My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

G26_Mesh_Validation_Tool.cpp 37KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "MarlinConfig.h"
  26. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
  27. #include "Marlin.h"
  28. #include "Configuration.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "UBL.h"
  33. #include "ultralcd.h"
  34. #define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
  35. #define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
  36. #define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all
  37. #define FILAMENT 1.75 // the options every time they do a Mesh Validation Print.
  38. #define LAYER_HEIGHT 0.2
  39. #define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
  40. #define BED_TEMP 60.0
  41. #define HOTEND_TEMP 205.0
  42. #define OOZE_AMOUNT 0.3
  43. #define SIZE_OF_INTERSECTION_CIRCLES 5
  44. #define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
  45. // less than SIZE_OR_INTERSECTION_CIRCLES
  46. /**
  47. * Roxy's G26 Mesh Validation Tool
  48. *
  49. * G26 Is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  50. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  51. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  52. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  53. * the intersections of those lines (respectively).
  54. *
  55. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  56. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  57. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  58. * focus on a particular area of the Mesh where attention is needed.
  59. *
  60. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  61. *
  62. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  63. * as the base for any distance comparison.
  64. *
  65. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  66. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  67. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  68. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  69. * it is on.
  70. *
  71. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  72. *
  73. * F # Filament Used to specify the diameter of the filament being used. If not specified
  74. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  75. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  76. * of filament that is being extruded during the printing of the various lines on the bed.
  77. *
  78. * K Keep-On Keep the heaters turned on at the end of the command.
  79. *
  80. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  81. *
  82. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  83. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  84. *
  85. * N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  86. *
  87. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  88. * is over kill, but using this parameter will let you get the very first 'cicle' perfect
  89. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  90. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  91. *
  92. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  93. * given, no prime action will take place. If the parameter specifies an amount, that much
  94. * will be purged before continuing. If no amount is specified the command will start
  95. * purging filament until the user provides an LCD Click and then it will continue with
  96. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  97. * pliers while holding the LCD Click wheel in a depressed state.
  98. *
  99. * R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  100. * undrawn cicle is still done. But the distance to the location for each circle has a
  101. * random number of the size specified added to it. Specifying R50 will give an interesting
  102. * deviation from the normal behaviour on a 10 x 10 Mesh.
  103. *
  104. * X # X coordinate Specify the starting location of the drawing activity.
  105. *
  106. * Y # Y coordinate Specify the starting location of the drawing activity.
  107. */
  108. extern bool ubl_has_control_of_lcd_panel;
  109. extern float feedrate;
  110. //extern bool relative_mode;
  111. extern Planner planner;
  112. //#if ENABLED(ULTRA_LCD)
  113. extern char lcd_status_message[];
  114. //#endif
  115. extern float destination[];
  116. extern void set_destination_to_current();
  117. extern void set_current_to_destination();
  118. extern float code_value_float();
  119. extern bool code_value_bool();
  120. extern bool code_has_value();
  121. extern void lcd_init();
  122. extern void lcd_setstatuspgm(const char* const message, uint8_t level);
  123. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
  124. bool prepare_move_to_destination_cartesian();
  125. void line_to_destination();
  126. void line_to_destination(float );
  127. void gcode_G28();
  128. void sync_plan_position_e();
  129. void un_retract_filament();
  130. void retract_filament();
  131. void look_for_lines_to_connect();
  132. bool parse_G26_parameters();
  133. void move_to(const float&, const float&, const float&, const float&) ;
  134. void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
  135. bool turn_on_heaters();
  136. bool prime_nozzle();
  137. void chirp_at_user();
  138. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
  139. float g26_e_axis_feedrate = 0.020,
  140. random_deviation = 0.0,
  141. layer_height = LAYER_HEIGHT;
  142. bool g26_retracted = false; // We keep track of the state of the nozzle to know if it
  143. // is currently retracted or not. This allows us to be
  144. // less careful because mis-matched retractions and un-retractions
  145. // won't leave us in a bad state.
