My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 117KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 - Set filament diameter
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  172. float add_homeing[3]={0,0,0};
  173. #ifdef DELTA
  174. float endstop_adj[3]={0,0,0};
  175. #endif
  176. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  177. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  178. bool axis_known_position[3] = {false, false, false};
  179. float zprobe_zoffset;
  180. // Extruder offset
  181. #if EXTRUDERS > 1
  182. #ifndef DUAL_X_CARRIAGE
  183. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  184. #else
  185. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  186. #endif
  187. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  188. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  189. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  190. #endif
  191. };
  192. #endif
  193. uint8_t active_extruder = 0;
  194. int fanSpeed=0;
  195. #ifdef SERVO_ENDSTOPS
  196. int servo_endstops[] = SERVO_ENDSTOPS;
  197. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  198. #endif
  199. #ifdef BARICUDA
  200. int ValvePressure=0;
  201. int EtoPPressure=0;
  202. #endif
  203. #ifdef FWRETRACT
  204. bool autoretract_enabled=true;
  205. bool retracted=false;
  206. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  207. float retract_recover_length=0, retract_recover_feedrate=8*60;
  208. #endif
  209. #ifdef ULTIPANEL
  210. #ifdef PS_DEFAULT_OFF
  211. bool powersupply = false;
  212. #else
  213. bool powersupply = true;
  214. #endif
  215. #endif
  216. #ifdef DELTA
  217. float delta[3] = {0.0, 0.0, 0.0};
  218. #endif
  219. //===========================================================================
  220. //=============================private variables=============================
  221. //===========================================================================
  222. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  223. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  224. static float offset[3] = {0.0, 0.0, 0.0};
  225. static bool home_all_axis = true;
  226. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  227. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  228. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  229. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  230. static bool fromsd[BUFSIZE];
  231. static int bufindr = 0;
  232. static int bufindw = 0;
  233. static int buflen = 0;
  234. //static int i = 0;
  235. static char serial_char;
  236. static int serial_count = 0;
  237. static boolean comment_mode = false;
  238. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  239. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  240. //static float tt = 0;
  241. //static float bt = 0;
  242. //Inactivity shutdown variables
  243. static unsigned long previous_millis_cmd = 0;
  244. static unsigned long max_inactive_time = 0;
  245. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  246. unsigned long starttime=0;
  247. unsigned long stoptime=0;
  248. static uint8_t tmp_extruder;
  249. bool Stopped=false;
  250. #if NUM_SERVOS > 0
  251. Servo servos[NUM_SERVOS];
  252. #endif
  253. bool CooldownNoWait = true;
  254. bool target_direction;
  255. //===========================================================================
  256. //=============================ROUTINES=============================
  257. //===========================================================================
  258. void get_arc_coordinates();
  259. bool setTargetedHotend(int code);
  260. void serial_echopair_P(const char *s_P, float v)
  261. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  262. void serial_echopair_P(const char *s_P, double v)
  263. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  264. void serial_echopair_P(const char *s_P, unsigned long v)
  265. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  266. extern "C"{
  267. extern unsigned int __bss_end;
  268. extern unsigned int __heap_start;
  269. extern void *__brkval;
  270. int freeMemory() {
  271. int free_memory;
  272. if((int)__brkval == 0)
  273. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  274. else
  275. free_memory = ((int)&free_memory) - ((int)__brkval);
  276. return free_memory;
  277. }
  278. }
  279. //adds an command to the main command buffer
  280. //thats really done in a non-safe way.
  281. //needs overworking someday
  282. void enquecommand(const char *cmd)
  283. {
  284. if(buflen < BUFSIZE)
  285. {
  286. //this is dangerous if a mixing of serial and this happsens
  287. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  288. SERIAL_ECHO_START;
  289. SERIAL_ECHOPGM("enqueing \"");
  290. SERIAL_ECHO(cmdbuffer[bufindw]);
  291. SERIAL_ECHOLNPGM("\"");
  292. bufindw= (bufindw + 1)%BUFSIZE;
  293. buflen += 1;
  294. }
  295. }
  296. void enquecommand_P(const char *cmd)
  297. {
  298. if(buflen < BUFSIZE)
  299. {
  300. //this is dangerous if a mixing of serial and this happsens
  301. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  302. SERIAL_ECHO_START;
  303. SERIAL_ECHOPGM("enqueing \"");
  304. SERIAL_ECHO(cmdbuffer[bufindw]);
  305. SERIAL_ECHOLNPGM("\"");
  306. bufindw= (bufindw + 1)%BUFSIZE;
  307. buflen += 1;
  308. }
  309. }
  310. void setup_killpin()
  311. {
  312. #if defined(KILL_PIN) && KILL_PIN > -1
  313. pinMode(KILL_PIN,INPUT);
  314. WRITE(KILL_PIN,HIGH);
  315. #endif
  316. }
  317. void setup_photpin()
  318. {
  319. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  320. SET_OUTPUT(PHOTOGRAPH_PIN);
  321. WRITE(PHOTOGRAPH_PIN, LOW);
  322. #endif
  323. }
  324. void setup_powerhold()
  325. {
  326. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  327. SET_OUTPUT(SUICIDE_PIN);
  328. WRITE(SUICIDE_PIN, HIGH);
  329. #endif
  330. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  331. SET_OUTPUT(PS_ON_PIN);
  332. #if defined(PS_DEFAULT_OFF)
  333. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  334. #else
  335. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  336. #endif
  337. #endif
  338. }
  339. void suicide()
  340. {
  341. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  342. SET_OUTPUT(SUICIDE_PIN);
  343. WRITE(SUICIDE_PIN, LOW);
  344. #endif
  345. }
  346. void servo_init()
  347. {
  348. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  349. servos[0].attach(SERVO0_PIN);
  350. #endif
  351. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  352. servos[1].attach(SERVO1_PIN);
  353. #endif
  354. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  355. servos[2].attach(SERVO2_PIN);
  356. #endif
  357. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  358. servos[3].attach(SERVO3_PIN);
  359. #endif
  360. #if (NUM_SERVOS >= 5)
  361. #error "TODO: enter initalisation code for more servos"
  362. #endif
  363. // Set position of Servo Endstops that are defined
  364. #ifdef SERVO_ENDSTOPS
  365. for(int8_t i = 0; i < 3; i++)
  366. {
  367. if(servo_endstops[i] > -1) {
  368. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  369. }
  370. }
  371. #endif
  372. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  373. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  374. servos[servo_endstops[Z_AXIS]].detach();
  375. #endif
  376. }
  377. void setup()
  378. {
  379. setup_killpin();
  380. setup_powerhold();
  381. MYSERIAL.begin(BAUDRATE);
  382. SERIAL_PROTOCOLLNPGM("start");
  383. SERIAL_ECHO_START;
  384. // Check startup - does nothing if bootloader sets MCUSR to 0
  385. byte mcu = MCUSR;
  386. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  387. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  388. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  389. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  390. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  391. MCUSR=0;
  392. SERIAL_ECHOPGM(MSG_MARLIN);
  393. SERIAL_ECHOLNPGM(VERSION_STRING);
  394. #ifdef STRING_VERSION_CONFIG_H
  395. #ifdef STRING_CONFIG_H_AUTHOR
  396. SERIAL_ECHO_START;
  397. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  398. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  399. SERIAL_ECHOPGM(MSG_AUTHOR);
  400. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  401. SERIAL_ECHOPGM("Compiled: ");
  402. SERIAL_ECHOLNPGM(__DATE__);
  403. #endif
  404. #endif
  405. SERIAL_ECHO_START;
  406. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  407. SERIAL_ECHO(freeMemory());
  408. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  409. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  410. for(int8_t i = 0; i < BUFSIZE; i++)
  411. {
  412. fromsd[i] = false;
  413. }
  414. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  415. Config_RetrieveSettings();
  416. tp_init(); // Initialize temperature loop
  417. plan_init(); // Initialize planner;
  418. watchdog_init();
  419. st_init(); // Initialize stepper, this enables interrupts!
  420. setup_photpin();
  421. servo_init();
  422. lcd_init();
  423. _delay_ms(1000); // wait 1sec to display the splash screen
  424. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  425. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  426. #endif
  427. }
  428. void loop()
  429. {
  430. if(buflen < (BUFSIZE-1))
  431. get_command();
  432. #ifdef SDSUPPORT
  433. card.checkautostart(false);
  434. #endif
  435. if(buflen)
  436. {
  437. #ifdef SDSUPPORT
  438. if(card.saving)
  439. {
  440. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  441. {
  442. card.write_command(cmdbuffer[bufindr]);
  443. if(card.logging)
  444. {
  445. process_commands();
  446. }
  447. else
  448. {
  449. SERIAL_PROTOCOLLNPGM(MSG_OK);
  450. }
  451. }
  452. else
  453. {
  454. card.closefile();
  455. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  456. }
  457. }
  458. else
  459. {
  460. process_commands();
  461. }
  462. #else
  463. process_commands();
  464. #endif //SDSUPPORT
  465. buflen = (buflen-1);
  466. bufindr = (bufindr + 1)%BUFSIZE;
  467. }
  468. //check heater every n milliseconds
  469. manage_heater();
  470. manage_inactivity();
  471. checkHitEndstops();
  472. lcd_update();
  473. }
  474. void get_command()
  475. {
  476. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  477. serial_char = MYSERIAL.read();
  478. if(serial_char == '\n' ||
  479. serial_char == '\r' ||
  480. (serial_char == ':' && comment_mode == false) ||
  481. serial_count >= (MAX_CMD_SIZE - 1) )
  482. {
  483. if(!serial_count) { //if empty line
  484. comment_mode = false; //for new command
  485. return;
  486. }
  487. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  488. if(!comment_mode){
  489. comment_mode = false; //for new command
  490. fromsd[bufindw] = false;
  491. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  492. {
  493. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  494. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  495. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  496. SERIAL_ERROR_START;
  497. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  498. SERIAL_ERRORLN(gcode_LastN);
  499. //Serial.println(gcode_N);
  500. FlushSerialRequestResend();
  501. serial_count = 0;
  502. return;
  503. }
  504. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  505. {
  506. byte checksum = 0;
  507. byte count = 0;
  508. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  509. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  510. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  511. SERIAL_ERROR_START;
  512. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  513. SERIAL_ERRORLN(gcode_LastN);
  514. FlushSerialRequestResend();
  515. serial_count = 0;
  516. return;
  517. }
  518. //if no errors, continue parsing
  519. }
  520. else
  521. {
  522. SERIAL_ERROR_START;
  523. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  524. SERIAL_ERRORLN(gcode_LastN);
  525. FlushSerialRequestResend();
  526. serial_count = 0;
  527. return;
  528. }
  529. gcode_LastN = gcode_N;
  530. //if no errors, continue parsing
  531. }
  532. else // if we don't receive 'N' but still see '*'
  533. {
  534. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  535. {
  536. SERIAL_ERROR_START;
  537. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  538. SERIAL_ERRORLN(gcode_LastN);
  539. serial_count = 0;
  540. return;
  541. }
  542. }
  543. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  544. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  545. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  546. case 0:
  547. case 1:
  548. case 2:
  549. case 3:
  550. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  551. #ifdef SDSUPPORT
  552. if(card.saving)
  553. break;
  554. #endif //SDSUPPORT
  555. SERIAL_PROTOCOLLNPGM(MSG_OK);
  556. }
  557. else {
  558. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  559. LCD_MESSAGEPGM(MSG_STOPPED);
  560. }
  561. break;
  562. default:
  563. break;
  564. }
  565. }
  566. bufindw = (bufindw + 1)%BUFSIZE;
  567. buflen += 1;
  568. }
  569. serial_count = 0; //clear buffer
  570. }
  571. else
  572. {
  573. if(serial_char == ';') comment_mode = true;
  574. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  575. }
  576. }
  577. #ifdef SDSUPPORT
  578. if(!card.sdprinting || serial_count!=0){
  579. return;
  580. }
  581. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  582. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  583. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  584. static bool stop_buffering=false;
  585. if(buflen==0) stop_buffering=false;
  586. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  587. int16_t n=card.get();
  588. serial_char = (char)n;
  589. if(serial_char == '\n' ||
  590. serial_char == '\r' ||
  591. (serial_char == '#' && comment_mode == false) ||
  592. (serial_char == ':' && comment_mode == false) ||
  593. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  594. {
  595. if(card.eof()){
  596. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  597. stoptime=millis();
  598. char time[30];
  599. unsigned long t=(stoptime-starttime)/1000;
  600. int hours, minutes;
  601. minutes=(t/60)%60;
  602. hours=t/60/60;
  603. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  604. SERIAL_ECHO_START;
  605. SERIAL_ECHOLN(time);
  606. lcd_setstatus(time);
  607. card.printingHasFinished();
  608. card.checkautostart(true);
  609. }
  610. if(serial_char=='#')
  611. stop_buffering=true;
  612. if(!serial_count)
  613. {
  614. comment_mode = false; //for new command
  615. return; //if empty line
  616. }
  617. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  618. // if(!comment_mode){
  619. fromsd[bufindw] = true;
  620. buflen += 1;
  621. bufindw = (bufindw + 1)%BUFSIZE;
  622. // }
  623. comment_mode = false; //for new command
  624. serial_count = 0; //clear buffer
