My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 185KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Display measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  193. bool volumetric_enabled = false;
  194. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  195. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  196. float current_position[NUM_AXIS] = { 0.0 };
  197. float home_offset[3] = { 0 };
  198. #ifdef DELTA
  199. float endstop_adj[3] = { 0 };
  200. #elif defined(Z_DUAL_ENDSTOPS)
  201. float z_endstop_adj = 0;
  202. #endif
  203. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  204. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  205. bool axis_known_position[3] = { false };
  206. // Extruder offset
  207. #if EXTRUDERS > 1
  208. #ifndef EXTRUDER_OFFSET_X
  209. #define EXTRUDER_OFFSET_X 0
  210. #endif
  211. #ifndef EXTRUDER_OFFSET_Y
  212. #define EXTRUDER_OFFSET_Y 0
  213. #endif
  214. #ifndef DUAL_X_CARRIAGE
  215. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  216. #else
  217. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  218. #endif
  219. #define _EXY { EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y }
  220. float extruder_offset[EXTRUDERS][NUM_EXTRUDER_OFFSETS] = ARRAY_BY_EXTRUDERS(_EXY, _EXY, _EXY, _EXY);
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed = 0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure = 0;
  230. int EtoPPressure = 0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled = false;
  234. bool retracted[EXTRUDERS] = { false };
  235. bool retracted_swap[EXTRUDERS] = { false };
  236. float retract_length = RETRACT_LENGTH;
  237. float retract_length_swap = RETRACT_LENGTH_SWAP;
  238. float retract_feedrate = RETRACT_FEEDRATE;
  239. float retract_zlift = RETRACT_ZLIFT;
  240. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  241. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  242. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  243. #endif // FWRETRACT
  244. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  245. bool powersupply =
  246. #ifdef PS_DEFAULT_OFF
  247. false
  248. #else
  249. true
  250. #endif
  251. ;
  252. #endif
  253. #ifdef DELTA
  254. float delta[3] = { 0, 0, 0 };
  255. #define SIN_60 0.8660254037844386
  256. #define COS_60 0.5
  257. // these are the default values, can be overriden with M665
  258. float delta_radius = DELTA_RADIUS;
  259. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  260. float delta_tower1_y = -COS_60 * delta_radius;
  261. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  262. float delta_tower2_y = -COS_60 * delta_radius;
  263. float delta_tower3_x = 0; // back middle tower
  264. float delta_tower3_y = delta_radius;
  265. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  266. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  267. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  268. #ifdef ENABLE_AUTO_BED_LEVELING
  269. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  270. #endif
  271. #endif
  272. #ifdef SCARA
  273. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  274. static float delta[3] = { 0, 0, 0 };
  275. #endif
  276. bool cancel_heatup = false;
  277. #ifdef FILAMENT_SENSOR
  278. //Variables for Filament Sensor input
  279. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  280. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  281. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  282. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  283. int delay_index1 = 0; //index into ring buffer
  284. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  285. float delay_dist = 0; //delay distance counter
  286. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  287. #endif
  288. #ifdef FILAMENT_RUNOUT_SENSOR
  289. static bool filrunoutEnqued = false;
  290. #endif
  291. const char errormagic[] PROGMEM = "Error:";
  292. const char echomagic[] PROGMEM = "echo:";
  293. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  294. static float destination[NUM_AXIS] = { 0 };
  295. static float offset[3] = { 0 };
  296. #ifndef DELTA
  297. static bool home_all_axis = true;
  298. #endif
  299. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  300. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  301. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  302. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  303. #ifdef SDSUPPORT
  304. static bool fromsd[BUFSIZE];
  305. #endif
  306. static int bufindr = 0;
  307. static int bufindw = 0;
  308. static int buflen = 0;
  309. static char serial_char;
  310. static int serial_count = 0;
  311. static boolean comment_mode = false;
  312. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  313. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  314. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  315. // Inactivity shutdown
  316. static unsigned long previous_millis_cmd = 0;
  317. static unsigned long max_inactive_time = 0;
  318. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  319. unsigned long starttime = 0; ///< Print job start time
  320. unsigned long stoptime = 0; ///< Print job stop time
  321. static uint8_t tmp_extruder;
  322. bool Stopped = false;
  323. #if NUM_SERVOS > 0
  324. Servo servos[NUM_SERVOS];
  325. #endif
  326. bool CooldownNoWait = true;
  327. bool target_direction;
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //=============================Routines======================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P()
  364. {
  365. char cmd[30];
  366. if(!queued_commands_P)
  367. return false;
  368. // Get the next 30 chars from the sequence of gcodes to run
  369. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  370. cmd[sizeof(cmd)-1]= 0;
  371. // Look for the end of line, or the end of sequence
  372. size_t i= 0;
  373. char c;
  374. while( (c= cmd[i]) && c!='\n' )
  375. ++i; // look for the end of this gcode command
  376. cmd[i]= 0;
  377. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  378. {
  379. if(c)
  380. queued_commands_P+= i+1; // move to next command
  381. else
  382. queued_commands_P= NULL; // will have no more commands in the sequence
  383. }
  384. return true;
  385. }
  386. //Record one or many commands to run from program memory.
  387. //Aborts the current queue, if any.
  388. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  389. void enquecommands_P(const char* pgcode)
  390. {
  391. queued_commands_P= pgcode;
  392. drain_queued_commands_P(); // first command exectuted asap (when possible)
  393. }
  394. //adds a single command to the main command buffer, from RAM
  395. //that is really done in a non-safe way.
  396. //needs overworking someday
  397. //Returns false if it failed to do so
  398. bool enquecommand(const char *cmd)
  399. {
  400. if(*cmd==';')
  401. return false;
  402. if(buflen >= BUFSIZE)
  403. return false;
  404. //this is dangerous if a mixing of serial and this happens
  405. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  406. SERIAL_ECHO_START;
  407. SERIAL_ECHOPGM(MSG_Enqueing);
  408. SERIAL_ECHO(cmdbuffer[bufindw]);
  409. SERIAL_ECHOLNPGM("\"");
  410. bufindw= (bufindw + 1)%BUFSIZE;
  411. buflen += 1;
  412. return true;
  413. }
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. void setup_filrunoutpin()
  422. {
  423. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  424. pinMode(FILRUNOUT_PIN,INPUT);
  425. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  426. WRITE(FILLRUNOUT_PIN,HIGH);
  427. #endif
  428. #endif
  429. }
  430. // Set home pin
  431. void setup_homepin(void)
  432. {
  433. #if defined(HOME_PIN) && HOME_PIN > -1
  434. SET_INPUT(HOME_PIN);
  435. WRITE(HOME_PIN,HIGH);
  436. #endif
  437. }
  438. void setup_photpin()
  439. {
  440. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  441. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  442. #endif
  443. }
  444. void setup_powerhold()
  445. {
  446. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  447. OUT_WRITE(SUICIDE_PIN, HIGH);
  448. #endif
  449. #if HAS_POWER_SWITCH
  450. #ifdef PS_DEFAULT_OFF
  451. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  452. #else
  453. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  454. #endif
  455. #endif
  456. }
  457. void suicide()
  458. {
  459. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  460. OUT_WRITE(SUICIDE_PIN, LOW);
  461. #endif
  462. }
  463. void servo_init()
  464. {
  465. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  466. servos[0].attach(SERVO0_PIN);
  467. #endif
  468. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  469. servos[1].attach(SERVO1_PIN);
  470. #endif
  471. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  472. servos[2].attach(SERVO2_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  475. servos[3].attach(SERVO3_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 5)
  478. #error "TODO: enter initalisation code for more servos"
  479. #endif
  480. // Set position of Servo Endstops that are defined
  481. #ifdef SERVO_ENDSTOPS
  482. for(int8_t i = 0; i < 3; i++)
  483. {
  484. if(servo_endstops[i] > -1) {
  485. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  486. }
  487. }
  488. #endif
  489. #if SERVO_LEVELING
  490. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  491. servos[servo_endstops[Z_AXIS]].detach();
  492. #endif
  493. }
  494. void setup()
  495. {
  496. setup_killpin();
  497. setup_filrunoutpin();
  498. setup_powerhold();
  499. MYSERIAL.begin(BAUDRATE);
  500. SERIAL_PROTOCOLLNPGM("start");
  501. SERIAL_ECHO_START;
  502. // Check startup - does nothing if bootloader sets MCUSR to 0
  503. byte mcu = MCUSR;
  504. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  505. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  506. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  507. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  508. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  509. MCUSR=0;
  510. SERIAL_ECHOPGM(MSG_MARLIN);
  511. SERIAL_ECHOLNPGM(STRING_VERSION);
  512. #ifdef STRING_VERSION_CONFIG_H
  513. #ifdef STRING_CONFIG_H_AUTHOR
  514. SERIAL_ECHO_START;
  515. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  516. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  517. SERIAL_ECHOPGM(MSG_AUTHOR);
  518. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  519. SERIAL_ECHOPGM("Compiled: ");
  520. SERIAL_ECHOLNPGM(__DATE__);
  521. #endif // STRING_CONFIG_H_AUTHOR
  522. #endif // STRING_VERSION_CONFIG_H
  523. SERIAL_ECHO_START;
  524. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  525. SERIAL_ECHO(freeMemory());
  526. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  527. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  528. #ifdef SDSUPPORT
  529. for(int8_t i = 0; i < BUFSIZE; i++)
  530. {
  531. fromsd[i] = false;
  532. }
  533. #endif //!SDSUPPORT
  534. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  535. Config_RetrieveSettings();
  536. tp_init(); // Initialize temperature loop
  537. plan_init(); // Initialize planner;
  538. watchdog_init();
  539. st_init(); // Initialize stepper, this enables interrupts!
  540. setup_photpin();
  541. servo_init();
  542. lcd_init();
  543. _delay_ms(1000); // wait 1sec to display the splash screen
  544. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  545. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  546. #endif
  547. #ifdef DIGIPOT_I2C
  548. digipot_i2c_init();
  549. #endif
  550. #ifdef Z_PROBE_SLED
  551. pinMode(SERVO0_PIN, OUTPUT);
  552. digitalWrite(SERVO0_PIN, LOW); // turn it off
  553. #endif // Z_PROBE_SLED
  554. setup_homepin();
  555. #ifdef STAT_LED_RED
  556. pinMode(STAT_LED_RED, OUTPUT);
  557. digitalWrite(STAT_LED_RED, LOW); // turn it off
  558. #endif
  559. #ifdef STAT_LED_BLUE
  560. pinMode(STAT_LED_BLUE, OUTPUT);
  561. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  562. #endif
  563. }
  564. void loop()
  565. {
  566. if(buflen < (BUFSIZE-1))
  567. get_command();
  568. #ifdef SDSUPPORT
  569. card.checkautostart(false);
  570. #endif
  571. if(buflen)
  572. {
  573. #ifdef SDSUPPORT
  574. if(card.saving)
  575. {
  576. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  577. {
  578. card.write_command(cmdbuffer[bufindr]);
  579. if(card.logging)
  580. {
  581. process_commands();
  582. }
  583. else
  584. {
  585. SERIAL_PROTOCOLLNPGM(MSG_OK);
  586. }
  587. }
  588. else
  589. {
  590. card.closefile();
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  592. }
  593. }
  594. else
  595. {
  596. process_commands();
  597. }
  598. #else
  599. process_commands();
  600. #endif //SDSUPPORT
  601. buflen = (buflen-1);
  602. bufindr = (bufindr + 1)%BUFSIZE;
  603. }
  604. //check heater every n milliseconds
  605. manage_heater();
  606. manage_inactivity();
  607. checkHitEndstops();
  608. lcd_update();
  609. }
  610. void get_command()
  611. {
  612. if(drain_queued_commands_P()) // priority is given to non-serial commands
  613. return;
  614. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  615. serial_char = MYSERIAL.read();
  616. if(serial_char == '\n' ||
  617. serial_char == '\r' ||
  618. serial_count >= (MAX_CMD_SIZE - 1) )
  619. {
  620. // end of line == end of comment
  621. comment_mode = false;
  622. if(!serial_count) {
  623. // short cut for empty lines
  624. return;
  625. }
  626. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  627. #ifdef SDSUPPORT
  628. fromsd[bufindw] = false;
  629. #endif //!SDSUPPORT
  630. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  631. {
  632. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  633. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  634. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  635. SERIAL_ERROR_START;
  636. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  637. SERIAL_ERRORLN(gcode_LastN);
  638. //Serial.println(gcode_N);
  639. FlushSerialRequestResend();
  640. serial_count = 0;
  641. return;
  642. }
  643. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  644. {
  645. byte checksum = 0;
  646. byte count = 0;
  647. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  648. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  649. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  650. SERIAL_ERROR_START;
  651. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  652. SERIAL_ERRORLN(gcode_LastN);
  653. FlushSerialRequestResend();
  654. serial_count = 0;
  655. return;
  656. }
  657. //if no errors, continue parsing
  658. }
  659. else
  660. {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  663. SERIAL_ERRORLN(gcode_LastN);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. gcode_LastN = gcode_N;
  669. //if no errors, continue parsing
  670. }
  671. else // if we don't receive 'N' but still see '*'
  672. {
  673. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  674. {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. serial_count = 0;
  679. return;
  680. }
  681. }
  682. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  683. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  684. switch(strtol(strchr_pointer + 1, NULL, 10)){
  685. case 0:
  686. case 1:
  687. case 2:
  688. case 3:
  689. if (Stopped == true) {
  690. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  691. LCD_MESSAGEPGM(MSG_STOPPED);
  692. }
  693. break;
  694. default:
  695. break;
  696. }
  697. }
  698. //If command was e-stop process now
  699. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  700. kill();
  701. bufindw = (bufindw + 1)%BUFSIZE;
  702. buflen += 1;
  703. serial_count = 0; //clear buffer
  704. }
  705. else if(serial_char == '\\') { //Handle escapes
  706. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  707. // if we have one more character, copy it over
  708. serial_char = MYSERIAL.read();
  709. cmdbuffer[bufindw][serial_count++] = serial_char;
  710. }
  711. //otherwise do nothing
  712. }
  713. else { // its not a newline, carriage return or escape char
  714. if(serial_char == ';') comment_mode = true;
  715. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  716. }
  717. }
  718. #ifdef SDSUPPORT
  719. if(!card.sdprinting || serial_count!=0){
  720. return;
  721. }
  722. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  723. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  724. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  725. static bool stop_buffering=false;
  726. if(buflen==0) stop_buffering=false;
  727. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  728. int16_t n=card.get();
  729. serial_char = (char)n;
  730. if(serial_char == '\n' ||
  731. serial_char == '\r' ||
  732. (serial_char == '#' && comment_mode == false) ||
  733. (serial_char == ':' && comment_mode == false) ||
  734. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  735. {
  736. if(card.eof()){
  737. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  738. stoptime=millis();
  739. char time[30];
  740. unsigned long t=(stoptime-starttime)/1000;
  741. int hours, minutes;
  742. minutes=(t/60)%60;
  743. hours=t/60/60;
  744. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  745. SERIAL_ECHO_START;
  746. SERIAL_ECHOLN(time);
  747. lcd_setstatus(time, true);
  748. card.printingHasFinished();
  749. card.checkautostart(true);
  750. }
  751. if(serial_char=='#')
  752. stop_buffering=true;
  753. if(!serial_count)
  754. {
  755. comment_mode = false; //for new command
  756. return; //if empty line
  757. }
  758. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  759. // if(!comment_mode){
  760. fromsd[bufindw] = true;
  761. buflen += 1;
  762. bufindw = (bufindw + 1)%BUFSIZE;
  763. // }
  764. comment_mode = false; //for new command
  765. serial_count = 0; //clear buffer
  766. }
  767. else
  768. {
  769. if(serial_char == ';') comment_mode = true;
  770. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  771. }
  772. }
  773. #endif //SDSUPPORT
  774. }
  775. float code_value() {
  776. float ret;
  777. char *e = strchr(strchr_pointer, 'E');
  778. if (e) {
  779. *e = 0;
  780. ret = strtod(strchr_pointer+1, NULL);
  781. *e = 'E';
  782. }
  783. else
  784. ret = strtod(strchr_pointer+1, NULL);
  785. return ret;
  786. }
  787. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  788. bool code_seen(char code) {
  789. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  790. return (strchr_pointer != NULL); //Return True if a character was found
  791. }
  792. #define DEFINE_PGM_READ_ANY(type, reader) \
  793. static inline type pgm_read_any(const type *p) \
  794. { return pgm_read_##reader##_near(p); }
  795. DEFINE_PGM_READ_ANY(float, float);
  796. DEFINE_PGM_READ_ANY(signed char, byte);
  797. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  798. static const PROGMEM type array##_P[3] = \
  799. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  800. static inline type array(int axis) \
  801. { return pgm_read_any(&array##_P[axis]); }
  802. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  803. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  804. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  805. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  806. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  807. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  808. #ifdef DUAL_X_CARRIAGE
  809. #define DXC_FULL_CONTROL_MODE 0
  810. #define DXC_AUTO_PARK_MODE 1
  811. #define DXC_DUPLICATION_MODE 2
  812. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  813. static float x_home_pos(int extruder) {
  814. if (extruder == 0)
  815. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  816. else
  817. // In dual carriage mode the extruder offset provides an override of the
  818. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  819. // This allow soft recalibration of the second extruder offset position without firmware reflash
  820. // (through the M218 command).
  821. return (extruder_offset[1][X_AXIS] > 0) ? extruder_offset[1][X_AXIS] : X2_HOME_POS;
  822. }
  823. static int x_home_dir(int extruder) {
  824. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  825. }
  826. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  827. static bool active_extruder_parked = false; // used in mode 1 & 2
  828. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  829. static unsigned long delayed_move_time = 0; // used in mode 1
  830. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  831. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  832. bool extruder_duplication_enabled = false; // used in mode 2
  833. #endif //DUAL_X_CARRIAGE
  834. static void axis_is_at_home(int axis) {
  835. #ifdef DUAL_X_CARRIAGE
  836. if (axis == X_AXIS) {
  837. if (active_extruder != 0) {
  838. current_position[X_AXIS] = x_home_pos(active_extruder);
  839. min_pos[X_AXIS] = X2_MIN_POS;
  840. max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
  841. return;
  842. }
  843. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  844. float xoff = home_offset[X_AXIS];
  845. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  846. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  847. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
  848. return;
  849. }
  850. }
  851. #endif
  852. #ifdef SCARA
  853. float homeposition[3];
  854. if (axis < 2) {
  855. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  856. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  857. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  858. // Works out real Homeposition angles using inverse kinematics,
  859. // and calculates homing offset using forward kinematics
  860. calculate_delta(homeposition);
  861. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  862. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  863. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  864. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  867. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  868. calculate_SCARA_forward_Transform(delta);
  869. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  870. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  871. current_position[axis] = delta[axis];
  872. // SCARA home positions are based on configuration since the actual limits are determined by the
  873. // inverse kinematic transform.
