My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 98KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V66"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #include "../lcd/ultralcd.h"
  49. #include "../core/language.h"
  50. #include "../libs/vector_3.h"
  51. #include "../gcode/gcode.h"
  52. #include "../Marlin.h"
  53. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  54. #include "../HAL/shared/persistent_store_api.h"
  55. #endif
  56. #if HAS_LEVELING
  57. #include "../feature/bedlevel/bedlevel.h"
  58. #endif
  59. #if ENABLED(EXTENSIBLE_UI)
  60. #include "../lcd/extensible_ui/ui_api.h"
  61. #endif
  62. #if HAS_SERVOS
  63. #include "servo.h"
  64. #endif
  65. #if HAS_SERVOS && HAS_SERVO_ANGLES
  66. #define EEPROM_NUM_SERVOS NUM_SERVOS
  67. #else
  68. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  69. #endif
  70. #if HAS_BED_PROBE
  71. #include "probe.h"
  72. #endif
  73. #include "../feature/fwretract.h"
  74. #if ENABLED(POWER_LOSS_RECOVERY)
  75. #include "../feature/power_loss_recovery.h"
  76. #endif
  77. #include "../feature/pause.h"
  78. #if ENABLED(BACKLASH_COMPENSATION)
  79. #include "../feature/backlash.h"
  80. #endif
  81. #if HAS_FILAMENT_SENSOR
  82. #include "../feature/runout.h"
  83. #endif
  84. #include "../lcd/extensible_ui/ui_api.h"
  85. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  86. extern float saved_extruder_advance_K[EXTRUDERS];
  87. #endif
  88. #if EXTRUDERS > 1
  89. #include "tool_change.h"
  90. void M217_report(const bool eeprom);
  91. #endif
  92. #if HAS_TRINAMIC
  93. #include "stepper_indirection.h"
  94. #include "../feature/tmc_util.h"
  95. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  96. #endif
  97. #pragma pack(push, 1) // No padding between variables
  98. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  99. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  100. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  101. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stealth_enabled_t;
  102. // Limit an index to an array size
  103. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  104. /**
  105. * Current EEPROM Layout
  106. *
  107. * Keep this data structure up to date so
  108. * EEPROM size is known at compile time!
  109. */
  110. typedef struct SettingsDataStruct {
  111. char version[4]; // Vnn\0
  112. uint16_t crc; // Data Checksum
  113. //
  114. // DISTINCT_E_FACTORS
  115. //
  116. uint8_t esteppers; // XYZE_N - XYZ
  117. planner_settings_t planner_settings;
  118. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  119. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  120. float home_offset[XYZ]; // M206 XYZ / M665 TPZ
  121. #if HAS_HOTEND_OFFSET
  122. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  123. #endif
  124. //
  125. // FILAMENT_RUNOUT_SENSOR
  126. //
  127. bool runout_sensor_enabled; // M412 S
  128. float runout_distance_mm; // M412 D
  129. //
  130. // ENABLE_LEVELING_FADE_HEIGHT
  131. //
  132. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  133. //
  134. // MESH_BED_LEVELING
  135. //
  136. float mbl_z_offset; // mbl.z_offset
  137. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  138. #if ENABLED(MESH_BED_LEVELING)
  139. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  140. #else
  141. float mbl_z_values[3][3];
  142. #endif
  143. //
  144. // HAS_BED_PROBE
  145. //
  146. float zprobe_zoffset;
  147. //
  148. // ABL_PLANAR
  149. //
  150. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  151. //
  152. // AUTO_BED_LEVELING_BILINEAR
  153. //
  154. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  155. int bilinear_grid_spacing[2],
  156. bilinear_start[2]; // G29 L F
  157. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  158. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  159. #else
  160. float z_values[3][3];
  161. #endif
  162. //
  163. // AUTO_BED_LEVELING_UBL
  164. //
  165. bool planner_leveling_active; // M420 S planner.leveling_active
  166. int8_t ubl_storage_slot; // ubl.storage_slot
  167. //
  168. // SERVO_ANGLES
  169. //
  170. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  171. //
  172. // DELTA / [XYZ]_DUAL_ENDSTOPS
  173. //
  174. #if ENABLED(DELTA)
  175. float delta_height, // M666 H
  176. delta_endstop_adj[ABC], // M666 XYZ
  177. delta_radius, // M665 R
  178. delta_diagonal_rod, // M665 L
  179. delta_segments_per_second, // M665 S
  180. delta_calibration_radius, // M665 B
  181. delta_tower_angle_trim[ABC]; // M665 XYZ
  182. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  183. float x2_endstop_adj, // M666 X
  184. y2_endstop_adj, // M666 Y
  185. z2_endstop_adj, // M666 Z (S2)
  186. z3_endstop_adj; // M666 Z (S3)
  187. #endif
  188. //
  189. // ULTIPANEL
  190. //
  191. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  192. ui_preheat_bed_temp[2]; // M145 S0 B
  193. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  194. //
  195. // PIDTEMP
  196. //
  197. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  198. int16_t lpq_len; // M301 L
  199. //
  200. // PIDTEMPBED
  201. //
  202. PID_t bedPID; // M304 PID / M303 E-1 U
  203. //
  204. // User-defined Thermistors
  205. //
  206. #if HAS_USER_THERMISTORS
  207. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  208. #endif
  209. //
  210. // HAS_LCD_CONTRAST
  211. //
  212. int16_t lcd_contrast; // M250 C
  213. //
  214. // POWER_LOSS_RECOVERY
  215. //
  216. bool recovery_enabled; // M413 S
  217. //
  218. // FWRETRACT
  219. //
  220. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  221. bool autoretract_enabled; // M209 S
  222. //
  223. // !NO_VOLUMETRIC
  224. //
  225. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  226. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  227. //
  228. // HAS_TRINAMIC
  229. //
  230. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  231. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  232. tmc_sgt_t tmc_sgt; // M914 X Y Z
  233. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  234. //
  235. // LIN_ADVANCE
  236. //
  237. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  238. //
  239. // HAS_MOTOR_CURRENT_PWM
  240. //
  241. uint32_t motor_current_setting[3]; // M907 X Z E
  242. //
  243. // CNC_COORDINATE_SYSTEMS
  244. //
  245. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  246. //
  247. // SKEW_CORRECTION
  248. //
  249. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  250. //
  251. // ADVANCED_PAUSE_FEATURE
  252. //
  253. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  254. //
  255. // Tool-change settings
  256. //
  257. #if EXTRUDERS > 1
  258. toolchange_settings_t toolchange_settings; // M217 S P R
  259. #endif
  260. //
  261. // BACKLASH_COMPENSATION
  262. //
  263. float backlash_distance_mm[XYZ]; // M425 X Y Z
  264. uint8_t backlash_correction; // M425 F
  265. float backlash_smoothing_mm; // M425 S
  266. //
  267. // EXTENSIBLE_UI
  268. //
  269. #if ENABLED(EXTENSIBLE_UI)
  270. // This is a significant hardware change; don't reserve space when not present
  271. uint8_t extui_data[ExtUI::eeprom_data_size];
  272. #endif
  273. } SettingsData;
  274. //static_assert(sizeof(SettingsData) <= E2END + 1, "EEPROM too small to contain SettingsData!");
  275. MarlinSettings settings;
  276. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  277. /**
  278. * Post-process after Retrieve or Reset
  279. */
  280. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  281. float new_z_fade_height;
  282. #endif
  283. void MarlinSettings::postprocess() {
  284. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  285. // steps per s2 needs to be updated to agree with units per s2
  286. planner.reset_acceleration_rates();
  287. // Make sure delta kinematics are updated before refreshing the
  288. // planner position so the stepper counts will be set correctly.
  289. #if ENABLED(DELTA)
  290. recalc_delta_settings();
  291. #endif
  292. #if ENABLED(PIDTEMP)
  293. thermalManager.updatePID();
  294. #endif
  295. #if DISABLED(NO_VOLUMETRICS)
  296. planner.calculate_volumetric_multipliers();
  297. #else
  298. for (uint8_t i = COUNT(planner.e_factor); i--;)
  299. planner.refresh_e_factor(i);
  300. #endif
  301. // Software endstops depend on home_offset
  302. LOOP_XYZ(i) {
  303. update_workspace_offset((AxisEnum)i);
  304. update_software_endstops((AxisEnum)i);
  305. }
  306. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  307. set_z_fade_height(new_z_fade_height, false); // false = no report
  308. #endif
  309. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  310. refresh_bed_level();
  311. #endif
  312. #if HAS_MOTOR_CURRENT_PWM
  313. stepper.refresh_motor_power();
  314. #endif
  315. #if ENABLED(FWRETRACT)
  316. fwretract.refresh_autoretract();
  317. #endif
  318. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  319. planner.recalculate_max_e_jerk();
  320. #endif
  321. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  322. // and init stepper.count[], planner.position[] with current_position
  323. planner.refresh_positioning();
  324. // Various factors can change the current position
  325. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  326. report_current_position();
  327. }
  328. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  329. #include "printcounter.h"
  330. static_assert(
  331. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  332. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  333. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  334. );
  335. #endif
  336. #if ENABLED(SD_FIRMWARE_UPDATE)
  337. #if ENABLED(EEPROM_SETTINGS)
  338. static_assert(
  339. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  340. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  341. );
  342. #endif
  343. bool MarlinSettings::sd_update_status() {
  344. uint8_t val;
  345. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  346. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  347. }
  348. bool MarlinSettings::set_sd_update_status(const bool enable) {
  349. if (enable != sd_update_status())
  350. persistentStore.write_data(
  351. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  352. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  353. );
  354. return true;
  355. }
  356. #endif // SD_FIRMWARE_UPDATE
  357. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  358. #include "../core/debug_out.h"
  359. #if ENABLED(EEPROM_SETTINGS)
  360. #define WORD_PADDED_EEPROM ENABLED(__STM32F1__, FLASH_EEPROM_EMULATION)
  361. #if WORD_PADDED_EEPROM && ENABLED(DEBUG_EEPROM_READWRITE)
  362. #define UPDATE_TEST_INDEX(VAR) (text_index += sizeof(VAR))
  363. #else
  364. #define UPDATE_TEST_INDEX(VAR) NOOP
  365. #endif
  366. #if WORD_PADDED_EEPROM
  367. #define EEPROM_SKIP(VAR) do{ eeprom_index += sizeof(VAR) + (sizeof(VAR) & 1); UPDATE_TEST_INDEX(sizeof(VAR)); }while(0)
  368. #else
  369. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  370. #endif
  371. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  372. #define EEPROM_FINISH() persistentStore.access_finish()
  373. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); UPDATE_TEST_INDEX(VAR); }while(0)
  374. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); UPDATE_TEST_INDEX(VAR); }while(0)
  375. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); UPDATE_TEST_INDEX(VAR); }while(0)
  376. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  377. #if ENABLED(DEBUG_EEPROM_READWRITE)
  378. #if WORD_PADDED_EEPROM
  379. int test_index;
  380. #else
  381. #define test_index eeprom_index
  382. #endif
  383. #define _FIELD_TEST(FIELD) \
  384. EEPROM_ASSERT( \
  385. eeprom_error || test_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  386. "Field " STRINGIFY(FIELD) " mismatch." \
  387. )
  388. #else
  389. #define _FIELD_TEST(FIELD) NOOP
  390. #endif
  391. const char version[4] = EEPROM_VERSION;
  392. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  393. bool MarlinSettings::size_error(const uint16_t size) {
  394. if (size != datasize()) {
  395. DEBUG_ERROR_MSG("EEPROM datasize error.");
  396. return true;
  397. }
  398. return false;
  399. }
  400. /**
  401. * M500 - Store Configuration
  402. */
  403. bool MarlinSettings::save() {
  404. float dummy = 0;
  405. char ver[4] = "ERR";
  406. uint16_t working_crc = 0;
  407. EEPROM_START();
  408. eeprom_error = false;
  409. #if ENABLED(FLASH_EEPROM_EMULATION)
  410. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  411. #else
  412. EEPROM_WRITE(ver); // invalidate data first
  413. #endif
  414. EEPROM_SKIP(working_crc); // Skip the checksum slot
  415. working_crc = 0; // clear before first "real data"
  416. _FIELD_TEST(esteppers);
  417. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  418. EEPROM_WRITE(esteppers);
  419. //
  420. // Planner Motion
  421. //
  422. {
  423. EEPROM_WRITE(planner.settings);
  424. #if HAS_CLASSIC_JERK
  425. EEPROM_WRITE(planner.max_jerk);
  426. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  427. dummy = float(DEFAULT_EJERK);
  428. EEPROM_WRITE(dummy);
  429. #endif
  430. #else
  431. const float planner_max_jerk[XYZE] = { float(DEFAULT_EJERK) };
  432. EEPROM_WRITE(planner_max_jerk);
  433. #endif
  434. #if ENABLED(JUNCTION_DEVIATION)
  435. EEPROM_WRITE(planner.junction_deviation_mm);
  436. #else
  437. dummy = 0.02f;
  438. EEPROM_WRITE(dummy);
  439. #endif
  440. }
  441. //
  442. // Home Offset
  443. //
  444. {
  445. _FIELD_TEST(home_offset);
  446. #if HAS_SCARA_OFFSET
  447. EEPROM_WRITE(scara_home_offset);
  448. #else
  449. #if !HAS_HOME_OFFSET
  450. const float home_offset[XYZ] = { 0 };
  451. #endif
  452. EEPROM_WRITE(home_offset);
  453. #endif
  454. #if HAS_HOTEND_OFFSET
  455. // Skip hotend 0 which must be 0
  456. for (uint8_t e = 1; e < HOTENDS; e++)
  457. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  458. #endif
  459. }
  460. //
  461. // Filament Runout Sensor
  462. //
  463. {
  464. #if HAS_FILAMENT_SENSOR
  465. const bool &runout_sensor_enabled = runout.enabled;
  466. #else
  467. const bool runout_sensor_enabled = false;
  468. #endif
  469. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  470. const float &runout_distance_mm = runout.runout_distance();
  471. #else
  472. const float runout_distance_mm = 0;
  473. #endif
  474. _FIELD_TEST(runout_sensor_enabled);
  475. EEPROM_WRITE(runout_sensor_enabled);
  476. EEPROM_WRITE(runout_distance_mm);
  477. }
  478. //
  479. // Global Leveling
  480. //
  481. {
  482. const float zfh = (
  483. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  484. planner.z_fade_height
  485. #else
  486. 10.0
  487. #endif
  488. );
  489. EEPROM_WRITE(zfh);
  490. }
  491. //
  492. // Mesh Bed Leveling
  493. //
  494. {
  495. #if ENABLED(MESH_BED_LEVELING)
  496. // Compile time test that sizeof(mbl.z_values) is as expected
  497. static_assert(
  498. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  499. "MBL Z array is the wrong size."