  625. }
  626. else
  627. {
  628. if(serial_char == ';') comment_mode = true;
  629. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  630. }
  631. }
  632. #endif //SDSUPPORT
  633. }
  634. float code_value()
  635. {
  636. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  637. }
  638. long code_value_long()
  639. {
  640. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  641. }
  642. bool code_seen(char code)
  643. {
  644. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  645. return (strchr_pointer != NULL); //Return True if a character was found
  646. }
  647. #define DEFINE_PGM_READ_ANY(type, reader) \
  648. static inline type pgm_read_any(const type *p) \
  649. { return pgm_read_##reader##_near(p); }
  650. DEFINE_PGM_READ_ANY(float, float);
  651. DEFINE_PGM_READ_ANY(signed char, byte);
  652. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  653. static const PROGMEM type array##_P[3] = \
  654. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  655. static inline type array(int axis) \
  656. { return pgm_read_any(&array##_P[axis]); }
  657. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  658. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  659. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  660. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  661. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  662. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  663. #ifdef DUAL_X_CARRIAGE
  664. #if EXTRUDERS == 1 || defined(COREXY) \
  665. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  666. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  667. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  668. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  669. #endif
  670. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  671. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  672. #endif
  673. #define DXC_FULL_CONTROL_MODE 0
  674. #define DXC_AUTO_PARK_MODE 1
  675. #define DXC_DUPLICATION_MODE 2
  676. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  677. static float x_home_pos(int extruder) {
  678. if (extruder == 0)
  679. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  680. else
  681. // In dual carriage mode the extruder offset provides an override of the
  682. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  683. // This allow soft recalibration of the second extruder offset position without firmware reflash
  684. // (through the M218 command).
  685. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  686. }
  687. static int x_home_dir(int extruder) {
  688. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  689. }
  690. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  691. static bool active_extruder_parked = false; // used in mode 1 & 2
  692. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  693. static unsigned long delayed_move_time = 0; // used in mode 1
  694. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  695. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  696. bool extruder_duplication_enabled = false; // used in mode 2
  697. #endif //DUAL_X_CARRIAGE
  698. static void axis_is_at_home(int axis) {
  699. #ifdef DUAL_X_CARRIAGE
  700. if (axis == X_AXIS) {
  701. if (active_extruder != 0) {
  702. current_position[X_AXIS] = x_home_pos(active_extruder);
  703. min_pos[X_AXIS] = X2_MIN_POS;
  704. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  705. return;
  706. }
  707. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  708. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  709. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  710. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  711. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  712. return;
  713. }
  714. }
  715. #endif
  716. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  717. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  718. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  719. }
  720. #ifdef ENABLE_AUTO_BED_LEVELING
  721. #ifdef ACCURATE_BED_LEVELING
  722. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  723. {
  724. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  725. planeNormal.debug("planeNormal");
  726. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  727. //bedLevel.debug("bedLevel");
  728. //plan_bed_level_matrix.debug("bed level before");
  729. //vector_3 uncorrected_position = plan_get_position_mm();
  730. //uncorrected_position.debug("position before");
  731. vector_3 corrected_position = plan_get_position();
  732. // corrected_position.debug("position after");
  733. current_position[X_AXIS] = corrected_position.x;
  734. current_position[Y_AXIS] = corrected_position.y;
  735. current_position[Z_AXIS] = corrected_position.z;
  736. // but the bed at 0 so we don't go below it.
  737. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  738. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  739. }
  740. #else
  741. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  742. plan_bed_level_matrix.set_to_identity();
  743. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  744. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  745. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  746. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  747. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  748. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  749. //planeNormal.debug("planeNormal");
  750. //yPositive.debug("yPositive");
  751. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  752. //bedLevel.debug("bedLevel");
  753. //plan_bed_level_matrix.debug("bed level before");
  754. //vector_3 uncorrected_position = plan_get_position_mm();
  755. //uncorrected_position.debug("position before");
  756. // and set our bed level equation to do the right thing
  757. //plan_bed_level_matrix.debug("bed level after");
  758. vector_3 corrected_position = plan_get_position();
  759. //corrected_position.debug("position after");
  760. current_position[X_AXIS] = corrected_position.x;
  761. current_position[Y_AXIS] = corrected_position.y;
  762. current_position[Z_AXIS] = corrected_position.z;
  763. // but the bed at 0 so we don't go below it.
  764. current_position[Z_AXIS] = zprobe_zoffset;
  765. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  766. }
  767. #endif // ACCURATE_BED_LEVELING
  768. static void run_z_probe() {
  769. plan_bed_level_matrix.set_to_identity();
  770. feedrate = homing_feedrate[Z_AXIS];
  771. // move down until you find the bed
  772. float zPosition = -10;
  773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  774. st_synchronize();
  775. // we have to let the planner know where we are right now as it is not where we said to go.
  776. zPosition = st_get_position_mm(Z_AXIS);
  777. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  778. // move up the retract distance
  779. zPosition += home_retract_mm(Z_AXIS);
  780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  781. st_synchronize();
  782. // move back down slowly to find bed
  783. feedrate = homing_feedrate[Z_AXIS]/4;
  784. zPosition -= home_retract_mm(Z_AXIS) * 2;
  785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  786. st_synchronize();
  787. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  788. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  789. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  790. }
  791. static void do_blocking_move_to(float x, float y, float z) {
  792. float oldFeedRate = feedrate;
  793. feedrate = XY_TRAVEL_SPEED;
  794. current_position[X_AXIS] = x;
  795. current_position[Y_AXIS] = y;
  796. current_position[Z_AXIS] = z;
  797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  798. st_synchronize();
  799. feedrate = oldFeedRate;
  800. }
  801. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  802. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  803. }
  804. static void setup_for_endstop_move() {
  805. saved_feedrate = feedrate;
  806. saved_feedmultiply = feedmultiply;
  807. feedmultiply = 100;
  808. previous_millis_cmd = millis();
  809. enable_endstops(true);
  810. }
  811. static void clean_up_after_endstop_move() {
  812. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  813. enable_endstops(false);
  814. #endif
  815. feedrate = saved_feedrate;
  816. feedmultiply = saved_feedmultiply;
  817. previous_millis_cmd = millis();
  818. }
  819. static void engage_z_probe() {
  820. // Engage Z Servo endstop if enabled
  821. #ifdef SERVO_ENDSTOPS
  822. if (servo_endstops[Z_AXIS] > -1) {
  823. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  824. servos[servo_endstops[Z_AXIS]].attach(0);
  825. #endif
  826. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  827. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  828. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  829. servos[servo_endstops[Z_AXIS]].detach();
  830. #endif
  831. }
  832. #endif
  833. }
  834. static void retract_z_probe() {
  835. // Retract Z Servo endstop if enabled
  836. #ifdef SERVO_ENDSTOPS
  837. if (servo_endstops[Z_AXIS] > -1) {
  838. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  839. servos[servo_endstops[Z_AXIS]].attach(0);
  840. #endif
  841. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  842. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  843. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  844. servos[servo_endstops[Z_AXIS]].detach();
  845. #endif
  846. }
  847. #endif
  848. }
  849. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  850. static void homeaxis(int axis) {
  851. #define HOMEAXIS_DO(LETTER) \
  852. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  853. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  854. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  855. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  856. 0) {
  857. int axis_home_dir = home_dir(axis);
  858. #ifdef DUAL_X_CARRIAGE
  859. if (axis == X_AXIS)
  860. axis_home_dir = x_home_dir(active_extruder);
  861. #endif
  862. current_position[axis] = 0;
  863. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  864. // Engage Servo endstop if enabled
  865. #ifdef SERVO_ENDSTOPS
  866. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  867. if (axis==Z_AXIS) {
  868. engage_z_probe();
  869. }
  870. else
  871. #endif
  872. if (servo_endstops[axis] > -1) {
  873. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  874. }
  875. #endif
  876. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  877. feedrate = homing_feedrate[axis];
  878. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  879. st_synchronize();
  880. current_position[axis] = 0;
  881. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  882. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  883. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  884. st_synchronize();
  885. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  886. #ifdef DELTA
  887. feedrate = homing_feedrate[axis]/10;
  888. #else
  889. feedrate = homing_feedrate[axis]/2 ;
  890. #endif
  891. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  892. st_synchronize();
  893. #ifdef DELTA
  894. // retrace by the amount specified in endstop_adj
  895. if (endstop_adj[axis] * axis_home_dir < 0) {
  896. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  897. destination[axis] = endstop_adj[axis];
  898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  899. st_synchronize();
  900. }
  901. #endif
  902. axis_is_at_home(axis);
  903. destination[axis] = current_position[axis];
  904. feedrate = 0.0;
  905. endstops_hit_on_purpose();
  906. axis_known_position[axis] = true;
  907. // Retract Servo endstop if enabled
  908. #ifdef SERVO_ENDSTOPS
  909. if (servo_endstops[axis] > -1) {
  910. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  911. }
  912. #endif
  913. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  914. if (axis==Z_AXIS) retract_z_probe();
  915. #endif
  916. }
  917. }
  918. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  919. void process_commands()
  920. {
  921. unsigned long codenum; //throw away variable
  922. char *starpos = NULL;
  923. #ifdef ENABLE_AUTO_BED_LEVELING
  924. float x_tmp, y_tmp, z_tmp, real_z;
  925. #endif
  926. if(code_seen('G'))
  927. {
  928. switch((int)code_value())
  929. {
  930. case 0: // G0 -> G1
  931. case 1: // G1
  932. if(Stopped == false) {
  933. get_coordinates(); // For X Y Z E F
  934. prepare_move();
  935. //ClearToSend();
  936. return;
  937. }
  938. //break;
  939. case 2: // G2 - CW ARC
  940. if(Stopped == false) {
  941. get_arc_coordinates();
  942. prepare_arc_move(true);
  943. return;
  944. }
  945. case 3: // G3 - CCW ARC
  946. if(Stopped == false) {
  947. get_arc_coordinates();
  948. prepare_arc_move(false);
  949. return;
  950. }
  951. case 4: // G4 dwell
  952. LCD_MESSAGEPGM(MSG_DWELL);
  953. codenum = 0;
  954. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  955. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  956. st_synchronize();
  957. codenum += millis(); // keep track of when we started waiting
  958. previous_millis_cmd = millis();
  959. while(millis() < codenum ){
  960. manage_heater();
  961. manage_inactivity();
  962. lcd_update();
  963. }
  964. break;
  965. #ifdef FWRETRACT
  966. case 10: // G10 retract
  967. if(!retracted)
  968. {
  969. destination[X_AXIS]=current_position[X_AXIS];
  970. destination[Y_AXIS]=current_position[Y_AXIS];
  971. destination[Z_AXIS]=current_position[Z_AXIS];
  972. current_position[Z_AXIS]+=-retract_zlift;
  973. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  974. feedrate=retract_feedrate;
  975. retracted=true;
  976. prepare_move();
  977. }
  978. break;
  979. case 11: // G11 retract_recover
  980. if(retracted)
  981. {
  982. destination[X_AXIS]=current_position[X_AXIS];
  983. destination[Y_AXIS]=current_position[Y_AXIS];
  984. destination[Z_AXIS]=current_position[Z_AXIS];
  985. current_position[Z_AXIS]+=retract_zlift;
  986. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  987. feedrate=retract_recover_feedrate;
  988. retracted=false;
  989. prepare_move();
  990. }
  991. break;
  992. #endif //FWRETRACT
  993. case 28: //G28 Home all Axis one at a time
  994. #ifdef ENABLE_AUTO_BED_LEVELING
  995. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  996. #endif //ENABLE_AUTO_BED_LEVELING
  997. saved_feedrate = feedrate;
  998. saved_feedmultiply = feedmultiply;
  999. feedmultiply = 100;
  1000. previous_millis_cmd = millis();
  1001. enable_endstops(true);
  1002. for(int8_t i=0; i < NUM_AXIS; i++) {
  1003. destination[i] = current_position[i];
  1004. }
  1005. feedrate = 0.0;
  1006. #ifdef DELTA
  1007. // A delta can only safely home all axis at the same time
  1008. // all axis have to home at the same time
  1009. // Move all carriages up together until the first endstop is hit.
