My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.h 18KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.h - temperature controller
  24. */
  25. #ifndef TEMPERATURE_H
  26. #define TEMPERATURE_H
  27. #include "thermistor/thermistors.h"
  28. #include "../inc/MarlinConfig.h"
  29. #if ENABLED(BABYSTEPPING)
  30. extern bool axis_known_position[XYZ];
  31. #endif
  32. #if ENABLED(AUTO_POWER_CONTROL)
  33. #include "../feature/power.h"
  34. #endif
  35. #if ENABLED(PID_EXTRUSION_SCALING)
  36. #include "stepper.h"
  37. #endif
  38. #ifndef SOFT_PWM_SCALE
  39. #define SOFT_PWM_SCALE 0
  40. #endif
  41. /**
  42. * States for ADC reading in the ISR
  43. */
  44. enum ADCSensorState {
  45. #if HAS_TEMP_0
  46. PrepareTemp_0,
  47. MeasureTemp_0,
  48. #endif
  49. #if HAS_TEMP_1
  50. PrepareTemp_1,
  51. MeasureTemp_1,
  52. #endif
  53. #if HAS_TEMP_2
  54. PrepareTemp_2,
  55. MeasureTemp_2,
  56. #endif
  57. #if HAS_TEMP_3
  58. PrepareTemp_3,
  59. MeasureTemp_3,
  60. #endif
  61. #if HAS_TEMP_4
  62. PrepareTemp_4,
  63. MeasureTemp_4,
  64. #endif
  65. #if HAS_TEMP_BED
  66. PrepareTemp_BED,
  67. MeasureTemp_BED,
  68. #endif
  69. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  70. Prepare_FILWIDTH,
  71. Measure_FILWIDTH,
  72. #endif
  73. #if ENABLED(ADC_KEYPAD)
  74. Prepare_ADC_KEY,
  75. Measure_ADC_KEY,
  76. #endif
  77. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  78. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  79. };
  80. // Minimum number of Temperature::ISR loops between sensor readings.
  81. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  82. // get all oversampled sensor readings
  83. #define MIN_ADC_ISR_LOOPS 10
  84. #define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  85. #if HAS_PID_HEATING
  86. #define PID_K2 (1.0-PID_K1)
  87. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
  88. // Apply the scale factors to the PID values
  89. #define scalePID_i(i) ( (i) * PID_dT )
  90. #define unscalePID_i(i) ( (i) / PID_dT )
  91. #define scalePID_d(d) ( (d) / PID_dT )
  92. #define unscalePID_d(d) ( (d) * PID_dT )
  93. #endif
  94. #if !HAS_HEATER_BED
  95. constexpr int16_t target_temperature_bed = 0;
  96. #endif
  97. class Temperature {
  98. public:
  99. static float current_temperature[HOTENDS],
  100. current_temperature_bed;
  101. static int16_t current_temperature_raw[HOTENDS],
  102. target_temperature[HOTENDS],
  103. current_temperature_bed_raw;
  104. #if ENABLED(AUTO_POWER_E_FANS)
  105. static int16_t autofan_speed[HOTENDS];
  106. #endif
  107. #if HAS_HEATER_BED
  108. static int16_t target_temperature_bed;
  109. #endif
  110. static volatile bool in_temp_isr;
  111. static uint8_t soft_pwm_amount[HOTENDS],
  112. soft_pwm_amount_bed;
  113. #if ENABLED(FAN_SOFT_PWM)
  114. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  115. soft_pwm_count_fan[FAN_COUNT];
  116. #endif
  117. #if ENABLED(PIDTEMP)
  118. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  119. static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
  120. #if ENABLED(PID_EXTRUSION_SCALING)
  121. static float Kc[HOTENDS];
  122. #endif
  123. #define PID_PARAM(param, h) Temperature::param[h]
  124. #else
  125. static float Kp, Ki, Kd;
  126. #if ENABLED(PID_EXTRUSION_SCALING)
  127. static float Kc;
  128. #endif
  129. #define PID_PARAM(param, h) Temperature::param
  130. #endif // PID_PARAMS_PER_HOTEND
  131. #endif
  132. #if ENABLED(PIDTEMPBED)
  133. static float bedKp, bedKi, bedKd;
  134. #endif
  135. #if ENABLED(BABYSTEPPING)
  136. static volatile int babystepsTodo[3];
  137. #endif
  138. #if WATCH_HOTENDS
  139. static uint16_t watch_target_temp[HOTENDS];
  140. static millis_t watch_heater_next_ms[HOTENDS];
  141. #endif
  142. #if WATCH_THE_BED
  143. static uint16_t watch_target_bed_temp;
  144. static millis_t watch_bed_next_ms;
  145. #endif
  146. #if ENABLED(PREVENT_COLD_EXTRUSION)
  147. static bool allow_cold_extrude;
  148. static int16_t extrude_min_temp;
  149. FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
  150. FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) {
  151. #if HOTENDS == 1
  152. UNUSED(e);
  153. #endif
  154. return tooCold(degHotend(HOTEND_INDEX));
  155. }
  156. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) {
  157. #if HOTENDS == 1
  158. UNUSED(e);
  159. #endif
