My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 38KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::extruder_advance_k = LIN_ADVANCE_K,
  83. Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[E_STEPPERS],
  85. Stepper::current_adv_steps[E_STEPPERS];
  86. #else
  87. long Stepper::e_steps[E_STEPPERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. #if ENABLED(MIXING_EXTRUDER)
  98. long Stepper::counter_M[MIXING_STEPPERS];
  99. #endif
  100. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  101. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  102. unsigned short Stepper::OCR1A_nominal;
  103. volatile long Stepper::endstops_trigsteps[XYZ];
  104. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  105. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  106. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  107. #elif ENABLED(DUAL_X_CARRIAGE)
  108. #define X_APPLY_DIR(v,ALWAYS) \
  109. if (extruder_duplication_enabled || ALWAYS) { \
  110. X_DIR_WRITE(v); \
  111. X2_DIR_WRITE(v); \
  112. } \
  113. else { \
  114. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  115. }
  116. #define X_APPLY_STEP(v,ALWAYS) \
  117. if (extruder_duplication_enabled || ALWAYS) { \
  118. X_STEP_WRITE(v); \
  119. X2_STEP_WRITE(v); \
  120. } \
  121. else { \
  122. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  123. }
  124. #else
  125. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  126. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  127. #endif
  128. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  129. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  130. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  131. #else
  132. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  133. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  134. #endif
  135. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  136. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  137. #if ENABLED(Z_DUAL_ENDSTOPS)
  138. #define Z_APPLY_STEP(v,Q) \
  139. if (performing_homing) { \
  140. if (Z_HOME_DIR > 0) {\
  141. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  142. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  143. } \
  144. else { \
  145. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  146. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  147. } \
  148. } \
  149. else { \
  150. Z_STEP_WRITE(v); \
  151. Z2_STEP_WRITE(v); \
  152. }
  153. #else
  154. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  155. #endif
  156. #else
  157. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  158. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  159. #endif
  160. #if DISABLED(MIXING_EXTRUDER)
  161. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  162. #endif
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. /**
  222. * __________________________
  223. * /| |\ _________________ ^
  224. * / | | \ /| |\ |
  225. * / | | \ / | | \ s
  226. * / | | | | | \ p
  227. * / | | | | | \ e
  228. * +-----+------------------------+---+--+---------------+----+ e
  229. * | BLOCK 1 | BLOCK 2 | d
  230. *
  231. * time ----->
  232. *
  233. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  234. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  235. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  236. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  237. */
  238. void Stepper::wake_up() {
  239. // TCNT1 = 0;
  240. ENABLE_STEPPER_DRIVER_INTERRUPT();
  241. }
  242. /**
  243. * Set the stepper direction of each axis
  244. *
  245. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  246. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  247. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  248. */
  249. void Stepper::set_directions() {
  250. #define SET_STEP_DIR(AXIS) \
  251. if (motor_direction(AXIS ##_AXIS)) { \
  252. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  253. count_direction[AXIS ##_AXIS] = -1; \
  254. } \
  255. else { \
  256. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  257. count_direction[AXIS ##_AXIS] = 1; \
  258. }
  259. #if HAS_X_DIR
  260. SET_STEP_DIR(X); // A
  261. #endif
  262. #if HAS_Y_DIR
  263. SET_STEP_DIR(Y); // B
  264. #endif
  265. #if HAS_Z_DIR
  266. SET_STEP_DIR(Z); // C
  267. #endif
  268. #if DISABLED(ADVANCE)
  269. if (motor_direction(E_AXIS)) {
  270. REV_E_DIR();
  271. count_direction[E_AXIS] = -1;
  272. }
  273. else {
  274. NORM_E_DIR();
  275. count_direction[E_AXIS] = 1;
  276. }
  277. #endif //!ADVANCE
  278. }
  279. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  280. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  281. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  282. void Stepper::isr() {
  283. if (cleaning_buffer_counter) {
  284. current_block = NULL;
  285. planner.discard_current_block();
  286. #ifdef SD_FINISHED_RELEASECOMMAND
  287. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  288. #endif
  289. cleaning_buffer_counter--;
  290. OCR1A = 200;
  291. return;
  292. }
  293. // If there is no current block, attempt to pop one from the buffer
  294. if (!current_block) {
  295. // Anything in the buffer?