  1010. current_position[X_AXIS] = 0;
  1011. current_position[Y_AXIS] = 0;
  1012. current_position[Z_AXIS] = 0;
  1013. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1014. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1015. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1016. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1017. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1018. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1019. st_synchronize();
  1020. endstops_hit_on_purpose();
  1021. current_position[X_AXIS] = destination[X_AXIS];
  1022. current_position[Y_AXIS] = destination[Y_AXIS];
  1023. current_position[Z_AXIS] = destination[Z_AXIS];
  1024. // take care of back off and rehome now we are all at the top
  1025. HOMEAXIS(X);
  1026. HOMEAXIS(Y);
  1027. HOMEAXIS(Z);
  1028. calculate_delta(current_position);
  1029. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1030. #else // NOT DELTA
  1031. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1032. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1033. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1034. HOMEAXIS(Z);
  1035. }
  1036. #endif
  1037. #ifdef QUICK_HOME
  1038. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1039. {
  1040. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1041. #ifndef DUAL_X_CARRIAGE
  1042. int x_axis_home_dir = home_dir(X_AXIS);
  1043. #else
  1044. int x_axis_home_dir = x_home_dir(active_extruder);
  1045. extruder_duplication_enabled = false;
  1046. #endif
  1047. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1048. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1049. feedrate = homing_feedrate[X_AXIS];
  1050. if(homing_feedrate[Y_AXIS]<feedrate)
  1051. feedrate =homing_feedrate[Y_AXIS];
  1052. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1053. st_synchronize();
  1054. axis_is_at_home(X_AXIS);
  1055. axis_is_at_home(Y_AXIS);
  1056. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1057. destination[X_AXIS] = current_position[X_AXIS];
  1058. destination[Y_AXIS] = current_position[Y_AXIS];
  1059. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1060. feedrate = 0.0;
  1061. st_synchronize();
  1062. endstops_hit_on_purpose();
  1063. current_position[X_AXIS] = destination[X_AXIS];
  1064. current_position[Y_AXIS] = destination[Y_AXIS];
  1065. current_position[Z_AXIS] = destination[Z_AXIS];
  1066. }
  1067. #endif
  1068. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1069. {
  1070. #ifdef DUAL_X_CARRIAGE
  1071. int tmp_extruder = active_extruder;
  1072. extruder_duplication_enabled = false;
  1073. active_extruder = !active_extruder;
  1074. HOMEAXIS(X);
  1075. inactive_extruder_x_pos = current_position[X_AXIS];
  1076. active_extruder = tmp_extruder;
  1077. HOMEAXIS(X);
  1078. // reset state used by the different modes
  1079. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1080. delayed_move_time = 0;
  1081. active_extruder_parked = true;
  1082. #else
  1083. HOMEAXIS(X);
  1084. #endif
  1085. }
  1086. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1087. HOMEAXIS(Y);
  1088. }
  1089. if(code_seen(axis_codes[X_AXIS]))
  1090. {
  1091. if(code_value_long() != 0) {
  1092. current_position[X_AXIS]=code_value()+add_homeing[0];
  1093. }
  1094. }
  1095. if(code_seen(axis_codes[Y_AXIS])) {
  1096. if(code_value_long() != 0) {
  1097. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1098. }
  1099. }
  1100. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1101. #ifndef Z_SAFE_HOMING
  1102. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1103. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1104. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1105. feedrate = max_feedrate[Z_AXIS];
  1106. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1107. st_synchronize();
  1108. #endif
  1109. HOMEAXIS(Z);
  1110. }
  1111. #else // Z Safe mode activated.
  1112. if(home_all_axis) {
  1113. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1114. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1115. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1116. feedrate = XY_TRAVEL_SPEED;
  1117. current_position[Z_AXIS] = 0;
  1118. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1119. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1120. st_synchronize();
  1121. current_position[X_AXIS] = destination[X_AXIS];
  1122. current_position[Y_AXIS] = destination[Y_AXIS];
  1123. HOMEAXIS(Z);
  1124. }
  1125. // Let's see if X and Y are homed and probe is inside bed area.
  1126. if(code_seen(axis_codes[Z_AXIS])) {
  1127. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1128. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1129. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1130. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1131. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1132. current_position[Z_AXIS] = 0;
  1133. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1134. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1135. feedrate = max_feedrate[Z_AXIS];
  1136. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1137. st_synchronize();
  1138. HOMEAXIS(Z);
  1139. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1140. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1141. SERIAL_ECHO_START;
  1142. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1143. } else {
  1144. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1145. SERIAL_ECHO_START;
  1146. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1147. }
  1148. }
  1149. #endif
  1150. #endif
  1151. if(code_seen(axis_codes[Z_AXIS])) {
  1152. if(code_value_long() != 0) {
  1153. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1154. }
  1155. }
  1156. #ifdef ENABLE_AUTO_BED_LEVELING
  1157. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1158. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1159. }
  1160. #endif
  1161. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1162. #endif // else DELTA
  1163. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1164. enable_endstops(false);
  1165. #endif
  1166. feedrate = saved_feedrate;
  1167. feedmultiply = saved_feedmultiply;
  1168. previous_millis_cmd = millis();
  1169. endstops_hit_on_purpose();
  1170. break;
  1171. #ifdef ENABLE_AUTO_BED_LEVELING
  1172. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1173. {
  1174. #if Z_MIN_PIN == -1
  1175. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1176. #endif
  1177. st_synchronize();
  1178. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1179. //vector_3 corrected_position = plan_get_position_mm();
  1180. //corrected_position.debug("position before G29");
  1181. plan_bed_level_matrix.set_to_identity();
  1182. vector_3 uncorrected_position = plan_get_position();
  1183. //uncorrected_position.debug("position durring G29");
  1184. current_position[X_AXIS] = uncorrected_position.x;
  1185. current_position[Y_AXIS] = uncorrected_position.y;
  1186. current_position[Z_AXIS] = uncorrected_position.z;
  1187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1188. setup_for_endstop_move();
  1189. feedrate = homing_feedrate[Z_AXIS];
  1190. #ifdef ACCURATE_BED_LEVELING
  1191. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1192. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1193. // solve the plane equation ax + by + d = z
  1194. // A is the matrix with rows [x y 1] for all the probed points
  1195. // B is the vector of the Z positions
  1196. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1197. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1198. // "A" matrix of the linear system of equations
  1199. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1200. // "B" vector of Z points
  1201. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1202. int probePointCounter = 0;
  1203. bool zig = true;
  1204. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1205. {
  1206. int xProbe, xInc;
  1207. if (zig)
  1208. {
  1209. xProbe = LEFT_PROBE_BED_POSITION;
  1210. //xEnd = RIGHT_PROBE_BED_POSITION;
  1211. xInc = xGridSpacing;
  1212. zig = false;
  1213. } else // zag
  1214. {
  1215. xProbe = RIGHT_PROBE_BED_POSITION;
  1216. //xEnd = LEFT_PROBE_BED_POSITION;
  1217. xInc = -xGridSpacing;
  1218. zig = true;
  1219. }
  1220. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1221. {
  1222. if (probePointCounter == 0)
  1223. {
  1224. // raise before probing
  1225. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1226. } else
  1227. {
  1228. // raise extruder
  1229. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1230. }
  1231. do_blocking_move_to(xProbe - X_PROBE_OFFSET_FROM_EXTRUDER, yProbe - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1232. engage_z_probe(); // Engage Z Servo endstop if available
  1233. run_z_probe();
  1234. eqnBVector[probePointCounter] = current_position[Z_AXIS];
  1235. retract_z_probe();
  1236. SERIAL_PROTOCOLPGM("Bed x: ");
  1237. SERIAL_PROTOCOL(xProbe);
  1238. SERIAL_PROTOCOLPGM(" y: ");
  1239. SERIAL_PROTOCOL(yProbe);
  1240. SERIAL_PROTOCOLPGM(" z: ");
  1241. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1242. SERIAL_PROTOCOLPGM("\n");
  1243. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1244. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1245. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1246. probePointCounter++;
  1247. xProbe += xInc;
  1248. }
  1249. }
  1250. clean_up_after_endstop_move();
  1251. // solve lsq problem
  1252. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1253. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1254. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1255. SERIAL_PROTOCOLPGM(" b: ");
  1256. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1257. SERIAL_PROTOCOLPGM(" d: ");
  1258. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1259. set_bed_level_equation_lsq(plane_equation_coefficients);
  1260. free(plane_equation_coefficients);
  1261. #else // ACCURATE_BED_LEVELING not defined
  1262. // prob 1
  1263. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1264. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1265. engage_z_probe(); // Engage Z Servo endstop if available
  1266. run_z_probe();
  1267. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1268. retract_z_probe();
  1269. SERIAL_PROTOCOLPGM("Bed x: ");
  1270. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1271. SERIAL_PROTOCOLPGM(" y: ");
  1272. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1273. SERIAL_PROTOCOLPGM(" z: ");
  1274. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1275. SERIAL_PROTOCOLPGM("\n");
  1276. // prob 2
  1277. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1278. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1279. engage_z_probe(); // Engage Z Servo endstop if available
  1280. run_z_probe();
  1281. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1282. retract_z_probe();
  1283. SERIAL_PROTOCOLPGM("Bed x: ");
  1284. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1285. SERIAL_PROTOCOLPGM(" y: ");
  1286. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1287. SERIAL_PROTOCOLPGM(" z: ");
  1288. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1289. SERIAL_PROTOCOLPGM("\n");
  1290. // prob 3
  1291. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1292. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1293. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1294. engage_z_probe(); // Engage Z Servo endstop if available
  1295. run_z_probe();
  1296. float z_at_xRight_yFront = current_position[Z_AXIS];
  1297. retract_z_probe(); // Retract Z Servo endstop if available
  1298. SERIAL_PROTOCOLPGM("Bed x: ");
  1299. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1300. SERIAL_PROTOCOLPGM(" y: ");
  1301. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1302. SERIAL_PROTOCOLPGM(" z: ");
  1303. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1304. SERIAL_PROTOCOLPGM("\n");
  1305. clean_up_after_endstop_move();
  1306. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1307. #endif // ACCURATE_BED_LEVELING
  1308. st_synchronize();
  1309. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1310. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1311. // When the bed is uneven, this height must be corrected.
