My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 276KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "nozzle.h"
  57. #include "duration_t.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  195. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  196. * M221 - Set Flow Percentage: S<percent>
  197. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  198. * M240 - Trigger a camera to take a photograph
  199. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  200. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  201. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  202. * M301 - Set PID parameters P I and D
  203. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  204. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  205. * M304 - Set bed PID parameters P I and D
  206. * M380 - Activate solenoid on active extruder
  207. * M381 - Disable all solenoids
  208. * M400 - Finish all moves
  209. * M401 - Lower Z probe if present
  210. * M402 - Raise Z probe if present
  211. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  212. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  213. * M406 - Disable Filament Sensor extrusion control
  214. * M407 - Display measured filament diameter in millimeters
  215. * M410 - Quickstop. Abort all the planned moves
  216. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  217. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  218. * M428 - Set the home_offset logically based on the current_position
  219. * M500 - Store parameters in EEPROM
  220. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  221. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  222. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  223. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  225. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  226. * M666 - Set delta endstop adjustment
  227. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  228. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  229. * M907 - Set digital trimpot motor current using axis codes.
  230. * M908 - Control digital trimpot directly.
  231. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  232. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  233. * M350 - Set microstepping mode.
  234. * M351 - Toggle MS1 MS2 pins directly.
  235. *
  236. * ************ SCARA Specific - This can change to suit future G-code regulations
  237. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  238. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  239. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  240. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  241. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  242. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  243. * ************* SCARA End ***************
  244. *
  245. * ************ Custom codes - This can change to suit future G-code regulations
  246. * M100 - Watch Free Memory (For Debugging Only)
  247. * M928 - Start SD logging (M928 filename.g) - ended by M29
  248. * M999 - Restart after being stopped by error
  249. *
  250. * "T" Codes
  251. *
  252. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  253. *
  254. */
  255. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  256. void gcode_M100();
  257. #endif
  258. #if ENABLED(SDSUPPORT)
  259. CardReader card;
  260. #endif
  261. #if ENABLED(EXPERIMENTAL_I2CBUS)
  262. TWIBus i2c;
  263. #endif
  264. bool Running = true;
  265. uint8_t marlin_debug_flags = DEBUG_NONE;
  266. float current_position[NUM_AXIS] = { 0.0 };
  267. static float destination[NUM_AXIS] = { 0.0 };
  268. bool axis_known_position[3] = { false };
  269. bool axis_homed[3] = { false };
  270. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  271. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  272. static char* current_command, *current_command_args;
  273. static uint8_t cmd_queue_index_r = 0,
  274. cmd_queue_index_w = 0,
  275. commands_in_queue = 0;
  276. #if ENABLED(INCH_MODE_SUPPORT)
  277. float linear_unit_factor = 1.0;
  278. float volumetric_unit_factor = 1.0;
  279. #endif
  280. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  281. TempUnit input_temp_units = TEMPUNIT_C;
  282. #endif
  283. /**
  284. * Feed rates are often configured with mm/m
  285. * but the planner and stepper like mm/s units.
  286. */
  287. const float homing_feedrate_mm_m[] = {
  288. #if ENABLED(DELTA)
  289. HOMING_FEEDRATE_Z, HOMING_FEEDRATE_Z,
  290. #else
  291. HOMING_FEEDRATE_XY, HOMING_FEEDRATE_XY,
  292. #endif
  293. HOMING_FEEDRATE_Z, 0
  294. };
  295. static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m;
  296. int feedrate_percentage = 100, saved_feedrate_percentage;
  297. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  298. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  299. bool volumetric_enabled = false;
  300. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  301. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  302. // The distance that XYZ has been offset by G92. Reset by G28.
  303. float position_shift[3] = { 0 };
  304. // This offset is added to the configured home position.
  305. // Set by M206, M428, or menu item. Saved to EEPROM.
  306. float home_offset[3] = { 0 };
  307. // Software Endstops. Default to configured limits.
