My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 39KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t *current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #ifdef Z_DUAL_ENDSTOPS
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #ifdef ADVANCE
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static char step_loops;
  62. static unsigned short OCR1A_nominal;
  63. static unsigned short step_loops_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
  67. #ifndef Z_DUAL_ENDSTOPS
  68. static byte
  69. #else
  70. static uint16_t
  71. #endif
  72. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX
  73. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  74. bool abort_on_endstop_hit = false;
  75. #endif
  76. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  77. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. #endif
  79. static bool check_endstops = true;
  80. volatile long count_position[NUM_AXIS] = { 0 };
  81. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  82. //===========================================================================
  83. //================================ functions ================================
  84. //===========================================================================
  85. #ifdef DUAL_X_CARRIAGE
  86. #define X_APPLY_DIR(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_DIR_WRITE(v); \
  89. X2_DIR_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  93. }
  94. #define X_APPLY_STEP(v,ALWAYS) \
  95. if (extruder_duplication_enabled || ALWAYS) { \
  96. X_STEP_WRITE(v); \
  97. X2_STEP_WRITE(v); \
  98. } \
  99. else { \
  100. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  101. }
  102. #else
  103. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  104. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  105. #endif
  106. #ifdef Y_DUAL_STEPPER_DRIVERS
  107. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  108. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  109. #else
  110. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  111. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  112. #endif
  113. #ifdef Z_DUAL_STEPPER_DRIVERS
  114. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  115. #ifdef Z_DUAL_ENDSTOPS
  116. #define Z_APPLY_STEP(v,Q) \
  117. if (performing_homing) { \
  118. if (Z_HOME_DIR > 0) {\
  119. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  120. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  121. } else {\
  122. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  123. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  124. } \
  125. } else { \
  126. Z_STEP_WRITE(v); \
  127. Z2_STEP_WRITE(v); \
  128. }
  129. #else
  130. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  131. #endif
  132. #else
  133. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  134. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  135. #endif
  136. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  137. // intRes = intIn1 * intIn2 >> 16
  138. // uses:
  139. // r26 to store 0
  140. // r27 to store the byte 1 of the 24 bit result
  141. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  142. asm volatile ( \
  143. "clr r26 \n\t" \
  144. "mul %A1, %B2 \n\t" \
  145. "movw %A0, r0 \n\t" \
  146. "mul %A1, %A2 \n\t" \
  147. "add %A0, r1 \n\t" \
  148. "adc %B0, r26 \n\t" \
  149. "lsr r0 \n\t" \
  150. "adc %A0, r26 \n\t" \
  151. "adc %B0, r26 \n\t" \
  152. "clr r1 \n\t" \
  153. : \
  154. "=&r" (intRes) \
  155. : \
  156. "d" (charIn1), \
  157. "d" (intIn2) \
  158. : \
  159. "r26" \
  160. )
  161. // intRes = longIn1 * longIn2 >> 24
  162. // uses:
  163. // r26 to store 0
  164. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  165. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  166. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  167. // B0 A0 are bits 24-39 and are the returned value
  168. // C1 B1 A1 is longIn1
  169. // D2 C2 B2 A2 is longIn2
  170. //
  171. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  172. asm volatile ( \
  173. "clr r26 \n\t" \
  174. "mul %A1, %B2 \n\t" \
  175. "mov r27, r1 \n\t" \
  176. "mul %B1, %C2 \n\t" \
  177. "movw %A0, r0 \n\t" \
  178. "mul %C1, %C2 \n\t" \
  179. "add %B0, r0 \n\t" \
  180. "mul %C1, %B2 \n\t" \
  181. "add %A0, r0 \n\t" \
  182. "adc %B0, r1 \n\t" \
  183. "mul %A1, %C2 \n\t" \
  184. "add r27, r0 \n\t" \
  185. "adc %A0, r1 \n\t" \
  186. "adc %B0, r26 \n\t" \
  187. "mul %B1, %B2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %C1, %A2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %B1, %A2 \n\t" \
  196. "add r27, r1 \n\t" \
  197. "adc %A0, r26 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "lsr r27 \n\t" \
  200. "adc %A0, r26 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %D2, %A1 \n\t" \
  203. "add %A0, r0 \n\t" \
  204. "adc %B0, r1 \n\t" \
  205. "mul %D2, %B1 \n\t" \
  206. "add %B0, r0 \n\t" \
  207. "clr r1 \n\t" \
  208. : \
  209. "=&r" (intRes) \
  210. : \
  211. "d" (longIn1), \
  212. "d" (longIn2) \
  213. : \
  214. "r26" , "r27" \
  215. )
  216. // Some useful constants
  217. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  218. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  219. void endstops_hit_on_purpose() {
  220. endstop_hit_bits = 0;
  221. }
  222. void checkHitEndstops() {
  223. if (endstop_hit_bits) {
  224. SERIAL_ECHO_START;
  225. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  226. if (endstop_hit_bits & BIT(X_MIN)) {
  227. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  228. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  229. }
  230. if (endstop_hit_bits & BIT(Y_MIN)) {
  231. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  232. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  233. }
  234. if (endstop_hit_bits & BIT(Z_MIN)) {
  235. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  236. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  237. }
  238. #ifdef Z_PROBE_ENDSTOP
  239. if (endstop_hit_bits & BIT(Z_PROBE)) {
  240. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  242. }
  243. #endif
  244. SERIAL_EOL;
  245. endstops_hit_on_purpose();
  246. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  247. if (abort_on_endstop_hit) {
  248. card.sdprinting = false;
  249. card.closefile();
  250. quickStop();
  251. disable_all_heaters(); // switch off all heaters.