  296. current_block = planner.get_current_block();
  297. if (current_block) {
  298. current_block->busy = true;
  299. trapezoid_generator_reset();
  300. // Initialize Bresenham counters to 1/2 the ceiling
  301. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  302. #if ENABLED(MIXING_EXTRUDER)
  303. MIXING_STEPPERS_LOOP(i)
  304. counter_M[i] = -(current_block->mix_event_count[i] >> 1);
  305. #endif
  306. step_events_completed = 0;
  307. #if ENABLED(Z_LATE_ENABLE)
  308. if (current_block->steps[Z_AXIS] > 0) {
  309. enable_z();
  310. OCR1A = 2000; //1ms wait
  311. return;
  312. }
  313. #endif
  314. // #if ENABLED(ADVANCE)
  315. // e_steps[TOOL_E_INDEX] = 0;
  316. // #endif
  317. }
  318. else {
  319. OCR1A = 2000; // 1kHz.
  320. }
  321. }
  322. if (current_block) {
  323. // Update endstops state, if enabled
  324. if (endstops.enabled
  325. #if HAS_BED_PROBE
  326. || endstops.z_probe_enabled
  327. #endif
  328. ) endstops.update();
  329. // Take multiple steps per interrupt (For high speed moves)
  330. bool all_steps_done = false;
  331. for (int8_t i = 0; i < step_loops; i++) {
  332. #ifndef USBCON
  333. customizedSerial.checkRx(); // Check for serial chars.
  334. #endif
  335. #if ENABLED(LIN_ADVANCE)
  336. counter_E += current_block->steps[E_AXIS];
  337. if (counter_E > 0) {
  338. counter_E -= current_block->step_event_count;
  339. #if DISABLED(MIXING_EXTRUDER)
  340. // Don't step E here for mixing extruder
  341. count_position[E_AXIS] += count_direction[E_AXIS];
  342. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  343. #endif
  344. }
  345. #if ENABLED(MIXING_EXTRUDER)
  346. // Step mixing steppers proportionally
  347. long dir = motor_direction(E_AXIS) ? -1 : 1;
  348. MIXING_STEPPERS_LOOP(j) {
  349. counter_m[j] += current_block->steps[E_AXIS];
  350. if (counter_m[j] > 0) {
  351. counter_m[j] -= current_block->mix_event_count[j];
  352. e_steps[j] += dir;
  353. }
  354. }
  355. #endif
  356. if (current_block->use_advance_lead) {
  357. int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
  358. #if ENABLED(MIXING_EXTRUDER)
  359. // Mixing extruders apply advance lead proportionally
  360. MIXING_STEPPERS_LOOP(j) {
  361. int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  362. e_steps[j] += steps;
  363. current_adv_steps[j] += steps;
  364. }
  365. #else
  366. // For most extruders, advance the single E stepper
  367. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  368. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  369. #endif
  370. }
  371. #elif ENABLED(ADVANCE)
  372. // Always count the unified E axis
  373. counter_E += current_block->steps[E_AXIS];
  374. if (counter_E > 0) {
  375. counter_E -= current_block->step_event_count;
  376. #if DISABLED(MIXING_EXTRUDER)
  377. // Don't step E here for mixing extruder
  378. e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1;
  379. #endif
  380. }
  381. #if ENABLED(MIXING_EXTRUDER)
  382. // Step mixing steppers proportionally
  383. long dir = motor_direction(E_AXIS) ? -1 : 1;
  384. MIXING_STEPPERS_LOOP(j) {
  385. counter_m[j] += current_block->steps[E_AXIS];
  386. if (counter_m[j] > 0) {
  387. counter_m[j] -= current_block->mix_event_count[j];
  388. e_steps[j] += dir;
  389. }
  390. }
  391. #endif // MIXING_EXTRUDER
  392. #endif // ADVANCE or LIN_ADVANCE
  393. #define _COUNTER(AXIS) counter_## AXIS
  394. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  395. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  396. // Advance the Bresenham counter; start a pulse if the axis needs a step
  397. #define PULSE_START(AXIS) \
  398. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  399. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  400. // Stop an active pulse, reset the Bresenham counter, update the position
  401. #define PULSE_STOP(AXIS) \
  402. if (_COUNTER(AXIS) > 0) { \
  403. _COUNTER(AXIS) -= current_block->step_event_count; \
  404. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  405. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  406. }