  500. );
  501. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  502. EEPROM_WRITE(mbl.z_offset);
  503. EEPROM_WRITE(mesh_num_x);
  504. EEPROM_WRITE(mesh_num_y);
  505. EEPROM_WRITE(mbl.z_values);
  506. #else // For disabled MBL write a default mesh
  507. dummy = 0;
  508. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  509. EEPROM_WRITE(dummy); // z_offset
  510. EEPROM_WRITE(mesh_num_x);
  511. EEPROM_WRITE(mesh_num_y);
  512. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  513. #endif
  514. }
  515. //
  516. // Probe Z Offset
  517. //
  518. {
  519. _FIELD_TEST(zprobe_zoffset);
  520. #if !HAS_BED_PROBE
  521. const float zprobe_zoffset = 0;
  522. #endif
  523. EEPROM_WRITE(zprobe_zoffset);
  524. }
  525. //
  526. // Planar Bed Leveling matrix
  527. //
  528. {
  529. #if ABL_PLANAR
  530. EEPROM_WRITE(planner.bed_level_matrix);
  531. #else
  532. dummy = 0;
  533. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  534. #endif
  535. }
  536. //
  537. // Bilinear Auto Bed Leveling
  538. //
  539. {
  540. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  541. // Compile time test that sizeof(z_values) is as expected
  542. static_assert(
  543. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  544. "Bilinear Z array is the wrong size."
  545. );
  546. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  547. EEPROM_WRITE(grid_max_x); // 1 byte
  548. EEPROM_WRITE(grid_max_y); // 1 byte
  549. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  550. EEPROM_WRITE(bilinear_start); // 2 ints
  551. EEPROM_WRITE(z_values); // 9-256 floats
  552. #else
  553. // For disabled Bilinear Grid write an empty 3x3 grid
  554. const uint8_t grid_max_x = 3, grid_max_y = 3;
  555. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  556. dummy = 0;
  557. EEPROM_WRITE(grid_max_x);
  558. EEPROM_WRITE(grid_max_y);
  559. EEPROM_WRITE(bilinear_grid_spacing);
  560. EEPROM_WRITE(bilinear_start);
  561. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  562. #endif
  563. }
  564. //
  565. // Unified Bed Leveling
  566. //
  567. {
  568. _FIELD_TEST(planner_leveling_active);
  569. #if ENABLED(AUTO_BED_LEVELING_UBL)
  570. EEPROM_WRITE(planner.leveling_active);
  571. EEPROM_WRITE(ubl.storage_slot);
  572. #else
  573. const bool ubl_active = false;
  574. const int8_t storage_slot = -1;
  575. EEPROM_WRITE(ubl_active);
  576. EEPROM_WRITE(storage_slot);
  577. #endif // AUTO_BED_LEVELING_UBL
  578. }
  579. //
  580. // Servo Angles
  581. //
  582. {
  583. _FIELD_TEST(servo_angles);
  584. #if !HAS_SERVO_ANGLES
  585. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  586. #endif
  587. EEPROM_WRITE(servo_angles);
  588. }
  589. //
  590. // DELTA Geometry or Dual Endstops offsets
  591. //
  592. {
  593. #if ENABLED(DELTA)
  594. _FIELD_TEST(delta_height);
  595. EEPROM_WRITE(delta_height); // 1 float
  596. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  597. EEPROM_WRITE(delta_radius); // 1 float
  598. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  599. EEPROM_WRITE(delta_segments_per_second); // 1 float
  600. EEPROM_WRITE(delta_calibration_radius); // 1 float
  601. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  602. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  603. _FIELD_TEST(x2_endstop_adj);
  604. // Write dual endstops in X, Y, Z order. Unused = 0.0
  605. dummy = 0;
  606. #if ENABLED(X_DUAL_ENDSTOPS)
  607. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  608. #else
  609. EEPROM_WRITE(dummy);
  610. #endif
  611. #if ENABLED(Y_DUAL_ENDSTOPS)
  612. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  613. #else
  614. EEPROM_WRITE(dummy);
  615. #endif
  616. #if Z_MULTI_ENDSTOPS
  617. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  618. #else
  619. EEPROM_WRITE(dummy);
  620. #endif
  621. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  622. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  623. #else
  624. EEPROM_WRITE(dummy);
  625. #endif
  626. #endif
  627. }
  628. //
  629. // LCD Preheat settings
  630. //
  631. {
  632. _FIELD_TEST(ui_preheat_hotend_temp);
  633. #if HAS_LCD_MENU
  634. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  635. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  636. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  637. #else
  638. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  639. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  640. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  641. #endif
  642. EEPROM_WRITE(ui_preheat_hotend_temp);
  643. EEPROM_WRITE(ui_preheat_bed_temp);
  644. EEPROM_WRITE(ui_preheat_fan_speed);
  645. }
  646. //
  647. // PIDTEMP
  648. //
  649. {
  650. _FIELD_TEST(hotendPID);
  651. HOTEND_LOOP() {
  652. PIDC_t pidc = {
  653. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  654. };
  655. EEPROM_WRITE(pidc);
  656. }
  657. _FIELD_TEST(lpq_len);
  658. #if ENABLED(PID_EXTRUSION_SCALING)
  659. EEPROM_WRITE(thermalManager.lpq_len);
  660. #else
  661. const int16_t lpq_len = 20;
  662. EEPROM_WRITE(lpq_len);
  663. #endif
  664. }
  665. //
  666. // PIDTEMPBED
  667. //
  668. {
  669. _FIELD_TEST(bedPID);
  670. #if DISABLED(PIDTEMPBED)
  671. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  672. EEPROM_WRITE(bed_pid);
  673. #else
  674. EEPROM_WRITE(thermalManager.temp_bed.pid);
  675. #endif
  676. }
  677. //
  678. // User-defined Thermistors
  679. //
  680. #if HAS_USER_THERMISTORS
  681. {
  682. _FIELD_TEST(user_thermistor);
  683. EEPROM_WRITE(thermalManager.user_thermistor);
  684. }
  685. #endif
  686. //
  687. // LCD Contrast
  688. //
  689. {
  690. _FIELD_TEST(lcd_contrast);
  691. const int16_t lcd_contrast =
  692. #if HAS_LCD_CONTRAST
  693. ui.contrast
  694. #else
  695. 32
  696. #endif
  697. ;
  698. EEPROM_WRITE(lcd_contrast);
  699. }
  700. //
  701. // Power-Loss Recovery
  702. //
  703. {
  704. _FIELD_TEST(recovery_enabled);
  705. const bool recovery_enabled =
  706. #if ENABLED(POWER_LOSS_RECOVERY)
  707. recovery.enabled
  708. #else
  709. true
  710. #endif
  711. ;
  712. EEPROM_WRITE(recovery_enabled);
  713. }
  714. //
  715. // Firmware Retraction
  716. //
  717. {
  718. _FIELD_TEST(fwretract_settings);
  719. #if ENABLED(FWRETRACT)
  720. EEPROM_WRITE(fwretract.settings);
  721. #else
  722. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  723. EEPROM_WRITE(autoretract_defaults);
  724. #endif
  725. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  726. EEPROM_WRITE(fwretract.autoretract_enabled);
  727. #else
  728. const bool autoretract_enabled = false;
  729. EEPROM_WRITE(autoretract_enabled);
  730. #endif
  731. }
  732. //
  733. // Volumetric & Filament Size
  734. //
  735. {
  736. _FIELD_TEST(parser_volumetric_enabled);
  737. #if DISABLED(NO_VOLUMETRICS)
  738. EEPROM_WRITE(parser.volumetric_enabled);
  739. EEPROM_WRITE(planner.filament_size);
  740. #else
  741. const bool volumetric_enabled = false;
  742. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  743. EEPROM_WRITE(volumetric_enabled);
  744. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  745. #endif
  746. }
  747. //
  748. // TMC Configuration
  749. //
  750. {
  751. _FIELD_TEST(tmc_stepper_current);
  752. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  753. #if HAS_TRINAMIC
  754. #if AXIS_IS_TMC(X)
  755. tmc_stepper_current.X = stepperX.getMilliamps();
  756. #endif
  757. #if AXIS_IS_TMC(Y)
  758. tmc_stepper_current.Y = stepperY.getMilliamps();
  759. #endif
  760. #if AXIS_IS_TMC(Z)
  761. tmc_stepper_current.Z = stepperZ.getMilliamps();
  762. #endif
  763. #if AXIS_IS_TMC(X2)
  764. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  765. #endif
  766. #if AXIS_IS_TMC(Y2)
  767. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  768. #endif
  769. #if AXIS_IS_TMC(Z2)
  770. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  771. #endif
  772. #if AXIS_IS_TMC(Z3)
  773. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  774. #endif
  775. #if MAX_EXTRUDERS
  776. #if AXIS_IS_TMC(E0)
  777. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  778. #endif
  779. #if MAX_EXTRUDERS > 1
  780. #if AXIS_IS_TMC(E1)
  781. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  782. #endif
  783. #if MAX_EXTRUDERS > 2
  784. #if AXIS_IS_TMC(E2)
  785. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  786. #endif
  787. #if MAX_EXTRUDERS > 3
  788. #if AXIS_IS_TMC(E3)
  789. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  790. #endif
  791. #if MAX_EXTRUDERS > 4
  792. #if AXIS_IS_TMC(E4)
  793. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  794. #endif
  795. #if MAX_EXTRUDERS > 5
  796. #if AXIS_IS_TMC(E5)
  797. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  798. #endif
  799. #endif // MAX_EXTRUDERS > 5
  800. #endif // MAX_EXTRUDERS > 4
  801. #endif // MAX_EXTRUDERS > 3
  802. #endif // MAX_EXTRUDERS > 2
  803. #endif // MAX_EXTRUDERS > 1
  804. #endif // MAX_EXTRUDERS
  805. #endif
  806. EEPROM_WRITE(tmc_stepper_current);
  807. }
  808. //
  809. // TMC Hybrid Threshold, and placeholder values
  810. //
  811. {
  812. _FIELD_TEST(tmc_hybrid_threshold);
  813. #if ENABLED(HYBRID_THRESHOLD)
  814. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  815. #if AXIS_HAS_STEALTHCHOP(X)
  816. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  817. #endif
  818. #if AXIS_HAS_STEALTHCHOP(Y)
  819. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  820. #endif
  821. #if AXIS_HAS_STEALTHCHOP(Z)
  822. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  823. #endif
  824. #if AXIS_HAS_STEALTHCHOP(X2)
  825. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  826. #endif
  827. #if AXIS_HAS_STEALTHCHOP(Y2)
  828. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  829. #endif
  830. #if AXIS_HAS_STEALTHCHOP(Z2)
  831. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  832. #endif
  833. #if AXIS_HAS_STEALTHCHOP(Z3)
  834. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  835. #endif
  836. #if MAX_EXTRUDERS
  837. #if AXIS_HAS_STEALTHCHOP(E0)
  838. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  839. #endif
  840. #if MAX_EXTRUDERS > 1
  841. #if AXIS_HAS_STEALTHCHOP(E1)
  842. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  843. #endif
  844. #if MAX_EXTRUDERS > 2
  845. #if AXIS_HAS_STEALTHCHOP(E2)
  846. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  847. #endif
  848. #if MAX_EXTRUDERS > 3