  874. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  875. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  876. }
  877. else {
  878. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  879. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  880. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  881. }
  882. #else
  883. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  884. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  885. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  886. #endif
  887. }
  888. /**
  889. * Some planner shorthand inline functions
  890. */
  891. inline void line_to_current_position() {
  892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  893. }
  894. inline void line_to_z(float zPosition) {
  895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  896. }
  897. inline void line_to_destination() {
  898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  899. }
  900. inline void sync_plan_position() {
  901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  902. }
  903. #ifdef ENABLE_AUTO_BED_LEVELING
  904. #ifdef AUTO_BED_LEVELING_GRID
  905. #ifndef DELTA
  906. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  907. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  908. planeNormal.debug("planeNormal");
  909. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  910. //bedLevel.debug("bedLevel");
  911. //plan_bed_level_matrix.debug("bed level before");
  912. //vector_3 uncorrected_position = plan_get_position_mm();
  913. //uncorrected_position.debug("position before");
  914. vector_3 corrected_position = plan_get_position();
  915. //corrected_position.debug("position after");
  916. current_position[X_AXIS] = corrected_position.x;
  917. current_position[Y_AXIS] = corrected_position.y;
  918. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  919. sync_plan_position();
  920. }
  921. #endif // !DELTA
  922. #else // !AUTO_BED_LEVELING_GRID
  923. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  924. plan_bed_level_matrix.set_to_identity();
  925. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  926. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  927. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  928. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  929. if (planeNormal.z < 0) {
  930. planeNormal.x = -planeNormal.x;
  931. planeNormal.y = -planeNormal.y;
  932. planeNormal.z = -planeNormal.z;
  933. }
  934. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  935. vector_3 corrected_position = plan_get_position();
  936. current_position[X_AXIS] = corrected_position.x;
  937. current_position[Y_AXIS] = corrected_position.y;
  938. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  939. sync_plan_position();
  940. }
  941. #endif // !AUTO_BED_LEVELING_GRID
  942. static void run_z_probe() {
  943. #ifdef DELTA
  944. float start_z = current_position[Z_AXIS];
  945. long start_steps = st_get_position(Z_AXIS);
  946. // move down slowly until you find the bed
  947. feedrate = homing_feedrate[Z_AXIS] / 4;
  948. destination[Z_AXIS] = -10;
  949. prepare_move_raw();
  950. st_synchronize();
  951. endstops_hit_on_purpose();
  952. // we have to let the planner know where we are right now as it is not where we said to go.
  953. long stop_steps = st_get_position(Z_AXIS);
  954. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  955. current_position[Z_AXIS] = mm;
  956. calculate_delta(current_position);
  957. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  958. #else // !DELTA
  959. plan_bed_level_matrix.set_to_identity();
  960. feedrate = homing_feedrate[Z_AXIS];
  961. // move down until you find the bed
  962. float zPosition = -10;
  963. line_to_z(zPosition);
  964. st_synchronize();
  965. // we have to let the planner know where we are right now as it is not where we said to go.
  966. zPosition = st_get_position_mm(Z_AXIS);
  967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  968. // move up the retract distance
  969. zPosition += home_retract_mm(Z_AXIS);
  970. line_to_z(zPosition);
  971. st_synchronize();
  972. endstops_hit_on_purpose();
  973. // move back down slowly to find bed
  974. if (homing_bump_divisor[Z_AXIS] >= 1)
  975. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  976. else {
  977. feedrate = homing_feedrate[Z_AXIS] / 10;
  978. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  979. }
  980. zPosition -= home_retract_mm(Z_AXIS) * 2;
  981. line_to_z(zPosition);
  982. st_synchronize();
  983. endstops_hit_on_purpose();
  984. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  985. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  986. sync_plan_position();
  987. #endif // !DELTA
  988. }
  989. static void do_blocking_move_to(float x, float y, float z) {
  990. float oldFeedRate = feedrate;
  991. #ifdef DELTA
  992. feedrate = XY_TRAVEL_SPEED;
  993. destination[X_AXIS] = x;
  994. destination[Y_AXIS] = y;
  995. destination[Z_AXIS] = z;
  996. prepare_move_raw();
  997. st_synchronize();
  998. #else
  999. feedrate = homing_feedrate[Z_AXIS];
  1000. current_position[Z_AXIS] = z;
  1001. line_to_current_position();
  1002. st_synchronize();
  1003. feedrate = xy_travel_speed;
  1004. current_position[X_AXIS] = x;
  1005. current_position[Y_AXIS] = y;
  1006. line_to_current_position();
  1007. st_synchronize();
  1008. #endif
  1009. feedrate = oldFeedRate;
  1010. }
  1011. static void setup_for_endstop_move() {
  1012. saved_feedrate = feedrate;
  1013. saved_feedmultiply = feedmultiply;
  1014. feedmultiply = 100;
  1015. previous_millis_cmd = millis();
  1016. enable_endstops(true);
  1017. }
  1018. static void clean_up_after_endstop_move() {
  1019. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1020. enable_endstops(false);
  1021. #endif
  1022. feedrate = saved_feedrate;
  1023. feedmultiply = saved_feedmultiply;
  1024. previous_millis_cmd = millis();
  1025. }
  1026. static void engage_z_probe() {
  1027. #ifdef SERVO_ENDSTOPS
  1028. // Engage Z Servo endstop if enabled
  1029. if (servo_endstops[Z_AXIS] >= 0) {
  1030. #if SERVO_LEVELING
  1031. servos[servo_endstops[Z_AXIS]].attach(0);
  1032. #endif
  1033. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1034. #if SERVO_LEVELING
  1035. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1036. servos[servo_endstops[Z_AXIS]].detach();
  1037. #endif
  1038. }
  1039. #elif defined(Z_PROBE_ALLEN_KEY)
  1040. feedrate = homing_feedrate[X_AXIS];
  1041. // Move to the start position to initiate deployment
  1042. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1043. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1044. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1045. prepare_move_raw();
  1046. // Home X to touch the belt
  1047. feedrate = homing_feedrate[X_AXIS]/10;
  1048. destination[X_AXIS] = 0;
  1049. prepare_move_raw();
  1050. // Home Y for safety
  1051. feedrate = homing_feedrate[X_AXIS]/2;
  1052. destination[Y_AXIS] = 0;
  1053. prepare_move_raw();
  1054. st_synchronize();
  1055. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1056. if (z_min_endstop) {
  1057. if (!Stopped) {
  1058. SERIAL_ERROR_START;
  1059. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1060. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1061. }
  1062. Stop();
  1063. }
  1064. #endif // Z_PROBE_ALLEN_KEY
  1065. }
  1066. static void retract_z_probe() {
  1067. #ifdef SERVO_ENDSTOPS
  1068. // Retract Z Servo endstop if enabled
  1069. if (servo_endstops[Z_AXIS] >= 0) {
  1070. #if Z_RAISE_AFTER_PROBING > 0
  1071. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1072. st_synchronize();
  1073. #endif
  1074. #if SERVO_LEVELING
  1075. servos[servo_endstops[Z_AXIS]].attach(0);
  1076. #endif
  1077. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1078. #if SERVO_LEVELING
  1079. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1080. servos[servo_endstops[Z_AXIS]].detach();
  1081. #endif
  1082. }
  1083. #elif defined(Z_PROBE_ALLEN_KEY)
  1084. // Move up for safety
  1085. feedrate = homing_feedrate[X_AXIS];
  1086. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1087. prepare_move_raw();
  1088. // Move to the start position to initiate retraction
  1089. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1090. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1091. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1092. prepare_move_raw();
  1093. // Move the nozzle down to push the probe into retracted position
  1094. feedrate = homing_feedrate[Z_AXIS]/10;
  1095. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1096. prepare_move_raw();
  1097. // Move up for safety
  1098. feedrate = homing_feedrate[Z_AXIS]/2;
  1099. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1100. prepare_move_raw();
  1101. // Home XY for safety
  1102. feedrate = homing_feedrate[X_AXIS]/2;
  1103. destination[X_AXIS] = 0;
  1104. destination[Y_AXIS] = 0;
  1105. prepare_move_raw();
  1106. st_synchronize();
  1107. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1108. if (!z_min_endstop) {
  1109. if (!Stopped) {
  1110. SERIAL_ERROR_START;
  1111. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1112. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1113. }
  1114. Stop();
  1115. }
  1116. #endif
  1117. }
  1118. enum ProbeAction {
  1119. ProbeStay = 0,
  1120. ProbeEngage = BIT(0),
  1121. ProbeRetract = BIT(1),
  1122. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1123. };
  1124. // Probe bed height at position (x,y), returns the measured z value
  1125. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1126. // move to right place
  1127. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1128. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1129. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1130. if (retract_action & ProbeEngage) engage_z_probe();
  1131. #endif
  1132. run_z_probe();
  1133. float measured_z = current_position[Z_AXIS];
  1134. #if Z_RAISE_AFTER_PROBING > 0
  1135. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1136. st_synchronize();
  1137. #endif
  1138. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1139. if (retract_action & ProbeRetract) retract_z_probe();
  1140. #endif
  1141. if (verbose_level > 2) {
  1142. SERIAL_PROTOCOLPGM(MSG_BED);
  1143. SERIAL_PROTOCOLPGM(" X: ");
  1144. SERIAL_PROTOCOL_F(x, 3);
  1145. SERIAL_PROTOCOLPGM(" Y: ");
  1146. SERIAL_PROTOCOL_F(y, 3);
  1147. SERIAL_PROTOCOLPGM(" Z: ");
  1148. SERIAL_PROTOCOL_F(measured_z, 3);
  1149. SERIAL_EOL;
  1150. }
  1151. return measured_z;
  1152. }
  1153. #ifdef DELTA
  1154. /**
  1155. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1156. */
  1157. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1158. if (bed_level[x][y] != 0.0) {
  1159. return; // Don't overwrite good values.
  1160. }
  1161. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1162. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1163. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1164. float median = c; // Median is robust (ignores outliers).
  1165. if (a < b) {
  1166. if (b < c) median = b;
  1167. if (c < a) median = a;
  1168. } else { // b <= a
  1169. if (c < b) median = b;
  1170. if (a < c) median = a;
  1171. }
  1172. bed_level[x][y] = median;
  1173. }
  1174. // Fill in the unprobed points (corners of circular print surface)
  1175. // using linear extrapolation, away from the center.
  1176. static void extrapolate_unprobed_bed_level() {
  1177. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1178. for (int y = 0; y <= half; y++) {
  1179. for (int x = 0; x <= half; x++) {
  1180. if (x + y < 3) continue;
  1181. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1182. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1183. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1184. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1185. }
  1186. }
  1187. }
  1188. // Print calibration results for plotting or manual frame adjustment.
  1189. static void print_bed_level() {
  1190. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1191. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1192. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1193. SERIAL_PROTOCOLPGM(" ");
  1194. }
  1195. SERIAL_ECHOLN("");
  1196. }
  1197. }
  1198. // Reset calibration results to zero.
  1199. void reset_bed_level() {
  1200. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1201. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1202. bed_level[x][y] = 0.0;
  1203. }
  1204. }
  1205. }
  1206. #endif // DELTA
  1207. #endif // ENABLE_AUTO_BED_LEVELING
  1208. static void homeaxis(int axis) {
  1209. #define HOMEAXIS_DO(LETTER) \
  1210. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1211. if (axis == X_AXIS ? HOMEAXIS_DO(X) :
  1212. axis == Y_AXIS ? HOMEAXIS_DO(Y) :
  1213. axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1214. int axis_home_dir;
  1215. #ifdef DUAL_X_CARRIAGE
  1216. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1217. #else
  1218. axis_home_dir = home_dir(axis);
  1219. #endif
  1220. current_position[axis] = 0;
  1221. sync_plan_position();
  1222. #ifndef Z_PROBE_SLED
  1223. // Engage Servo endstop if enabled
  1224. #ifdef SERVO_ENDSTOPS
  1225. #if SERVO_LEVELING
  1226. if (axis == Z_AXIS) {
  1227. engage_z_probe();
  1228. }
  1229. else
  1230. #endif // SERVO_LEVELING
  1231. if (servo_endstops[axis] > -1)
  1232. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1233. #endif // SERVO_ENDSTOPS
  1234. #endif // Z_PROBE_SLED
  1235. #ifdef Z_DUAL_ENDSTOPS
  1236. if (axis == Z_AXIS) In_Homing_Process(true);
  1237. #endif
  1238. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1239. feedrate = homing_feedrate[axis];
  1240. line_to_destination();
  1241. st_synchronize();
  1242. current_position[axis] = 0;
  1243. sync_plan_position();
  1244. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1245. line_to_destination();
  1246. st_synchronize();
  1247. destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
  1248. if (homing_bump_divisor[axis] >= 1)
  1249. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1250. else {
  1251. feedrate = homing_feedrate[axis] / 10;
  1252. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1253. }
  1254. line_to_destination();
  1255. st_synchronize();
  1256. #ifdef Z_DUAL_ENDSTOPS
  1257. if (axis==Z_AXIS)
  1258. {
  1259. feedrate = homing_feedrate[axis];
  1260. sync_plan_position();
  1261. if (axis_home_dir > 0)
  1262. {
  1263. destination[axis] = (-1) * fabs(z_endstop_adj);
  1264. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1265. } else {
  1266. destination[axis] = fabs(z_endstop_adj);
  1267. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1268. }
  1269. line_to_destination();
  1270. st_synchronize();
  1271. Lock_z_motor(false);
  1272. Lock_z2_motor(false);
  1273. In_Homing_Process(false);
  1274. }
  1275. #endif
  1276. #ifdef DELTA
  1277. // retrace by the amount specified in endstop_adj
  1278. if (endstop_adj[axis] * axis_home_dir < 0) {
  1279. sync_plan_position();
  1280. destination[axis] = endstop_adj[axis];
  1281. line_to_destination();
  1282. st_synchronize();
  1283. }
  1284. #endif
  1285. axis_is_at_home(axis);
  1286. destination[axis] = current_position[axis];
  1287. feedrate = 0.0;
  1288. endstops_hit_on_purpose();
  1289. axis_known_position[axis] = true;
  1290. // Retract Servo endstop if enabled
  1291. #ifdef SERVO_ENDSTOPS
  1292. if (servo_endstops[axis] > -1) {
  1293. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1294. }
  1295. #endif
  1296. #if SERVO_LEVELING
  1297. #ifndef Z_PROBE_SLED
  1298. if (axis==Z_AXIS) retract_z_probe();
  1299. #endif
  1300. #endif
  1301. }
  1302. }
  1303. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1304. void refresh_cmd_timeout(void)
  1305. {
  1306. previous_millis_cmd = millis();
  1307. }
  1308. #ifdef FWRETRACT
  1309. void retract(bool retracting, bool swapretract = false) {
  1310. if(retracting && !retracted[active_extruder]) {
  1311. destination[X_AXIS]=current_position[X_AXIS];
  1312. destination[Y_AXIS]=current_position[Y_AXIS];
  1313. destination[Z_AXIS]=current_position[Z_AXIS];
  1314. destination[E_AXIS]=current_position[E_AXIS];
  1315. if (swapretract) {
  1316. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1317. } else {
  1318. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1319. }
  1320. plan_set_e_position(current_position[E_AXIS]);
  1321. float oldFeedrate = feedrate;
  1322. feedrate = retract_feedrate * 60;
  1323. retracted[active_extruder]=true;
  1324. prepare_move();
  1325. if(retract_zlift > 0.01) {
  1326. current_position[Z_AXIS]-=retract_zlift;
  1327. #ifdef DELTA
  1328. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1329. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1330. #else
  1331. sync_plan_position();
  1332. #endif
  1333. prepare_move();
  1334. }
  1335. feedrate = oldFeedrate;
  1336. } else if(!retracting && retracted[active_extruder]) {
  1337. destination[X_AXIS]=current_position[X_AXIS];
  1338. destination[Y_AXIS]=current_position[Y_AXIS];
  1339. destination[Z_AXIS]=current_position[Z_AXIS];
  1340. destination[E_AXIS]=current_position[E_AXIS];
  1341. if(retract_zlift > 0.01) {
  1342. current_position[Z_AXIS]+=retract_zlift;
  1343. #ifdef DELTA
  1344. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1345. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1346. #else
  1347. sync_plan_position();
  1348. #endif
  1349. //prepare_move();
  1350. }
  1351. if (swapretract) {
  1352. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1353. } else {
  1354. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1355. }
  1356. plan_set_e_position(current_position[E_AXIS]);
  1357. float oldFeedrate = feedrate;
  1358. feedrate = retract_recover_feedrate * 60;
  1359. retracted[active_extruder] = false;
  1360. prepare_move();
  1361. feedrate = oldFeedrate;
  1362. }
  1363. } //retract
  1364. #endif //FWRETRACT
  1365. #ifdef Z_PROBE_SLED
  1366. #ifndef SLED_DOCKING_OFFSET
  1367. #define SLED_DOCKING_OFFSET 0
  1368. #endif
  1369. //
  1370. // Method to dock/undock a sled designed by Charles Bell.
  1371. //
  1372. // dock[in] If true, move to MAX_X and engage the electromagnet
  1373. // offset[in] The additional distance to move to adjust docking location
  1374. //
  1375. static void dock_sled(bool dock, int offset=0) {
  1376. int z_loc;
  1377. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1378. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1379. SERIAL_ECHO_START;
  1380. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1381. return;
  1382. }
  1383. if (dock) {
  1384. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1385. current_position[Y_AXIS],
  1386. current_position[Z_AXIS]);
  1387. // turn off magnet
  1388. digitalWrite(SERVO0_PIN, LOW);
  1389. } else {
  1390. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1391. z_loc = Z_RAISE_BEFORE_PROBING;
  1392. else
  1393. z_loc = current_position[Z_AXIS];
  1394. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1395. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1396. // turn on magnet
  1397. digitalWrite(SERVO0_PIN, HIGH);
  1398. }
  1399. }
  1400. #endif
  1401. /**
  1402. *
  1403. * G-Code Handler functions
  1404. *
  1405. */
  1406. /**
  1407. * G0, G1: Coordinated movement of X Y Z E axes
  1408. */
  1409. inline void gcode_G0_G1() {
  1410. if (!Stopped) {
  1411. get_coordinates(); // For X Y Z E F
  1412. #ifdef FWRETRACT
  1413. if (autoretract_enabled)
  1414. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1415. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1416. // Is this move an attempt to retract or recover?
  1417. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1418. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1419. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1420. retract(!retracted[active_extruder]);
  1421. return;
  1422. }
  1423. }
  1424. #endif //FWRETRACT
  1425. prepare_move();
  1426. //ClearToSend();
  1427. }
  1428. }
  1429. /**
  1430. * G2: Clockwise Arc
  1431. * G3: Counterclockwise Arc
  1432. */
  1433. inline void gcode_G2_G3(bool clockwise) {
  1434. if (!Stopped) {
  1435. get_arc_coordinates();
  1436. prepare_arc_move(clockwise);
  1437. }
  1438. }
  1439. /**
  1440. * G4: Dwell S<seconds> or P<milliseconds>
  1441. */
  1442. inline void gcode_G4() {
  1443. unsigned long codenum=0;
  1444. LCD_MESSAGEPGM(MSG_DWELL);
  1445. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1446. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1447. st_synchronize();
  1448. previous_millis_cmd = millis();
  1449. codenum += previous_millis_cmd; // keep track of when we started waiting
  1450. while(millis() < codenum) {
  1451. manage_heater();
  1452. manage_inactivity();
  1453. lcd_update();
  1454. }
  1455. }
  1456. #ifdef FWRETRACT
  1457. /**
  1458. * G10 - Retract filament according to settings of M207
  1459. * G11 - Recover filament according to settings of M208
  1460. */
  1461. inline void gcode_G10_G11(bool doRetract=false) {
  1462. #if EXTRUDERS > 1
  1463. if (doRetract) {
  1464. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1465. }
  1466. #endif
  1467. retract(doRetract
  1468. #if EXTRUDERS > 1
  1469. , retracted_swap[active_extruder]
  1470. #endif
  1471. );
  1472. }
  1473. #endif //FWRETRACT
  1474. /**
  1475. * G28: Home all axes according to settings
  1476. *
  1477. * Parameters
  1478. *
  1479. * None Home to all axes with no parameters.
