My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

UBL_G29.cpp 64KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#include "vector_3.h"
  25. //#include "qr_solve.h"
  26. #include "UBL.h"
  27. #include "Marlin.h"
  28. #include "hex_print_routines.h"
  29. #include "configuration_store.h"
  30. #include "planner.h"
  31. #include "ultralcd.h"
  32. #include <math.h>
  33. void lcd_babystep_z();
  34. void lcd_return_to_status();
  35. bool lcd_clicked();
  36. void lcd_implementation_clear();
  37. extern float meshedit_done;
  38. extern long babysteps_done;
  39. extern float code_value_float();
  40. extern bool code_value_bool();
  41. extern bool code_has_value();
  42. extern float probe_pt(float x, float y, bool, int);
  43. extern float zprobe_zoffset;
  44. extern bool set_probe_deployed(bool);
  45. #define DEPLOY_PROBE() set_probe_deployed(true)
  46. #define STOW_PROBE() set_probe_deployed(false)
  47. bool ProbeStay = true;
  48. constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
  49. ubl_3_point_1_Y = UBL_PROBE_PT_1_Y,
  50. ubl_3_point_2_X = UBL_PROBE_PT_2_X,
  51. ubl_3_point_2_Y = UBL_PROBE_PT_2_Y,
  52. ubl_3_point_3_X = UBL_PROBE_PT_3_X,
  53. ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
  54. #define SIZE_OF_LITTLE_RAISE 0
  55. #define BIG_RAISE_NOT_NEEDED 0
  56. extern void lcd_quick_feedback();
  57. /**
  58. * G29: Unified Bed Leveling by Roxy
  59. *
  60. * Parameters understood by this leveling system:
  61. *
  62. * A Activate Activate the Unified Bed Leveling system.
  63. *
  64. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
  65. * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
  66. * as a shim that the nozzle will pinch as it is lowered. The idea is that you
  67. * can easily feel the nozzle getting to the same height by the amount of resistance
  68. * the business card exhibits to movement. You should try to achieve the same amount
  69. * of resistance on each probed point to facilitate accurate and repeatable measurements.
  70. * You should be very careful not to drive the nozzle into the bussiness card with a
  71. * lot of force as it is very possible to cause damage to your printer if your are
  72. * careless. If you use the B option with G29 P2 B you can leave the number parameter off
  73. * on its first use to enable measurement of the business card thickness. Subsequent usage
  74. * of the B parameter can have the number previously measured supplied to the command.
  75. * Incidently, you are much better off using something like a Spark Gap feeler gauge than
  76. * something that compresses like a Business Card.
  77. *
  78. * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
  79. * further refine the behaviour of several other commands. Issuing a G29 P1 C will
  80. * continue the generation of a partially constructed Mesh without invalidating what has
  81. * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
  82. * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
  83. * it indicates to use the current location instead of defaulting to the center of the print bed.
  84. *
  85. * D Disable Disable the Unified Bed Leveling system.
  86. *
  87. * E Stow_probe Stow the probe after each sampled point.
  88. *
  89. * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the
  90. * specified height, no correction is applied and natural printer kenimatics take over. If no
  91. * number is specified for the command, 10mm is assumed to be reasonable.
  92. *
  93. * G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  94. *
  95. * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
  96. * default is 5mm.
  97. *
  98. * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
  99. * the X and Y parameter are used. If no number is specified, only the closest Mesh
  100. * point to the location is invalidated. The M parameter is available as well to produce
  101. * a map after the operation. This command is useful to invalidate a portion of the
  102. * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
  103. * attempting to invalidate an isolated bad point in the mesh, the M option will indicate
  104. * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
  105. * the bed and use this feature to select the center of the area (or cell) you want to
  106. * invalidate.
  107. *
  108. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  109. * command literally performs a diff between two Meshes.
  110. *
  111. * L Load * Load Mesh from the previously activated location in the EEPROM.
  112. *
  113. * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
  114. * for subsequent Load and Store operations.
  115. *
  116. * O Map * Display the Mesh Map Topology.
  117. * The parameter can be specified alone (ie. G29 O) or in combination with many of the
  118. * other commands. The Mesh Map option works with all of the Phase
  119. * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type
  120. * specified. A map type of 0 is the default is user readable. A map type of 1 can
  121. * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
  122. * mesh.
  123. *
  124. * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
  125. * N option. In general, you should not do this. This can only be done safely with
  126. * commands that do not move the nozzle.
  127. *
  128. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  129. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  130. * each additional Phase that processes it.
  131. *
  132. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  133. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  134. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  135. * a subsequent G or T leveling operation for backward compatability.
  136. *
  137. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  138. * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
  139. * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
  140. * generated. This will be handled in Phase 2. If the Phase 1 command is given the
  141. * C (Continue) parameter it does not invalidate the Mesh prior to automatically
  142. * probing needed locations. This allows you to invalidate portions of the Mesh but still
  143. * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
  144. * parameter can be given to prioritize where the command should be trying to measure points.
  145. * If the X and Y parameters are not specified the current probe position is used. Phase 1
  146. * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
  147. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
  148. * It will suspend generation of the Mesh if it sees the user request that. (This check is
  149. * only done between probe points. You will need to press and hold the switch until the
  150. * Phase 1 command can detect it.)
