My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

ubl_motion.cpp 31KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include "stepper.h"
  28. #include <avr/io.h>
  29. #include <math.h>
  30. extern float destination[XYZE];
  31. extern void set_current_to_destination();
  32. extern float delta_segments_per_second;
  33. static void debug_echo_axis(const AxisEnum axis) {
  34. if (current_position[axis] == destination[axis])
  35. SERIAL_ECHOPGM("-------------");
  36. else
  37. SERIAL_ECHO_F(destination[X_AXIS], 6);
  38. }
  39. void debug_current_and_destination(const char *title) {
  40. // if the title message starts with a '!' it is so important, we are going to
  41. // ignore the status of the g26_debug_flag
  42. if (*title != '!' && !ubl.g26_debug_flag) return;
  43. const float de = destination[E_AXIS] - current_position[E_AXIS];
  44. if (de == 0.0) return;
  45. const float dx = current_position[X_AXIS] - destination[X_AXIS],
  46. dy = current_position[Y_AXIS] - destination[Y_AXIS],
  47. xy_dist = HYPOT(dx, dy);
  48. if (xy_dist == 0.0) {
  49. return;
  50. //SERIAL_ECHOPGM(" FPMM=");
  51. //const float fpmm = de / xy_dist;
  52. //SERIAL_PROTOCOL_F(fpmm, 6);
  53. }
  54. else {
  55. SERIAL_ECHOPGM(" fpmm=");
  56. const float fpmm = de / xy_dist;
  57. SERIAL_ECHO_F(fpmm, 6);
  58. }
  59. SERIAL_ECHOPGM(" current=( ");
  60. SERIAL_ECHO_F(current_position[X_AXIS], 6);
  61. SERIAL_ECHOPGM(", ");
  62. SERIAL_ECHO_F(current_position[Y_AXIS], 6);
  63. SERIAL_ECHOPGM(", ");
  64. SERIAL_ECHO_F(current_position[Z_AXIS], 6);
  65. SERIAL_ECHOPGM(", ");
  66. SERIAL_ECHO_F(current_position[E_AXIS], 6);
  67. SERIAL_ECHOPGM(" ) destination=( ");
  68. debug_echo_axis(X_AXIS);
  69. SERIAL_ECHOPGM(", ");
  70. debug_echo_axis(Y_AXIS);
  71. SERIAL_ECHOPGM(", ");
  72. debug_echo_axis(Z_AXIS);
  73. SERIAL_ECHOPGM(", ");
  74. debug_echo_axis(E_AXIS);
  75. SERIAL_ECHOPGM(" ) ");
  76. SERIAL_ECHO(title);
  77. SERIAL_EOL;
  78. }
  79. void ubl_line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
  80. /**
  81. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  82. * as possible to determine if this is the case. If this move is within the same cell, we will
  83. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  84. */
  85. const float start[XYZE] = {
  86. current_position[X_AXIS],
  87. current_position[Y_AXIS],
  88. current_position[Z_AXIS],
  89. current_position[E_AXIS]
  90. },
  91. end[XYZE] = {
  92. destination[X_AXIS],
  93. destination[Y_AXIS],
  94. destination[Z_AXIS],
  95. destination[E_AXIS]
  96. };
  97. const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
  98. cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
  99. cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
  100. cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
  101. if (ubl.g26_debug_flag) {
  102. SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
  103. SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
  104. SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
  105. SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
  106. SERIAL_CHAR(')');
  107. SERIAL_EOL;
  108. debug_current_and_destination(PSTR("Start of ubl_line_to_destination()"));
  109. }
  110. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  111. /**
  112. * we don't need to break up the move
  113. *
  114. * If we are moving off the print bed, we are going to allow the move at this level.
  115. * But we detect it and isolate it. For now, we just pass along the request.
  116. */
  117. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  118. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  119. // a reasonable correction would be.