  308. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  309. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  310. #if FAN_COUNT > 0
  311. int fanSpeeds[FAN_COUNT] = { 0 };
  312. #endif
  313. // The active extruder (tool). Set with T<extruder> command.
  314. uint8_t active_extruder = 0;
  315. // Relative Mode. Enable with G91, disable with G90.
  316. static bool relative_mode = false;
  317. volatile bool wait_for_heatup = true;
  318. const char errormagic[] PROGMEM = "Error:";
  319. const char echomagic[] PROGMEM = "echo:";
  320. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  321. static int serial_count = 0;
  322. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  323. static char* seen_pointer;
  324. // Next Immediate GCode Command pointer. NULL if none.
  325. const char* queued_commands_P = NULL;
  326. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  327. // Inactivity shutdown
  328. millis_t previous_cmd_ms = 0;
  329. static millis_t max_inactive_time = 0;
  330. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  331. // Print Job Timer
  332. #if ENABLED(PRINTCOUNTER)
  333. PrintCounter print_job_timer = PrintCounter();
  334. #else
  335. Stopwatch print_job_timer = Stopwatch();
  336. #endif
  337. // Buzzer
  338. #if HAS_BUZZER
  339. #if ENABLED(SPEAKER)
  340. Speaker buzzer;
  341. #else
  342. Buzzer buzzer;
  343. #endif
  344. #endif
  345. static uint8_t target_extruder;
  346. #if HAS_BED_PROBE
  347. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  348. #endif
  349. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  350. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  351. int xy_probe_feedrate_mm_m = XY_PROBE_SPEED;
  352. bool bed_leveling_in_progress = false;
  353. #define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m
  354. #elif defined(XY_PROBE_SPEED)
  355. #define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED
  356. #else
  357. #define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE())
  358. #endif
  359. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  360. float z_endstop_adj = 0;
  361. #endif
  362. // Extruder offsets
  363. #if HOTENDS > 1
  364. float hotend_offset[][HOTENDS] = {
  365. HOTEND_OFFSET_X,
  366. HOTEND_OFFSET_Y
  367. #ifdef HOTEND_OFFSET_Z
  368. , HOTEND_OFFSET_Z
  369. #endif
  370. };
  371. #endif
  372. #if HAS_Z_SERVO_ENDSTOP
  373. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  374. #endif
  375. #if ENABLED(BARICUDA)
  376. int baricuda_valve_pressure = 0;
  377. int baricuda_e_to_p_pressure = 0;
  378. #endif
  379. #if ENABLED(FWRETRACT)
  380. bool autoretract_enabled = false;
  381. bool retracted[EXTRUDERS] = { false };
  382. bool retracted_swap[EXTRUDERS] = { false };
  383. float retract_length = RETRACT_LENGTH;
  384. float retract_length_swap = RETRACT_LENGTH_SWAP;
  385. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  386. float retract_zlift = RETRACT_ZLIFT;
  387. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  388. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  389. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  390. #endif // FWRETRACT
  391. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  392. bool powersupply =
  393. #if ENABLED(PS_DEFAULT_OFF)
  394. false
  395. #else
  396. true
  397. #endif
  398. ;
  399. #endif
  400. #if ENABLED(DELTA)
  401. #define TOWER_1 X_AXIS
  402. #define TOWER_2 Y_AXIS
  403. #define TOWER_3 Z_AXIS
  404. float delta[3];
  405. float cartesian_position[3] = { 0 };
  406. #define SIN_60 0.8660254037844386
  407. #define COS_60 0.5
  408. float endstop_adj[3] = { 0 };
  409. // these are the default values, can be overriden with M665
  410. float delta_radius = DELTA_RADIUS;
  411. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  412. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  413. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  414. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  415. float delta_tower3_x = 0; // back middle tower
  416. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  417. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  418. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  419. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  420. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  421. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  422. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  423. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  424. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  425. float delta_clip_start_height = Z_MAX_POS;