  151. *
  152. * P2 Phase 2 Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
  153. * parameter to control the height between Mesh points. The default height for movement
  154. * between Mesh points is 5mm. A smaller number can be used to make this part of the
  155. * calibration less time consuming. You will be running the nozzle down until it just barely
  156. * touches the glass. You should have the nozzle clean with no plastic obstructing your view.
  157. * Use caution and move slowly. It is possible to damage your printer if you are careless.
  158. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
  159. * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
  160. *
  161. * The H parameter can be set negative if your Mesh dips in a large area. You can press
  162. * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
  163. * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
  164. * area you are manually probing. Note that the command tries to start you in a corner
  165. * of the bed where movement will be predictable. You can force the location to be used in
  166. * the distance calculations by using the X and Y parameters. You may find it is helpful to
  167. * print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
  168. * the nozzle will need to move in order to complete the command. The C parameter is
  169. * available on the Phase 2 command also and indicates the search for points to measure should
  170. * be done based on the current location of the nozzle.
  171. *
  172. * A B parameter is also available for this command and described up above. It places the
  173. * manual probe subsystem into Business Card mode where the thickness of a business care is
  174. * measured and then used to accurately set the nozzle height in all manual probing for the
  175. * duration of the command. (S for Shim mode would be a better parameter name, but S is needed
  176. * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
  177. * better results if you use a flexible Shim that does not compress very much. That makes it
  178. * easier for you to get the nozzle to press with similar amounts of force against the shim so you
  179. * can get accurate measurements. As you are starting to touch the nozzle against the shim try
  180. * to get it to grasp the shim with the same force as when you measured the thickness of the
  181. * shim at the start of the command.
  182. *
  183. * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
  184. * of the Mesh being built.
  185. *
  186. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is
  187. * used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter
  188. * is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
  189. * of points to set. If the R parameter is specified the current nozzle position is used to
  190. * find the closest points to alter unless the X and Y parameter are used to specify the fill
  191. * location.
  192. *
  193. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
  194. * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
  195. * (More work and details on doing this later!)
  196. * The System will search for the closest Mesh Point to the nozzle. It will move the
  197. * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
  198. * so it is just barely touching the bed. When the user clicks the control, the System
  199. * will lock in that height for that point in the Mesh Compensation System.
  200. *
  201. * Phase 4 has several additional parameters that the user may find helpful. Phase 4
  202. * can be started at a specific location by specifying an X and Y parameter. Phase 4
  203. * can be requested to continue the adjustment of Mesh Points by using the R(epeat)
  204. * parameter. If the Repetition count is not specified, it is assumed the user wishes
  205. * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
  206. * The command can be terminated early (or after the area of interest has been edited) by
  207. * pressing and holding the encoder wheel until the system recognizes the exit request.
  208. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
  209. *
  210. * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
  211. * information left on the printer's bed from the G26 command it is very straight forward
  212. * and easy to fine tune the Mesh. One concept that is important to remember and that
  213. * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
  214. * If you have too little clearance and not much plastic was extruded in an area, you want to
  215. * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
  216. * RAISE the Mesh Point at that location.
  217. *
  218. *
  219. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  220. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  221. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  222. * execute a G29 P6 C <mean height>.
  223. *
  224. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  225. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  226. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  227. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  228. * 0.000 at the Z Home location.
  229. *
  230. * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
  231. * command is not anticipated to be of much value to the typical user. It is intended
  232. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  233. *
  234. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  235. * current state of the Unified Bed Leveling system in the EEPROM.
  236. *
  237. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  238. * for subsequent Load and Store operations. It will also store the current state of
  239. * the Unified Bed Leveling system in the EEPROM.
  240. *
  241. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
  242. * the system at a later date. The text generated can be saved and later sent by PronterFace or
  243. * Repetier Host to reconstruct the current mesh on another machine.
  244. *
  245. * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
  246. *
  247. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  248. * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This
  249. * is useful when the entire bed does not need to be probed because it will be adjusted.
  250. *
  251. * W What? Display valuable data the Unified Bed Leveling System knows.
  252. *
  253. * X # * * X Location for this line of commands
  254. *
  255. * Y # * * Y Location for this line of commands
  256. *
  257. * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
  258. * by just doing a G29 Z
  259. *
  260. * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
  261. * zprobe_zoffset is added to the calculation.
  262. *
  263. *
  264. * Release Notes:
  265. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  266. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  267. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  268. * respectively.)
  269. *
  270. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  271. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  272. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  273. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  274. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  275. * perform a small print and check out your settings quicker. You do not need to populate the
  276. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  277. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  278. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  279. *
  280. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  281. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  282. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  283. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  284. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  285. * this is going to be helpful to the users!)
  286. *
  287. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  288. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions
  289. * we now have the functionality and features of all three systems combined.
  290. */
  291. int ubl_eeprom_start = -1;
  292. bool ubl_has_control_of_lcd_panel = false;
  293. volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
  294. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
  295. static int g29_verbose_level, phase_value = -1, repetition_cnt,
  296. storage_slot = 0, map_type; //unlevel_value = -1;
  297. static bool repeat_flag, c_flag, x_flag, y_flag;
  298. static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
  299. #if ENABLED(ULTRA_LCD)
  300. void lcd_setstatus(const char* message, bool persist);
  301. #endif
  302. void gcode_G29() {
  303. SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start);
  304. if (ubl_eeprom_start < 0) {
  305. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  306. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  307. return;
  308. }
  309. if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
  310. gcode_G28();
  311. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  312. // Invalidate Mesh Points. This command is a little bit asymetrical because
  313. // it directly specifies the repetition count and does not use the 'R' parameter.