  160. return tooCold(degTargetHotend(HOTEND_INDEX));
  161. }
  162. #else
  163. FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
  164. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
  165. #endif
  166. FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
  167. FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
  168. private:
  169. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  170. static uint16_t redundant_temperature_raw;
  171. static float redundant_temperature;
  172. #endif
  173. static volatile bool temp_meas_ready;
  174. #if ENABLED(PIDTEMP)
  175. static float temp_iState[HOTENDS],
  176. temp_dState[HOTENDS],
  177. pTerm[HOTENDS],
  178. iTerm[HOTENDS],
  179. dTerm[HOTENDS];
  180. #if ENABLED(PID_EXTRUSION_SCALING)
  181. static float cTerm[HOTENDS];
  182. static long last_e_position;
  183. static long lpq[LPQ_MAX_LEN];
  184. static int lpq_ptr;
  185. #endif
  186. static float pid_error[HOTENDS];
  187. static bool pid_reset[HOTENDS];
  188. #endif
  189. #if ENABLED(PIDTEMPBED)
  190. static float temp_iState_bed,
  191. temp_dState_bed,
  192. pTerm_bed,
  193. iTerm_bed,
  194. dTerm_bed,
  195. pid_error_bed;
  196. #else
  197. static millis_t next_bed_check_ms;
  198. #endif
  199. static uint16_t raw_temp_value[MAX_EXTRUDERS],
  200. raw_temp_bed_value;
  201. // Init min and max temp with extreme values to prevent false errors during startup
  202. static int16_t minttemp_raw[HOTENDS],
  203. maxttemp_raw[HOTENDS],
  204. minttemp[HOTENDS],
  205. maxttemp[HOTENDS];
  206. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  207. static uint8_t consecutive_low_temperature_error[HOTENDS];
  208. #endif
  209. #ifdef MILLISECONDS_PREHEAT_TIME
  210. static millis_t preheat_end_time[HOTENDS];
  211. #endif
  212. #ifdef BED_MINTEMP
  213. static int16_t bed_minttemp_raw;
  214. #endif
  215. #ifdef BED_MAXTEMP
  216. static int16_t bed_maxttemp_raw;
  217. #endif
  218. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  219. static int8_t meas_shift_index; // Index of a delayed sample in buffer
  220. #endif
  221. #if HAS_AUTO_FAN
  222. static millis_t next_auto_fan_check_ms;
  223. #endif
  224. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  225. static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
  226. #endif
  227. #if ENABLED(PROBING_HEATERS_OFF)
  228. static bool paused;
  229. #endif
  230. #if HEATER_IDLE_HANDLER
  231. static millis_t heater_idle_timeout_ms[HOTENDS];
  232. static bool heater_idle_timeout_exceeded[HOTENDS];
  233. #if HAS_TEMP_BED
  234. static millis_t bed_idle_timeout_ms;
  235. static bool bed_idle_timeout_exceeded;
  236. #endif
  237. #endif
  238. public:
  239. #if ENABLED(ADC_KEYPAD)
  240. static uint32_t current_ADCKey_raw;
  241. static uint8_t ADCKey_count;
  242. #endif
  243. /**
  244. * Instance Methods
  245. */
  246. Temperature();
  247. void init();
  248. /**
  249. * Static (class) methods
  250. */
  251. static float analog2temp(const int raw, const uint8_t e);
  252. #if HAS_TEMP_BED
  253. static float analog2tempBed(const int raw);
  254. #endif
  255. /**
  256. * Called from the Temperature ISR
  257. */
  258. static void isr();
  259. /**
  260. * Call periodically to manage heaters
  261. */
  262. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  263. /**
  264. * Preheating hotends
  265. */
  266. #ifdef MILLISECONDS_PREHEAT_TIME
  267. static bool is_preheating(const uint8_t e) {
  268. #if HOTENDS == 1
  269. UNUSED(e);
  270. #endif
  271. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  272. }
  273. static void start_preheat_time(const uint8_t e) {
  274. #if HOTENDS == 1
  275. UNUSED(e);
  276. #endif
  277. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  278. }
  279. static void reset_preheat_time(const uint8_t e) {
  280. #if HOTENDS == 1
  281. UNUSED(e);
  282. #endif
  283. preheat_end_time[HOTEND_INDEX] = 0;
  284. }
  285. #else
  286. #define is_preheating(n) (false)
  287. #endif
  288. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  289. static float analog2widthFil(); // Convert raw Filament Width to millimeters
  290. static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio
  291. #endif
  292. //high level conversion routines, for use outside of temperature.cpp
  293. //inline so that there is no performance decrease.