  146. float valid_trig_angle(float);
  147. mesh_index_pair find_closest_circle_to_print(float, float);
  148. void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
  149. //uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
  150. static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
  151. retraction_multiplier = RETRACTION_MULTIPLIER,
  152. nozzle = NOZZLE,
  153. filament_diameter = FILAMENT,
  154. prime_length = PRIME_LENGTH,
  155. x_pos, y_pos,
  156. bed_temp = BED_TEMP,
  157. hotend_temp = HOTEND_TEMP,
  158. ooze_amount = OOZE_AMOUNT;
  159. int8_t prime_flag = 0;
  160. bool keep_heaters_on = false,
  161. g26_debug_flag = false;
  162. /**
  163. * G26: Mesh Validation Pattern generation.
  164. *
  165. * Used to interactively edit UBL's Mesh by placing the
  166. * nozzle in a problem area and doing a G29 P4 R command.
  167. */
  168. void gcode_G26() {
  169. float circle_x, circle_y, x, y, xe, ye, tmp,
  170. start_angle, end_angle;
  171. int i, xi, yi, lcd_init_counter = 0;
  172. mesh_index_pair location;
  173. if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first
  174. gcode_G28();
  175. if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command
  176. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  177. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  178. stepper.synchronize();
  179. set_current_to_destination();
  180. }
  181. ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel!
  182. if (turn_on_heaters()) // Turn on the heaters, leave the command if anything
  183. goto LEAVE; // has gone wrong.
  184. axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the
  185. //relative_mode = false; // planner and stepper motors!
  186. current_position[E_AXIS] = 0.0;
  187. sync_plan_position_e();
  188. if (prime_flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
  189. goto LEAVE;
  190. /**
  191. * Bed is preheated
  192. *
  193. * Nozzle is at temperature
  194. *
  195. * Filament is primed!
  196. *
  197. * It's "Show Time" !!!
  198. */
  199. // Clear all of the flags we need
  200. ZERO(circle_flags);
  201. ZERO(horizontal_mesh_line_flags);
  202. ZERO(vertical_mesh_line_flags);
  203. //
  204. // Move nozzle to the specified height for the first layer
  205. //
  206. set_destination_to_current();
  207. destination[Z_AXIS] = layer_height;
  208. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
  209. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
  210. ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel!
  211. //debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern.");
  212. /**
  213. * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
  214. * the CPU load and make the arc drawing faster and more smooth
  215. */
  216. float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
  217. for (i = 0; i <= 360 / 30; i++) {
  218. cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
  219. sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
  220. }
  221. do {
  222. if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
  223. #if ENABLED(ULTRA_LCD)
  224. lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
  225. lcd_quick_feedback();
  226. #endif
  227. while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
  228. idle(); // Encoder Wheel if that is why we are leaving
  229. lcd_reset_alert_level();
  230. lcd_setstatuspgm(PSTR(""));
  231. }
  232. while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
  233. idle(); // Encoder Wheel if that is why we are leaving
  234. lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
  235. }
  236. goto LEAVE;
  237. }
  238. if (continue_with_closest)
  239. location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
  240. else
  241. location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
  242. if (location.x_index >= 0 && location.y_index >= 0) {
  243. circle_x = ubl.map_x_index_to_bed_location(location.x_index);
  244. circle_y = ubl.map_y_index_to_bed_location(location.y_index);
  245. // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
  246. #ifdef DELTA
  247. if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
  248. SERIAL_ERROR_START;
  249. SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
  250. goto LEAVE;
  251. }
  252. #endif
  253. // TODO: Change this to use `position_is_reachable`
  254. if (circle_x < (X_MIN_POS) || circle_x > (X_MAX_POS) || circle_y < (Y_MIN_POS) || circle_y > (Y_MAX_POS)) {
  255. SERIAL_ERROR_START;
  256. SERIAL_ERRORLNPGM("Attempt to print off the bed.");
  257. goto LEAVE;
  258. }
  259. xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
  260. yi = location.y_index;
  261. if (g26_debug_flag) {
  262. SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
  263. SERIAL_ECHOPAIR(", yi=", yi);
  264. SERIAL_CHAR(')');
  265. SERIAL_EOL;
  266. }
  267. start_angle = 0.0; // assume it is going to be a full circle