  1312. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1313. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1314. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1315. z_tmp = current_position[Z_AXIS];
  1316. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1317. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1318. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1319. }
  1320. break;
  1321. case 30: // G30 Single Z Probe
  1322. {
  1323. engage_z_probe(); // Engage Z Servo endstop if available
  1324. st_synchronize();
  1325. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1326. setup_for_endstop_move();
  1327. feedrate = homing_feedrate[Z_AXIS];
  1328. run_z_probe();
  1329. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1330. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1331. SERIAL_PROTOCOLPGM(" Y: ");
  1332. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1333. SERIAL_PROTOCOLPGM(" Z: ");
  1334. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1335. SERIAL_PROTOCOLPGM("\n");
  1336. clean_up_after_endstop_move();
  1337. retract_z_probe(); // Retract Z Servo endstop if available
  1338. }
  1339. break;
  1340. #endif // ENABLE_AUTO_BED_LEVELING
  1341. case 90: // G90
  1342. relative_mode = false;
  1343. break;
  1344. case 91: // G91
  1345. relative_mode = true;
  1346. break;
  1347. case 92: // G92
  1348. if(!code_seen(axis_codes[E_AXIS]))
  1349. st_synchronize();
  1350. for(int8_t i=0; i < NUM_AXIS; i++) {
  1351. if(code_seen(axis_codes[i])) {
  1352. if(i == E_AXIS) {
  1353. current_position[i] = code_value();
  1354. plan_set_e_position(current_position[E_AXIS]);
  1355. }
  1356. else {
  1357. current_position[i] = code_value()+add_homeing[i];
  1358. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1359. }
  1360. }
  1361. }
  1362. break;
  1363. }
  1364. }
  1365. else if(code_seen('M'))
  1366. {
  1367. switch( (int)code_value() )
  1368. {
  1369. #ifdef ULTIPANEL
  1370. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1371. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1372. {
  1373. LCD_MESSAGEPGM(MSG_USERWAIT);
  1374. codenum = 0;
  1375. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1376. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1377. st_synchronize();
  1378. previous_millis_cmd = millis();
  1379. if (codenum > 0){
  1380. codenum += millis(); // keep track of when we started waiting
  1381. while(millis() < codenum && !lcd_clicked()){
  1382. manage_heater();
  1383. manage_inactivity();
  1384. lcd_update();
  1385. }
  1386. }else{
  1387. while(!lcd_clicked()){
  1388. manage_heater();
  1389. manage_inactivity();
  1390. lcd_update();
  1391. }
  1392. }
  1393. LCD_MESSAGEPGM(MSG_RESUMING);
  1394. }
  1395. break;
  1396. #endif
  1397. case 17:
  1398. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1399. enable_x();
  1400. enable_y();
  1401. enable_z();
  1402. enable_e0();
  1403. enable_e1();
  1404. enable_e2();
  1405. break;
  1406. #ifdef SDSUPPORT
  1407. case 20: // M20 - list SD card
  1408. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1409. card.ls();
  1410. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1411. break;
  1412. case 21: // M21 - init SD card
  1413. card.initsd();
  1414. break;
  1415. case 22: //M22 - release SD card
  1416. card.release();
  1417. break;
  1418. case 23: //M23 - Select file
  1419. starpos = (strchr(strchr_pointer + 4,'*'));
  1420. if(starpos!=NULL)
  1421. *(starpos-1)='\0';
  1422. card.openFile(strchr_pointer + 4,true);
  1423. break;
  1424. case 24: //M24 - Start SD print
  1425. card.startFileprint();
  1426. starttime=millis();
  1427. break;
  1428. case 25: //M25 - Pause SD print
  1429. card.pauseSDPrint();
  1430. break;
  1431. case 26: //M26 - Set SD index
  1432. if(card.cardOK && code_seen('S')) {
  1433. card.setIndex(code_value_long());
  1434. }
  1435. break;
  1436. case 27: //M27 - Get SD status
  1437. card.getStatus();
  1438. break;
  1439. case 28: //M28 - Start SD write
  1440. starpos = (strchr(strchr_pointer + 4,'*'));
  1441. if(starpos != NULL){
  1442. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1443. strchr_pointer = strchr(npos,' ') + 1;
  1444. *(starpos-1) = '\0';
  1445. }
  1446. card.openFile(strchr_pointer+4,false);
  1447. break;
  1448. case 29: //M29 - Stop SD write
  1449. //processed in write to file routine above
  1450. //card,saving = false;
  1451. break;
  1452. case 30: //M30 <filename> Delete File
  1453. if (card.cardOK){
  1454. card.closefile();
  1455. starpos = (strchr(strchr_pointer + 4,'*'));
  1456. if(starpos != NULL){
  1457. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1458. strchr_pointer = strchr(npos,' ') + 1;
  1459. *(starpos-1) = '\0';
  1460. }
  1461. card.removeFile(strchr_pointer + 4);
  1462. }
  1463. break;
  1464. case 32: //M32 - Select file and start SD print
  1465. {
  1466. if(card.sdprinting) {
  1467. st_synchronize();
  1468. }
  1469. starpos = (strchr(strchr_pointer + 4,'*'));
  1470. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1471. if(namestartpos==NULL)
  1472. {
  1473. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1474. }
  1475. else
  1476. namestartpos++; //to skip the '!'
  1477. if(starpos!=NULL)
  1478. *(starpos-1)='\0';
  1479. bool call_procedure=(code_seen('P'));
  1480. if(strchr_pointer>namestartpos)
  1481. call_procedure=false; //false alert, 'P' found within filename
  1482. if( card.cardOK )
  1483. {
  1484. card.openFile(namestartpos,true,!call_procedure);
  1485. if(code_seen('S'))
  1486. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1487. card.setIndex(code_value_long());
  1488. card.startFileprint();
  1489. if(!call_procedure)
  1490. starttime=millis(); //procedure calls count as normal print time.
  1491. }
  1492. } break;
  1493. case 928: //M928 - Start SD write
  1494. starpos = (strchr(strchr_pointer + 5,'*'));
  1495. if(starpos != NULL){
  1496. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1497. strchr_pointer = strchr(npos,' ') + 1;
  1498. *(starpos-1) = '\0';
  1499. }
  1500. card.openLogFile(strchr_pointer+5);
  1501. break;
  1502. #endif //SDSUPPORT
  1503. case 31: //M31 take time since the start of the SD print or an M109 command
  1504. {
  1505. stoptime=millis();
  1506. char time[30];
  1507. unsigned long t=(stoptime-starttime)/1000;
  1508. int sec,min;
  1509. min=t/60;
  1510. sec=t%60;
  1511. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1512. SERIAL_ECHO_START;
  1513. SERIAL_ECHOLN(time);
  1514. lcd_setstatus(time);
  1515. autotempShutdown();
  1516. }
  1517. break;
  1518. case 42: //M42 -Change pin status via gcode
  1519. if (code_seen('S'))
  1520. {
  1521. int pin_status = code_value();
  1522. int pin_number = LED_PIN;
  1523. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1524. pin_number = code_value();
  1525. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1526. {
  1527. if (sensitive_pins[i] == pin_number)
  1528. {
  1529. pin_number = -1;
  1530. break;
  1531. }
  1532. }
  1533. #if defined(FAN_PIN) && FAN_PIN > -1
  1534. if (pin_number == FAN_PIN)
  1535. fanSpeed = pin_status;
  1536. #endif
  1537. if (pin_number > -1)
  1538. {
  1539. pinMode(pin_number, OUTPUT);
  1540. digitalWrite(pin_number, pin_status);
  1541. analogWrite(pin_number, pin_status);
  1542. }
  1543. }
  1544. break;
  1545. case 104: // M104
  1546. if(setTargetedHotend(104)){
  1547. break;
  1548. }
  1549. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1550. #ifdef DUAL_X_CARRIAGE
  1551. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1552. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1553. #endif
  1554. setWatch();
  1555. break;
  1556. case 140: // M140 set bed temp
  1557. if (code_seen('S')) setTargetBed(code_value());
  1558. break;
  1559. case 105 : // M105
  1560. if(setTargetedHotend(105)){
  1561. break;
  1562. }
  1563. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1564. SERIAL_PROTOCOLPGM("ok T:");
  1565. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1566. SERIAL_PROTOCOLPGM(" /");
  1567. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1568. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1569. SERIAL_PROTOCOLPGM(" B:");
  1570. SERIAL_PROTOCOL_F(degBed(),1);
  1571. SERIAL_PROTOCOLPGM(" /");
  1572. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1573. #endif //TEMP_BED_PIN
  1574. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1575. SERIAL_PROTOCOLPGM(" T");
  1576. SERIAL_PROTOCOL(cur_extruder);
  1577. SERIAL_PROTOCOLPGM(":");
  1578. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1579. SERIAL_PROTOCOLPGM(" /");
  1580. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1581. }
  1582. #else
  1583. SERIAL_ERROR_START;
  1584. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1585. #endif
  1586. SERIAL_PROTOCOLPGM(" @:");
  1587. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1588. SERIAL_PROTOCOLPGM(" B@:");
  1589. SERIAL_PROTOCOL(getHeaterPower(-1));
  1590. #ifdef SHOW_TEMP_ADC_VALUES
  1591. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1592. SERIAL_PROTOCOLPGM(" ADC B:");
  1593. SERIAL_PROTOCOL_F(degBed(),1);
  1594. SERIAL_PROTOCOLPGM("C->");
  1595. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1596. #endif
  1597. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1598. SERIAL_PROTOCOLPGM(" T");
  1599. SERIAL_PROTOCOL(cur_extruder);
  1600. SERIAL_PROTOCOLPGM(":");
  1601. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1602. SERIAL_PROTOCOLPGM("C->");
  1603. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1604. }
  1605. #endif
  1606. SERIAL_PROTOCOLLN("");
  1607. return;
  1608. break;
  1609. case 109:
  1610. {// M109 - Wait for extruder heater to reach target.