  314. if (code_seen('I')) {
  315. repetition_cnt = code_has_value() ? code_value_int() : 1;
  316. while (repetition_cnt--) {
  317. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
  318. if (location.x_index < 0) {
  319. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  320. break; // No more invalid Mesh Points to populate
  321. }
  322. z_values[location.x_index][location.y_index] = NAN;
  323. }
  324. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  325. }
  326. if (code_seen('Q')) {
  327. const int test_pattern = code_has_value() ? code_value_int() : -1;
  328. if (test_pattern < 0 || test_pattern > 2) {
  329. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
  330. return;
  331. }
  332. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  333. switch (test_pattern) {
  334. case 0:
  335. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape - similar to
  336. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
  337. const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x,
  338. p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
  339. z_values[x][y] += 2.0 * HYPOT(p1, p2);
  340. }
  341. }
  342. break;
  343. case 1:
  344. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised
  345. z_values[x][x] += 9.999;
  346. z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  347. }
  348. break;
  349. case 2:
  350. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  351. for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
  352. for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
  353. z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
  354. break;
  355. }
  356. }
  357. /*
  358. if (code_seen('U')) {
  359. unlevel_value = code_value_int();
  360. //if (unlevel_value < 0 || unlevel_value > 7) {
  361. // SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
  362. // return;
  363. //}
  364. }
  365. //*/
  366. if (code_seen('P')) {
  367. phase_value = code_value_int();
  368. if (phase_value < 0 || phase_value > 7) {
  369. SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
  370. return;
  371. }
  372. switch (phase_value) {
  373. //
  374. // Zero Mesh Data
  375. //
  376. case 0:
  377. ubl.reset();
  378. SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
  379. break;
  380. //
  381. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  382. //
  383. case 1:
  384. if (!code_seen('C') ) {
  385. ubl.invalidate();
  386. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
  387. }
  388. if (g29_verbose_level > 1) {
  389. SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
  390. SERIAL_ECHO(x_pos);
  391. SERIAL_ECHOPAIR(",", y_pos);
  392. SERIAL_PROTOCOLLNPGM(")\n");
  393. }
  394. probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  395. code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
  396. break;
  397. //
  398. // Manually Probe Mesh in areas that can't be reached by the probe
  399. //
  400. case 2: {
  401. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
  402. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  403. if (!x_flag && !y_flag) { // use a good default location for the path
  404. x_pos = X_MIN_POS;
  405. y_pos = Y_MIN_POS;
  406. if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
  407. x_pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
  408. if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
  409. y_pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
  410. } // For now, until that is decided, it can be forced with the X
  411. // and Y parameters.
  412. if (code_seen('C')) {
  413. x_pos = current_position[X_AXIS];
  414. y_pos = current_position[Y_AXIS];
  415. }
  416. const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
  417. if (code_seen('B')) {
  418. card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
  419. if (fabs(card_thickness) > 1.5) {
  420. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
  421. return;
  422. }
  423. }
  424. manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
  425. } break;
  426. //
  427. // Populate invalid Mesh areas with a constant
  428. //
  429. case 3: {
  430. const float height = code_seen('C') ? ubl_constant : 0.0;
  431. // If no repetition is specified, do the whole Mesh
  432. if (!repeat_flag) repetition_cnt = 9999;
  433. while (repetition_cnt--) {
  434. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
  435. if (location.x_index < 0) break; // No more invalid Mesh Points to populate
  436. z_values[location.x_index][location.y_index] = height;
  437. }
  438. } break;
  439. //
  440. // Fine Tune (Or Edit) the Mesh
  441. //
  442. case 4:
  443. fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
  444. break;
  445. case 5:
  446. find_mean_mesh_height();
  447. break;
  448. case 6:
  449. shift_mesh_height();
  450. break;
  451. case 10:
  452. // [DEBUG] Pay no attention to this stuff. It can be removed soon.
  453. SERIAL_ECHO_START;
  454. SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
  455. KEEPALIVE_STATE(PAUSED_FOR_USER);
  456. ubl_has_control_of_lcd_panel++;
  457. while (!ubl_lcd_clicked()) {
  458. safe_delay(250);
  459. if (ubl_encoderDiff) {
  460. SERIAL_ECHOLN((int)ubl_encoderDiff);
  461. ubl_encoderDiff = 0;
  462. }
  463. }
  464. SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
  465. ubl_has_control_of_lcd_panel = false;
  466. KEEPALIVE_STATE(IN_HANDLER);
  467. break;
  468. case 11:
  469. // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
  470. SERIAL_ECHO_START;
  471. SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
  472. KEEPALIVE_STATE(PAUSED_FOR_USER);
  473. wait_for_user = true;
  474. while (wait_for_user) {
  475. safe_delay(250);
  476. if (ubl_encoderDiff) {
  477. SERIAL_ECHOLN((int)ubl_encoderDiff);
  478. ubl_encoderDiff = 0;
  479. }
  480. }
  481. SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
  482. KEEPALIVE_STATE(IN_HANDLER);
  483. break;
  484. }
  485. }
  486. if (code_seen('T')) {
  487. float z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset,
  488. z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset,
  489. z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
  490. // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
  491. // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
  492. z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
  493. z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
  494. z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
  495. do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
  496. tilt_mesh_based_on_3pts(z1, z2, z3);
  497. }
  498. //
  499. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  500. // good to have the extra information. Soon... we prune this to just a few items
  501. //
  502. if (code_seen('W')) g29_what_command();
  503. //
  504. // When we are fully debugged, the EEPROM dump command will get deleted also. But
  505. // right now, it is good to have the extra information. Soon... we prune this.