  252. }
  253. #endif
  254. }
  255. }
  256. void enable_endstops(bool check) { check_endstops = check; }
  257. // __________________________
  258. // /| |\ _________________ ^
  259. // / | | \ /| |\ |
  260. // / | | \ / | | \ s
  261. // / | | | | | \ p
  262. // / | | | | | \ e
  263. // +-----+------------------------+---+--+---------------+----+ e
  264. // | BLOCK 1 | BLOCK 2 | d
  265. //
  266. // time ----->
  267. //
  268. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  269. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  270. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  271. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  272. void st_wake_up() {
  273. // TCNT1 = 0;
  274. ENABLE_STEPPER_DRIVER_INTERRUPT();
  275. }
  276. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  277. unsigned short timer;
  278. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  279. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  280. step_rate = (step_rate >> 2) & 0x3fff;
  281. step_loops = 4;
  282. }
  283. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  284. step_rate = (step_rate >> 1) & 0x7fff;
  285. step_loops = 2;
  286. }
  287. else {
  288. step_loops = 1;
  289. }
  290. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  291. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  292. if (step_rate >= (8 * 256)) { // higher step rate
  293. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  294. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  295. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  296. MultiU16X8toH16(timer, tmp_step_rate, gain);
  297. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  298. }
  299. else { // lower step rates
  300. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  301. table_address += ((step_rate)>>1) & 0xfffc;
  302. timer = (unsigned short)pgm_read_word_near(table_address);
  303. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  304. }
  305. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  306. return timer;
  307. }
  308. // set the stepper direction of each axis
  309. void set_stepper_direction() {
  310. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  311. if (TEST(out_bits, X_AXIS)) {
  312. X_APPLY_DIR(INVERT_X_DIR,0);
  313. count_direction[X_AXIS] = -1;
  314. }
  315. else {
  316. X_APPLY_DIR(!INVERT_X_DIR,0);
  317. count_direction[X_AXIS] = 1;
  318. }
  319. if (TEST(out_bits, Y_AXIS)) {
  320. Y_APPLY_DIR(INVERT_Y_DIR,0);
  321. count_direction[Y_AXIS] = -1;
  322. }
  323. else {
  324. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  325. count_direction[Y_AXIS] = 1;
  326. }
  327. if (TEST(out_bits, Z_AXIS)) {
  328. Z_APPLY_DIR(INVERT_Z_DIR,0);
  329. count_direction[Z_AXIS] = -1;
  330. }
  331. else {
  332. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  333. count_direction[Z_AXIS] = 1;
  334. }
  335. #ifndef ADVANCE
  336. if (TEST(out_bits, E_AXIS)) {
  337. REV_E_DIR();
  338. count_direction[E_AXIS] = -1;
  339. }
  340. else {
  341. NORM_E_DIR();
  342. count_direction[E_AXIS] = 1;
  343. }
  344. #endif //!ADVANCE
  345. }
  346. // Initializes the trapezoid generator from the current block. Called whenever a new
  347. // block begins.