  849. #if AXIS_HAS_STEALTHCHOP(E3)
  850. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  851. #endif
  852. #if MAX_EXTRUDERS > 4
  853. #if AXIS_HAS_STEALTHCHOP(E4)
  854. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  855. #endif
  856. #if MAX_EXTRUDERS > 5
  857. #if AXIS_HAS_STEALTHCHOP(E5)
  858. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  859. #endif
  860. #endif // MAX_EXTRUDERS > 5
  861. #endif // MAX_EXTRUDERS > 4
  862. #endif // MAX_EXTRUDERS > 3
  863. #endif // MAX_EXTRUDERS > 2
  864. #endif // MAX_EXTRUDERS > 1
  865. #endif // MAX_EXTRUDERS
  866. #else
  867. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  868. .X = 100, .Y = 100, .Z = 3,
  869. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  870. .E0 = 30, .E1 = 30, .E2 = 30,
  871. .E3 = 30, .E4 = 30, .E5 = 30
  872. };
  873. #endif
  874. EEPROM_WRITE(tmc_hybrid_threshold);
  875. }
  876. //
  877. // TMC StallGuard threshold
  878. //
  879. {
  880. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  881. #if USE_SENSORLESS
  882. #if X_SENSORLESS
  883. tmc_sgt.X = stepperX.sgt();
  884. #endif
  885. #if Y_SENSORLESS
  886. tmc_sgt.Y = stepperY.sgt();
  887. #endif
  888. #if Z_SENSORLESS
  889. tmc_sgt.Z = stepperZ.sgt();
  890. #endif
  891. #endif
  892. EEPROM_WRITE(tmc_sgt);
  893. }
  894. //
  895. // TMC stepping mode
  896. //
  897. {
  898. _FIELD_TEST(tmc_stealth_enabled);
  899. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  900. #if HAS_STEALTHCHOP
  901. #if AXIS_HAS_STEALTHCHOP(X)
  902. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  903. #endif
  904. #if AXIS_HAS_STEALTHCHOP(Y)
  905. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  906. #endif
  907. #if AXIS_HAS_STEALTHCHOP(Z)
  908. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  909. #endif
  910. #if AXIS_HAS_STEALTHCHOP(X2)
  911. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  912. #endif
  913. #if AXIS_HAS_STEALTHCHOP(Y2)
  914. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  915. #endif
  916. #if AXIS_HAS_STEALTHCHOP(Z2)
  917. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  918. #endif
  919. #if AXIS_HAS_STEALTHCHOP(Z3)
  920. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  921. #endif
  922. #if MAX_EXTRUDERS
  923. #if AXIS_HAS_STEALTHCHOP(E0)
  924. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  925. #endif
  926. #if MAX_EXTRUDERS > 1
  927. #if AXIS_HAS_STEALTHCHOP(E1)
  928. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  929. #endif
  930. #if MAX_EXTRUDERS > 2
  931. #if AXIS_HAS_STEALTHCHOP(E2)
  932. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  933. #endif
  934. #if MAX_EXTRUDERS > 3
  935. #if AXIS_HAS_STEALTHCHOP(E3)
  936. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  937. #endif
  938. #if MAX_EXTRUDERS > 4
  939. #if AXIS_HAS_STEALTHCHOP(E4)
  940. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  941. #endif
  942. #if MAX_EXTRUDERS > 5
  943. #if AXIS_HAS_STEALTHCHOP(E5)
  944. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  945. #endif
  946. #endif // MAX_EXTRUDERS > 5
  947. #endif // MAX_EXTRUDERS > 4
  948. #endif // MAX_EXTRUDERS > 3
  949. #endif // MAX_EXTRUDERS > 2
  950. #endif // MAX_EXTRUDERS > 1
  951. #endif // MAX_EXTRUDERS
  952. #endif
  953. EEPROM_WRITE(tmc_stealth_enabled);
  954. }
  955. //
  956. // Linear Advance
  957. //
  958. {
  959. _FIELD_TEST(planner_extruder_advance_K);
  960. #if ENABLED(LIN_ADVANCE)
  961. EEPROM_WRITE(planner.extruder_advance_K);
  962. #else
  963. dummy = 0;
  964. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  965. #endif
  966. }
  967. //
  968. // Motor Current PWM
  969. //
  970. {
  971. _FIELD_TEST(motor_current_setting);
  972. #if HAS_MOTOR_CURRENT_PWM
  973. EEPROM_WRITE(stepper.motor_current_setting);
  974. #else
  975. const uint32_t dummyui32[XYZ] = { 0 };
  976. EEPROM_WRITE(dummyui32);
  977. #endif
  978. }
  979. //
  980. // CNC Coordinate Systems
  981. //
  982. _FIELD_TEST(coordinate_system);
  983. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  984. EEPROM_WRITE(gcode.coordinate_system);
  985. #else
  986. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  987. EEPROM_WRITE(coordinate_system);
  988. #endif
  989. //
  990. // Skew correction factors
  991. //
  992. _FIELD_TEST(planner_skew_factor);
  993. EEPROM_WRITE(planner.skew_factor);
  994. //
  995. // Advanced Pause filament load & unload lengths
  996. //
  997. {
  998. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  999. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1000. #endif
  1001. _FIELD_TEST(fc_settings);
  1002. EEPROM_WRITE(fc_settings);
  1003. }
  1004. //
  1005. // Multiple Extruders
  1006. //
  1007. #if EXTRUDERS > 1
  1008. _FIELD_TEST(toolchange_settings);
  1009. EEPROM_WRITE(toolchange_settings);
  1010. #endif
  1011. //
  1012. // Backlash Compensation
  1013. //
  1014. {
  1015. #if ENABLED(BACKLASH_COMPENSATION)
  1016. const float (&backlash_distance_mm)[XYZ] = backlash.distance_mm;
  1017. const uint8_t &backlash_correction = backlash.correction;
  1018. #else
  1019. const float backlash_distance_mm[XYZ] = { 0 };
  1020. const uint8_t backlash_correction = 0;
  1021. #endif
  1022. #ifdef BACKLASH_SMOOTHING_MM
  1023. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1024. #else
  1025. const float backlash_smoothing_mm = 3;
  1026. #endif
  1027. _FIELD_TEST(backlash_distance_mm);
  1028. EEPROM_WRITE(backlash_distance_mm[X_AXIS]);
  1029. EEPROM_WRITE(backlash_distance_mm[Y_AXIS]);
  1030. EEPROM_WRITE(backlash_distance_mm[Z_AXIS]);
  1031. EEPROM_WRITE(backlash_correction);
  1032. EEPROM_WRITE(backlash_smoothing_mm);
  1033. }
  1034. //
  1035. // Extensible UI User Data
  1036. //
  1037. #if ENABLED(EXTENSIBLE_UI)
  1038. {
  1039. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1040. ExtUI::onStoreSettings(extui_data);
  1041. _FIELD_TEST(extui_data);
  1042. EEPROM_WRITE(extui_data);
  1043. }
  1044. #endif
  1045. //
  1046. // Validate CRC and Data Size
  1047. //
  1048. if (!eeprom_error) {
  1049. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1050. final_crc = working_crc;
  1051. // Write the EEPROM header
  1052. eeprom_index = EEPROM_OFFSET;
  1053. EEPROM_WRITE(version);
  1054. EEPROM_WRITE(final_crc);
  1055. // Report storage size
  1056. DEBUG_ECHO_START();
  1057. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1058. eeprom_error |= size_error(eeprom_size);
  1059. }
  1060. EEPROM_FINISH();
  1061. //
  1062. // UBL Mesh
  1063. //
  1064. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1065. if (ubl.storage_slot >= 0)
  1066. store_mesh(ubl.storage_slot);
  1067. #endif
  1068. #if ENABLED(EXTENSIBLE_UI)
  1069. ExtUI::onConfigurationStoreWritten(!eeprom_error);
  1070. #endif
  1071. return !eeprom_error;
  1072. }
  1073. /**
  1074. * M501 - Retrieve Configuration
  1075. */
  1076. bool MarlinSettings::_load() {
  1077. uint16_t working_crc = 0;
  1078. EEPROM_START();
  1079. char stored_ver[4];
  1080. EEPROM_READ_ALWAYS(stored_ver);
  1081. uint16_t stored_crc;
  1082. EEPROM_READ_ALWAYS(stored_crc);
  1083. // Version has to match or defaults are used
  1084. if (strncmp(version, stored_ver, 3) != 0) {
  1085. if (stored_ver[3] != '\0') {
  1086. stored_ver[0] = '?';
  1087. stored_ver[1] = '\0';
  1088. }
  1089. DEBUG_ECHO_START();
  1090. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1091. eeprom_error = true;
  1092. }
  1093. else {
  1094. float dummy = 0;
  1095. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1096. _FIELD_TEST(esteppers);
  1097. // Number of esteppers may change
  1098. uint8_t esteppers;
  1099. EEPROM_READ_ALWAYS(esteppers);
  1100. //
  1101. // Planner Motion
  1102. //
  1103. {
  1104. // Get only the number of E stepper parameters previously stored
  1105. // Any steppers added later are set to their defaults
  1106. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  1107. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  1108. uint32_t tmp1[XYZ + esteppers];
  1109. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1110. EEPROM_READ(planner.settings.min_segment_time_us);
  1111. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  1112. EEPROM_READ(tmp2); // axis_steps_per_mm
  1113. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1114. if (!validating) LOOP_XYZE_N(i) {
  1115. const bool in = (i < esteppers + XYZ);
  1116. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  1117. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  1118. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  1119. }
  1120. EEPROM_READ(planner.settings.acceleration);
  1121. EEPROM_READ(planner.settings.retract_acceleration);
  1122. EEPROM_READ(planner.settings.travel_acceleration);
  1123. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1124. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1125. #if HAS_CLASSIC_JERK
  1126. EEPROM_READ(planner.max_jerk);
  1127. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  1128. EEPROM_READ(dummy);
  1129. #endif
  1130. #else
  1131. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  1132. #endif
  1133. #if ENABLED(JUNCTION_DEVIATION)
  1134. EEPROM_READ(planner.junction_deviation_mm);
  1135. #else
  1136. EEPROM_READ(dummy);
  1137. #endif
  1138. }
  1139. //
  1140. // Home Offset (M206 / M665)
  1141. //
  1142. {
  1143. _FIELD_TEST(home_offset);
  1144. #if HAS_SCARA_OFFSET
  1145. EEPROM_READ(scara_home_offset);
  1146. #else
  1147. #if !HAS_HOME_OFFSET
  1148. float home_offset[XYZ];
  1149. #endif
  1150. EEPROM_READ(home_offset);
  1151. #endif
  1152. }
  1153. //
  1154. // Hotend Offsets, if any
  1155. //
  1156. {
  1157. #if HAS_HOTEND_OFFSET
  1158. // Skip hotend 0 which must be 0
  1159. for (uint8_t e = 1; e < HOTENDS; e++)
  1160. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  1161. #endif
  1162. }
  1163. //
  1164. // Filament Runout Sensor
  1165. //
  1166. {
  1167. #if HAS_FILAMENT_SENSOR
  1168. bool &runout_sensor_enabled = runout.enabled;
  1169. #else
  1170. bool runout_sensor_enabled;
  1171. #endif
  1172. _FIELD_TEST(runout_sensor_enabled);
  1173. EEPROM_READ(runout_sensor_enabled);
  1174. float runout_distance_mm;
  1175. EEPROM_READ(runout_distance_mm);
  1176. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  1177. runout.set_runout_distance(runout_distance_mm);
  1178. #endif
  1179. }
  1180. //
  1181. // Global Leveling