  120. planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
  121. set_current_to_destination();
  122. if (ubl.g26_debug_flag)
  123. debug_current_and_destination(PSTR("out of bounds in ubl_line_to_destination()"));
  124. return;
  125. }
  126. FINAL_MOVE:
  127. /**
  128. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  129. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  130. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  131. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  132. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  133. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  134. */
  135. const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&ubl.mesh_index_to_xpos[cell_dest_xi])) * (1.0 / (MESH_X_DIST)),
  136. z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  137. (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
  138. z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  139. (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
  140. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  141. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  142. const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&ubl.mesh_index_to_ypos[cell_dest_yi])) * (1.0 / (MESH_Y_DIST));
  143. float z0 = z1 + (z2 - z1) * yratio;
  144. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  145. /**
  146. * If part of the Mesh is undefined, it will show up as NAN
  147. * in z_values[][] and propagate through the
  148. * calculations. If our correction is NAN, we throw it out
  149. * because part of the Mesh is undefined and we don't have the
  150. * information we need to complete the height correction.
  151. */
  152. if (isnan(z0)) z0 = 0.0;
  153. planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
  154. if (ubl.g26_debug_flag)
  155. debug_current_and_destination(PSTR("FINAL_MOVE in ubl_line_to_destination()"));
  156. set_current_to_destination();
  157. return;
  158. }
  159. /**
  160. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  161. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  162. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  163. * computation and in fact most lines are of this nature. We will check for that in the following
  164. * blocks of code:
  165. */
  166. const float dx = end[X_AXIS] - start[X_AXIS],
  167. dy = end[Y_AXIS] - start[Y_AXIS];
  168. const int left_flag = dx < 0.0 ? 1 : 0,
  169. down_flag = dy < 0.0 ? 1 : 0;
  170. const float adx = left_flag ? -dx : dx,
  171. ady = down_flag ? -dy : dy;
  172. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  173. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  174. /**
  175. * Compute the scaling factor for the extruder for each partial move.
  176. * We need to watch out for zero length moves because it will cause us to
  177. * have an infinate scaling factor. We are stuck doing a floating point
  178. * divide to get our scaling factor, but after that, we just multiply by this
  179. * number. We also pick our scaling factor based on whether the X or Y
  180. * component is larger. We use the biggest of the two to preserve precision.
  181. */
  182. const bool use_x_dist = adx > ady;
  183. float on_axis_distance = use_x_dist ? dx : dy,
  184. e_position = end[E_AXIS] - start[E_AXIS],
  185. z_position = end[Z_AXIS] - start[Z_AXIS];
  186. const float e_normalized_dist = e_position / on_axis_distance,
  187. z_normalized_dist = z_position / on_axis_distance;
  188. int current_xi = cell_start_xi,
  189. current_yi = cell_start_yi;
  190. const float m = dy / dx,
  191. c = start[Y_AXIS] - m * start[X_AXIS];
  192. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  193. inf_m_flag = (isinf(m) != 0);
  194. /**
  195. * This block handles vertical lines. These are lines that stay within the same
  196. * X Cell column. They do not need to be perfectly vertical. They just can
  197. * not cross into another X Cell column.
  198. */
  199. if (dxi == 0) { // Check for a vertical line
  200. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  201. while (current_yi != cell_dest_yi + down_flag) {
  202. current_yi += dyi;
  203. const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
  204. /**
  205. * if the slope of the line is infinite, we won't do the calculations
  206. * else, we know the next X is the same so we can recover and continue!
  207. * Calculate X at the next Y mesh line
  208. */
  209. const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  210. float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
  211. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  212. /**
  213. * If part of the Mesh is undefined, it will show up as NAN
  214. * in z_values[][] and propagate through the
  215. * calculations. If our correction is NAN, we throw it out
  216. * because part of the Mesh is undefined and we don't have the
  217. * information we need to complete the height correction.
  218. */
  219. if (isnan(z0)) z0 = 0.0;
  220. const float y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
  221. /**
  222. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  223. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  224. * happens, it might be best to remove the check and always 'schedule' the move because
  225. * the planner._buffer_line() routine will filter it if that happens.
