My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.cpp 48KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611
  1. /*
  2. temperature.cpp - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "Marlin.h"
  17. #include "ultralcd.h"
  18. #include "temperature.h"
  19. #include "watchdog.h"
  20. #include "language.h"
  21. #include "Sd2PinMap.h"
  22. //===========================================================================
  23. //================================== macros =================================
  24. //===========================================================================
  25. #ifdef K1 // Defined in Configuration.h in the PID settings
  26. #define K2 (1.0-K1)
  27. #endif
  28. #if defined(PIDTEMPBED) || defined(PIDTEMP)
  29. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  30. #endif
  31. //===========================================================================
  32. //============================= public variables ============================
  33. //===========================================================================
  34. int target_temperature[4] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[4] = { 0 };
  37. float current_temperature[4] = { 0.0 };
  38. int current_temperature_bed_raw = 0;
  39. float current_temperature_bed = 0.0;
  40. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  41. int redundant_temperature_raw = 0;
  42. float redundant_temperature = 0.0;
  43. #endif
  44. #ifdef PIDTEMPBED
  45. float bedKp=DEFAULT_bedKp;
  46. float bedKi=(DEFAULT_bedKi*PID_dT);
  47. float bedKd=(DEFAULT_bedKd/PID_dT);
  48. #endif //PIDTEMPBED
  49. #ifdef FAN_SOFT_PWM
  50. unsigned char fanSpeedSoftPwm;
  51. #endif
  52. unsigned char soft_pwm_bed;
  53. #ifdef BABYSTEPPING
  54. volatile int babystepsTodo[3] = { 0 };
  55. #endif
  56. #ifdef FILAMENT_SENSOR
  57. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  58. #endif
  59. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  60. enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
  61. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  62. #ifdef THERMAL_PROTECTION_HOTENDS
  63. static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
  64. static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
  65. #endif
  66. #ifdef THERMAL_PROTECTION_BED
  67. static TRState thermal_runaway_bed_state_machine = TRReset;
  68. static millis_t thermal_runaway_bed_timer;
  69. #endif
  70. #endif
  71. //===========================================================================
  72. //============================ private variables ============================
  73. //===========================================================================
  74. static volatile bool temp_meas_ready = false;
  75. #ifdef PIDTEMP
  76. //static cannot be external:
  77. static float temp_iState[EXTRUDERS] = { 0 };
  78. static float temp_dState[EXTRUDERS] = { 0 };
  79. static float pTerm[EXTRUDERS];
  80. static float iTerm[EXTRUDERS];
  81. static float dTerm[EXTRUDERS];
  82. //int output;
  83. static float pid_error[EXTRUDERS];
  84. static float temp_iState_min[EXTRUDERS];
  85. static float temp_iState_max[EXTRUDERS];
  86. static bool pid_reset[EXTRUDERS];
  87. #endif //PIDTEMP
  88. #ifdef PIDTEMPBED
  89. //static cannot be external:
  90. static float temp_iState_bed = { 0 };
  91. static float temp_dState_bed = { 0 };
  92. static float pTerm_bed;
  93. static float iTerm_bed;
  94. static float dTerm_bed;
  95. //int output;
  96. static float pid_error_bed;
  97. static float temp_iState_min_bed;
  98. static float temp_iState_max_bed;
  99. #else //PIDTEMPBED
  100. static millis_t next_bed_check_ms;
  101. #endif //PIDTEMPBED
  102. static unsigned char soft_pwm[EXTRUDERS];
  103. #ifdef FAN_SOFT_PWM
  104. static unsigned char soft_pwm_fan;
  105. #endif
  106. #if HAS_AUTO_FAN
  107. static millis_t next_auto_fan_check_ms;
  108. #endif
  109. #ifdef PIDTEMP
  110. #ifdef PID_PARAMS_PER_EXTRUDER
  111. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  112. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  113. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  114. #ifdef PID_ADD_EXTRUSION_RATE
  115. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  116. #endif // PID_ADD_EXTRUSION_RATE
  117. #else //PID_PARAMS_PER_EXTRUDER
  118. float Kp = DEFAULT_Kp;
  119. float Ki = DEFAULT_Ki * PID_dT;
  120. float Kd = DEFAULT_Kd / PID_dT;
  121. #ifdef PID_ADD_EXTRUSION_RATE
  122. float Kc = DEFAULT_Kc;
  123. #endif // PID_ADD_EXTRUSION_RATE
  124. #endif // PID_PARAMS_PER_EXTRUDER
  125. #endif //PIDTEMP
  126. // Init min and max temp with extreme values to prevent false errors during startup
  127. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  128. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  129. static int minttemp[EXTRUDERS] = { 0 };
  130. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  131. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  132. #ifdef BED_MAXTEMP
  133. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  134. #endif
  135. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  136. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  137. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  138. #else
  139. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  140. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  141. #endif
  142. static float analog2temp(int raw, uint8_t e);
  143. static float analog2tempBed(int raw);
  144. static void updateTemperaturesFromRawValues();
  145. #ifdef THERMAL_PROTECTION_HOTENDS
  146. int watch_target_temp[EXTRUDERS] = { 0 };
  147. millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
  148. #endif
  149. #ifndef SOFT_PWM_SCALE
  150. #define SOFT_PWM_SCALE 0
  151. #endif
  152. #ifdef FILAMENT_SENSOR
  153. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  154. #endif
  155. #ifdef HEATER_0_USES_MAX6675
  156. static int read_max6675();
  157. #endif
  158. //===========================================================================
  159. //================================ Functions ================================
  160. //===========================================================================
  161. void PID_autotune(float temp, int extruder, int ncycles)
  162. {
  163. float input = 0.0;
  164. int cycles = 0;
  165. bool heating = true;
  166. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  167. long t_high = 0, t_low = 0;
  168. long bias, d;
  169. float Ku, Tu;
  170. float Kp, Ki, Kd;
  171. float max = 0, min = 10000;
  172. #if HAS_AUTO_FAN
  173. millis_t next_auto_fan_check_ms = temp_ms + 2500;
  174. #endif
  175. if (extruder >= EXTRUDERS
  176. #if !HAS_TEMP_BED
  177. || extruder < 0
  178. #endif
  179. ) {
  180. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  181. return;
  182. }
  183. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  184. disable_all_heaters(); // switch off all heaters.
