My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.h 34KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * planner.h
  25. *
  26. * Buffer movement commands and manage the acceleration profile plan
  27. *
  28. * Derived from Grbl
  29. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  30. */
  31. #include "../Marlin.h"
  32. #include "motion.h"
  33. #include "../gcode/queue.h"
  34. #if ENABLED(DELTA)
  35. #include "delta.h"
  36. #endif
  37. #if ABL_PLANAR
  38. #include "../libs/vector_3.h"
  39. #endif
  40. #if ENABLED(FWRETRACT)
  41. #include "../feature/fwretract.h"
  42. #endif
  43. #if ENABLED(MIXING_EXTRUDER)
  44. #include "../feature/mixing.h"
  45. #endif
  46. enum BlockFlagBit : char {
  47. // Recalculate trapezoids on entry junction. For optimization.
  48. BLOCK_BIT_RECALCULATE,
  49. // Nominal speed always reached.
  50. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  51. // from a safe speed (in consideration of jerking from zero speed).
  52. BLOCK_BIT_NOMINAL_LENGTH,
  53. // The block is segment 2+ of a longer move
  54. BLOCK_BIT_CONTINUED,
  55. // Sync the stepper counts from the block
  56. BLOCK_BIT_SYNC_POSITION
  57. };
  58. enum BlockFlag : char {
  59. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  60. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  61. BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED),
  62. BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION)
  63. };
  64. /**
  65. * struct block_t
  66. *
  67. * A single entry in the planner buffer.
  68. * Tracks linear movement over multiple axes.
  69. *
  70. * The "nominal" values are as-specified by gcode, and
  71. * may never actually be reached due to acceleration limits.
  72. */
  73. typedef struct block_t {
  74. volatile uint8_t flag; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
  75. // Fields used by the motion planner to manage acceleration
  76. float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
  77. entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
  78. max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
  79. millimeters, // The total travel of this block in mm
  80. acceleration; // acceleration mm/sec^2
  81. union {
  82. // Data used by all move blocks
  83. struct {
  84. // Fields used by the Bresenham algorithm for tracing the line
  85. uint32_t steps[NUM_AXIS]; // Step count along each axis
  86. };
  87. // Data used by all sync blocks
  88. struct {
  89. int32_t position[NUM_AXIS]; // New position to force when this sync block is executed
  90. };
  91. };
  92. uint32_t step_event_count; // The number of step events required to complete this block
  93. #if EXTRUDERS > 1
  94. uint8_t extruder; // The extruder to move (if E move)
  95. #else
  96. static constexpr uint8_t extruder = 0;
  97. #endif
  98. #if ENABLED(MIXING_EXTRUDER)
  99. MIXER_BLOCK_FIELD; // Normalized color for the mixing steppers
  100. #endif
  101. // Settings for the trapezoid generator
  102. uint32_t accelerate_until, // The index of the step event on which to stop acceleration
  103. decelerate_after; // The index of the step event on which to start decelerating
  104. #if ENABLED(S_CURVE_ACCELERATION)
  105. uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
  106. acceleration_time, // Acceleration time and deceleration time in STEP timer counts
  107. deceleration_time,
  108. acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
  109. deceleration_time_inverse;
  110. #else
  111. uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
  112. #endif
  113. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  114. // Advance extrusion
  115. #if ENABLED(LIN_ADVANCE)
  116. bool use_advance_lead;
  117. uint16_t advance_speed, // STEP timer value for extruder speed offset ISR
  118. max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
  119. final_adv_steps; // advance steps due to exit speed
  120. float e_D_ratio;
  121. #endif