  348. FORCE_INLINE void trapezoid_generator_reset() {
  349. if (current_block->direction_bits != out_bits) {
  350. out_bits = current_block->direction_bits;
  351. set_stepper_direction();
  352. }
  353. #ifdef ADVANCE
  354. advance = current_block->initial_advance;
  355. final_advance = current_block->final_advance;
  356. // Do E steps + advance steps
  357. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  358. old_advance = advance >>8;
  359. #endif
  360. deceleration_time = 0;
  361. // step_rate to timer interval
  362. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  363. // make a note of the number of step loops required at nominal speed
  364. step_loops_nominal = step_loops;
  365. acc_step_rate = current_block->initial_rate;
  366. acceleration_time = calc_timer(acc_step_rate);
  367. OCR1A = acceleration_time;
  368. // SERIAL_ECHO_START;
  369. // SERIAL_ECHOPGM("advance :");
  370. // SERIAL_ECHO(current_block->advance/256.0);
  371. // SERIAL_ECHOPGM("advance rate :");
  372. // SERIAL_ECHO(current_block->advance_rate/256.0);
  373. // SERIAL_ECHOPGM("initial advance :");
  374. // SERIAL_ECHO(current_block->initial_advance/256.0);
  375. // SERIAL_ECHOPGM("final advance :");
  376. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  377. }
  378. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  379. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  380. ISR(TIMER1_COMPA_vect) {
  381. if (cleaning_buffer_counter)
  382. {
  383. current_block = NULL;
  384. plan_discard_current_block();
  385. #ifdef SD_FINISHED_RELEASECOMMAND
  386. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  387. #endif
  388. cleaning_buffer_counter--;
  389. OCR1A = 200;
  390. return;
  391. }
  392. // If there is no current block, attempt to pop one from the buffer
  393. if (!current_block) {
  394. // Anything in the buffer?
  395. current_block = plan_get_current_block();
  396. if (current_block) {
  397. current_block->busy = true;
  398. trapezoid_generator_reset();
  399. counter_x = -(current_block->step_event_count >> 1);
  400. counter_y = counter_z = counter_e = counter_x;
  401. step_events_completed = 0;
  402. #ifdef Z_LATE_ENABLE
  403. if (current_block->steps[Z_AXIS] > 0) {
  404. enable_z();
  405. OCR1A = 2000; //1ms wait
  406. return;
  407. }
  408. #endif
  409. // #ifdef ADVANCE
  410. // e_steps[current_block->active_extruder] = 0;
  411. // #endif
  412. }
  413. else {
  414. OCR1A = 2000; // 1kHz.
  415. }
  416. }
  417. if (current_block != NULL) {
  418. // Check endstops
  419. if (check_endstops) {
  420. #ifdef Z_DUAL_ENDSTOPS
  421. uint16_t
  422. #else
  423. byte
  424. #endif
  425. current_endstop_bits;
  426. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  427. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  428. #define _AXIS(AXIS) AXIS ##_AXIS
  429. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
  430. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  431. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  432. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  433. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  434. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  435. // TEST_ENDSTOP: test the old and the current status of an endstop
  436. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  437. #define UPDATE_ENDSTOP(AXIS,MINMAX) \
  438. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  439. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  440. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  441. _ENDSTOP_HIT(AXIS); \
  442. step_events_completed = current_block->step_event_count; \
  443. }
  444. #ifdef COREXY
  445. // Head direction in -X axis for CoreXY bots.
  446. // If DeltaX == -DeltaY, the movement is only in Y axis
  447. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  448. if (TEST(out_bits, X_HEAD))
  449. #else
  450. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  451. #endif
  452. { // -direction
  453. #ifdef DUAL_X_CARRIAGE
  454. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  455. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  456. #endif
  457. {
  458. #if HAS_X_MIN
  459. UPDATE_ENDSTOP(X, MIN);
  460. #endif
  461. }
  462. }
  463. else { // +direction
  464. #ifdef DUAL_X_CARRIAGE
  465. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  466. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  467. #endif
  468. {
  469. #if HAS_X_MAX
  470. UPDATE_ENDSTOP(X, MAX);
  471. #endif
  472. }
  473. }
  474. #ifdef COREXY
  475. }
  476. // Head direction in -Y axis for CoreXY bots.
  477. // If DeltaX == DeltaY, the movement is only in X axis
  478. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  479. if (TEST(out_bits, Y_HEAD))
  480. #else
  481. if (TEST(out_bits, Y_AXIS)) // -direction
  482. #endif
  483. { // -direction
  484. #if HAS_Y_MIN
  485. UPDATE_ENDSTOP(Y, MIN);
  486. #endif
  487. }
  488. else { // +direction
  489. #if HAS_Y_MAX
  490. UPDATE_ENDSTOP(Y, MAX);
  491. #endif
  492. }
  493. #ifdef COREXY
  494. }
  495. #endif
  496. if (TEST(out_bits, Z_AXIS)) { // z -direction
  497. #if HAS_Z_MIN
  498. #ifdef Z_DUAL_ENDSTOPS
  499. SET_ENDSTOP_BIT(Z, MIN);
  500. #if HAS_Z2_MIN
  501. SET_ENDSTOP_BIT(Z2, MIN);
  502. #else
  503. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN)
  504. #endif
  505. byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
  506. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  507. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  508. endstop_hit_bits |= BIT(Z_MIN);
  509. if (!performing_homing || (performing_homing && z_test == & 0x3))) //if not performing home or if both endstops were trigged during homing...
