  4143. break;
  4144. case 83:
  4145. gcode_M83();
  4146. break;
  4147. case 18: //compatibility
  4148. case 84: // M84
  4149. gcode_M18_M84();
  4150. break;
  4151. case 85: // M85
  4152. gcode_M85();
  4153. break;
  4154. case 92: // M92
  4155. gcode_M92();
  4156. break;
  4157. case 115: // M115
  4158. gcode_M115();
  4159. break;
  4160. case 117: // M117 display message
  4161. gcode_M117();
  4162. break;
  4163. case 114: // M114
  4164. gcode_M114();
  4165. break;
  4166. case 120: // M120
  4167. gcode_M120();
  4168. break;
  4169. case 121: // M121
  4170. gcode_M121();
  4171. break;
  4172. case 119: // M119
  4173. gcode_M119();
  4174. break;
  4175. //TODO: update for all axis, use for loop
  4176. #ifdef BLINKM
  4177. case 150: // M150
  4178. gcode_M150();
  4179. break;
  4180. #endif //BLINKM
  4181. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4182. gcode_M200();
  4183. break;
  4184. case 201: // M201
  4185. gcode_M201();
  4186. break;
  4187. #if 0 // Not used for Sprinter/grbl gen6
  4188. case 202: // M202
  4189. gcode_M202();
  4190. break;
  4191. #endif
  4192. case 203: // M203 max feedrate mm/sec
  4193. gcode_M203();
  4194. break;
  4195. case 204: // M204 acclereration S normal moves T filmanent only moves
  4196. gcode_M204();
  4197. break;
  4198. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4199. gcode_M205();
  4200. break;
  4201. case 206: // M206 additional homing offset
  4202. gcode_M206();
  4203. break;
  4204. #ifdef DELTA
  4205. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4206. gcode_M665();
  4207. break;
  4208. #endif
  4209. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4210. case 666: // M666 set delta / dual endstop adjustment
  4211. gcode_M666();
  4212. break;
  4213. #endif
  4214. #ifdef FWRETRACT
  4215. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4216. gcode_M207();
  4217. break;
  4218. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4219. gcode_M208();
  4220. break;
  4221. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4222. gcode_M209();
  4223. break;
  4224. #endif // FWRETRACT
  4225. #if EXTRUDERS > 1
  4226. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4227. gcode_M218();
  4228. break;
  4229. #endif
  4230. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4231. gcode_M220();
  4232. break;
  4233. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4234. gcode_M221();
  4235. break;
  4236. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4237. gcode_M226();
  4238. break;
  4239. #if NUM_SERVOS > 0
  4240. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4241. gcode_M280();
  4242. break;
  4243. #endif // NUM_SERVOS > 0
  4244. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4245. case 300: // M300 - Play beep tone
  4246. gcode_M300();
  4247. break;
  4248. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4249. #ifdef PIDTEMP
  4250. case 301: // M301
  4251. gcode_M301();
  4252. break;
  4253. #endif // PIDTEMP
  4254. #ifdef PIDTEMPBED
  4255. case 304: // M304
  4256. gcode_M304();
  4257. break;
  4258. #endif // PIDTEMPBED
  4259. #if defined(CHDK) || HAS_PHOTOGRAPH
  4260. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4261. gcode_M240();
  4262. break;
  4263. #endif // CHDK || PHOTOGRAPH_PIN
  4264. #ifdef DOGLCD
  4265. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4266. gcode_M250();
  4267. break;
  4268. #endif // DOGLCD
  4269. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4270. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4271. gcode_M302();
  4272. break;
  4273. #endif // PREVENT_DANGEROUS_EXTRUDE
  4274. case 303: // M303 PID autotune
  4275. gcode_M303();
  4276. break;
  4277. #ifdef SCARA
  4278. case 360: // M360 SCARA Theta pos1
  4279. if (gcode_M360()) return;
  4280. break;
  4281. case 361: // M361 SCARA Theta pos2
  4282. if (gcode_M361()) return;
  4283. break;
  4284. case 362: // M362 SCARA Psi pos1
  4285. if (gcode_M362()) return;
  4286. break;
  4287. case 363: // M363 SCARA Psi pos2
  4288. if (gcode_M363()) return;
  4289. break;
  4290. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4291. if (gcode_M364()) return;
  4292. break;
  4293. case 365: // M365 Set SCARA scaling for X Y Z
  4294. gcode_M365();
  4295. break;
  4296. #endif // SCARA
  4297. case 400: // M400 finish all moves
  4298. gcode_M400();
  4299. break;
  4300. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4301. case 401:
  4302. gcode_M401();
  4303. break;
  4304. case 402:
  4305. gcode_M402();
  4306. break;
  4307. #endif
  4308. #ifdef FILAMENT_SENSOR
  4309. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4310. gcode_M404();
  4311. break;
  4312. case 405: //M405 Turn on filament sensor for control
  4313. gcode_M405();
  4314. break;
  4315. case 406: //M406 Turn off filament sensor for control
  4316. gcode_M406();
  4317. break;
  4318. case 407: //M407 Display measured filament diameter
  4319. gcode_M407();
  4320. break;
  4321. #endif // FILAMENT_SENSOR
  4322. case 500: // M500 Store settings in EEPROM
  4323. gcode_M500();
  4324. break;