  122. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  123. initial_rate, // The jerk-adjusted step rate at start of block
  124. final_rate, // The minimal rate at exit
  125. acceleration_steps_per_s2; // acceleration steps/sec^2
  126. #if FAN_COUNT > 0
  127. uint8_t fan_speed[FAN_COUNT];
  128. #endif
  129. #if ENABLED(BARICUDA)
  130. uint8_t valve_pressure, e_to_p_pressure;
  131. #endif
  132. uint32_t segment_time_us;
  133. } block_t;
  134. #define HAS_POSITION_FLOAT ANY(LIN_ADVANCE, SCARA_FEEDRATE_SCALING, GRADIENT_MIX)
  135. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  136. typedef struct {
  137. uint32_t max_acceleration_mm_per_s2[XYZE_N], // (mm/s^2) M201 XYZE
  138. min_segment_time_us; // (µs) M205 B
  139. float axis_steps_per_mm[XYZE_N], // (steps) M92 XYZE - Steps per millimeter
  140. max_feedrate_mm_s[XYZE_N], // (mm/s) M203 XYZE - Max speeds
  141. acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
  142. retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
  143. travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
  144. min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
  145. min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
  146. } planner_settings_t;
  147. #if DISABLED(SKEW_CORRECTION)
  148. #define XY_SKEW_FACTOR 0
  149. #define XZ_SKEW_FACTOR 0
  150. #define YZ_SKEW_FACTOR 0
  151. #endif
  152. typedef struct {
  153. #if ENABLED(SKEW_CORRECTION_GCODE)
  154. float xy;
  155. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  156. float xz, yz;
  157. #else
  158. const float xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  159. #endif
  160. #else
  161. const float xy = XY_SKEW_FACTOR,
  162. xz = XZ_SKEW_FACTOR, yz = YZ_SKEW_FACTOR;
  163. #endif
  164. } skew_factor_t;
  165. class Planner {
  166. public:
  167. /**
  168. * The move buffer, calculated in stepper steps
  169. *
  170. * block_buffer is a ring buffer...
  171. *
  172. * head,tail : indexes for write,read
  173. * head==tail : the buffer is empty
  174. * head!=tail : blocks are in the buffer
  175. * head==(tail-1)%size : the buffer is full
  176. *
  177. * Writer of head is Planner::buffer_segment().
  178. * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
  179. */
  180. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  181. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  182. block_buffer_nonbusy, // Index of the first non busy block
  183. block_buffer_planned, // Index of the optimally planned block
  184. block_buffer_tail; // Index of the busy block, if any
  185. static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
  186. static uint8_t delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
  187. #if ENABLED(DISTINCT_E_FACTORS)
  188. static uint8_t last_extruder; // Respond to extruder change
  189. #endif
  190. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  191. static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
  192. #if DISABLED(NO_VOLUMETRICS)
  193. static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  194. volumetric_area_nominal, // Nominal cross-sectional area
  195. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  196. // May be auto-adjusted by a filament width sensor
  197. #endif
  198. static planner_settings_t settings;
  199. static uint32_t max_acceleration_steps_per_s2[XYZE_N]; // (steps/s^2) Derived from mm_per_s2
  200. static float steps_to_mm[XYZE_N]; // Millimeters per step
  201. #if ENABLED(JUNCTION_DEVIATION)
  202. static float junction_deviation_mm; // (mm) M205 J
  203. #if ENABLED(LIN_ADVANCE)
  204. static float max_e_jerk // Calculated from junction_deviation_mm
  205. #if ENABLED(DISTINCT_E_FACTORS)
  206. [EXTRUDERS]
  207. #endif
  208. ;
  209. #endif
  210. #endif
  211. #if HAS_CLASSIC_JERK
  212. static float max_jerk[
  213. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  214. XYZ // (mm/s^2) M205 XYZ - The largest speed change requiring no acceleration.