  268. end_angle = 360.0;
  269. if (xi == 0) { // Check for bottom edge
  270. start_angle = -90.0;
  271. end_angle = 90.0;
  272. if (yi == 0) // it is an edge, check for the two left corners
  273. start_angle = 0.0;
  274. else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
  275. end_angle = 0.0;
  276. }
  277. else if (xi == UBL_MESH_NUM_X_POINTS - 1) { // Check for top edge
  278. start_angle = 90.0;
  279. end_angle = 270.0;
  280. if (yi == 0) // it is an edge, check for the two right corners
  281. end_angle = 180.0;
  282. else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
  283. start_angle = 180.0;
  284. }
  285. else if (yi == 0) {
  286. start_angle = 0.0; // only do the top side of the cirlce
  287. end_angle = 180.0;
  288. }
  289. else if (yi == UBL_MESH_NUM_Y_POINTS - 1) {
  290. start_angle = 180.0; // only do the bottom side of the cirlce
  291. end_angle = 360.0;
  292. }
  293. for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
  294. int tmp_div_30 = tmp / 30.0;
  295. if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
  296. x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
  297. y = circle_y + sin_table[tmp_div_30];
  298. if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
  299. xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
  300. ye = circle_y + sin_table[tmp_div_30 + 1];
  301. #ifdef DELTA
  302. if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
  303. continue; // the 'circle' is on the bed. If
  304. #else // not, we need to skip
  305. x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  306. y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  307. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  308. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  309. #endif
  310. //if (g26_debug_flag) {
  311. // char ccc, *cptr, seg_msg[50], seg_num[10];
  312. // strcpy(seg_msg, " segment: ");
  313. // strcpy(seg_num, " \n");
  314. // cptr = (char*) "01234567890ABCDEF????????";
  315. // ccc = cptr[tmp_div_30];
  316. // seg_num[1] = ccc;
  317. // strcat(seg_msg, seg_num);
  318. // debug_current_and_destination(seg_msg);
  319. //}
  320. print_line_from_here_to_there(x, y, layer_height, xe, ye, layer_height);
  321. }
  322. //lcd_init_counter++;
  323. //if (lcd_init_counter > 10) {
  324. // lcd_init_counter = 0;
  325. // lcd_init(); // Some people's LCD Displays are locking up. This might help them
  326. // ubl_has_control_of_lcd_panel = true; // Make sure UBL still is controlling the LCD Panel
  327. //}
  328. //debug_current_and_destination((char*)"Looking for lines to connect.");
  329. look_for_lines_to_connect();
  330. //debug_current_and_destination((char*)"Done with line connect.");
  331. }
  332. //debug_current_and_destination((char*)"Done with current circle.");
  333. }
  334. while (location.x_index >= 0 && location.y_index >= 0);
  335. LEAVE:
  336. lcd_reset_alert_level();
  337. lcd_setstatuspgm(PSTR("Leaving G26"));
  338. retract_filament();
  339. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
  340. //debug_current_and_destination((char*)"ready to do Z-Raise.");
  341. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
  342. //debug_current_and_destination((char*)"done doing Z-Raise.");
  343. destination[X_AXIS] = x_pos; // Move back to the starting position
  344. destination[Y_AXIS] = y_pos;
  345. //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  346. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
  347. //debug_current_and_destination((char*)"done doing X/Y move.");
  348. ubl_has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
  349. if (!keep_heaters_on) {
  350. #if HAS_TEMP_BED
  351. thermalManager.setTargetBed(0.0);
  352. #endif
  353. thermalManager.setTargetHotend(0.0, 0);
  354. }
  355. }
  356. float valid_trig_angle(float d) {
  357. while (d > 360.0) d -= 360.0;
  358. while (d < 0.0) d += 360.0;
  359. return d;
  360. }
  361. mesh_index_pair find_closest_circle_to_print( float X, float Y) {
  362. float f, mx, my, dx, dy, closest = 99999.99;
  363. mesh_index_pair return_val;
  364. return_val.x_index = return_val.y_index = -1;
  365. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  366. for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  367. if (!is_bit_set(circle_flags, i, j)) {
  368. mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
  369. my = ubl.map_y_index_to_bed_location(j);
  370. dx = X - mx; // Get the distance to this intersection
  371. dy = Y - my;
  372. f = HYPOT(dx, dy);
  373. dx = x_pos - mx; // It is possible that we are being called with the values
  374. dy = y_pos - my; // to let us find the closest circle to the start position.
  375. f += HYPOT(dx, dy) / 15.0; // But if this is not the case,
  376. // we are going to add in a small
  377. // weighting to the distance calculation to help it choose
  378. // a better place to continue.