  4325. case 501: // M501 Read settings from EEPROM
  4326. gcode_M501();
  4327. break;
  4328. case 502: // M502 Revert to default settings
  4329. gcode_M502();
  4330. break;
  4331. case 503: // M503 print settings currently in memory
  4332. gcode_M503();
  4333. break;
  4334. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4335. case 540:
  4336. gcode_M540();
  4337. break;
  4338. #endif
  4339. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4340. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4341. gcode_SET_Z_PROBE_OFFSET();
  4342. break;
  4343. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4344. #ifdef FILAMENTCHANGEENABLE
  4345. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4346. gcode_M600();
  4347. break;
  4348. #endif // FILAMENTCHANGEENABLE
  4349. #ifdef DUAL_X_CARRIAGE
  4350. case 605:
  4351. gcode_M605();
  4352. break;
  4353. #endif // DUAL_X_CARRIAGE
  4354. case 907: // M907 Set digital trimpot motor current using axis codes.
  4355. gcode_M907();
  4356. break;
  4357. #if HAS_DIGIPOTSS
  4358. case 908: // M908 Control digital trimpot directly.
  4359. gcode_M908();
  4360. break;
  4361. #endif // HAS_DIGIPOTSS
  4362. #if HAS_MICROSTEPS
  4363. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4364. gcode_M350();
  4365. break;
  4366. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4367. gcode_M351();
  4368. break;
  4369. #endif // HAS_MICROSTEPS
  4370. case 999: // M999: Restart after being Stopped
  4371. gcode_M999();
  4372. break;
  4373. }
  4374. }
  4375. else if (code_seen('T')) {
  4376. gcode_T();
  4377. }
  4378. else {
  4379. SERIAL_ECHO_START;
  4380. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4381. SERIAL_ECHO(cmdbuffer[bufindr]);
  4382. SERIAL_ECHOLNPGM("\"");
  4383. }
  4384. ClearToSend();
  4385. }
  4386. void FlushSerialRequestResend() {
  4387. //char cmdbuffer[bufindr][100]="Resend:";
  4388. MYSERIAL.flush();
  4389. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4390. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4391. ClearToSend();
  4392. }
  4393. void ClearToSend() {
  4394. refresh_cmd_timeout();
  4395. #ifdef SDSUPPORT
  4396. if (fromsd[bufindr]) return;
  4397. #endif
  4398. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4399. }
  4400. void get_coordinates() {
  4401. for (int i = 0; i < NUM_AXIS; i++) {
  4402. if (code_seen(axis_codes[i]))
  4403. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4404. else
  4405. destination[i] = current_position[i];
  4406. }
  4407. if (code_seen('F')) {
  4408. next_feedrate = code_value();
  4409. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4410. }
  4411. }
  4412. void get_arc_coordinates() {
  4413. #ifdef SF_ARC_FIX
  4414. bool relative_mode_backup = relative_mode;
  4415. relative_mode = true;
  4416. #endif
  4417. get_coordinates();
  4418. #ifdef SF_ARC_FIX
  4419. relative_mode = relative_mode_backup;
  4420. #endif
  4421. offset[0] = code_seen('I') ? code_value() : 0;
  4422. offset[1] = code_seen('J') ? code_value() : 0;
  4423. }
  4424. void clamp_to_software_endstops(float target[3])
  4425. {
  4426. if (min_software_endstops) {
  4427. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4428. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4429. float negative_z_offset = 0;
  4430. #ifdef ENABLE_AUTO_BED_LEVELING
  4431. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4432. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4433. #endif
  4434. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4435. }
  4436. if (max_software_endstops) {
  4437. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4438. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4439. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4440. }
  4441. }
  4442. #ifdef DELTA
  4443. void recalc_delta_settings(float radius, float diagonal_rod) {
  4444. delta_tower1_x = -SIN_60 * radius; // front left tower
  4445. delta_tower1_y = -COS_60 * radius;
  4446. delta_tower2_x = SIN_60 * radius; // front right tower
  4447. delta_tower2_y = -COS_60 * radius;
  4448. delta_tower3_x = 0.0; // back middle tower
  4449. delta_tower3_y = radius;
  4450. delta_diagonal_rod_2 = sq(diagonal_rod);
  4451. }
  4452. void calculate_delta(float cartesian[3]) {
  4453. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4454. - sq(delta_tower1_x-cartesian[X_AXIS])
  4455. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4456. ) + cartesian[Z_AXIS];
  4457. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4458. - sq(delta_tower2_x-cartesian[X_AXIS])
  4459. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4460. ) + cartesian[Z_AXIS];
  4461. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4462. - sq(delta_tower3_x-cartesian[X_AXIS])
  4463. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4464. ) + cartesian[Z_AXIS];
  4465. /*
  4466. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4467. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4468. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4469. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4470. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4471. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4472. */