  215. #else
  216. XYZE // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
  217. #endif
  218. ];
  219. #endif
  220. #if HAS_LEVELING
  221. static bool leveling_active; // Flag that bed leveling is enabled
  222. #if ABL_PLANAR
  223. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  224. #endif
  225. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  226. static float z_fade_height, inverse_z_fade_height;
  227. #endif
  228. #else
  229. static constexpr bool leveling_active = false;
  230. #endif
  231. #if ENABLED(LIN_ADVANCE)
  232. static float extruder_advance_K[EXTRUDERS];
  233. #endif
  234. #if HAS_POSITION_FLOAT
  235. static float position_float[XYZE];
  236. #endif
  237. #if IS_KINEMATIC
  238. static float position_cart[XYZE];
  239. #endif
  240. static skew_factor_t skew_factor;
  241. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  242. static bool abort_on_endstop_hit;
  243. #endif
  244. private:
  245. /**
  246. * The current position of the tool in absolute steps
  247. * Recalculated if any axis_steps_per_mm are changed by gcode
  248. */
  249. static int32_t position[NUM_AXIS];
  250. /**
  251. * Speed of previous path line segment
  252. */
  253. static float previous_speed[NUM_AXIS];
  254. /**
  255. * Nominal speed of previous path line segment (mm/s)^2
  256. */
  257. static float previous_nominal_speed_sqr;
  258. /**
  259. * Limit where 64bit math is necessary for acceleration calculation
  260. */
  261. static uint32_t cutoff_long;
  262. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  263. static float last_fade_z;
  264. #endif
  265. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  266. /**
  267. * Counters to manage disabling inactive extruders
  268. */
  269. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  270. #endif // DISABLE_INACTIVE_EXTRUDER
  271. #ifdef XY_FREQUENCY_LIMIT
  272. // Used for the frequency limit
  273. #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
  274. // Old direction bits. Used for speed calculations
  275. static unsigned char old_direction_bits;
  276. // Segment times (in µs). Used for speed calculations
  277. static uint32_t axis_segment_time_us[2][3];
  278. #endif
  279. #if ENABLED(ULTRA_LCD)
  280. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  281. #endif
  282. public:
  283. /**
  284. * Instance Methods
  285. */
  286. Planner();
  287. void init();
  288. /**
  289. * Static (class) Methods
  290. */
  291. static void reset_acceleration_rates();
  292. static void refresh_positioning();
  293. FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
  294. e_factor[e] = (flow_percentage[e] * 0.01f
  295. #if DISABLED(NO_VOLUMETRICS)
  296. * volumetric_multiplier[e]
  297. #endif
  298. );
  299. }
  300. // Manage fans, paste pressure, etc.
  301. static void check_axes_activity();
  302. // Update multipliers based on new diameter measurements
  303. static void calculate_volumetric_multipliers();
  304. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  305. void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
  306. #endif
  307. #if DISABLED(NO_VOLUMETRICS)
  308. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  309. filament_size[e] = v;
  310. // make sure all extruders have some sane value for the filament size
  311. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  312. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  313. }
  314. #endif
  315. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  316. /**
  317. * Get the Z leveling fade factor based on the given Z height,
  318. * re-calculating only when needed.
  319. *
  320. * Returns 1.0 if planner.z_fade_height is 0.0.
  321. * Returns 0.0 if Z is past the specified 'Fade Height'.
  322. */
  323. static inline float fade_scaling_factor_for_z(const float &rz) {
  324. static float z_fade_factor = 1;
  325. if (z_fade_height) {
  326. if (rz >= z_fade_height) return 0;
  327. if (last_fade_z != rz) {
  328. last_fade_z = rz;
  329. z_fade_factor = 1 - rz * inverse_z_fade_height;
  330. }
  331. return z_fade_factor;
  332. }
  333. return 1;
  334. }
  335. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999f; }
  336. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  337. z_fade_height = zfh > 0 ? zfh : 0;
  338. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  339. force_fade_recalc();
  340. }
  341. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  342. return !z_fade_height || rz < z_fade_height;
  343. }
  344. #else
  345. FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
  346. UNUSED(rz);
  347. return 1;
  348. }
  349. FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
  350. #endif
  351. #if ENABLED(SKEW_CORRECTION)
  352. FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
  353. if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
  354. const float sx = cx - cy * skew_factor.xy - cz * (skew_factor.xz - (skew_factor.xy * skew_factor.yz)),
  355. sy = cy - cz * skew_factor.yz;
  356. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  357. cx = sx; cy = sy;
  358. }
  359. }
  360. }
  361. FORCE_INLINE static void skew(float (&raw)[XYZ]) { skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  362. FORCE_INLINE static void skew(float (&raw)[XYZE]) { skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  363. FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
  364. if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
  365. const float sx = cx + cy * skew_factor.xy + cz * skew_factor.xz,
  366. sy = cy + cz * skew_factor.yz;
  367. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  368. cx = sx; cy = sy;
  369. }
  370. }
  371. }
  372. FORCE_INLINE static void unskew(float (&raw)[XYZ]) { unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  373. FORCE_INLINE static void unskew(float (&raw)[XYZE]) { unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  374. #endif // SKEW_CORRECTION
  375. #if HAS_LEVELING
  376. /**
  377. * Apply leveling to transform a cartesian position
  378. * as it will be given to the planner and steppers.