  1182. //
  1183. {
  1184. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1185. EEPROM_READ(new_z_fade_height);
  1186. #else
  1187. EEPROM_READ(dummy);
  1188. #endif
  1189. }
  1190. //
  1191. // Mesh (Manual) Bed Leveling
  1192. //
  1193. {
  1194. uint8_t mesh_num_x, mesh_num_y;
  1195. EEPROM_READ(dummy);
  1196. EEPROM_READ_ALWAYS(mesh_num_x);
  1197. EEPROM_READ_ALWAYS(mesh_num_y);
  1198. #if ENABLED(MESH_BED_LEVELING)
  1199. if (!validating) mbl.z_offset = dummy;
  1200. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1201. // EEPROM data fits the current mesh
  1202. EEPROM_READ(mbl.z_values);
  1203. }
  1204. else {
  1205. // EEPROM data is stale
  1206. if (!validating) mbl.reset();
  1207. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1208. }
  1209. #else
  1210. // MBL is disabled - skip the stored data
  1211. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1212. #endif // MESH_BED_LEVELING
  1213. }
  1214. //
  1215. // Probe Z Offset
  1216. //
  1217. {
  1218. _FIELD_TEST(zprobe_zoffset);
  1219. #if !HAS_BED_PROBE
  1220. float zprobe_zoffset;
  1221. #endif
  1222. EEPROM_READ(zprobe_zoffset);
  1223. }
  1224. //
  1225. // Planar Bed Leveling matrix
  1226. //
  1227. {
  1228. #if ABL_PLANAR
  1229. EEPROM_READ(planner.bed_level_matrix);
  1230. #else
  1231. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1232. #endif
  1233. }
  1234. //
  1235. // Bilinear Auto Bed Leveling
  1236. //
  1237. {
  1238. uint8_t grid_max_x, grid_max_y;
  1239. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1240. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1241. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1242. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1243. if (!validating) set_bed_leveling_enabled(false);
  1244. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1245. EEPROM_READ(bilinear_start); // 2 ints
  1246. EEPROM_READ(z_values); // 9 to 256 floats
  1247. }
  1248. else // EEPROM data is stale
  1249. #endif // AUTO_BED_LEVELING_BILINEAR
  1250. {
  1251. // Skip past disabled (or stale) Bilinear Grid data
  1252. int bgs[2], bs[2];
  1253. EEPROM_READ(bgs);
  1254. EEPROM_READ(bs);
  1255. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1256. }
  1257. }
  1258. //
  1259. // Unified Bed Leveling active state
  1260. //
  1261. {
  1262. _FIELD_TEST(planner_leveling_active);
  1263. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1264. EEPROM_READ(planner.leveling_active);
  1265. EEPROM_READ(ubl.storage_slot);
  1266. #else
  1267. bool planner_leveling_active;
  1268. uint8_t ubl_storage_slot;
  1269. EEPROM_READ(planner_leveling_active);
  1270. EEPROM_READ(ubl_storage_slot);
  1271. #endif
  1272. }
  1273. //
  1274. // SERVO_ANGLES
  1275. //
  1276. {
  1277. _FIELD_TEST(servo_angles);
  1278. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1279. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1280. #else
  1281. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1282. #endif
  1283. EEPROM_READ(servo_angles_arr);
  1284. }
  1285. //
  1286. // DELTA Geometry or Dual Endstops offsets
  1287. //
  1288. {
  1289. #if ENABLED(DELTA)
  1290. _FIELD_TEST(delta_height);
  1291. EEPROM_READ(delta_height); // 1 float
  1292. EEPROM_READ(delta_endstop_adj); // 3 floats
  1293. EEPROM_READ(delta_radius); // 1 float
  1294. EEPROM_READ(delta_diagonal_rod); // 1 float
  1295. EEPROM_READ(delta_segments_per_second); // 1 float
  1296. EEPROM_READ(delta_calibration_radius); // 1 float
  1297. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1298. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1299. _FIELD_TEST(x2_endstop_adj);
  1300. #if ENABLED(X_DUAL_ENDSTOPS)
  1301. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1302. #else
  1303. EEPROM_READ(dummy);
  1304. #endif
  1305. #if ENABLED(Y_DUAL_ENDSTOPS)
  1306. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1307. #else
  1308. EEPROM_READ(dummy);
  1309. #endif
  1310. #if Z_MULTI_ENDSTOPS
  1311. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1312. #else
  1313. EEPROM_READ(dummy);
  1314. #endif
  1315. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1316. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1317. #else
  1318. EEPROM_READ(dummy);
  1319. #endif
  1320. #endif
  1321. }
  1322. //
  1323. // LCD Preheat settings
  1324. //
  1325. {
  1326. _FIELD_TEST(ui_preheat_hotend_temp);
  1327. #if HAS_LCD_MENU
  1328. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1329. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1330. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1331. #else
  1332. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1333. uint8_t ui_preheat_fan_speed[2];
  1334. #endif
  1335. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1336. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1337. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1338. }
  1339. //
  1340. // Hotend PID
  1341. //
  1342. {
  1343. HOTEND_LOOP() {
  1344. PIDC_t pidc;
  1345. EEPROM_READ(pidc);
  1346. #if ENABLED(PIDTEMP)
  1347. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1348. // No need to scale PID values since EEPROM values are scaled
  1349. PID_PARAM(Kp, e) = pidc.Kp;
  1350. PID_PARAM(Ki, e) = pidc.Ki;
  1351. PID_PARAM(Kd, e) = pidc.Kd;
  1352. #if ENABLED(PID_EXTRUSION_SCALING)
  1353. PID_PARAM(Kc, e) = pidc.Kc;
  1354. #endif
  1355. }
  1356. #endif
  1357. }
  1358. }
  1359. //
  1360. // PID Extrusion Scaling
  1361. //
  1362. {
  1363. _FIELD_TEST(lpq_len);
  1364. #if ENABLED(PID_EXTRUSION_SCALING)
  1365. EEPROM_READ(thermalManager.lpq_len);
  1366. #else
  1367. int16_t lpq_len;
  1368. EEPROM_READ(lpq_len);
  1369. #endif
  1370. }
  1371. //
  1372. // Heated Bed PID
  1373. //
  1374. {
  1375. PID_t pid;
  1376. EEPROM_READ(pid);
  1377. #if ENABLED(PIDTEMPBED)
  1378. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1379. memcpy(&thermalManager.temp_bed.pid, &pid, sizeof(pid));
  1380. #endif
  1381. }
  1382. //
  1383. // User-defined Thermistors
  1384. //
  1385. #if HAS_USER_THERMISTORS
  1386. {
  1387. _FIELD_TEST(user_thermistor);
  1388. EEPROM_READ(thermalManager.user_thermistor);
  1389. }
  1390. #endif
  1391. //
  1392. // LCD Contrast
  1393. //
  1394. {
  1395. _FIELD_TEST(lcd_contrast);
  1396. int16_t lcd_contrast;
  1397. EEPROM_READ(lcd_contrast);
  1398. #if HAS_LCD_CONTRAST
  1399. ui.set_contrast(lcd_contrast);
  1400. #endif
  1401. }
  1402. //
  1403. // Power-Loss Recovery
  1404. //
  1405. {
  1406. _FIELD_TEST(recovery_enabled);
  1407. #if ENABLED(POWER_LOSS_RECOVERY)
  1408. EEPROM_READ(recovery.enabled);
  1409. #else
  1410. bool recovery_enabled;
  1411. EEPROM_READ(recovery_enabled);
  1412. #endif
  1413. }
  1414. //
  1415. // Firmware Retraction
  1416. //
  1417. {
  1418. _FIELD_TEST(fwretract_settings);
  1419. #if ENABLED(FWRETRACT)
  1420. EEPROM_READ(fwretract.settings);
  1421. #else
  1422. fwretract_settings_t fwretract_settings;
  1423. EEPROM_READ(fwretract_settings);
  1424. #endif
  1425. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1426. EEPROM_READ(fwretract.autoretract_enabled);
  1427. #else
  1428. bool autoretract_enabled;
  1429. EEPROM_READ(autoretract_enabled);
  1430. #endif
  1431. }
  1432. //
  1433. // Volumetric & Filament Size
  1434. //
  1435. {
  1436. struct {
  1437. bool volumetric_enabled;
  1438. float filament_size[EXTRUDERS];
  1439. } storage;
  1440. _FIELD_TEST(parser_volumetric_enabled);
  1441. EEPROM_READ(storage);
  1442. #if DISABLED(NO_VOLUMETRICS)
  1443. if (!validating) {
  1444. parser.volumetric_enabled = storage.volumetric_enabled;
  1445. COPY(planner.filament_size, storage.filament_size);
  1446. }
  1447. #endif
  1448. }
  1449. //
  1450. // TMC Stepper Settings
  1451. //
  1452. if (!validating) reset_stepper_drivers();
  1453. // TMC Stepper Current
  1454. {
  1455. _FIELD_TEST(tmc_stepper_current);
  1456. tmc_stepper_current_t currents;
  1457. EEPROM_READ(currents);
  1458. #if HAS_TRINAMIC
  1459. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1460. if (!validating) {
  1461. #if AXIS_IS_TMC(X)
  1462. SET_CURR(X);
  1463. #endif
  1464. #if AXIS_IS_TMC(Y)
  1465. SET_CURR(Y);
  1466. #endif
  1467. #if AXIS_IS_TMC(Z)
  1468. SET_CURR(Z);
  1469. #endif
  1470. #if AXIS_IS_TMC(X2)
  1471. SET_CURR(X2);
  1472. #endif
  1473. #if AXIS_IS_TMC(Y2)
  1474. SET_CURR(Y2);
  1475. #endif
  1476. #if AXIS_IS_TMC(Z2)
  1477. SET_CURR(Z2);
  1478. #endif
  1479. #if AXIS_IS_TMC(Z3)
  1480. SET_CURR(Z3);
  1481. #endif
  1482. #if AXIS_IS_TMC(E0)
  1483. SET_CURR(E0);
  1484. #endif
  1485. #if AXIS_IS_TMC(E1)
  1486. SET_CURR(E1);
  1487. #endif
  1488. #if AXIS_IS_TMC(E2)
  1489. SET_CURR(E2);
  1490. #endif
  1491. #if AXIS_IS_TMC(E3)
  1492. SET_CURR(E3);
  1493. #endif
  1494. #if AXIS_IS_TMC(E4)
  1495. SET_CURR(E4);
  1496. #endif
  1497. #if AXIS_IS_TMC(E5)
  1498. SET_CURR(E5);
  1499. #endif
  1500. }
  1501. #endif
  1502. }
  1503. // TMC Hybrid Threshold
  1504. {
  1505. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1506. _FIELD_TEST(tmc_hybrid_threshold);
  1507. EEPROM_READ(tmc_hybrid_threshold);
  1508. #if ENABLED(HYBRID_THRESHOLD)
  1509. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1510. if (!validating) {
  1511. #if AXIS_HAS_STEALTHCHOP(X)
  1512. TMC_SET_PWMTHRS(X, X);
  1513. #endif
  1514. #if AXIS_HAS_STEALTHCHOP(Y)
  1515. TMC_SET_PWMTHRS(Y, Y);
  1516. #endif
  1517. #if AXIS_HAS_STEALTHCHOP(Z)
  1518. TMC_SET_PWMTHRS(Z, Z);
  1519. #endif
  1520. #if AXIS_HAS_STEALTHCHOP(X2)
  1521. TMC_SET_PWMTHRS(X, X2);
  1522. #endif
  1523. #if AXIS_HAS_STEALTHCHOP(Y2)
  1524. TMC_SET_PWMTHRS(Y, Y2);
  1525. #endif
  1526. #if AXIS_HAS_STEALTHCHOP(Z2)
  1527. TMC_SET_PWMTHRS(Z, Z2);
  1528. #endif
  1529. #if AXIS_HAS_STEALTHCHOP(Z3)
  1530. TMC_SET_PWMTHRS(Z, Z3);
  1531. #endif
  1532. #if AXIS_HAS_STEALTHCHOP(E0)
  1533. TMC_SET_PWMTHRS(E, E0);
  1534. #endif
  1535. #if AXIS_HAS_STEALTHCHOP(E1)
  1536. TMC_SET_PWMTHRS(E, E1);
  1537. #endif
  1538. #if AXIS_HAS_STEALTHCHOP(E2)
  1539. TMC_SET_PWMTHRS(E, E2);
  1540. #endif
  1541. #if AXIS_HAS_STEALTHCHOP(E3)
  1542. TMC_SET_PWMTHRS(E, E3);
  1543. #endif
  1544. #if AXIS_HAS_STEALTHCHOP(E4)
  1545. TMC_SET_PWMTHRS(E, E4);
  1546. #endif
  1547. #if AXIS_HAS_STEALTHCHOP(E5)
  1548. TMC_SET_PWMTHRS(E, E5);
  1549. #endif
  1550. }
  1551. #endif
  1552. }
  1553. //
  1554. // TMC StallGuard threshold.