  1480. * With QUICK_HOME enabled XY will home together, then Z.
  1481. *
  1482. * Cartesian parameters
  1483. *
  1484. * X Home to the X endstop
  1485. * Y Home to the Y endstop
  1486. * Z Home to the Z endstop
  1487. *
  1488. * If numbers are included with XYZ set the position as with G92
  1489. * Currently adds the home_offset, which may be wrong and removed soon.
  1490. *
  1491. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1492. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1493. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1494. */
  1495. inline void gcode_G28() {
  1496. #ifdef ENABLE_AUTO_BED_LEVELING
  1497. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1498. #ifdef DELTA
  1499. reset_bed_level();
  1500. #endif
  1501. #endif
  1502. #if defined(MESH_BED_LEVELING)
  1503. uint8_t mbl_was_active = mbl.active;
  1504. mbl.active = 0;
  1505. #endif
  1506. saved_feedrate = feedrate;
  1507. saved_feedmultiply = feedmultiply;
  1508. feedmultiply = 100;
  1509. previous_millis_cmd = millis();
  1510. enable_endstops(true);
  1511. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1512. feedrate = 0.0;
  1513. #ifdef DELTA
  1514. // A delta can only safely home all axis at the same time
  1515. // all axis have to home at the same time
  1516. // Move all carriages up together until the first endstop is hit.
  1517. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1518. sync_plan_position();
  1519. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1520. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1521. line_to_destination();
  1522. st_synchronize();
  1523. endstops_hit_on_purpose();
  1524. // Destination reached
  1525. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1526. // take care of back off and rehome now we are all at the top
  1527. HOMEAXIS(X);
  1528. HOMEAXIS(Y);
  1529. HOMEAXIS(Z);
  1530. calculate_delta(current_position);
  1531. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1532. #else // NOT DELTA
  1533. bool homeX = code_seen(axis_codes[X_AXIS]),
  1534. homeY = code_seen(axis_codes[Y_AXIS]),
  1535. homeZ = code_seen(axis_codes[Z_AXIS]);
  1536. home_all_axis = !homeX && !homeY && !homeZ; // No parameters means home all axes
  1537. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1538. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1539. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1540. // Raise Z before homing any other axes
  1541. if (home_all_axis || homeZ) {
  1542. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1543. feedrate = max_feedrate[Z_AXIS];
  1544. line_to_destination();
  1545. st_synchronize();
  1546. }
  1547. #endif
  1548. #ifdef QUICK_HOME
  1549. if (home_all_axis || (homeX && homeY)) { //first diagonal move
  1550. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1551. #ifdef DUAL_X_CARRIAGE
  1552. int x_axis_home_dir = x_home_dir(active_extruder);
  1553. extruder_duplication_enabled = false;
  1554. #else
  1555. int x_axis_home_dir = home_dir(X_AXIS);
  1556. #endif
  1557. sync_plan_position();
  1558. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1559. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1560. feedrate = homing_feedrate[X_AXIS];
  1561. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1562. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1563. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1564. } else {
  1565. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1566. }
  1567. line_to_destination();
  1568. st_synchronize();
  1569. axis_is_at_home(X_AXIS);
  1570. axis_is_at_home(Y_AXIS);
  1571. sync_plan_position();
  1572. destination[X_AXIS] = current_position[X_AXIS];
  1573. destination[Y_AXIS] = current_position[Y_AXIS];
  1574. line_to_destination();
  1575. feedrate = 0.0;
  1576. st_synchronize();
  1577. endstops_hit_on_purpose();
  1578. current_position[X_AXIS] = destination[X_AXIS];
  1579. current_position[Y_AXIS] = destination[Y_AXIS];
  1580. #ifndef SCARA
  1581. current_position[Z_AXIS] = destination[Z_AXIS];
  1582. #endif
  1583. }
  1584. #endif //QUICK_HOME
  1585. // Home X
  1586. if (home_all_axis || homeX) {
  1587. #ifdef DUAL_X_CARRIAGE
  1588. int tmp_extruder = active_extruder;
  1589. extruder_duplication_enabled = false;
  1590. active_extruder = !active_extruder;
  1591. HOMEAXIS(X);
  1592. inactive_extruder_x_pos = current_position[X_AXIS];
  1593. active_extruder = tmp_extruder;
  1594. HOMEAXIS(X);
  1595. // reset state used by the different modes
  1596. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1597. delayed_move_time = 0;
  1598. active_extruder_parked = true;
  1599. #else
  1600. HOMEAXIS(X);
  1601. #endif
  1602. }
  1603. // Home Y
  1604. if (home_all_axis || homeY) HOMEAXIS(Y);
  1605. // Set the X position, if included
  1606. // Adds the home_offset as well, which may be wrong
  1607. if (code_seen(axis_codes[X_AXIS])) {
  1608. float v = code_value();
  1609. if (v) current_position[X_AXIS] = v
  1610. #ifndef SCARA
  1611. + home_offset[X_AXIS]
  1612. #endif
  1613. ;
  1614. }
  1615. // Set the Y position, if included
  1616. // Adds the home_offset as well, which may be wrong
  1617. if (code_seen(axis_codes[Y_AXIS])) {
  1618. float v = code_value();
  1619. if (v) current_position[Y_AXIS] = v
  1620. #ifndef SCARA
  1621. + home_offset[Y_AXIS]
  1622. #endif
  1623. ;
  1624. }
  1625. // Home Z last if homing towards the bed
  1626. #if Z_HOME_DIR < 0
  1627. #ifndef Z_SAFE_HOMING
  1628. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1629. #else // Z_SAFE_HOMING
  1630. if (home_all_axis) {
  1631. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1632. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1633. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1634. feedrate = XY_TRAVEL_SPEED;
  1635. current_position[Z_AXIS] = 0;
  1636. sync_plan_position();
  1637. line_to_destination();
  1638. st_synchronize();
  1639. current_position[X_AXIS] = destination[X_AXIS];
  1640. current_position[Y_AXIS] = destination[Y_AXIS];
  1641. HOMEAXIS(Z);
  1642. }
  1643. // Let's see if X and Y are homed and probe is inside bed area.
  1644. if (homeZ) {
  1645. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1646. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1647. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1648. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1649. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1650. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1651. current_position[Z_AXIS] = 0;
  1652. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1653. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1654. feedrate = max_feedrate[Z_AXIS];
  1655. line_to_destination();
  1656. st_synchronize();
  1657. HOMEAXIS(Z);
  1658. }
  1659. else {
  1660. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1661. SERIAL_ECHO_START;
  1662. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1663. }
  1664. }
  1665. else {
  1666. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1667. SERIAL_ECHO_START;
  1668. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1669. }
  1670. }
  1671. #endif // Z_SAFE_HOMING
  1672. #endif // Z_HOME_DIR < 0
  1673. // Set the Z position, if included
  1674. // Adds the home_offset as well, which may be wrong
  1675. if (code_seen(axis_codes[Z_AXIS])) {
  1676. float v = code_value();
  1677. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1678. }
  1679. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1680. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1681. #endif
  1682. sync_plan_position();
  1683. #endif // else DELTA
  1684. #ifdef SCARA
  1685. calculate_delta(current_position);
  1686. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1687. #endif
  1688. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1689. enable_endstops(false);
  1690. #endif
  1691. #if defined(MESH_BED_LEVELING)
  1692. if (mbl_was_active) {
  1693. current_position[X_AXIS] = mbl.get_x(0);
  1694. current_position[Y_AXIS] = mbl.get_y(0);
  1695. destination[X_AXIS] = current_position[X_AXIS];
  1696. destination[Y_AXIS] = current_position[Y_AXIS];
  1697. destination[Z_AXIS] = current_position[Z_AXIS];
  1698. destination[E_AXIS] = current_position[E_AXIS];
  1699. feedrate = homing_feedrate[X_AXIS];
  1700. line_to_destination();
  1701. st_synchronize();
  1702. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1703. sync_plan_position();
  1704. mbl.active = 1;
  1705. }
  1706. #endif
  1707. feedrate = saved_feedrate;
  1708. feedmultiply = saved_feedmultiply;
  1709. previous_millis_cmd = millis();
  1710. endstops_hit_on_purpose();
  1711. }
  1712. #if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
  1713. // Check for known positions in X and Y
  1714. inline bool can_run_bed_leveling() {
  1715. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
  1716. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1717. SERIAL_ECHO_START;
  1718. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1719. return false;
  1720. }
  1721. #endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
  1722. #ifdef MESH_BED_LEVELING
  1723. /**
  1724. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1725. * mesh to compensate for variable bed height
  1726. *
  1727. * Parameters With MESH_BED_LEVELING:
  1728. *
  1729. * S0 Produce a mesh report
  1730. * S1 Start probing mesh points
  1731. * S2 Probe the next mesh point
  1732. *
  1733. */
  1734. inline void gcode_G29() {
  1735. // Prevent leveling without first homing in X and Y
  1736. if (!can_run_bed_leveling()) return;
  1737. static int probe_point = -1;
  1738. int state = 0;
  1739. if (code_seen('S') || code_seen('s')) {
  1740. state = code_value_long();
  1741. if (state < 0 || state > 2) {
  1742. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1743. return;
  1744. }
  1745. }
  1746. if (state == 0) { // Dump mesh_bed_leveling
  1747. if (mbl.active) {
  1748. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1749. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1750. SERIAL_PROTOCOLPGM(",");
  1751. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1752. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1753. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1754. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1755. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1756. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1757. SERIAL_PROTOCOLPGM(" ");
  1758. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1759. }
  1760. SERIAL_EOL;
  1761. }
  1762. } else {
  1763. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1764. }
  1765. } else if (state == 1) { // Begin probing mesh points
  1766. mbl.reset();
  1767. probe_point = 0;
  1768. enquecommands_P(PSTR("G28"));
  1769. enquecommands_P(PSTR("G29 S2"));
  1770. } else if (state == 2) { // Goto next point
  1771. if (probe_point < 0) {
  1772. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1773. return;
  1774. }
  1775. int ix, iy;
  1776. if (probe_point == 0) {
  1777. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1778. sync_plan_position();
  1779. } else {
  1780. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1781. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1782. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1783. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1784. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1786. st_synchronize();
  1787. }
  1788. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1789. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1790. probe_point = -1;
  1791. mbl.active = 1;
  1792. enquecommands_P(PSTR("G28"));
  1793. return;
  1794. }
  1795. ix = probe_point % MESH_NUM_X_POINTS;
  1796. iy = probe_point / MESH_NUM_X_POINTS;
  1797. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1798. current_position[X_AXIS] = mbl.get_x(ix);
  1799. current_position[Y_AXIS] = mbl.get_y(iy);
  1800. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1801. st_synchronize();
  1802. probe_point++;
  1803. }
  1804. }
  1805. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1806. /**
  1807. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1808. * Will fail if the printer has not been homed with G28.
  1809. *
  1810. * Enhanced G29 Auto Bed Leveling Probe Routine
  1811. *
  1812. * Parameters With AUTO_BED_LEVELING_GRID:
  1813. *
  1814. * P Set the size of the grid that will be probed (P x P points).
  1815. * Not supported by non-linear delta printer bed leveling.
  1816. * Example: "G29 P4"
  1817. *
  1818. * S Set the XY travel speed between probe points (in mm/min)
  1819. *
  1820. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1821. * or clean the rotation Matrix. Useful to check the topology
  1822. * after a first run of G29.
  1823. *
  1824. * V Set the verbose level (0-4). Example: "G29 V3"
  1825. *
  1826. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1827. * This is useful for manual bed leveling and finding flaws in the bed (to
  1828. * assist with part placement).
  1829. * Not supported by non-linear delta printer bed leveling.
  1830. *
  1831. * F Set the Front limit of the probing grid
  1832. * B Set the Back limit of the probing grid
  1833. * L Set the Left limit of the probing grid
  1834. * R Set the Right limit of the probing grid
  1835. *
  1836. * Global Parameters:
  1837. *
  1838. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1839. * Include "E" to engage/disengage the probe for each sample.
  1840. * There's no extra effect if you have a fixed probe.
  1841. * Usage: "G29 E" or "G29 e"
  1842. *
  1843. */
  1844. inline void gcode_G29() {
  1845. // Prevent leveling without first homing in X and Y
  1846. if (!can_run_bed_leveling()) return;
  1847. int verbose_level = 1;
  1848. if (code_seen('V') || code_seen('v')) {
  1849. verbose_level = code_value_long();
  1850. if (verbose_level < 0 || verbose_level > 4) {
  1851. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1852. return;
  1853. }
  1854. }
  1855. bool dryrun = code_seen('D') || code_seen('d');
  1856. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1857. #ifdef AUTO_BED_LEVELING_GRID
  1858. #ifndef DELTA
  1859. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1860. #endif
  1861. if (verbose_level > 0)
  1862. {
  1863. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1864. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1865. }
  1866. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1867. #ifndef DELTA
  1868. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1869. if (auto_bed_leveling_grid_points < 2) {
  1870. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1871. return;
  1872. }
  1873. #endif
  1874. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1875. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1876. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1877. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1878. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1879. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1880. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1881. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1882. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1883. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1884. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1885. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1886. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1887. if (left_out || right_out || front_out || back_out) {
  1888. if (left_out) {
  1889. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1890. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1891. }
  1892. if (right_out) {
  1893. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1894. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1895. }
  1896. if (front_out) {
  1897. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1898. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1899. }
  1900. if (back_out) {
  1901. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1902. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1903. }
  1904. return;
  1905. }
  1906. #endif // AUTO_BED_LEVELING_GRID
  1907. #ifdef Z_PROBE_SLED
  1908. dock_sled(false); // engage (un-dock) the probe
  1909. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1910. engage_z_probe();
  1911. #endif
  1912. st_synchronize();
  1913. if (!dryrun) {
  1914. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1915. plan_bed_level_matrix.set_to_identity();
  1916. #ifdef DELTA
  1917. reset_bed_level();
  1918. #else //!DELTA
  1919. //vector_3 corrected_position = plan_get_position_mm();
  1920. //corrected_position.debug("position before G29");
  1921. vector_3 uncorrected_position = plan_get_position();
  1922. //uncorrected_position.debug("position during G29");
  1923. current_position[X_AXIS] = uncorrected_position.x;
  1924. current_position[Y_AXIS] = uncorrected_position.y;
  1925. current_position[Z_AXIS] = uncorrected_position.z;
  1926. sync_plan_position();
  1927. #endif // !DELTA
  1928. }
  1929. setup_for_endstop_move();
  1930. feedrate = homing_feedrate[Z_AXIS];
  1931. #ifdef AUTO_BED_LEVELING_GRID
  1932. // probe at the points of a lattice grid
  1933. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1934. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1935. #ifdef DELTA
  1936. delta_grid_spacing[0] = xGridSpacing;
  1937. delta_grid_spacing[1] = yGridSpacing;
  1938. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1939. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1940. #else // !DELTA
  1941. // solve the plane equation ax + by + d = z
  1942. // A is the matrix with rows [x y 1] for all the probed points
  1943. // B is the vector of the Z positions
  1944. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1945. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1946. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1947. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1948. eqnBVector[abl2], // "B" vector of Z points
  1949. mean = 0.0;
  1950. #endif // !DELTA
  1951. int probePointCounter = 0;
  1952. bool zig = true;
  1953. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1954. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1955. int xStart, xStop, xInc;
  1956. if (zig) {
  1957. xStart = 0;
  1958. xStop = auto_bed_leveling_grid_points;
  1959. xInc = 1;
  1960. }
  1961. else {
  1962. xStart = auto_bed_leveling_grid_points - 1;
  1963. xStop = -1;
  1964. xInc = -1;
  1965. }
  1966. #ifndef DELTA
  1967. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1968. // This gets the probe points in more readable order.
  1969. if (!do_topography_map) zig = !zig;
  1970. #endif
  1971. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1972. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1973. // raise extruder
  1974. float measured_z,
  1975. z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
  1976. #ifdef DELTA
  1977. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1978. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1979. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1980. #endif //DELTA
  1981. // Enhanced G29 - Do not retract servo between probes
  1982. ProbeAction act;
  1983. if (engage_probe_for_each_reading)
  1984. act = ProbeEngageAndRetract;
  1985. else if (yProbe == front_probe_bed_position && xCount == 0)
  1986. act = ProbeEngage;
  1987. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1988. act = ProbeRetract;
  1989. else
  1990. act = ProbeStay;
  1991. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1992. #ifndef DELTA
  1993. mean += measured_z;
  1994. eqnBVector[probePointCounter] = measured_z;
  1995. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1996. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1997. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1998. #else
  1999. bed_level[xCount][yCount] = measured_z + z_offset;
  2000. #endif
  2001. probePointCounter++;
  2002. manage_heater();
  2003. manage_inactivity();
  2004. lcd_update();
  2005. } //xProbe
  2006. } //yProbe
  2007. clean_up_after_endstop_move();
  2008. #ifdef DELTA
  2009. if (!dryrun) extrapolate_unprobed_bed_level();
  2010. print_bed_level();
  2011. #else // !DELTA
  2012. // solve lsq problem
  2013. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2014. mean /= abl2;
  2015. if (verbose_level) {
  2016. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2017. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2018. SERIAL_PROTOCOLPGM(" b: ");
  2019. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2020. SERIAL_PROTOCOLPGM(" d: ");
  2021. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2022. SERIAL_EOL;
  2023. if (verbose_level > 2) {
  2024. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2025. SERIAL_PROTOCOL_F(mean, 8);
  2026. SERIAL_EOL;
  2027. }
  2028. }
  2029. // Show the Topography map if enabled
  2030. if (do_topography_map) {
  2031. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2032. SERIAL_PROTOCOLPGM("+-----------+\n");
  2033. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2034. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2035. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2036. SERIAL_PROTOCOLPGM("+-----------+\n");
  2037. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2038. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2039. int ind = yy * auto_bed_leveling_grid_points + xx;
  2040. float diff = eqnBVector[ind] - mean;
  2041. if (diff >= 0.0)
  2042. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2043. else
  2044. SERIAL_PROTOCOLPGM(" ");
  2045. SERIAL_PROTOCOL_F(diff, 5);
  2046. } // xx
  2047. SERIAL_EOL;
  2048. } // yy
  2049. SERIAL_EOL;
  2050. } //do_topography_map
  2051. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2052. free(plane_equation_coefficients);
  2053. #endif //!DELTA
  2054. #else // !AUTO_BED_LEVELING_GRID
  2055. // Actions for each probe
  2056. ProbeAction p1, p2, p3;
  2057. if (engage_probe_for_each_reading)
  2058. p1 = p2 = p3 = ProbeEngageAndRetract;
  2059. else
  2060. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2061. // Probe at 3 arbitrary points
  2062. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2063. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2064. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2065. clean_up_after_endstop_move();
  2066. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2067. #endif // !AUTO_BED_LEVELING_GRID
  2068. #ifndef DELTA
  2069. if (verbose_level > 0)
  2070. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2071. if (!dryrun) {
  2072. // Correct the Z height difference from z-probe position and hotend tip position.