  226. */
  227. if (y != start[Y_AXIS]) {
  228. if (!inf_normalized_flag) {
  229. //on_axis_distance = y - start[Y_AXIS];
  230. on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
  231. //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  232. //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  233. //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  234. //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  235. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  236. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  237. }
  238. else {
  239. e_position = end[E_AXIS];
  240. z_position = end[Z_AXIS];
  241. }
  242. planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  243. } //else printf("FIRST MOVE PRUNED ");
  244. }
  245. if (ubl.g26_debug_flag)
  246. debug_current_and_destination(PSTR("vertical move done in ubl_line_to_destination()"));
  247. //
  248. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  249. //
  250. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  251. goto FINAL_MOVE;
  252. set_current_to_destination();
  253. return;
  254. }
  255. /**
  256. *
  257. * This block handles horizontal lines. These are lines that stay within the same
  258. * Y Cell row. They do not need to be perfectly horizontal. They just can
  259. * not cross into another Y Cell row.
  260. *
  261. */
  262. if (dyi == 0) { // Check for a horizontal line
  263. current_xi += left_flag; // Line is heading left, we just want to go to the left
  264. // edge of this cell for the first move.
  265. while (current_xi != cell_dest_xi + left_flag) {
  266. current_xi += dxi;
  267. const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi])),
  268. y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  269. float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
  270. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  271. /**
  272. * If part of the Mesh is undefined, it will show up as NAN
  273. * in z_values[][] and propagate through the
  274. * calculations. If our correction is NAN, we throw it out
  275. * because part of the Mesh is undefined and we don't have the
  276. * information we need to complete the height correction.
  277. */
  278. if (isnan(z0)) z0 = 0.0;
  279. const float x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi]));
  280. /**
  281. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  282. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  283. * that happens, it might be best to remove the check and always 'schedule' the move because
  284. * the planner._buffer_line() routine will filter it if that happens.
  285. */
  286. if (x != start[X_AXIS]) {
  287. if (!inf_normalized_flag) {
  288. //on_axis_distance = x - start[X_AXIS];
  289. on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
  290. //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  291. //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  292. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  293. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  294. }
  295. else {
  296. e_position = end[E_AXIS];
  297. z_position = end[Z_AXIS];
  298. }
  299. planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  300. } //else printf("FIRST MOVE PRUNED ");
  301. }
  302. if (ubl.g26_debug_flag)
  303. debug_current_and_destination(PSTR("horizontal move done in ubl_line_to_destination()"));
  304. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  305. goto FINAL_MOVE;
  306. set_current_to_destination();
  307. return;
  308. }
  309. /**
  310. *
  311. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  312. *
  313. */
  314. int xi_cnt = cell_start_xi - cell_dest_xi,
  315. yi_cnt = cell_start_yi - cell_dest_yi;
  316. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  317. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  318. current_xi += left_flag;
  319. current_yi += down_flag;
  320. while (xi_cnt > 0 || yi_cnt > 0) {
  321. const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi + dxi])),
  322. next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi + dyi])),
  323. y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  324. x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  325. // (No need to worry about m being zero.
  326. // If that was the case, it was already detected
  327. // as a vertical line move above.)
  328. if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
  329. // Yes! Crossing a Y Mesh Line next
  330. float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
  331. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  332. /**
  333. * If part of the Mesh is undefined, it will show up as NAN
  334. * in z_values[][] and propagate through the
  335. * calculations. If our correction is NAN, we throw it out
  336. * because part of the Mesh is undefined and we don't have the
  337. * information we need to complete the height correction.