  510. step_events_completed = current_block->step_event_count;
  511. }
  512. #else // !Z_DUAL_ENDSTOPS
  513. UPDATE_ENDSTOP(Z, MIN);
  514. #endif // !Z_DUAL_ENDSTOPS
  515. #endif // Z_MIN_PIN
  516. #ifdef Z_PROBE_ENDSTOP
  517. UPDATE_ENDSTOP(Z, PROBE);
  518. if (TEST_ENDSTOP(Z_PROBE))
  519. {
  520. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  521. endstop_hit_bits |= BIT(Z_PROBE);
  522. }
  523. #endif
  524. }
  525. else { // z +direction
  526. #if HAS_Z_MAX
  527. #ifdef Z_DUAL_ENDSTOPS
  528. SET_ENDSTOP_BIT(Z, MAX);
  529. #if HAS_Z2_MAX
  530. SET_ENDSTOP_BIT(Z2, MAX);
  531. #else
  532. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
  533. #endif
  534. byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
  535. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  536. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  537. endstop_hit_bits |= BIT(Z_MIN);
  538. if (!performing_homing || (performing_homing && z_test == 0x3))) //if not performing home or if both endstops were trigged during homing...
  539. step_events_completed = current_block->step_event_count;
  540. }
  541. #else // !Z_DUAL_ENDSTOPS
  542. UPDATE_ENDSTOP(Z, MAX);
  543. #endif // !Z_DUAL_ENDSTOPS
  544. #endif // Z_MAX_PIN
  545. #ifdef Z_PROBE_ENDSTOP
  546. UPDATE_ENDSTOP(Z, PROBE);
  547. SET_ENDSTOP_BIT(Z, PROBE);
  548. if (TEST_ENDSTOP(Z_PROBE))
  549. {
  550. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  551. endstop_hit_bits |= BIT(Z_PROBE);
  552. }
  553. #endif
  554. }
  555. old_endstop_bits = current_endstop_bits;
  556. }
  557. // Take multiple steps per interrupt (For high speed moves)
  558. for (int8_t i = 0; i < step_loops; i++) {
  559. #ifndef AT90USB
  560. MSerial.checkRx(); // Check for serial chars.
  561. #endif
  562. #ifdef ADVANCE
  563. counter_e += current_block->steps[E_AXIS];
  564. if (counter_e > 0) {
  565. counter_e -= current_block->step_event_count;
  566. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  567. }
  568. #endif //ADVANCE
  569. #define _COUNTER(axis) counter_## axis
  570. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  571. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  572. #define STEP_ADD(axis, AXIS) \
  573. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  574. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  575. STEP_ADD(x,X);
  576. STEP_ADD(y,Y);
  577. STEP_ADD(z,Z);
  578. #ifndef ADVANCE
  579. STEP_ADD(e,E);
  580. #endif
  581. #define STEP_IF_COUNTER(axis, AXIS) \
  582. if (_COUNTER(axis) > 0) { \
  583. _COUNTER(axis) -= current_block->step_event_count; \
  584. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  585. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  586. }
  587. STEP_IF_COUNTER(x, X);
  588. STEP_IF_COUNTER(y, Y);
  589. STEP_IF_COUNTER(z, Z);
  590. #ifndef ADVANCE
  591. STEP_IF_COUNTER(e, E);
  592. #endif
  593. step_events_completed++;
  594. if (step_events_completed >= current_block->step_event_count) break;
  595. }
  596. // Calculate new timer value
  597. unsigned short timer;
  598. unsigned short step_rate;
  599. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  600. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  601. acc_step_rate += current_block->initial_rate;
  602. // upper limit
  603. if (acc_step_rate > current_block->nominal_rate)
  604. acc_step_rate = current_block->nominal_rate;
  605. // step_rate to timer interval
  606. timer = calc_timer(acc_step_rate);
  607. OCR1A = timer;
  608. acceleration_time += timer;
  609. #ifdef ADVANCE
  610. for(int8_t i=0; i < step_loops; i++) {
  611. advance += advance_rate;
  612. }
  613. //if (advance > current_block->advance) advance = current_block->advance;
  614. // Do E steps + advance steps
  615. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  616. old_advance = advance >>8;
  617. #endif
  618. }
  619. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  620. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  621. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  622. step_rate = current_block->final_rate;
  623. }
  624. else {
  625. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  626. }
  627. // lower limit