  185. if (extruder < 0)
  186. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  187. else
  188. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  189. // PID Tuning loop
  190. for (;;) {
  191. millis_t ms = millis();
  192. if (temp_meas_ready) { // temp sample ready
  193. updateTemperaturesFromRawValues();
  194. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  195. max = max(max, input);
  196. min = min(min, input);
  197. #if HAS_AUTO_FAN
  198. if (ms > next_auto_fan_check_ms) {
  199. checkExtruderAutoFans();
  200. next_auto_fan_check_ms = ms + 2500;
  201. }
  202. #endif
  203. if (heating && input > temp) {
  204. if (ms > t2 + 5000) {
  205. heating = false;
  206. if (extruder < 0)
  207. soft_pwm_bed = (bias - d) >> 1;
  208. else
  209. soft_pwm[extruder] = (bias - d) >> 1;
  210. t1 = ms;
  211. t_high = t1 - t2;
  212. max = temp;
  213. }
  214. }
  215. if (!heating && input < temp) {
  216. if (ms > t1 + 5000) {
  217. heating = true;
  218. t2 = ms;
  219. t_low = t2 - t1;
  220. if (cycles > 0) {
  221. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  222. bias += (d*(t_high - t_low))/(t_low + t_high);
  223. bias = constrain(bias, 20, max_pow - 20);
  224. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  225. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  226. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  227. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  228. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  229. if (cycles > 2) {
  230. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  231. Tu = ((float)(t_low + t_high) / 1000.0);
  232. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  233. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  234. Kp = 0.6 * Ku;
  235. Ki = 2 * Kp / Tu;
  236. Kd = Kp * Tu / 8;
  237. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  238. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  239. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  240. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  241. /*
  242. Kp = 0.33*Ku;
  243. Ki = Kp/Tu;
  244. Kd = Kp*Tu/3;
  245. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  246. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  247. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  248. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  249. Kp = 0.2*Ku;
  250. Ki = 2*Kp/Tu;
  251. Kd = Kp*Tu/3;
  252. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  253. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  254. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  255. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  256. */
  257. }
  258. }
  259. if (extruder < 0)
  260. soft_pwm_bed = (bias + d) >> 1;
  261. else
  262. soft_pwm[extruder] = (bias + d) >> 1;
  263. cycles++;
  264. min = temp;
  265. }
  266. }
  267. }
  268. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  269. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  270. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  271. return;
  272. }
  273. // Every 2 seconds...
  274. if (ms > temp_ms + 2000) {
  275. int p;
  276. if (extruder < 0) {
  277. p = soft_pwm_bed;
  278. SERIAL_PROTOCOLPGM(MSG_OK_B);
  279. }
  280. else {
  281. p = soft_pwm[extruder];
  282. SERIAL_PROTOCOLPGM(MSG_OK_T);
  283. }
  284. SERIAL_PROTOCOL(input);
  285. SERIAL_PROTOCOLPGM(MSG_AT);
  286. SERIAL_PROTOCOLLN(p);
  287. temp_ms = ms;
  288. } // every 2 seconds
  289. // Over 2 minutes?
  290. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  291. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  292. return;
  293. }
  294. if (cycles > ncycles) {
  295. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  296. const char *estring = extruder < 0 ? "bed" : "";
  297. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(Kp);
  298. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(Ki);
  299. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(Kd);
  300. return;
  301. }
  302. lcd_update();
  303. }
  304. }
  305. void updatePID() {
  306. #ifdef PIDTEMP
  307. for (int e = 0; e < EXTRUDERS; e++) {
  308. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  309. }
  310. #endif
  311. #ifdef PIDTEMPBED
  312. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  313. #endif
  314. }
  315. int getHeaterPower(int heater) {
  316. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  317. }
  318. #if HAS_AUTO_FAN
  319. void setExtruderAutoFanState(int pin, bool state)
  320. {
  321. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  322. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  323. pinMode(pin, OUTPUT);
  324. digitalWrite(pin, newFanSpeed);
  325. analogWrite(pin, newFanSpeed);
  326. }
  327. void checkExtruderAutoFans()
  328. {
  329. uint8_t fanState = 0;
  330. // which fan pins need to be turned on?
  331. #if HAS_AUTO_FAN_0
  332. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  333. fanState |= 1;
  334. #endif
  335. #if HAS_AUTO_FAN_1
  336. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  337. {
  338. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  339. fanState |= 1;
  340. else
  341. fanState |= 2;
  342. }
  343. #endif
  344. #if HAS_AUTO_FAN_2
  345. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  346. {
  347. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  348. fanState |= 1;
  349. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  350. fanState |= 2;
  351. else
  352. fanState |= 4;
  353. }
  354. #endif
  355. #if HAS_AUTO_FAN_3
  356. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  357. {
  358. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  359. fanState |= 1;
  360. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  361. fanState |= 2;
  362. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  363. fanState |= 4;
  364. else
  365. fanState |= 8;
  366. }
  367. #endif
  368. // update extruder auto fan states
  369. #if HAS_AUTO_FAN_0
  370. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  371. #endif
  372. #if HAS_AUTO_FAN_1
  373. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  374. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  375. #endif
  376. #if HAS_AUTO_FAN_2
  377. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  378. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  379. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  380. #endif
  381. #if HAS_AUTO_FAN_3
  382. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  383. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  384. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  385. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  386. #endif
  387. }
  388. #endif // any extruder auto fan pins set
  389. //
  390. // Temperature Error Handlers
  391. //
  392. inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
  393. static bool killed = false;
  394. if (IsRunning()) {
  395. SERIAL_ERROR_START;
  396. serialprintPGM(serial_msg);
  397. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  398. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  399. }
  400. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  401. if (!killed) {
  402. Running = false;
  403. killed = true;
  404. kill(lcd_msg);
  405. }
  406. else
  407. disable_all_heaters(); // paranoia
  408. #endif
  409. }
  410. void max_temp_error(uint8_t e) {
  411. _temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  412. }
  413. void min_temp_error(uint8_t e) {
  414. _temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  415. }
  416. void bed_max_temp_error(void) {
  417. _temp_error(-1, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP_BED));
  418. }
  419. float get_pid_output(int e) {
  420. float pid_output;
  421. #ifdef PIDTEMP
  422. #ifndef PID_OPENLOOP
  423. pid_error[e] = target_temperature[e] - current_temperature[e];
  424. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  425. pid_output = BANG_MAX;
  426. pid_reset[e] = true;
  427. }
  428. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  429. pid_output = 0;
  430. pid_reset[e] = true;
  431. }
  432. else {
  433. if (pid_reset[e]) {
  434. temp_iState[e] = 0.0;
  435. pid_reset[e] = false;
  436. }
  437. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  438. temp_iState[e] += pid_error[e];
  439. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  440. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  441. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  442. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  443. if (pid_output > PID_MAX) {
  444. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  445. pid_output = PID_MAX;
  446. }
  447. else if (pid_output < 0) {
  448. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  449. pid_output = 0;
  450. }
  451. }
  452. temp_dState[e] = current_temperature[e];
  453. #else
  454. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  455. #endif //PID_OPENLOOP
  456. #ifdef PID_DEBUG
  457. SERIAL_ECHO_START;
  458. SERIAL_ECHO(MSG_PID_DEBUG);
  459. SERIAL_ECHO(e);
  460. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  461. SERIAL_ECHO(current_temperature[e]);
  462. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  463. SERIAL_ECHO(pid_output);
  464. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  465. SERIAL_ECHO(pTerm[e]);
  466. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  467. SERIAL_ECHO(iTerm[e]);
  468. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  469. SERIAL_ECHOLN(dTerm[e]);
  470. #endif //PID_DEBUG
  471. #else /* PID off */
  472. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  473. #endif
  474. return pid_output;
  475. }
  476. #ifdef PIDTEMPBED
  477. float get_pid_output_bed() {
  478. float pid_output;
  479. #ifndef PID_OPENLOOP
  480. pid_error_bed = target_temperature_bed - current_temperature_bed;
  481. pTerm_bed = bedKp * pid_error_bed;
  482. temp_iState_bed += pid_error_bed;
  483. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  484. iTerm_bed = bedKi * temp_iState_bed;
  485. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  486. temp_dState_bed = current_temperature_bed;
  487. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  488. if (pid_output > MAX_BED_POWER) {
  489. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  490. pid_output = MAX_BED_POWER;
  491. }
  492. else if (pid_output < 0) {
  493. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  494. pid_output = 0;
  495. }
  496. #else
  497. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  498. #endif // PID_OPENLOOP
  499. #ifdef PID_BED_DEBUG
  500. SERIAL_ECHO_START;
  501. SERIAL_ECHO(" PID_BED_DEBUG ");
  502. SERIAL_ECHO(": Input ");
  503. SERIAL_ECHO(current_temperature_bed);
  504. SERIAL_ECHO(" Output ");
  505. SERIAL_ECHO(pid_output);
  506. SERIAL_ECHO(" pTerm ");
  507. SERIAL_ECHO(pTerm_bed);
  508. SERIAL_ECHO(" iTerm ");
  509. SERIAL_ECHO(iTerm_bed);
  510. SERIAL_ECHO(" dTerm ");
  511. SERIAL_ECHOLN(dTerm_bed);
  512. #endif //PID_BED_DEBUG
  513. return pid_output;
  514. }
  515. #endif
  516. /**
  517. * Manage heating activities for extruder hot-ends and a heated bed
  518. * - Acquire updated temperature readings
  519. * - Invoke thermal runaway protection
  520. * - Manage extruder auto-fan
  521. * - Apply filament width to the extrusion rate (may move)
  522. * - Update the heated bed PID output value
  523. */
  524. void manage_heater() {
  525. if (!temp_meas_ready) return;
  526. updateTemperaturesFromRawValues();
  527. #ifdef HEATER_0_USES_MAX6675
  528. float ct = current_temperature[0];
  529. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  530. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  531. #endif
  532. #if defined(THERMAL_PROTECTION_HOTENDS) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
  533. millis_t ms = millis();
  534. #endif
  535. // Loop through all extruders
  536. for (int e = 0; e < EXTRUDERS; e++) {
  537. #ifdef THERMAL_PROTECTION_HOTENDS
  538. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  539. #endif
  540. float pid_output = get_pid_output(e);
  541. // Check if temperature is within the correct range
  542. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  543. // Check if the temperature is failing to increase
  544. #ifdef THERMAL_PROTECTION_HOTENDS
  545. // Is it time to check this extruder's heater?
  546. if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
  547. // Has it failed to increase enough?
  548. if (degHotend(e) < watch_target_temp[e]) {
  549. // Stop!
  550. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  551. }
  552. else {
  553. // Start again if the target is still far off
  554. start_watching_heater(e);
  555. }
  556. }
  557. #endif // THERMAL_PROTECTION_HOTENDS
  558. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  559. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  560. _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
  561. }
  562. #endif
  563. } // Extruders Loop
  564. #if HAS_AUTO_FAN
  565. if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently
  566. checkExtruderAutoFans();
  567. next_auto_fan_check_ms = ms + 2500;
  568. }
  569. #endif
  570. // Control the extruder rate based on the width sensor
  571. #ifdef FILAMENT_SENSOR
  572. if (filament_sensor) {
  573. meas_shift_index = delay_index1 - meas_delay_cm;
  574. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  575. // Get the delayed info and add 100 to reconstitute to a percent of
  576. // the nominal filament diameter then square it to get an area
  577. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  578. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  579. if (vm < 0.01) vm = 0.01;
  580. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  581. }
  582. #endif //FILAMENT_SENSOR
  583. #ifndef PIDTEMPBED
  584. if (ms < next_bed_check_ms) return;
  585. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  586. #endif
  587. #if TEMP_SENSOR_BED != 0
  588. #ifdef THERMAL_PROTECTION_BED
  589. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  590. #endif
  591. #ifdef PIDTEMPBED
  592. float pid_output = get_pid_output_bed();
  593. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  594. #elif defined(BED_LIMIT_SWITCHING)
  595. // Check if temperature is within the correct band
  596. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  597. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  598. soft_pwm_bed = 0;
  599. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  600. soft_pwm_bed = MAX_BED_POWER >> 1;
  601. }
  602. else {
  603. soft_pwm_bed = 0;
  604. WRITE_HEATER_BED(LOW);
  605. }
  606. #else // BED_LIMIT_SWITCHING
  607. // Check if temperature is within the correct range
  608. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  609. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  610. }
  611. else {
  612. soft_pwm_bed = 0;
  613. WRITE_HEATER_BED(LOW);
  614. }
  615. #endif
  616. #endif //TEMP_SENSOR_BED != 0
  617. }
  618. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  619. // Derived from RepRap FiveD extruder::getTemperature()
  620. // For hot end temperature measurement.
  621. static float analog2temp(int raw, uint8_t e) {
  622. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  623. if (e > EXTRUDERS)
  624. #else
  625. if (e >= EXTRUDERS)
  626. #endif
  627. {
  628. SERIAL_ERROR_START;
  629. SERIAL_ERROR((int)e);
  630. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  631. kill(PSTR(MSG_KILLED));
  632. return 0.0;
  633. }
  634. #ifdef HEATER_0_USES_MAX6675
  635. if (e == 0) return 0.25 * raw;
  636. #endif
  637. if (heater_ttbl_map[e] != NULL) {
  638. float celsius = 0;
  639. uint8_t i;
  640. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  641. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  642. if (PGM_RD_W((*tt)[i][0]) > raw) {
  643. celsius = PGM_RD_W((*tt)[i-1][1]) +
  644. (raw - PGM_RD_W((*tt)[i-1][0])) *
  645. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  646. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  647. break;
  648. }
  649. }
  650. // Overflow: Set to last value in the table
  651. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  652. return celsius;
  653. }
  654. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  655. }
  656. // Derived from RepRap FiveD extruder::getTemperature()
  657. // For bed temperature measurement.
  658. static float analog2tempBed(int raw) {
  659. #ifdef BED_USES_THERMISTOR
  660. float celsius = 0;
  661. byte i;
  662. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  663. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  664. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  665. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  666. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  667. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  668. break;
  669. }
  670. }
  671. // Overflow: Set to last value in the table
  672. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  673. return celsius;
  674. #elif defined BED_USES_AD595
  675. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  676. #else
  677. return 0;
  678. #endif
  679. }
  680. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  681. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  682. static void updateTemperaturesFromRawValues() {
  683. #ifdef HEATER_0_USES_MAX6675
  684. current_temperature_raw[0] = read_max6675();
  685. #endif
  686. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  687. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  688. }
  689. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  690. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  691. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  692. #endif
  693. #if HAS_FILAMENT_SENSOR
  694. filament_width_meas = analog2widthFil();
  695. #endif
  696. //Reset the watchdog after we know we have a temperature measurement.
  697. watchdog_reset();
  698. CRITICAL_SECTION_START;
  699. temp_meas_ready = false;
  700. CRITICAL_SECTION_END;
  701. }
  702. #ifdef FILAMENT_SENSOR
  703. // Convert raw Filament Width to millimeters
  704. float analog2widthFil() {
  705. return current_raw_filwidth / 16383.0 * 5.0;
  706. //return current_raw_filwidth;
  707. }
  708. // Convert raw Filament Width to a ratio
  709. int widthFil_to_size_ratio() {
  710. float temp = filament_width_meas;
  711. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  712. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  713. return filament_width_nominal / temp * 100;
  714. }
  715. #endif
  716. /**
  717. * Initialize the temperature manager
  718. * The manager is implemented by periodic calls to manage_heater()
  719. */
  720. void tp_init() {
  721. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  722. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  723. MCUCR=BIT(JTD);
  724. MCUCR=BIT(JTD);
  725. #endif
  726. // Finish init of mult extruder arrays
  727. for (int e = 0; e < EXTRUDERS; e++) {
  728. // populate with the first value
  729. maxttemp[e] = maxttemp[0];
  730. #ifdef PIDTEMP
  731. temp_iState_min[e] = 0.0;
  732. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  733. #endif //PIDTEMP
  734. #ifdef PIDTEMPBED
  735. temp_iState_min_bed = 0.0;
  736. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  737. #endif //PIDTEMPBED
  738. }
  739. #if HAS_HEATER_0
  740. SET_OUTPUT(HEATER_0_PIN);
  741. #endif
  742. #if HAS_HEATER_1
  743. SET_OUTPUT(HEATER_1_PIN);
  744. #endif
  745. #if HAS_HEATER_2
  746. SET_OUTPUT(HEATER_2_PIN);
  747. #endif
  748. #if HAS_HEATER_3
  749. SET_OUTPUT(HEATER_3_PIN);
  750. #endif
  751. #if HAS_HEATER_BED
  752. SET_OUTPUT(HEATER_BED_PIN);
  753. #endif
  754. #if HAS_FAN
  755. SET_OUTPUT(FAN_PIN);
  756. #ifdef FAST_PWM_FAN
  757. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  758. #endif
  759. #ifdef FAN_SOFT_PWM
  760. soft_pwm_fan = fanSpeedSoftPwm / 2;
  761. #endif
  762. #endif
  763. #ifdef HEATER_0_USES_MAX6675
  764. #ifndef SDSUPPORT
  765. OUT_WRITE(SCK_PIN, LOW);
  766. OUT_WRITE(MOSI_PIN, HIGH);
  767. OUT_WRITE(MISO_PIN, HIGH);
  768. #else
  769. pinMode(SS_PIN, OUTPUT);
  770. digitalWrite(SS_PIN, HIGH);
  771. #endif
  772. OUT_WRITE(MAX6675_SS,HIGH);
  773. #endif //HEATER_0_USES_MAX6675
  774. #ifdef DIDR2
  775. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
  776. #else
  777. #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
  778. #endif
  779. // Set analog inputs
  780. ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
  781. DIDR0 = 0;
  782. #ifdef DIDR2
  783. DIDR2 = 0;
  784. #endif
  785. #if HAS_TEMP_0
  786. ANALOG_SELECT(TEMP_0_PIN);
  787. #endif
  788. #if HAS_TEMP_1
  789. ANALOG_SELECT(TEMP_1_PIN);
  790. #endif
  791. #if HAS_TEMP_2
  792. ANALOG_SELECT(TEMP_2_PIN);
  793. #endif
  794. #if HAS_TEMP_3
  795. ANALOG_SELECT(TEMP_3_PIN);
  796. #endif
  797. #if HAS_TEMP_BED
  798. ANALOG_SELECT(TEMP_BED_PIN);
  799. #endif
  800. #if HAS_FILAMENT_SENSOR
  801. ANALOG_SELECT(FILWIDTH_PIN);
  802. #endif
  803. // Use timer0 for temperature measurement
  804. // Interleave temperature interrupt with millies interrupt
  805. OCR0B = 128;
  806. TIMSK0 |= BIT(OCIE0B);
  807. // Wait for temperature measurement to settle
  808. delay(250);
  809. #define TEMP_MIN_ROUTINE(NR) \
  810. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  811. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  812. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  813. minttemp_raw[NR] += OVERSAMPLENR; \
  814. else \
  815. minttemp_raw[NR] -= OVERSAMPLENR; \
  816. }
  817. #define TEMP_MAX_ROUTINE(NR) \
  818. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  819. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  820. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  821. maxttemp_raw[NR] -= OVERSAMPLENR; \
  822. else \
  823. maxttemp_raw[NR] += OVERSAMPLENR; \
  824. }
  825. #ifdef HEATER_0_MINTEMP
  826. TEMP_MIN_ROUTINE(0);
  827. #endif
  828. #ifdef HEATER_0_MAXTEMP
  829. TEMP_MAX_ROUTINE(0);
  830. #endif
  831. #if EXTRUDERS > 1
  832. #ifdef HEATER_1_MINTEMP
  833. TEMP_MIN_ROUTINE(1);
  834. #endif
  835. #ifdef HEATER_1_MAXTEMP
  836. TEMP_MAX_ROUTINE(1);
  837. #endif
  838. #if EXTRUDERS > 2
  839. #ifdef HEATER_2_MINTEMP
  840. TEMP_MIN_ROUTINE(2);
  841. #endif
  842. #ifdef HEATER_2_MAXTEMP
  843. TEMP_MAX_ROUTINE(2);
  844. #endif
  845. #if EXTRUDERS > 3
  846. #ifdef HEATER_3_MINTEMP
  847. TEMP_MIN_ROUTINE(3);
  848. #endif
  849. #ifdef HEATER_3_MAXTEMP
  850. TEMP_MAX_ROUTINE(3);
  851. #endif
  852. #endif // EXTRUDERS > 3
  853. #endif // EXTRUDERS > 2
  854. #endif // EXTRUDERS > 1
  855. #ifdef BED_MINTEMP
  856. /* No bed MINTEMP error implemented?!? */ /*
  857. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  858. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  859. bed_minttemp_raw += OVERSAMPLENR;
  860. #else
  861. bed_minttemp_raw -= OVERSAMPLENR;
  862. #endif
  863. }
  864. */
  865. #endif //BED_MINTEMP
  866. #ifdef BED_MAXTEMP
  867. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  868. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  869. bed_maxttemp_raw -= OVERSAMPLENR;
  870. #else
  871. bed_maxttemp_raw += OVERSAMPLENR;
  872. #endif
  873. }
  874. #endif //BED_MAXTEMP
  875. }
  876. #ifdef THERMAL_PROTECTION_HOTENDS
  877. /**
  878. * Start Heating Sanity Check for hotends that are below
  879. * their target temperature by a configurable margin.
  880. * This is called when the temperature is set. (M104, M109)
  881. */
  882. void start_watching_heater(int e) {
  883. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  884. watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
  885. watch_heater_next_ms[e] = millis() + WATCH_TEMP_PERIOD * 1000;
  886. }
  887. else
  888. watch_heater_next_ms[e] = 0;
  889. }
  890. #endif
  891. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  892. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  893. static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
  894. /*
  895. SERIAL_ECHO_START;
  896. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  897. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
  898. SERIAL_ECHOPGM(" ; State:");
  899. SERIAL_ECHOPGM(*state);
  900. SERIAL_ECHOPGM(" ; Timer:");
  901. SERIAL_ECHOPGM(*timer);
  902. SERIAL_ECHOPGM(" ; Temperature:");
  903. SERIAL_ECHOPGM(temperature);
  904. SERIAL_ECHOPGM(" ; Target Temp:");
  905. SERIAL_ECHOPGM(target_temperature);
  906. SERIAL_EOL;
  907. */
  908. int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
  909. // If the target temperature changes, restart
  910. if (tr_target_temperature[heater_index] != target_temperature)
  911. *state = TRReset;
  912. switch (*state) {
  913. case TRReset:
  914. *timer = 0;
  915. *state = TRInactive;
  916. break;
  917. // Inactive state waits for a target temperature to be set
  918. case TRInactive:
  919. if (target_temperature > 0) {
  920. tr_target_temperature[heater_index] = target_temperature;
  921. *state = TRFirstHeating;
  922. }
  923. break;
  924. // When first heating, wait for the temperature to be reached then go to Stable state
  925. case TRFirstHeating:
  926. if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
  927. break;
  928. // While the temperature is stable watch for a bad temperature
  929. case TRStable:
  930. // If the temperature is over the target (-hysteresis) restart the timer
  931. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
  932. *timer = millis();
  933. // If the timer goes too long without a reset, trigger shutdown
  934. else if (millis() > *timer + period_seconds * 1000UL)
  935. *state = TRRunaway;
  936. break;
  937. case TRRunaway:
  938. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  939. }
  940. }
  941. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  942. void disable_all_heaters() {
  943. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  944. setTargetBed(0);
  945. #define DISABLE_HEATER(NR) { \
  946. target_temperature[NR] = 0; \
  947. soft_pwm[NR] = 0; \
  948. WRITE_HEATER_ ## NR (LOW); \
  949. }
  950. #if HAS_TEMP_0
  951. target_temperature[0] = 0;
  952. soft_pwm[0] = 0;
  953. WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
  954. #endif
  955. #if EXTRUDERS > 1 && HAS_TEMP_1
  956. DISABLE_HEATER(1);
  957. #endif
  958. #if EXTRUDERS > 2 && HAS_TEMP_2
  959. DISABLE_HEATER(2);
  960. #endif
  961. #if EXTRUDERS > 3 && HAS_TEMP_3
  962. DISABLE_HEATER(3);
  963. #endif
  964. #if HAS_TEMP_BED
  965. target_temperature_bed = 0;
  966. soft_pwm_bed = 0;
  967. #if HAS_HEATER_BED
  968. WRITE_HEATER_BED(LOW);
  969. #endif
  970. #endif
  971. }
  972. #ifdef HEATER_0_USES_MAX6675
  973. #define MAX6675_HEAT_INTERVAL 250u
  974. static millis_t next_max6675_ms = 0;
  975. int max6675_temp = 2000;
  976. static int read_max6675() {
  977. millis_t ms = millis();
  978. if (ms < next_max6675_ms)
  979. return max6675_temp;
  980. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  981. max6675_temp = 0;
  982. #ifdef PRR
  983. PRR &= ~BIT(PRSPI);
  984. #elif defined(PRR0)
  985. PRR0 &= ~BIT(PRSPI);
  986. #endif
  987. SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
  988. // enable TT_MAX6675
  989. WRITE(MAX6675_SS, 0);
  990. // ensure 100ns delay - a bit extra is fine
  991. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  992. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  993. // read MSB
  994. SPDR = 0;
  995. for (;(SPSR & BIT(SPIF)) == 0;);
  996. max6675_temp = SPDR;
  997. max6675_temp <<= 8;
  998. // read LSB
  999. SPDR = 0;
  1000. for (;(SPSR & BIT(SPIF)) == 0;);
  1001. max6675_temp |= SPDR;
  1002. // disable TT_MAX6675
  1003. WRITE(MAX6675_SS, 1);
  1004. if (max6675_temp & 4) {
  1005. // thermocouple open
  1006. max6675_temp = 4000;
  1007. }
  1008. else {
  1009. max6675_temp = max6675_temp >> 3;
  1010. }
  1011. return max6675_temp;
  1012. }
  1013. #endif //HEATER_0_USES_MAX6675
  1014. /**
  1015. * Stages in the ISR loop
  1016. */
  1017. enum TempState {
  1018. PrepareTemp_0,
  1019. MeasureTemp_0,
  1020. PrepareTemp_BED,
  1021. MeasureTemp_BED,
  1022. PrepareTemp_1,
  1023. MeasureTemp_1,
  1024. PrepareTemp_2,
  1025. MeasureTemp_2,
  1026. PrepareTemp_3,
  1027. MeasureTemp_3,
  1028. Prepare_FILWIDTH,
  1029. Measure_FILWIDTH,
  1030. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1031. };
  1032. static unsigned long raw_temp_value[4] = { 0 };
  1033. static unsigned long raw_temp_bed_value = 0;
  1034. static void set_current_temp_raw() {
  1035. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1036. current_temperature_raw[0] = raw_temp_value[0];
  1037. #endif
  1038. #if HAS_TEMP_1
  1039. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1040. redundant_temperature_raw = raw_temp_value[1];
  1041. #else
  1042. current_temperature_raw[1] = raw_temp_value[1];
  1043. #endif
  1044. #if HAS_TEMP_2
  1045. current_temperature_raw[2] = raw_temp_value[2];
  1046. #if HAS_TEMP_3
  1047. current_temperature_raw[3] = raw_temp_value[3];
  1048. #endif
  1049. #endif
  1050. #endif
  1051. current_temperature_bed_raw = raw_temp_bed_value;
  1052. temp_meas_ready = true;
  1053. }
  1054. /**
  1055. * Timer 0 is shared with millies
  1056. * - Manage PWM to all the heaters and fan
  1057. * - Update the raw temperature values
  1058. * - Check new temperature values for MIN/MAX errors
  1059. * - Step the babysteps value for each axis towards 0
  1060. */
  1061. ISR(TIMER0_COMPB_vect) {
  1062. static unsigned char temp_count = 0;
  1063. static TempState temp_state = StartupDelay;
  1064. static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
  1065. // Static members for each heater
  1066. #ifdef SLOW_PWM_HEATERS
  1067. static unsigned char slow_pwm_count = 0;
  1068. #define ISR_STATICS(n) \
  1069. static unsigned char soft_pwm_ ## n; \
  1070. static unsigned char state_heater_ ## n = 0; \
  1071. static unsigned char state_timer_heater_ ## n = 0
  1072. #else
  1073. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1074. #endif
  1075. // Statics per heater
  1076. ISR_STATICS(0);
  1077. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1078. ISR_STATICS(1);
  1079. #if EXTRUDERS > 2
  1080. ISR_STATICS(2);
  1081. #if EXTRUDERS > 3
  1082. ISR_STATICS(3);
  1083. #endif
  1084. #endif
  1085. #endif
  1086. #if HAS_HEATER_BED
  1087. ISR_STATICS(BED);
  1088. #endif
  1089. #if HAS_FILAMENT_SENSOR
  1090. static unsigned long raw_filwidth_value = 0;
  1091. #endif
  1092. #ifndef SLOW_PWM_HEATERS
  1093. /**
  1094. * standard PWM modulation
  1095. */
  1096. if (pwm_count == 0) {
  1097. soft_pwm_0 = soft_pwm[0];
  1098. if (soft_pwm_0 > 0) {
  1099. WRITE_HEATER_0(1);
  1100. }
  1101. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1102. #if EXTRUDERS > 1
  1103. soft_pwm_1 = soft_pwm[1];
  1104. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1105. #if EXTRUDERS > 2
  1106. soft_pwm_2 = soft_pwm[2];
  1107. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1108. #if EXTRUDERS > 3
  1109. soft_pwm_3 = soft_pwm[3];
  1110. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1111. #endif
  1112. #endif
  1113. #endif
  1114. #if HAS_HEATER_BED
  1115. soft_pwm_BED = soft_pwm_bed;
  1116. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1117. #endif
  1118. #ifdef FAN_SOFT_PWM
  1119. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1120. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1121. #endif
  1122. }
  1123. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1124. #if EXTRUDERS > 1
  1125. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1126. #if EXTRUDERS > 2
  1127. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1128. #if EXTRUDERS > 3
  1129. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1130. #endif
  1131. #endif
  1132. #endif
  1133. #if HAS_HEATER_BED
  1134. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1135. #endif
  1136. #ifdef FAN_SOFT_PWM
  1137. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1138. #endif
  1139. pwm_count += BIT(SOFT_PWM_SCALE);
  1140. pwm_count &= 0x7f;
  1141. #else // SLOW_PWM_HEATERS
  1142. /*
  1143. * SLOW PWM HEATERS
  1144. *
  1145. * for heaters drived by relay
  1146. */
  1147. #ifndef MIN_STATE_TIME
  1148. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1149. #endif
  1150. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1151. #define _SLOW_PWM_ROUTINE(NR, src) \
  1152. soft_pwm_ ## NR = src; \
  1153. if (soft_pwm_ ## NR > 0) { \
  1154. if (state_timer_heater_ ## NR == 0) { \
  1155. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1156. state_heater_ ## NR = 1; \
  1157. WRITE_HEATER_ ## NR(1); \
  1158. } \
  1159. } \
  1160. else { \
  1161. if (state_timer_heater_ ## NR == 0) { \
  1162. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1163. state_heater_ ## NR = 0; \
  1164. WRITE_HEATER_ ## NR(0); \
  1165. } \
  1166. }
  1167. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1168. #define PWM_OFF_ROUTINE(NR) \
  1169. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1170. if (state_timer_heater_ ## NR == 0) { \
  1171. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1172. state_heater_ ## NR = 0; \
  1173. WRITE_HEATER_ ## NR (0); \
  1174. } \
  1175. }
  1176. if (slow_pwm_count == 0) {
  1177. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1178. #if EXTRUDERS > 1
  1179. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1180. #if EXTRUDERS > 2
  1181. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1182. #if EXTRUDERS > 3
  1183. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1184. #endif
  1185. #endif
  1186. #endif
  1187. #if HAS_HEATER_BED
  1188. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1189. #endif
  1190. } // slow_pwm_count == 0
  1191. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1192. #if EXTRUDERS > 1
  1193. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1194. #if EXTRUDERS > 2
  1195. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1196. #if EXTRUDERS > 3
  1197. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1198. #endif
  1199. #endif
  1200. #endif
  1201. #if HAS_HEATER_BED
  1202. PWM_OFF_ROUTINE(BED); // BED
  1203. #endif
  1204. #ifdef FAN_SOFT_PWM
  1205. if (pwm_count == 0) {
  1206. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1207. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1208. }
  1209. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1210. #endif //FAN_SOFT_PWM
  1211. pwm_count += BIT(SOFT_PWM_SCALE);
  1212. pwm_count &= 0x7f;
  1213. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1214. if ((pwm_count % 64) == 0) {
  1215. slow_pwm_count++;
  1216. slow_pwm_count &= 0x7f;
  1217. // EXTRUDER 0
  1218. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1219. #if EXTRUDERS > 1 // EXTRUDER 1
  1220. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1221. #if EXTRUDERS > 2 // EXTRUDER 2
  1222. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1223. #if EXTRUDERS > 3 // EXTRUDER 3
  1224. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1225. #endif
  1226. #endif
  1227. #endif
  1228. #if HAS_HEATER_BED
  1229. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1230. #endif
  1231. } // (pwm_count % 64) == 0
  1232. #endif // SLOW_PWM_HEATERS
  1233. #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
  1234. #ifdef MUX5
  1235. #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1236. #else
  1237. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1238. #endif
  1239. // Prepare or measure a sensor, each one every 12th frame
  1240. switch(temp_state) {
  1241. case PrepareTemp_0:
  1242. #if HAS_TEMP_0
  1243. START_ADC(TEMP_0_PIN);
  1244. #endif
  1245. lcd_buttons_update();
  1246. temp_state = MeasureTemp_0;
  1247. break;
  1248. case MeasureTemp_0:
  1249. #if HAS_TEMP_0
  1250. raw_temp_value[0] += ADC;
  1251. #endif
  1252. temp_state = PrepareTemp_BED;
  1253. break;
  1254. case PrepareTemp_BED:
  1255. #if HAS_TEMP_BED
  1256. START_ADC(TEMP_BED_PIN);
  1257. #endif
  1258. lcd_buttons_update();
  1259. temp_state = MeasureTemp_BED;
  1260. break;
  1261. case MeasureTemp_BED:
  1262. #if HAS_TEMP_BED
  1263. raw_temp_bed_value += ADC;
  1264. #endif
  1265. temp_state = PrepareTemp_1;
  1266. break;
  1267. case PrepareTemp_1:
  1268. #if HAS_TEMP_1
  1269. START_ADC(TEMP_1_PIN);
  1270. #endif
  1271. lcd_buttons_update();
  1272. temp_state = MeasureTemp_1;
  1273. break;
  1274. case MeasureTemp_1:
  1275. #if HAS_TEMP_1
  1276. raw_temp_value[1] += ADC;
  1277. #endif
  1278. temp_state = PrepareTemp_2;
  1279. break;
  1280. case PrepareTemp_2:
  1281. #if HAS_TEMP_2
  1282. START_ADC(TEMP_2_PIN);
  1283. #endif
  1284. lcd_buttons_update();
  1285. temp_state = MeasureTemp_2;
  1286. break;
  1287. case MeasureTemp_2:
  1288. #if HAS_TEMP_2
  1289. raw_temp_value[2] += ADC;
  1290. #endif
  1291. temp_state = PrepareTemp_3;
  1292. break;
  1293. case PrepareTemp_3:
  1294. #if HAS_TEMP_3
  1295. START_ADC(TEMP_3_PIN);
  1296. #endif
  1297. lcd_buttons_update();
  1298. temp_state = MeasureTemp_3;
  1299. break;
  1300. case MeasureTemp_3:
  1301. #if HAS_TEMP_3
  1302. raw_temp_value[3] += ADC;
  1303. #endif
  1304. temp_state = Prepare_FILWIDTH;
  1305. break;
  1306. case Prepare_FILWIDTH:
  1307. #if HAS_FILAMENT_SENSOR
  1308. START_ADC(FILWIDTH_PIN);
  1309. #endif
  1310. lcd_buttons_update();
  1311. temp_state = Measure_FILWIDTH;
  1312. break;
  1313. case Measure_FILWIDTH:
  1314. #if HAS_FILAMENT_SENSOR
  1315. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1316. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1317. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1318. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1319. }
  1320. #endif
  1321. temp_state = PrepareTemp_0;
  1322. temp_count++;
  1323. break;
  1324. case StartupDelay:
  1325. temp_state = PrepareTemp_0;
  1326. break;
  1327. // default:
  1328. // SERIAL_ERROR_START;
  1329. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1330. // break;
  1331. } // switch(temp_state)
  1332. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1333. // Update the raw values if they've been read. Else we could be updating them during reading.
  1334. if (!temp_meas_ready) set_current_temp_raw();
  1335. // Filament Sensor - can be read any time since IIR filtering is used
  1336. #if HAS_FILAMENT_SENSOR
  1337. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1338. #endif
  1339. temp_count = 0;
  1340. for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
  1341. raw_temp_bed_value = 0;
  1342. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1343. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1344. #define GE0 <=
  1345. #else
  1346. #define GE0 >=
  1347. #endif
  1348. if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
  1349. if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
  1350. #endif
  1351. #if HAS_TEMP_1
  1352. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1353. #define GE1 <=
  1354. #else
  1355. #define GE1 >=
  1356. #endif
  1357. if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
  1358. if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
  1359. #endif // TEMP_SENSOR_1
  1360. #if HAS_TEMP_2
  1361. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1362. #define GE2 <=
  1363. #else
  1364. #define GE2 >=
  1365. #endif
  1366. if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
  1367. if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
  1368. #endif // TEMP_SENSOR_2
  1369. #if HAS_TEMP_3
  1370. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1371. #define GE3 <=
  1372. #else
  1373. #define GE3 >=
  1374. #endif
  1375. if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
  1376. if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
  1377. #endif // TEMP_SENSOR_3
  1378. #if HAS_TEMP_BED
  1379. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1380. #define GEBED <=
  1381. #else
  1382. #define GEBED >=
  1383. #endif
  1384. if (current_temperature_bed_raw GEBED bed_maxttemp_raw) bed_max_temp_error();
  1385. #endif
  1386. } // temp_count >= OVERSAMPLENR
  1387. #ifdef BABYSTEPPING
  1388. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
  1389. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1390. if (curTodo > 0) {
  1391. babystep(axis,/*fwd*/true);
  1392. babystepsTodo[axis]--; //fewer to do next time
  1393. }
  1394. else if (curTodo < 0) {
  1395. babystep(axis,/*fwd*/false);
  1396. babystepsTodo[axis]++; //fewer to do next time
  1397. }
  1398. }
  1399. #endif //BABYSTEPPING
  1400. }
  1401. #ifdef PIDTEMP
  1402. // Apply the scale factors to the PID values
  1403. float scalePID_i(float i) { return i * PID_dT; }
  1404. float unscalePID_i(float i) { return i / PID_dT; }
  1405. float scalePID_d(float d) { return d / PID_dT; }
  1406. float unscalePID_d(float d) { return d * PID_dT; }
  1407. #endif //PIDTEMP