  1611. if(setTargetedHotend(109)){
  1612. break;
  1613. }
  1614. LCD_MESSAGEPGM(MSG_HEATING);
  1615. #ifdef AUTOTEMP
  1616. autotemp_enabled=false;
  1617. #endif
  1618. if (code_seen('S')) {
  1619. setTargetHotend(code_value(), tmp_extruder);
  1620. #ifdef DUAL_X_CARRIAGE
  1621. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1622. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1623. #endif
  1624. CooldownNoWait = true;
  1625. } else if (code_seen('R')) {
  1626. setTargetHotend(code_value(), tmp_extruder);
  1627. #ifdef DUAL_X_CARRIAGE
  1628. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1629. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1630. #endif
  1631. CooldownNoWait = false;
  1632. }
  1633. #ifdef AUTOTEMP
  1634. if (code_seen('S')) autotemp_min=code_value();
  1635. if (code_seen('B')) autotemp_max=code_value();
  1636. if (code_seen('F'))
  1637. {
  1638. autotemp_factor=code_value();
  1639. autotemp_enabled=true;
  1640. }
  1641. #endif
  1642. setWatch();
  1643. codenum = millis();
  1644. /* See if we are heating up or cooling down */
  1645. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1646. #ifdef TEMP_RESIDENCY_TIME
  1647. long residencyStart;
  1648. residencyStart = -1;
  1649. /* continue to loop until we have reached the target temp
  1650. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1651. while((residencyStart == -1) ||
  1652. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1653. #else
  1654. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1655. #endif //TEMP_RESIDENCY_TIME
  1656. if( (millis() - codenum) > 1000UL )
  1657. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1658. SERIAL_PROTOCOLPGM("T:");
  1659. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1660. SERIAL_PROTOCOLPGM(" E:");
  1661. SERIAL_PROTOCOL((int)tmp_extruder);
  1662. #ifdef TEMP_RESIDENCY_TIME
  1663. SERIAL_PROTOCOLPGM(" W:");
  1664. if(residencyStart > -1)
  1665. {
  1666. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1667. SERIAL_PROTOCOLLN( codenum );
  1668. }
  1669. else
  1670. {
  1671. SERIAL_PROTOCOLLN( "?" );
  1672. }
  1673. #else
  1674. SERIAL_PROTOCOLLN("");
  1675. #endif
  1676. codenum = millis();
  1677. }
  1678. manage_heater();
  1679. manage_inactivity();
  1680. lcd_update();
  1681. #ifdef TEMP_RESIDENCY_TIME
  1682. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1683. or when current temp falls outside the hysteresis after target temp was reached */
  1684. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1685. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1686. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1687. {
  1688. residencyStart = millis();
  1689. }
  1690. #endif //TEMP_RESIDENCY_TIME
  1691. }
  1692. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1693. starttime=millis();
  1694. previous_millis_cmd = millis();
  1695. }
  1696. break;
  1697. case 190: // M190 - Wait for bed heater to reach target.
  1698. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1699. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1700. if (code_seen('S')) {
  1701. setTargetBed(code_value());
  1702. CooldownNoWait = true;
  1703. } else if (code_seen('R')) {
  1704. setTargetBed(code_value());
  1705. CooldownNoWait = false;
  1706. }
  1707. codenum = millis();
  1708. target_direction = isHeatingBed(); // true if heating, false if cooling
  1709. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1710. {
  1711. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1712. {
  1713. float tt=degHotend(active_extruder);
  1714. SERIAL_PROTOCOLPGM("T:");
  1715. SERIAL_PROTOCOL(tt);
  1716. SERIAL_PROTOCOLPGM(" E:");
  1717. SERIAL_PROTOCOL((int)active_extruder);
  1718. SERIAL_PROTOCOLPGM(" B:");
  1719. SERIAL_PROTOCOL_F(degBed(),1);
  1720. SERIAL_PROTOCOLLN("");
  1721. codenum = millis();
  1722. }
  1723. manage_heater();
  1724. manage_inactivity();
  1725. lcd_update();
  1726. }
  1727. LCD_MESSAGEPGM(MSG_BED_DONE);
  1728. previous_millis_cmd = millis();
  1729. #endif
  1730. break;
  1731. #if defined(FAN_PIN) && FAN_PIN > -1
  1732. case 106: //M106 Fan On
  1733. if (code_seen('S')){
  1734. fanSpeed=constrain(code_value(),0,255);
  1735. }
  1736. else {
  1737. fanSpeed=255;
  1738. }
  1739. break;
  1740. case 107: //M107 Fan Off
  1741. fanSpeed = 0;
  1742. break;
  1743. #endif //FAN_PIN
  1744. #ifdef BARICUDA
  1745. // PWM for HEATER_1_PIN
  1746. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1747. case 126: //M126 valve open
  1748. if (code_seen('S')){
  1749. ValvePressure=constrain(code_value(),0,255);
  1750. }
  1751. else {
  1752. ValvePressure=255;
  1753. }
  1754. break;
  1755. case 127: //M127 valve closed
  1756. ValvePressure = 0;
  1757. break;
  1758. #endif //HEATER_1_PIN
  1759. // PWM for HEATER_2_PIN
  1760. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1761. case 128: //M128 valve open
  1762. if (code_seen('S')){
  1763. EtoPPressure=constrain(code_value(),0,255);
  1764. }
  1765. else {
  1766. EtoPPressure=255;
  1767. }
  1768. break;
  1769. case 129: //M129 valve closed
  1770. EtoPPressure = 0;
  1771. break;
  1772. #endif //HEATER_2_PIN
  1773. #endif
  1774. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1775. case 80: // M80 - Turn on Power Supply
  1776. SET_OUTPUT(PS_ON_PIN); //GND
  1777. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1778. // If you have a switch on suicide pin, this is useful
  1779. // if you want to start another print with suicide feature after
  1780. // a print without suicide...
  1781. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1782. SET_OUTPUT(SUICIDE_PIN);
  1783. WRITE(SUICIDE_PIN, HIGH);
  1784. #endif
  1785. #ifdef ULTIPANEL
  1786. powersupply = true;
  1787. LCD_MESSAGEPGM(WELCOME_MSG);
  1788. lcd_update();
  1789. #endif
  1790. break;
  1791. #endif
  1792. case 81: // M81 - Turn off Power Supply
  1793. disable_heater();
  1794. st_synchronize();
  1795. disable_e0();
  1796. disable_e1();
  1797. disable_e2();
  1798. finishAndDisableSteppers();
  1799. fanSpeed = 0;
  1800. delay(1000); // Wait a little before to switch off
  1801. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1802. st_synchronize();
  1803. suicide();
  1804. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1805. SET_OUTPUT(PS_ON_PIN);
  1806. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1807. #endif
  1808. #ifdef ULTIPANEL
  1809. powersupply = false;
  1810. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1811. lcd_update();
  1812. #endif
  1813. break;
  1814. case 82:
  1815. axis_relative_modes[3] = false;
  1816. break;
  1817. case 83:
  1818. axis_relative_modes[3] = true;
  1819. break;
  1820. case 18: //compatibility
  1821. case 84: // M84
  1822. if(code_seen('S')){
  1823. stepper_inactive_time = code_value() * 1000;
  1824. }
  1825. else
  1826. {
  1827. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1828. if(all_axis)
  1829. {
  1830. st_synchronize();
  1831. disable_e0();
  1832. disable_e1();
  1833. disable_e2();
  1834. finishAndDisableSteppers();
  1835. }
  1836. else
  1837. {
  1838. st_synchronize();
  1839. if(code_seen('X')) disable_x();
  1840. if(code_seen('Y')) disable_y();
  1841. if(code_seen('Z')) disable_z();
  1842. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1843. if(code_seen('E')) {
  1844. disable_e0();
  1845. disable_e1();
  1846. disable_e2();
  1847. }
  1848. #endif
  1849. }
  1850. }
  1851. break;
  1852. case 85: // M85
  1853. code_seen('S');
  1854. max_inactive_time = code_value() * 1000;
  1855. break;
  1856. case 92: // M92
  1857. for(int8_t i=0; i < NUM_AXIS; i++)
  1858. {
  1859. if(code_seen(axis_codes[i]))
  1860. {
  1861. if(i == 3) { // E
  1862. float value = code_value();
  1863. if(value < 20.0) {
  1864. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1865. max_e_jerk *= factor;
  1866. max_feedrate[i] *= factor;
  1867. axis_steps_per_sqr_second[i] *= factor;
  1868. }
  1869. axis_steps_per_unit[i] = value;
  1870. }
  1871. else {
  1872. axis_steps_per_unit[i] = code_value();
  1873. }
  1874. }
  1875. }
  1876. break;
  1877. case 115: // M115
  1878. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1879. break;
  1880. case 117: // M117 display message
  1881. starpos = (strchr(strchr_pointer + 5,'*'));
  1882. if(starpos!=NULL)
  1883. *(starpos-1)='\0';
  1884. lcd_setstatus(strchr_pointer + 5);
  1885. break;
  1886. case 114: // M114
  1887. SERIAL_PROTOCOLPGM("X:");
  1888. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1889. SERIAL_PROTOCOLPGM("Y:");
  1890. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1891. SERIAL_PROTOCOLPGM("Z:");
  1892. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1893. SERIAL_PROTOCOLPGM("E:");
  1894. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1895. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1896. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1897. SERIAL_PROTOCOLPGM("Y:");
  1898. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1899. SERIAL_PROTOCOLPGM("Z:");
  1900. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1901. SERIAL_PROTOCOLLN("");
  1902. break;
  1903. case 120: // M120
  1904. enable_endstops(false) ;
  1905. break;
  1906. case 121: // M121
  1907. enable_endstops(true) ;
  1908. break;
  1909. case 119: // M119
  1910. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1911. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1912. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1913. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1914. #endif
  1915. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1916. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1917. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1918. #endif
  1919. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1920. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1921. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1922. #endif
  1923. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1924. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1925. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1926. #endif
  1927. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1928. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1929. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1930. #endif
  1931. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1932. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1933. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1934. #endif
  1935. break;
  1936. //TODO: update for all axis, use for loop
  1937. #ifdef BLINKM
  1938. case 150: // M150
  1939. {
  1940. byte red;
  1941. byte grn;
  1942. byte blu;
  1943. if(code_seen('R')) red = code_value();
  1944. if(code_seen('U')) grn = code_value();
  1945. if(code_seen('B')) blu = code_value();
  1946. SendColors(red,grn,blu);
  1947. }
  1948. break;
  1949. #endif //BLINKM
  1950. case 201: // M201
  1951. for(int8_t i=0; i < NUM_AXIS; i++)
  1952. {
  1953. if(code_seen(axis_codes[i]))
  1954. {
  1955. max_acceleration_units_per_sq_second[i] = code_value();
  1956. }
  1957. }
  1958. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1959. reset_acceleration_rates();
  1960. break;
  1961. #if 0 // Not used for Sprinter/grbl gen6
  1962. case 202: // M202