  2073. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2074. // When the bed is uneven, this height must be corrected.
  2075. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2076. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2077. z_tmp = current_position[Z_AXIS],
  2078. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2079. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2080. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2081. sync_plan_position();
  2082. }
  2083. #endif // !DELTA
  2084. #ifdef Z_PROBE_SLED
  2085. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2086. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2087. retract_z_probe();
  2088. #endif
  2089. #ifdef Z_PROBE_END_SCRIPT
  2090. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2091. st_synchronize();
  2092. #endif
  2093. }
  2094. #ifndef Z_PROBE_SLED
  2095. inline void gcode_G30() {
  2096. engage_z_probe(); // Engage Z Servo endstop if available
  2097. st_synchronize();
  2098. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2099. setup_for_endstop_move();
  2100. feedrate = homing_feedrate[Z_AXIS];
  2101. run_z_probe();
  2102. SERIAL_PROTOCOLPGM(MSG_BED);
  2103. SERIAL_PROTOCOLPGM(" X: ");
  2104. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2105. SERIAL_PROTOCOLPGM(" Y: ");
  2106. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2107. SERIAL_PROTOCOLPGM(" Z: ");
  2108. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2109. SERIAL_EOL;
  2110. clean_up_after_endstop_move();
  2111. retract_z_probe(); // Retract Z Servo endstop if available
  2112. }
  2113. #endif //!Z_PROBE_SLED
  2114. #endif //ENABLE_AUTO_BED_LEVELING
  2115. /**
  2116. * G92: Set current position to given X Y Z E
  2117. */
  2118. inline void gcode_G92() {
  2119. if (!code_seen(axis_codes[E_AXIS]))
  2120. st_synchronize();
  2121. bool didXYZ = false;
  2122. for (int i = 0; i < NUM_AXIS; i++) {
  2123. if (code_seen(axis_codes[i])) {
  2124. float v = current_position[i] = code_value();
  2125. if (i == E_AXIS)
  2126. plan_set_e_position(v);
  2127. else
  2128. didXYZ = true;
  2129. }
  2130. }
  2131. if (didXYZ) sync_plan_position();
  2132. }
  2133. #ifdef ULTIPANEL
  2134. /**
  2135. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2136. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2137. */
  2138. inline void gcode_M0_M1() {
  2139. char *src = strchr_pointer + 2;
  2140. unsigned long codenum = 0;
  2141. bool hasP = false, hasS = false;
  2142. if (code_seen('P')) {
  2143. codenum = code_value(); // milliseconds to wait
  2144. hasP = codenum > 0;
  2145. }
  2146. if (code_seen('S')) {
  2147. codenum = code_value() * 1000; // seconds to wait
  2148. hasS = codenum > 0;
  2149. }
  2150. char* starpos = strchr(src, '*');
  2151. if (starpos != NULL) *(starpos) = '\0';
  2152. while (*src == ' ') ++src;
  2153. if (!hasP && !hasS && *src != '\0')
  2154. lcd_setstatus(src, true);
  2155. else {
  2156. LCD_MESSAGEPGM(MSG_USERWAIT);
  2157. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2158. dontExpireStatus();
  2159. #endif
  2160. }
  2161. lcd_ignore_click();
  2162. st_synchronize();
  2163. previous_millis_cmd = millis();
  2164. if (codenum > 0) {
  2165. codenum += previous_millis_cmd; // keep track of when we started waiting
  2166. while(millis() < codenum && !lcd_clicked()) {
  2167. manage_heater();
  2168. manage_inactivity();
  2169. lcd_update();
  2170. }
  2171. lcd_ignore_click(false);
  2172. }
  2173. else {
  2174. if (!lcd_detected()) return;
  2175. while (!lcd_clicked()) {
  2176. manage_heater();
  2177. manage_inactivity();
  2178. lcd_update();
  2179. }
  2180. }
  2181. if (IS_SD_PRINTING)
  2182. LCD_MESSAGEPGM(MSG_RESUMING);
  2183. else
  2184. LCD_MESSAGEPGM(WELCOME_MSG);
  2185. }
  2186. #endif // ULTIPANEL
  2187. /**
  2188. * M17: Enable power on all stepper motors
  2189. */
  2190. inline void gcode_M17() {
  2191. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2192. enable_x();
  2193. enable_y();
  2194. enable_z();
  2195. enable_e0();
  2196. enable_e1();
  2197. enable_e2();
  2198. enable_e3();
  2199. }
  2200. #ifdef SDSUPPORT
  2201. /**
  2202. * M20: List SD card to serial output
  2203. */
  2204. inline void gcode_M20() {
  2205. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2206. card.ls();
  2207. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2208. }
  2209. /**
  2210. * M21: Init SD Card
  2211. */
  2212. inline void gcode_M21() {
  2213. card.initsd();
  2214. }
  2215. /**
  2216. * M22: Release SD Card
  2217. */
  2218. inline void gcode_M22() {
  2219. card.release();
  2220. }
  2221. /**
  2222. * M23: Select a file
  2223. */
  2224. inline void gcode_M23() {
  2225. char* codepos = strchr_pointer + 4;
  2226. char* starpos = strchr(codepos, '*');
  2227. if (starpos) *starpos = '\0';
  2228. card.openFile(codepos, true);
  2229. }
  2230. /**
  2231. * M24: Start SD Print
  2232. */
  2233. inline void gcode_M24() {
  2234. card.startFileprint();
  2235. starttime = millis();
  2236. }
  2237. /**
  2238. * M25: Pause SD Print
  2239. */
  2240. inline void gcode_M25() {
  2241. card.pauseSDPrint();
  2242. }
  2243. /**
  2244. * M26: Set SD Card file index
  2245. */
  2246. inline void gcode_M26() {
  2247. if (card.cardOK && code_seen('S'))
  2248. card.setIndex(code_value_long());
  2249. }
  2250. /**
  2251. * M27: Get SD Card status
  2252. */
  2253. inline void gcode_M27() {
  2254. card.getStatus();
  2255. }
  2256. /**
  2257. * M28: Start SD Write
  2258. */
  2259. inline void gcode_M28() {
  2260. char* codepos = strchr_pointer + 4;
  2261. char* starpos = strchr(codepos, '*');
  2262. if (starpos) {
  2263. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2264. strchr_pointer = strchr(npos, ' ') + 1;
  2265. *(starpos) = '\0';
  2266. }
  2267. card.openFile(codepos, false);
  2268. }
  2269. /**
  2270. * M29: Stop SD Write
  2271. * Processed in write to file routine above
  2272. */
  2273. inline void gcode_M29() {
  2274. // card.saving = false;
  2275. }
  2276. /**
  2277. * M30 <filename>: Delete SD Card file
  2278. */
  2279. inline void gcode_M30() {
  2280. if (card.cardOK) {
  2281. card.closefile();
  2282. char* starpos = strchr(strchr_pointer + 4, '*');
  2283. if (starpos) {
  2284. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2285. strchr_pointer = strchr(npos, ' ') + 1;
  2286. *(starpos) = '\0';
  2287. }
  2288. card.removeFile(strchr_pointer + 4);
  2289. }
  2290. }
  2291. #endif
  2292. /**
  2293. * M31: Get the time since the start of SD Print (or last M109)
  2294. */
  2295. inline void gcode_M31() {
  2296. stoptime = millis();
  2297. unsigned long t = (stoptime - starttime) / 1000;
  2298. int min = t / 60, sec = t % 60;
  2299. char time[30];
  2300. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2301. SERIAL_ECHO_START;
  2302. SERIAL_ECHOLN(time);
  2303. lcd_setstatus(time);
  2304. autotempShutdown();
  2305. }
  2306. #ifdef SDSUPPORT
  2307. /**
  2308. * M32: Select file and start SD Print
  2309. */
  2310. inline void gcode_M32() {
  2311. if (card.sdprinting)
  2312. st_synchronize();
  2313. char* codepos = strchr_pointer + 4;
  2314. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2315. if (! namestartpos)
  2316. namestartpos = codepos; //default name position, 4 letters after the M
  2317. else
  2318. namestartpos++; //to skip the '!'
  2319. char* starpos = strchr(codepos, '*');
  2320. if (starpos) *(starpos) = '\0';
  2321. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2322. if (card.cardOK) {
  2323. card.openFile(namestartpos, true, !call_procedure);
  2324. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2325. card.setIndex(code_value_long());
  2326. card.startFileprint();
  2327. if (!call_procedure)
  2328. starttime = millis(); //procedure calls count as normal print time.
  2329. }
  2330. }
  2331. /**
  2332. * M928: Start SD Write
  2333. */
  2334. inline void gcode_M928() {
  2335. char* starpos = strchr(strchr_pointer + 5, '*');
  2336. if (starpos) {
  2337. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2338. strchr_pointer = strchr(npos, ' ') + 1;
  2339. *(starpos) = '\0';
  2340. }
  2341. card.openLogFile(strchr_pointer + 5);
  2342. }
  2343. #endif // SDSUPPORT
  2344. /**
  2345. * M42: Change pin status via GCode
  2346. */
  2347. inline void gcode_M42() {
  2348. if (code_seen('S')) {
  2349. int pin_status = code_value(),
  2350. pin_number = LED_PIN;
  2351. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2352. pin_number = code_value();
  2353. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2354. if (sensitive_pins[i] == pin_number) {
  2355. pin_number = -1;
  2356. break;
  2357. }
  2358. }
  2359. #if defined(FAN_PIN) && FAN_PIN > -1
  2360. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2361. #endif
  2362. if (pin_number > -1) {
  2363. pinMode(pin_number, OUTPUT);
  2364. digitalWrite(pin_number, pin_status);
  2365. analogWrite(pin_number, pin_status);
  2366. }
  2367. } // code_seen('S')
  2368. }
  2369. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2370. #if Z_MIN_PIN == -1
  2371. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2372. #endif
  2373. /**
  2374. * M48: Z-Probe repeatability measurement function.
  2375. *
  2376. * Usage:
  2377. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2378. * P = Number of sampled points (4-50, default 10)
  2379. * X = Sample X position
  2380. * Y = Sample Y position
  2381. * V = Verbose level (0-4, default=1)
  2382. * E = Engage probe for each reading
  2383. * L = Number of legs of movement before probe
  2384. *
  2385. * This function assumes the bed has been homed. Specifically, that a G28 command
  2386. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2387. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2388. * regenerated.
  2389. *
  2390. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2391. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2392. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2393. */
  2394. inline void gcode_M48() {
  2395. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2396. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2397. double X_current, Y_current, Z_current;
  2398. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2399. if (code_seen('V') || code_seen('v')) {
  2400. verbose_level = code_value();
  2401. if (verbose_level < 0 || verbose_level > 4 ) {
  2402. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2403. return;
  2404. }
  2405. }
  2406. if (verbose_level > 0)
  2407. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2408. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2409. n_samples = code_value();
  2410. if (n_samples < 4 || n_samples > 50) {
  2411. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2412. return;
  2413. }
  2414. }
  2415. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2416. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2417. Z_current = st_get_position_mm(Z_AXIS);
  2418. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2419. ext_position = st_get_position_mm(E_AXIS);
  2420. if (code_seen('E') || code_seen('e'))
  2421. engage_probe_for_each_reading++;
  2422. if (code_seen('X') || code_seen('x')) {
  2423. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2424. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2425. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2426. return;
  2427. }
  2428. }
  2429. if (code_seen('Y') || code_seen('y')) {
  2430. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2431. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2432. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2433. return;
  2434. }
  2435. }
  2436. if (code_seen('L') || code_seen('l')) {
  2437. n_legs = code_value();
  2438. if (n_legs == 1) n_legs = 2;
  2439. if (n_legs < 0 || n_legs > 15) {
  2440. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2441. return;
  2442. }
  2443. }
  2444. //
  2445. // Do all the preliminary setup work. First raise the probe.
  2446. //
  2447. st_synchronize();
  2448. plan_bed_level_matrix.set_to_identity();
  2449. plan_buffer_line(X_current, Y_current, Z_start_location,
  2450. ext_position,
  2451. homing_feedrate[Z_AXIS] / 60,
  2452. active_extruder);
  2453. st_synchronize();
  2454. //
  2455. // Now get everything to the specified probe point So we can safely do a probe to
  2456. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2457. // use that as a starting point for each probe.
  2458. //
  2459. if (verbose_level > 2)
  2460. SERIAL_PROTOCOL("Positioning the probe...\n");
  2461. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2462. ext_position,
  2463. homing_feedrate[X_AXIS]/60,
  2464. active_extruder);
  2465. st_synchronize();
  2466. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2467. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2468. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2469. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2470. //
  2471. // OK, do the inital probe to get us close to the bed.
  2472. // Then retrace the right amount and use that in subsequent probes
  2473. //
  2474. engage_z_probe();
  2475. setup_for_endstop_move();
  2476. run_z_probe();
  2477. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2478. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2479. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2480. ext_position,
  2481. homing_feedrate[X_AXIS]/60,
  2482. active_extruder);
  2483. st_synchronize();
  2484. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2485. if (engage_probe_for_each_reading) retract_z_probe();
  2486. for (n=0; n < n_samples; n++) {
  2487. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2488. if (n_legs) {
  2489. double radius=0.0, theta=0.0;
  2490. int l;
  2491. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2492. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2493. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2494. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2495. //SERIAL_ECHOPAIR(" theta: ",theta);
  2496. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2497. //SERIAL_EOL;
  2498. float dir = rotational_direction ? 1 : -1;
  2499. for (l = 0; l < n_legs - 1; l++) {
  2500. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2501. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2502. if (radius < 0.0) radius = -radius;
  2503. X_current = X_probe_location + cos(theta) * radius;
  2504. Y_current = Y_probe_location + sin(theta) * radius;
  2505. // Make sure our X & Y are sane
  2506. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2507. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2508. if (verbose_level > 3) {
  2509. SERIAL_ECHOPAIR("x: ", X_current);
  2510. SERIAL_ECHOPAIR("y: ", Y_current);
  2511. SERIAL_EOL;
  2512. }
  2513. do_blocking_move_to( X_current, Y_current, Z_current );
  2514. }
  2515. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2516. }
  2517. if (engage_probe_for_each_reading) {
  2518. engage_z_probe();
  2519. delay(1000);
  2520. }
  2521. setup_for_endstop_move();
  2522. run_z_probe();
  2523. sample_set[n] = current_position[Z_AXIS];
  2524. //
  2525. // Get the current mean for the data points we have so far
  2526. //
  2527. sum = 0.0;
  2528. for (j=0; j<=n; j++) sum += sample_set[j];
  2529. mean = sum / (double (n+1));
  2530. //
  2531. // Now, use that mean to calculate the standard deviation for the
  2532. // data points we have so far
  2533. //
  2534. sum = 0.0;
  2535. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2536. sigma = sqrt( sum / (double (n+1)) );
  2537. if (verbose_level > 1) {
  2538. SERIAL_PROTOCOL(n+1);
  2539. SERIAL_PROTOCOL(" of ");
  2540. SERIAL_PROTOCOL(n_samples);
  2541. SERIAL_PROTOCOLPGM(" z: ");
  2542. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2543. }
  2544. if (verbose_level > 2) {
  2545. SERIAL_PROTOCOL(" mean: ");
  2546. SERIAL_PROTOCOL_F(mean,6);
  2547. SERIAL_PROTOCOL(" sigma: ");
  2548. SERIAL_PROTOCOL_F(sigma,6);
  2549. }
  2550. if (verbose_level > 0) SERIAL_EOL;
  2551. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2552. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2553. st_synchronize();
  2554. if (engage_probe_for_each_reading) {
  2555. retract_z_probe();
  2556. delay(1000);
  2557. }
  2558. }
  2559. retract_z_probe();
  2560. delay(1000);
  2561. clean_up_after_endstop_move();
  2562. // enable_endstops(true);
  2563. if (verbose_level > 0) {
  2564. SERIAL_PROTOCOLPGM("Mean: ");
  2565. SERIAL_PROTOCOL_F(mean, 6);
  2566. SERIAL_EOL;
  2567. }
  2568. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2569. SERIAL_PROTOCOL_F(sigma, 6);
  2570. SERIAL_EOL; SERIAL_EOL;
  2571. }
  2572. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2573. /**
  2574. * M104: Set hot end temperature
  2575. */
  2576. inline void gcode_M104() {
  2577. if (setTargetedHotend(104)) return;
  2578. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2579. #ifdef DUAL_X_CARRIAGE
  2580. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2581. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2582. #endif
  2583. setWatch();
  2584. }
  2585. /**
  2586. * M105: Read hot end and bed temperature
  2587. */
  2588. inline void gcode_M105() {
  2589. if (setTargetedHotend(105)) return;
  2590. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2591. SERIAL_PROTOCOLPGM("ok T:");
  2592. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2593. SERIAL_PROTOCOLPGM(" /");
  2594. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2595. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2596. SERIAL_PROTOCOLPGM(" B:");
  2597. SERIAL_PROTOCOL_F(degBed(),1);
  2598. SERIAL_PROTOCOLPGM(" /");
  2599. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2600. #endif //TEMP_BED_PIN
  2601. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2602. SERIAL_PROTOCOLPGM(" T");
  2603. SERIAL_PROTOCOL(cur_extruder);
  2604. SERIAL_PROTOCOLPGM(":");
  2605. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2606. SERIAL_PROTOCOLPGM(" /");
  2607. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2608. }
  2609. #else
  2610. SERIAL_ERROR_START;
  2611. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2612. #endif
  2613. SERIAL_PROTOCOLPGM(" @:");
  2614. #ifdef EXTRUDER_WATTS
  2615. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2616. SERIAL_PROTOCOLPGM("W");
  2617. #else
  2618. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2619. #endif
  2620. SERIAL_PROTOCOLPGM(" B@:");
  2621. #ifdef BED_WATTS
  2622. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2623. SERIAL_PROTOCOLPGM("W");
  2624. #else
  2625. SERIAL_PROTOCOL(getHeaterPower(-1));
  2626. #endif
  2627. #ifdef SHOW_TEMP_ADC_VALUES
  2628. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2629. SERIAL_PROTOCOLPGM(" ADC B:");
  2630. SERIAL_PROTOCOL_F(degBed(),1);
  2631. SERIAL_PROTOCOLPGM("C->");
  2632. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2633. #endif
  2634. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2635. SERIAL_PROTOCOLPGM(" T");
  2636. SERIAL_PROTOCOL(cur_extruder);
  2637. SERIAL_PROTOCOLPGM(":");
  2638. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2639. SERIAL_PROTOCOLPGM("C->");
  2640. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2641. }
  2642. #endif
  2643. SERIAL_PROTOCOLLN("");
  2644. }
  2645. #if defined(FAN_PIN) && FAN_PIN > -1
  2646. /**
  2647. * M106: Set Fan Speed
  2648. */
  2649. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2650. /**
  2651. * M107: Fan Off
  2652. */
  2653. inline void gcode_M107() { fanSpeed = 0; }
  2654. #endif //FAN_PIN
  2655. /**
  2656. * M109: Wait for extruder(s) to reach temperature
  2657. */
  2658. inline void gcode_M109() {
  2659. if (setTargetedHotend(109)) return;
  2660. LCD_MESSAGEPGM(MSG_HEATING);
  2661. CooldownNoWait = code_seen('S');
  2662. if (CooldownNoWait || code_seen('R')) {
  2663. setTargetHotend(code_value(), tmp_extruder);
  2664. #ifdef DUAL_X_CARRIAGE
  2665. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2666. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2667. #endif
  2668. }
  2669. #ifdef AUTOTEMP
  2670. autotemp_enabled = code_seen('F');
  2671. if (autotemp_enabled) autotemp_factor = code_value();
  2672. if (code_seen('S')) autotemp_min = code_value();
  2673. if (code_seen('B')) autotemp_max = code_value();
  2674. #endif
  2675. setWatch();
  2676. unsigned long timetemp = millis();
  2677. /* See if we are heating up or cooling down */
  2678. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2679. cancel_heatup = false;
  2680. #ifdef TEMP_RESIDENCY_TIME
  2681. long residencyStart = -1;
  2682. /* continue to loop until we have reached the target temp
  2683. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2684. while((!cancel_heatup)&&((residencyStart == -1) ||
  2685. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2686. #else
  2687. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2688. #endif //TEMP_RESIDENCY_TIME
  2689. { // while loop
  2690. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2691. SERIAL_PROTOCOLPGM("T:");
  2692. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2693. SERIAL_PROTOCOLPGM(" E:");
  2694. SERIAL_PROTOCOL((int)tmp_extruder);
  2695. #ifdef TEMP_RESIDENCY_TIME
  2696. SERIAL_PROTOCOLPGM(" W:");
  2697. if (residencyStart > -1) {
  2698. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2699. SERIAL_PROTOCOLLN( timetemp );
  2700. }
  2701. else {
  2702. SERIAL_PROTOCOLLN( "?" );
  2703. }
  2704. #else
  2705. SERIAL_PROTOCOLLN("");
  2706. #endif
  2707. timetemp = millis();
  2708. }
  2709. manage_heater();
  2710. manage_inactivity();
  2711. lcd_update();
  2712. #ifdef TEMP_RESIDENCY_TIME
  2713. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2714. // or when current temp falls outside the hysteresis after target temp was reached
  2715. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2716. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2717. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2718. {
  2719. residencyStart = millis();
  2720. }
  2721. #endif //TEMP_RESIDENCY_TIME
  2722. }
  2723. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2724. starttime = previous_millis_cmd = millis();
  2725. }
  2726. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2727. /**
  2728. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2729. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2730. */
  2731. inline void gcode_M190() {
  2732. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2733. CooldownNoWait = code_seen('S');
  2734. if (CooldownNoWait || code_seen('R'))
  2735. setTargetBed(code_value());
  2736. unsigned long timetemp = millis();
  2737. cancel_heatup = false;
  2738. target_direction = isHeatingBed(); // true if heating, false if cooling
  2739. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2740. unsigned long ms = millis();
  2741. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2742. timetemp = ms;
  2743. float tt = degHotend(active_extruder);
  2744. SERIAL_PROTOCOLPGM("T:");
  2745. SERIAL_PROTOCOL(tt);
  2746. SERIAL_PROTOCOLPGM(" E:");
  2747. SERIAL_PROTOCOL((int)active_extruder);
  2748. SERIAL_PROTOCOLPGM(" B:");
  2749. SERIAL_PROTOCOL_F(degBed(), 1);
  2750. SERIAL_PROTOCOLLN("");
  2751. }
  2752. manage_heater();
  2753. manage_inactivity();
  2754. lcd_update();
  2755. }
  2756. LCD_MESSAGEPGM(MSG_BED_DONE);
  2757. previous_millis_cmd = millis();
  2758. }
  2759. #endif // TEMP_BED_PIN > -1
  2760. /**
  2761. * M112: Emergency Stop
  2762. */
  2763. inline void gcode_M112() {
  2764. kill();
  2765. }
  2766. #ifdef BARICUDA
  2767. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2768. /**
  2769. * M126: Heater 1 valve open
  2770. */
  2771. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2772. /**
  2773. * M127: Heater 1 valve close
  2774. */
  2775. inline void gcode_M127() { ValvePressure = 0; }
  2776. #endif
  2777. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2778. /**
  2779. * M128: Heater 2 valve open
  2780. */
  2781. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2782. /**
  2783. * M129: Heater 2 valve close
  2784. */
  2785. inline void gcode_M129() { EtoPPressure = 0; }
  2786. #endif
  2787. #endif //BARICUDA
  2788. /**
  2789. * M140: Set bed temperature
  2790. */
  2791. inline void gcode_M140() {
  2792. if (code_seen('S')) setTargetBed(code_value());
  2793. }
  2794. #if HAS_POWER_SWITCH
  2795. /**
  2796. * M80: Turn on Power Supply
  2797. */
  2798. inline void gcode_M80() {
  2799. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2800. // If you have a switch on suicide pin, this is useful
  2801. // if you want to start another print with suicide feature after
  2802. // a print without suicide...