  379. */
  380. static void apply_leveling(float &rx, float &ry, float &rz);
  381. FORCE_INLINE static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  382. FORCE_INLINE static void apply_leveling(float (&raw)[XYZE]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  383. static void unapply_leveling(float raw[XYZ]);
  384. #endif
  385. #if ENABLED(FWRETRACT)
  386. static void apply_retract(float &rz, float &e);
  387. FORCE_INLINE static void apply_retract(float (&raw)[XYZE]) { apply_retract(raw[Z_AXIS], raw[E_AXIS]); }
  388. static void unapply_retract(float &rz, float &e);
  389. FORCE_INLINE static void unapply_retract(float (&raw)[XYZE]) { unapply_retract(raw[Z_AXIS], raw[E_AXIS]); }
  390. #endif
  391. #if HAS_POSITION_MODIFIERS
  392. FORCE_INLINE static void apply_modifiers(float (&pos)[XYZE]
  393. #if HAS_LEVELING
  394. , bool leveling =
  395. #if PLANNER_LEVELING
  396. true
  397. #else
  398. false
  399. #endif
  400. #endif
  401. ) {
  402. #if ENABLED(SKEW_CORRECTION)
  403. skew(pos);
  404. #endif
  405. #if HAS_LEVELING
  406. if (leveling)
  407. apply_leveling(pos);
  408. #endif
  409. #if ENABLED(FWRETRACT)
  410. apply_retract(pos);
  411. #endif
  412. }
  413. FORCE_INLINE static void unapply_modifiers(float (&pos)[XYZE]
  414. #if HAS_LEVELING
  415. , bool leveling =
  416. #if PLANNER_LEVELING
  417. true
  418. #else
  419. false
  420. #endif
  421. #endif
  422. ) {
  423. #if ENABLED(FWRETRACT)
  424. unapply_retract(pos);
  425. #endif
  426. #if HAS_LEVELING
  427. if (leveling)
  428. unapply_leveling(pos);
  429. #endif
  430. #if ENABLED(SKEW_CORRECTION)
  431. unskew(pos);
  432. #endif
  433. }
  434. #endif // HAS_POSITION_MODIFIERS
  435. // Number of moves currently in the planner including the busy block, if any
  436. FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
  437. // Number of nonbusy moves currently in the planner
  438. FORCE_INLINE static uint8_t nonbusy_movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_nonbusy); }
  439. // Remove all blocks from the buffer
  440. FORCE_INLINE static void clear_block_buffer() { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0; }
  441. // Check if movement queue is full
  442. FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
  443. // Get count of movement slots free
  444. FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
  445. /**
  446. * Planner::get_next_free_block
  447. *
  448. * - Get the next head indices (passed by reference)
  449. * - Wait for the number of spaces to open up in the planner
  450. * - Return the first head block
  451. */
  452. FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
  453. // Wait until there are enough slots free
  454. while (moves_free() < count) { idle(); }
  455. // Return the first available block
  456. next_buffer_head = next_block_index(block_buffer_head);
  457. return &block_buffer[block_buffer_head];
  458. }
  459. /**
  460. * Planner::_buffer_steps
  461. *
  462. * Add a new linear movement to the buffer (in terms of steps).
  463. *
  464. * target - target position in steps units
  465. * fr_mm_s - (target) speed of the move
  466. * extruder - target extruder
  467. * millimeters - the length of the movement, if known
  468. *
  469. * Returns true if movement was buffered, false otherwise
  470. */
  471. static bool _buffer_steps(const int32_t (&target)[XYZE]
  472. #if HAS_POSITION_FLOAT
  473. , const float (&target_float)[ABCE]
  474. #endif
  475. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  476. , const float (&delta_mm_cart)[XYZE]
  477. #endif
  478. , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  479. );
  480. /**
  481. * Planner::_populate_block
  482. *
  483. * Fills a new linear movement in the block (in terms of steps).