  426. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  427. int delta_grid_spacing[2] = { 0, 0 };
  428. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  429. #endif
  430. float delta_safe_distance_from_top();
  431. #else
  432. static bool home_all_axis = true;
  433. #endif
  434. #if ENABLED(SCARA)
  435. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  436. float delta[3];
  437. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  438. #endif
  439. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  440. //Variables for Filament Sensor input
  441. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  442. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  443. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  444. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  445. int filwidth_delay_index1 = 0; //index into ring buffer
  446. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  447. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  448. #endif
  449. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  450. static bool filament_ran_out = false;
  451. #endif
  452. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  453. FilamentChangeMenuResponse filament_change_menu_response;
  454. #endif
  455. #if ENABLED(MIXING_EXTRUDER)
  456. float mixing_factor[MIXING_STEPPERS];
  457. #if MIXING_VIRTUAL_TOOLS > 1
  458. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  459. #endif
  460. #endif
  461. static bool send_ok[BUFSIZE];
  462. #if HAS_SERVOS
  463. Servo servo[NUM_SERVOS];
  464. #define MOVE_SERVO(I, P) servo[I].move(P)
  465. #if HAS_Z_SERVO_ENDSTOP
  466. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  467. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  468. #endif
  469. #endif
  470. #ifdef CHDK
  471. millis_t chdkHigh = 0;
  472. boolean chdkActive = false;
  473. #endif
  474. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  475. int lpq_len = 20;
  476. #endif
  477. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  478. static MarlinBusyState busy_state = NOT_BUSY;
  479. static millis_t next_busy_signal_ms = 0;
  480. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  481. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  482. #else
  483. #define host_keepalive() ;
  484. #define KEEPALIVE_STATE(n) ;
  485. #endif // HOST_KEEPALIVE_FEATURE
  486. /**
  487. * ***************************************************************************
  488. * ******************************** FUNCTIONS ********************************
  489. * ***************************************************************************
  490. */
  491. void stop();
  492. void get_available_commands();
  493. void process_next_command();
  494. void prepare_move_to_destination();
  495. void set_current_from_steppers_for_axis(AxisEnum axis);
  496. #if ENABLED(ARC_SUPPORT)
  497. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  498. #endif
  499. #if ENABLED(BEZIER_CURVE_SUPPORT)
  500. void plan_cubic_move(const float offset[4]);
  501. #endif
  502. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  503. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  504. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  505. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  506. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  507. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  508. void tool_change(const uint8_t tmp_extruder, const float fr_mm_m=0.0, bool no_move=false);
  509. static void report_current_position();
  510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  511. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  512. serialprintPGM(prefix);
  513. SERIAL_ECHOPAIR("(", x);
  514. SERIAL_ECHOPAIR(", ", y);
  515. SERIAL_ECHOPAIR(", ", z);
  516. SERIAL_ECHOPGM(")");
  517. if (suffix) serialprintPGM(suffix);
  518. else SERIAL_EOL;
  519. }
  520. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  521. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  522. }
  523. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  524. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  525. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  526. }
  527. #endif
  528. #define DEBUG_POS(SUFFIX,VAR) do { \
  529. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  530. #endif
  531. /**
  532. * sync_plan_position
  533. * Set planner / stepper positions to the cartesian current_position.
  534. * The stepper code translates these coordinates into step units.