  1555. // X and X2 use the same value
  1556. // Y and Y2 use the same value
  1557. // Z, Z2 and Z3 use the same value
  1558. //
  1559. {
  1560. tmc_sgt_t tmc_sgt;
  1561. _FIELD_TEST(tmc_sgt);
  1562. EEPROM_READ(tmc_sgt);
  1563. #if USE_SENSORLESS
  1564. if (!validating) {
  1565. #ifdef X_STALL_SENSITIVITY
  1566. #if AXIS_HAS_STALLGUARD(X)
  1567. stepperX.sgt(tmc_sgt.X);
  1568. #endif
  1569. #if AXIS_HAS_STALLGUARD(X2)
  1570. stepperX2.sgt(tmc_sgt.X);
  1571. #endif
  1572. #endif
  1573. #ifdef Y_STALL_SENSITIVITY
  1574. #if AXIS_HAS_STALLGUARD(Y)
  1575. stepperY.sgt(tmc_sgt.Y);
  1576. #endif
  1577. #if AXIS_HAS_STALLGUARD(Y2)
  1578. stepperY2.sgt(tmc_sgt.Y);
  1579. #endif
  1580. #endif
  1581. #ifdef Z_STALL_SENSITIVITY
  1582. #if AXIS_HAS_STALLGUARD(Z)
  1583. stepperZ.sgt(tmc_sgt.Z);
  1584. #endif
  1585. #if AXIS_HAS_STALLGUARD(Z2)
  1586. stepperZ2.sgt(tmc_sgt.Z);
  1587. #endif
  1588. #if AXIS_HAS_STALLGUARD(Z3)
  1589. stepperZ3.sgt(tmc_sgt.Z);
  1590. #endif
  1591. #endif
  1592. }
  1593. #endif
  1594. }
  1595. // TMC stepping mode
  1596. {
  1597. _FIELD_TEST(tmc_stealth_enabled);
  1598. tmc_stealth_enabled_t tmc_stealth_enabled;
  1599. EEPROM_READ(tmc_stealth_enabled);
  1600. #if HAS_TRINAMIC
  1601. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1602. if (!validating) {
  1603. #if AXIS_HAS_STEALTHCHOP(X)
  1604. SET_STEPPING_MODE(X);
  1605. #endif
  1606. #if AXIS_HAS_STEALTHCHOP(Y)
  1607. SET_STEPPING_MODE(Y);
  1608. #endif
  1609. #if AXIS_HAS_STEALTHCHOP(Z)
  1610. SET_STEPPING_MODE(Z);
  1611. #endif
  1612. #if AXIS_HAS_STEALTHCHOP(X2)
  1613. SET_STEPPING_MODE(X2);
  1614. #endif
  1615. #if AXIS_HAS_STEALTHCHOP(Y2)
  1616. SET_STEPPING_MODE(Y2);
  1617. #endif
  1618. #if AXIS_HAS_STEALTHCHOP(Z2)
  1619. SET_STEPPING_MODE(Z2);
  1620. #endif
  1621. #if AXIS_HAS_STEALTHCHOP(Z3)
  1622. SET_STEPPING_MODE(Z3);
  1623. #endif
  1624. #if AXIS_HAS_STEALTHCHOP(E0)
  1625. SET_STEPPING_MODE(E0);
  1626. #endif
  1627. #if AXIS_HAS_STEALTHCHOP(E1)
  1628. SET_STEPPING_MODE(E1);
  1629. #endif
  1630. #if AXIS_HAS_STEALTHCHOP(E2)
  1631. SET_STEPPING_MODE(E2);
  1632. #endif
  1633. #if AXIS_HAS_STEALTHCHOP(E3)
  1634. SET_STEPPING_MODE(E3);
  1635. #endif
  1636. #if AXIS_HAS_STEALTHCHOP(E4)
  1637. SET_STEPPING_MODE(E4);
  1638. #endif
  1639. #if AXIS_HAS_STEALTHCHOP(E5)
  1640. SET_STEPPING_MODE(E5);
  1641. #endif
  1642. }
  1643. #endif
  1644. }
  1645. //
  1646. // Linear Advance
  1647. //
  1648. {
  1649. float extruder_advance_K[EXTRUDERS];
  1650. _FIELD_TEST(planner_extruder_advance_K);
  1651. EEPROM_READ(extruder_advance_K);
  1652. #if ENABLED(LIN_ADVANCE)
  1653. if (!validating)
  1654. COPY(planner.extruder_advance_K, extruder_advance_K);
  1655. #endif
  1656. }
  1657. //
  1658. // Motor Current PWM
  1659. //
  1660. {
  1661. uint32_t motor_current_setting[3];
  1662. _FIELD_TEST(motor_current_setting);
  1663. EEPROM_READ(motor_current_setting);
  1664. #if HAS_MOTOR_CURRENT_PWM
  1665. if (!validating)
  1666. COPY(stepper.motor_current_setting, motor_current_setting);
  1667. #endif
  1668. }
  1669. //
  1670. // CNC Coordinate System
  1671. //
  1672. {
  1673. _FIELD_TEST(coordinate_system);
  1674. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1675. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1676. EEPROM_READ(gcode.coordinate_system);
  1677. #else
  1678. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1679. EEPROM_READ(coordinate_system);
  1680. #endif
  1681. }
  1682. //
  1683. // Skew correction factors
  1684. //
  1685. {
  1686. skew_factor_t skew_factor;
  1687. _FIELD_TEST(planner_skew_factor);
  1688. EEPROM_READ(skew_factor);
  1689. #if ENABLED(SKEW_CORRECTION_GCODE)
  1690. if (!validating) {
  1691. planner.skew_factor.xy = skew_factor.xy;
  1692. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1693. planner.skew_factor.xz = skew_factor.xz;
  1694. planner.skew_factor.yz = skew_factor.yz;
  1695. #endif
  1696. }
  1697. #endif
  1698. }
  1699. //
  1700. // Advanced Pause filament load & unload lengths
  1701. //
  1702. {
  1703. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1704. fil_change_settings_t fc_settings[EXTRUDERS];
  1705. #endif
  1706. _FIELD_TEST(fc_settings);
  1707. EEPROM_READ(fc_settings);
  1708. }
  1709. //
  1710. // Tool-change settings
  1711. //
  1712. #if EXTRUDERS > 1
  1713. _FIELD_TEST(toolchange_settings);
  1714. EEPROM_READ(toolchange_settings);
  1715. #endif
  1716. //
  1717. // Backlash Compensation
  1718. //
  1719. {
  1720. #if ENABLED(BACKLASH_COMPENSATION)
  1721. float (&backlash_distance_mm)[XYZ] = backlash.distance_mm;
  1722. uint8_t &backlash_correction = backlash.correction;
  1723. #else
  1724. float backlash_distance_mm[XYZ];
  1725. uint8_t backlash_correction;
  1726. #endif
  1727. #ifdef BACKLASH_SMOOTHING_MM
  1728. float &backlash_smoothing_mm = backlash.smoothing_mm;
  1729. #else
  1730. float backlash_smoothing_mm;
  1731. #endif
  1732. _FIELD_TEST(backlash_distance_mm);
  1733. EEPROM_READ(backlash_distance_mm[X_AXIS]);
  1734. EEPROM_READ(backlash_distance_mm[Y_AXIS]);
  1735. EEPROM_READ(backlash_distance_mm[Z_AXIS]);
  1736. EEPROM_READ(backlash_correction);
  1737. EEPROM_READ(backlash_smoothing_mm);
  1738. }
  1739. //
  1740. // Extensible UI User Data
  1741. //
  1742. #if ENABLED(EXTENSIBLE_UI)
  1743. // This is a significant hardware change; don't reserve EEPROM space when not present
  1744. {
  1745. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1746. _FIELD_TEST(extui_data);
  1747. EEPROM_READ(extui_data);
  1748. if(!validating)
  1749. ExtUI::onLoadSettings(extui_data);
  1750. }
  1751. #endif
  1752. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1753. if (eeprom_error) {
  1754. DEBUG_ECHO_START();
  1755. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1756. }
  1757. else if (working_crc != stored_crc) {
  1758. eeprom_error = true;
  1759. DEBUG_ERROR_START();
  1760. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1761. }
  1762. else if (!validating) {
  1763. DEBUG_ECHO_START();
  1764. DEBUG_ECHO(version);
  1765. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1766. }
  1767. if (!validating && !eeprom_error) postprocess();
  1768. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1769. if (!validating) {
  1770. ubl.report_state();
  1771. if (!ubl.sanity_check()) {
  1772. SERIAL_EOL();
  1773. #if ENABLED(EEPROM_CHITCHAT)
  1774. ubl.echo_name();
  1775. DEBUG_ECHOLNPGM(" initialized.\n");
  1776. #endif
  1777. }
  1778. else {
  1779. eeprom_error = true;
  1780. #if ENABLED(EEPROM_CHITCHAT)
  1781. DEBUG_ECHOPGM("?Can't enable ");
  1782. ubl.echo_name();
  1783. DEBUG_ECHOLNPGM(".");
  1784. #endif
  1785. ubl.reset();
  1786. }
  1787. if (ubl.storage_slot >= 0) {
  1788. load_mesh(ubl.storage_slot);
  1789. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1790. }
  1791. else {
  1792. ubl.reset();
  1793. DEBUG_ECHOLNPGM("UBL System reset()");
  1794. }
  1795. }
  1796. #endif
  1797. }
  1798. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1799. if (!validating) report();
  1800. #endif
  1801. EEPROM_FINISH();
  1802. return !eeprom_error;
  1803. }
  1804. bool MarlinSettings::validate() {
  1805. validating = true;
  1806. const bool success = _load();
  1807. validating = false;
  1808. return success;
  1809. }
  1810. bool MarlinSettings::load() {
  1811. if (validate()) {
  1812. const bool success = _load();
  1813. #if ENABLED(EXTENSIBLE_UI)
  1814. ExtUI::onConfigurationStoreRead(success);
  1815. #endif
  1816. return success;
  1817. }
  1818. reset();
  1819. #if ENABLED(EEPROM_AUTO_INIT)
  1820. (void)save();
  1821. SERIAL_ECHO_MSG("EEPROM Initialized");
  1822. #endif
  1823. return true;
  1824. }
  1825. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1826. inline void ubl_invalid_slot(const int s) {
  1827. #if ENABLED(EEPROM_CHITCHAT)
  1828. DEBUG_ECHOLNPGM("?Invalid slot.");
  1829. DEBUG_ECHO(s);
  1830. DEBUG_ECHOLNPGM(" mesh slots available.");
  1831. #else
  1832. UNUSED(s);
  1833. #endif
  1834. }
  1835. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1836. // is a placeholder for the size of the MAT; the MAT will always
  1837. // live at the very end of the eeprom
  1838. uint16_t MarlinSettings::meshes_start_index() {
  1839. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1840. // or down a little bit without disrupting the mesh data
  1841. }
  1842. uint16_t MarlinSettings::calc_num_meshes() {
  1843. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1844. }
  1845. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1846. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1847. }
  1848. void MarlinSettings::store_mesh(const int8_t slot) {
  1849. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1850. const int16_t a = calc_num_meshes();
  1851. if (!WITHIN(slot, 0, a - 1)) {
  1852. ubl_invalid_slot(a);
  1853. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  1854. DEBUG_EOL();
  1855. return;
  1856. }
  1857. int pos = mesh_slot_offset(slot);
  1858. uint16_t crc = 0;
  1859. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1860. persistentStore.access_start();
  1861. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1862. persistentStore.access_finish();
  1863. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  1864. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  1865. #else
  1866. // Other mesh types
  1867. #endif
  1868. }
  1869. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  1870. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1871. const int16_t a = settings.calc_num_meshes();
  1872. if (!WITHIN(slot, 0, a - 1)) {
  1873. ubl_invalid_slot(a);
  1874. return;
  1875. }
  1876. int pos = mesh_slot_offset(slot);
  1877. uint16_t crc = 0;
  1878. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1879. persistentStore.access_start();
  1880. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1881. persistentStore.access_finish();
  1882. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  1883. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  1884. EEPROM_FINISH();
  1885. #else
  1886. // Other mesh types
  1887. #endif
  1888. }
  1889. //void MarlinSettings::delete_mesh() { return; }
  1890. //void MarlinSettings::defrag_meshes() { return; }
  1891. #endif // AUTO_BED_LEVELING_UBL
  1892. #else // !EEPROM_SETTINGS
  1893. bool MarlinSettings::save() {
  1894. DEBUG_ERROR_MSG("EEPROM disabled");
  1895. return false;
  1896. }
  1897. #endif // !EEPROM_SETTINGS
  1898. /**
  1899. * M502 - Reset Configuration
  1900. */
  1901. void MarlinSettings::reset() {
  1902. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1903. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1904. LOOP_XYZE_N(i) {
  1905. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1906. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1907. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
  1908. }
  1909. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1910. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1911. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1912. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1913. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1914. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1915. #if HAS_CLASSIC_JERK
  1916. #ifndef DEFAULT_XJERK
  1917. #define DEFAULT_XJERK 0
  1918. #endif
  1919. #ifndef DEFAULT_YJERK
  1920. #define DEFAULT_YJERK 0
  1921. #endif
  1922. #ifndef DEFAULT_ZJERK
  1923. #define DEFAULT_ZJERK 0
  1924. #endif
  1925. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1926. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1927. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1928. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1929. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1930. #endif