  506. //
  507. if (code_seen('J')) g29_eeprom_dump(); // EEPROM Dump
  508. //
  509. // When we are fully debugged, this may go away. But there are some valid
  510. // use cases for the users. So we can wait and see what to do with it.
  511. //
  512. if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  513. g29_compare_current_mesh_to_stored_mesh();
  514. //
  515. // Load a Mesh from the EEPROM
  516. //
  517. if (code_seen('L')) { // Load Current Mesh Data
  518. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  519. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
  520. if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
  521. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  522. return;
  523. }
  524. ubl.load_mesh(storage_slot);
  525. ubl.state.eeprom_storage_slot = storage_slot;
  526. if (storage_slot != ubl.state.eeprom_storage_slot)
  527. ubl.store_state();
  528. SERIAL_PROTOCOLLNPGM("Done.\n");
  529. }
  530. //
  531. // Store a Mesh in the EEPROM
  532. //
  533. if (code_seen('S')) { // Store (or Save) Current Mesh Data
  534. storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  535. if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  536. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  537. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  538. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  539. if (!isnan(z_values[x][y])) {
  540. SERIAL_ECHOPAIR("M421 I ", x);
  541. SERIAL_ECHOPAIR(" J ", y);
  542. SERIAL_ECHOPGM(" Z ");
  543. SERIAL_ECHO_F(z_values[x][y], 6);
  544. SERIAL_EOL;
  545. }
  546. return;
  547. }
  548. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
  549. if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
  550. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  551. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
  552. goto LEAVE;
  553. }
  554. ubl.store_mesh(storage_slot);
  555. ubl.state.eeprom_storage_slot = storage_slot;
  556. //
  557. // if (storage_slot != ubl.state.eeprom_storage_slot)
  558. ubl.store_state(); // Always save an updated copy of the UBL State info
  559. SERIAL_PROTOCOLLNPGM("Done.\n");
  560. }
  561. if (code_seen('O') || code_seen('M'))
  562. ubl.display_map(code_has_value() ? code_value_int() : 0);
  563. if (code_seen('Z')) {
  564. if (code_has_value())
  565. ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
  566. else {
  567. save_ubl_active_state_and_disable();
  568. //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
  569. ubl_has_control_of_lcd_panel++; // Grab the LCD Hardware
  570. measured_z = 1.5;
  571. do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
  572. // The user is not going to be locking in a new Z-Offset very often so
  573. // it won't be that painful to spin the Encoder Wheel for 1.5mm
  574. lcd_implementation_clear();
  575. lcd_z_offset_edit_setup(measured_z);
  576. KEEPALIVE_STATE(PAUSED_FOR_USER);
  577. do {
  578. measured_z = lcd_z_offset_edit();
  579. idle();
  580. do_blocking_move_to_z(measured_z);
  581. } while (!ubl_lcd_clicked());
  582. ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
  583. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  584. // or here. So, until we are done looking for a long Encoder Wheel Press,
  585. // we need to take control of the panel
  586. KEEPALIVE_STATE(IN_HANDLER);
  587. lcd_return_to_status();
  588. const millis_t nxt = millis() + 1500UL;
  589. while (ubl_lcd_clicked()) { // debounce and watch for abort
  590. idle();
  591. if (ELAPSED(millis(), nxt)) {
  592. SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
  593. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  594. lcd_setstatus("Z-Offset Stopped", true);
  595. restore_ubl_active_state_and_leave();
  596. goto LEAVE;
  597. }
  598. }
  599. ubl_has_control_of_lcd_panel = false;
  600. safe_delay(20); // We don't want any switch noise.
  601. ubl.state.z_offset = measured_z;
  602. lcd_implementation_clear();
  603. restore_ubl_active_state_and_leave();
  604. }
  605. }
  606. LEAVE:
  607. #if ENABLED(ULTRA_LCD)
  608. lcd_setstatus(" ", true);
  609. lcd_quick_feedback();
  610. #endif
  611. ubl_has_control_of_lcd_panel = false;
  612. }
  613. void find_mean_mesh_height() {
  614. uint8_t x, y;
  615. int n;
  616. float sum, sum_of_diff_squared, sigma, difference, mean;
  617. sum = sum_of_diff_squared = 0.0;
  618. n = 0;
  619. for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  620. for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  621. if (!isnan(z_values[x][y])) {
  622. sum += z_values[x][y];
  623. n++;
  624. }
  625. mean = sum / n;
  626. //
  627. // Now do the sumation of the squares of difference from mean
  628. //
  629. for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  630. for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  631. if (!isnan(z_values[x][y])) {
  632. difference = (z_values[x][y] - mean);
  633. sum_of_diff_squared += difference * difference;
  634. }
  635. SERIAL_ECHOLNPAIR("# of samples: ", n);
  636. SERIAL_ECHOPGM("Mean Mesh Height: ");
  637. SERIAL_ECHO_F(mean, 6);
  638. SERIAL_EOL;
  639. sigma = sqrt(sum_of_diff_squared / (n + 1));
  640. SERIAL_ECHOPGM("Standard Deviation: ");
  641. SERIAL_ECHO_F(sigma, 6);
  642. SERIAL_EOL;
  643. if (c_flag)
  644. for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  645. for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  646. if (!isnan(z_values[x][y]))
  647. z_values[x][y] -= mean + ubl_constant;
  648. }
  649. void shift_mesh_height() {
  650. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  651. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  652. if (!isnan(z_values[x][y]))
  653. z_values[x][y] += ubl_constant;
  654. }
  655. /**
  656. * Probe all invalidated locations of the mesh that can be reached by the probe.