  535. * Allows translation between steps and millimeters for cartesian & core robots
  536. */
  537. inline void sync_plan_position() {
  538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  539. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  540. #endif
  541. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  542. }
  543. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  544. #if ENABLED(DELTA) || ENABLED(SCARA)
  545. inline void sync_plan_position_delta() {
  546. #if ENABLED(DEBUG_LEVELING_FEATURE)
  547. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  548. #endif
  549. inverse_kinematics(current_position);
  550. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  551. }
  552. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  553. #else
  554. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  555. #endif
  556. #if ENABLED(SDSUPPORT)
  557. #include "SdFatUtil.h"
  558. int freeMemory() { return SdFatUtil::FreeRam(); }
  559. #else
  560. extern "C" {
  561. extern unsigned int __bss_end;
  562. extern unsigned int __heap_start;
  563. extern void* __brkval;
  564. int freeMemory() {
  565. int free_memory;
  566. if ((int)__brkval == 0)
  567. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  568. else
  569. free_memory = ((int)&free_memory) - ((int)__brkval);
  570. return free_memory;
  571. }
  572. }
  573. #endif //!SDSUPPORT
  574. #if ENABLED(DIGIPOT_I2C)
  575. extern void digipot_i2c_set_current(int channel, float current);
  576. extern void digipot_i2c_init();
  577. #endif
  578. /**
  579. * Inject the next "immediate" command, when possible.
  580. * Return true if any immediate commands remain to inject.
  581. */
  582. static bool drain_queued_commands_P() {
  583. if (queued_commands_P != NULL) {
  584. size_t i = 0;
  585. char c, cmd[30];
  586. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  587. cmd[sizeof(cmd) - 1] = '\0';
  588. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  589. cmd[i] = '\0';
  590. if (enqueue_and_echo_command(cmd)) { // success?
  591. if (c) // newline char?
  592. queued_commands_P += i + 1; // advance to the next command
  593. else
  594. queued_commands_P = NULL; // nul char? no more commands
  595. }
  596. }
  597. return (queued_commands_P != NULL); // return whether any more remain
  598. }
  599. /**
  600. * Record one or many commands to run from program memory.
  601. * Aborts the current queue, if any.
  602. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  603. */
  604. void enqueue_and_echo_commands_P(const char* pgcode) {
  605. queued_commands_P = pgcode;
  606. drain_queued_commands_P(); // first command executed asap (when possible)
  607. }
  608. void clear_command_queue() {
  609. cmd_queue_index_r = cmd_queue_index_w;
  610. commands_in_queue = 0;
  611. }
  612. /**
  613. * Once a new command is in the ring buffer, call this to commit it
  614. */
  615. inline void _commit_command(bool say_ok) {
  616. send_ok[cmd_queue_index_w] = say_ok;
  617. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  618. commands_in_queue++;
  619. }
  620. /**
  621. * Copy a command directly into the main command buffer, from RAM.
  622. * Returns true if successfully adds the command
  623. */
  624. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  625. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  626. strcpy(command_queue[cmd_queue_index_w], cmd);
  627. _commit_command(say_ok);
  628. return true;
  629. }
  630. void enqueue_and_echo_command_now(const char* cmd) {
  631. while (!enqueue_and_echo_command(cmd)) idle();
  632. }
  633. /**
  634. * Enqueue with Serial Echo
  635. */
  636. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  637. if (_enqueuecommand(cmd, say_ok)) {
  638. SERIAL_ECHO_START;
  639. SERIAL_ECHOPGM(MSG_Enqueueing);
  640. SERIAL_ECHO(cmd);
  641. SERIAL_ECHOLNPGM("\"");
  642. return true;
  643. }
  644. return false;
  645. }
  646. void setup_killpin() {
  647. #if HAS_KILL
  648. SET_INPUT(KILL_PIN);
  649. WRITE(KILL_PIN, HIGH);
  650. #endif
  651. }
  652. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  653. void setup_filrunoutpin() {
  654. pinMode(FIL_RUNOUT_PIN, INPUT);
  655. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  656. WRITE(FIL_RUNOUT_PIN, HIGH);
  657. #endif
  658. }
  659. #endif
  660. // Set home pin
  661. void setup_homepin(void) {
  662. #if HAS_HOME
  663. SET_INPUT(HOME_PIN);
  664. WRITE(HOME_PIN, HIGH);
  665. #endif
  666. }
  667. void setup_photpin() {
  668. #if HAS_PHOTOGRAPH
  669. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  670. #endif
  671. }
  672. void setup_powerhold() {
  673. #if HAS_SUICIDE