  4473. }
  4474. #ifdef ENABLE_AUTO_BED_LEVELING
  4475. // Adjust print surface height by linear interpolation over the bed_level array.
  4476. void adjust_delta(float cartesian[3]) {
  4477. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4478. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4479. float h1 = 0.001 - half, h2 = half - 0.001,
  4480. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4481. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4482. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4483. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4484. z1 = bed_level[floor_x + half][floor_y + half],
  4485. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4486. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4487. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4488. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4489. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4490. offset = (1 - ratio_x) * left + ratio_x * right;
  4491. delta[X_AXIS] += offset;
  4492. delta[Y_AXIS] += offset;
  4493. delta[Z_AXIS] += offset;
  4494. /*
  4495. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4496. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4497. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4498. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4499. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4500. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4501. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4502. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4503. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4504. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4505. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4506. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4507. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4508. */
  4509. }
  4510. #endif // ENABLE_AUTO_BED_LEVELING
  4511. #endif // DELTA
  4512. #ifdef MESH_BED_LEVELING
  4513. #if !defined(MIN)
  4514. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4515. #endif // ! MIN
  4516. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4517. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4518. {
  4519. if (!mbl.active) {
  4520. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4521. for(int8_t i=0; i < NUM_AXIS; i++) {
  4522. current_position[i] = destination[i];
  4523. }
  4524. return;
  4525. }
  4526. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4527. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4528. int ix = mbl.select_x_index(x);
  4529. int iy = mbl.select_y_index(y);
  4530. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4531. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4532. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4533. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4534. if (pix == ix && piy == iy) {
  4535. // Start and end on same mesh square
  4536. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4537. for(int8_t i=0; i < NUM_AXIS; i++) {
  4538. current_position[i] = destination[i];
  4539. }
  4540. return;
  4541. }
  4542. float nx, ny, ne, normalized_dist;
  4543. if (ix > pix && (x_splits) & BIT(ix)) {
  4544. nx = mbl.get_x(ix);
  4545. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4546. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4547. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4548. x_splits ^= BIT(ix);
  4549. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4550. nx = mbl.get_x(pix);
  4551. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4552. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4553. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4554. x_splits ^= BIT(pix);
  4555. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4556. ny = mbl.get_y(iy);
  4557. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4558. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4559. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4560. y_splits ^= BIT(iy);
  4561. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4562. ny = mbl.get_y(piy);
  4563. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4564. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4565. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4566. y_splits ^= BIT(piy);
  4567. } else {
  4568. // Already split on a border
  4569. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4570. for(int8_t i=0; i < NUM_AXIS; i++) {
  4571. current_position[i] = destination[i];
  4572. }
  4573. return;
  4574. }
  4575. // Do the split and look for more borders
  4576. destination[X_AXIS] = nx;
  4577. destination[Y_AXIS] = ny;
  4578. destination[E_AXIS] = ne;
  4579. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4580. destination[X_AXIS] = x;
  4581. destination[Y_AXIS] = y;
  4582. destination[E_AXIS] = e;
  4583. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4584. }
  4585. #endif // MESH_BED_LEVELING
  4586. void prepare_move() {
  4587. clamp_to_software_endstops(destination);