  484. *
  485. * target - target position in steps units
  486. * fr_mm_s - (target) speed of the move
  487. * extruder - target extruder
  488. * millimeters - the length of the movement, if known
  489. *
  490. * Returns true is movement is acceptable, false otherwise
  491. */
  492. static bool _populate_block(block_t * const block, bool split_move,
  493. const int32_t (&target)[XYZE]
  494. #if HAS_POSITION_FLOAT
  495. , const float (&target_float)[XYZE]
  496. #endif
  497. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  498. , const float (&delta_mm_cart)[XYZE]
  499. #endif
  500. , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  501. );
  502. /**
  503. * Planner::buffer_sync_block
  504. * Add a block to the buffer that just updates the position
  505. */
  506. static void buffer_sync_block();
  507. #if IS_KINEMATIC
  508. private:
  509. // Allow do_homing_move to access internal functions, such as buffer_segment.
  510. friend void do_homing_move(const AxisEnum, const float, const float);
  511. #endif
  512. /**
  513. * Planner::buffer_segment
  514. *
  515. * Add a new linear movement to the buffer in axis units.
  516. *
  517. * Leveling and kinematics should be applied ahead of calling this.
  518. *
  519. * a,b,c,e - target positions in mm and/or degrees
  520. * fr_mm_s - (target) speed of the move
  521. * extruder - target extruder
  522. * millimeters - the length of the movement, if known
  523. */
  524. static bool buffer_segment(const float &a, const float &b, const float &c, const float &e
  525. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  526. , const float (&delta_mm_cart)[XYZE]
  527. #endif
  528. , const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  529. );
  530. FORCE_INLINE static bool buffer_segment(const float (&abce)[ABCE]
  531. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  532. , const float (&delta_mm_cart)[XYZE]
  533. #endif
  534. , const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
  535. ) {
  536. return buffer_segment(abce[A_AXIS], abce[B_AXIS], abce[C_AXIS], abce[E_AXIS]
  537. #if IS_KINEMATIC && ENABLED(JUNCTION_DEVIATION)
  538. , delta_mm_cart
  539. #endif
  540. , fr_mm_s, extruder, millimeters);
  541. }
  542. public:
  543. /**
  544. * Add a new linear movement to the buffer.
  545. * The target is cartesian, it's translated to delta/scara if
  546. * needed.
  547. *
  548. *
  549. * rx,ry,rz,e - target position in mm or degrees
  550. * fr_mm_s - (target) speed of the move (mm/s)
  551. * extruder - target extruder
  552. * millimeters - the length of the movement, if known
  553. * inv_duration - the reciprocal if the duration of the movement, if known (kinematic only if feeedrate scaling is enabled)
  554. */
  555. static bool buffer_line(const float &rx, const float &ry, const float &rz, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  556. #if ENABLED(SCARA_FEEDRATE_SCALING)
  557. , const float &inv_duration=0.0
  558. #endif
  559. );
  560. FORCE_INLINE static bool buffer_line(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters=0.0
  561. #if ENABLED(SCARA_FEEDRATE_SCALING)
  562. , const float &inv_duration=0.0
  563. #endif
  564. ) {
  565. return buffer_line(cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters
  566. #if ENABLED(SCARA_FEEDRATE_SCALING)
  567. , inv_duration
  568. #endif
  569. );
  570. }
  571. /**
  572. * Set the planner.position and individual stepper positions.
  573. * Used by G92, G28, G29, and other procedures.
  574. *
  575. * The supplied position is in the cartesian coordinate space and is
  576. * translated in to machine space as needed. Modifiers such as leveling
  577. * and skew are also applied.
  578. *
  579. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  580. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  581. *
  582. * Clears previous speed values.
  583. */
  584. static void set_position_mm(const float &rx, const float &ry, const float &rz, const float &e);
  585. FORCE_INLINE static void set_position_mm(const float (&cart)[XYZE]) { set_position_mm(cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS], cart[E_AXIS]); }
  586. static void set_e_position_mm(const float &e);
  587. /**
  588. * Set the planner.position and individual stepper positions.
  589. *
  590. * The supplied position is in machine space, and no additional
  591. * conversions are applied.