  407. // If a minimum pulse time was specified get the CPU clock
  408. #if MINIMUM_STEPPER_PULSE > 0
  409. static uint32_t pulse_start;
  410. pulse_start = TCNT0;
  411. #endif
  412. #if HAS_X_STEP
  413. PULSE_START(X);
  414. #endif
  415. #if HAS_Y_STEP
  416. PULSE_START(Y);
  417. #endif
  418. #if HAS_Z_STEP
  419. PULSE_START(Z);
  420. #endif
  421. // For non-advance use linear interpolation for E also
  422. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  423. #if ENABLED(MIXING_EXTRUDER)
  424. // Keep updating the single E axis
  425. counter_E += current_block->steps[E_AXIS];
  426. // Tick the counters used for this mix
  427. MIXING_STEPPERS_LOOP(j) {
  428. // Step mixing steppers (proportionally)
  429. counter_M[j] += current_block->steps[E_AXIS];
  430. // Step when the counter goes over zero
  431. if (counter_M[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  432. }
  433. #else // !MIXING_EXTRUDER
  434. PULSE_START(E);
  435. #endif
  436. #endif // !ADVANCE && !LIN_ADVANCE
  437. // For a minimum pulse time wait before stopping pulses
  438. #if MINIMUM_STEPPER_PULSE > 0
  439. #define CYCLES_EATEN_BY_CODE 10
  440. while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ }
  441. #endif
  442. #if HAS_X_STEP
  443. PULSE_STOP(X);
  444. #endif
  445. #if HAS_Y_STEP
  446. PULSE_STOP(Y);
  447. #endif
  448. #if HAS_Z_STEP
  449. PULSE_STOP(Z);
  450. #endif
  451. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  452. #if ENABLED(MIXING_EXTRUDER)
  453. // Always step the single E axis
  454. if (counter_E > 0) {
  455. counter_E -= current_block->step_event_count;
  456. count_position[E_AXIS] += count_direction[E_AXIS];
  457. }
  458. MIXING_STEPPERS_LOOP(j) {
  459. if (counter_M[j] > 0) {
  460. counter_M[j] -= current_block->mix_event_count[j];
  461. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  462. }
  463. }
  464. #else // !MIXING_EXTRUDER
  465. PULSE_STOP(E);
  466. #endif
  467. #endif // !ADVANCE && !LIN_ADVANCE
  468. if (++step_events_completed >= current_block->step_event_count) {
  469. all_steps_done = true;
  470. break;
  471. }
  472. }
  473. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  474. // If we have esteps to execute, fire the next advance_isr "now"
  475. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  476. #endif
  477. // Calculate new timer value
  478. uint16_t timer, step_rate;
  479. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  480. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  481. acc_step_rate += current_block->initial_rate;
  482. // upper limit
  483. NOMORE(acc_step_rate, current_block->nominal_rate);
  484. // step_rate to timer interval
  485. timer = calc_timer(acc_step_rate);
  486. OCR1A = timer;
  487. acceleration_time += timer;
  488. #if ENABLED(LIN_ADVANCE)
  489. if (current_block->use_advance_lead)
  490. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  491. if (current_block->use_advance_lead) {
  492. #if ENABLED(MIXING_EXTRUDER)
  493. MIXING_STEPPERS_LOOP(j)
  494. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  495. #else
  496. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  497. #endif
  498. }
  499. #elif ENABLED(ADVANCE)
  500. advance += advance_rate * step_loops;
  501. //NOLESS(advance, current_block->advance);
  502. long advance_whole = advance >> 8,
  503. advance_factor = advance_whole - old_advance;
  504. // Do E steps + advance steps
  505. #if ENABLED(MIXING_EXTRUDER)
  506. // ...for mixing steppers proportionally
  507. MIXING_STEPPERS_LOOP(j)
  508. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  509. #else
  510. // ...for the active extruder
  511. e_steps[TOOL_E_INDEX] += advance_factor;
  512. #endif
  513. old_advance = advance_whole;
  514. #endif // ADVANCE or LIN_ADVANCE
  515. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  516. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  517. #endif
  518. }
  519. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  520. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  521. if (step_rate < acc_step_rate) { // Still decelerating?