  1931. #endif
  1932. #if ENABLED(JUNCTION_DEVIATION)
  1933. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1934. #endif
  1935. #if HAS_SCARA_OFFSET
  1936. ZERO(scara_home_offset);
  1937. #elif HAS_HOME_OFFSET
  1938. ZERO(home_offset);
  1939. #endif
  1940. #if HAS_HOTEND_OFFSET
  1941. reset_hotend_offsets();
  1942. #endif
  1943. //
  1944. // Filament Runout Sensor
  1945. //
  1946. #if HAS_FILAMENT_SENSOR
  1947. runout.enabled = true;
  1948. runout.reset();
  1949. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  1950. runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM);
  1951. #endif
  1952. #endif
  1953. //
  1954. // Tool-change Settings
  1955. //
  1956. #if EXTRUDERS > 1
  1957. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  1958. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  1959. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  1960. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  1961. #endif
  1962. #if ENABLED(TOOLCHANGE_PARK)
  1963. toolchange_settings.change_point = TOOLCHANGE_PARK_XY;
  1964. #endif
  1965. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  1966. #endif
  1967. #if ENABLED(BACKLASH_GCODE)
  1968. backlash.correction = (BACKLASH_CORRECTION) * 255;
  1969. #ifdef BACKLASH_DISTANCE_MM
  1970. constexpr float tmp[XYZ] = BACKLASH_DISTANCE_MM;
  1971. backlash.distance_mm[X_AXIS] = tmp[X_AXIS];
  1972. backlash.distance_mm[Y_AXIS] = tmp[Y_AXIS];
  1973. backlash.distance_mm[Z_AXIS] = tmp[Z_AXIS];
  1974. #endif
  1975. #ifdef BACKLASH_SMOOTHING_MM
  1976. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  1977. #endif
  1978. #endif
  1979. #if ENABLED(EXTENSIBLE_UI)
  1980. ExtUI::onFactoryReset();
  1981. #endif
  1982. //
  1983. // Magnetic Parking Extruder
  1984. //
  1985. #if ENABLED(MAGNETIC_PARKING_EXTRUDER)
  1986. mpe_settings_init();
  1987. #endif
  1988. //
  1989. // Global Leveling
  1990. //
  1991. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1992. new_z_fade_height = 0.0;
  1993. #endif
  1994. #if HAS_LEVELING
  1995. reset_bed_level();
  1996. #endif
  1997. #if HAS_BED_PROBE
  1998. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1999. #endif
  2000. //
  2001. // Servo Angles
  2002. //
  2003. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2004. COPY(servo_angles, base_servo_angles);
  2005. #endif
  2006. //
  2007. // Endstop Adjustments
  2008. //
  2009. #if ENABLED(DELTA)
  2010. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  2011. delta_height = DELTA_HEIGHT;
  2012. COPY(delta_endstop_adj, adj);
  2013. delta_radius = DELTA_RADIUS;
  2014. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2015. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2016. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  2017. COPY(delta_tower_angle_trim, dta);
  2018. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  2019. #if ENABLED(X_DUAL_ENDSTOPS)
  2020. endstops.x2_endstop_adj = (
  2021. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  2022. X_DUAL_ENDSTOPS_ADJUSTMENT
  2023. #else
  2024. 0
  2025. #endif
  2026. );
  2027. #endif
  2028. #if ENABLED(Y_DUAL_ENDSTOPS)
  2029. endstops.y2_endstop_adj = (
  2030. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  2031. Y_DUAL_ENDSTOPS_ADJUSTMENT
  2032. #else
  2033. 0
  2034. #endif
  2035. );
  2036. #endif
  2037. #if ENABLED(Z_DUAL_ENDSTOPS)
  2038. endstops.z2_endstop_adj = (
  2039. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  2040. Z_DUAL_ENDSTOPS_ADJUSTMENT
  2041. #else
  2042. 0
  2043. #endif
  2044. );
  2045. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  2046. endstops.z2_endstop_adj = (
  2047. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  2048. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  2049. #else
  2050. 0
  2051. #endif
  2052. );
  2053. endstops.z3_endstop_adj = (
  2054. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  2055. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  2056. #else
  2057. 0
  2058. #endif
  2059. );
  2060. #endif
  2061. #endif
  2062. //
  2063. // Preheat parameters
  2064. //
  2065. #if HAS_LCD_MENU
  2066. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  2067. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  2068. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  2069. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  2070. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  2071. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  2072. #endif
  2073. //
  2074. // Hotend PID
  2075. //
  2076. #if ENABLED(PIDTEMP)
  2077. HOTEND_LOOP() {
  2078. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  2079. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  2080. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  2081. #if ENABLED(PID_EXTRUSION_SCALING)
  2082. PID_PARAM(Kc, e) = DEFAULT_Kc;
  2083. #endif
  2084. }
  2085. #endif
  2086. //
  2087. // PID Extrusion Scaling
  2088. //
  2089. #if ENABLED(PID_EXTRUSION_SCALING)
  2090. thermalManager.lpq_len = 20; // Default last-position-queue size
  2091. #endif
  2092. //
  2093. // Heated Bed PID
  2094. //
  2095. #if ENABLED(PIDTEMPBED)
  2096. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2097. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2098. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2099. #endif
  2100. //
  2101. // User-Defined Thermistors
  2102. //
  2103. #if HAS_USER_THERMISTORS
  2104. thermalManager.reset_user_thermistors();
  2105. #endif
  2106. //
  2107. // LCD Contrast
  2108. //
  2109. #if HAS_LCD_CONTRAST
  2110. ui.set_contrast(DEFAULT_LCD_CONTRAST);
  2111. #endif
  2112. //
  2113. // Power-Loss Recovery
  2114. //
  2115. #if ENABLED(POWER_LOSS_RECOVERY)
  2116. recovery.enable(true);
  2117. #endif
  2118. //
  2119. // Firmware Retraction
  2120. //
  2121. #if ENABLED(FWRETRACT)
  2122. fwretract.reset();
  2123. #endif
  2124. //
  2125. // Volumetric & Filament Size
  2126. //
  2127. #if DISABLED(NO_VOLUMETRICS)
  2128. parser.volumetric_enabled =
  2129. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  2130. true
  2131. #else
  2132. false
  2133. #endif
  2134. ;
  2135. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  2136. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2137. #endif
  2138. endstops.enable_globally(
  2139. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  2140. true
  2141. #else
  2142. false
  2143. #endif
  2144. );
  2145. reset_stepper_drivers();
  2146. //
  2147. // Linear Advance
  2148. //
  2149. #if ENABLED(LIN_ADVANCE)
  2150. LOOP_L_N(i, EXTRUDERS) {
  2151. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2152. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  2153. saved_extruder_advance_K[i] = LIN_ADVANCE_K;
  2154. #endif
  2155. }
  2156. #endif
  2157. //
  2158. // Motor Current PWM
  2159. //
  2160. #if HAS_MOTOR_CURRENT_PWM
  2161. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  2162. for (uint8_t q = 3; q--;)
  2163. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2164. #endif
  2165. //
  2166. // CNC Coordinate System
  2167. //
  2168. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  2169. (void)gcode.select_coordinate_system(-1); // Go back to machine space
  2170. #endif
  2171. //
  2172. // Skew Correction
  2173. //
  2174. #if ENABLED(SKEW_CORRECTION_GCODE)
  2175. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2176. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2177. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2178. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2179. #endif
  2180. #endif
  2181. //
  2182. // Advanced Pause filament load & unload lengths
  2183. //
  2184. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2185. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  2186. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2187. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2188. }
  2189. #endif
  2190. postprocess();
  2191. DEBUG_ECHO_START();
  2192. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2193. #if ENABLED(EXTENSIBLE_UI)
  2194. ExtUI::onFactoryReset();
  2195. #endif
  2196. }
  2197. #if DISABLED(DISABLE_M503)
  2198. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2199. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2200. #define CONFIG_ECHO_HEADING(STR) do{ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); } }while(0)
  2201. #if HAS_TRINAMIC
  2202. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2203. #if HAS_STEALTHCHOP
  2204. void say_M569(const char * const etc=nullptr) {
  2205. SERIAL_ECHOPGM(" M569 S1");
  2206. if (etc) {
  2207. SERIAL_CHAR(' ');
  2208. serialprintPGM(etc);
  2209. SERIAL_EOL();
  2210. }
  2211. }
  2212. #endif
  2213. #if ENABLED(HYBRID_THRESHOLD)
  2214. inline void say_M913() { SERIAL_ECHOPGM(" M913"); }
  2215. #endif
  2216. #if USE_SENSORLESS
  2217. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2218. #endif
  2219. #endif
  2220. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2221. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2222. #endif
  2223. inline void say_units(const bool colon) {
  2224. serialprintPGM(
  2225. #if ENABLED(INCH_MODE_SUPPORT)
  2226. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2227. #endif
  2228. PSTR(" (mm)")
  2229. );
  2230. if (colon) SERIAL_ECHOLNPGM(":");
  2231. }
  2232. void report_M92(const bool echo=true, const int8_t e=-1);
  2233. /**
  2234. * M503 - Report current settings in RAM
  2235. *
  2236. * Unless specifically disabled, M503 is available even without EEPROM
  2237. */
  2238. void MarlinSettings::report(const bool forReplay) {
  2239. /**
  2240. * Announce current units, in case inches are being displayed
  2241. */
  2242. CONFIG_ECHO_START();
  2243. #if ENABLED(INCH_MODE_SUPPORT)
  2244. SERIAL_ECHOPGM(" G2");
  2245. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2246. SERIAL_ECHOPGM(" ;");
  2247. say_units(false);
  2248. #else
  2249. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2250. say_units(false);
  2251. #endif
  2252. SERIAL_EOL();
  2253. #if HAS_LCD_MENU
  2254. // Temperature units - for Ultipanel temperature options
  2255. CONFIG_ECHO_START();
  2256. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2257. SERIAL_ECHOPGM(" M149 ");
  2258. SERIAL_CHAR(parser.temp_units_code());
  2259. SERIAL_ECHOPGM(" ; Units in ");
  2260. serialprintPGM(parser.temp_units_name());
  2261. #else
  2262. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2263. #endif
  2264. #endif
  2265. SERIAL_EOL();
  2266. #if DISABLED(NO_VOLUMETRICS)
  2267. /**
  2268. * Volumetric extrusion M200
  2269. */
  2270. if (!forReplay) {
  2271. CONFIG_ECHO_START();
  2272. SERIAL_ECHOPGM("Filament settings:");
  2273. if (parser.volumetric_enabled)
  2274. SERIAL_EOL();
  2275. else
  2276. SERIAL_ECHOLNPGM(" Disabled");
  2277. }
  2278. CONFIG_ECHO_START();
  2279. SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  2280. #if EXTRUDERS > 1
  2281. CONFIG_ECHO_START();
  2282. SERIAL_ECHOLNPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  2283. #if EXTRUDERS > 2
  2284. CONFIG_ECHO_START();
  2285. SERIAL_ECHOLNPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  2286. #if EXTRUDERS > 3
  2287. CONFIG_ECHO_START();
  2288. SERIAL_ECHOLNPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  2289. #if EXTRUDERS > 4
  2290. CONFIG_ECHO_START();
  2291. SERIAL_ECHOLNPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  2292. #if EXTRUDERS > 5
  2293. CONFIG_ECHO_START();
  2294. SERIAL_ECHOLNPAIR(" M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  2295. #endif // EXTRUDERS > 5
  2296. #endif // EXTRUDERS > 4
  2297. #endif // EXTRUDERS > 3
  2298. #endif // EXTRUDERS > 2