  592. */
  593. static void set_machine_position_mm(const float &a, const float &b, const float &c, const float &e);
  594. FORCE_INLINE static void set_machine_position_mm(const float (&abce)[ABCE]) { set_machine_position_mm(abce[A_AXIS], abce[B_AXIS], abce[C_AXIS], abce[E_AXIS]); }
  595. /**
  596. * Get an axis position according to stepper position(s)
  597. * For CORE machines apply translation from ABC to XYZ.
  598. */
  599. static float get_axis_position_mm(const AxisEnum axis);
  600. // SCARA AB axes are in degrees, not mm
  601. #if IS_SCARA
  602. FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
  603. #endif
  604. // Called to force a quick stop of the machine (for example, when an emergency
  605. // stop is required, or when endstops are hit)
  606. static void quick_stop();
  607. // Called when an endstop is triggered. Causes the machine to stop inmediately
  608. static void endstop_triggered(const AxisEnum axis);
  609. // Triggered position of an axis in mm (not core-savvy)
  610. static float triggered_position_mm(const AxisEnum axis);
  611. // Block until all buffered steps are executed / cleaned
  612. static void synchronize();
  613. // Wait for moves to finish and disable all steppers
  614. static void finish_and_disable();
  615. // Periodic tick to handle cleaning timeouts
  616. // Called from the Temperature ISR at ~1kHz
  617. static void tick() {
  618. if (cleaning_buffer_counter) {
  619. --cleaning_buffer_counter;
  620. #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
  621. if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  622. #endif
  623. }
  624. }
  625. /**
  626. * Does the buffer have any blocks queued?
  627. */
  628. FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  629. /**
  630. * The current block. nullptr if the buffer is empty.
  631. * This also marks the block as busy.
  632. * WARNING: Called from Stepper ISR context!
  633. */
  634. static block_t* get_current_block() {
  635. // Get the number of moves in the planner queue so far
  636. const uint8_t nr_moves = movesplanned();
  637. // If there are any moves queued ...
  638. if (nr_moves) {
  639. // If there is still delay of delivery of blocks running, decrement it
  640. if (delay_before_delivering) {
  641. --delay_before_delivering;
  642. // If the number of movements queued is less than 3, and there is still time
  643. // to wait, do not deliver anything
  644. if (nr_moves < 3 && delay_before_delivering) return nullptr;
  645. delay_before_delivering = 0;
  646. }
  647. // If we are here, there is no excuse to deliver the block
  648. block_t * const block = &block_buffer[block_buffer_tail];
  649. // No trapezoid calculated? Don't execute yet.
  650. if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return nullptr;
  651. #if ENABLED(ULTRA_LCD)
  652. block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
  653. #endif
  654. // As this block is busy, advance the nonbusy block pointer
  655. block_buffer_nonbusy = next_block_index(block_buffer_tail);
  656. // Push block_buffer_planned pointer, if encountered.
  657. if (block_buffer_tail == block_buffer_planned)
  658. block_buffer_planned = block_buffer_nonbusy;
  659. // Return the block
  660. return block;
  661. }
  662. // The queue became empty
  663. #if ENABLED(ULTRA_LCD)
  664. clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  665. #endif
  666. return nullptr;
  667. }
  668. /**
  669. * "Discard" the block and "release" the memory.
  670. * Called when the current block is no longer needed.
  671. * NB: There MUST be a current block to call this function!!
  672. */
  673. FORCE_INLINE static void discard_current_block() {
  674. if (has_blocks_queued())
  675. block_buffer_tail = next_block_index(block_buffer_tail);
  676. }
  677. #if ENABLED(ULTRA_LCD)
  678. static uint16_t block_buffer_runtime() {
  679. #ifdef __AVR__
  680. // Protect the access to the variable. Only required for AVR, as
  681. // any 32bit CPU offers atomic access to 32bit variables
  682. bool was_enabled = STEPPER_ISR_ENABLED();
  683. if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
  684. #endif
  685. millis_t bbru = block_buffer_runtime_us;
  686. #ifdef __AVR__
  687. // Reenable Stepper ISR
  688. if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
  689. #endif
  690. // To translate µs to ms a division by 1000 would be required.
  691. // We introduce 2.4% error here by dividing by 1024.
  692. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  693. bbru >>= 10;
  694. // limit to about a minute.