  2803. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2804. OUT_WRITE(SUICIDE_PIN, HIGH);
  2805. #endif
  2806. #ifdef ULTIPANEL
  2807. powersupply = true;
  2808. LCD_MESSAGEPGM(WELCOME_MSG);
  2809. lcd_update();
  2810. #endif
  2811. }
  2812. #endif // HAS_POWER_SWITCH
  2813. /**
  2814. * M81: Turn off Power, including Power Supply, if there is one.
  2815. *
  2816. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2817. */
  2818. inline void gcode_M81() {
  2819. disable_heater();
  2820. st_synchronize();
  2821. disable_e0();
  2822. disable_e1();
  2823. disable_e2();
  2824. disable_e3();
  2825. finishAndDisableSteppers();
  2826. fanSpeed = 0;
  2827. delay(1000); // Wait 1 second before switching off
  2828. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2829. st_synchronize();
  2830. suicide();
  2831. #elif HAS_POWER_SWITCH
  2832. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2833. #endif
  2834. #ifdef ULTIPANEL
  2835. #if HAS_POWER_SWITCH
  2836. powersupply = false;
  2837. #endif
  2838. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2839. lcd_update();
  2840. #endif
  2841. }
  2842. /**
  2843. * M82: Set E codes absolute (default)
  2844. */
  2845. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2846. /**
  2847. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2848. */
  2849. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2850. /**
  2851. * M18, M84: Disable all stepper motors
  2852. */
  2853. inline void gcode_M18_M84() {
  2854. if (code_seen('S')) {
  2855. stepper_inactive_time = code_value() * 1000;
  2856. }
  2857. else {
  2858. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2859. if (all_axis) {
  2860. st_synchronize();
  2861. disable_e0();
  2862. disable_e1();
  2863. disable_e2();
  2864. disable_e3();
  2865. finishAndDisableSteppers();
  2866. }
  2867. else {
  2868. st_synchronize();
  2869. if (code_seen('X')) disable_x();
  2870. if (code_seen('Y')) disable_y();
  2871. if (code_seen('Z')) disable_z();
  2872. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2873. if (code_seen('E')) {
  2874. disable_e0();
  2875. disable_e1();
  2876. disable_e2();
  2877. disable_e3();
  2878. }
  2879. #endif
  2880. }
  2881. }
  2882. }
  2883. /**
  2884. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2885. */
  2886. inline void gcode_M85() {
  2887. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2888. }
  2889. /**
  2890. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2891. */
  2892. inline void gcode_M92() {
  2893. for(int8_t i=0; i < NUM_AXIS; i++) {
  2894. if (code_seen(axis_codes[i])) {
  2895. if (i == E_AXIS) {
  2896. float value = code_value();
  2897. if (value < 20.0) {
  2898. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2899. max_e_jerk *= factor;
  2900. max_feedrate[i] *= factor;
  2901. axis_steps_per_sqr_second[i] *= factor;
  2902. }
  2903. axis_steps_per_unit[i] = value;
  2904. }
  2905. else {
  2906. axis_steps_per_unit[i] = code_value();
  2907. }
  2908. }
  2909. }
  2910. }
  2911. /**
  2912. * M114: Output current position to serial port
  2913. */
  2914. inline void gcode_M114() {
  2915. SERIAL_PROTOCOLPGM("X:");
  2916. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2917. SERIAL_PROTOCOLPGM(" Y:");
  2918. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2919. SERIAL_PROTOCOLPGM(" Z:");
  2920. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2921. SERIAL_PROTOCOLPGM(" E:");
  2922. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2923. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2924. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2925. SERIAL_PROTOCOLPGM(" Y:");
  2926. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2927. SERIAL_PROTOCOLPGM(" Z:");
  2928. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2929. SERIAL_PROTOCOLLN("");
  2930. #ifdef SCARA
  2931. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2932. SERIAL_PROTOCOL(delta[X_AXIS]);
  2933. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2934. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2935. SERIAL_PROTOCOLLN("");
  2936. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2937. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2938. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2939. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2940. SERIAL_PROTOCOLLN("");
  2941. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2942. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2943. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2944. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2945. SERIAL_PROTOCOLLN("");
  2946. SERIAL_PROTOCOLLN("");
  2947. #endif
  2948. }
  2949. /**
  2950. * M115: Capabilities string
  2951. */
  2952. inline void gcode_M115() {
  2953. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2954. }
  2955. /**
  2956. * M117: Set LCD Status Message
  2957. */
  2958. inline void gcode_M117() {
  2959. char* codepos = strchr_pointer + 5;
  2960. char* starpos = strchr(codepos, '*');
  2961. if (starpos) *starpos = '\0';
  2962. lcd_setstatus(codepos);
  2963. }
  2964. /**
  2965. * M119: Output endstop states to serial output
  2966. */
  2967. inline void gcode_M119() {
  2968. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2969. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2970. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2971. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2972. #endif
  2973. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2974. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2975. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2976. #endif
  2977. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2978. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2979. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2980. #endif
  2981. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2982. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2983. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2984. #endif
  2985. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2986. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2987. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2988. #endif
  2989. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2990. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2991. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2992. #endif
  2993. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  2994. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2995. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2996. #endif
  2997. }
  2998. /**
  2999. * M120: Enable endstops
  3000. */
  3001. inline void gcode_M120() { enable_endstops(false); }
  3002. /**
  3003. * M121: Disable endstops
  3004. */
  3005. inline void gcode_M121() { enable_endstops(true); }
  3006. #ifdef BLINKM
  3007. /**
  3008. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3009. */
  3010. inline void gcode_M150() {
  3011. SendColors(
  3012. code_seen('R') ? (byte)code_value() : 0,
  3013. code_seen('U') ? (byte)code_value() : 0,
  3014. code_seen('B') ? (byte)code_value() : 0
  3015. );
  3016. }
  3017. #endif // BLINKM
  3018. /**
  3019. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3020. * T<extruder>
  3021. * D<millimeters>
  3022. */
  3023. inline void gcode_M200() {
  3024. tmp_extruder = active_extruder;
  3025. if (code_seen('T')) {
  3026. tmp_extruder = code_value();
  3027. if (tmp_extruder >= EXTRUDERS) {
  3028. SERIAL_ECHO_START;
  3029. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3030. return;
  3031. }
  3032. }
  3033. if (code_seen('D')) {
  3034. float diameter = code_value();
  3035. // setting any extruder filament size disables volumetric on the assumption that
  3036. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3037. // for all extruders
  3038. volumetric_enabled = (diameter != 0.0);
  3039. if (volumetric_enabled) {
  3040. filament_size[tmp_extruder] = diameter;
  3041. // make sure all extruders have some sane value for the filament size
  3042. for (int i=0; i<EXTRUDERS; i++)
  3043. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3044. }
  3045. }
  3046. else {
  3047. //reserved for setting filament diameter via UFID or filament measuring device
  3048. return;
  3049. }
  3050. calculate_volumetric_multipliers();
  3051. }
  3052. /**
  3053. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3054. */
  3055. inline void gcode_M201() {
  3056. for (int8_t i=0; i < NUM_AXIS; i++) {
  3057. if (code_seen(axis_codes[i])) {
  3058. max_acceleration_units_per_sq_second[i] = code_value();
  3059. }
  3060. }
  3061. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3062. reset_acceleration_rates();
  3063. }
  3064. #if 0 // Not used for Sprinter/grbl gen6
  3065. inline void gcode_M202() {
  3066. for(int8_t i=0; i < NUM_AXIS; i++) {
  3067. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3068. }
  3069. }
  3070. #endif
  3071. /**
  3072. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3073. */
  3074. inline void gcode_M203() {
  3075. for (int8_t i=0; i < NUM_AXIS; i++) {
  3076. if (code_seen(axis_codes[i])) {
  3077. max_feedrate[i] = code_value();
  3078. }
  3079. }
  3080. }
  3081. /**
  3082. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3083. *
  3084. * P = Printing moves
  3085. * R = Retract only (no X, Y, Z) moves
  3086. * T = Travel (non printing) moves
  3087. *
  3088. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3089. */
  3090. inline void gcode_M204() {
  3091. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3092. {
  3093. acceleration = code_value();
  3094. travel_acceleration = acceleration;
  3095. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3096. SERIAL_EOL;
  3097. }
  3098. if (code_seen('P'))
  3099. {
  3100. acceleration = code_value();
  3101. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3102. SERIAL_EOL;
  3103. }
  3104. if (code_seen('R'))
  3105. {
  3106. retract_acceleration = code_value();
  3107. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3108. SERIAL_EOL;
  3109. }
  3110. if (code_seen('T'))
  3111. {
  3112. travel_acceleration = code_value();
  3113. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3114. SERIAL_EOL;
  3115. }
  3116. }
  3117. /**
  3118. * M205: Set Advanced Settings
  3119. *
  3120. * S = Min Feed Rate (mm/s)
  3121. * T = Min Travel Feed Rate (mm/s)
  3122. * B = Min Segment Time (µs)
  3123. * X = Max XY Jerk (mm/s/s)
  3124. * Z = Max Z Jerk (mm/s/s)
  3125. * E = Max E Jerk (mm/s/s)
  3126. */
  3127. inline void gcode_M205() {
  3128. if (code_seen('S')) minimumfeedrate = code_value();
  3129. if (code_seen('T')) mintravelfeedrate = code_value();
  3130. if (code_seen('B')) minsegmenttime = code_value();
  3131. if (code_seen('X')) max_xy_jerk = code_value();
  3132. if (code_seen('Z')) max_z_jerk = code_value();
  3133. if (code_seen('E')) max_e_jerk = code_value();
  3134. }
  3135. /**
  3136. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3137. */
  3138. inline void gcode_M206() {
  3139. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3140. if (code_seen(axis_codes[i])) {
  3141. home_offset[i] = code_value();
  3142. }
  3143. }
  3144. #ifdef SCARA
  3145. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3146. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3147. #endif
  3148. }
  3149. #ifdef DELTA
  3150. /**
  3151. * M665: Set delta configurations
  3152. *
  3153. * L = diagonal rod
  3154. * R = delta radius
  3155. * S = segments per second
  3156. */
  3157. inline void gcode_M665() {
  3158. if (code_seen('L')) delta_diagonal_rod = code_value();
  3159. if (code_seen('R')) delta_radius = code_value();
  3160. if (code_seen('S')) delta_segments_per_second = code_value();
  3161. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3162. }
  3163. /**
  3164. * M666: Set delta endstop adjustment
  3165. */
  3166. inline void gcode_M666() {
  3167. for (int8_t i = 0; i < 3; i++) {
  3168. if (code_seen(axis_codes[i])) {
  3169. endstop_adj[i] = code_value();
  3170. }
  3171. }
  3172. }
  3173. #elif defined(Z_DUAL_ENDSTOPS)
  3174. /**
  3175. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3176. */
  3177. inline void gcode_M666() {
  3178. if (code_seen('Z')) z_endstop_adj = code_value();
  3179. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3180. SERIAL_EOL;
  3181. }
  3182. #endif // DELTA
  3183. #ifdef FWRETRACT
  3184. /**
  3185. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3186. */
  3187. inline void gcode_M207() {
  3188. if (code_seen('S')) retract_length = code_value();
  3189. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3190. if (code_seen('Z')) retract_zlift = code_value();
  3191. }
  3192. /**
  3193. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3194. */
  3195. inline void gcode_M208() {
  3196. if (code_seen('S')) retract_recover_length = code_value();
  3197. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3198. }
  3199. /**
  3200. * M209: Enable automatic retract (M209 S1)
  3201. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3202. */
  3203. inline void gcode_M209() {
  3204. if (code_seen('S')) {
  3205. int t = code_value();
  3206. switch(t) {
  3207. case 0:
  3208. autoretract_enabled = false;
  3209. break;
  3210. case 1:
  3211. autoretract_enabled = true;
  3212. break;
  3213. default:
  3214. SERIAL_ECHO_START;
  3215. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3216. SERIAL_ECHO(cmdbuffer[bufindr]);
  3217. SERIAL_ECHOLNPGM("\"");
  3218. return;
  3219. }
  3220. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3221. }
  3222. }
  3223. #endif // FWRETRACT
  3224. #if EXTRUDERS > 1
  3225. /**
  3226. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3227. */
  3228. inline void gcode_M218() {
  3229. if (setTargetedHotend(218)) return;
  3230. if (code_seen('X')) extruder_offset[tmp_extruder][X_AXIS] = code_value();
  3231. if (code_seen('Y')) extruder_offset[tmp_extruder][Y_AXIS] = code_value();
  3232. #ifdef DUAL_X_CARRIAGE
  3233. if (code_seen('Z')) extruder_offset[tmp_extruder][Z_AXIS] = code_value();
  3234. #endif
  3235. SERIAL_ECHO_START;
  3236. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3237. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3238. SERIAL_ECHO(" ");
  3239. SERIAL_ECHO(extruder_offset[tmp_extruder][X_AXIS]);
  3240. SERIAL_ECHO(",");
  3241. SERIAL_ECHO(extruder_offset[tmp_extruder][Y_AXIS]);
  3242. #ifdef DUAL_X_CARRIAGE
  3243. SERIAL_ECHO(",");
  3244. SERIAL_ECHO(extruder_offset[tmp_extruder][Z_AXIS]);
  3245. #endif
  3246. }
  3247. SERIAL_EOL;
  3248. }
  3249. #endif // EXTRUDERS > 1
  3250. /**
  3251. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3252. */
  3253. inline void gcode_M220() {
  3254. if (code_seen('S')) feedmultiply = code_value();
  3255. }
  3256. /**
  3257. * M221: Set extrusion percentage (M221 T0 S95)
  3258. */
  3259. inline void gcode_M221() {
  3260. if (code_seen('S')) {
  3261. int sval = code_value();
  3262. if (code_seen('T')) {
  3263. if (setTargetedHotend(221)) return;
  3264. extruder_multiply[tmp_extruder] = sval;
  3265. }
  3266. else {
  3267. extruder_multiply[active_extruder] = sval;
  3268. }
  3269. }
  3270. }
  3271. /**
  3272. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3273. */
  3274. inline void gcode_M226() {
  3275. if (code_seen('P')) {
  3276. int pin_number = code_value();
  3277. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3278. if (pin_state >= -1 && pin_state <= 1) {
  3279. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3280. if (sensitive_pins[i] == pin_number) {
  3281. pin_number = -1;
  3282. break;
  3283. }
  3284. }
  3285. if (pin_number > -1) {
  3286. int target = LOW;
  3287. st_synchronize();
  3288. pinMode(pin_number, INPUT);
  3289. switch(pin_state){
  3290. case 1:
  3291. target = HIGH;
  3292. break;
  3293. case 0:
  3294. target = LOW;
  3295. break;
  3296. case -1:
  3297. target = !digitalRead(pin_number);
  3298. break;
  3299. }
  3300. while(digitalRead(pin_number) != target) {
  3301. manage_heater();
  3302. manage_inactivity();
  3303. lcd_update();
  3304. }
  3305. } // pin_number > -1
  3306. } // pin_state -1 0 1
  3307. } // code_seen('P')
  3308. }
  3309. #if NUM_SERVOS > 0
  3310. /**
  3311. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3312. */
  3313. inline void gcode_M280() {
  3314. int servo_index = code_seen('P') ? code_value() : -1;
  3315. int servo_position = 0;
  3316. if (code_seen('S')) {
  3317. servo_position = code_value();
  3318. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3319. #if SERVO_LEVELING
  3320. servos[servo_index].attach(0);
  3321. #endif
  3322. servos[servo_index].write(servo_position);
  3323. #if SERVO_LEVELING
  3324. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3325. servos[servo_index].detach();
  3326. #endif
  3327. }
  3328. else {
  3329. SERIAL_ECHO_START;
  3330. SERIAL_ECHO("Servo ");
  3331. SERIAL_ECHO(servo_index);
  3332. SERIAL_ECHOLN(" out of range");
  3333. }
  3334. }
  3335. else if (servo_index >= 0) {
  3336. SERIAL_PROTOCOL(MSG_OK);
  3337. SERIAL_PROTOCOL(" Servo ");
  3338. SERIAL_PROTOCOL(servo_index);
  3339. SERIAL_PROTOCOL(": ");
  3340. SERIAL_PROTOCOL(servos[servo_index].read());
  3341. SERIAL_PROTOCOLLN("");
  3342. }
  3343. }
  3344. #endif // NUM_SERVOS > 0
  3345. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3346. /**
  3347. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3348. */
  3349. inline void gcode_M300() {
  3350. int beepS = code_seen('S') ? code_value() : 110;
  3351. int beepP = code_seen('P') ? code_value() : 1000;
  3352. if (beepS > 0) {
  3353. #if BEEPER > 0
  3354. tone(BEEPER, beepS);
  3355. delay(beepP);
  3356. noTone(BEEPER);
  3357. #elif defined(ULTRALCD)
  3358. lcd_buzz(beepS, beepP);
  3359. #elif defined(LCD_USE_I2C_BUZZER)
  3360. lcd_buzz(beepP, beepS);
  3361. #endif
  3362. }
  3363. else {
  3364. delay(beepP);
  3365. }
  3366. }