  338. */
  339. if (isnan(z0)) z0 = 0.0;
  340. if (!inf_normalized_flag) {
  341. on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  342. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  343. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  344. }
  345. else {
  346. e_position = end[E_AXIS];
  347. z_position = end[Z_AXIS];
  348. }
  349. planner._buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  350. current_yi += dyi;
  351. yi_cnt--;
  352. }
  353. else {
  354. // Yes! Crossing a X Mesh Line next
  355. float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
  356. z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
  357. /**
  358. * If part of the Mesh is undefined, it will show up as NAN
  359. * in z_values[][] and propagate through the
  360. * calculations. If our correction is NAN, we throw it out
  361. * because part of the Mesh is undefined and we don't have the
  362. * information we need to complete the height correction.
  363. */
  364. if (isnan(z0)) z0 = 0.0;
  365. if (!inf_normalized_flag) {
  366. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  367. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  368. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  369. }
  370. else {
  371. e_position = end[E_AXIS];
  372. z_position = end[Z_AXIS];
  373. }
  374. planner._buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
  375. current_xi += dxi;
  376. xi_cnt--;
  377. }
  378. if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
  379. }
  380. if (ubl.g26_debug_flag)
  381. debug_current_and_destination(PSTR("generic move done in ubl_line_to_destination()"));
  382. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  383. goto FINAL_MOVE;
  384. set_current_to_destination();
  385. }
  386. #ifdef UBL_DELTA
  387. #define COPY_XYZE( target, source ) { \
  388. target[X_AXIS] = source[X_AXIS]; \
  389. target[Y_AXIS] = source[Y_AXIS]; \
  390. target[Z_AXIS] = source[Z_AXIS]; \
  391. target[E_AXIS] = source[E_AXIS]; \
  392. }
  393. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  394. static float scara_feed_factor;
  395. static float scara_oldA;
  396. static float scara_oldB;
  397. #endif
  398. // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
  399. // so we call _buffer_line directly here. Per-segmented leveling performed first.
  400. static inline void ubl_buffer_line_segment(const float ltarget[XYZE], const float &fr_mm_s, const uint8_t extruder) {
  401. #if IS_KINEMATIC
  402. inverse_kinematics(ltarget); // this writes delta[ABC] from ltarget[XYZ] but does not modify ltarget
  403. float feedrate = fr_mm_s;
  404. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  405. float adiff = abs(delta[A_AXIS] - scara_oldA);
  406. float bdiff = abs(delta[B_AXIS] - scara_oldB);
  407. scara_oldA = delta[A_AXIS];
  408. scara_oldB = delta[B_AXIS];
  409. feedrate = max(adiff, bdiff) * scara_feed_factor;
  410. #endif
  411. planner._buffer_line( delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], feedrate, extruder );
  412. #else // cartesian
  413. planner._buffer_line( ltarget[X_AXIS], ltarget[Y_AXIS], ltarget[Z_AXIS], ltarget[E_AXIS], fr_mm_s, extruder );
  414. #endif
  415. }
  416. /**
  417. * Prepare a linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  418. * This calls planner._buffer_line multiple times for small incremental moves.
  419. * Returns true if the caller did NOT update current_position, otherwise false.
  420. */
  421. static bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) {
  422. if ( ! position_is_reachable_xy( ltarget[X_AXIS], ltarget[Y_AXIS] )) // fail if moving outside reachable boundary
  423. return true; // did not move, so current_position still accurate
  424. const float difference[XYZE] = { // cartesian distances moved in XYZE
  425. ltarget[X_AXIS] - current_position[X_AXIS],
  426. ltarget[Y_AXIS] - current_position[Y_AXIS],
  427. ltarget[Z_AXIS] - current_position[Z_AXIS],
  428. ltarget[E_AXIS] - current_position[E_AXIS]
  429. };
  430. float cartesian_xy_mm = sqrtf( sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) ); // total horizontal xy distance
  431. #if IS_KINEMATIC
  432. float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  433. uint16_t segments = lroundf( delta_segments_per_second * seconds ); // preferred number of segments for distance @ feedrate
  434. uint16_t seglimit = lroundf( cartesian_xy_mm * (1.0/(DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  435. NOMORE( segments, seglimit ); // limit to minimum segment length (fewer segments)
  436. #else
  437. uint16_t segments = lroundf( cartesian_xy_mm * (1.0/(DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  438. #endif
  439. NOLESS( segments, 1 ); // must have at least one segment
  440. float inv_segments = 1.0 / segments; // divide once, multiply thereafter
  441. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  442. scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
  443. scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
  444. scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
  445. #endif
  446. const float segment_distance[XYZE] = { // length for each segment
  447. difference[X_AXIS] * inv_segments,
  448. difference[Y_AXIS] * inv_segments,
  449. difference[Z_AXIS] * inv_segments,
  450. difference[E_AXIS] * inv_segments
  451. };
  452. // Note that E segment distance could vary slightly as z mesh height
  453. // changes for each segment, but small enough to ignore.