  1963. for(int8_t i=0; i < NUM_AXIS; i++) {
  1964. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1965. }
  1966. break;
  1967. #endif
  1968. case 203: // M203 max feedrate mm/sec
  1969. for(int8_t i=0; i < NUM_AXIS; i++) {
  1970. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1971. }
  1972. break;
  1973. case 204: // M204 acclereration S normal moves T filmanent only moves
  1974. {
  1975. if(code_seen('S')) acceleration = code_value() ;
  1976. if(code_seen('T')) retract_acceleration = code_value() ;
  1977. }
  1978. break;
  1979. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1980. {
  1981. if(code_seen('S')) minimumfeedrate = code_value();
  1982. if(code_seen('T')) mintravelfeedrate = code_value();
  1983. if(code_seen('B')) minsegmenttime = code_value() ;
  1984. if(code_seen('X')) max_xy_jerk = code_value() ;
  1985. if(code_seen('Z')) max_z_jerk = code_value() ;
  1986. if(code_seen('E')) max_e_jerk = code_value() ;
  1987. }
  1988. break;
  1989. case 206: // M206 additional homeing offset
  1990. for(int8_t i=0; i < 3; i++)
  1991. {
  1992. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1993. }
  1994. break;
  1995. #ifdef DELTA
  1996. case 666: // M666 set delta endstop adjustemnt
  1997. for(int8_t i=0; i < 3; i++)
  1998. {
  1999. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2000. }
  2001. break;
  2002. #endif
  2003. #ifdef FWRETRACT
  2004. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2005. {
  2006. if(code_seen('S'))
  2007. {
  2008. retract_length = code_value() ;
  2009. }
  2010. if(code_seen('F'))
  2011. {
  2012. retract_feedrate = code_value() ;
  2013. }
  2014. if(code_seen('Z'))
  2015. {
  2016. retract_zlift = code_value() ;
  2017. }
  2018. }break;
  2019. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2020. {
  2021. if(code_seen('S'))
  2022. {
  2023. retract_recover_length = code_value() ;
  2024. }
  2025. if(code_seen('F'))
  2026. {
  2027. retract_recover_feedrate = code_value() ;
  2028. }
  2029. }break;
  2030. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2031. {
  2032. if(code_seen('S'))
  2033. {
  2034. int t= code_value() ;
  2035. switch(t)
  2036. {
  2037. case 0: autoretract_enabled=false;retracted=false;break;
  2038. case 1: autoretract_enabled=true;retracted=false;break;
  2039. default:
  2040. SERIAL_ECHO_START;
  2041. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2042. SERIAL_ECHO(cmdbuffer[bufindr]);
  2043. SERIAL_ECHOLNPGM("\"");
  2044. }
  2045. }
  2046. }break;
  2047. #endif // FWRETRACT
  2048. #if EXTRUDERS > 1
  2049. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2050. {
  2051. if(setTargetedHotend(218)){
  2052. break;
  2053. }
  2054. if(code_seen('X'))
  2055. {
  2056. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2057. }
  2058. if(code_seen('Y'))
  2059. {
  2060. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2061. }
  2062. #ifdef DUAL_X_CARRIAGE
  2063. if(code_seen('Z'))
  2064. {
  2065. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2066. }
  2067. #endif
  2068. SERIAL_ECHO_START;
  2069. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2070. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2071. {
  2072. SERIAL_ECHO(" ");
  2073. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2074. SERIAL_ECHO(",");
  2075. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2076. #ifdef DUAL_X_CARRIAGE
  2077. SERIAL_ECHO(",");
  2078. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2079. #endif
  2080. }
  2081. SERIAL_ECHOLN("");
  2082. }break;
  2083. #endif
  2084. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2085. {
  2086. if(code_seen('S'))
  2087. {
  2088. feedmultiply = code_value() ;
  2089. }
  2090. }
  2091. break;
  2092. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2093. {
  2094. if(code_seen('S'))
  2095. {
  2096. extrudemultiply = code_value() ;
  2097. }
  2098. }
  2099. break;
  2100. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2101. {
  2102. if(code_seen('P')){
  2103. int pin_number = code_value(); // pin number
  2104. int pin_state = -1; // required pin state - default is inverted
  2105. if(code_seen('S')) pin_state = code_value(); // required pin state
  2106. if(pin_state >= -1 && pin_state <= 1){
  2107. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2108. {
  2109. if (sensitive_pins[i] == pin_number)
  2110. {
  2111. pin_number = -1;
  2112. break;
  2113. }
  2114. }
  2115. if (pin_number > -1)
  2116. {
  2117. st_synchronize();
  2118. pinMode(pin_number, INPUT);
  2119. int target;
  2120. switch(pin_state){
  2121. case 1:
  2122. target = HIGH;
  2123. break;
  2124. case 0:
  2125. target = LOW;
  2126. break;
  2127. case -1:
  2128. target = !digitalRead(pin_number);
  2129. break;
  2130. }
  2131. while(digitalRead(pin_number) != target){
  2132. manage_heater();
  2133. manage_inactivity();
  2134. lcd_update();
  2135. }
  2136. }
  2137. }
  2138. }
  2139. }
  2140. break;
  2141. #if NUM_SERVOS > 0
  2142. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2143. {
  2144. int servo_index = -1;
  2145. int servo_position = 0;
  2146. if (code_seen('P'))
  2147. servo_index = code_value();
  2148. if (code_seen('S')) {
  2149. servo_position = code_value();
  2150. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2151. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2152. servos[servo_index].attach(0);
  2153. #endif
  2154. servos[servo_index].write(servo_position);
  2155. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2156. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2157. servos[servo_index].detach();
  2158. #endif
  2159. }
  2160. else {
  2161. SERIAL_ECHO_START;
  2162. SERIAL_ECHO("Servo ");
  2163. SERIAL_ECHO(servo_index);
  2164. SERIAL_ECHOLN(" out of range");
  2165. }
  2166. }
  2167. else if (servo_index >= 0) {
  2168. SERIAL_PROTOCOL(MSG_OK);
  2169. SERIAL_PROTOCOL(" Servo ");
  2170. SERIAL_PROTOCOL(servo_index);
  2171. SERIAL_PROTOCOL(": ");
  2172. SERIAL_PROTOCOL(servos[servo_index].read());
  2173. SERIAL_PROTOCOLLN("");
  2174. }
  2175. }
  2176. break;
  2177. #endif // NUM_SERVOS > 0
  2178. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2179. case 300: // M300
  2180. {
  2181. int beepS = code_seen('S') ? code_value() : 110;
  2182. int beepP = code_seen('P') ? code_value() : 1000;
  2183. if (beepS > 0)
  2184. {
  2185. #if BEEPER > 0
  2186. tone(BEEPER, beepS);
  2187. delay(beepP);
  2188. noTone(BEEPER);
  2189. #elif defined(ULTRALCD)
  2190. lcd_buzz(beepS, beepP);
  2191. #endif
  2192. }
  2193. else
  2194. {
  2195. delay(beepP);
  2196. }
  2197. }
  2198. break;
  2199. #endif // M300
  2200. #ifdef PIDTEMP
  2201. case 301: // M301
  2202. {
  2203. if(code_seen('P')) Kp = code_value();
  2204. if(code_seen('I')) Ki = scalePID_i(code_value());
  2205. if(code_seen('D')) Kd = scalePID_d(code_value());
  2206. #ifdef PID_ADD_EXTRUSION_RATE
  2207. if(code_seen('C')) Kc = code_value();
  2208. #endif
  2209. updatePID();
  2210. SERIAL_PROTOCOL(MSG_OK);
  2211. SERIAL_PROTOCOL(" p:");
  2212. SERIAL_PROTOCOL(Kp);
  2213. SERIAL_PROTOCOL(" i:");
  2214. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2215. SERIAL_PROTOCOL(" d:");
  2216. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2217. #ifdef PID_ADD_EXTRUSION_RATE
  2218. SERIAL_PROTOCOL(" c:");
  2219. //Kc does not have scaling applied above, or in resetting defaults
  2220. SERIAL_PROTOCOL(Kc);
  2221. #endif
  2222. SERIAL_PROTOCOLLN("");
  2223. }
  2224. break;
  2225. #endif //PIDTEMP
  2226. #ifdef PIDTEMPBED
  2227. case 304: // M304
  2228. {
  2229. if(code_seen('P')) bedKp = code_value();
  2230. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2231. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2232. updatePID();
  2233. SERIAL_PROTOCOL(MSG_OK);
  2234. SERIAL_PROTOCOL(" p:");
  2235. SERIAL_PROTOCOL(bedKp);
  2236. SERIAL_PROTOCOL(" i:");
  2237. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2238. SERIAL_PROTOCOL(" d:");
  2239. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2240. SERIAL_PROTOCOLLN("");
  2241. }
  2242. break;
  2243. #endif //PIDTEMP
  2244. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2245. {
  2246. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2247. const uint8_t NUM_PULSES=16;
  2248. const float PULSE_LENGTH=0.01524;
  2249. for(int i=0; i < NUM_PULSES; i++) {
  2250. WRITE(PHOTOGRAPH_PIN, HIGH);
  2251. _delay_ms(PULSE_LENGTH);
  2252. WRITE(PHOTOGRAPH_PIN, LOW);
  2253. _delay_ms(PULSE_LENGTH);
  2254. }
  2255. delay(7.33);
  2256. for(int i=0; i < NUM_PULSES; i++) {
  2257. WRITE(PHOTOGRAPH_PIN, HIGH);
  2258. _delay_ms(PULSE_LENGTH);
  2259. WRITE(PHOTOGRAPH_PIN, LOW);
  2260. _delay_ms(PULSE_LENGTH);
  2261. }
  2262. #endif
  2263. }
  2264. break;
  2265. #ifdef DOGLCD
  2266. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2267. {
  2268. if (code_seen('C')) {
  2269. lcd_setcontrast( ((int)code_value())&63 );
  2270. }
  2271. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2272. SERIAL_PROTOCOL(lcd_contrast);
  2273. SERIAL_PROTOCOLLN("");
  2274. }
  2275. break;
  2276. #endif
  2277. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2278. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2279. {
  2280. float temp = .0;
  2281. if (code_seen('S')) temp=code_value();
  2282. set_extrude_min_temp(temp);
  2283. }
  2284. break;
  2285. #endif
  2286. case 303: // M303 PID autotune
  2287. {
  2288. float temp = 150.0;
  2289. int e=0;
  2290. int c=5;
  2291. if (code_seen('E')) e=code_value();
  2292. if (e<0)
  2293. temp=70;
  2294. if (code_seen('S')) temp=code_value();
  2295. if (code_seen('C')) c=code_value();
  2296. PID_autotune(temp, e, c);
  2297. }
  2298. break;
  2299. case 400: // M400 finish all moves
  2300. {
  2301. st_synchronize();
  2302. }
  2303. break;
  2304. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2305. case 401:
  2306. {
  2307. engage_z_probe(); // Engage Z Servo endstop if available
  2308. }
  2309. break;
  2310. case 402:
  2311. {
  2312. retract_z_probe(); // Retract Z Servo endstop if enabled
  2313. }
  2314. break;
  2315. #endif
  2316. case 500: // M500 Store settings in EEPROM
  2317. {
  2318. Config_StoreSettings();
  2319. }
  2320. break;
  2321. case 501: // M501 Read settings from EEPROM
  2322. {
  2323. Config_RetrieveSettings();
  2324. }
  2325. break;
  2326. case 502: // M502 Revert to default settings
  2327. {
  2328. Config_ResetDefault();
  2329. }
  2330. break;
  2331. case 503: // M503 print settings currently in memory
  2332. {
  2333. Config_PrintSettings();
  2334. }
  2335. break;
  2336. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2337. case 540:
  2338. {
  2339. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2340. }
  2341. break;
  2342. #endif
  2343. #ifdef FILAMENTCHANGEENABLE
  2344. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2345. {
  2346. float target[4];
  2347. float lastpos[4];
  2348. target[X_AXIS]=current_position[X_AXIS];
  2349. target[Y_AXIS]=current_position[Y_AXIS];
  2350. target[Z_AXIS]=current_position[Z_AXIS];
  2351. target[E_AXIS]=current_position[E_AXIS];
  2352. lastpos[X_AXIS]=current_position[X_AXIS];