  3367. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3368. #ifdef PIDTEMP
  3369. /**
  3370. * M301: Set PID parameters P I D (and optionally C)
  3371. */
  3372. inline void gcode_M301() {
  3373. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3374. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3375. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3376. if (e < EXTRUDERS) { // catch bad input value
  3377. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3378. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3379. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3380. #ifdef PID_ADD_EXTRUSION_RATE
  3381. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3382. #endif
  3383. updatePID();
  3384. SERIAL_PROTOCOL(MSG_OK);
  3385. #ifdef PID_PARAMS_PER_EXTRUDER
  3386. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3387. SERIAL_PROTOCOL(e);
  3388. #endif // PID_PARAMS_PER_EXTRUDER
  3389. SERIAL_PROTOCOL(" p:");
  3390. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3391. SERIAL_PROTOCOL(" i:");
  3392. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3393. SERIAL_PROTOCOL(" d:");
  3394. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3395. #ifdef PID_ADD_EXTRUSION_RATE
  3396. SERIAL_PROTOCOL(" c:");
  3397. //Kc does not have scaling applied above, or in resetting defaults
  3398. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3399. #endif
  3400. SERIAL_PROTOCOLLN("");
  3401. }
  3402. else {
  3403. SERIAL_ECHO_START;
  3404. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3405. }
  3406. }
  3407. #endif // PIDTEMP
  3408. #ifdef PIDTEMPBED
  3409. inline void gcode_M304() {
  3410. if (code_seen('P')) bedKp = code_value();
  3411. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3412. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3413. updatePID();
  3414. SERIAL_PROTOCOL(MSG_OK);
  3415. SERIAL_PROTOCOL(" p:");
  3416. SERIAL_PROTOCOL(bedKp);
  3417. SERIAL_PROTOCOL(" i:");
  3418. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3419. SERIAL_PROTOCOL(" d:");
  3420. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3421. SERIAL_PROTOCOLLN("");
  3422. }
  3423. #endif // PIDTEMPBED
  3424. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3425. /**
  3426. * M240: Trigger a camera by emulating a Canon RC-1
  3427. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3428. */
  3429. inline void gcode_M240() {
  3430. #ifdef CHDK
  3431. OUT_WRITE(CHDK, HIGH);
  3432. chdkHigh = millis();
  3433. chdkActive = true;
  3434. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3435. const uint8_t NUM_PULSES = 16;
  3436. const float PULSE_LENGTH = 0.01524;
  3437. for (int i = 0; i < NUM_PULSES; i++) {
  3438. WRITE(PHOTOGRAPH_PIN, HIGH);
  3439. _delay_ms(PULSE_LENGTH);
  3440. WRITE(PHOTOGRAPH_PIN, LOW);
  3441. _delay_ms(PULSE_LENGTH);
  3442. }
  3443. delay(7.33);
  3444. for (int i = 0; i < NUM_PULSES; i++) {
  3445. WRITE(PHOTOGRAPH_PIN, HIGH);
  3446. _delay_ms(PULSE_LENGTH);
  3447. WRITE(PHOTOGRAPH_PIN, LOW);
  3448. _delay_ms(PULSE_LENGTH);
  3449. }
  3450. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3451. }
  3452. #endif // CHDK || PHOTOGRAPH_PIN
  3453. #ifdef DOGLCD
  3454. /**
  3455. * M250: Read and optionally set the LCD contrast
  3456. */
  3457. inline void gcode_M250() {
  3458. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3459. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3460. SERIAL_PROTOCOL(lcd_contrast);
  3461. SERIAL_PROTOCOLLN("");
  3462. }
  3463. #endif // DOGLCD
  3464. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3465. /**
  3466. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3467. */
  3468. inline void gcode_M302() {
  3469. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3470. }
  3471. #endif // PREVENT_DANGEROUS_EXTRUDE
  3472. /**
  3473. * M303: PID relay autotune
  3474. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3475. * E<extruder> (-1 for the bed)
  3476. * C<cycles>
  3477. */
  3478. inline void gcode_M303() {
  3479. int e = code_seen('E') ? code_value_long() : 0;
  3480. int c = code_seen('C') ? code_value_long() : 5;
  3481. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3482. PID_autotune(temp, e, c);
  3483. }
  3484. #ifdef SCARA
  3485. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3486. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3487. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3488. if (! Stopped) {
  3489. //get_coordinates(); // For X Y Z E F
  3490. delta[X_AXIS] = delta_x;
  3491. delta[Y_AXIS] = delta_y;
  3492. calculate_SCARA_forward_Transform(delta);
  3493. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3494. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3495. prepare_move();
  3496. //ClearToSend();
  3497. return true;
  3498. }
  3499. return false;
  3500. }
  3501. /**
  3502. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3503. */
  3504. inline bool gcode_M360() {
  3505. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3506. return SCARA_move_to_cal(0, 120);
  3507. }
  3508. /**
  3509. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3510. */
  3511. inline bool gcode_M361() {
  3512. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3513. return SCARA_move_to_cal(90, 130);
  3514. }
  3515. /**
  3516. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3517. */
  3518. inline bool gcode_M362() {
  3519. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3520. return SCARA_move_to_cal(60, 180);
  3521. }
  3522. /**
  3523. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3524. */
  3525. inline bool gcode_M363() {
  3526. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3527. return SCARA_move_to_cal(50, 90);
  3528. }
  3529. /**
  3530. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3531. */
  3532. inline bool gcode_M364() {
  3533. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3534. return SCARA_move_to_cal(45, 135);
  3535. }
  3536. /**
  3537. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3538. */
  3539. inline void gcode_M365() {
  3540. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3541. if (code_seen(axis_codes[i])) {
  3542. axis_scaling[i] = code_value();
  3543. }
  3544. }
  3545. }
  3546. #endif // SCARA
  3547. #ifdef EXT_SOLENOID
  3548. void enable_solenoid(uint8_t num) {
  3549. switch(num) {
  3550. case 0:
  3551. OUT_WRITE(SOL0_PIN, HIGH);
  3552. break;
  3553. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3554. case 1:
  3555. OUT_WRITE(SOL1_PIN, HIGH);
  3556. break;
  3557. #endif
  3558. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3559. case 2:
  3560. OUT_WRITE(SOL2_PIN, HIGH);
  3561. break;
  3562. #endif
  3563. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3564. case 3:
  3565. OUT_WRITE(SOL3_PIN, HIGH);
  3566. break;
  3567. #endif
  3568. default:
  3569. SERIAL_ECHO_START;
  3570. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3571. break;
  3572. }
  3573. }
  3574. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3575. void disable_all_solenoids() {
  3576. OUT_WRITE(SOL0_PIN, LOW);
  3577. OUT_WRITE(SOL1_PIN, LOW);
  3578. OUT_WRITE(SOL2_PIN, LOW);
  3579. OUT_WRITE(SOL3_PIN, LOW);
  3580. }
  3581. /**
  3582. * M380: Enable solenoid on the active extruder
  3583. */
  3584. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3585. /**
  3586. * M381: Disable all solenoids
  3587. */
  3588. inline void gcode_M381() { disable_all_solenoids(); }
  3589. #endif // EXT_SOLENOID
  3590. /**
  3591. * M400: Finish all moves
  3592. */
  3593. inline void gcode_M400() { st_synchronize(); }
  3594. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3595. /**
  3596. * M401: Engage Z Servo endstop if available
  3597. */
  3598. inline void gcode_M401() { engage_z_probe(); }
  3599. /**
  3600. * M402: Retract Z Servo endstop if enabled
  3601. */
  3602. inline void gcode_M402() { retract_z_probe(); }
  3603. #endif
  3604. #ifdef FILAMENT_SENSOR
  3605. /**
  3606. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3607. */
  3608. inline void gcode_M404() {
  3609. #if FILWIDTH_PIN > -1
  3610. if (code_seen('W')) {
  3611. filament_width_nominal = code_value();
  3612. }
  3613. else {
  3614. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3615. SERIAL_PROTOCOLLN(filament_width_nominal);
  3616. }
  3617. #endif
  3618. }
  3619. /**
  3620. * M405: Turn on filament sensor for control
  3621. */
  3622. inline void gcode_M405() {
  3623. if (code_seen('D')) meas_delay_cm = code_value();
  3624. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3625. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3626. int temp_ratio = widthFil_to_size_ratio();
  3627. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3628. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3629. delay_index1 = delay_index2 = 0;
  3630. }
  3631. filament_sensor = true;
  3632. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3633. //SERIAL_PROTOCOL(filament_width_meas);
  3634. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3635. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3636. }
  3637. /**
  3638. * M406: Turn off filament sensor for control
  3639. */
  3640. inline void gcode_M406() { filament_sensor = false; }
  3641. /**
  3642. * M407: Get measured filament diameter on serial output
  3643. */
  3644. inline void gcode_M407() {
  3645. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3646. SERIAL_PROTOCOLLN(filament_width_meas);
  3647. }
  3648. #endif // FILAMENT_SENSOR
  3649. /**
  3650. * M500: Store settings in EEPROM
  3651. */
  3652. inline void gcode_M500() {
  3653. Config_StoreSettings();
  3654. }
  3655. /**
  3656. * M501: Read settings from EEPROM
  3657. */
  3658. inline void gcode_M501() {
  3659. Config_RetrieveSettings();
  3660. }
  3661. /**
  3662. * M502: Revert to default settings
  3663. */
  3664. inline void gcode_M502() {
  3665. Config_ResetDefault();
  3666. }
  3667. /**
  3668. * M503: print settings currently in memory
  3669. */
  3670. inline void gcode_M503() {
  3671. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3672. }
  3673. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3674. /**
  3675. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3676. */
  3677. inline void gcode_M540() {
  3678. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3679. }
  3680. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3681. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3682. inline void gcode_SET_Z_PROBE_OFFSET() {
  3683. float value;
  3684. if (code_seen('Z')) {
  3685. value = code_value();
  3686. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3687. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3688. SERIAL_ECHO_START;
  3689. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3690. SERIAL_PROTOCOLLN("");
  3691. }
  3692. else {
  3693. SERIAL_ECHO_START;
  3694. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3695. SERIAL_ECHOPGM(MSG_Z_MIN);
  3696. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3697. SERIAL_ECHOPGM(MSG_Z_MAX);
  3698. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3699. SERIAL_PROTOCOLLN("");
  3700. }
  3701. }
  3702. else {
  3703. SERIAL_ECHO_START;
  3704. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3705. SERIAL_ECHO(-zprobe_zoffset);
  3706. SERIAL_PROTOCOLLN("");
  3707. }
  3708. }
  3709. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3710. #ifdef FILAMENTCHANGEENABLE
  3711. /**
  3712. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3713. */
  3714. inline void gcode_M600() {
  3715. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3716. for (int i=0; i<NUM_AXIS; i++)
  3717. target[i] = lastpos[i] = current_position[i];
  3718. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3719. #ifdef DELTA
  3720. #define RUNPLAN calculate_delta(target); BASICPLAN
  3721. #else
  3722. #define RUNPLAN BASICPLAN
  3723. #endif
  3724. //retract by E
  3725. if (code_seen('E')) target[E_AXIS] += code_value();
  3726. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3727. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3728. #endif
  3729. RUNPLAN;
  3730. //lift Z
  3731. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3732. #ifdef FILAMENTCHANGE_ZADD
  3733. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3734. #endif
  3735. RUNPLAN;
  3736. //move xy
  3737. if (code_seen('X')) target[X_AXIS] = code_value();
  3738. #ifdef FILAMENTCHANGE_XPOS
  3739. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3740. #endif
  3741. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3742. #ifdef FILAMENTCHANGE_YPOS
  3743. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3744. #endif
  3745. RUNPLAN;
  3746. if (code_seen('L')) target[E_AXIS] += code_value();
  3747. #ifdef FILAMENTCHANGE_FINALRETRACT
  3748. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3749. #endif
  3750. RUNPLAN;
  3751. //finish moves
  3752. st_synchronize();
  3753. //disable extruder steppers so filament can be removed
  3754. disable_e0();
  3755. disable_e1();
  3756. disable_e2();
  3757. disable_e3();
  3758. delay(100);
  3759. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3760. uint8_t cnt = 0;
  3761. while (!lcd_clicked()) {
  3762. cnt++;
  3763. manage_heater();
  3764. manage_inactivity(true);
  3765. lcd_update();
  3766. if (cnt == 0) {
  3767. #if BEEPER > 0
  3768. OUT_WRITE(BEEPER,HIGH);
  3769. delay(3);
  3770. WRITE(BEEPER,LOW);
  3771. delay(3);
  3772. #else
  3773. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3774. lcd_buzz(1000/6, 100);
  3775. #else
  3776. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3777. #endif
  3778. #endif
  3779. }
  3780. } // while(!lcd_clicked)
  3781. //return to normal
  3782. if (code_seen('L')) target[E_AXIS] -= code_value();
  3783. #ifdef FILAMENTCHANGE_FINALRETRACT
  3784. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3785. #endif
  3786. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3787. plan_set_e_position(current_position[E_AXIS]);
  3788. RUNPLAN; //should do nothing
  3789. lcd_reset_alert_level();
  3790. #ifdef DELTA
  3791. calculate_delta(lastpos);
  3792. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3793. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3794. #else
  3795. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3796. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3797. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3798. #endif
  3799. #ifdef FILAMENT_RUNOUT_SENSOR
  3800. filrunoutEnqued = false;
  3801. #endif
  3802. }
  3803. #endif // FILAMENTCHANGEENABLE
  3804. #ifdef DUAL_X_CARRIAGE
  3805. /**
  3806. * M605: Set dual x-carriage movement mode
  3807. *
  3808. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3809. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3810. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3811. * millimeters x-offset and an optional differential hotend temperature of
  3812. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3813. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3814. *
  3815. * Note: the X axis should be homed after changing dual x-carriage mode.
  3816. */
  3817. inline void gcode_M605() {
  3818. st_synchronize();
  3819. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3820. switch(dual_x_carriage_mode) {
  3821. case DXC_DUPLICATION_MODE:
  3822. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3823. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3824. SERIAL_ECHO_START;
  3825. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3826. SERIAL_ECHO(" ");
  3827. SERIAL_ECHO(extruder_offset[0][X_AXIS]);
  3828. SERIAL_ECHO(",");
  3829. SERIAL_ECHO(extruder_offset[0][Y_AXIS]);
  3830. SERIAL_ECHO(" ");
  3831. SERIAL_ECHO(duplicate_extruder_x_offset);
  3832. SERIAL_ECHO(",");
  3833. SERIAL_ECHOLN(extruder_offset[1][Y_AXIS]);
  3834. break;
  3835. case DXC_FULL_CONTROL_MODE:
  3836. case DXC_AUTO_PARK_MODE:
  3837. break;
  3838. default:
  3839. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3840. break;
  3841. }
  3842. active_extruder_parked = false;
  3843. extruder_duplication_enabled = false;
  3844. delayed_move_time = 0;
  3845. }
  3846. #endif // DUAL_X_CARRIAGE
  3847. /**
  3848. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3849. */
  3850. inline void gcode_M907() {
  3851. #if HAS_DIGIPOTSS
  3852. for (int i=0;i<NUM_AXIS;i++)
  3853. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3854. if (code_seen('B')) digipot_current(4, code_value());
  3855. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3856. #endif
  3857. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3858. if (code_seen('X')) digipot_current(0, code_value());
  3859. #endif
  3860. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3861. if (code_seen('Z')) digipot_current(1, code_value());
  3862. #endif
  3863. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3864. if (code_seen('E')) digipot_current(2, code_value());
  3865. #endif
  3866. #ifdef DIGIPOT_I2C
  3867. // this one uses actual amps in floating point
  3868. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3869. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3870. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3871. #endif
  3872. }
  3873. #if HAS_DIGIPOTSS
  3874. /**
  3875. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3876. */
  3877. inline void gcode_M908() {
  3878. digitalPotWrite(
  3879. code_seen('P') ? code_value() : 0,
  3880. code_seen('S') ? code_value() : 0
  3881. );
  3882. }
  3883. #endif // HAS_DIGIPOTSS
  3884. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3885. inline void gcode_M350() {
  3886. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3887. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3888. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3889. if(code_seen('B')) microstep_mode(4,code_value());
  3890. microstep_readings();
  3891. #endif
  3892. }
  3893. /**
  3894. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3895. * S# determines MS1 or MS2, X# sets the pin high/low.