  294. //deg=degreeCelsius
  295. FORCE_INLINE static float degHotend(const uint8_t e) {
  296. #if HOTENDS == 1
  297. UNUSED(e);
  298. #endif
  299. return current_temperature[HOTEND_INDEX];
  300. }
  301. FORCE_INLINE static float degBed() { return current_temperature_bed; }
  302. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  303. FORCE_INLINE static int16_t rawHotendTemp(const uint8_t e) {
  304. #if HOTENDS == 1
  305. UNUSED(e);
  306. #endif
  307. return current_temperature_raw[HOTEND_INDEX];
  308. }
  309. FORCE_INLINE static int16_t rawBedTemp() { return current_temperature_bed_raw; }
  310. #endif
  311. FORCE_INLINE static int16_t degTargetHotend(const uint8_t e) {
  312. #if HOTENDS == 1
  313. UNUSED(e);
  314. #endif
  315. return target_temperature[HOTEND_INDEX];
  316. }
  317. FORCE_INLINE static int16_t degTargetBed() { return target_temperature_bed; }
  318. #if WATCH_HOTENDS
  319. static void start_watching_heater(const uint8_t e = 0);
  320. #endif
  321. #if WATCH_THE_BED
  322. static void start_watching_bed();
  323. #endif
  324. static void setTargetHotend(const int16_t celsius, const uint8_t e) {
  325. #if HOTENDS == 1
  326. UNUSED(e);
  327. #endif
  328. #ifdef MILLISECONDS_PREHEAT_TIME
  329. if (celsius == 0)
  330. reset_preheat_time(HOTEND_INDEX);
  331. else if (target_temperature[HOTEND_INDEX] == 0)
  332. start_preheat_time(HOTEND_INDEX);
  333. #endif
  334. #if ENABLED(AUTO_POWER_CONTROL)
  335. powerManager.power_on();
  336. #endif
  337. target_temperature[HOTEND_INDEX] = celsius;
  338. #if WATCH_HOTENDS
  339. start_watching_heater(HOTEND_INDEX);
  340. #endif
  341. }
  342. static void setTargetBed(const int16_t celsius) {
  343. #if HAS_HEATER_BED
  344. #if ENABLED(AUTO_POWER_CONTROL)
  345. powerManager.power_on();
  346. #endif
  347. target_temperature_bed =
  348. #ifdef BED_MAXTEMP
  349. min(celsius, BED_MAXTEMP)
  350. #else
  351. celsius
  352. #endif
  353. ;
  354. #if WATCH_THE_BED
  355. start_watching_bed();
  356. #endif
  357. #endif
  358. }
  359. FORCE_INLINE static bool isHeatingHotend(const uint8_t e) {
  360. #if HOTENDS == 1
  361. UNUSED(e);
  362. #endif
  363. return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
  364. }
  365. FORCE_INLINE static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
  366. FORCE_INLINE static bool isCoolingHotend(const uint8_t e) {
  367. #if HOTENDS == 1
  368. UNUSED(e);
  369. #endif
  370. return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
  371. }
  372. FORCE_INLINE static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
  373. FORCE_INLINE static bool wait_for_heating(const uint8_t e) {
  374. return degTargetHotend(e) > TEMP_HYSTERESIS && abs(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
  375. }
  376. /**
  377. * The software PWM power for a heater
  378. */
  379. static int getHeaterPower(int heater);
  380. /**
  381. * Switch off all heaters, set all target temperatures to 0
  382. */
  383. static void disable_all_heaters();
  384. /**
  385. * Perform auto-tuning for hotend or bed in response to M303
  386. */
  387. #if HAS_PID_HEATING
  388. static void PID_autotune(const float &target, const int8_t hotend, const int8_t ncycles, const bool set_result=false);
  389. /**
  390. * Update the temp manager when PID values change
  391. */
  392. #if ENABLED(PIDTEMP)
  393. FORCE_INLINE static void updatePID() {
  394. #if ENABLED(PID_EXTRUSION_SCALING)
  395. last_e_position = 0;
  396. #endif
  397. }
  398. #endif
  399. #endif
  400. #if ENABLED(BABYSTEPPING)
  401. static void babystep_axis(const AxisEnum axis, const int16_t distance) {
  402. if (axis_known_position[axis]) {
  403. #if IS_CORE
  404. #if ENABLED(BABYSTEP_XY)
  405. switch (axis) {
  406. case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
  407. babystepsTodo[CORE_AXIS_1] += distance * 2;
  408. babystepsTodo[CORE_AXIS_2] += distance * 2;
  409. break;
  410. case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