  657. * This attempts to fill in locations closest to the nozzle's start location first.
  658. */
  659. void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
  660. mesh_index_pair location;
  661. ubl_has_control_of_lcd_panel++;
  662. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  663. DEPLOY_PROBE();
  664. do {
  665. if (ubl_lcd_clicked()) {
  666. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  667. lcd_quick_feedback();
  668. STOW_PROBE();
  669. while (ubl_lcd_clicked()) idle();
  670. ubl_has_control_of_lcd_panel = false;
  671. restore_ubl_active_state_and_leave();
  672. safe_delay(50); // Debounce the Encoder wheel
  673. return;
  674. }
  675. location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
  676. if (location.x_index >= 0 && location.y_index >= 0) {
  677. const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
  678. rawy = ubl.map_y_index_to_bed_location(location.y_index);
  679. // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
  680. if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) {
  681. SERIAL_ERROR_START;
  682. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  683. ubl_has_control_of_lcd_panel = false;
  684. goto LEAVE;
  685. }
  686. const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
  687. z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset;
  688. }
  689. if (do_ubl_mesh_map) ubl.display_map(map_type);
  690. } while (location.x_index >= 0 && location.y_index >= 0);
  691. LEAVE:
  692. STOW_PROBE();
  693. restore_ubl_active_state_and_leave();
  694. do_blocking_move_to_xy(
  695. constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
  696. constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
  697. );
  698. }
  699. vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) {
  700. float c, d, t;
  701. int i, j;
  702. vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
  703. (ubl_3_point_1_Y - ubl_3_point_2_Y),
  704. (pt1 - pt2) ),
  705. v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
  706. (ubl_3_point_3_Y - ubl_3_point_2_Y),
  707. (pt3 - pt2) ),
  708. normal = vector_3::cross(v1, v2);
  709. // printf("[%f,%f,%f] ", normal.x, normal.y, normal.z);
  710. /**
  711. * This code does two things. This vector is normal to the tilted plane.
  712. * However, we don't know its direction. We need it to point up. So if
  713. * Z is negative, we need to invert the sign of all components of the vector
  714. * We also need Z to be unity because we are going to be treating this triangle
  715. * as the sin() and cos() of the bed's tilt
  716. */
  717. const float inv_z = 1.0 / normal.z;
  718. normal.x *= inv_z;
  719. normal.y *= inv_z;
  720. normal.z = 1.0;
  721. //
  722. // All of 3 of these points should give us the same d constant
  723. //
  724. t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
  725. d = t + normal.z * pt1;
  726. c = d - t;
  727. SERIAL_ECHOPGM("d from 1st point: ");
  728. SERIAL_ECHO_F(d, 6);
  729. SERIAL_ECHOPGM(" c: ");
  730. SERIAL_ECHO_F(c, 6);
  731. SERIAL_EOL;
  732. t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
  733. d = t + normal.z * pt2;
  734. c = d - t;
  735. SERIAL_ECHOPGM("d from 2nd point: ");
  736. SERIAL_ECHO_F(d, 6);
  737. SERIAL_ECHOPGM(" c: ");
  738. SERIAL_ECHO_F(c, 6);
  739. SERIAL_EOL;
  740. t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
  741. d = t + normal.z * pt3;
  742. c = d - t;
  743. SERIAL_ECHOPGM("d from 3rd point: ");
  744. SERIAL_ECHO_F(d, 6);
  745. SERIAL_ECHOPGM(" c: ");
  746. SERIAL_ECHO_F(c, 6);
  747. SERIAL_EOL;
  748. for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  749. for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  750. c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
  751. z_values[i][j] += c;
  752. }
  753. }
  754. return normal;
  755. }
  756. float use_encoder_wheel_to_measure_point() {
  757. KEEPALIVE_STATE(PAUSED_FOR_USER);
  758. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  759. idle();
  760. if (ubl_encoderDiff) {
  761. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl_encoderDiff));
  762. ubl_encoderDiff = 0;
  763. }
  764. }
  765. KEEPALIVE_STATE(IN_HANDLER);
  766. return current_position[Z_AXIS];
  767. }
  768. float measure_business_card_thickness(const float &in_height) {
  769. ubl_has_control_of_lcd_panel++;
  770. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  771. SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
  772. do_blocking_move_to_z(in_height);
  773. do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
  774. //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
  775. const float z1 = use_encoder_wheel_to_measure_point();
  776. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  777. ubl_has_control_of_lcd_panel = false;
  778. SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
  779. const float z2 = use_encoder_wheel_to_measure_point();
  780. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  781. if (g29_verbose_level > 1) {
  782. SERIAL_PROTOCOLPGM("Business Card is: ");
  783. SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
  784. SERIAL_PROTOCOLLNPGM("mm thick.");
  785. }
  786. restore_ubl_active_state_and_leave();
  787. return abs(z1 - z2);
  788. }
  789. void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
  790. ubl_has_control_of_lcd_panel++;
  791. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  792. do_blocking_move_to_z(z_clearance);
  793. do_blocking_move_to_xy(lx, ly);