  3896. */
  3897. inline void gcode_M351() {
  3898. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3899. if (code_seen('S')) switch(code_value_long()) {
  3900. case 1:
  3901. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3902. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3903. break;
  3904. case 2:
  3905. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3906. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3907. break;
  3908. }
  3909. microstep_readings();
  3910. #endif
  3911. }
  3912. /**
  3913. * M999: Restart after being stopped
  3914. */
  3915. inline void gcode_M999() {
  3916. Stopped = false;
  3917. lcd_reset_alert_level();
  3918. gcode_LastN = Stopped_gcode_LastN;
  3919. FlushSerialRequestResend();
  3920. }
  3921. inline void gcode_T() {
  3922. tmp_extruder = code_value();
  3923. if (tmp_extruder >= EXTRUDERS) {
  3924. SERIAL_ECHO_START;
  3925. SERIAL_ECHO("T");
  3926. SERIAL_ECHO(tmp_extruder);
  3927. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3928. }
  3929. else {
  3930. #if EXTRUDERS > 1
  3931. bool make_move = false;
  3932. #endif
  3933. if (code_seen('F')) {
  3934. #if EXTRUDERS > 1
  3935. make_move = true;
  3936. #endif
  3937. next_feedrate = code_value();
  3938. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3939. }
  3940. #if EXTRUDERS > 1
  3941. if (tmp_extruder != active_extruder) {
  3942. // Save current position to return to after applying extruder offset
  3943. memcpy(destination, current_position, sizeof(destination));
  3944. #ifdef DUAL_X_CARRIAGE
  3945. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3946. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3947. // Park old head: 1) raise 2) move to park position 3) lower
  3948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3949. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3950. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3951. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3952. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3953. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3954. st_synchronize();
  3955. }
  3956. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3957. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3958. extruder_offset[active_extruder][Y_AXIS] +
  3959. extruder_offset[tmp_extruder][Y_AXIS];
  3960. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3961. extruder_offset[active_extruder][Z_AXIS] +
  3962. extruder_offset[tmp_extruder][Z_AXIS];
  3963. active_extruder = tmp_extruder;
  3964. // This function resets the max/min values - the current position may be overwritten below.
  3965. axis_is_at_home(X_AXIS);
  3966. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3967. current_position[X_AXIS] = inactive_extruder_x_pos;
  3968. inactive_extruder_x_pos = destination[X_AXIS];
  3969. }
  3970. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3971. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3972. if (active_extruder == 0 || active_extruder_parked)
  3973. current_position[X_AXIS] = inactive_extruder_x_pos;
  3974. else
  3975. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3976. inactive_extruder_x_pos = destination[X_AXIS];
  3977. extruder_duplication_enabled = false;
  3978. }
  3979. else {
  3980. // record raised toolhead position for use by unpark
  3981. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3982. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3983. active_extruder_parked = true;
  3984. delayed_move_time = 0;
  3985. }
  3986. #else // !DUAL_X_CARRIAGE
  3987. // Offset extruder (only by XY)
  3988. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3989. current_position[i] += extruder_offset[tmp_extruder][i] - extruder_offset[active_extruder][i];
  3990. // Set the new active extruder and position
  3991. active_extruder = tmp_extruder;
  3992. #endif // !DUAL_X_CARRIAGE
  3993. #ifdef DELTA
  3994. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3995. //sent position to plan_set_position();
  3996. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3997. #else
  3998. sync_plan_position();
  3999. #endif
  4000. // Move to the old position if 'F' was in the parameters
  4001. if (make_move && !Stopped) prepare_move();
  4002. }
  4003. #ifdef EXT_SOLENOID
  4004. st_synchronize();
  4005. disable_all_solenoids();
  4006. enable_solenoid_on_active_extruder();
  4007. #endif // EXT_SOLENOID
  4008. #endif // EXTRUDERS > 1
  4009. SERIAL_ECHO_START;
  4010. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4011. SERIAL_PROTOCOLLN((int)active_extruder);
  4012. }
  4013. }
  4014. /**
  4015. * Process Commands and dispatch them to handlers
  4016. */
  4017. void process_commands() {
  4018. if (code_seen('G')) {
  4019. int gCode = code_value_long();
  4020. switch(gCode) {
  4021. // G0, G1
  4022. case 0:
  4023. case 1:
  4024. gcode_G0_G1();
  4025. break;
  4026. // G2, G3
  4027. #ifndef SCARA
  4028. case 2: // G2 - CW ARC
  4029. case 3: // G3 - CCW ARC
  4030. gcode_G2_G3(gCode == 2);
  4031. break;
  4032. #endif
  4033. // G4 Dwell
  4034. case 4:
  4035. gcode_G4();
  4036. break;
  4037. #ifdef FWRETRACT
  4038. case 10: // G10: retract
  4039. case 11: // G11: retract_recover
  4040. gcode_G10_G11(gCode == 10);
  4041. break;
  4042. #endif //FWRETRACT
  4043. case 28: // G28: Home all axes, one at a time
  4044. gcode_G28();
  4045. break;
  4046. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4047. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4048. gcode_G29();
  4049. break;
  4050. #endif
  4051. #ifdef ENABLE_AUTO_BED_LEVELING
  4052. #ifndef Z_PROBE_SLED
  4053. case 30: // G30 Single Z Probe
  4054. gcode_G30();
  4055. break;
  4056. #else // Z_PROBE_SLED
  4057. case 31: // G31: dock the sled
  4058. case 32: // G32: undock the sled
  4059. dock_sled(gCode == 31);
  4060. break;
  4061. #endif // Z_PROBE_SLED
  4062. #endif // ENABLE_AUTO_BED_LEVELING
  4063. case 90: // G90
  4064. relative_mode = false;
  4065. break;
  4066. case 91: // G91
  4067. relative_mode = true;
  4068. break;
  4069. case 92: // G92
  4070. gcode_G92();
  4071. break;
  4072. }
  4073. }
  4074. else if (code_seen('M')) {
  4075. switch( code_value_long() ) {
  4076. #ifdef ULTIPANEL
  4077. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4078. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4079. gcode_M0_M1();
  4080. break;
  4081. #endif // ULTIPANEL
  4082. case 17:
  4083. gcode_M17();
  4084. break;
  4085. #ifdef SDSUPPORT
  4086. case 20: // M20 - list SD card
  4087. gcode_M20(); break;
  4088. case 21: // M21 - init SD card
  4089. gcode_M21(); break;
  4090. case 22: //M22 - release SD card
  4091. gcode_M22(); break;
  4092. case 23: //M23 - Select file
  4093. gcode_M23(); break;
  4094. case 24: //M24 - Start SD print
  4095. gcode_M24(); break;
  4096. case 25: //M25 - Pause SD print
  4097. gcode_M25(); break;
  4098. case 26: //M26 - Set SD index
  4099. gcode_M26(); break;
  4100. case 27: //M27 - Get SD status
  4101. gcode_M27(); break;
  4102. case 28: //M28 - Start SD write
  4103. gcode_M28(); break;
  4104. case 29: //M29 - Stop SD write
  4105. gcode_M29(); break;
  4106. case 30: //M30 <filename> Delete File
  4107. gcode_M30(); break;
  4108. case 32: //M32 - Select file and start SD print
  4109. gcode_M32(); break;
  4110. case 928: //M928 - Start SD write
  4111. gcode_M928(); break;
  4112. #endif //SDSUPPORT
  4113. case 31: //M31 take time since the start of the SD print or an M109 command
  4114. gcode_M31();
  4115. break;
  4116. case 42: //M42 -Change pin status via gcode
  4117. gcode_M42();
  4118. break;
  4119. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4120. case 48: // M48 Z-Probe repeatability
  4121. gcode_M48();
  4122. break;
  4123. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4124. case 104: // M104
  4125. gcode_M104();
  4126. break;
  4127. case 112: // M112 Emergency Stop
  4128. gcode_M112();
  4129. break;
  4130. case 140: // M140 Set bed temp
  4131. gcode_M140();
  4132. break;
  4133. case 105: // M105 Read current temperature
  4134. gcode_M105();
  4135. return;
  4136. break;
  4137. case 109: // M109 Wait for temperature
  4138. gcode_M109();
  4139. break;
  4140. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4141. case 190: // M190 - Wait for bed heater to reach target.
  4142. gcode_M190();
  4143. break;
  4144. #endif //TEMP_BED_PIN
  4145. #if defined(FAN_PIN) && FAN_PIN > -1
  4146. case 106: //M106 Fan On
  4147. gcode_M106();
  4148. break;
  4149. case 107: //M107 Fan Off
  4150. gcode_M107();
  4151. break;
  4152. #endif //FAN_PIN
  4153. #ifdef BARICUDA
  4154. // PWM for HEATER_1_PIN
  4155. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4156. case 126: // M126 valve open
  4157. gcode_M126();
  4158. break;
  4159. case 127: // M127 valve closed
  4160. gcode_M127();
  4161. break;
  4162. #endif //HEATER_1_PIN
  4163. // PWM for HEATER_2_PIN
  4164. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4165. case 128: // M128 valve open
  4166. gcode_M128();
  4167. break;
  4168. case 129: // M129 valve closed
  4169. gcode_M129();
  4170. break;
  4171. #endif //HEATER_2_PIN
  4172. #endif //BARICUDA
  4173. #if HAS_POWER_SWITCH
  4174. case 80: // M80 - Turn on Power Supply
  4175. gcode_M80();
  4176. break;
  4177. #endif // HAS_POWER_SWITCH
  4178. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4179. gcode_M81();
  4180. break;
  4181. case 82:
  4182. gcode_M82();
  4183. break;
  4184. case 83:
  4185. gcode_M83();
  4186. break;
  4187. case 18: //compatibility
  4188. case 84: // M84
  4189. gcode_M18_M84();
  4190. break;
  4191. case 85: // M85
  4192. gcode_M85();
  4193. break;
  4194. case 92: // M92
  4195. gcode_M92();
  4196. break;
  4197. case 115: // M115
  4198. gcode_M115();
  4199. break;
  4200. case 117: // M117 display message
  4201. gcode_M117();
  4202. break;
  4203. case 114: // M114
  4204. gcode_M114();
  4205. break;
  4206. case 120: // M120
  4207. gcode_M120();
  4208. break;
  4209. case 121: // M121
  4210. gcode_M121();
  4211. break;
  4212. case 119: // M119
  4213. gcode_M119();
  4214. break;
  4215. //TODO: update for all axis, use for loop
  4216. #ifdef BLINKM
  4217. case 150: // M150
  4218. gcode_M150();
  4219. break;
  4220. #endif //BLINKM
  4221. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4222. gcode_M200();
  4223. break;
  4224. case 201: // M201
  4225. gcode_M201();
  4226. break;
  4227. #if 0 // Not used for Sprinter/grbl gen6
  4228. case 202: // M202
  4229. gcode_M202();
  4230. break;
  4231. #endif
  4232. case 203: // M203 max feedrate mm/sec
  4233. gcode_M203();
  4234. break;
  4235. case 204: // M204 acclereration S normal moves T filmanent only moves
  4236. gcode_M204();
  4237. break;
  4238. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4239. gcode_M205();
  4240. break;
  4241. case 206: // M206 additional homing offset
  4242. gcode_M206();
  4243. break;
  4244. #ifdef DELTA
  4245. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4246. gcode_M665();
  4247. break;
  4248. #endif
  4249. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4250. case 666: // M666 set delta / dual endstop adjustment
  4251. gcode_M666();
  4252. break;
  4253. #endif
  4254. #ifdef FWRETRACT
  4255. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4256. gcode_M207();
  4257. break;
  4258. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4259. gcode_M208();
  4260. break;
  4261. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4262. gcode_M209();
  4263. break;
  4264. #endif // FWRETRACT
  4265. #if EXTRUDERS > 1
  4266. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4267. gcode_M218();
  4268. break;
  4269. #endif
  4270. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4271. gcode_M220();
  4272. break;
  4273. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4274. gcode_M221();
  4275. break;
  4276. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4277. gcode_M226();
  4278. break;
  4279. #if NUM_SERVOS > 0
  4280. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4281. gcode_M280();
  4282. break;
  4283. #endif // NUM_SERVOS > 0
  4284. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4285. case 300: // M300 - Play beep tone
  4286. gcode_M300();
  4287. break;
  4288. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4289. #ifdef PIDTEMP
  4290. case 301: // M301
  4291. gcode_M301();
  4292. break;
  4293. #endif // PIDTEMP
  4294. #ifdef PIDTEMPBED
  4295. case 304: // M304
  4296. gcode_M304();
  4297. break;
  4298. #endif // PIDTEMPBED
  4299. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4300. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4301. gcode_M240();
  4302. break;
  4303. #endif // CHDK || PHOTOGRAPH_PIN
  4304. #ifdef DOGLCD
  4305. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4306. gcode_M250();
  4307. break;
  4308. #endif // DOGLCD
  4309. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4310. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4311. gcode_M302();
  4312. break;
  4313. #endif // PREVENT_DANGEROUS_EXTRUDE
  4314. case 303: // M303 PID autotune
  4315. gcode_M303();
  4316. break;
  4317. #ifdef SCARA
  4318. case 360: // M360 SCARA Theta pos1
  4319. if (gcode_M360()) return;
  4320. break;
  4321. case 361: // M361 SCARA Theta pos2
  4322. if (gcode_M361()) return;
  4323. break;
  4324. case 362: // M362 SCARA Psi pos1
  4325. if (gcode_M362()) return;
  4326. break;
  4327. case 363: // M363 SCARA Psi pos2
  4328. if (gcode_M363()) return;
  4329. break;
  4330. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4331. if (gcode_M364()) return;
  4332. break;
  4333. case 365: // M365 Set SCARA scaling for X Y Z
  4334. gcode_M365();
  4335. break;
  4336. #endif // SCARA
  4337. case 400: // M400 finish all moves
  4338. gcode_M400();
  4339. break;
  4340. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4341. case 401:
  4342. gcode_M401();
  4343. break;
  4344. case 402:
  4345. gcode_M402();
  4346. break;
  4347. #endif
  4348. #ifdef FILAMENT_SENSOR
  4349. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4350. gcode_M404();
  4351. break;
  4352. case 405: //M405 Turn on filament sensor for control
  4353. gcode_M405();
  4354. break;
  4355. case 406: //M406 Turn off filament sensor for control
  4356. gcode_M406();
  4357. break;
  4358. case 407: //M407 Display measured filament diameter
  4359. gcode_M407();
  4360. break;
  4361. #endif // FILAMENT_SENSOR
  4362. case 500: // M500 Store settings in EEPROM
  4363. gcode_M500();
  4364. break;
  4365. case 501: // M501 Read settings from EEPROM
  4366. gcode_M501();
  4367. break;
  4368. case 502: // M502 Revert to default settings
  4369. gcode_M502();
  4370. break;
  4371. case 503: // M503 print settings currently in memory
  4372. gcode_M503();
  4373. break;
  4374. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4375. case 540:
  4376. gcode_M540();
  4377. break;
  4378. #endif
  4379. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4380. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4381. gcode_SET_Z_PROBE_OFFSET();
  4382. break;
  4383. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4384. #ifdef FILAMENTCHANGEENABLE
  4385. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4386. gcode_M600();
  4387. break;
  4388. #endif // FILAMENTCHANGEENABLE
  4389. #ifdef DUAL_X_CARRIAGE
  4390. case 605:
  4391. gcode_M605();
  4392. break;
  4393. #endif // DUAL_X_CARRIAGE
  4394. case 907: // M907 Set digital trimpot motor current using axis codes.
  4395. gcode_M907();
  4396. break;
  4397. #if HAS_DIGIPOTSS
  4398. case 908: // M908 Control digital trimpot directly.
  4399. gcode_M908();
  4400. break;
  4401. #endif // HAS_DIGIPOTSS
  4402. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4403. gcode_M350();
  4404. break;
  4405. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4406. gcode_M351();
  4407. break;
  4408. case 999: // M999: Restart after being Stopped
  4409. gcode_M999();
  4410. break;
  4411. }
  4412. }
  4413. else if (code_seen('T')) {
  4414. gcode_T();
  4415. }
  4416. else {
  4417. SERIAL_ECHO_START;
  4418. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4419. SERIAL_ECHO(cmdbuffer[bufindr]);
  4420. SERIAL_ECHOLNPGM("\"");
  4421. }
  4422. ClearToSend();
  4423. }
  4424. void FlushSerialRequestResend()
  4425. {
  4426. //char cmdbuffer[bufindr][100]="Resend:";
  4427. MYSERIAL.flush();
  4428. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4429. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4430. ClearToSend();
  4431. }
  4432. void ClearToSend()
  4433. {
  4434. previous_millis_cmd = millis();
  4435. #ifdef SDSUPPORT
  4436. if(fromsd[bufindr])
  4437. return;
  4438. #endif //SDSUPPORT
  4439. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4440. }
  4441. void get_coordinates() {
  4442. for (int i = 0; i < NUM_AXIS; i++) {
  4443. if (code_seen(axis_codes[i]))
  4444. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4445. else
  4446. destination[i] = current_position[i];
  4447. }
  4448. if (code_seen('F')) {
  4449. next_feedrate = code_value();
  4450. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4451. }
  4452. }
  4453. void get_arc_coordinates()
  4454. {
  4455. #ifdef SF_ARC_FIX
  4456. bool relative_mode_backup = relative_mode;
  4457. relative_mode = true;
  4458. #endif
  4459. get_coordinates();
  4460. #ifdef SF_ARC_FIX
  4461. relative_mode=relative_mode_backup;
  4462. #endif
  4463. if(code_seen('I')) {
  4464. offset[0] = code_value();
  4465. }
  4466. else {
  4467. offset[0] = 0.0;
  4468. }
  4469. if(code_seen('J')) {
  4470. offset[1] = code_value();
  4471. }
  4472. else {
  4473. offset[1] = 0.0;
  4474. }
  4475. }
  4476. void clamp_to_software_endstops(float target[3])
  4477. {
  4478. if (min_software_endstops) {
  4479. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4480. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4481. float negative_z_offset = 0;
  4482. #ifdef ENABLE_AUTO_BED_LEVELING
  4483. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4484. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4485. #endif
  4486. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4487. }
  4488. if (max_software_endstops) {
  4489. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4490. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4491. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4492. }
  4493. }
  4494. #ifdef DELTA
  4495. void recalc_delta_settings(float radius, float diagonal_rod)
  4496. {
  4497. delta_tower1_x= -SIN_60*radius; // front left tower
  4498. delta_tower1_y= -COS_60*radius;
  4499. delta_tower2_x= SIN_60*radius; // front right tower
  4500. delta_tower2_y= -COS_60*radius;
  4501. delta_tower3_x= 0.0; // back middle tower
  4502. delta_tower3_y= radius;
  4503. delta_diagonal_rod_2= sq(diagonal_rod);
  4504. }
  4505. void calculate_delta(float cartesian[3])
  4506. {
  4507. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4508. - sq(delta_tower1_x-cartesian[X_AXIS])
  4509. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4510. ) + cartesian[Z_AXIS];
  4511. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4512. - sq(delta_tower2_x-cartesian[X_AXIS])
  4513. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4514. ) + cartesian[Z_AXIS];
  4515. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4516. - sq(delta_tower3_x-cartesian[X_AXIS])
  4517. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4518. ) + cartesian[Z_AXIS];
  4519. /*
  4520. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4521. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4522. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4523. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4524. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4525. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4526. */
  4527. }
  4528. #ifdef ENABLE_AUTO_BED_LEVELING
  4529. // Adjust print surface height by linear interpolation over the bed_level array.