  522. step_rate = acc_step_rate - step_rate;
  523. NOLESS(step_rate, current_block->final_rate);
  524. }
  525. else
  526. step_rate = current_block->final_rate;
  527. // step_rate to timer interval
  528. timer = calc_timer(step_rate);
  529. OCR1A = timer;
  530. deceleration_time += timer;
  531. #if ENABLED(LIN_ADVANCE)
  532. if (current_block->use_advance_lead) {
  533. #if ENABLED(MIXING_EXTRUDER)
  534. MIXING_STEPPERS_LOOP(j)
  535. current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  536. #else
  537. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
  538. #endif
  539. }
  540. #elif ENABLED(ADVANCE)
  541. advance -= advance_rate * step_loops;
  542. NOLESS(advance, final_advance);
  543. // Do E steps + advance steps
  544. long advance_whole = advance >> 8,
  545. advance_factor = advance_whole - old_advance;
  546. #if ENABLED(MIXING_EXTRUDER)
  547. MIXING_STEPPERS_LOOP(j)
  548. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  549. #else
  550. e_steps[TOOL_E_INDEX] += advance_factor;
  551. #endif
  552. old_advance = advance_whole;
  553. #endif // ADVANCE or LIN_ADVANCE
  554. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  555. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  556. #endif
  557. }
  558. else {
  559. #if ENABLED(LIN_ADVANCE)
  560. if (current_block->use_advance_lead)
  561. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  562. eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  563. #endif
  564. OCR1A = OCR1A_nominal;
  565. // ensure we're running at the correct step rate, even if we just came off an acceleration
  566. step_loops = step_loops_nominal;
  567. }
  568. NOLESS(OCR1A, TCNT1 + 16);
  569. // If current block is finished, reset pointer
  570. if (all_steps_done) {
  571. current_block = NULL;
  572. planner.discard_current_block();
  573. }
  574. }
  575. }
  576. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  577. // Timer interrupt for E. e_steps is set in the main routine;
  578. // Timer 0 is shared with millies
  579. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  580. void Stepper::advance_isr() {
  581. old_OCR0A += eISR_Rate;
  582. OCR0A = old_OCR0A;
  583. #define STEP_E_ONCE(INDEX) \
  584. if (e_steps[INDEX] != 0) { \
  585. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  586. if (e_steps[INDEX] < 0) { \
  587. E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
  588. e_steps[INDEX]++; \
  589. } \
  590. else { \
  591. E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
  592. e_steps[INDEX]--; \
  593. } \
  594. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  595. }
  596. // Step all E steppers that have steps
  597. for (uint8_t i = 0; i < step_loops; i++) {
  598. STEP_E_ONCE(0);
  599. #if E_STEPPERS > 1
  600. STEP_E_ONCE(1);
  601. #if E_STEPPERS > 2
  602. STEP_E_ONCE(2);
  603. #if E_STEPPERS > 3
  604. STEP_E_ONCE(3);
  605. #endif
  606. #endif
  607. #endif
  608. }
  609. }
  610. #endif // ADVANCE or LIN_ADVANCE
  611. void Stepper::init() {
  612. digipot_init(); //Initialize Digipot Motor Current
  613. microstep_init(); //Initialize Microstepping Pins
  614. // initialise TMC Steppers
  615. #if ENABLED(HAVE_TMCDRIVER)
  616. tmc_init();
  617. #endif
  618. // initialise L6470 Steppers
  619. #if ENABLED(HAVE_L6470DRIVER)
  620. L6470_init();
  621. #endif
  622. // Initialize Dir Pins
  623. #if HAS_X_DIR
  624. X_DIR_INIT;
  625. #endif
  626. #if HAS_X2_DIR
  627. X2_DIR_INIT;
  628. #endif
  629. #if HAS_Y_DIR
  630. Y_DIR_INIT;
  631. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  632. Y2_DIR_INIT;
  633. #endif
  634. #endif
  635. #if HAS_Z_DIR
  636. Z_DIR_INIT;
  637. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  638. Z2_DIR_INIT;
  639. #endif
  640. #endif
  641. #if HAS_E0_DIR
  642. E0_DIR_INIT;
  643. #endif
  644. #if HAS_E1_DIR
  645. E1_DIR_INIT;
  646. #endif
  647. #if HAS_E2_DIR
  648. E2_DIR_INIT;
  649. #endif
  650. #if HAS_E3_DIR
  651. E3_DIR_INIT;
  652. #endif
  653. //Initialize Enable Pins - steppers default to disabled.