  4588. refresh_cmd_timeout();
  4589. #ifdef SCARA //for now same as delta-code
  4590. float difference[NUM_AXIS];
  4591. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4592. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4593. sq(difference[Y_AXIS]) +
  4594. sq(difference[Z_AXIS]));
  4595. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4596. if (cartesian_mm < 0.000001) { return; }
  4597. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4598. int steps = max(1, int(scara_segments_per_second * seconds));
  4599. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4600. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4601. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4602. for (int s = 1; s <= steps; s++) {
  4603. float fraction = float(s) / float(steps);
  4604. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4605. destination[i] = current_position[i] + difference[i] * fraction;
  4606. }
  4607. calculate_delta(destination);
  4608. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4609. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4610. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4611. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4612. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4613. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4614. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4615. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4616. active_extruder);
  4617. }
  4618. #endif // SCARA
  4619. #ifdef DELTA
  4620. float difference[NUM_AXIS];
  4621. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4622. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4623. sq(difference[Y_AXIS]) +
  4624. sq(difference[Z_AXIS]));
  4625. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4626. if (cartesian_mm < 0.000001) return;
  4627. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4628. int steps = max(1, int(delta_segments_per_second * seconds));
  4629. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4630. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4631. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4632. for (int s = 1; s <= steps; s++) {
  4633. float fraction = float(s) / float(steps);
  4634. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4635. calculate_delta(destination);
  4636. #ifdef ENABLE_AUTO_BED_LEVELING
  4637. adjust_delta(destination);
  4638. #endif
  4639. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4640. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4641. active_extruder);
  4642. }
  4643. #endif // DELTA
  4644. #ifdef DUAL_X_CARRIAGE
  4645. if (active_extruder_parked)
  4646. {
  4647. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4648. {
  4649. // move duplicate extruder into correct duplication position.
  4650. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4651. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4652. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4653. sync_plan_position();
  4654. st_synchronize();
  4655. extruder_duplication_enabled = true;
  4656. active_extruder_parked = false;
  4657. }
  4658. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4659. {
  4660. if (current_position[E_AXIS] == destination[E_AXIS])
  4661. {
  4662. // this is a travel move - skit it but keep track of current position (so that it can later
  4663. // be used as start of first non-travel move)
  4664. if (delayed_move_time != 0xFFFFFFFFUL)
  4665. {
  4666. memcpy(current_position, destination, sizeof(current_position));
  4667. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4668. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4669. delayed_move_time = millis();
  4670. return;
  4671. }
  4672. }
  4673. delayed_move_time = 0;
  4674. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4675. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4677. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4678. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4679. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4680. active_extruder_parked = false;
  4681. }
  4682. }
  4683. #endif //DUAL_X_CARRIAGE
  4684. #if !defined(DELTA) && !defined(SCARA)
  4685. // Do not use feedmultiply for E or Z only moves
  4686. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4687. line_to_destination();
  4688. } else {
  4689. #ifdef MESH_BED_LEVELING
  4690. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4691. return;
  4692. #else
  4693. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4694. #endif // MESH_BED_LEVELING
  4695. }
  4696. #endif // !(DELTA || SCARA)
  4697. for(int8_t i=0; i < NUM_AXIS; i++) {
  4698. current_position[i] = destination[i];
  4699. }
  4700. }
  4701. void prepare_arc_move(char isclockwise) {
  4702. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4703. // Trace the arc
  4704. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4705. // As far as the parser is concerned, the position is now == target. In reality the
  4706. // motion control system might still be processing the action and the real tool position
  4707. // in any intermediate location.