  628. if (step_rate < current_block->final_rate)
  629. step_rate = current_block->final_rate;
  630. // step_rate to timer interval
  631. timer = calc_timer(step_rate);
  632. OCR1A = timer;
  633. deceleration_time += timer;
  634. #ifdef ADVANCE
  635. for(int8_t i=0; i < step_loops; i++) {
  636. advance -= advance_rate;
  637. }
  638. if (advance < final_advance) advance = final_advance;
  639. // Do E steps + advance steps
  640. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  641. old_advance = advance >>8;
  642. #endif //ADVANCE
  643. }
  644. else {
  645. OCR1A = OCR1A_nominal;
  646. // ensure we're running at the correct step rate, even if we just came off an acceleration
  647. step_loops = step_loops_nominal;
  648. }
  649. // If current block is finished, reset pointer
  650. if (step_events_completed >= current_block->step_event_count) {
  651. current_block = NULL;
  652. plan_discard_current_block();
  653. }
  654. }
  655. }
  656. #ifdef ADVANCE
  657. unsigned char old_OCR0A;
  658. // Timer interrupt for E. e_steps is set in the main routine;
  659. // Timer 0 is shared with millies
  660. ISR(TIMER0_COMPA_vect)
  661. {
  662. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  663. OCR0A = old_OCR0A;
  664. // Set E direction (Depends on E direction + advance)
  665. for(unsigned char i=0; i<4;i++) {
  666. if (e_steps[0] != 0) {
  667. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  668. if (e_steps[0] < 0) {
  669. E0_DIR_WRITE(INVERT_E0_DIR);
  670. e_steps[0]++;
  671. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  672. }
  673. else if (e_steps[0] > 0) {
  674. E0_DIR_WRITE(!INVERT_E0_DIR);
  675. e_steps[0]--;
  676. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  677. }
  678. }
  679. #if EXTRUDERS > 1
  680. if (e_steps[1] != 0) {
  681. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  682. if (e_steps[1] < 0) {
  683. E1_DIR_WRITE(INVERT_E1_DIR);
  684. e_steps[1]++;
  685. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  686. }
  687. else if (e_steps[1] > 0) {
  688. E1_DIR_WRITE(!INVERT_E1_DIR);
  689. e_steps[1]--;
  690. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  691. }
  692. }
  693. #endif
  694. #if EXTRUDERS > 2
  695. if (e_steps[2] != 0) {
  696. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  697. if (e_steps[2] < 0) {
  698. E2_DIR_WRITE(INVERT_E2_DIR);
  699. e_steps[2]++;
  700. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  701. }
  702. else if (e_steps[2] > 0) {
  703. E2_DIR_WRITE(!INVERT_E2_DIR);
  704. e_steps[2]--;
  705. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  706. }
  707. }
  708. #endif
  709. #if EXTRUDERS > 3
  710. if (e_steps[3] != 0) {
  711. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  712. if (e_steps[3] < 0) {
  713. E3_DIR_WRITE(INVERT_E3_DIR);
  714. e_steps[3]++;
  715. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  716. }
  717. else if (e_steps[3] > 0) {
  718. E3_DIR_WRITE(!INVERT_E3_DIR);
  719. e_steps[3]--;
  720. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  721. }
  722. }
  723. #endif
  724. }
  725. }
  726. #endif // ADVANCE
  727. void st_init() {
  728. digipot_init(); //Initialize Digipot Motor Current
  729. microstep_init(); //Initialize Microstepping Pins
  730. // initialise TMC Steppers
  731. #ifdef HAVE_TMCDRIVER
  732. tmc_init();
  733. #endif
  734. // initialise L6470 Steppers
  735. #ifdef HAVE_L6470DRIVER
  736. L6470_init();
  737. #endif
  738. // Initialize Dir Pins
  739. #if HAS_X_DIR
  740. X_DIR_INIT;
  741. #endif
  742. #if HAS_X2_DIR
  743. X2_DIR_INIT;
  744. #endif
  745. #if HAS_Y_DIR
  746. Y_DIR_INIT;
  747. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  748. Y2_DIR_INIT;
  749. #endif
  750. #endif
  751. #if HAS_Z_DIR
  752. Z_DIR_INIT;
  753. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  754. Z2_DIR_INIT;
  755. #endif
  756. #endif
  757. #if HAS_E0_DIR
  758. E0_DIR_INIT;
  759. #endif
  760. #if HAS_E1_DIR
  761. E1_DIR_INIT;
  762. #endif
  763. #if HAS_E2_DIR
  764. E2_DIR_INIT;
  765. #endif
  766. #if HAS_E3_DIR
  767. E3_DIR_INIT;
  768. #endif
  769. //Initialize Enable Pins - steppers default to disabled.