  794. float last_x = -9999.99, last_y = -9999.99;
  795. mesh_index_pair location;
  796. do {
  797. if (do_ubl_mesh_map) ubl.display_map(map_type);
  798. location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
  799. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  800. if (location.x_index < 0 && location.y_index < 0) continue;
  801. const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
  802. rawy = ubl.map_y_index_to_bed_location(location.y_index);
  803. // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
  804. if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) {
  805. SERIAL_ERROR_START;
  806. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  807. ubl_has_control_of_lcd_panel = false;
  808. goto LEAVE;
  809. }
  810. const float xProbe = LOGICAL_X_POSITION(rawx),
  811. yProbe = LOGICAL_Y_POSITION(rawy),
  812. dx = xProbe - last_x,
  813. dy = yProbe - last_y;
  814. if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
  815. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  816. else
  817. do_blocking_move_to_z(z_clearance);
  818. do_blocking_move_to_xy(xProbe, yProbe);
  819. last_x = xProbe;
  820. last_y = yProbe;
  821. KEEPALIVE_STATE(PAUSED_FOR_USER);
  822. ubl_has_control_of_lcd_panel = true;
  823. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  824. idle();
  825. if (ubl_encoderDiff) {
  826. do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0);
  827. ubl_encoderDiff = 0;
  828. }
  829. }
  830. const millis_t nxt = millis() + 1500L;
  831. while (ubl_lcd_clicked()) { // debounce and watch for abort
  832. idle();
  833. if (ELAPSED(millis(), nxt)) {
  834. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  835. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  836. lcd_quick_feedback();
  837. while (ubl_lcd_clicked()) idle();
  838. ubl_has_control_of_lcd_panel = false;
  839. KEEPALIVE_STATE(IN_HANDLER);
  840. restore_ubl_active_state_and_leave();
  841. return;
  842. }
  843. }
  844. z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
  845. if (g29_verbose_level > 2) {
  846. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  847. SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
  848. SERIAL_EOL;
  849. }
  850. } while (location.x_index >= 0 && location.y_index >= 0);
  851. if (do_ubl_mesh_map) ubl.display_map(map_type);
  852. LEAVE:
  853. restore_ubl_active_state_and_leave();
  854. KEEPALIVE_STATE(IN_HANDLER);
  855. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  856. do_blocking_move_to_xy(lx, ly);
  857. }
  858. bool g29_parameter_parsing() {
  859. #if ENABLED(ULTRA_LCD)
  860. lcd_setstatus("Doing G29 UBL !", true);
  861. lcd_quick_feedback();
  862. #endif
  863. g29_verbose_level = code_seen('V') ? code_value_int() : 0;
  864. if (g29_verbose_level < 0 || g29_verbose_level > 4) {
  865. SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
  866. return UBL_ERR;
  867. }
  868. x_flag = code_seen('X') && code_has_value();
  869. x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
  870. if (x_pos < LOGICAL_X_POSITION(X_MIN_POS) || x_pos > LOGICAL_X_POSITION(X_MAX_POS)) {
  871. SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
  872. return UBL_ERR;
  873. }
  874. y_flag = code_seen('Y') && code_has_value();
  875. y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
  876. if (y_pos < LOGICAL_Y_POSITION(Y_MIN_POS) || y_pos > LOGICAL_Y_POSITION(Y_MAX_POS)) {
  877. SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
  878. return UBL_ERR;
  879. }
  880. if (x_flag != y_flag) {
  881. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  882. return UBL_ERR;
  883. }
  884. if (code_seen('A')) { // Activate the Unified Bed Leveling System
  885. ubl.state.active = 1;
  886. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
  887. ubl.store_state();
  888. }
  889. c_flag = code_seen('C') && code_has_value();
  890. ubl_constant = c_flag ? code_value_float() : 0.0;
  891. if (code_seen('D')) { // Disable the Unified Bed Leveling System
  892. ubl.state.active = 0;
  893. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
  894. ubl.store_state();
  895. }
  896. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  897. if (code_seen('F') && code_has_value()) {
  898. const float fh = code_value_float();
  899. if (fh < 0.0 || fh > 100.0) {
  900. SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
  901. return UBL_ERR;
  902. }
  903. ubl.state.g29_correction_fade_height = fh;
  904. ubl.state.g29_fade_height_multiplier = 1.0 / fh;
  905. }
  906. #endif
  907. repeat_flag = code_seen('R');
  908. repetition_cnt = repeat_flag ? (code_has_value() ? code_value_int() : 9999) : 1;
  909. if (repetition_cnt < 1) {
  910. SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
  911. return UBL_ERR;
  912. }
  913. map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
  914. if (map_type < 0 || map_type > 1) {
  915. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  916. return UBL_ERR;
  917. }
  918. /*
  919. if (code_seen('M')) { // Check if a map type was specified
  920. map_type = code_has_value() ? code_value_int() : 0;
  921. if (map_type < 0 || map_type > 1) {
  922. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  923. return UBL_ERR;
  924. }
  925. }
  926. //*/
  927. return UBL_OK;
  928. }
  929. /**
  930. * This function goes away after G29 debug is complete. But for right now, it is a handy
  931. * routine to dump binary data structures.