  4708. for(int8_t i=0; i < NUM_AXIS; i++) {
  4709. current_position[i] = destination[i];
  4710. }
  4711. refresh_cmd_timeout();
  4712. }
  4713. #if HAS_CONTROLLERFAN
  4714. unsigned long lastMotor = 0; // Last time a motor was turned on
  4715. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4716. void controllerFan() {
  4717. uint32_t ms = millis();
  4718. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4719. lastMotorCheck = ms;
  4720. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4721. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4722. #if EXTRUDERS > 1
  4723. || E1_ENABLE_READ == E_ENABLE_ON
  4724. #if HAS_X2_ENABLE
  4725. || X2_ENABLE_READ == X_ENABLE_ON
  4726. #endif
  4727. #if EXTRUDERS > 2
  4728. || E2_ENABLE_READ == E_ENABLE_ON
  4729. #if EXTRUDERS > 3
  4730. || E3_ENABLE_READ == E_ENABLE_ON
  4731. #endif
  4732. #endif
  4733. #endif
  4734. ) {
  4735. lastMotor = ms; //... set time to NOW so the fan will turn on
  4736. }
  4737. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4738. // allows digital or PWM fan output to be used (see M42 handling)
  4739. digitalWrite(CONTROLLERFAN_PIN, speed);
  4740. analogWrite(CONTROLLERFAN_PIN, speed);
  4741. }
  4742. }
  4743. #endif
  4744. #ifdef SCARA
  4745. void calculate_SCARA_forward_Transform(float f_scara[3])
  4746. {
  4747. // Perform forward kinematics, and place results in delta[3]
  4748. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4749. float x_sin, x_cos, y_sin, y_cos;
  4750. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4751. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4752. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4753. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4754. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4755. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4756. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4757. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4758. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4759. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4760. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4761. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4762. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4763. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4764. }
  4765. void calculate_delta(float cartesian[3]){
  4766. //reverse kinematics.
  4767. // Perform reversed kinematics, and place results in delta[3]
  4768. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4769. float SCARA_pos[2];
  4770. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4771. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4772. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4773. #if (Linkage_1 == Linkage_2)
  4774. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4775. #else
  4776. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4777. #endif
  4778. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4779. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4780. SCARA_K2 = Linkage_2 * SCARA_S2;
  4781. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4782. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4783. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4784. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4785. delta[Z_AXIS] = cartesian[Z_AXIS];
  4786. /*
  4787. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4788. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4789. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4790. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4791. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4792. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4793. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4794. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4795. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4796. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4797. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4798. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4799. SERIAL_ECHOLN(" ");*/
  4800. }
  4801. #endif
  4802. #ifdef TEMP_STAT_LEDS
  4803. static bool blue_led = false;