  770. #if HAS_X_ENABLE
  771. X_ENABLE_INIT;
  772. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  773. #endif
  774. #if HAS_X2_ENABLE
  775. X2_ENABLE_INIT;
  776. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  777. #endif
  778. #if HAS_Y_ENABLE
  779. Y_ENABLE_INIT;
  780. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  781. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  782. Y2_ENABLE_INIT;
  783. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  784. #endif
  785. #endif
  786. #if HAS_Z_ENABLE
  787. Z_ENABLE_INIT;
  788. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  789. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  790. Z2_ENABLE_INIT;
  791. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  792. #endif
  793. #endif
  794. #if HAS_E0_ENABLE
  795. E0_ENABLE_INIT;
  796. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  797. #endif
  798. #if HAS_E1_ENABLE
  799. E1_ENABLE_INIT;
  800. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  801. #endif
  802. #if HAS_E2_ENABLE
  803. E2_ENABLE_INIT;
  804. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  805. #endif
  806. #if HAS_E3_ENABLE
  807. E3_ENABLE_INIT;
  808. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  809. #endif
  810. //endstops and pullups
  811. #if HAS_X_MIN
  812. SET_INPUT(X_MIN_PIN);
  813. #ifdef ENDSTOPPULLUP_XMIN
  814. WRITE(X_MIN_PIN,HIGH);
  815. #endif
  816. #endif
  817. #if HAS_Y_MIN
  818. SET_INPUT(Y_MIN_PIN);
  819. #ifdef ENDSTOPPULLUP_YMIN
  820. WRITE(Y_MIN_PIN,HIGH);
  821. #endif
  822. #endif
  823. #if HAS_Z_MIN
  824. SET_INPUT(Z_MIN_PIN);
  825. #ifdef ENDSTOPPULLUP_ZMIN
  826. WRITE(Z_MIN_PIN,HIGH);
  827. #endif
  828. #endif
  829. #if HAS_X_MAX
  830. SET_INPUT(X_MAX_PIN);
  831. #ifdef ENDSTOPPULLUP_XMAX
  832. WRITE(X_MAX_PIN,HIGH);
  833. #endif
  834. #endif
  835. #if HAS_Y_MAX
  836. SET_INPUT(Y_MAX_PIN);
  837. #ifdef ENDSTOPPULLUP_YMAX
  838. WRITE(Y_MAX_PIN,HIGH);
  839. #endif
  840. #endif
  841. #if HAS_Z_MAX
  842. SET_INPUT(Z_MAX_PIN);
  843. #ifdef ENDSTOPPULLUP_ZMAX
  844. WRITE(Z_MAX_PIN,HIGH);
  845. #endif
  846. #endif
  847. #if HAS_Z2_MAX
  848. SET_INPUT(Z2_MAX_PIN);
  849. #ifdef ENDSTOPPULLUP_ZMAX
  850. WRITE(Z2_MAX_PIN,HIGH);
  851. #endif
  852. #endif
  853. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  854. SET_INPUT(Z_PROBE_PIN);
  855. #ifdef ENDSTOPPULLUP_ZPROBE
  856. WRITE(Z_PROBE_PIN,HIGH);
  857. #endif
  858. #endif
  859. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  860. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  861. #define _DISABLE(axis) disable_## axis()
  862. #define AXIS_INIT(axis, AXIS, PIN) \
  863. _STEP_INIT(AXIS); \
  864. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  865. _DISABLE(axis)
  866. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  867. // Initialize Step Pins
  868. #if HAS_X_STEP
  869. AXIS_INIT(x, X, X);
  870. #endif
  871. #if HAS_X2_STEP
  872. AXIS_INIT(x, X2, X);
  873. #endif
  874. #if HAS_Y_STEP
  875. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  876. Y2_STEP_INIT;
  877. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  878. #endif
  879. AXIS_INIT(y, Y, Y);
  880. #endif
  881. #if HAS_Z_STEP
  882. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  883. Z2_STEP_INIT;
  884. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  885. #endif
  886. AXIS_INIT(z, Z, Z);
  887. #endif
  888. #if HAS_E0_STEP
  889. E_AXIS_INIT(0);
  890. #endif
  891. #if HAS_E1_STEP
  892. E_AXIS_INIT(1);
  893. #endif
  894. #if HAS_E2_STEP
  895. E_AXIS_INIT(2);
  896. #endif
  897. #if HAS_E3_STEP
  898. E_AXIS_INIT(3);
  899. #endif
  900. // waveform generation = 0100 = CTC
  901. TCCR1B &= ~BIT(WGM13);
  902. TCCR1B |= BIT(WGM12);
  903. TCCR1A &= ~BIT(WGM11);
  904. TCCR1A &= ~BIT(WGM10);
  905. // output mode = 00 (disconnected)
  906. TCCR1A &= ~(3<<COM1A0);
  907. TCCR1A &= ~(3<<COM1B0);
  908. // Set the timer pre-scaler
  909. // Generally we use a divider of 8, resulting in a 2MHz timer