  2353. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2354. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2355. lastpos[E_AXIS]=current_position[E_AXIS];
  2356. //retract by E
  2357. if(code_seen('E'))
  2358. {
  2359. target[E_AXIS]+= code_value();
  2360. }
  2361. else
  2362. {
  2363. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2364. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2365. #endif
  2366. }
  2367. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2368. //lift Z
  2369. if(code_seen('Z'))
  2370. {
  2371. target[Z_AXIS]+= code_value();
  2372. }
  2373. else
  2374. {
  2375. #ifdef FILAMENTCHANGE_ZADD
  2376. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2377. #endif
  2378. }
  2379. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2380. //move xy
  2381. if(code_seen('X'))
  2382. {
  2383. target[X_AXIS]+= code_value();
  2384. }
  2385. else
  2386. {
  2387. #ifdef FILAMENTCHANGE_XPOS
  2388. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2389. #endif
  2390. }
  2391. if(code_seen('Y'))
  2392. {
  2393. target[Y_AXIS]= code_value();
  2394. }
  2395. else
  2396. {
  2397. #ifdef FILAMENTCHANGE_YPOS
  2398. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2399. #endif
  2400. }
  2401. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2402. if(code_seen('L'))
  2403. {
  2404. target[E_AXIS]+= code_value();
  2405. }
  2406. else
  2407. {
  2408. #ifdef FILAMENTCHANGE_FINALRETRACT
  2409. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2410. #endif
  2411. }
  2412. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2413. //finish moves
  2414. st_synchronize();
  2415. //disable extruder steppers so filament can be removed
  2416. disable_e0();
  2417. disable_e1();
  2418. disable_e2();
  2419. delay(100);
  2420. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2421. uint8_t cnt=0;
  2422. while(!lcd_clicked()){
  2423. cnt++;
  2424. manage_heater();
  2425. manage_inactivity();
  2426. lcd_update();
  2427. if(cnt==0)
  2428. {
  2429. #if BEEPER > 0
  2430. SET_OUTPUT(BEEPER);
  2431. WRITE(BEEPER,HIGH);
  2432. delay(3);
  2433. WRITE(BEEPER,LOW);
  2434. delay(3);
  2435. #else
  2436. lcd_buzz(1000/6,100);
  2437. #endif
  2438. }
  2439. }
  2440. //return to normal
  2441. if(code_seen('L'))
  2442. {
  2443. target[E_AXIS]+= -code_value();
  2444. }
  2445. else
  2446. {
  2447. #ifdef FILAMENTCHANGE_FINALRETRACT
  2448. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2449. #endif
  2450. }
  2451. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2452. plan_set_e_position(current_position[E_AXIS]);
  2453. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2454. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2455. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2456. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2457. }
  2458. break;
  2459. #endif //FILAMENTCHANGEENABLE
  2460. #ifdef DUAL_X_CARRIAGE
  2461. case 605: // Set dual x-carriage movement mode:
  2462. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2463. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2464. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2465. // millimeters x-offset and an optional differential hotend temperature of
  2466. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2467. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2468. //
  2469. // Note: the X axis should be homed after changing dual x-carriage mode.
  2470. {
  2471. st_synchronize();
  2472. if (code_seen('S'))
  2473. dual_x_carriage_mode = code_value();
  2474. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2475. {
  2476. if (code_seen('X'))
  2477. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2478. if (code_seen('R'))
  2479. duplicate_extruder_temp_offset = code_value();
  2480. SERIAL_ECHO_START;
  2481. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2482. SERIAL_ECHO(" ");
  2483. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2484. SERIAL_ECHO(",");
  2485. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2486. SERIAL_ECHO(" ");
  2487. SERIAL_ECHO(duplicate_extruder_x_offset);
  2488. SERIAL_ECHO(",");
  2489. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2490. }
  2491. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2492. {
  2493. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2494. }
  2495. active_extruder_parked = false;
  2496. extruder_duplication_enabled = false;
  2497. delayed_move_time = 0;
  2498. }
  2499. break;
  2500. #endif //DUAL_X_CARRIAGE
  2501. case 907: // M907 Set digital trimpot motor current using axis codes.
  2502. {
  2503. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2504. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2505. if(code_seen('B')) digipot_current(4,code_value());
  2506. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2507. #endif
  2508. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2509. if(code_seen('X')) digipot_current(0, code_value());
  2510. #endif
  2511. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2512. if(code_seen('Z')) digipot_current(1, code_value());
  2513. #endif
  2514. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2515. if(code_seen('E')) digipot_current(2, code_value());
  2516. #endif
  2517. }
  2518. break;
  2519. case 908: // M908 Control digital trimpot directly.
  2520. {
  2521. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2522. uint8_t channel,current;
  2523. if(code_seen('P')) channel=code_value();
  2524. if(code_seen('S')) current=code_value();
  2525. digitalPotWrite(channel, current);
  2526. #endif
  2527. }
  2528. break;
  2529. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2530. {
  2531. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2532. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2533. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2534. if(code_seen('B')) microstep_mode(4,code_value());
  2535. microstep_readings();
  2536. #endif
  2537. }
  2538. break;
  2539. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2540. {
  2541. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2542. if(code_seen('S')) switch((int)code_value())
  2543. {
  2544. case 1:
  2545. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2546. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2547. break;
  2548. case 2:
  2549. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2550. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2551. break;
  2552. }
  2553. microstep_readings();
  2554. #endif
  2555. }
  2556. break;
  2557. case 999: // M999: Restart after being stopped
  2558. Stopped = false;
  2559. lcd_reset_alert_level();
  2560. gcode_LastN = Stopped_gcode_LastN;
  2561. FlushSerialRequestResend();
  2562. break;
  2563. }
  2564. }
  2565. else if(code_seen('T'))
  2566. {
  2567. tmp_extruder = code_value();
  2568. if(tmp_extruder >= EXTRUDERS) {
  2569. SERIAL_ECHO_START;
  2570. SERIAL_ECHO("T");
  2571. SERIAL_ECHO(tmp_extruder);
  2572. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2573. }
  2574. else {
  2575. boolean make_move = false;
  2576. if(code_seen('F')) {
  2577. make_move = true;
  2578. next_feedrate = code_value();
  2579. if(next_feedrate > 0.0) {
  2580. feedrate = next_feedrate;
  2581. }
  2582. }
  2583. #if EXTRUDERS > 1
  2584. if(tmp_extruder != active_extruder) {
  2585. // Save current position to return to after applying extruder offset
  2586. memcpy(destination, current_position, sizeof(destination));
  2587. #ifdef DUAL_X_CARRIAGE
  2588. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2589. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2590. {
  2591. // Park old head: 1) raise 2) move to park position 3) lower
  2592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2593. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2594. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2595. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2596. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2597. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2598. st_synchronize();
  2599. }
  2600. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2601. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2602. extruder_offset[Y_AXIS][active_extruder] +
  2603. extruder_offset[Y_AXIS][tmp_extruder];
  2604. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2605. extruder_offset[Z_AXIS][active_extruder] +
  2606. extruder_offset[Z_AXIS][tmp_extruder];
  2607. active_extruder = tmp_extruder;
  2608. // This function resets the max/min values - the current position may be overwritten below.
  2609. axis_is_at_home(X_AXIS);
  2610. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2611. {
  2612. current_position[X_AXIS] = inactive_extruder_x_pos;
  2613. inactive_extruder_x_pos = destination[X_AXIS];
  2614. }
  2615. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2616. {
  2617. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2618. if (active_extruder == 0 || active_extruder_parked)
  2619. current_position[X_AXIS] = inactive_extruder_x_pos;
  2620. else
  2621. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2622. inactive_extruder_x_pos = destination[X_AXIS];
  2623. extruder_duplication_enabled = false;
  2624. }
  2625. else
  2626. {
  2627. // record raised toolhead position for use by unpark
  2628. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2629. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2630. active_extruder_parked = true;
  2631. delayed_move_time = 0;
  2632. }
  2633. #else
  2634. // Offset extruder (only by XY)
  2635. int i;
  2636. for(i = 0; i < 2; i++) {
  2637. current_position[i] = current_position[i] -
  2638. extruder_offset[i][active_extruder] +
  2639. extruder_offset[i][tmp_extruder];
  2640. }
  2641. // Set the new active extruder and position
  2642. active_extruder = tmp_extruder;
  2643. #endif //else DUAL_X_CARRIAGE
  2644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2645. // Move to the old position if 'F' was in the parameters
  2646. if(make_move && Stopped == false) {
  2647. prepare_move();
  2648. }
  2649. }
  2650. #endif
  2651. SERIAL_ECHO_START;
  2652. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2653. SERIAL_PROTOCOLLN((int)active_extruder);
  2654. }
  2655. }
  2656. else
  2657. {
  2658. SERIAL_ECHO_START;
  2659. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2660. SERIAL_ECHO(cmdbuffer[bufindr]);
  2661. SERIAL_ECHOLNPGM("\"");
  2662. }
  2663. ClearToSend();
  2664. }
  2665. void FlushSerialRequestResend()
  2666. {
  2667. //char cmdbuffer[bufindr][100]="Resend:";
  2668. MYSERIAL.flush();
  2669. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2670. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2671. ClearToSend();
  2672. }
  2673. void ClearToSend()
  2674. {
  2675. previous_millis_cmd = millis();
  2676. #ifdef SDSUPPORT
  2677. if(fromsd[bufindr])
  2678. return;
  2679. #endif //SDSUPPORT
  2680. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2681. }
  2682. void get_coordinates()
  2683. {
  2684. bool seen[4]={false,false,false,false};
  2685. for(int8_t i=0; i < NUM_AXIS; i++) {
  2686. if(code_seen(axis_codes[i]))
  2687. {
  2688. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2689. seen[i]=true;
  2690. }
  2691. else destination[i] = current_position[i]; //Are these else lines really needed?