  4804. static bool red_led = false;
  4805. static uint32_t stat_update = 0;
  4806. void handle_status_leds(void) {
  4807. float max_temp = 0.0;
  4808. if(millis() > stat_update) {
  4809. stat_update += 500; // Update every 0.5s
  4810. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4811. max_temp = max(max_temp, degHotend(cur_extruder));
  4812. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4813. }
  4814. #if HAS_TEMP_BED
  4815. max_temp = max(max_temp, degTargetBed());
  4816. max_temp = max(max_temp, degBed());
  4817. #endif
  4818. if((max_temp > 55.0) && (red_led == false)) {
  4819. digitalWrite(STAT_LED_RED, 1);
  4820. digitalWrite(STAT_LED_BLUE, 0);
  4821. red_led = true;
  4822. blue_led = false;
  4823. }
  4824. if((max_temp < 54.0) && (blue_led == false)) {
  4825. digitalWrite(STAT_LED_RED, 0);
  4826. digitalWrite(STAT_LED_BLUE, 1);
  4827. red_led = false;
  4828. blue_led = true;
  4829. }
  4830. }
  4831. }
  4832. #endif
  4833. void disable_all_axes() {
  4834. disable_x();
  4835. disable_y();
  4836. disable_z();
  4837. disable_e0();
  4838. disable_e1();
  4839. disable_e2();
  4840. disable_e3();
  4841. }
  4842. /**
  4843. *
  4844. */
  4845. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4846. #if HAS_FILRUNOUT
  4847. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4848. filrunout();
  4849. #endif
  4850. if (buflen < BUFSIZE - 1) get_command();
  4851. unsigned long ms = millis();
  4852. if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
  4853. if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
  4854. && !ignore_stepper_queue && !blocks_queued())
  4855. disable_all_axes();
  4856. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4857. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4858. chdkActive = false;
  4859. WRITE(CHDK, LOW);
  4860. }
  4861. #endif
  4862. #if HAS_KILL
  4863. // Check if the kill button was pressed and wait just in case it was an accidental
  4864. // key kill key press
  4865. // -------------------------------------------------------------------------------
  4866. static int killCount = 0; // make the inactivity button a bit less responsive
  4867. const int KILL_DELAY = 750;
  4868. if (!READ(KILL_PIN))
  4869. killCount++;
  4870. else if (killCount > 0)
  4871. killCount--;
  4872. // Exceeded threshold and we can confirm that it was not accidental
  4873. // KILL the machine
  4874. // ----------------------------------------------------------------
  4875. if (killCount >= KILL_DELAY) kill();
  4876. #endif
  4877. #if HAS_HOME
  4878. // Check to see if we have to home, use poor man's debouncer
  4879. // ---------------------------------------------------------
  4880. static int homeDebounceCount = 0; // poor man's debouncing count
  4881. const int HOME_DEBOUNCE_DELAY = 750;
  4882. if (!READ(HOME_PIN)) {
  4883. if (!homeDebounceCount) {
  4884. enquecommands_P(PSTR("G28"));
  4885. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4886. }
  4887. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4888. homeDebounceCount++;
  4889. else
  4890. homeDebounceCount = 0;
  4891. }
  4892. #endif
  4893. #if HAS_CONTROLLERFAN
  4894. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4895. #endif
  4896. #ifdef EXTRUDER_RUNOUT_PREVENT
  4897. if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
  4898. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4899. bool oldstatus = E0_ENABLE_READ;
  4900. enable_e0();
  4901. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  4902. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4903. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  4904. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  4905. current_position[E_AXIS] = oldepos;
  4906. destination[E_AXIS] = oldedes;
  4907. plan_set_e_position(oldepos);
  4908. previous_millis_cmd = ms; // refresh_cmd_timeout()
  4909. st_synchronize();
  4910. E0_ENABLE_WRITE(oldstatus);
  4911. }
  4912. #endif
  4913. #ifdef DUAL_X_CARRIAGE
  4914. // handle delayed move timeout
  4915. if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
  4916. // travel moves have been received so enact them