  910. // frequency on a 16MHz MCU. If you are going to change this, be
  911. // sure to regenerate speed_lookuptable.h with
  912. // create_speed_lookuptable.py
  913. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  914. OCR1A = 0x4000;
  915. TCNT1 = 0;
  916. ENABLE_STEPPER_DRIVER_INTERRUPT();
  917. #ifdef ADVANCE
  918. #if defined(TCCR0A) && defined(WGM01)
  919. TCCR0A &= ~BIT(WGM01);
  920. TCCR0A &= ~BIT(WGM00);
  921. #endif
  922. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  923. TIMSK0 |= BIT(OCIE0A);
  924. #endif //ADVANCE
  925. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  926. sei();
  927. set_stepper_direction(); // Init directions to out_bits = 0
  928. }
  929. // Block until all buffered steps are executed
  930. void st_synchronize() {
  931. while (blocks_queued()) {
  932. manage_heater();
  933. manage_inactivity();
  934. lcd_update();
  935. }
  936. }
  937. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  938. CRITICAL_SECTION_START;
  939. count_position[X_AXIS] = x;
  940. count_position[Y_AXIS] = y;
  941. count_position[Z_AXIS] = z;
  942. count_position[E_AXIS] = e;
  943. CRITICAL_SECTION_END;
  944. }
  945. void st_set_e_position(const long &e) {
  946. CRITICAL_SECTION_START;
  947. count_position[E_AXIS] = e;
  948. CRITICAL_SECTION_END;
  949. }
  950. long st_get_position(uint8_t axis) {
  951. long count_pos;
  952. CRITICAL_SECTION_START;
  953. count_pos = count_position[axis];
  954. CRITICAL_SECTION_END;
  955. return count_pos;
  956. }
  957. #ifdef ENABLE_AUTO_BED_LEVELING
  958. float st_get_position_mm(AxisEnum axis) {
  959. return st_get_position(axis) / axis_steps_per_unit[axis];
  960. }
  961. #endif // ENABLE_AUTO_BED_LEVELING
  962. void finishAndDisableSteppers() {
  963. st_synchronize();
  964. disable_all_steppers();
  965. }
  966. void quickStop() {
  967. cleaning_buffer_counter = 5000;
  968. DISABLE_STEPPER_DRIVER_INTERRUPT();
  969. while (blocks_queued()) plan_discard_current_block();
  970. current_block = NULL;
  971. ENABLE_STEPPER_DRIVER_INTERRUPT();
  972. }
  973. #ifdef BABYSTEPPING
  974. // MUST ONLY BE CALLED BY AN ISR,
  975. // No other ISR should ever interrupt this!
  976. void babystep(const uint8_t axis, const bool direction) {
  977. #define _ENABLE(axis) enable_## axis()
  978. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  979. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  980. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  981. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  982. _ENABLE(axis); \
  983. uint8_t old_pin = _READ_DIR(AXIS); \
  984. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  985. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  986. delayMicroseconds(2); \
  987. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  988. _APPLY_DIR(AXIS, old_pin); \
  989. }
  990. switch(axis) {
  991. case X_AXIS:
  992. BABYSTEP_AXIS(x, X, false);
  993. break;
  994. case Y_AXIS:
  995. BABYSTEP_AXIS(y, Y, false);
  996. break;
  997. case Z_AXIS: {
  998. #ifndef DELTA
  999. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1000. #else // DELTA
  1001. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1002. enable_x();
  1003. enable_y();
  1004. enable_z();
  1005. uint8_t old_x_dir_pin = X_DIR_READ,
  1006. old_y_dir_pin = Y_DIR_READ,
  1007. old_z_dir_pin = Z_DIR_READ;
  1008. //setup new step
  1009. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1010. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1011. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1012. //perform step
  1013. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1014. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1015. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1016. delayMicroseconds(2);
  1017. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1018. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1019. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1020. //get old pin state back.