  379. if (random_deviation > 1.0)
  380. f += random(0.0, random_deviation); // Add in the specified amount of Random Noise to our search
  381. if (f < closest) {
  382. closest = f; // We found a closer location that is still
  383. return_val.x_index = i; // un-printed --- save the data for it
  384. return_val.y_index = j;
  385. return_val.distance= closest;
  386. }
  387. }
  388. }
  389. }
  390. bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  391. return return_val;
  392. }
  393. void look_for_lines_to_connect() {
  394. float sx, sy, ex, ey;
  395. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  396. for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  397. if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS.
  398. // This is already a half circle because we are at the edge of the bed.
  399. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  400. if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
  401. //
  402. // We found two circles that need a horizontal line to connect them
  403. // Print it!
  404. //
  405. sx = ubl.map_x_index_to_bed_location(i);
  406. sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
  407. sy = ubl.map_y_index_to_bed_location(j);
  408. ex = ubl.map_x_index_to_bed_location(i + 1);
  409. ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
  410. ey = sy;
  411. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  412. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  413. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  414. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  415. if (g26_debug_flag) {
  416. SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
  417. SERIAL_ECHOPAIR(", sy=", sy);
  418. SERIAL_ECHOPAIR(") -> (ex=", ex);
  419. SERIAL_ECHOPAIR(", ey=", ey);
  420. SERIAL_CHAR(')');
  421. SERIAL_EOL;
  422. //debug_current_and_destination((char*)"Connecting horizontal line.");
  423. }
  424. print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
  425. bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  426. }
  427. }
  428. if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS.
  429. // This is already a half circle because we are at the edge of the bed.
  430. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  431. if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
  432. //
  433. // We found two circles that need a vertical line to connect them
  434. // Print it!
  435. //
  436. sx = ubl.map_x_index_to_bed_location(i);
  437. sy = ubl.map_y_index_to_bed_location(j);
  438. sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
  439. ex = sx;
  440. ey = ubl.map_y_index_to_bed_location(j + 1);
  441. ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
  442. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  443. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  444. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  445. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  446. if (g26_debug_flag) {
  447. SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
  448. SERIAL_ECHOPAIR(", sy=", sy);
  449. SERIAL_ECHOPAIR(") -> (ex=", ex);
  450. SERIAL_ECHOPAIR(", ey=", ey);
  451. SERIAL_CHAR(')');
  452. SERIAL_EOL;
  453. debug_current_and_destination((char*)"Connecting vertical line.");
  454. }
  455. print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
  456. bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  457. }
  458. }
  459. }
  460. }
  461. }
  462. }
  463. }
  464. void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
  465. float feed_value;
  466. static float last_z = -999.99;
  467. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  468. //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
  469. if (z != last_z) {
  470. //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
  471. last_z = z;
  472. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  473. destination[X_AXIS] = current_position[X_AXIS];
  474. destination[Y_AXIS] = current_position[Y_AXIS];
  475. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  476. destination[E_AXIS] = current_position[E_AXIS];
  477. ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
  478. stepper.synchronize();
  479. set_destination_to_current();
  480. //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move");
  481. }
  482. // Check if X or Y is involved in the movement.
  483. // Yes: a 'normal' movement. No: a retract() or un_retract()
  484. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  485. if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
  486. destination[X_AXIS] = x;
  487. destination[Y_AXIS] = y;
  488. destination[E_AXIS] += e_delta;
  489. //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
  490. ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
  491. //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
  492. stepper.synchronize();
  493. set_destination_to_current();
  494. }
  495. void retract_filament() {
  496. if (!g26_retracted) { // Only retract if we are not already retracted!
  497. g26_retracted = true;
  498. //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
  499. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
  500. //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
  501. }
  502. }
  503. void un_retract_filament() {
  504. if (g26_retracted) { // Only un-retract if we are retracted.
  505. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
  506. g26_retracted = false;
  507. //if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
  508. }
  509. }
  510. /**
  511. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  512. * to the other. But there are really three sets of coordinates involved. The first coordinate
  513. * is the present location of the nozzle. We don't necessarily want to print from this location.
  514. * We first need to move the nozzle to the start of line segment where we want to print. Once
  515. * there, we can use the two coordinates supplied to draw the line.