  4917. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4918. memcpy(destination, current_position, sizeof(destination));
  4919. prepare_move();
  4920. }
  4921. #endif
  4922. #ifdef TEMP_STAT_LEDS
  4923. handle_status_leds();
  4924. #endif
  4925. check_axes_activity();
  4926. }
  4927. void kill()
  4928. {
  4929. cli(); // Stop interrupts
  4930. disable_heater();
  4931. disable_all_axes();
  4932. #if HAS_POWER_SWITCH
  4933. pinMode(PS_ON_PIN, INPUT);
  4934. #endif
  4935. SERIAL_ERROR_START;
  4936. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4937. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4938. // FMC small patch to update the LCD before ending
  4939. sei(); // enable interrupts
  4940. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  4941. cli(); // disable interrupts
  4942. suicide();
  4943. while(1) { /* Intentionally left empty */ } // Wait for reset
  4944. }
  4945. #ifdef FILAMENT_RUNOUT_SENSOR
  4946. void filrunout()
  4947. {
  4948. if filrunoutEnqued == false {
  4949. filrunoutEnqued = true;
  4950. enquecommand("M600");
  4951. }
  4952. }
  4953. #endif
  4954. void Stop()
  4955. {
  4956. disable_heater();
  4957. if(Stopped == false) {
  4958. Stopped = true;
  4959. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4960. SERIAL_ERROR_START;
  4961. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4962. LCD_MESSAGEPGM(MSG_STOPPED);
  4963. }
  4964. }
  4965. bool IsStopped() { return Stopped; };
  4966. #ifdef FAST_PWM_FAN
  4967. void setPwmFrequency(uint8_t pin, int val)
  4968. {
  4969. val &= 0x07;
  4970. switch(digitalPinToTimer(pin))
  4971. {
  4972. #if defined(TCCR0A)
  4973. case TIMER0A:
  4974. case TIMER0B:
  4975. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4976. // TCCR0B |= val;
  4977. break;
  4978. #endif
  4979. #if defined(TCCR1A)
  4980. case TIMER1A:
  4981. case TIMER1B:
  4982. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4983. // TCCR1B |= val;
  4984. break;
  4985. #endif
  4986. #if defined(TCCR2)
  4987. case TIMER2:
  4988. case TIMER2:
  4989. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4990. TCCR2 |= val;
  4991. break;
  4992. #endif
  4993. #if defined(TCCR2A)
  4994. case TIMER2A:
  4995. case TIMER2B:
  4996. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4997. TCCR2B |= val;
  4998. break;
  4999. #endif
  5000. #if defined(TCCR3A)
  5001. case TIMER3A:
  5002. case TIMER3B:
  5003. case TIMER3C:
  5004. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5005. TCCR3B |= val;
  5006. break;
  5007. #endif
  5008. #if defined(TCCR4A)
  5009. case TIMER4A:
  5010. case TIMER4B:
  5011. case TIMER4C:
  5012. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5013. TCCR4B |= val;
  5014. break;
  5015. #endif
  5016. #if defined(TCCR5A)
  5017. case TIMER5A:
  5018. case TIMER5B:
  5019. case TIMER5C:
  5020. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5021. TCCR5B |= val;
  5022. break;
  5023. #endif
  5024. }
  5025. }
  5026. #endif //FAST_PWM_FAN
  5027. bool setTargetedHotend(int code){
  5028. tmp_extruder = active_extruder;
  5029. if(code_seen('T')) {
  5030. tmp_extruder = code_value();
  5031. if(tmp_extruder >= EXTRUDERS) {
  5032. SERIAL_ECHO_START;
  5033. switch(code){
  5034. case 104:
  5035. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5036. break;
  5037. case 105:
  5038. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5039. break;
  5040. case 109:
  5041. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5042. break;
  5043. case 218:
  5044. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5045. break;
  5046. case 221:
  5047. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5048. break;
  5049. }
  5050. SERIAL_ECHOLN(tmp_extruder);
  5051. return true;
  5052. }
  5053. }
  5054. return false;
  5055. }
  5056. float calculate_volumetric_multiplier(float diameter) {
  5057. if (!volumetric_enabled || diameter == 0) return 1.0;
  5058. float d2 = diameter * 0.5;
  5059. return 1.0 / (M_PI * d2 * d2);
  5060. }
  5061. void calculate_volumetric_multipliers() {
  5062. for (int i=0; i<EXTRUDERS; i++)
  5063. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5064. }