  411. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  412. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  413. break;
  414. case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
  415. babystepsTodo[NORMAL_AXIS] += distance;
  416. break;
  417. }
  418. #elif CORE_IS_XZ || CORE_IS_YZ
  419. // Only Z stepping needs to be handled here
  420. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  421. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  422. #else
  423. babystepsTodo[Z_AXIS] += distance;
  424. #endif
  425. #else
  426. babystepsTodo[axis] += distance;
  427. #endif
  428. }
  429. }
  430. #endif // BABYSTEPPING
  431. #if ENABLED(PROBING_HEATERS_OFF)
  432. static void pause(const bool p);
  433. FORCE_INLINE static bool is_paused() { return paused; }
  434. #endif
  435. #if HEATER_IDLE_HANDLER
  436. static void start_heater_idle_timer(const uint8_t e, const millis_t timeout_ms) {
  437. #if HOTENDS == 1
  438. UNUSED(e);
  439. #endif
  440. heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
  441. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  442. }
  443. static void reset_heater_idle_timer(const uint8_t e) {
  444. #if HOTENDS == 1
  445. UNUSED(e);
  446. #endif
  447. heater_idle_timeout_ms[HOTEND_INDEX] = 0;
  448. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  449. #if WATCH_HOTENDS
  450. start_watching_heater(HOTEND_INDEX);
  451. #endif
  452. }
  453. FORCE_INLINE static bool is_heater_idle(const uint8_t e) {
  454. #if HOTENDS == 1
  455. UNUSED(e);
  456. #endif
  457. return heater_idle_timeout_exceeded[HOTEND_INDEX];
  458. }
  459. #if HAS_TEMP_BED
  460. static void start_bed_idle_timer(const millis_t timeout_ms) {
  461. bed_idle_timeout_ms = millis() + timeout_ms;
  462. bed_idle_timeout_exceeded = false;
  463. }
  464. static void reset_bed_idle_timer() {
  465. bed_idle_timeout_ms = 0;
  466. bed_idle_timeout_exceeded = false;
  467. #if WATCH_THE_BED
  468. start_watching_bed();
  469. #endif
  470. }
  471. FORCE_INLINE static bool is_bed_idle() { return bed_idle_timeout_exceeded; }
  472. #endif
  473. #endif // HEATER_IDLE_HANDLER
  474. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  475. static void print_heaterstates(
  476. #if NUM_SERIAL > 1
  477. const int8_t port = -1
  478. #endif
  479. );
  480. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  481. static uint8_t auto_report_temp_interval;
  482. static millis_t next_temp_report_ms;
  483. static void auto_report_temperatures(void);
  484. FORCE_INLINE void set_auto_report_interval(uint8_t v) {
  485. NOMORE(v, 60);
  486. auto_report_temp_interval = v;
  487. next_temp_report_ms = millis() + 1000UL * v;
  488. }
  489. #endif
  490. #endif
  491. private:
  492. #if ENABLED(FAST_PWM_FAN)
  493. static void setPwmFrequency(const pin_t pin, int val);
  494. #endif
  495. static void set_current_temp_raw();
  496. static void updateTemperaturesFromRawValues();
  497. #if ENABLED(HEATER_0_USES_MAX6675)
  498. static int read_max6675();
  499. #endif
  500. static void checkExtruderAutoFans();
  501. static float get_pid_output(const int8_t e);
  502. #if ENABLED(PIDTEMPBED)
  503. static float get_pid_output_bed();
  504. #endif
  505. static void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg);
  506. static void min_temp_error(const int8_t e);
  507. static void max_temp_error(const int8_t e);
  508. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  509. typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
  510. static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float &current, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
  511. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  512. static TRState thermal_runaway_state_machine[HOTENDS];
  513. static millis_t thermal_runaway_timer[HOTENDS];
  514. #endif
  515. #if HAS_THERMALLY_PROTECTED_BED
  516. static TRState thermal_runaway_bed_state_machine;
  517. static millis_t thermal_runaway_bed_timer;
  518. #endif
  519. #endif // THERMAL_PROTECTION
  520. };
  521. extern Temperature thermalManager;
  522. #endif // TEMPERATURE_H