  454. bool above_fade_height = false;
  455. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  456. if (( planner.z_fade_height != 0 ) &&
  457. ( planner.z_fade_height < RAW_Z_POSITION(ltarget[Z_AXIS]) )) {
  458. above_fade_height = true;
  459. }
  460. #endif
  461. // Only compute leveling per segment if ubl active and target below z_fade_height.
  462. if (( ! ubl.state.active ) || ( above_fade_height )) { // no mesh leveling
  463. const float z_offset = ubl.state.active ? ubl.state.z_offset : 0.0;
  464. float seg_dest[XYZE]; // per-segment destination,
  465. COPY_XYZE( seg_dest, current_position ); // starting from current position
  466. while (--segments) {
  467. LOOP_XYZE(i) seg_dest[i] += segment_distance[i];
  468. float ztemp = seg_dest[Z_AXIS];
  469. seg_dest[Z_AXIS] += z_offset;
  470. ubl_buffer_line_segment( seg_dest, feedrate, active_extruder );
  471. seg_dest[Z_AXIS] = ztemp;
  472. }
  473. // Since repeated adding segment_distance accumulates small errors, final move to exact destination.
  474. COPY_XYZE( seg_dest, ltarget );
  475. seg_dest[Z_AXIS] += z_offset;
  476. ubl_buffer_line_segment( seg_dest, feedrate, active_extruder );
  477. return false; // moved but did not set_current_to_destination();
  478. }
  479. // Otherwise perform per-segment leveling
  480. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  481. float fade_scaling_factor = ubl.fade_scaling_factor_for_z(ltarget[Z_AXIS]);
  482. #endif
  483. float seg_dest[XYZE]; // per-segment destination, initialize to first segment
  484. LOOP_XYZE(i) seg_dest[i] = current_position[i] + segment_distance[i];
  485. const float& dx_seg = segment_distance[X_AXIS]; // alias for clarity
  486. const float& dy_seg = segment_distance[Y_AXIS];
  487. float rx = RAW_X_POSITION(seg_dest[X_AXIS]); // assume raw vs logical coordinates shifted but not scaled.
  488. float ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
  489. do { // for each mesh cell encountered during the move
  490. // Compute mesh cell invariants that remain constant for all segments within cell.
  491. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  492. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  493. // Inner loop will exit each time (because out of cell bounds) but will come back
  494. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  495. // for mesh inset area.
  496. int8_t cell_xi = (rx - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  497. cell_xi = constrain( cell_xi, 0, (GRID_MAX_POINTS_X) - 1 );
  498. int8_t cell_yi = (ry - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
  499. cell_yi = constrain( cell_yi, 0, (GRID_MAX_POINTS_Y) - 1 );
  500. // float x0 = (UBL_MESH_MIN_X) + ((MESH_X_DIST) * cell_xi ); // lower left cell corner
  501. // float y0 = (UBL_MESH_MIN_Y) + ((MESH_Y_DIST) * cell_yi ); // lower left cell corner
  502. // float x1 = x0 + MESH_X_DIST; // upper right cell corner
  503. // float y1 = y0 + MESH_Y_DIST; // upper right cell corner
  504. float x0 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi ])); // 64 byte table lookup avoids mul+add
  505. float y0 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi ])); // 64 byte table lookup avoids mul+add
  506. float x1 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi+1])); // 64 byte table lookup avoids mul+add
  507. float y1 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add
  508. float cx = rx - x0; // cell-relative x
  509. float cy = ry - y0; // cell-relative y
  510. float z_x0y0 = ubl.z_values[cell_xi ][cell_yi ]; // z at lower left corner
  511. float z_x1y0 = ubl.z_values[cell_xi+1][cell_yi ]; // z at upper left corner
  512. float z_x0y1 = ubl.z_values[cell_xi ][cell_yi+1]; // z at lower right corner
  513. float z_x1y1 = ubl.z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  514. if ( isnan( z_x0y0 )) z_x0y0 = 0; // ideally activating ubl.state.active (G29 A)
  515. if ( isnan( z_x1y0 )) z_x1y0 = 0; // should refuse if any invalid mesh points
  516. if ( isnan( z_x0y1 )) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  517. if ( isnan( z_x1y1 )) z_x1y1 = 0; // thus guessing zero for undefined points
  518. float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0/MESH_X_DIST); // z slope per x along y0 (lower left to lower right)
  519. float z_xmy1 = (z_x1y1 - z_x0y1) * (1.0/MESH_X_DIST); // z slope per x along y1 (upper left to upper right)
  520. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx
  521. float z_cxy1 = z_x0y1 + z_xmy1 * cx; // z height along y1 at cx
  522. float z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  523. float z_cxym = z_cxyd * (1.0/MESH_Y_DIST); // z slope per y along cx from y0 to y1
  524. float z_cxcy = z_cxy0 + z_cxym * cy; // z height along cx at cy
  525. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  526. // and the z_cxym slope will change, both as a function of cx within the cell, and
  527. // each change by a constant for fixed segment lengths.
  528. float z_sxy0 = z_xmy0 * dx_seg; // per-segment adjustment to z_cxy0
  529. float z_sxym = ( z_xmy1 - z_xmy0 ) * (1.0/MESH_Y_DIST) * dx_seg; // per-segment adjustment to z_cxym
  530. do { // for all segments within this mesh cell
  531. z_cxcy += ubl.state.z_offset;
  532. if ( --segments == 0 ) { // this is last segment, use ltarget for exact
  533. COPY_XYZE( seg_dest, ltarget );
  534. seg_dest[Z_AXIS] += z_cxcy;
  535. ubl_buffer_line_segment( seg_dest, feedrate, active_extruder );
  536. return false; // did not set_current_to_destination()
  537. }
  538. float z_orig = seg_dest[Z_AXIS]; // remember the pre-leveled segment z value
  539. seg_dest[Z_AXIS] = z_orig + z_cxcy; // adjust segment z height per mesh leveling
  540. ubl_buffer_line_segment( seg_dest, feedrate, active_extruder );
  541. seg_dest[Z_AXIS] = z_orig; // restore pre-leveled z before incrementing
  542. LOOP_XYZE(i) seg_dest[i] += segment_distance[i]; // adjust seg_dest for next segment
  543. cx += dx_seg;
  544. cy += dy_seg;
  545. if ( !WITHIN(cx,0,MESH_X_DIST) || !WITHIN(cy,0,MESH_Y_DIST)) { // done within this cell, break to next
  546. rx = RAW_X_POSITION(seg_dest[X_AXIS]);
  547. ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
  548. break;
  549. }
  550. // Next segment still within same mesh cell, adjust the per-segment
  551. // slope and intercept and compute next z height.
  552. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  553. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  554. z_cxcy = z_cxy0 + z_cxym * cy; // recompute z_cxcy from adjusted slope and intercept
  555. } while (true); // per-segment loop exits by break after last segment within cell, or by return on final segment
  556. } while (true); // per-cell loop
  557. } // end of function
  558. #endif // UBL_DELTA
  559. #endif // AUTO_BED_LEVELING_UBL