  654. #if HAS_X_ENABLE
  655. X_ENABLE_INIT;
  656. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  657. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  658. X2_ENABLE_INIT;
  659. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  660. #endif
  661. #endif
  662. #if HAS_Y_ENABLE
  663. Y_ENABLE_INIT;
  664. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  665. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  666. Y2_ENABLE_INIT;
  667. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  668. #endif
  669. #endif
  670. #if HAS_Z_ENABLE
  671. Z_ENABLE_INIT;
  672. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  673. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  674. Z2_ENABLE_INIT;
  675. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  676. #endif
  677. #endif
  678. #if HAS_E0_ENABLE
  679. E0_ENABLE_INIT;
  680. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  681. #endif
  682. #if HAS_E1_ENABLE
  683. E1_ENABLE_INIT;
  684. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  685. #endif
  686. #if HAS_E2_ENABLE
  687. E2_ENABLE_INIT;
  688. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  689. #endif
  690. #if HAS_E3_ENABLE
  691. E3_ENABLE_INIT;
  692. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  693. #endif
  694. //
  695. // Init endstops and pullups here
  696. //
  697. endstops.init();
  698. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  699. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  700. #define _DISABLE(axis) disable_## axis()
  701. #define AXIS_INIT(axis, AXIS, PIN) \
  702. _STEP_INIT(AXIS); \
  703. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  704. _DISABLE(axis)
  705. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  706. // Initialize Step Pins
  707. #if HAS_X_STEP
  708. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  709. X2_STEP_INIT;
  710. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  711. #endif
  712. AXIS_INIT(x, X, X);
  713. #endif
  714. #if HAS_Y_STEP
  715. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  716. Y2_STEP_INIT;
  717. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  718. #endif
  719. AXIS_INIT(y, Y, Y);
  720. #endif
  721. #if HAS_Z_STEP
  722. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  723. Z2_STEP_INIT;
  724. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  725. #endif
  726. AXIS_INIT(z, Z, Z);
  727. #endif
  728. #if HAS_E0_STEP
  729. E_AXIS_INIT(0);
  730. #endif
  731. #if HAS_E1_STEP
  732. E_AXIS_INIT(1);
  733. #endif
  734. #if HAS_E2_STEP
  735. E_AXIS_INIT(2);
  736. #endif
  737. #if HAS_E3_STEP
  738. E_AXIS_INIT(3);
  739. #endif
  740. // waveform generation = 0100 = CTC
  741. CBI(TCCR1B, WGM13);
  742. SBI(TCCR1B, WGM12);
  743. CBI(TCCR1A, WGM11);
  744. CBI(TCCR1A, WGM10);
  745. // output mode = 00 (disconnected)
  746. TCCR1A &= ~(3 << COM1A0);
  747. TCCR1A &= ~(3 << COM1B0);
  748. // Set the timer pre-scaler
  749. // Generally we use a divider of 8, resulting in a 2MHz timer
  750. // frequency on a 16MHz MCU. If you are going to change this, be
  751. // sure to regenerate speed_lookuptable.h with
  752. // create_speed_lookuptable.py
  753. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  754. OCR1A = 0x4000;
  755. TCNT1 = 0;
  756. ENABLE_STEPPER_DRIVER_INTERRUPT();
  757. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  758. for (int i = 0; i < E_STEPPERS; i++) {
  759. e_steps[i] = 0;
  760. #if ENABLED(LIN_ADVANCE)
  761. current_adv_steps[i] = 0;
  762. #endif
  763. }
  764. #if defined(TCCR0A) && defined(WGM01)
  765. CBI(TCCR0A, WGM01);
  766. CBI(TCCR0A, WGM00);
  767. #endif
  768. SBI(TIMSK0, OCIE0A);
  769. #endif // ADVANCE or LIN_ADVANCE
  770. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  771. sei();
  772. set_directions(); // Init directions to last_direction_bits = 0
  773. }
  774. /**
  775. * Block until all buffered steps are executed
  776. */
  777. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  778. /**
  779. * Set the stepper positions directly in steps
  780. *
  781. * The input is based on the typical per-axis XYZ steps.