  932. */
  933. void dump(char * const str, const float &f) {
  934. char *ptr;
  935. SERIAL_PROTOCOL(str);
  936. SERIAL_PROTOCOL_F(f, 8);
  937. SERIAL_PROTOCOLPGM(" ");
  938. ptr = (char*)&f;
  939. for (uint8_t i = 0; i < 4; i++)
  940. SERIAL_PROTOCOLPAIR(" ", hex_byte(*ptr++));
  941. SERIAL_PROTOCOLPAIR(" isnan()=", isnan(f));
  942. SERIAL_PROTOCOLPAIR(" isinf()=", isinf(f));
  943. if (f == -INFINITY)
  944. SERIAL_PROTOCOLPGM(" Minus Infinity detected.");
  945. SERIAL_EOL;
  946. }
  947. static int ubl_state_at_invocation = 0,
  948. ubl_state_recursion_chk = 0;
  949. void save_ubl_active_state_and_disable() {
  950. ubl_state_recursion_chk++;
  951. if (ubl_state_recursion_chk != 1) {
  952. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  953. lcd_setstatus("save_UBL_active() error", true);
  954. lcd_quick_feedback();
  955. return;
  956. }
  957. ubl_state_at_invocation = ubl.state.active;
  958. ubl.state.active = 0;
  959. }
  960. void restore_ubl_active_state_and_leave() {
  961. if (--ubl_state_recursion_chk) {
  962. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  963. lcd_setstatus("restore_UBL_active() error", true);
  964. lcd_quick_feedback();
  965. return;
  966. }
  967. ubl.state.active = ubl_state_at_invocation;
  968. }
  969. /**
  970. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  971. * good to have the extra information. Soon... we prune this to just a few items
  972. */
  973. void g29_what_command() {
  974. const uint16_t k = E2END - ubl_eeprom_start;
  975. SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 ");
  976. if (ubl.state.active)
  977. SERIAL_PROTOCOLCHAR('A');
  978. else
  979. SERIAL_PROTOCOLPGM("In");
  980. SERIAL_PROTOCOLLNPGM("ctive.\n");
  981. safe_delay(50);
  982. if (ubl.state.eeprom_storage_slot == -1)
  983. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  984. else {
  985. SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
  986. SERIAL_PROTOCOLPGM(" Loaded.");
  987. }
  988. SERIAL_EOL;
  989. safe_delay(50);
  990. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  991. SERIAL_PROTOCOLPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height);
  992. SERIAL_EOL;
  993. #endif
  994. SERIAL_PROTOCOLPGM("z_offset: ");
  995. SERIAL_PROTOCOL_F(ubl.state.z_offset, 6);
  996. SERIAL_EOL;
  997. safe_delay(50);
  998. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  999. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  1000. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1);
  1001. SERIAL_PROTOCOLPGM(" ");
  1002. safe_delay(50);
  1003. }
  1004. SERIAL_EOL;
  1005. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1006. for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
  1007. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1);
  1008. SERIAL_PROTOCOLPGM(" ");
  1009. safe_delay(50);
  1010. }
  1011. SERIAL_EOL;
  1012. #if HAS_KILL
  1013. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1014. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1015. #endif
  1016. SERIAL_EOL;
  1017. safe_delay(50);
  1018. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1019. SERIAL_EOL;
  1020. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1021. SERIAL_EOL;
  1022. safe_delay(50);
  1023. SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl_eeprom_start));
  1024. SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_word(E2END));
  1025. safe_delay(50);
  1026. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1027. SERIAL_EOL;
  1028. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  1029. SERIAL_EOL;
  1030. safe_delay(50);
  1031. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
  1032. safe_delay(50);
  1033. SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(z_values));
  1034. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1035. safe_delay(50);
  1036. SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
  1037. SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
  1038. SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
  1039. safe_delay(50);
  1040. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
  1041. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
  1042. safe_delay(50);
  1043. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
  1044. SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
  1045. safe_delay(50);
  1046. SERIAL_PROTOCOLPGM("\nMESH_X_DIST ");
  1047. SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
  1048. SERIAL_PROTOCOLPGM("\nMESH_Y_DIST ");
  1049. SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
  1050. SERIAL_EOL;
  1051. safe_delay(50);
  1052. if (!ubl.sanity_check())
  1053. SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
  1054. }
  1055. /**
  1056. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1057. * right now, it is good to have the extra information. Soon... we prune this.
  1058. */
  1059. void g29_eeprom_dump() {
  1060. unsigned char cccc;
  1061. uint16_t kkkk;
  1062. SERIAL_ECHO_START;
  1063. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1064. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1065. if (!(i & 0x3)) idle();
  1066. print_hex_word(i);
  1067. SERIAL_ECHOPGM(": ");
  1068. for (uint16_t j = 0; j < 16; j++) {
  1069. kkkk = i + j;
  1070. eeprom_read_block(&cccc, (void *)kkkk, 1);
  1071. print_hex_byte(cccc);
  1072. SERIAL_ECHO(' ');
  1073. }
  1074. SERIAL_EOL;
  1075. }
  1076. SERIAL_EOL;
  1077. }
  1078. /**
  1079. * When we are fully debugged, this may go away. But there are some valid
  1080. * use cases for the users. So we can wait and see what to do with it.