  2299. #endif // EXTRUDERS > 1
  2300. if (!parser.volumetric_enabled)
  2301. CONFIG_ECHO_MSG(" M200 D0");
  2302. #endif // !NO_VOLUMETRICS
  2303. CONFIG_ECHO_HEADING("Steps per unit:");
  2304. report_M92(!forReplay);
  2305. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2306. CONFIG_ECHO_START();
  2307. SERIAL_ECHOLNPAIR(
  2308. " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2309. , " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2310. , " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2311. #if DISABLED(DISTINCT_E_FACTORS)
  2312. , " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2313. #endif
  2314. );
  2315. #if ENABLED(DISTINCT_E_FACTORS)
  2316. CONFIG_ECHO_START();
  2317. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2318. SERIAL_ECHOLNPAIR(
  2319. " M203 T", (int)i
  2320. , " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2321. );
  2322. }
  2323. #endif
  2324. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2325. CONFIG_ECHO_START();
  2326. SERIAL_ECHOLNPAIR(
  2327. " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2328. , " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2329. , " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2330. #if DISABLED(DISTINCT_E_FACTORS)
  2331. , " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2332. #endif
  2333. );
  2334. #if ENABLED(DISTINCT_E_FACTORS)
  2335. CONFIG_ECHO_START();
  2336. for (uint8_t i = 0; i < E_STEPPERS; i++)
  2337. SERIAL_ECHOLNPAIR(
  2338. " M201 T", (int)i
  2339. , " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2340. );
  2341. #endif
  2342. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2343. CONFIG_ECHO_START();
  2344. SERIAL_ECHOLNPAIR(
  2345. " M204 P", LINEAR_UNIT(planner.settings.acceleration)
  2346. , " R", LINEAR_UNIT(planner.settings.retract_acceleration)
  2347. , " T", LINEAR_UNIT(planner.settings.travel_acceleration)
  2348. );
  2349. if (!forReplay) {
  2350. CONFIG_ECHO_START();
  2351. SERIAL_ECHOPGM("Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2352. #if ENABLED(JUNCTION_DEVIATION)
  2353. SERIAL_ECHOPGM(" J<junc_dev>");
  2354. #endif
  2355. #if HAS_CLASSIC_JERK
  2356. SERIAL_ECHOPGM(" X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2357. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2358. SERIAL_ECHOPGM(" E<max_e_jerk>");
  2359. #endif
  2360. #endif
  2361. SERIAL_EOL();
  2362. }
  2363. CONFIG_ECHO_START();
  2364. SERIAL_ECHOLNPAIR(
  2365. " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us)
  2366. , " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2367. , " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2368. #if ENABLED(JUNCTION_DEVIATION)
  2369. , " J", LINEAR_UNIT(planner.junction_deviation_mm)
  2370. #endif
  2371. #if HAS_CLASSIC_JERK
  2372. , " X", LINEAR_UNIT(planner.max_jerk[X_AXIS])
  2373. , " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS])
  2374. , " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS])
  2375. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2376. , " E", LINEAR_UNIT(planner.max_jerk[E_AXIS])
  2377. #endif
  2378. #endif
  2379. );
  2380. #if HAS_M206_COMMAND
  2381. CONFIG_ECHO_HEADING("Home offset:");
  2382. CONFIG_ECHO_START();
  2383. SERIAL_ECHOLNPAIR(" M206"
  2384. #if IS_CARTESIAN
  2385. " X", LINEAR_UNIT(home_offset[X_AXIS]),
  2386. " Y", LINEAR_UNIT(home_offset[Y_AXIS]),
  2387. #endif
  2388. " Z", LINEAR_UNIT(home_offset[Z_AXIS])
  2389. );
  2390. #endif
  2391. #if HAS_HOTEND_OFFSET
  2392. CONFIG_ECHO_HEADING("Hotend offsets:");
  2393. CONFIG_ECHO_START();
  2394. for (uint8_t e = 1; e < HOTENDS; e++) {
  2395. SERIAL_ECHOPAIR(
  2396. " M218 T", (int)e
  2397. , " X", LINEAR_UNIT(hotend_offset[X_AXIS][e])
  2398. , " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e])
  2399. );
  2400. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2401. }
  2402. #endif
  2403. #if HAS_FILAMENT_SENSOR
  2404. CONFIG_ECHO_HEADING("Filament Runout Sensor:");
  2405. CONFIG_ECHO_START();
  2406. SERIAL_ECHOLNPAIR(" M412 S", int(runout.enabled));
  2407. #endif
  2408. /**
  2409. * Bed Leveling
  2410. */
  2411. #if HAS_LEVELING
  2412. #if ENABLED(MESH_BED_LEVELING)
  2413. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2414. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2415. if (!forReplay) {
  2416. CONFIG_ECHO_START();
  2417. ubl.echo_name();
  2418. SERIAL_ECHOLNPGM(":");
  2419. }
  2420. #elif HAS_ABL_OR_UBL
  2421. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2422. #endif
  2423. CONFIG_ECHO_START();
  2424. SERIAL_ECHOLNPAIR(
  2425. " M420 S", planner.leveling_active ? 1 : 0
  2426. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2427. , " Z", LINEAR_UNIT(planner.z_fade_height)
  2428. #endif
  2429. );
  2430. #if ENABLED(MESH_BED_LEVELING)
  2431. if (leveling_is_valid()) {
  2432. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2433. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2434. CONFIG_ECHO_START();
  2435. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1, " Y", (int)py + 1);
  2436. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2437. }
  2438. }
  2439. }
  2440. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2441. if (!forReplay) {
  2442. SERIAL_EOL();
  2443. ubl.report_state();
  2444. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  2445. SERIAL_ECHOLNPAIR("EEPROM can hold ", calc_num_meshes(), " meshes.\n");
  2446. }
  2447. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2448. // solution needs to be found.
  2449. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2450. if (leveling_is_valid()) {
  2451. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2452. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2453. CONFIG_ECHO_START();
  2454. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2455. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(z_values[px][py]), 5);
  2456. }
  2457. }
  2458. }
  2459. #endif
  2460. #endif // HAS_LEVELING
  2461. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2462. CONFIG_ECHO_HEADING("Servo Angles:");
  2463. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2464. switch (i) {
  2465. #if ENABLED(SWITCHING_EXTRUDER)
  2466. case SWITCHING_EXTRUDER_SERVO_NR:
  2467. #if EXTRUDERS > 3
  2468. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2469. #endif
  2470. #elif ENABLED(SWITCHING_NOZZLE)
  2471. case SWITCHING_NOZZLE_SERVO_NR:
  2472. #elif (ENABLED(BLTOUCH) && defined(BLTOUCH_ANGLES)) || (defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR))
  2473. case Z_PROBE_SERVO_NR:
  2474. #endif
  2475. CONFIG_ECHO_START();
  2476. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2477. default: break;
  2478. }
  2479. }
  2480. #endif // EDITABLE_SERVO_ANGLES
  2481. #if HAS_SCARA_OFFSET
  2482. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2483. CONFIG_ECHO_START();
  2484. SERIAL_ECHOLNPAIR(
  2485. " M665 S", delta_segments_per_second
  2486. , " P", scara_home_offset[A_AXIS]
  2487. , " T", scara_home_offset[B_AXIS]
  2488. , " Z", LINEAR_UNIT(scara_home_offset[Z_AXIS])
  2489. );
  2490. #elif ENABLED(DELTA)
  2491. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2492. CONFIG_ECHO_START();
  2493. SERIAL_ECHOLNPAIR(
  2494. " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS])
  2495. , " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS])
  2496. , " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS])
  2497. );
  2498. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2499. CONFIG_ECHO_START();
  2500. SERIAL_ECHOLNPAIR(
  2501. " M665 L", LINEAR_UNIT(delta_diagonal_rod)
  2502. , " R", LINEAR_UNIT(delta_radius)
  2503. , " H", LINEAR_UNIT(delta_height)
  2504. , " S", delta_segments_per_second
  2505. , " B", LINEAR_UNIT(delta_calibration_radius)
  2506. , " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])
  2507. , " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])
  2508. , " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS])
  2509. );
  2510. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  2511. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2512. CONFIG_ECHO_START();
  2513. SERIAL_ECHOPGM(" M666");
  2514. #if ENABLED(X_DUAL_ENDSTOPS)
  2515. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2516. #endif
  2517. #if ENABLED(Y_DUAL_ENDSTOPS)
  2518. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2519. #endif
  2520. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2521. SERIAL_ECHOLNPAIR("S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2522. CONFIG_ECHO_START();
  2523. SERIAL_ECHOPAIR(" M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2524. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2525. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2526. #endif
  2527. SERIAL_EOL();
  2528. #endif // [XYZ]_DUAL_ENDSTOPS
  2529. #if HAS_LCD_MENU
  2530. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2531. for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) {
  2532. CONFIG_ECHO_START();
  2533. SERIAL_ECHOLNPAIR(
  2534. " M145 S", (int)i
  2535. , " H", TEMP_UNIT(ui.preheat_hotend_temp[i])
  2536. , " B", TEMP_UNIT(ui.preheat_bed_temp[i])
  2537. , " F", int(ui.preheat_fan_speed[i])
  2538. );
  2539. }
  2540. #endif
  2541. #if HAS_PID_HEATING
  2542. CONFIG_ECHO_HEADING("PID settings:");
  2543. #if ENABLED(PIDTEMP)
  2544. #if HOTENDS > 1
  2545. if (forReplay) {
  2546. HOTEND_LOOP() {
  2547. CONFIG_ECHO_START();
  2548. SERIAL_ECHOPAIR(
  2549. " M301 E", e
  2550. , " P", PID_PARAM(Kp, e)
  2551. , " I", unscalePID_i(PID_PARAM(Ki, e))
  2552. , " D", unscalePID_d(PID_PARAM(Kd, e))
  2553. );
  2554. #if ENABLED(PID_EXTRUSION_SCALING)
  2555. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  2556. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2557. #endif
  2558. SERIAL_EOL();
  2559. }
  2560. }
  2561. else
  2562. #endif // HOTENDS > 1
  2563. // !forReplay || HOTENDS == 1
  2564. {
  2565. CONFIG_ECHO_START();
  2566. SERIAL_ECHOLNPAIR(
  2567. " M301 P", PID_PARAM(Kp, 0) // for compatibility with hosts, only echo values for E0
  2568. , " I", unscalePID_i(PID_PARAM(Ki, 0))
  2569. , " D", unscalePID_d(PID_PARAM(Kd, 0))
  2570. #if ENABLED(PID_EXTRUSION_SCALING)
  2571. , " C", PID_PARAM(Kc, 0)
  2572. , " L", thermalManager.lpq_len
  2573. #endif
  2574. );
  2575. }
  2576. #endif // PIDTEMP
  2577. #if ENABLED(PIDTEMPBED)
  2578. CONFIG_ECHO_START();
  2579. SERIAL_ECHOLNPAIR(
  2580. " M304 P", thermalManager.temp_bed.pid.Kp
  2581. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2582. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2583. );
  2584. #endif
  2585. #endif // PIDTEMP || PIDTEMPBED
  2586. #if HAS_USER_THERMISTORS
  2587. CONFIG_ECHO_HEADING("User thermistors:");
  2588. for (uint8_t i = 0; i < USER_THERMISTORS; i++)
  2589. thermalManager.log_user_thermistor(i, true);
  2590. #endif
  2591. #if HAS_LCD_CONTRAST
  2592. CONFIG_ECHO_HEADING("LCD Contrast:");
  2593. CONFIG_ECHO_START();
  2594. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2595. #endif
  2596. #if ENABLED(POWER_LOSS_RECOVERY)
  2597. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2598. CONFIG_ECHO_START();
  2599. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2600. #endif
  2601. #if ENABLED(FWRETRACT)
  2602. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2603. CONFIG_ECHO_START();
  2604. SERIAL_ECHOLNPAIR(
  2605. " M207 S", LINEAR_UNIT(fwretract.settings.retract_length)
  2606. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2607. , " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s))
  2608. , " Z", LINEAR_UNIT(fwretract.settings.retract_zraise)
  2609. );
  2610. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2611. CONFIG_ECHO_START();
  2612. SERIAL_ECHOLNPAIR(