  2692. }
  2693. if(code_seen('F')) {
  2694. next_feedrate = code_value();
  2695. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2696. }
  2697. #ifdef FWRETRACT
  2698. if(autoretract_enabled)
  2699. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2700. {
  2701. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2702. if(echange<-MIN_RETRACT) //retract
  2703. {
  2704. if(!retracted)
  2705. {
  2706. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2707. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2708. float correctede=-echange-retract_length;
  2709. //to generate the additional steps, not the destination is changed, but inversely the current position
  2710. current_position[E_AXIS]+=-correctede;
  2711. feedrate=retract_feedrate;
  2712. retracted=true;
  2713. }
  2714. }
  2715. else
  2716. if(echange>MIN_RETRACT) //retract_recover
  2717. {
  2718. if(retracted)
  2719. {
  2720. //current_position[Z_AXIS]+=-retract_zlift;
  2721. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2722. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2723. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2724. feedrate=retract_recover_feedrate;
  2725. retracted=false;
  2726. }
  2727. }
  2728. }
  2729. #endif //FWRETRACT
  2730. }
  2731. void get_arc_coordinates()
  2732. {
  2733. #ifdef SF_ARC_FIX
  2734. bool relative_mode_backup = relative_mode;
  2735. relative_mode = true;
  2736. #endif
  2737. get_coordinates();
  2738. #ifdef SF_ARC_FIX
  2739. relative_mode=relative_mode_backup;
  2740. #endif
  2741. if(code_seen('I')) {
  2742. offset[0] = code_value();
  2743. }
  2744. else {
  2745. offset[0] = 0.0;
  2746. }
  2747. if(code_seen('J')) {
  2748. offset[1] = code_value();
  2749. }
  2750. else {
  2751. offset[1] = 0.0;
  2752. }
  2753. }
  2754. void clamp_to_software_endstops(float target[3])
  2755. {
  2756. if (min_software_endstops) {
  2757. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2758. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2759. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2760. }
  2761. if (max_software_endstops) {
  2762. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2763. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2764. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2765. }
  2766. }
  2767. #ifdef DELTA
  2768. void calculate_delta(float cartesian[3])
  2769. {
  2770. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2771. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2772. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2773. ) + cartesian[Z_AXIS];
  2774. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2775. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2776. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2777. ) + cartesian[Z_AXIS];
  2778. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2779. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2780. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2781. ) + cartesian[Z_AXIS];
  2782. /*
  2783. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2784. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2785. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2786. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2787. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2788. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2789. */
  2790. }
  2791. #endif
  2792. void prepare_move()
  2793. {
  2794. clamp_to_software_endstops(destination);
  2795. previous_millis_cmd = millis();
  2796. #ifdef DELTA
  2797. float difference[NUM_AXIS];
  2798. for (int8_t i=0; i < NUM_AXIS; i++) {
  2799. difference[i] = destination[i] - current_position[i];
  2800. }
  2801. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2802. sq(difference[Y_AXIS]) +
  2803. sq(difference[Z_AXIS]));
  2804. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2805. if (cartesian_mm < 0.000001) { return; }
  2806. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2807. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2808. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2809. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2810. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2811. for (int s = 1; s <= steps; s++) {
  2812. float fraction = float(s) / float(steps);
  2813. for(int8_t i=0; i < NUM_AXIS; i++) {
  2814. destination[i] = current_position[i] + difference[i] * fraction;
  2815. }
  2816. calculate_delta(destination);
  2817. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2818. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2819. active_extruder);
  2820. }
  2821. #else
  2822. #ifdef DUAL_X_CARRIAGE
  2823. if (active_extruder_parked)
  2824. {
  2825. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2826. {
  2827. // move duplicate extruder into correct duplication position.
  2828. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2829. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2830. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2831. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2832. st_synchronize();
  2833. extruder_duplication_enabled = true;
  2834. active_extruder_parked = false;
  2835. }
  2836. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2837. {
  2838. if (current_position[E_AXIS] == destination[E_AXIS])
  2839. {
  2840. // this is a travel move - skit it but keep track of current position (so that it can later
  2841. // be used as start of first non-travel move)
  2842. if (delayed_move_time != 0xFFFFFFFFUL)
  2843. {
  2844. memcpy(current_position, destination, sizeof(current_position));
  2845. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2846. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2847. delayed_move_time = millis();
  2848. return;
  2849. }
  2850. }
  2851. delayed_move_time = 0;
  2852. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2853. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2855. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2857. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2858. active_extruder_parked = false;
  2859. }
  2860. }
  2861. #endif //DUAL_X_CARRIAGE
  2862. // Do not use feedmultiply for E or Z only moves
  2863. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2864. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2865. }
  2866. else {
  2867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2868. }
  2869. #endif //else DELTA
  2870. for(int8_t i=0; i < NUM_AXIS; i++) {
  2871. current_position[i] = destination[i];
  2872. }
  2873. }
  2874. void prepare_arc_move(char isclockwise) {
  2875. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2876. // Trace the arc
  2877. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2878. // As far as the parser is concerned, the position is now == target. In reality the
  2879. // motion control system might still be processing the action and the real tool position
  2880. // in any intermediate location.
  2881. for(int8_t i=0; i < NUM_AXIS; i++) {
  2882. current_position[i] = destination[i];
  2883. }
  2884. previous_millis_cmd = millis();
  2885. }
  2886. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2887. #if defined(FAN_PIN)
  2888. #if CONTROLLERFAN_PIN == FAN_PIN
  2889. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2890. #endif
  2891. #endif
  2892. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2893. unsigned long lastMotorCheck = 0;
  2894. void controllerFan()
  2895. {
  2896. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2897. {
  2898. lastMotorCheck = millis();
  2899. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2900. #if EXTRUDERS > 2
  2901. || !READ(E2_ENABLE_PIN)
  2902. #endif
  2903. #if EXTRUDER > 1
  2904. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2905. || !READ(X2_ENABLE_PIN)
  2906. #endif
  2907. || !READ(E1_ENABLE_PIN)
  2908. #endif
  2909. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2910. {
  2911. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2912. }
  2913. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2914. {
  2915. digitalWrite(CONTROLLERFAN_PIN, 0);
  2916. analogWrite(CONTROLLERFAN_PIN, 0);
  2917. }
  2918. else
  2919. {
  2920. // allows digital or PWM fan output to be used (see M42 handling)
  2921. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2922. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2923. }
  2924. }
  2925. }
  2926. #endif
  2927. #ifdef TEMP_STAT_LEDS
  2928. static bool blue_led = false;
  2929. static bool red_led = false;
  2930. static uint32_t stat_update = 0;
  2931. void handle_status_leds(void) {
  2932. float max_temp = 0.0;
  2933. if(millis() > stat_update) {
  2934. stat_update += 500; // Update every 0.5s
  2935. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2936. max_temp = max(max_temp, degHotend(cur_extruder));
  2937. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2938. }
  2939. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2940. max_temp = max(max_temp, degTargetBed());
  2941. max_temp = max(max_temp, degBed());
  2942. #endif
  2943. if((max_temp > 55.0) && (red_led == false)) {
  2944. digitalWrite(STAT_LED_RED, 1);
  2945. digitalWrite(STAT_LED_BLUE, 0);
  2946. red_led = true;
  2947. blue_led = false;
  2948. }
  2949. if((max_temp < 54.0) && (blue_led == false)) {
  2950. digitalWrite(STAT_LED_RED, 0);
  2951. digitalWrite(STAT_LED_BLUE, 1);
  2952. red_led = false;
  2953. blue_led = true;
  2954. }
  2955. }
  2956. }
  2957. #endif
  2958. void manage_inactivity()
  2959. {
  2960. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2961. if(max_inactive_time)
  2962. kill();
  2963. if(stepper_inactive_time) {
  2964. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2965. {
  2966. if(blocks_queued() == false) {
  2967. disable_x();
  2968. disable_y();
  2969. disable_z();
  2970. disable_e0();
  2971. disable_e1();
  2972. disable_e2();
  2973. }
  2974. }
  2975. }
  2976. #if defined(KILL_PIN) && KILL_PIN > -1
  2977. if( 0 == READ(KILL_PIN) )
  2978. kill();
  2979. #endif
  2980. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2981. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2982. #endif
  2983. #ifdef EXTRUDER_RUNOUT_PREVENT
  2984. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2985. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2986. {
  2987. bool oldstatus=READ(E0_ENABLE_PIN);
  2988. enable_e0();
  2989. float oldepos=current_position[E_AXIS];
  2990. float oldedes=destination[E_AXIS];
  2991. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  2992. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2993. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2994. current_position[E_AXIS]=oldepos;
  2995. destination[E_AXIS]=oldedes;
  2996. plan_set_e_position(oldepos);
  2997. previous_millis_cmd=millis();
  2998. st_synchronize();
  2999. WRITE(E0_ENABLE_PIN,oldstatus);
  3000. }
  3001. #endif
  3002. #if defined(DUAL_X_CARRIAGE)
  3003. // handle delayed move timeout
  3004. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3005. {
  3006. // travel moves have been received so enact them
  3007. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3008. memcpy(destination,current_position,sizeof(destination));
  3009. prepare_move();
  3010. }
  3011. #endif
  3012. #ifdef TEMP_STAT_LEDS
  3013. handle_status_leds();
  3014. #endif
  3015. check_axes_activity();
  3016. }
  3017. void kill()
  3018. {
  3019. cli(); // Stop interrupts
  3020. disable_heater();
  3021. disable_x();
  3022. disable_y();
  3023. disable_z();
  3024. disable_e0();
  3025. disable_e1();
  3026. disable_e2();
  3027. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3028. pinMode(PS_ON_PIN,INPUT);
  3029. #endif
  3030. SERIAL_ERROR_START;
  3031. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3032. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3033. suicide();
  3034. while(1) { /* Intentionally left empty */ } // Wait for reset
  3035. }
  3036. void Stop()
  3037. {
  3038. disable_heater();
  3039. if(Stopped == false) {
  3040. Stopped = true;
  3041. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3042. SERIAL_ERROR_START;
  3043. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3044. LCD_MESSAGEPGM(MSG_STOPPED);
  3045. }
  3046. }
  3047. bool IsStopped() { return Stopped; };
  3048. #ifdef FAST_PWM_FAN
  3049. void setPwmFrequency(uint8_t pin, int val)
  3050. {
  3051. val &= 0x07;
  3052. switch(digitalPinToTimer(pin))
  3053. {
  3054. #if defined(TCCR0A)
  3055. case TIMER0A:
  3056. case TIMER0B:
  3057. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3058. // TCCR0B |= val;
  3059. break;
  3060. #endif
  3061. #if defined(TCCR1A)
  3062. case TIMER1A:
  3063. case TIMER1B:
  3064. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3065. // TCCR1B |= val;
  3066. break;
  3067. #endif
  3068. #if defined(TCCR2)
  3069. case TIMER2:
  3070. case TIMER2:
  3071. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3072. TCCR2 |= val;
  3073. break;
  3074. #endif
  3075. #if defined(TCCR2A)
  3076. case TIMER2A:
  3077. case TIMER2B:
  3078. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3079. TCCR2B |= val;
  3080. break;
  3081. #endif
  3082. #if defined(TCCR3A)
  3083. case TIMER3A:
  3084. case TIMER3B:
  3085. case TIMER3C:
  3086. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3087. TCCR3B |= val;
  3088. break;
  3089. #endif
  3090. #if defined(TCCR4A)
  3091. case TIMER4A:
  3092. case TIMER4B:
  3093. case TIMER4C:
  3094. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3095. TCCR4B |= val;
  3096. break;
  3097. #endif
  3098. #if defined(TCCR5A)
  3099. case TIMER5A:
  3100. case TIMER5B:
  3101. case TIMER5C:
  3102. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3103. TCCR5B |= val;
  3104. break;
  3105. #endif
  3106. }
  3107. }
  3108. #endif //FAST_PWM_FAN
  3109. bool setTargetedHotend(int code){
  3110. tmp_extruder = active_extruder;
  3111. if(code_seen('T')) {
  3112. tmp_extruder = code_value();
  3113. if(tmp_extruder >= EXTRUDERS) {
  3114. SERIAL_ECHO_START;
  3115. switch(code){
  3116. case 104:
  3117. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3118. break;
  3119. case 105:
  3120. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3121. break;
  3122. case 109:
  3123. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3124. break;
  3125. case 218:
  3126. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3127. break;
  3128. }
  3129. SERIAL_ECHOLN(tmp_extruder);
  3130. return true;
  3131. }
  3132. }
  3133. return false;
  3134. }