  1081. */
  1082. void g29_compare_current_mesh_to_stored_mesh() {
  1083. float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
  1084. if (!code_has_value()) {
  1085. SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
  1086. return;
  1087. }
  1088. storage_slot = code_value_int();
  1089. int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(tmp_z_values);
  1090. if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) {
  1091. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  1092. return;
  1093. }
  1094. j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
  1095. eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
  1096. SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
  1097. SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_word(j)); // Soon, we can remove the extra clutter of printing
  1098. // the address in the EEPROM where the Mesh is stored.
  1099. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
  1100. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
  1101. z_values[x][y] = z_values[x][y] - tmp_z_values[x][y];
  1102. }
  1103. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
  1104. float distance, closest = far_flag ? -99999.99 : 99999.99;
  1105. mesh_index_pair return_val;
  1106. return_val.x_index = return_val.y_index = -1;
  1107. const float current_x = current_position[X_AXIS],
  1108. current_y = current_position[Y_AXIS];
  1109. // Get our reference position. Either the nozzle or probe location.
  1110. const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1111. py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1112. for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
  1113. for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
  1114. if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
  1115. || (type == REAL && !isnan(z_values[i][j]))
  1116. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1117. ) {
  1118. // We only get here if we found a Mesh Point of the specified type
  1119. const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location
  1120. rawy = ubl.map_y_index_to_bed_location(j);
  1121. // If using the probe as the reference there are some unreachable locations.
  1122. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1123. if (probe_as_reference &&
  1124. (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y))
  1125. ) continue;
  1126. // Unreachable. Check if it's the closest location to the nozzle.
  1127. // Add in a weighting factor that considers the current location of the nozzle.
  1128. const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
  1129. my = LOGICAL_Y_POSITION(rawy);
  1130. distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
  1131. if (far_flag) { // If doing the far_flag action, we want to be as far as possible
  1132. for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We
  1133. for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
  1134. if (!isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
  1135. distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
  1136. + sq(j - l) * (MESH_Y_DIST) * .05;
  1137. }
  1138. }
  1139. }
  1140. }
  1141. if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point
  1142. closest = distance; // We found a closer/farther location with
  1143. return_val.x_index = i; // the specified type of mesh value.
  1144. return_val.y_index = j;
  1145. return_val.distance = closest;
  1146. }
  1147. }
  1148. } // for j
  1149. } // for i
  1150. return return_val;
  1151. }
  1152. void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
  1153. mesh_index_pair location;
  1154. uint16_t not_done[16];
  1155. int32_t round_off;
  1156. save_ubl_active_state_and_disable();
  1157. memset(not_done, 0xFF, sizeof(not_done));
  1158. #if ENABLED(ULTRA_LCD)
  1159. lcd_setstatus("Fine Tuning Mesh.", true);
  1160. #endif
  1161. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1162. do_blocking_move_to_xy(lx, ly);
  1163. do {
  1164. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1165. location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx, ly, 0, not_done, false); // The '0' says we want to use the nozzle's position
  1166. // It doesn't matter if the probe can not reach this
  1167. // location. This is a manual edit of the Mesh Point.
  1168. if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
  1169. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1170. // different location the next time through the loop
  1171. const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
  1172. rawy = ubl.map_y_index_to_bed_location(location.y_index);
  1173. // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
  1174. if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
  1175. SERIAL_ERROR_START;
  1176. SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
  1177. ubl_has_control_of_lcd_panel = false;
  1178. goto FINE_TUNE_EXIT;
  1179. }
  1180. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
  1181. do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
  1182. float new_z = z_values[location.x_index][location.y_index];
  1183. round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
  1184. new_z = float(round_off) / 1000.0;
  1185. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1186. ubl_has_control_of_lcd_panel = true;
  1187. lcd_implementation_clear();
  1188. lcd_mesh_edit_setup(new_z);
  1189. do {
  1190. new_z = lcd_mesh_edit();
  1191. idle();
  1192. } while (!ubl_lcd_clicked());
  1193. lcd_return_to_status();
  1194. ubl_has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
  1195. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
  1196. // or here.
  1197. const millis_t nxt = millis() + 1500UL;
  1198. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1199. idle();
  1200. if (ELAPSED(millis(), nxt)) {
  1201. lcd_return_to_status();
  1202. //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
  1203. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1204. lcd_setstatus("Mesh Editing Stopped", true);
  1205. while (ubl_lcd_clicked()) idle();
  1206. goto FINE_TUNE_EXIT;
  1207. }
  1208. }
  1209. safe_delay(20); // We don't want any switch noise.
  1210. z_values[location.x_index][location.y_index] = new_z;
  1211. lcd_implementation_clear();
  1212. } while (location.x_index >= 0 && location.y_index >= 0 && --repetition_cnt);
  1213. FINE_TUNE_EXIT:
  1214. ubl_has_control_of_lcd_panel = false;
  1215. KEEPALIVE_STATE(IN_HANDLER);
  1216. if (do_ubl_mesh_map) ubl.display_map(map_type);
  1217. restore_ubl_active_state_and_leave();
  1218. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  1219. do_blocking_move_to_xy(lx, ly);
  1220. #if ENABLED(ULTRA_LCD)
  1221. lcd_setstatus("Done Editing Mesh", true);
  1222. #endif
  1223. SERIAL_ECHOLNPGM("Done Editing Mesh.");
  1224. }
  1225. #endif // AUTO_BED_LEVELING_UBL