  4530. int delta_grid_spacing[2] = { 0, 0 };
  4531. void adjust_delta(float cartesian[3])
  4532. {
  4533. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4534. return; // G29 not done
  4535. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4536. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4537. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4538. int floor_x = floor(grid_x);
  4539. int floor_y = floor(grid_y);
  4540. float ratio_x = grid_x - floor_x;
  4541. float ratio_y = grid_y - floor_y;
  4542. float z1 = bed_level[floor_x+half][floor_y+half];
  4543. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4544. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4545. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4546. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4547. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4548. float offset = (1-ratio_x)*left + ratio_x*right;
  4549. delta[X_AXIS] += offset;
  4550. delta[Y_AXIS] += offset;
  4551. delta[Z_AXIS] += offset;
  4552. /*
  4553. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4554. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4555. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4556. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4557. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4558. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4559. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4560. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4561. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4562. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4563. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4564. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4565. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4566. */
  4567. }
  4568. #endif //ENABLE_AUTO_BED_LEVELING
  4569. void prepare_move_raw()
  4570. {
  4571. previous_millis_cmd = millis();
  4572. calculate_delta(destination);
  4573. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4574. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4575. active_extruder);
  4576. for(int8_t i=0; i < NUM_AXIS; i++) {
  4577. current_position[i] = destination[i];
  4578. }
  4579. }
  4580. #endif //DELTA
  4581. #if defined(MESH_BED_LEVELING)
  4582. #if !defined(MIN)
  4583. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4584. #endif // ! MIN
  4585. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4586. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4587. {
  4588. if (!mbl.active) {
  4589. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4590. for(int8_t i=0; i < NUM_AXIS; i++) {
  4591. current_position[i] = destination[i];
  4592. }
  4593. return;
  4594. }
  4595. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4596. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4597. int ix = mbl.select_x_index(x);
  4598. int iy = mbl.select_y_index(y);
  4599. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4600. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4601. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4602. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4603. if (pix == ix && piy == iy) {
  4604. // Start and end on same mesh square
  4605. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4606. for(int8_t i=0; i < NUM_AXIS; i++) {
  4607. current_position[i] = destination[i];
  4608. }
  4609. return;
  4610. }
  4611. float nx, ny, ne, normalized_dist;
  4612. if (ix > pix && (x_splits) & BIT(ix)) {
  4613. nx = mbl.get_x(ix);
  4614. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4615. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4616. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4617. x_splits ^= BIT(ix);
  4618. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4619. nx = mbl.get_x(pix);
  4620. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4621. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4622. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4623. x_splits ^= BIT(pix);
  4624. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4625. ny = mbl.get_y(iy);
  4626. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4627. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4628. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4629. y_splits ^= BIT(iy);
  4630. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4631. ny = mbl.get_y(piy);
  4632. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4633. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4634. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4635. y_splits ^= BIT(piy);
  4636. } else {
  4637. // Already split on a border
  4638. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4639. for(int8_t i=0; i < NUM_AXIS; i++) {
  4640. current_position[i] = destination[i];
  4641. }
  4642. return;
  4643. }
  4644. // Do the split and look for more borders
  4645. destination[X_AXIS] = nx;
  4646. destination[Y_AXIS] = ny;
  4647. destination[E_AXIS] = ne;
  4648. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4649. destination[X_AXIS] = x;
  4650. destination[Y_AXIS] = y;
  4651. destination[E_AXIS] = e;
  4652. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4653. }
  4654. #endif // MESH_BED_LEVELING
  4655. void prepare_move()
  4656. {
  4657. clamp_to_software_endstops(destination);
  4658. previous_millis_cmd = millis();
  4659. #ifdef SCARA //for now same as delta-code
  4660. float difference[NUM_AXIS];
  4661. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4662. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4663. sq(difference[Y_AXIS]) +
  4664. sq(difference[Z_AXIS]));
  4665. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4666. if (cartesian_mm < 0.000001) { return; }
  4667. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4668. int steps = max(1, int(scara_segments_per_second * seconds));
  4669. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4670. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4671. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4672. for (int s = 1; s <= steps; s++) {
  4673. float fraction = float(s) / float(steps);
  4674. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4675. destination[i] = current_position[i] + difference[i] * fraction;
  4676. }
  4677. calculate_delta(destination);
  4678. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4679. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4680. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4681. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4682. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4683. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4684. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4685. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4686. active_extruder);
  4687. }
  4688. #endif // SCARA
  4689. #ifdef DELTA
  4690. float difference[NUM_AXIS];
  4691. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4692. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4693. sq(difference[Y_AXIS]) +
  4694. sq(difference[Z_AXIS]));
  4695. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4696. if (cartesian_mm < 0.000001) return;
  4697. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4698. int steps = max(1, int(delta_segments_per_second * seconds));
  4699. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4700. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4701. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4702. for (int s = 1; s <= steps; s++) {
  4703. float fraction = float(s) / float(steps);
  4704. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4705. calculate_delta(destination);
  4706. #ifdef ENABLE_AUTO_BED_LEVELING
  4707. adjust_delta(destination);
  4708. #endif
  4709. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4710. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4711. active_extruder);
  4712. }
  4713. #endif // DELTA
  4714. #ifdef DUAL_X_CARRIAGE
  4715. if (active_extruder_parked)
  4716. {
  4717. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4718. {
  4719. // move duplicate extruder into correct duplication position.
  4720. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4721. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4722. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4723. sync_plan_position();
  4724. st_synchronize();
  4725. extruder_duplication_enabled = true;
  4726. active_extruder_parked = false;
  4727. }
  4728. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4729. {
  4730. if (current_position[E_AXIS] == destination[E_AXIS])
  4731. {
  4732. // this is a travel move - skit it but keep track of current position (so that it can later
  4733. // be used as start of first non-travel move)
  4734. if (delayed_move_time != 0xFFFFFFFFUL)
  4735. {
  4736. memcpy(current_position, destination, sizeof(current_position));
  4737. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4738. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4739. delayed_move_time = millis();
  4740. return;
  4741. }
  4742. }
  4743. delayed_move_time = 0;
  4744. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4745. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4747. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4748. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4749. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4750. active_extruder_parked = false;
  4751. }
  4752. }
  4753. #endif //DUAL_X_CARRIAGE
  4754. #if ! (defined DELTA || defined SCARA)
  4755. // Do not use feedmultiply for E or Z only moves
  4756. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4757. line_to_destination();
  4758. } else {
  4759. #if defined(MESH_BED_LEVELING)
  4760. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4761. return;
  4762. #else
  4763. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4764. #endif // MESH_BED_LEVELING
  4765. }
  4766. #endif // !(DELTA || SCARA)
  4767. for(int8_t i=0; i < NUM_AXIS; i++) {
  4768. current_position[i] = destination[i];
  4769. }
  4770. }
  4771. void prepare_arc_move(char isclockwise) {
  4772. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4773. // Trace the arc
  4774. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4775. // As far as the parser is concerned, the position is now == target. In reality the
  4776. // motion control system might still be processing the action and the real tool position
  4777. // in any intermediate location.
  4778. for(int8_t i=0; i < NUM_AXIS; i++) {
  4779. current_position[i] = destination[i];
  4780. }
  4781. previous_millis_cmd = millis();
  4782. }
  4783. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4784. #if defined(FAN_PIN)
  4785. #if CONTROLLERFAN_PIN == FAN_PIN
  4786. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4787. #endif
  4788. #endif
  4789. unsigned long lastMotor = 0; // Last time a motor was turned on
  4790. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4791. void controllerFan() {
  4792. uint32_t ms = millis();
  4793. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4794. lastMotorCheck = ms;
  4795. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4796. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4797. #if EXTRUDERS > 1
  4798. || E1_ENABLE_READ == E_ENABLE_ON
  4799. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4800. || X2_ENABLE_READ == X_ENABLE_ON
  4801. #endif
  4802. #if EXTRUDERS > 2
  4803. || E2_ENABLE_READ == E_ENABLE_ON
  4804. #if EXTRUDERS > 3
  4805. || E3_ENABLE_READ == E_ENABLE_ON
  4806. #endif
  4807. #endif
  4808. #endif
  4809. ) {
  4810. lastMotor = ms; //... set time to NOW so the fan will turn on
  4811. }
  4812. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4813. // allows digital or PWM fan output to be used (see M42 handling)
  4814. digitalWrite(CONTROLLERFAN_PIN, speed);
  4815. analogWrite(CONTROLLERFAN_PIN, speed);
  4816. }
  4817. }
  4818. #endif
  4819. #ifdef SCARA
  4820. void calculate_SCARA_forward_Transform(float f_scara[3])
  4821. {
  4822. // Perform forward kinematics, and place results in delta[3]
  4823. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4824. float x_sin, x_cos, y_sin, y_cos;
  4825. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4826. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4827. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4828. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4829. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4830. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4831. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4832. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4833. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4834. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4835. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4836. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4837. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4838. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4839. }
  4840. void calculate_delta(float cartesian[3]){
  4841. //reverse kinematics.
  4842. // Perform reversed kinematics, and place results in delta[3]
  4843. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4844. float SCARA_pos[2];
  4845. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4846. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4847. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4848. #if (Linkage_1 == Linkage_2)
  4849. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4850. #else
  4851. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4852. #endif
  4853. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4854. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4855. SCARA_K2 = Linkage_2 * SCARA_S2;
  4856. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4857. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4858. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4859. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4860. delta[Z_AXIS] = cartesian[Z_AXIS];
  4861. /*
  4862. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4863. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4864. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4865. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4866. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4867. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4868. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4869. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4870. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4871. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4872. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4873. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4874. SERIAL_ECHOLN(" ");*/
  4875. }
  4876. #endif
  4877. #ifdef TEMP_STAT_LEDS
  4878. static bool blue_led = false;
  4879. static bool red_led = false;
  4880. static uint32_t stat_update = 0;
  4881. void handle_status_leds(void) {
  4882. float max_temp = 0.0;
  4883. if(millis() > stat_update) {
  4884. stat_update += 500; // Update every 0.5s
  4885. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4886. max_temp = max(max_temp, degHotend(cur_extruder));
  4887. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4888. }
  4889. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4890. max_temp = max(max_temp, degTargetBed());
  4891. max_temp = max(max_temp, degBed());
  4892. #endif
  4893. if((max_temp > 55.0) && (red_led == false)) {
  4894. digitalWrite(STAT_LED_RED, 1);
  4895. digitalWrite(STAT_LED_BLUE, 0);
  4896. red_led = true;
  4897. blue_led = false;
  4898. }
  4899. if((max_temp < 54.0) && (blue_led == false)) {
  4900. digitalWrite(STAT_LED_RED, 0);
  4901. digitalWrite(STAT_LED_BLUE, 1);
  4902. red_led = false;
  4903. blue_led = true;
  4904. }
  4905. }
  4906. }
  4907. #endif
  4908. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4909. {
  4910. #if defined(KILL_PIN) && KILL_PIN > -1
  4911. static int killCount = 0; // make the inactivity button a bit less responsive
  4912. const int KILL_DELAY = 750;
  4913. #endif
  4914. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4915. if(card.sdprinting) {
  4916. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4917. filrunout(); }
  4918. #endif
  4919. #if defined(HOME_PIN) && HOME_PIN > -1
  4920. static int homeDebounceCount = 0; // poor man's debouncing count
  4921. const int HOME_DEBOUNCE_DELAY = 750;
  4922. #endif
  4923. if(buflen < (BUFSIZE-1))
  4924. get_command();
  4925. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4926. if(max_inactive_time)
  4927. kill();
  4928. if(stepper_inactive_time) {
  4929. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4930. {
  4931. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4932. disable_x();
  4933. disable_y();
  4934. disable_z();
  4935. disable_e0();
  4936. disable_e1();
  4937. disable_e2();
  4938. disable_e3();
  4939. }
  4940. }
  4941. }
  4942. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4943. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4944. {
  4945. chdkActive = false;
  4946. WRITE(CHDK, LOW);
  4947. }
  4948. #endif
  4949. #if defined(KILL_PIN) && KILL_PIN > -1
  4950. // Check if the kill button was pressed and wait just in case it was an accidental
  4951. // key kill key press
  4952. // -------------------------------------------------------------------------------
  4953. if( 0 == READ(KILL_PIN) )
  4954. {
  4955. killCount++;
  4956. }
  4957. else if (killCount > 0)
  4958. {
  4959. killCount--;
  4960. }
  4961. // Exceeded threshold and we can confirm that it was not accidental
  4962. // KILL the machine
  4963. // ----------------------------------------------------------------
  4964. if ( killCount >= KILL_DELAY)
  4965. {
  4966. kill();
  4967. }
  4968. #endif
  4969. #if defined(HOME_PIN) && HOME_PIN > -1
  4970. // Check to see if we have to home, use poor man's debouncer
  4971. // ---------------------------------------------------------
  4972. if ( 0 == READ(HOME_PIN) )
  4973. {
  4974. if (homeDebounceCount == 0)
  4975. {
  4976. enquecommands_P((PSTR("G28")));
  4977. homeDebounceCount++;
  4978. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4979. }
  4980. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4981. {
  4982. homeDebounceCount++;
  4983. }
  4984. else
  4985. {
  4986. homeDebounceCount = 0;
  4987. }
  4988. }
  4989. #endif
  4990. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4991. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4992. #endif
  4993. #ifdef EXTRUDER_RUNOUT_PREVENT
  4994. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4995. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4996. {
  4997. bool oldstatus=E0_ENABLE_READ;
  4998. enable_e0();
  4999. float oldepos=current_position[E_AXIS];
  5000. float oldedes=destination[E_AXIS];
  5001. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5002. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5003. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5004. current_position[E_AXIS]=oldepos;
  5005. destination[E_AXIS]=oldedes;
  5006. plan_set_e_position(oldepos);
  5007. previous_millis_cmd=millis();
  5008. st_synchronize();
  5009. E0_ENABLE_WRITE(oldstatus);
  5010. }
  5011. #endif
  5012. #if defined(DUAL_X_CARRIAGE)
  5013. // handle delayed move timeout
  5014. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5015. {
  5016. // travel moves have been received so enact them
  5017. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5018. memcpy(destination,current_position,sizeof(destination));
  5019. prepare_move();
  5020. }
  5021. #endif
  5022. #ifdef TEMP_STAT_LEDS
  5023. handle_status_leds();
  5024. #endif
  5025. check_axes_activity();
  5026. }
  5027. void kill()
  5028. {
  5029. cli(); // Stop interrupts
  5030. disable_heater();
  5031. disable_x();
  5032. disable_y();
  5033. disable_z();
  5034. disable_e0();
  5035. disable_e1();
  5036. disable_e2();
  5037. disable_e3();
  5038. #if HAS_POWER_SWITCH
  5039. pinMode(PS_ON_PIN, INPUT);
  5040. #endif
  5041. SERIAL_ERROR_START;
  5042. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5043. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5044. // FMC small patch to update the LCD before ending
  5045. sei(); // enable interrupts
  5046. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5047. cli(); // disable interrupts
  5048. suicide();
  5049. while(1) { /* Intentionally left empty */ } // Wait for reset
  5050. }
  5051. #ifdef FILAMENT_RUNOUT_SENSOR
  5052. void filrunout()
  5053. {
  5054. if filrunoutEnqued == false {
  5055. filrunoutEnqued = true;
  5056. enquecommand("M600");
  5057. }
  5058. }
  5059. #endif
  5060. void Stop()
  5061. {
  5062. disable_heater();
  5063. if(Stopped == false) {
  5064. Stopped = true;
  5065. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5066. SERIAL_ERROR_START;
  5067. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5068. LCD_MESSAGEPGM(MSG_STOPPED);
  5069. }
  5070. }
  5071. bool IsStopped() { return Stopped; };
  5072. #ifdef FAST_PWM_FAN
  5073. void setPwmFrequency(uint8_t pin, int val)
  5074. {
  5075. val &= 0x07;
  5076. switch(digitalPinToTimer(pin))
  5077. {
  5078. #if defined(TCCR0A)
  5079. case TIMER0A:
  5080. case TIMER0B:
  5081. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5082. // TCCR0B |= val;
  5083. break;
  5084. #endif
  5085. #if defined(TCCR1A)
  5086. case TIMER1A:
  5087. case TIMER1B:
  5088. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5089. // TCCR1B |= val;
  5090. break;
  5091. #endif
  5092. #if defined(TCCR2)
  5093. case TIMER2:
  5094. case TIMER2:
  5095. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5096. TCCR2 |= val;
  5097. break;
  5098. #endif
  5099. #if defined(TCCR2A)
  5100. case TIMER2A:
  5101. case TIMER2B:
  5102. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5103. TCCR2B |= val;
  5104. break;
  5105. #endif
  5106. #if defined(TCCR3A)
  5107. case TIMER3A:
  5108. case TIMER3B:
  5109. case TIMER3C:
  5110. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5111. TCCR3B |= val;
  5112. break;
  5113. #endif
  5114. #if defined(TCCR4A)
  5115. case TIMER4A:
  5116. case TIMER4B:
  5117. case TIMER4C:
  5118. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5119. TCCR4B |= val;
  5120. break;
  5121. #endif
  5122. #if defined(TCCR5A)
  5123. case TIMER5A:
  5124. case TIMER5B:
  5125. case TIMER5C:
  5126. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5127. TCCR5B |= val;
  5128. break;
  5129. #endif
  5130. }
  5131. }
  5132. #endif //FAST_PWM_FAN
  5133. bool setTargetedHotend(int code){
  5134. tmp_extruder = active_extruder;
  5135. if(code_seen('T')) {
  5136. tmp_extruder = code_value();
  5137. if(tmp_extruder >= EXTRUDERS) {
  5138. SERIAL_ECHO_START;
  5139. switch(code){
  5140. case 104:
  5141. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5142. break;
  5143. case 105:
  5144. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5145. break;
  5146. case 109:
  5147. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5148. break;
  5149. case 218:
  5150. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5151. break;
  5152. case 221:
  5153. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5154. break;
  5155. }
  5156. SERIAL_ECHOLN(tmp_extruder);
  5157. return true;
  5158. }
  5159. }
  5160. return false;
  5161. }
  5162. float calculate_volumetric_multiplier(float diameter) {
  5163. if (!volumetric_enabled || diameter == 0) return 1.0;
  5164. float d2 = diameter * 0.5;
  5165. return 1.0 / (M_PI * d2 * d2);
  5166. }
  5167. void calculate_volumetric_multipliers() {
  5168. for (int i=0; i<EXTRUDERS; i++)
  5169. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5170. }