  516. *
  517. * Note: Although we assume the first set of coordinates is the start of the line and the second
  518. * set of coordinates is the end of the line, it does not always work out that way. This function
  519. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  520. * a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
  521. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  522. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  523. * cases where the optimization comes into play.
  524. */
  525. void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
  526. const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
  527. dy_s = current_position[Y_AXIS] - sy,
  528. dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
  529. // to save computation time
  530. dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
  531. dy_e = current_position[Y_AXIS] - ey,
  532. dist_end = HYPOT2(dx_e, dy_e),
  533. dx = ex - sx,
  534. dy = ey - sy,
  535. line_length = HYPOT(dx, dy);
  536. // If the end point of the line is closer to the nozzle, we are going to
  537. // flip the direction of this line. We will print it from the end to the start.
  538. // On very small lines we don't do the optimization because it just isn't worth it.
  539. //
  540. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
  541. //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
  542. print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  543. return;
  544. }
  545. // Now decide if we should retract.
  546. if (dist_start > 2.0) {
  547. retract_filament();
  548. //if (g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
  549. }
  550. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
  551. const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
  552. un_retract_filament();
  553. //if (g26_debug_flag) {
  554. // SERIAL_ECHOLNPGM(" doing printing move.");
  555. // debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
  556. //}
  557. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  558. }
  559. /**
  560. * This function used to be inline code in G26. But there are so many
  561. * parameters it made sense to turn them into static globals and get
  562. * this code out of sight of the main routine.
  563. */
  564. bool parse_G26_parameters() {
  565. extrusion_multiplier = EXTRUSION_MULTIPLIER;
  566. retraction_multiplier = RETRACTION_MULTIPLIER;
  567. nozzle = NOZZLE;
  568. filament_diameter = FILAMENT;
  569. layer_height = LAYER_HEIGHT;
  570. prime_length = PRIME_LENGTH;
  571. bed_temp = BED_TEMP;
  572. hotend_temp = HOTEND_TEMP;
  573. ooze_amount = OOZE_AMOUNT;
  574. prime_flag = 0;
  575. keep_heaters_on = false;
  576. if (code_seen('B')) {
  577. bed_temp = code_value_float();
  578. if (bed_temp < 15.0 || bed_temp > 140.0) {
  579. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
  580. return UBL_ERR;
  581. }
  582. }
  583. if (code_seen('C')) continue_with_closest++;
  584. if (code_seen('L')) {
  585. layer_height = code_value_float();
  586. if (layer_height < 0.0 || layer_height > 2.0) {
  587. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  588. return UBL_ERR;
  589. }
  590. }
  591. if (code_seen('Q')) {
  592. if (code_has_value()) {
  593. retraction_multiplier = code_value_float();
  594. if (retraction_multiplier < 0.05 || retraction_multiplier > 15.0) {
  595. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  596. return UBL_ERR;
  597. }
  598. }
  599. else {
  600. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  601. return UBL_ERR;
  602. }
  603. }
  604. if (code_seen('N')) {
  605. nozzle = code_value_float();
  606. if (nozzle < 0.1 || nozzle > 1.0) {
  607. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  608. return UBL_ERR;
  609. }
  610. }
  611. if (code_seen('K')) keep_heaters_on++;
  612. if (code_seen('O') && code_has_value())
  613. ooze_amount = code_value_float();
  614. if (code_seen('P')) {
  615. if (!code_has_value())
  616. prime_flag = -1;
  617. else {
  618. prime_flag++;
  619. prime_length = code_value_float();
  620. if (prime_length < 0.0 || prime_length > 25.0) {
  621. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  622. return UBL_ERR;
  623. }
  624. }
  625. }
  626. if (code_seen('F')) {
  627. filament_diameter = code_value_float();
  628. if (filament_diameter < 1.0 || filament_diameter > 4.0) {
  629. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  630. return UBL_ERR;
  631. }
  632. }
  633. extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
  634. // scale up or down the length needed to get the
  635. // same volume of filament
  636. extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
  637. if (code_seen('H')) {
  638. hotend_temp = code_value_float();
  639. if (hotend_temp < 165.0 || hotend_temp > 280.0) {
  640. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  641. return UBL_ERR;
  642. }
  643. }
  644. if (code_seen('R')) {
  645. randomSeed(millis());
  646. random_deviation = code_has_value() ? code_value_float() : 50.0;
  647. }
  648. x_pos = current_position[X_AXIS];
  649. y_pos = current_position[Y_AXIS];
  650. if (code_seen('X')) {
  651. x_pos = code_value_float();
  652. if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
  653. SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
  654. return UBL_ERR;
  655. }
  656. }
  657. else
  658. if (code_seen('Y')) {
  659. y_pos = code_value_float();
  660. if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
  661. SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
  662. return UBL_ERR;
  663. }
  664. }
  665. /**
  666. * We save the question of what to do with the Unified Bed Leveling System's Activation until the very
  667. * end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
  668. * alter the system's status. We wait until we know everything is correct before altering the state
  669. * of the system.