  2613. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2614. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2615. , " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s))
  2616. );
  2617. #if ENABLED(FWRETRACT_AUTORETRACT)
  2618. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2619. CONFIG_ECHO_START();
  2620. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2621. #endif // FWRETRACT_AUTORETRACT
  2622. #endif // FWRETRACT
  2623. /**
  2624. * Probe Offset
  2625. */
  2626. #if HAS_BED_PROBE
  2627. if (!forReplay) {
  2628. CONFIG_ECHO_START();
  2629. SERIAL_ECHOPGM("Z-Probe Offset");
  2630. say_units(true);
  2631. }
  2632. CONFIG_ECHO_START();
  2633. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2634. #endif
  2635. /**
  2636. * Bed Skew Correction
  2637. */
  2638. #if ENABLED(SKEW_CORRECTION_GCODE)
  2639. CONFIG_ECHO_HEADING("Skew Factor: ");
  2640. CONFIG_ECHO_START();
  2641. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2642. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2643. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2644. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2645. #else
  2646. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2647. #endif
  2648. #endif
  2649. #if HAS_TRINAMIC
  2650. /**
  2651. * TMC stepper driver current
  2652. */
  2653. CONFIG_ECHO_HEADING("Stepper driver current:");
  2654. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2655. say_M906(forReplay);
  2656. SERIAL_ECHOLNPAIR(
  2657. #if AXIS_IS_TMC(X)
  2658. " X", stepperX.getMilliamps(),
  2659. #endif
  2660. #if AXIS_IS_TMC(Y)
  2661. " Y", stepperY.getMilliamps(),
  2662. #endif
  2663. #if AXIS_IS_TMC(Z)
  2664. " Z", stepperZ.getMilliamps()
  2665. #endif
  2666. );
  2667. #endif
  2668. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2669. say_M906(forReplay);
  2670. SERIAL_ECHOPGM(" I1");
  2671. SERIAL_ECHOLNPAIR(
  2672. #if AXIS_IS_TMC(X2)
  2673. " X", stepperX2.getMilliamps(),
  2674. #endif
  2675. #if AXIS_IS_TMC(Y2)
  2676. " Y", stepperY2.getMilliamps(),
  2677. #endif
  2678. #if AXIS_IS_TMC(Z2)
  2679. " Z", stepperZ2.getMilliamps()
  2680. #endif
  2681. );
  2682. #endif
  2683. #if AXIS_IS_TMC(Z3)
  2684. say_M906(forReplay);
  2685. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2686. #endif
  2687. #if AXIS_IS_TMC(E0)
  2688. say_M906(forReplay);
  2689. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2690. #endif
  2691. #if AXIS_IS_TMC(E1)
  2692. say_M906(forReplay);
  2693. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2694. #endif
  2695. #if AXIS_IS_TMC(E2)
  2696. say_M906(forReplay);
  2697. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2698. #endif
  2699. #if AXIS_IS_TMC(E3)
  2700. say_M906(forReplay);
  2701. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2702. #endif
  2703. #if AXIS_IS_TMC(E4)
  2704. say_M906(forReplay);
  2705. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2706. #endif
  2707. #if AXIS_IS_TMC(E5)
  2708. say_M906(forReplay);
  2709. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2710. #endif
  2711. SERIAL_EOL();
  2712. /**
  2713. * TMC Hybrid Threshold
  2714. */
  2715. #if ENABLED(HYBRID_THRESHOLD)
  2716. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2717. CONFIG_ECHO_START();
  2718. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2719. say_M913();
  2720. #endif
  2721. #if AXIS_HAS_STEALTHCHOP(X)
  2722. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X));
  2723. #endif
  2724. #if AXIS_HAS_STEALTHCHOP(Y)
  2725. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y));
  2726. #endif
  2727. #if AXIS_HAS_STEALTHCHOP(Z)
  2728. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z));
  2729. #endif
  2730. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2731. SERIAL_EOL();
  2732. #endif
  2733. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2734. say_M913();
  2735. SERIAL_ECHOPGM(" I1");
  2736. #endif
  2737. #if AXIS_HAS_STEALTHCHOP(X2)
  2738. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X2));
  2739. #endif
  2740. #if AXIS_HAS_STEALTHCHOP(Y2)
  2741. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y2));
  2742. #endif
  2743. #if AXIS_HAS_STEALTHCHOP(Z2)
  2744. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z2));
  2745. #endif
  2746. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2747. SERIAL_EOL();
  2748. #endif
  2749. #if AXIS_HAS_STEALTHCHOP(Z3)
  2750. say_M913();
  2751. SERIAL_ECHOLNPAIR(" I2 Z", TMC_GET_PWMTHRS(Z, Z3));
  2752. #endif
  2753. #if AXIS_HAS_STEALTHCHOP(E0)
  2754. say_M913();
  2755. SERIAL_ECHOLNPAIR(" T0 E", TMC_GET_PWMTHRS(E, E0));
  2756. #endif
  2757. #if AXIS_HAS_STEALTHCHOP(E1)
  2758. say_M913();
  2759. SERIAL_ECHOLNPAIR(" T1 E", TMC_GET_PWMTHRS(E, E1));
  2760. #endif
  2761. #if AXIS_HAS_STEALTHCHOP(E2)
  2762. say_M913();
  2763. SERIAL_ECHOLNPAIR(" T2 E", TMC_GET_PWMTHRS(E, E2));
  2764. #endif
  2765. #if AXIS_HAS_STEALTHCHOP(E3)
  2766. say_M913();
  2767. SERIAL_ECHOLNPAIR(" T3 E", TMC_GET_PWMTHRS(E, E3));
  2768. #endif
  2769. #if AXIS_HAS_STEALTHCHOP(E4)
  2770. say_M913();
  2771. SERIAL_ECHOLNPAIR(" T4 E", TMC_GET_PWMTHRS(E, E4));
  2772. #endif
  2773. #if AXIS_HAS_STEALTHCHOP(E5)
  2774. say_M913();
  2775. SERIAL_ECHOLNPAIR(" T5 E", TMC_GET_PWMTHRS(E, E5));
  2776. #endif
  2777. SERIAL_EOL();
  2778. #endif // HYBRID_THRESHOLD
  2779. /**
  2780. * TMC Sensorless homing thresholds
  2781. */
  2782. #if USE_SENSORLESS
  2783. CONFIG_ECHO_HEADING("TMC2130 StallGuard threshold:");
  2784. CONFIG_ECHO_START();
  2785. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2786. say_M914();
  2787. #if X_SENSORLESS
  2788. SERIAL_ECHOPAIR(" X", stepperX.sgt());
  2789. #endif
  2790. #if Y_SENSORLESS
  2791. SERIAL_ECHOPAIR(" Y", stepperY.sgt());
  2792. #endif
  2793. #if Z_SENSORLESS
  2794. SERIAL_ECHOPAIR(" Z", stepperZ.sgt());
  2795. #endif
  2796. SERIAL_EOL();
  2797. #endif
  2798. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2799. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2800. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2801. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2802. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2803. say_M914();
  2804. SERIAL_ECHOPGM(" I1");
  2805. #if HAS_X2_SENSORLESS
  2806. SERIAL_ECHOPAIR(" X", stepperX2.sgt());
  2807. #endif
  2808. #if HAS_Y2_SENSORLESS
  2809. SERIAL_ECHOPAIR(" Y", stepperY2.sgt());
  2810. #endif
  2811. #if HAS_Z2_SENSORLESS
  2812. SERIAL_ECHOPAIR(" Z", stepperZ2.sgt());
  2813. #endif
  2814. SERIAL_EOL();
  2815. #endif
  2816. #if HAS_Z3_SENSORLESS
  2817. say_M914();
  2818. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.sgt());
  2819. #endif
  2820. #endif // USE_SENSORLESS
  2821. /**
  2822. * TMC stepping mode
  2823. */
  2824. #if HAS_STEALTHCHOP
  2825. CONFIG_ECHO_HEADING("Driver stepping mode:");
  2826. CONFIG_ECHO_START();
  2827. #if AXIS_HAS_STEALTHCHOP(X)
  2828. const bool chop_x = stepperX.get_stealthChop_status();
  2829. #else
  2830. constexpr bool chop_x = false;
  2831. #endif
  2832. #if AXIS_HAS_STEALTHCHOP(Y)
  2833. const bool chop_y = stepperY.get_stealthChop_status();
  2834. #else
  2835. constexpr bool chop_y = false;
  2836. #endif
  2837. #if AXIS_HAS_STEALTHCHOP(Z)
  2838. const bool chop_z = stepperZ.get_stealthChop_status();
  2839. #else
  2840. constexpr bool chop_z = false;
  2841. #endif
  2842. if (chop_x || chop_y || chop_z) say_M569();
  2843. if (chop_x) SERIAL_ECHOPGM(" X");
  2844. if (chop_y) SERIAL_ECHOPGM(" Y");
  2845. if (chop_z) SERIAL_ECHOPGM(" Z");
  2846. if (chop_x || chop_y || chop_z) SERIAL_EOL();
  2847. #if AXIS_HAS_STEALTHCHOP(X2)
  2848. const bool chop_x2 = stepperX2.get_stealthChop_status();
  2849. #else
  2850. constexpr bool chop_x2 = false;
  2851. #endif
  2852. #if AXIS_HAS_STEALTHCHOP(Y2)
  2853. const bool chop_y2 = stepperY2.get_stealthChop_status();
  2854. #else
  2855. constexpr bool chop_y2 = false;
  2856. #endif
  2857. #if AXIS_HAS_STEALTHCHOP(Z2)
  2858. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  2859. #else
  2860. constexpr bool chop_z2 = false;
  2861. #endif
  2862. if (chop_x2 || chop_y2 || chop_z2) say_M569(PSTR("I1"));
  2863. if (chop_x2) SERIAL_ECHOPGM(" X");
  2864. if (chop_y2) SERIAL_ECHOPGM(" Y");
  2865. if (chop_z2) SERIAL_ECHOPGM(" Z");
  2866. if (chop_x2 || chop_y2 || chop_z2) SERIAL_EOL();
  2867. #if AXIS_HAS_STEALTHCHOP(Z3)
  2868. if (stepperZ3.get_stealthChop_status()) { say_M569(PSTR("I2 Z")); }
  2869. #endif
  2870. #if AXIS_HAS_STEALTHCHOP(E0)
  2871. if (stepperE0.get_stealthChop_status()) { say_M569(PSTR("T0 E")); }
  2872. #endif
  2873. #if AXIS_HAS_STEALTHCHOP(E1)
  2874. if (stepperE1.get_stealthChop_status()) { say_M569(PSTR("T1 E")); }
  2875. #endif
  2876. #if AXIS_HAS_STEALTHCHOP(E2)
  2877. if (stepperE2.get_stealthChop_status()) { say_M569(PSTR("T2 E")); }
  2878. #endif
  2879. #if AXIS_HAS_STEALTHCHOP(E3)
  2880. if (stepperE3.get_stealthChop_status()) { say_M569(PSTR("T3 E")); }
  2881. #endif
  2882. #if AXIS_HAS_STEALTHCHOP(E4)
  2883. if (stepperE4.get_stealthChop_status()) { say_M569(PSTR("T4 E")); }
  2884. #endif
  2885. #if AXIS_HAS_STEALTHCHOP(E5)
  2886. if (stepperE5.get_stealthChop_status()) { say_M569(PSTR("T5 E")); }
  2887. #endif
  2888. #endif // HAS_STEALTHCHOP
  2889. #endif // HAS_TRINAMIC
  2890. /**
  2891. * Linear Advance
  2892. */
  2893. #if ENABLED(LIN_ADVANCE)
  2894. CONFIG_ECHO_HEADING("Linear Advance:");
  2895. CONFIG_ECHO_START();
  2896. #if EXTRUDERS < 2
  2897. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  2898. #else
  2899. LOOP_L_N(i, EXTRUDERS)
  2900. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  2901. #endif
  2902. #endif
  2903. #if HAS_MOTOR_CURRENT_PWM
  2904. CONFIG_ECHO_HEADING("Stepper motor currents:");
  2905. CONFIG_ECHO_START();
  2906. SERIAL_ECHOLNPAIR(
  2907. " M907 X", stepper.motor_current_setting[0]
  2908. , " Z", stepper.motor_current_setting[1]
  2909. , " E", stepper.motor_current_setting[2]
  2910. );
  2911. #endif
  2912. /**
  2913. * Advanced Pause filament load & unload lengths
  2914. */
  2915. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2916. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  2917. #if EXTRUDERS == 1
  2918. say_M603(forReplay);
  2919. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2920. #else
  2921. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0)
  2922. _ECHO_603(0);
  2923. _ECHO_603(1);
  2924. #if EXTRUDERS > 2
  2925. _ECHO_603(2);
  2926. #if EXTRUDERS > 3
  2927. _ECHO_603(3);
  2928. #if EXTRUDERS > 4
  2929. _ECHO_603(4);
  2930. #if EXTRUDERS > 5
  2931. _ECHO_603(5);
  2932. #endif // EXTRUDERS > 5
  2933. #endif // EXTRUDERS > 4
  2934. #endif // EXTRUDERS > 3
  2935. #endif // EXTRUDERS > 2
  2936. #endif // EXTRUDERS == 1
  2937. #endif // ADVANCED_PAUSE_FEATURE
  2938. #if EXTRUDERS > 1
  2939. CONFIG_ECHO_HEADING("Tool-changing:");
  2940. CONFIG_ECHO_START();
  2941. M217_report(true);
  2942. #endif
  2943. #if ENABLED(BACKLASH_GCODE)
  2944. CONFIG_ECHO_HEADING("Backlash compensation:");
  2945. CONFIG_ECHO_START();
  2946. SERIAL_ECHOLNPAIR(
  2947. " M425 F", backlash.get_correction(),
  2948. " X", LINEAR_UNIT(backlash.distance_mm[X_AXIS]),
  2949. " Y", LINEAR_UNIT(backlash.distance_mm[Y_AXIS]),
  2950. " Z", LINEAR_UNIT(backlash.distance_mm[Z_AXIS])
  2951. #ifdef BACKLASH_SMOOTHING_MM
  2952. , " S", LINEAR_UNIT(backlash.smoothing_mm)
  2953. #endif
  2954. );
  2955. #endif
  2956. #if HAS_FILAMENT_SENSOR
  2957. CONFIG_ECHO_HEADING("Filament runout sensor:");
  2958. CONFIG_ECHO_START();
  2959. SERIAL_ECHOLNPAIR(
  2960. " M412 S", int(runout.enabled)
  2961. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  2962. , " D", LINEAR_UNIT(runout.runout_distance())
  2963. #endif
  2964. );
  2965. #endif
  2966. }
  2967. #endif // !DISABLE_M503
  2968. #pragma pack(pop)