  782. * For CORE machines XYZ needs to be translated to ABC.
  783. *
  784. * This allows get_axis_position_mm to correctly
  785. * derive the current XYZ position later on.
  786. */
  787. void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
  788. CRITICAL_SECTION_START;
  789. #if ENABLED(COREXY)
  790. // corexy positioning
  791. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  792. count_position[A_AXIS] = x + y;
  793. count_position[B_AXIS] = x - y;
  794. count_position[Z_AXIS] = z;
  795. #elif ENABLED(COREXZ)
  796. // corexz planning
  797. count_position[A_AXIS] = x + z;
  798. count_position[Y_AXIS] = y;
  799. count_position[C_AXIS] = x - z;
  800. #elif ENABLED(COREYZ)
  801. // coreyz planning
  802. count_position[X_AXIS] = x;
  803. count_position[B_AXIS] = y + z;
  804. count_position[C_AXIS] = y - z;
  805. #else
  806. // default non-h-bot planning
  807. count_position[X_AXIS] = x;
  808. count_position[Y_AXIS] = y;
  809. count_position[Z_AXIS] = z;
  810. #endif
  811. count_position[E_AXIS] = e;
  812. CRITICAL_SECTION_END;
  813. }
  814. void Stepper::set_e_position(const long& e) {
  815. CRITICAL_SECTION_START;
  816. count_position[E_AXIS] = e;
  817. CRITICAL_SECTION_END;
  818. }
  819. /**
  820. * Get a stepper's position in steps.
  821. */
  822. long Stepper::position(AxisEnum axis) {
  823. CRITICAL_SECTION_START;
  824. long count_pos = count_position[axis];
  825. CRITICAL_SECTION_END;
  826. return count_pos;
  827. }
  828. /**
  829. * Get an axis position according to stepper position(s)
  830. * For CORE machines apply translation from ABC to XYZ.
  831. */
  832. float Stepper::get_axis_position_mm(AxisEnum axis) {
  833. float axis_steps;
  834. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  835. // Requesting one of the "core" axes?