  670. */
  671. ubl.state.active = !code_seen('D');
  672. return UBL_OK;
  673. }
  674. bool exit_from_g26() {
  675. //strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
  676. lcd_reset_alert_level();
  677. lcd_setstatuspgm(PSTR("Leaving G26"));
  678. while (ubl_lcd_clicked()) idle();
  679. return UBL_ERR;
  680. }
  681. /**
  682. * Turn on the bed and nozzle heat and
  683. * wait for them to get up to temperature.
  684. */
  685. bool turn_on_heaters() {
  686. #if HAS_TEMP_BED
  687. #if ENABLED(ULTRA_LCD)
  688. if (bed_temp > 25) {
  689. lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
  690. lcd_quick_feedback();
  691. #endif
  692. ubl_has_control_of_lcd_panel = true;
  693. thermalManager.setTargetBed(bed_temp);
  694. while (abs(thermalManager.degBed() - bed_temp) > 3) {
  695. if (ubl_lcd_clicked()) return exit_from_g26();
  696. idle();
  697. }
  698. #if ENABLED(ULTRA_LCD)
  699. }
  700. lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
  701. lcd_quick_feedback();
  702. #endif
  703. #endif
  704. // Start heating the nozzle and wait for it to reach temperature.
  705. thermalManager.setTargetHotend(hotend_temp, 0);
  706. while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
  707. if (ubl_lcd_clicked()) return exit_from_g26();
  708. idle();
  709. }
  710. #if ENABLED(ULTRA_LCD)
  711. lcd_reset_alert_level();
  712. lcd_setstatuspgm(PSTR(""));
  713. lcd_quick_feedback();
  714. #endif
  715. return UBL_OK;
  716. }
  717. /**
  718. * Prime the nozzle if needed. Return true on error.
  719. */
  720. bool prime_nozzle() {
  721. float Total_Prime = 0.0;
  722. if (prime_flag == -1) { // The user wants to control how much filament gets purged
  723. lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
  724. chirp_at_user();
  725. set_destination_to_current();
  726. un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
  727. // retracted(). We are here because we want to prime the nozzle.
  728. // So let's just unretract just to be sure.
  729. while (!ubl_lcd_clicked()) {
  730. chirp_at_user();
  731. destination[E_AXIS] += 0.25;
  732. #ifdef PREVENT_LENGTHY_EXTRUDE
  733. Total_Prime += 0.25;
  734. if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
  735. #endif
  736. ubl_line_to_destination(
  737. destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
  738. planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
  739. );
  740. stepper.synchronize(); // Without this synchronize, the purge is more consistent,
  741. // but because the planner has a buffer, we won't be able
  742. // to stop as quickly. So we put up with the less smooth
  743. // action to give the user a more responsive 'Stop'.
  744. set_destination_to_current();
  745. idle();
  746. }
  747. while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
  748. #if ENABLED(ULTRA_LCD)
  749. strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
  750. // So... We cheat to get a message up.
  751. lcd_setstatuspgm(PSTR("Done Priming"), 99);
  752. lcd_quick_feedback();
  753. #endif
  754. }
  755. else {
  756. #if ENABLED(ULTRA_LCD)
  757. lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
  758. lcd_quick_feedback();
  759. #endif
  760. set_destination_to_current();
  761. destination[E_AXIS] += prime_length;
  762. ubl_line_to_destination(
  763. destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
  764. planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
  765. );
  766. stepper.synchronize();
  767. set_destination_to_current();
  768. retract_filament();
  769. }
  770. return UBL_OK;
  771. }
  772. #endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED