My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Marlin_main.cpp 58KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "ConfigurationStore.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #if DIGIPOTSS_PIN > -1
  35. #include <SPI.h>
  36. #endif
  37. #define VERSION_STRING "1.0.0"
  38. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  39. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. //Implemented Codes
  41. //-------------------
  42. // G0 -> G1
  43. // G1 - Coordinated Movement X Y Z E
  44. // G2 - CW ARC
  45. // G3 - CCW ARC
  46. // G4 - Dwell S<seconds> or P<milliseconds>
  47. // G10 - retract filament according to settings of M207
  48. // G11 - retract recover filament according to settings of M208
  49. // G28 - Home all Axis
  50. // G90 - Use Absolute Coordinates
  51. // G91 - Use Relative Coordinates
  52. // G92 - Set current position to cordinates given
  53. //RepRap M Codes
  54. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  55. // M1 - Same as M0
  56. // M104 - Set extruder target temp
  57. // M105 - Read current temp
  58. // M106 - Fan on
  59. // M107 - Fan off
  60. // M109 - Wait for extruder current temp to reach target temp.
  61. // M114 - Display current position
  62. //Custom M Codes
  63. // M17 - Enable/Power all stepper motors
  64. // M18 - Disable all stepper motors; same as M84
  65. // M20 - List SD card
  66. // M21 - Init SD card
  67. // M22 - Release SD card
  68. // M23 - Select SD file (M23 filename.g)
  69. // M24 - Start/resume SD print
  70. // M25 - Pause SD print
  71. // M26 - Set SD position in bytes (M26 S12345)
  72. // M27 - Report SD print status
  73. // M28 - Start SD write (M28 filename.g)
  74. // M29 - Stop SD write
  75. // M30 - Delete file from SD (M30 filename.g)
  76. // M31 - Output time since last M109 or SD card start to serial
  77. // M42 - Change pin status via gcode
  78. // M80 - Turn on Power Supply
  79. // M81 - Turn off Power Supply
  80. // M82 - Set E codes absolute (default)
  81. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  82. // M84 - Disable steppers until next move,
  83. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  84. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  85. // M92 - Set axis_steps_per_unit - same syntax as G92
  86. // M114 - Output current position to serial port
  87. // M115 - Capabilities string
  88. // M117 - display message
  89. // M119 - Output Endstop status to serial port
  90. // M140 - Set bed target temp
  91. // M190 - Wait for bed current temp to reach target temp.
  92. // M200 - Set filament diameter
  93. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  94. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  95. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  96. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  97. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  98. // M206 - set additional homeing offset
  99. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  100. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  101. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  102. // M220 S<factor in percent>- set speed factor override percentage
  103. // M221 S<factor in percent>- set extrude factor override percentage
  104. // M240 - Trigger a camera to take a photograph
  105. // M301 - Set PID parameters P I and D
  106. // M302 - Allow cold extrudes
  107. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  108. // M304 - Set bed PID parameters P I and D
  109. // M400 - Finish all moves
  110. // M500 - stores paramters in EEPROM
  111. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  112. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  113. // M503 - print the current settings (from memory not from eeprom)
  114. // M907 - Set digital trimpot motor current using axis codes.
  115. // M908 - Control digital trimpot directly.
  116. // M350 - Set microstepping mode.
  117. // M351 - Toggle MS1 MS2 pins directly.
  118. // M999 - Restart after being stopped by error
  119. //Stepper Movement Variables
  120. //===========================================================================
  121. //=============================imported variables============================
  122. //===========================================================================
  123. //===========================================================================
  124. //=============================public variables=============================
  125. //===========================================================================
  126. #ifdef SDSUPPORT
  127. CardReader card;
  128. #endif
  129. float homing_feedrate[] = HOMING_FEEDRATE;
  130. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  131. int feedmultiply=100; //100->1 200->2
  132. int saved_feedmultiply;
  133. int extrudemultiply=100; //100->1 200->2
  134. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  135. float add_homeing[3]={0,0,0};
  136. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  137. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  138. uint8_t active_extruder = 0;
  139. int fanSpeed=0;
  140. #ifdef FWRETRACT
  141. bool autoretract_enabled=true;
  142. bool retracted=false;
  143. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  144. float retract_recover_length=0, retract_recover_feedrate=8*60;
  145. #endif
  146. //===========================================================================
  147. //=============================private variables=============================
  148. //===========================================================================
  149. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  150. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  151. static float offset[3] = {0.0, 0.0, 0.0};
  152. static bool home_all_axis = true;
  153. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  154. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  155. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  156. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  157. static bool fromsd[BUFSIZE];
  158. static int bufindr = 0;
  159. static int bufindw = 0;
  160. static int buflen = 0;
  161. //static int i = 0;
  162. static char serial_char;
  163. static int serial_count = 0;
  164. static boolean comment_mode = false;
  165. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  166. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  167. //static float tt = 0;
  168. //static float bt = 0;
  169. //Inactivity shutdown variables
  170. static unsigned long previous_millis_cmd = 0;
  171. static unsigned long max_inactive_time = 0;
  172. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  173. unsigned long starttime=0;
  174. unsigned long stoptime=0;
  175. static uint8_t tmp_extruder;
  176. bool Stopped=false;
  177. //===========================================================================
  178. //=============================ROUTINES=============================
  179. //===========================================================================
  180. void get_arc_coordinates();
  181. bool setTargetedHotend(int code);
  182. void serial_echopair_P(const char *s_P, float v)
  183. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  184. void serial_echopair_P(const char *s_P, double v)
  185. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  186. void serial_echopair_P(const char *s_P, unsigned long v)
  187. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  188. extern "C"{
  189. extern unsigned int __bss_end;
  190. extern unsigned int __heap_start;
  191. extern void *__brkval;
  192. int freeMemory() {
  193. int free_memory;
  194. if((int)__brkval == 0)
  195. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  196. else
  197. free_memory = ((int)&free_memory) - ((int)__brkval);
  198. return free_memory;
  199. }
  200. }
  201. //adds an command to the main command buffer
  202. //thats really done in a non-safe way.
  203. //needs overworking someday
  204. void enquecommand(const char *cmd)
  205. {
  206. if(buflen < BUFSIZE)
  207. {
  208. //this is dangerous if a mixing of serial and this happsens
  209. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  210. SERIAL_ECHO_START;
  211. SERIAL_ECHOPGM("enqueing \"");
  212. SERIAL_ECHO(cmdbuffer[bufindw]);
  213. SERIAL_ECHOLNPGM("\"");
  214. bufindw= (bufindw + 1)%BUFSIZE;
  215. buflen += 1;
  216. }
  217. }
  218. void enquecommand_P(const char *cmd)
  219. {
  220. if(buflen < BUFSIZE)
  221. {
  222. //this is dangerous if a mixing of serial and this happsens
  223. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  224. SERIAL_ECHO_START;
  225. SERIAL_ECHOPGM("enqueing \"");
  226. SERIAL_ECHO(cmdbuffer[bufindw]);
  227. SERIAL_ECHOLNPGM("\"");
  228. bufindw= (bufindw + 1)%BUFSIZE;
  229. buflen += 1;
  230. }
  231. }
  232. void setup_killpin()
  233. {
  234. #if( KILL_PIN>-1 )
  235. pinMode(KILL_PIN,INPUT);
  236. WRITE(KILL_PIN,HIGH);
  237. #endif
  238. }
  239. void setup_photpin()
  240. {
  241. #ifdef PHOTOGRAPH_PIN
  242. #if (PHOTOGRAPH_PIN > -1)
  243. SET_OUTPUT(PHOTOGRAPH_PIN);
  244. WRITE(PHOTOGRAPH_PIN, LOW);
  245. #endif
  246. #endif
  247. }
  248. void setup_powerhold()
  249. {
  250. #ifdef SUICIDE_PIN
  251. #if (SUICIDE_PIN> -1)
  252. SET_OUTPUT(SUICIDE_PIN);
  253. WRITE(SUICIDE_PIN, HIGH);
  254. #endif
  255. #endif
  256. }
  257. void suicide()
  258. {
  259. #ifdef SUICIDE_PIN
  260. #if (SUICIDE_PIN> -1)
  261. SET_OUTPUT(SUICIDE_PIN);
  262. WRITE(SUICIDE_PIN, LOW);
  263. #endif
  264. #endif
  265. }
  266. void setup()
  267. {
  268. setup_killpin();
  269. setup_powerhold();
  270. MYSERIAL.begin(BAUDRATE);
  271. SERIAL_PROTOCOLLNPGM("start");
  272. SERIAL_ECHO_START;
  273. // Check startup - does nothing if bootloader sets MCUSR to 0
  274. byte mcu = MCUSR;
  275. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  276. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  277. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  278. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  279. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  280. MCUSR=0;
  281. SERIAL_ECHOPGM(MSG_MARLIN);
  282. SERIAL_ECHOLNPGM(VERSION_STRING);
  283. #ifdef STRING_VERSION_CONFIG_H
  284. #ifdef STRING_CONFIG_H_AUTHOR
  285. SERIAL_ECHO_START;
  286. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  287. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  288. SERIAL_ECHOPGM(MSG_AUTHOR);
  289. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  290. SERIAL_ECHOPGM("Compiled: ");
  291. SERIAL_ECHOLNPGM(__DATE__);
  292. #endif
  293. #endif
  294. SERIAL_ECHO_START;
  295. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  296. SERIAL_ECHO(freeMemory());
  297. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  298. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  299. for(int8_t i = 0; i < BUFSIZE; i++)
  300. {
  301. fromsd[i] = false;
  302. }
  303. Config_RetrieveSettings(); // loads data from EEPROM if available
  304. for(int8_t i=0; i < NUM_AXIS; i++)
  305. {
  306. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  307. }
  308. tp_init(); // Initialize temperature loop
  309. plan_init(); // Initialize planner;
  310. watchdog_init();
  311. st_init(); // Initialize stepper, this enables interrupts!
  312. setup_photpin();
  313. LCD_INIT;
  314. }
  315. void loop()
  316. {
  317. if(buflen < (BUFSIZE-1))
  318. get_command();
  319. #ifdef SDSUPPORT
  320. card.checkautostart(false);
  321. #endif
  322. if(buflen)
  323. {
  324. #ifdef SDSUPPORT
  325. if(card.saving)
  326. {
  327. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  328. {
  329. card.write_command(cmdbuffer[bufindr]);
  330. SERIAL_PROTOCOLLNPGM(MSG_OK);
  331. }
  332. else
  333. {
  334. card.closefile();
  335. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  336. }
  337. }
  338. else
  339. {
  340. process_commands();
  341. }
  342. #else
  343. process_commands();
  344. #endif //SDSUPPORT
  345. buflen = (buflen-1);
  346. bufindr = (bufindr + 1)%BUFSIZE;
  347. }
  348. //check heater every n milliseconds
  349. manage_heater();
  350. manage_inactivity();
  351. checkHitEndstops();
  352. LCD_STATUS;
  353. }
  354. void get_command()
  355. {
  356. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  357. serial_char = MYSERIAL.read();
  358. if(serial_char == '\n' ||
  359. serial_char == '\r' ||
  360. (serial_char == ':' && comment_mode == false) ||
  361. serial_count >= (MAX_CMD_SIZE - 1) )
  362. {
  363. if(!serial_count) { //if empty line
  364. comment_mode = false; //for new command
  365. return;
  366. }
  367. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  368. if(!comment_mode){
  369. comment_mode = false; //for new command
  370. fromsd[bufindw] = false;
  371. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  372. {
  373. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  374. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  375. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  376. SERIAL_ERROR_START;
  377. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  378. SERIAL_ERRORLN(gcode_LastN);
  379. //Serial.println(gcode_N);
  380. FlushSerialRequestResend();
  381. serial_count = 0;
  382. return;
  383. }
  384. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  385. {
  386. byte checksum = 0;
  387. byte count = 0;
  388. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  389. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  390. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  391. SERIAL_ERROR_START;
  392. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  393. SERIAL_ERRORLN(gcode_LastN);
  394. FlushSerialRequestResend();
  395. serial_count = 0;
  396. return;
  397. }
  398. //if no errors, continue parsing
  399. }
  400. else
  401. {
  402. SERIAL_ERROR_START;
  403. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  404. SERIAL_ERRORLN(gcode_LastN);
  405. FlushSerialRequestResend();
  406. serial_count = 0;
  407. return;
  408. }
  409. gcode_LastN = gcode_N;
  410. //if no errors, continue parsing
  411. }
  412. else // if we don't receive 'N' but still see '*'
  413. {
  414. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  415. {
  416. SERIAL_ERROR_START;
  417. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  418. SERIAL_ERRORLN(gcode_LastN);
  419. serial_count = 0;
  420. return;
  421. }
  422. }
  423. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  424. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  425. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  426. case 0:
  427. case 1:
  428. case 2:
  429. case 3:
  430. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  431. #ifdef SDSUPPORT
  432. if(card.saving)
  433. break;
  434. #endif //SDSUPPORT
  435. SERIAL_PROTOCOLLNPGM(MSG_OK);
  436. }
  437. else {
  438. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  439. LCD_MESSAGEPGM(MSG_STOPPED);
  440. }
  441. break;
  442. default:
  443. break;
  444. }
  445. }
  446. bufindw = (bufindw + 1)%BUFSIZE;
  447. buflen += 1;
  448. }
  449. serial_count = 0; //clear buffer
  450. }
  451. else
  452. {
  453. if(serial_char == ';') comment_mode = true;
  454. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  455. }
  456. }
  457. #ifdef SDSUPPORT
  458. if(!card.sdprinting || serial_count!=0){
  459. return;
  460. }
  461. while( !card.eof() && buflen < BUFSIZE) {
  462. int16_t n=card.get();
  463. serial_char = (char)n;
  464. if(serial_char == '\n' ||
  465. serial_char == '\r' ||
  466. (serial_char == ':' && comment_mode == false) ||
  467. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  468. {
  469. if(card.eof()){
  470. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  471. stoptime=millis();
  472. char time[30];
  473. unsigned long t=(stoptime-starttime)/1000;
  474. int sec,min;
  475. min=t/60;
  476. sec=t%60;
  477. sprintf_P(time, PSTR("%i min, %i sec"),min,sec);
  478. SERIAL_ECHO_START;
  479. SERIAL_ECHOLN(time);
  480. LCD_MESSAGE(time);
  481. card.printingHasFinished();
  482. card.checkautostart(true);
  483. }
  484. if(!serial_count)
  485. {
  486. comment_mode = false; //for new command
  487. return; //if empty line
  488. }
  489. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  490. // if(!comment_mode){
  491. fromsd[bufindw] = true;
  492. buflen += 1;
  493. bufindw = (bufindw + 1)%BUFSIZE;
  494. // }
  495. comment_mode = false; //for new command
  496. serial_count = 0; //clear buffer
  497. }
  498. else
  499. {
  500. if(serial_char == ';') comment_mode = true;
  501. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  502. }
  503. }
  504. #endif //SDSUPPORT
  505. }
  506. float code_value()
  507. {
  508. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  509. }
  510. long code_value_long()
  511. {
  512. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  513. }
  514. bool code_seen(char code)
  515. {
  516. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  517. return (strchr_pointer != NULL); //Return True if a character was found
  518. }
  519. #define DEFINE_PGM_READ_ANY(type, reader) \
  520. static inline type pgm_read_any(const type *p) \
  521. { return pgm_read_##reader##_near(p); }
  522. DEFINE_PGM_READ_ANY(float, float);
  523. DEFINE_PGM_READ_ANY(signed char, byte);
  524. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  525. static const PROGMEM type array##_P[3] = \
  526. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  527. static inline type array(int axis) \
  528. { return pgm_read_any(&array##_P[axis]); }
  529. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  530. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  531. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  532. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  533. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  534. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  535. static void axis_is_at_home(int axis) {
  536. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  537. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  538. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  539. }
  540. static void homeaxis(int axis) {
  541. #define HOMEAXIS_DO(LETTER) \
  542. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  543. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  544. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  545. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  546. 0) {
  547. current_position[axis] = 0;
  548. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  549. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  550. feedrate = homing_feedrate[axis];
  551. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  552. st_synchronize();
  553. current_position[axis] = 0;
  554. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  555. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  556. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  557. st_synchronize();
  558. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  559. feedrate = homing_feedrate[axis]/2 ;
  560. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  561. st_synchronize();
  562. axis_is_at_home(axis);
  563. destination[axis] = current_position[axis];
  564. feedrate = 0.0;
  565. endstops_hit_on_purpose();
  566. }
  567. }
  568. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  569. void process_commands()
  570. {
  571. unsigned long codenum; //throw away variable
  572. char *starpos = NULL;
  573. if(code_seen('G'))
  574. {
  575. switch((int)code_value())
  576. {
  577. case 0: // G0 -> G1
  578. case 1: // G1
  579. if(Stopped == false) {
  580. get_coordinates(); // For X Y Z E F
  581. prepare_move();
  582. //ClearToSend();
  583. return;
  584. }
  585. //break;
  586. case 2: // G2 - CW ARC
  587. if(Stopped == false) {
  588. get_arc_coordinates();
  589. prepare_arc_move(true);
  590. return;
  591. }
  592. case 3: // G3 - CCW ARC
  593. if(Stopped == false) {
  594. get_arc_coordinates();
  595. prepare_arc_move(false);
  596. return;
  597. }
  598. case 4: // G4 dwell
  599. LCD_MESSAGEPGM(MSG_DWELL);
  600. codenum = 0;
  601. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  602. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  603. st_synchronize();
  604. codenum += millis(); // keep track of when we started waiting
  605. previous_millis_cmd = millis();
  606. while(millis() < codenum ){
  607. manage_heater();
  608. manage_inactivity();
  609. LCD_STATUS;
  610. }
  611. break;
  612. #ifdef FWRETRACT
  613. case 10: // G10 retract
  614. if(!retracted)
  615. {
  616. destination[X_AXIS]=current_position[X_AXIS];
  617. destination[Y_AXIS]=current_position[Y_AXIS];
  618. destination[Z_AXIS]=current_position[Z_AXIS];
  619. current_position[Z_AXIS]+=-retract_zlift;
  620. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  621. feedrate=retract_feedrate;
  622. retracted=true;
  623. prepare_move();
  624. }
  625. break;
  626. case 11: // G10 retract_recover
  627. if(!retracted)
  628. {
  629. destination[X_AXIS]=current_position[X_AXIS];
  630. destination[Y_AXIS]=current_position[Y_AXIS];
  631. destination[Z_AXIS]=current_position[Z_AXIS];
  632. current_position[Z_AXIS]+=retract_zlift;
  633. current_position[E_AXIS]+=-retract_recover_length;
  634. feedrate=retract_recover_feedrate;
  635. retracted=false;
  636. prepare_move();
  637. }
  638. break;
  639. #endif //FWRETRACT
  640. case 28: //G28 Home all Axis one at a time
  641. saved_feedrate = feedrate;
  642. saved_feedmultiply = feedmultiply;
  643. feedmultiply = 100;
  644. previous_millis_cmd = millis();
  645. enable_endstops(true);
  646. for(int8_t i=0; i < NUM_AXIS; i++) {
  647. destination[i] = current_position[i];
  648. }
  649. feedrate = 0.0;
  650. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  651. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  652. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  653. HOMEAXIS(Z);
  654. }
  655. #endif
  656. #ifdef QUICK_HOME
  657. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  658. {
  659. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  660. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  661. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  662. feedrate = homing_feedrate[X_AXIS];
  663. if(homing_feedrate[Y_AXIS]<feedrate)
  664. feedrate =homing_feedrate[Y_AXIS];
  665. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  666. st_synchronize();
  667. axis_is_at_home(X_AXIS);
  668. axis_is_at_home(Y_AXIS);
  669. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  670. destination[X_AXIS] = current_position[X_AXIS];
  671. destination[Y_AXIS] = current_position[Y_AXIS];
  672. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  673. feedrate = 0.0;
  674. st_synchronize();
  675. endstops_hit_on_purpose();
  676. }
  677. #endif
  678. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  679. {
  680. HOMEAXIS(X);
  681. }
  682. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  683. HOMEAXIS(Y);
  684. }
  685. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  686. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  687. HOMEAXIS(Z);
  688. }
  689. #endif
  690. if(code_seen(axis_codes[X_AXIS]))
  691. {
  692. if(code_value_long() != 0) {
  693. current_position[X_AXIS]=code_value()+add_homeing[0];
  694. }
  695. }
  696. if(code_seen(axis_codes[Y_AXIS])) {
  697. if(code_value_long() != 0) {
  698. current_position[Y_AXIS]=code_value()+add_homeing[1];
  699. }
  700. }
  701. if(code_seen(axis_codes[Z_AXIS])) {
  702. if(code_value_long() != 0) {
  703. current_position[Z_AXIS]=code_value()+add_homeing[2];
  704. }
  705. }
  706. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  707. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  708. enable_endstops(false);
  709. #endif
  710. feedrate = saved_feedrate;
  711. feedmultiply = saved_feedmultiply;
  712. previous_millis_cmd = millis();
  713. endstops_hit_on_purpose();
  714. break;
  715. case 90: // G90
  716. relative_mode = false;
  717. break;
  718. case 91: // G91
  719. relative_mode = true;
  720. break;
  721. case 92: // G92
  722. if(!code_seen(axis_codes[E_AXIS]))
  723. st_synchronize();
  724. for(int8_t i=0; i < NUM_AXIS; i++) {
  725. if(code_seen(axis_codes[i])) {
  726. if(i == E_AXIS) {
  727. current_position[i] = code_value();
  728. plan_set_e_position(current_position[E_AXIS]);
  729. }
  730. else {
  731. current_position[i] = code_value()+add_homeing[i];
  732. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  733. }
  734. }
  735. }
  736. break;
  737. }
  738. }
  739. else if(code_seen('M'))
  740. {
  741. switch( (int)code_value() )
  742. {
  743. #ifdef ULTRA_LCD
  744. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  745. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  746. {
  747. LCD_MESSAGEPGM(MSG_USERWAIT);
  748. codenum = 0;
  749. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  750. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  751. st_synchronize();
  752. previous_millis_cmd = millis();
  753. if (codenum > 0){
  754. codenum += millis(); // keep track of when we started waiting
  755. while(millis() < codenum && !CLICKED){
  756. manage_heater();
  757. manage_inactivity();
  758. LCD_STATUS;
  759. }
  760. }else{
  761. while(!CLICKED){
  762. manage_heater();
  763. manage_inactivity();
  764. LCD_STATUS;
  765. }
  766. }
  767. }
  768. break;
  769. #endif
  770. case 17:
  771. LCD_MESSAGEPGM(MSG_NO_MOVE);
  772. enable_x();
  773. enable_y();
  774. enable_z();
  775. enable_e0();
  776. enable_e1();
  777. enable_e2();
  778. break;
  779. #ifdef SDSUPPORT
  780. case 20: // M20 - list SD card
  781. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  782. card.ls();
  783. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  784. break;
  785. case 21: // M21 - init SD card
  786. card.initsd();
  787. break;
  788. case 22: //M22 - release SD card
  789. card.release();
  790. break;
  791. case 23: //M23 - Select file
  792. starpos = (strchr(strchr_pointer + 4,'*'));
  793. if(starpos!=NULL)
  794. *(starpos-1)='\0';
  795. card.openFile(strchr_pointer + 4,true);
  796. break;
  797. case 24: //M24 - Start SD print
  798. card.startFileprint();
  799. starttime=millis();
  800. break;
  801. case 25: //M25 - Pause SD print
  802. card.pauseSDPrint();
  803. break;
  804. case 26: //M26 - Set SD index
  805. if(card.cardOK && code_seen('S')) {
  806. card.setIndex(code_value_long());
  807. }
  808. break;
  809. case 27: //M27 - Get SD status
  810. card.getStatus();
  811. break;
  812. case 28: //M28 - Start SD write
  813. starpos = (strchr(strchr_pointer + 4,'*'));
  814. if(starpos != NULL){
  815. char* npos = strchr(cmdbuffer[bufindr], 'N');
  816. strchr_pointer = strchr(npos,' ') + 1;
  817. *(starpos-1) = '\0';
  818. }
  819. card.openFile(strchr_pointer+4,false);
  820. break;
  821. case 29: //M29 - Stop SD write
  822. //processed in write to file routine above
  823. //card,saving = false;
  824. break;
  825. case 30: //M30 <filename> Delete File
  826. if (card.cardOK){
  827. card.closefile();
  828. starpos = (strchr(strchr_pointer + 4,'*'));
  829. if(starpos != NULL){
  830. char* npos = strchr(cmdbuffer[bufindr], 'N');
  831. strchr_pointer = strchr(npos,' ') + 1;
  832. *(starpos-1) = '\0';
  833. }
  834. card.removeFile(strchr_pointer + 4);
  835. }
  836. break;
  837. #endif //SDSUPPORT
  838. case 31: //M31 take time since the start of the SD print or an M109 command
  839. {
  840. stoptime=millis();
  841. char time[30];
  842. unsigned long t=(stoptime-starttime)/1000;
  843. int sec,min;
  844. min=t/60;
  845. sec=t%60;
  846. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  847. SERIAL_ECHO_START;
  848. SERIAL_ECHOLN(time);
  849. LCD_MESSAGE(time);
  850. autotempShutdown();
  851. }
  852. break;
  853. case 42: //M42 -Change pin status via gcode
  854. if (code_seen('S'))
  855. {
  856. int pin_status = code_value();
  857. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  858. {
  859. int pin_number = code_value();
  860. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  861. {
  862. if (sensitive_pins[i] == pin_number)
  863. {
  864. pin_number = -1;
  865. break;
  866. }
  867. }
  868. if (pin_number > -1)
  869. {
  870. pinMode(pin_number, OUTPUT);
  871. digitalWrite(pin_number, pin_status);
  872. analogWrite(pin_number, pin_status);
  873. }
  874. }
  875. }
  876. break;
  877. case 104: // M104
  878. if(setTargetedHotend(104)){
  879. break;
  880. }
  881. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  882. setWatch();
  883. break;
  884. case 140: // M140 set bed temp
  885. if (code_seen('S')) setTargetBed(code_value());
  886. break;
  887. case 105 : // M105
  888. if(setTargetedHotend(105)){
  889. break;
  890. }
  891. #if (TEMP_0_PIN > -1)
  892. SERIAL_PROTOCOLPGM("ok T:");
  893. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  894. SERIAL_PROTOCOLPGM(" /");
  895. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  896. #if TEMP_BED_PIN > -1
  897. SERIAL_PROTOCOLPGM(" B:");
  898. SERIAL_PROTOCOL_F(degBed(),1);
  899. SERIAL_PROTOCOLPGM(" /");
  900. SERIAL_PROTOCOL_F(degTargetBed(),1);
  901. #endif //TEMP_BED_PIN
  902. #else
  903. SERIAL_ERROR_START;
  904. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  905. #endif
  906. SERIAL_PROTOCOLPGM(" @:");
  907. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  908. SERIAL_PROTOCOLPGM(" B@:");
  909. SERIAL_PROTOCOL(getHeaterPower(-1));
  910. SERIAL_PROTOCOLLN("");
  911. return;
  912. break;
  913. case 109:
  914. {// M109 - Wait for extruder heater to reach target.
  915. if(setTargetedHotend(109)){
  916. break;
  917. }
  918. LCD_MESSAGEPGM(MSG_HEATING);
  919. #ifdef AUTOTEMP
  920. autotemp_enabled=false;
  921. #endif
  922. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  923. #ifdef AUTOTEMP
  924. if (code_seen('S')) autotemp_min=code_value();
  925. if (code_seen('B')) autotemp_max=code_value();
  926. if (code_seen('F'))
  927. {
  928. autotemp_factor=code_value();
  929. autotemp_enabled=true;
  930. }
  931. #endif
  932. setWatch();
  933. codenum = millis();
  934. /* See if we are heating up or cooling down */
  935. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  936. #ifdef TEMP_RESIDENCY_TIME
  937. long residencyStart;
  938. residencyStart = -1;
  939. /* continue to loop until we have reached the target temp
  940. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  941. while((residencyStart == -1) ||
  942. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  943. #else
  944. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  945. #endif //TEMP_RESIDENCY_TIME
  946. if( (millis() - codenum) > 1000UL )
  947. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  948. SERIAL_PROTOCOLPGM("T:");
  949. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  950. SERIAL_PROTOCOLPGM(" E:");
  951. SERIAL_PROTOCOL((int)tmp_extruder);
  952. #ifdef TEMP_RESIDENCY_TIME
  953. SERIAL_PROTOCOLPGM(" W:");
  954. if(residencyStart > -1)
  955. {
  956. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  957. SERIAL_PROTOCOLLN( codenum );
  958. }
  959. else
  960. {
  961. SERIAL_PROTOCOLLN( "?" );
  962. }
  963. #else
  964. SERIAL_PROTOCOLLN("");
  965. #endif
  966. codenum = millis();
  967. }
  968. manage_heater();
  969. manage_inactivity();
  970. LCD_STATUS;
  971. #ifdef TEMP_RESIDENCY_TIME
  972. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  973. or when current temp falls outside the hysteresis after target temp was reached */
  974. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  975. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  976. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  977. {
  978. residencyStart = millis();
  979. }
  980. #endif //TEMP_RESIDENCY_TIME
  981. }
  982. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  983. starttime=millis();
  984. previous_millis_cmd = millis();
  985. }
  986. break;
  987. case 190: // M190 - Wait for bed heater to reach target.
  988. #if TEMP_BED_PIN > -1
  989. LCD_MESSAGEPGM(MSG_BED_HEATING);
  990. if (code_seen('S')) setTargetBed(code_value());
  991. codenum = millis();
  992. while(isHeatingBed())
  993. {
  994. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  995. {
  996. float tt=degHotend(active_extruder);
  997. SERIAL_PROTOCOLPGM("T:");
  998. SERIAL_PROTOCOL(tt);
  999. SERIAL_PROTOCOLPGM(" E:");
  1000. SERIAL_PROTOCOL((int)active_extruder);
  1001. SERIAL_PROTOCOLPGM(" B:");
  1002. SERIAL_PROTOCOL_F(degBed(),1);
  1003. SERIAL_PROTOCOLLN("");
  1004. codenum = millis();
  1005. }
  1006. manage_heater();
  1007. manage_inactivity();
  1008. LCD_STATUS;
  1009. }
  1010. LCD_MESSAGEPGM(MSG_BED_DONE);
  1011. previous_millis_cmd = millis();
  1012. #endif
  1013. break;
  1014. #if FAN_PIN > -1
  1015. case 106: //M106 Fan On
  1016. if (code_seen('S')){
  1017. fanSpeed=constrain(code_value(),0,255);
  1018. }
  1019. else {
  1020. fanSpeed=255;
  1021. }
  1022. break;
  1023. case 107: //M107 Fan Off
  1024. fanSpeed = 0;
  1025. break;
  1026. #endif //FAN_PIN
  1027. #if (PS_ON_PIN > -1)
  1028. case 80: // M80 - ATX Power On
  1029. SET_OUTPUT(PS_ON_PIN); //GND
  1030. WRITE(PS_ON_PIN, LOW);
  1031. break;
  1032. #endif
  1033. case 81: // M81 - ATX Power Off
  1034. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1035. st_synchronize();
  1036. suicide();
  1037. #elif (PS_ON_PIN > -1)
  1038. SET_OUTPUT(PS_ON_PIN);
  1039. WRITE(PS_ON_PIN, HIGH);
  1040. #endif
  1041. break;
  1042. case 82:
  1043. axis_relative_modes[3] = false;
  1044. break;
  1045. case 83:
  1046. axis_relative_modes[3] = true;
  1047. break;
  1048. case 18: //compatibility
  1049. case 84: // M84
  1050. if(code_seen('S')){
  1051. stepper_inactive_time = code_value() * 1000;
  1052. }
  1053. else
  1054. {
  1055. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1056. if(all_axis)
  1057. {
  1058. st_synchronize();
  1059. disable_e0();
  1060. disable_e1();
  1061. disable_e2();
  1062. finishAndDisableSteppers();
  1063. }
  1064. else
  1065. {
  1066. st_synchronize();
  1067. if(code_seen('X')) disable_x();
  1068. if(code_seen('Y')) disable_y();
  1069. if(code_seen('Z')) disable_z();
  1070. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1071. if(code_seen('E')) {
  1072. disable_e0();
  1073. disable_e1();
  1074. disable_e2();
  1075. }
  1076. #endif
  1077. LCD_MESSAGEPGM(MSG_PART_RELEASE);
  1078. }
  1079. }
  1080. break;
  1081. case 85: // M85
  1082. code_seen('S');
  1083. max_inactive_time = code_value() * 1000;
  1084. break;
  1085. case 92: // M92
  1086. for(int8_t i=0; i < NUM_AXIS; i++)
  1087. {
  1088. if(code_seen(axis_codes[i]))
  1089. {
  1090. if(i == 3) { // E
  1091. float value = code_value();
  1092. if(value < 20.0) {
  1093. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1094. max_e_jerk *= factor;
  1095. max_feedrate[i] *= factor;
  1096. axis_steps_per_sqr_second[i] *= factor;
  1097. }
  1098. axis_steps_per_unit[i] = value;
  1099. }
  1100. else {
  1101. axis_steps_per_unit[i] = code_value();
  1102. }
  1103. }
  1104. }
  1105. break;
  1106. case 115: // M115
  1107. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1108. break;
  1109. case 117: // M117 display message
  1110. LCD_MESSAGE(cmdbuffer[bufindr]+5);
  1111. break;
  1112. case 114: // M114
  1113. SERIAL_PROTOCOLPGM("X:");
  1114. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1115. SERIAL_PROTOCOLPGM("Y:");
  1116. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1117. SERIAL_PROTOCOLPGM("Z:");
  1118. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1119. SERIAL_PROTOCOLPGM("E:");
  1120. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1121. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1122. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1123. SERIAL_PROTOCOLPGM("Y:");
  1124. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1125. SERIAL_PROTOCOLPGM("Z:");
  1126. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1127. SERIAL_PROTOCOLLN("");
  1128. break;
  1129. case 120: // M120
  1130. enable_endstops(false) ;
  1131. break;
  1132. case 121: // M121
  1133. enable_endstops(true) ;
  1134. break;
  1135. case 119: // M119
  1136. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1137. #if (X_MIN_PIN > -1)
  1138. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1139. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1140. #endif
  1141. #if (X_MAX_PIN > -1)
  1142. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1143. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1144. #endif
  1145. #if (Y_MIN_PIN > -1)
  1146. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1147. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1148. #endif
  1149. #if (Y_MAX_PIN > -1)
  1150. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1151. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1152. #endif
  1153. #if (Z_MIN_PIN > -1)
  1154. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1155. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1156. #endif
  1157. #if (Z_MAX_PIN > -1)
  1158. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1159. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1160. #endif
  1161. break;
  1162. //TODO: update for all axis, use for loop
  1163. case 201: // M201
  1164. for(int8_t i=0; i < NUM_AXIS; i++)
  1165. {
  1166. if(code_seen(axis_codes[i]))
  1167. {
  1168. max_acceleration_units_per_sq_second[i] = code_value();
  1169. axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1170. }
  1171. }
  1172. break;
  1173. #if 0 // Not used for Sprinter/grbl gen6
  1174. case 202: // M202
  1175. for(int8_t i=0; i < NUM_AXIS; i++) {
  1176. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1177. }
  1178. break;
  1179. #endif
  1180. case 203: // M203 max feedrate mm/sec
  1181. for(int8_t i=0; i < NUM_AXIS; i++) {
  1182. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1183. }
  1184. break;
  1185. case 204: // M204 acclereration S normal moves T filmanent only moves
  1186. {
  1187. if(code_seen('S')) acceleration = code_value() ;
  1188. if(code_seen('T')) retract_acceleration = code_value() ;
  1189. }
  1190. break;
  1191. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1192. {
  1193. if(code_seen('S')) minimumfeedrate = code_value();
  1194. if(code_seen('T')) mintravelfeedrate = code_value();
  1195. if(code_seen('B')) minsegmenttime = code_value() ;
  1196. if(code_seen('X')) max_xy_jerk = code_value() ;
  1197. if(code_seen('Z')) max_z_jerk = code_value() ;
  1198. if(code_seen('E')) max_e_jerk = code_value() ;
  1199. }
  1200. break;
  1201. case 206: // M206 additional homeing offset
  1202. for(int8_t i=0; i < 3; i++)
  1203. {
  1204. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1205. }
  1206. break;
  1207. #ifdef FWRETRACT
  1208. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1209. {
  1210. if(code_seen('S'))
  1211. {
  1212. retract_length = code_value() ;
  1213. }
  1214. if(code_seen('F'))
  1215. {
  1216. retract_feedrate = code_value() ;
  1217. }
  1218. if(code_seen('Z'))
  1219. {
  1220. retract_zlift = code_value() ;
  1221. }
  1222. }break;
  1223. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1224. {
  1225. if(code_seen('S'))
  1226. {
  1227. retract_recover_length = code_value() ;
  1228. }
  1229. if(code_seen('F'))
  1230. {
  1231. retract_recover_feedrate = code_value() ;
  1232. }
  1233. }break;
  1234. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1235. {
  1236. if(code_seen('S'))
  1237. {
  1238. int t= code_value() ;
  1239. switch(t)
  1240. {
  1241. case 0: autoretract_enabled=false;retracted=false;break;
  1242. case 1: autoretract_enabled=true;retracted=false;break;
  1243. default:
  1244. SERIAL_ECHO_START;
  1245. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1246. SERIAL_ECHO(cmdbuffer[bufindr]);
  1247. SERIAL_ECHOLNPGM("\"");
  1248. }
  1249. }
  1250. }break;
  1251. #endif
  1252. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1253. {
  1254. if(code_seen('S'))
  1255. {
  1256. feedmultiply = code_value() ;
  1257. }
  1258. }
  1259. break;
  1260. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1261. {
  1262. if(code_seen('S'))
  1263. {
  1264. extrudemultiply = code_value() ;
  1265. }
  1266. }
  1267. break;
  1268. #ifdef PIDTEMP
  1269. case 301: // M301
  1270. {
  1271. if(code_seen('P')) Kp = code_value();
  1272. if(code_seen('I')) Ki = code_value()*PID_dT;
  1273. if(code_seen('D')) Kd = code_value()/PID_dT;
  1274. #ifdef PID_ADD_EXTRUSION_RATE
  1275. if(code_seen('C')) Kc = code_value();
  1276. #endif
  1277. updatePID();
  1278. SERIAL_PROTOCOL(MSG_OK);
  1279. SERIAL_PROTOCOL(" p:");
  1280. SERIAL_PROTOCOL(Kp);
  1281. SERIAL_PROTOCOL(" i:");
  1282. SERIAL_PROTOCOL(Ki/PID_dT);
  1283. SERIAL_PROTOCOL(" d:");
  1284. SERIAL_PROTOCOL(Kd*PID_dT);
  1285. #ifdef PID_ADD_EXTRUSION_RATE
  1286. SERIAL_PROTOCOL(" c:");
  1287. SERIAL_PROTOCOL(Kc*PID_dT);
  1288. #endif
  1289. SERIAL_PROTOCOLLN("");
  1290. }
  1291. break;
  1292. #endif //PIDTEMP
  1293. #ifdef PIDTEMPBED
  1294. case 304: // M304
  1295. {
  1296. if(code_seen('P')) bedKp = code_value();
  1297. if(code_seen('I')) bedKi = code_value()*PID_dT;
  1298. if(code_seen('D')) bedKd = code_value()/PID_dT;
  1299. updatePID();
  1300. SERIAL_PROTOCOL(MSG_OK);
  1301. SERIAL_PROTOCOL(" p:");
  1302. SERIAL_PROTOCOL(bedKp);
  1303. SERIAL_PROTOCOL(" i:");
  1304. SERIAL_PROTOCOL(bedKi/PID_dT);
  1305. SERIAL_PROTOCOL(" d:");
  1306. SERIAL_PROTOCOL(bedKd*PID_dT);
  1307. SERIAL_PROTOCOLLN("");
  1308. }
  1309. break;
  1310. #endif //PIDTEMP
  1311. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1312. {
  1313. #ifdef PHOTOGRAPH_PIN
  1314. #if (PHOTOGRAPH_PIN > -1)
  1315. const uint8_t NUM_PULSES=16;
  1316. const float PULSE_LENGTH=0.01524;
  1317. for(int i=0; i < NUM_PULSES; i++) {
  1318. WRITE(PHOTOGRAPH_PIN, HIGH);
  1319. _delay_ms(PULSE_LENGTH);
  1320. WRITE(PHOTOGRAPH_PIN, LOW);
  1321. _delay_ms(PULSE_LENGTH);
  1322. }
  1323. delay(7.33);
  1324. for(int i=0; i < NUM_PULSES; i++) {
  1325. WRITE(PHOTOGRAPH_PIN, HIGH);
  1326. _delay_ms(PULSE_LENGTH);
  1327. WRITE(PHOTOGRAPH_PIN, LOW);
  1328. _delay_ms(PULSE_LENGTH);
  1329. }
  1330. #endif
  1331. #endif
  1332. }
  1333. break;
  1334. case 302: // allow cold extrudes
  1335. {
  1336. allow_cold_extrudes(true);
  1337. }
  1338. break;
  1339. case 303: // M303 PID autotune
  1340. {
  1341. float temp = 150.0;
  1342. int e=0;
  1343. int c=5;
  1344. if (code_seen('E')) e=code_value();
  1345. if (e<0)
  1346. temp=70;
  1347. if (code_seen('S')) temp=code_value();
  1348. if (code_seen('C')) c=code_value();
  1349. PID_autotune(temp, e, c);
  1350. }
  1351. break;
  1352. case 400: // M400 finish all moves
  1353. {
  1354. st_synchronize();
  1355. }
  1356. break;
  1357. case 500: // Store settings in EEPROM
  1358. {
  1359. Config_StoreSettings();
  1360. }
  1361. break;
  1362. case 501: // Read settings from EEPROM
  1363. {
  1364. Config_RetrieveSettings();
  1365. }
  1366. break;
  1367. case 502: // Revert to default settings
  1368. {
  1369. Config_ResetDefault();
  1370. }
  1371. break;
  1372. case 503: // print settings currently in memory
  1373. {
  1374. Config_PrintSettings();
  1375. }
  1376. break;
  1377. case 907: // Set digital trimpot motor current using axis codes.
  1378. {
  1379. #if DIGIPOTSS_PIN > -1
  1380. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  1381. if(code_seen('B')) digipot_current(4,code_value());
  1382. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  1383. #endif
  1384. }
  1385. case 908: // Control digital trimpot directly.
  1386. {
  1387. #if DIGIPOTSS_PIN > -1
  1388. uint8_t channel,current;
  1389. if(code_seen('P')) channel=code_value();
  1390. if(code_seen('S')) current=code_value();
  1391. digitalPotWrite(channel, current);
  1392. #endif
  1393. }
  1394. break;
  1395. case 350: // Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  1396. {
  1397. #if X_MS1_PIN > -1
  1398. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  1399. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  1400. if(code_seen('B')) microstep_mode(4,code_value());
  1401. microstep_readings();
  1402. #endif
  1403. }
  1404. break;
  1405. case 351: // Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  1406. {
  1407. #if X_MS1_PIN > -1
  1408. if(code_seen('S')) switch((int)code_value())
  1409. {
  1410. case 1:
  1411. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  1412. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  1413. break;
  1414. case 2:
  1415. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  1416. if(code_seen('B')) microstep_ms(4,-1,code_value());
  1417. break;
  1418. }
  1419. microstep_readings();
  1420. #endif
  1421. }
  1422. break;
  1423. case 999: // Restart after being stopped
  1424. Stopped = false;
  1425. gcode_LastN = Stopped_gcode_LastN;
  1426. FlushSerialRequestResend();
  1427. break;
  1428. }
  1429. }
  1430. else if(code_seen('T'))
  1431. {
  1432. tmp_extruder = code_value();
  1433. if(tmp_extruder >= EXTRUDERS) {
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHO("T");
  1436. SERIAL_ECHO(tmp_extruder);
  1437. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1438. }
  1439. else {
  1440. active_extruder = tmp_extruder;
  1441. SERIAL_ECHO_START;
  1442. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1443. SERIAL_PROTOCOLLN((int)active_extruder);
  1444. }
  1445. }
  1446. else
  1447. {
  1448. SERIAL_ECHO_START;
  1449. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1450. SERIAL_ECHO(cmdbuffer[bufindr]);
  1451. SERIAL_ECHOLNPGM("\"");
  1452. }
  1453. ClearToSend();
  1454. }
  1455. void FlushSerialRequestResend()
  1456. {
  1457. //char cmdbuffer[bufindr][100]="Resend:";
  1458. MYSERIAL.flush();
  1459. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1460. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1461. ClearToSend();
  1462. }
  1463. void ClearToSend()
  1464. {
  1465. previous_millis_cmd = millis();
  1466. #ifdef SDSUPPORT
  1467. if(fromsd[bufindr])
  1468. return;
  1469. #endif //SDSUPPORT
  1470. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1471. }
  1472. void get_coordinates()
  1473. {
  1474. bool seen[4]={false,false,false,false};
  1475. for(int8_t i=0; i < NUM_AXIS; i++) {
  1476. if(code_seen(axis_codes[i]))
  1477. {
  1478. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1479. seen[i]=true;
  1480. }
  1481. else destination[i] = current_position[i]; //Are these else lines really needed?
  1482. }
  1483. if(code_seen('F')) {
  1484. next_feedrate = code_value();
  1485. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1486. }
  1487. #ifdef FWRETRACT
  1488. if(autoretract_enabled)
  1489. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1490. {
  1491. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1492. if(echange<-MIN_RETRACT) //retract
  1493. {
  1494. if(!retracted)
  1495. {
  1496. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1497. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1498. float correctede=-echange-retract_length;
  1499. //to generate the additional steps, not the destination is changed, but inversely the current position
  1500. current_position[E_AXIS]+=-correctede;
  1501. feedrate=retract_feedrate;
  1502. retracted=true;
  1503. }
  1504. }
  1505. else
  1506. if(echange>MIN_RETRACT) //retract_recover
  1507. {
  1508. if(retracted)
  1509. {
  1510. //current_position[Z_AXIS]+=-retract_zlift;
  1511. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1512. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1513. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1514. feedrate=retract_recover_feedrate;
  1515. retracted=false;
  1516. }
  1517. }
  1518. }
  1519. #endif //FWRETRACT
  1520. }
  1521. void get_arc_coordinates()
  1522. {
  1523. #ifdef SF_ARC_FIX
  1524. bool relative_mode_backup = relative_mode;
  1525. relative_mode = true;
  1526. #endif
  1527. get_coordinates();
  1528. #ifdef SF_ARC_FIX
  1529. relative_mode=relative_mode_backup;
  1530. #endif
  1531. if(code_seen('I')) {
  1532. offset[0] = code_value();
  1533. }
  1534. else {
  1535. offset[0] = 0.0;
  1536. }
  1537. if(code_seen('J')) {
  1538. offset[1] = code_value();
  1539. }
  1540. else {
  1541. offset[1] = 0.0;
  1542. }
  1543. }
  1544. void clamp_to_software_endstops(float target[3])
  1545. {
  1546. if (min_software_endstops) {
  1547. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1548. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1549. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1550. }
  1551. if (max_software_endstops) {
  1552. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1553. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1554. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1555. }
  1556. }
  1557. void prepare_move()
  1558. {
  1559. clamp_to_software_endstops(destination);
  1560. previous_millis_cmd = millis();
  1561. // Do not use feedmultiply for E or Z only moves
  1562. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  1563. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1564. }
  1565. else {
  1566. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1567. }
  1568. for(int8_t i=0; i < NUM_AXIS; i++) {
  1569. current_position[i] = destination[i];
  1570. }
  1571. }
  1572. void prepare_arc_move(char isclockwise) {
  1573. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1574. // Trace the arc
  1575. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1576. // As far as the parser is concerned, the position is now == target. In reality the
  1577. // motion control system might still be processing the action and the real tool position
  1578. // in any intermediate location.
  1579. for(int8_t i=0; i < NUM_AXIS; i++) {
  1580. current_position[i] = destination[i];
  1581. }
  1582. previous_millis_cmd = millis();
  1583. }
  1584. #ifdef CONTROLLERFAN_PIN
  1585. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  1586. unsigned long lastMotorCheck = 0;
  1587. void controllerFan()
  1588. {
  1589. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1590. {
  1591. lastMotorCheck = millis();
  1592. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  1593. #if EXTRUDERS > 2
  1594. || !READ(E2_ENABLE_PIN)
  1595. #endif
  1596. #if EXTRUDER > 1
  1597. || !READ(E2_ENABLE_PIN)
  1598. #endif
  1599. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  1600. {
  1601. lastMotor = millis(); //... set time to NOW so the fan will turn on
  1602. }
  1603. if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  1604. {
  1605. WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
  1606. }
  1607. else
  1608. {
  1609. WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
  1610. }
  1611. }
  1612. }
  1613. #endif
  1614. void manage_inactivity()
  1615. {
  1616. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1617. if(max_inactive_time)
  1618. kill();
  1619. if(stepper_inactive_time) {
  1620. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1621. {
  1622. if(blocks_queued() == false) {
  1623. disable_x();
  1624. disable_y();
  1625. disable_z();
  1626. disable_e0();
  1627. disable_e1();
  1628. disable_e2();
  1629. }
  1630. }
  1631. }
  1632. #if( KILL_PIN>-1 )
  1633. if( 0 == READ(KILL_PIN) )
  1634. kill();
  1635. #endif
  1636. #ifdef CONTROLLERFAN_PIN
  1637. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  1638. #endif
  1639. #ifdef EXTRUDER_RUNOUT_PREVENT
  1640. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1641. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1642. {
  1643. bool oldstatus=READ(E0_ENABLE_PIN);
  1644. enable_e0();
  1645. float oldepos=current_position[E_AXIS];
  1646. float oldedes=destination[E_AXIS];
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1648. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1649. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1650. current_position[E_AXIS]=oldepos;
  1651. destination[E_AXIS]=oldedes;
  1652. plan_set_e_position(oldepos);
  1653. previous_millis_cmd=millis();
  1654. st_synchronize();
  1655. WRITE(E0_ENABLE_PIN,oldstatus);
  1656. }
  1657. #endif
  1658. check_axes_activity();
  1659. }
  1660. void kill()
  1661. {
  1662. cli(); // Stop interrupts
  1663. disable_heater();
  1664. disable_x();
  1665. disable_y();
  1666. disable_z();
  1667. disable_e0();
  1668. disable_e1();
  1669. disable_e2();
  1670. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1671. SERIAL_ERROR_START;
  1672. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  1673. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  1674. suicide();
  1675. while(1) { /* Intentionally left empty */ } // Wait for reset
  1676. }
  1677. void Stop()
  1678. {
  1679. disable_heater();
  1680. if(Stopped == false) {
  1681. Stopped = true;
  1682. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  1683. SERIAL_ERROR_START;
  1684. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1685. LCD_MESSAGEPGM(MSG_STOPPED);
  1686. }
  1687. }
  1688. bool IsStopped() { return Stopped; };
  1689. #ifdef FAST_PWM_FAN
  1690. void setPwmFrequency(uint8_t pin, int val)
  1691. {
  1692. val &= 0x07;
  1693. switch(digitalPinToTimer(pin))
  1694. {
  1695. #if defined(TCCR0A)
  1696. case TIMER0A:
  1697. case TIMER0B:
  1698. // TCCR0B &= ~(CS00 | CS01 | CS02);
  1699. // TCCR0B |= val;
  1700. break;
  1701. #endif
  1702. #if defined(TCCR1A)
  1703. case TIMER1A:
  1704. case TIMER1B:
  1705. // TCCR1B &= ~(CS10 | CS11 | CS12);
  1706. // TCCR1B |= val;
  1707. break;
  1708. #endif
  1709. #if defined(TCCR2)
  1710. case TIMER2:
  1711. case TIMER2:
  1712. TCCR2 &= ~(CS10 | CS11 | CS12);
  1713. TCCR2 |= val;
  1714. break;
  1715. #endif
  1716. #if defined(TCCR2A)
  1717. case TIMER2A:
  1718. case TIMER2B:
  1719. TCCR2B &= ~(CS20 | CS21 | CS22);
  1720. TCCR2B |= val;
  1721. break;
  1722. #endif
  1723. #if defined(TCCR3A)
  1724. case TIMER3A:
  1725. case TIMER3B:
  1726. case TIMER3C:
  1727. TCCR3B &= ~(CS30 | CS31 | CS32);
  1728. TCCR3B |= val;
  1729. break;
  1730. #endif
  1731. #if defined(TCCR4A)
  1732. case TIMER4A:
  1733. case TIMER4B:
  1734. case TIMER4C:
  1735. TCCR4B &= ~(CS40 | CS41 | CS42);
  1736. TCCR4B |= val;
  1737. break;
  1738. #endif
  1739. #if defined(TCCR5A)
  1740. case TIMER5A:
  1741. case TIMER5B:
  1742. case TIMER5C:
  1743. TCCR5B &= ~(CS50 | CS51 | CS52);
  1744. TCCR5B |= val;
  1745. break;
  1746. #endif
  1747. }
  1748. }
  1749. #endif //FAST_PWM_FAN
  1750. bool setTargetedHotend(int code){
  1751. tmp_extruder = active_extruder;
  1752. if(code_seen('T')) {
  1753. tmp_extruder = code_value();
  1754. if(tmp_extruder >= EXTRUDERS) {
  1755. SERIAL_ECHO_START;
  1756. switch(code){
  1757. case 104:
  1758. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  1759. break;
  1760. case 105:
  1761. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  1762. break;
  1763. case 109:
  1764. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  1765. break;
  1766. }
  1767. SERIAL_ECHOLN(tmp_extruder);
  1768. return true;
  1769. }
  1770. }
  1771. return false;
  1772. }