  836. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  837. CRITICAL_SECTION_START;
  838. long pos1 = count_position[CORE_AXIS_1],
  839. pos2 = count_position[CORE_AXIS_2];
  840. CRITICAL_SECTION_END;
  841. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  842. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  843. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  844. }
  845. else
  846. axis_steps = position(axis);
  847. #else
  848. axis_steps = position(axis);
  849. #endif
  850. return axis_steps * planner.steps_to_mm[axis];
  851. }
  852. void Stepper::finish_and_disable() {
  853. synchronize();
  854. disable_all_steppers();
  855. }
  856. void Stepper::quick_stop() {
  857. cleaning_buffer_counter = 5000;
  858. DISABLE_STEPPER_DRIVER_INTERRUPT();
  859. while (planner.blocks_queued()) planner.discard_current_block();
  860. current_block = NULL;
  861. ENABLE_STEPPER_DRIVER_INTERRUPT();
  862. }
  863. void Stepper::endstop_triggered(AxisEnum axis) {
  864. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  865. float axis_pos = count_position[axis];
  866. if (axis == CORE_AXIS_1)
  867. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  868. else if (axis == CORE_AXIS_2)
  869. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  870. endstops_trigsteps[axis] = axis_pos;
  871. #else // !COREXY && !COREXZ && !COREYZ
  872. endstops_trigsteps[axis] = count_position[axis];
  873. #endif // !COREXY && !COREXZ && !COREYZ
  874. kill_current_block();
  875. }
  876. void Stepper::report_positions() {
  877. CRITICAL_SECTION_START;
  878. long xpos = count_position[X_AXIS],
  879. ypos = count_position[Y_AXIS],
  880. zpos = count_position[Z_AXIS];
  881. CRITICAL_SECTION_END;
  882. #if ENABLED(COREXY) || ENABLED(COREXZ)
  883. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  884. #else
  885. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  886. #endif
  887. SERIAL_PROTOCOL(xpos);
  888. #if ENABLED(COREXY) || ENABLED(COREYZ)
  889. SERIAL_PROTOCOLPGM(" B:");
  890. #else
  891. SERIAL_PROTOCOLPGM(" Y:");
  892. #endif
  893. SERIAL_PROTOCOL(ypos);
  894. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  895. SERIAL_PROTOCOLPGM(" C:");
  896. #else
  897. SERIAL_PROTOCOLPGM(" Z:");
  898. #endif
  899. SERIAL_PROTOCOL(zpos);
  900. SERIAL_EOL;
  901. }
  902. #if ENABLED(BABYSTEPPING)
  903. // MUST ONLY BE CALLED BY AN ISR,
  904. // No other ISR should ever interrupt this!
  905. void Stepper::babystep(const uint8_t axis, const bool direction) {
  906. #define _ENABLE(axis) enable_## axis()
  907. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  908. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  909. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  910. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  911. _ENABLE(axis); \
  912. uint8_t old_pin = _READ_DIR(AXIS); \
  913. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  914. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  915. delayMicroseconds(2); \
  916. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  917. _APPLY_DIR(AXIS, old_pin); \
  918. }
  919. switch (axis) {
  920. case X_AXIS:
  921. BABYSTEP_AXIS(x, X, false);
  922. break;
  923. case Y_AXIS:
  924. BABYSTEP_AXIS(y, Y, false);
  925. break;
  926. case Z_AXIS: {
  927. #if DISABLED(DELTA)
  928. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  929. #else // DELTA
  930. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  931. enable_x();
  932. enable_y();
  933. enable_z();
  934. uint8_t old_x_dir_pin = X_DIR_READ,
  935. old_y_dir_pin = Y_DIR_READ,
  936. old_z_dir_pin = Z_DIR_READ;
  937. //setup new step
  938. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  939. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  940. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  941. //perform step
  942. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  943. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  944. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  945. delayMicroseconds(2);
  946. X_STEP_WRITE(INVERT_X_STEP_PIN);
  947. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  948. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  949. //get old pin state back.