  674. OUT_WRITE(SUICIDE_PIN, HIGH);
  675. #endif
  676. #if HAS_POWER_SWITCH
  677. #if ENABLED(PS_DEFAULT_OFF)
  678. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  679. #else
  680. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  681. #endif
  682. #endif
  683. }
  684. void suicide() {
  685. #if HAS_SUICIDE
  686. OUT_WRITE(SUICIDE_PIN, LOW);
  687. #endif
  688. }
  689. void servo_init() {
  690. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  691. servo[0].attach(SERVO0_PIN);
  692. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  693. #endif
  694. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  695. servo[1].attach(SERVO1_PIN);
  696. servo[1].detach();
  697. #endif
  698. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  699. servo[2].attach(SERVO2_PIN);
  700. servo[2].detach();
  701. #endif
  702. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  703. servo[3].attach(SERVO3_PIN);
  704. servo[3].detach();
  705. #endif
  706. #if HAS_Z_SERVO_ENDSTOP
  707. /**
  708. * Set position of Z Servo Endstop
  709. *
  710. * The servo might be deployed and positioned too low to stow
  711. * when starting up the machine or rebooting the board.
  712. * There's no way to know where the nozzle is positioned until
  713. * homing has been done - no homing with z-probe without init!
  714. *
  715. */
  716. STOW_Z_SERVO();
  717. #endif
  718. #if HAS_BED_PROBE
  719. endstops.enable_z_probe(false);
  720. #endif
  721. }
  722. /**
  723. * Stepper Reset (RigidBoard, et.al.)
  724. */
  725. #if HAS_STEPPER_RESET
  726. void disableStepperDrivers() {
  727. pinMode(STEPPER_RESET_PIN, OUTPUT);
  728. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  729. }
  730. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  731. #endif
  732. /**
  733. * Marlin entry-point: Set up before the program loop
  734. * - Set up the kill pin, filament runout, power hold
  735. * - Start the serial port
  736. * - Print startup messages and diagnostics
  737. * - Get EEPROM or default settings
  738. * - Initialize managers for:
  739. * • temperature
  740. * • planner
  741. * • watchdog
  742. * • stepper
  743. * • photo pin
  744. * • servos
  745. * • LCD controller
  746. * • Digipot I2C
  747. * • Z probe sled
  748. * • status LEDs
  749. */
  750. void setup() {
  751. #ifdef DISABLE_JTAG
  752. // Disable JTAG on AT90USB chips to free up pins for IO
  753. MCUCR = 0x80;
  754. MCUCR = 0x80;
  755. #endif
  756. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  757. setup_filrunoutpin();
  758. #endif
  759. setup_killpin();
  760. setup_powerhold();
  761. #if HAS_STEPPER_RESET
  762. disableStepperDrivers();
  763. #endif
  764. MYSERIAL.begin(BAUDRATE);
  765. SERIAL_PROTOCOLLNPGM("start");
  766. SERIAL_ECHO_START;
  767. // Check startup - does nothing if bootloader sets MCUSR to 0
  768. byte mcu = MCUSR;
  769. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  770. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  771. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  772. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  773. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  774. MCUSR = 0;
  775. SERIAL_ECHOPGM(MSG_MARLIN);
  776. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  777. #ifdef STRING_DISTRIBUTION_DATE
  778. #ifdef STRING_CONFIG_H_AUTHOR
  779. SERIAL_ECHO_START;
  780. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  781. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  782. SERIAL_ECHOPGM(MSG_AUTHOR);
  783. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  784. SERIAL_ECHOPGM("Compiled: ");
  785. SERIAL_ECHOLNPGM(__DATE__);
  786. #endif // STRING_CONFIG_H_AUTHOR
  787. #endif // STRING_DISTRIBUTION_DATE
  788. SERIAL_ECHO_START;
  789. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  790. SERIAL_ECHO(freeMemory());
  791. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  792. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  793. // Send "ok" after commands by default
  794. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  795. // Load data from EEPROM if available (or use defaults)
  796. // This also updates variables in the planner, elsewhere
  797. Config_RetrieveSettings();
  798. // Initialize current position based on home_offset
  799. memcpy(current_position, home_offset, sizeof(home_offset));
  800. // Vital to init stepper/planner equivalent for current_position
  801. SYNC_PLAN_POSITION_KINEMATIC();
  802. thermalManager.init(); // Initialize temperature loop
  803. #if ENABLED(USE_WATCHDOG)
  804. watchdog_init();
  805. #endif
  806. stepper.init(); // Initialize stepper, this enables interrupts!