  695. NOMORE(bbru, 0xFFFFul);
  696. return bbru;
  697. }
  698. static void clear_block_buffer_runtime() {
  699. #ifdef __AVR__
  700. // Protect the access to the variable. Only required for AVR, as
  701. // any 32bit CPU offers atomic access to 32bit variables
  702. bool was_enabled = STEPPER_ISR_ENABLED();
  703. if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
  704. #endif
  705. block_buffer_runtime_us = 0;
  706. #ifdef __AVR__
  707. // Reenable Stepper ISR
  708. if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
  709. #endif
  710. }
  711. #endif
  712. #if ENABLED(AUTOTEMP)
  713. static float autotemp_min, autotemp_max, autotemp_factor;
  714. static bool autotemp_enabled;
  715. static void getHighESpeed();
  716. static void autotemp_M104_M109();
  717. #endif
  718. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  719. FORCE_INLINE static void recalculate_max_e_jerk() {
  720. #define GET_MAX_E_JERK(N) SQRT(SQRT(0.5) * junction_deviation_mm * (N) * RECIPROCAL(1.0 - SQRT(0.5)))
  721. #if ENABLED(DISTINCT_E_FACTORS)
  722. for (uint8_t i = 0; i < EXTRUDERS; i++)
  723. max_e_jerk[i] = GET_MAX_E_JERK(settings.max_acceleration_mm_per_s2[E_AXIS_N(i)]);
  724. #else
  725. max_e_jerk = GET_MAX_E_JERK(settings.max_acceleration_mm_per_s2[E_AXIS]);
  726. #endif
  727. }
  728. #endif
  729. private:
  730. /**
  731. * Get the index of the next / previous block in the ring buffer
  732. */
  733. static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
  734. static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
  735. /**
  736. * Calculate the distance (not time) it takes to accelerate
  737. * from initial_rate to target_rate using the given acceleration:
  738. */
  739. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  740. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  741. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  742. }
  743. /**
  744. * Return the point at which you must start braking (at the rate of -'accel') if
  745. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  746. * 'final_rate' after traveling 'distance'.
  747. *
  748. * This is used to compute the intersection point between acceleration and deceleration
  749. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  750. */
  751. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  752. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  753. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  754. }
  755. /**
  756. * Calculate the maximum allowable speed squared at this point, in order
  757. * to reach 'target_velocity_sqr' using 'acceleration' within a given
  758. * 'distance'.
  759. */
  760. static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
  761. return target_velocity_sqr - 2 * accel * distance;
  762. }
  763. #if ENABLED(S_CURVE_ACCELERATION)
  764. /**
  765. * Calculate the speed reached given initial speed, acceleration and distance
  766. */
  767. static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
  768. return SQRT(sq(initial_velocity) + 2 * accel * distance);
  769. }
  770. #endif
  771. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  772. static void reverse_pass_kernel(block_t* const current, const block_t * const next);
  773. static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
  774. static void reverse_pass();
  775. static void forward_pass();
  776. static void recalculate_trapezoids();
  777. static void recalculate();
  778. #if ENABLED(JUNCTION_DEVIATION)
  779. FORCE_INLINE static void normalize_junction_vector(float (&vector)[XYZE]) {
  780. float magnitude_sq = 0;
  781. LOOP_XYZE(idx) if (vector[idx]) magnitude_sq += sq(vector[idx]);
  782. const float inv_magnitude = RSQRT(magnitude_sq);
  783. LOOP_XYZE(idx) vector[idx] *= inv_magnitude;
  784. }
  785. FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, float (&unit_vec)[XYZE]) {
  786. float limit_value = max_value;
  787. LOOP_XYZE(idx) if (unit_vec[idx]) // Avoid divide by zero
  788. NOMORE(limit_value, ABS(settings.max_acceleration_mm_per_s2[idx] / unit_vec[idx]));
  789. return limit_value;
  790. }
  791. #endif // JUNCTION_DEVIATION
  792. };
  793. #define PLANNER_XY_FEEDRATE() (MIN(planner.settings.max_feedrate_mm_s[X_AXIS], planner.settings.max_feedrate_mm_s[Y_AXIS]))
  794. extern Planner planner;