  950. X_DIR_WRITE(old_x_dir_pin);
  951. Y_DIR_WRITE(old_y_dir_pin);
  952. Z_DIR_WRITE(old_z_dir_pin);
  953. #endif
  954. } break;
  955. default: break;
  956. }
  957. }
  958. #endif //BABYSTEPPING
  959. /**
  960. * Software-controlled Stepper Motor Current
  961. */
  962. #if HAS_DIGIPOTSS
  963. // From Arduino DigitalPotControl example
  964. void Stepper::digitalPotWrite(int address, int value) {
  965. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  966. SPI.transfer(address); // send in the address and value via SPI:
  967. SPI.transfer(value);
  968. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  969. //delay(10);
  970. }
  971. #endif //HAS_DIGIPOTSS
  972. void Stepper::digipot_init() {
  973. #if HAS_DIGIPOTSS
  974. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  975. SPI.begin();
  976. pinMode(DIGIPOTSS_PIN, OUTPUT);
  977. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  978. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  979. digipot_current(i, digipot_motor_current[i]);
  980. }
  981. #endif
  982. #if HAS_MOTOR_CURRENT_PWM
  983. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  984. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  985. digipot_current(0, motor_current_setting[0]);
  986. #endif
  987. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  988. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  989. digipot_current(1, motor_current_setting[1]);
  990. #endif
  991. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  992. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  993. digipot_current(2, motor_current_setting[2]);
  994. #endif
  995. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  996. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  997. #endif
  998. }
  999. void Stepper::digipot_current(uint8_t driver, int current) {
  1000. #if HAS_DIGIPOTSS
  1001. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1002. digitalPotWrite(digipot_ch[driver], current);
  1003. #elif HAS_MOTOR_CURRENT_PWM
  1004. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1005. switch (driver) {
  1006. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1007. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1008. #endif
  1009. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1010. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1011. #endif
  1012. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1013. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1014. #endif
  1015. }
  1016. #else
  1017. UNUSED(driver);
  1018. UNUSED(current);
  1019. #endif
  1020. }
  1021. void Stepper::microstep_init() {
  1022. #if HAS_MICROSTEPS_E1
  1023. pinMode(E1_MS1_PIN, OUTPUT);
  1024. pinMode(E1_MS2_PIN, OUTPUT);
  1025. #endif
  1026. #if HAS_MICROSTEPS
  1027. pinMode(X_MS1_PIN, OUTPUT);
  1028. pinMode(X_MS2_PIN, OUTPUT);
  1029. pinMode(Y_MS1_PIN, OUTPUT);
  1030. pinMode(Y_MS2_PIN, OUTPUT);
  1031. pinMode(Z_MS1_PIN, OUTPUT);
  1032. pinMode(Z_MS2_PIN, OUTPUT);
  1033. pinMode(E0_MS1_PIN, OUTPUT);
  1034. pinMode(E0_MS2_PIN, OUTPUT);
  1035. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1036. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1037. microstep_mode(i, microstep_modes[i]);
  1038. #endif
  1039. }
  1040. /**
  1041. * Software-controlled Microstepping
  1042. */
  1043. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1044. if (ms1 >= 0) switch (driver) {
  1045. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1046. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1047. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1048. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1049. #if HAS_MICROSTEPS_E1
  1050. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1051. #endif
  1052. }
  1053. if (ms2 >= 0) switch (driver) {
  1054. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1055. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1056. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1057. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1058. #if PIN_EXISTS(E1_MS2)
  1059. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1060. #endif
  1061. }
  1062. }
  1063. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1064. switch (stepping_mode) {
  1065. case 1: microstep_ms(driver, MICROSTEP1); break;
  1066. case 2: microstep_ms(driver, MICROSTEP2); break;
  1067. case 4: microstep_ms(driver, MICROSTEP4); break;
  1068. case 8: microstep_ms(driver, MICROSTEP8); break;
  1069. case 16: microstep_ms(driver, MICROSTEP16); break;
  1070. }
  1071. }
  1072. void Stepper::microstep_readings() {
  1073. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1074. SERIAL_PROTOCOLPGM("X: ");
  1075. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1076. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1077. SERIAL_PROTOCOLPGM("Y: ");
  1078. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1079. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1080. SERIAL_PROTOCOLPGM("Z: ");
  1081. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1082. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1083. SERIAL_PROTOCOLPGM("E0: ");
  1084. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1085. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1086. #if HAS_MICROSTEPS_E1
  1087. SERIAL_PROTOCOLPGM("E1: ");
  1088. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1089. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1090. #endif
  1091. }
  1092. #if ENABLED(LIN_ADVANCE)
  1093. void Stepper::advance_M905(const float &k) {
  1094. if (k >= 0) extruder_advance_k = k;
  1095. SERIAL_ECHO_START;
  1096. SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
  1097. SERIAL_EOL;
  1098. }
  1099. #endif // LIN_ADVANCE