  1021. X_DIR_WRITE(old_x_dir_pin);
  1022. Y_DIR_WRITE(old_y_dir_pin);
  1023. Z_DIR_WRITE(old_z_dir_pin);
  1024. #endif
  1025. } break;
  1026. default: break;
  1027. }
  1028. }
  1029. #endif //BABYSTEPPING
  1030. // From Arduino DigitalPotControl example
  1031. void digitalPotWrite(int address, int value) {
  1032. #if HAS_DIGIPOTSS
  1033. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1034. SPI.transfer(address); // send in the address and value via SPI:
  1035. SPI.transfer(value);
  1036. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1037. //delay(10);
  1038. #endif
  1039. }
  1040. // Initialize Digipot Motor Current
  1041. void digipot_init() {
  1042. #if HAS_DIGIPOTSS
  1043. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1044. SPI.begin();
  1045. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1046. for (int i = 0; i <= 4; i++) {
  1047. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1048. digipot_current(i,digipot_motor_current[i]);
  1049. }
  1050. #endif
  1051. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1052. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1053. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1054. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1055. digipot_current(0, motor_current_setting[0]);
  1056. digipot_current(1, motor_current_setting[1]);
  1057. digipot_current(2, motor_current_setting[2]);
  1058. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1059. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1060. #endif
  1061. }
  1062. void digipot_current(uint8_t driver, int current) {
  1063. #if HAS_DIGIPOTSS
  1064. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1065. digitalPotWrite(digipot_ch[driver], current);
  1066. #endif
  1067. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1068. switch(driver) {
  1069. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1070. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1071. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1072. }
  1073. #endif
  1074. }
  1075. void microstep_init() {
  1076. #if HAS_MICROSTEPS_E1
  1077. pinMode(E1_MS1_PIN,OUTPUT);
  1078. pinMode(E1_MS2_PIN,OUTPUT);
  1079. #endif
  1080. #if HAS_MICROSTEPS
  1081. pinMode(X_MS1_PIN,OUTPUT);
  1082. pinMode(X_MS2_PIN,OUTPUT);
  1083. pinMode(Y_MS1_PIN,OUTPUT);
  1084. pinMode(Y_MS2_PIN,OUTPUT);
  1085. pinMode(Z_MS1_PIN,OUTPUT);
  1086. pinMode(Z_MS2_PIN,OUTPUT);
  1087. pinMode(E0_MS1_PIN,OUTPUT);
  1088. pinMode(E0_MS2_PIN,OUTPUT);
  1089. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1090. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1091. microstep_mode(i, microstep_modes[i]);
  1092. #endif
  1093. }
  1094. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1095. if (ms1 >= 0) switch(driver) {
  1096. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1097. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1098. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1099. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1100. #if HAS_MICROSTEPS_E1
  1101. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1102. #endif
  1103. }
  1104. if (ms2 >= 0) switch(driver) {
  1105. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1106. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1107. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1108. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1109. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1110. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1111. #endif
  1112. }
  1113. }
  1114. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1115. switch(stepping_mode) {
  1116. case 1: microstep_ms(driver,MICROSTEP1); break;
  1117. case 2: microstep_ms(driver,MICROSTEP2); break;
  1118. case 4: microstep_ms(driver,MICROSTEP4); break;
  1119. case 8: microstep_ms(driver,MICROSTEP8); break;
  1120. case 16: microstep_ms(driver,MICROSTEP16); break;
  1121. }
  1122. }
  1123. void microstep_readings() {
  1124. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1125. SERIAL_PROTOCOLPGM("X: ");
  1126. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1127. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1128. SERIAL_PROTOCOLPGM("Y: ");
  1129. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1130. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1131. SERIAL_PROTOCOLPGM("Z: ");
  1132. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1133. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1134. SERIAL_PROTOCOLPGM("E0: ");
  1135. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1136. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1137. #if HAS_MICROSTEPS_E1
  1138. SERIAL_PROTOCOLPGM("E1: ");
  1139. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1140. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1141. #endif
  1142. }
  1143. #ifdef Z_DUAL_ENDSTOPS
  1144. void In_Homing_Process(bool state) { performing_homing = state; }
  1145. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1146. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1147. #endif