  807. setup_photpin();
  808. servo_init();
  809. #if HAS_CONTROLLERFAN
  810. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  811. #endif
  812. #if HAS_STEPPER_RESET
  813. enableStepperDrivers();
  814. #endif
  815. #if ENABLED(DIGIPOT_I2C)
  816. digipot_i2c_init();
  817. #endif
  818. #if ENABLED(DAC_STEPPER_CURRENT)
  819. dac_init();
  820. #endif
  821. #if ENABLED(Z_PROBE_SLED)
  822. pinMode(SLED_PIN, OUTPUT);
  823. digitalWrite(SLED_PIN, LOW); // turn it off
  824. #endif // Z_PROBE_SLED
  825. setup_homepin();
  826. #ifdef STAT_LED_RED
  827. pinMode(STAT_LED_RED, OUTPUT);
  828. digitalWrite(STAT_LED_RED, LOW); // turn it off
  829. #endif
  830. #ifdef STAT_LED_BLUE
  831. pinMode(STAT_LED_BLUE, OUTPUT);
  832. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  833. #endif
  834. lcd_init();
  835. #if ENABLED(SHOW_BOOTSCREEN)
  836. #if ENABLED(DOGLCD)
  837. safe_delay(BOOTSCREEN_TIMEOUT);
  838. #elif ENABLED(ULTRA_LCD)
  839. bootscreen();
  840. lcd_init();
  841. #endif
  842. #endif
  843. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  844. // Initialize mixing to 100% color 1
  845. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  846. mixing_factor[i] = (i == 0) ? 1 : 0;
  847. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  848. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  849. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  850. #endif
  851. }
  852. /**
  853. * The main Marlin program loop
  854. *
  855. * - Save or log commands to SD
  856. * - Process available commands (if not saving)
  857. * - Call heater manager
  858. * - Call inactivity manager
  859. * - Call endstop manager
  860. * - Call LCD update
  861. */
  862. void loop() {
  863. if (commands_in_queue < BUFSIZE) get_available_commands();
  864. #if ENABLED(SDSUPPORT)
  865. card.checkautostart(false);
  866. #endif
  867. if (commands_in_queue) {
  868. #if ENABLED(SDSUPPORT)
  869. if (card.saving) {
  870. char* command = command_queue[cmd_queue_index_r];
  871. if (strstr_P(command, PSTR("M29"))) {
  872. // M29 closes the file
  873. card.closefile();
  874. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  875. ok_to_send();
  876. }
  877. else {
  878. // Write the string from the read buffer to SD
  879. card.write_command(command);
  880. if (card.logging)
  881. process_next_command(); // The card is saving because it's logging
  882. else
  883. ok_to_send();
  884. }
  885. }
  886. else
  887. process_next_command();
  888. #else
  889. process_next_command();
  890. #endif // SDSUPPORT
  891. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  892. if (commands_in_queue) {
  893. --commands_in_queue;
  894. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  895. }
  896. }
  897. endstops.report_state();
  898. idle();
  899. }
  900. void gcode_line_error(const char* err, bool doFlush = true) {
  901. SERIAL_ERROR_START;
  902. serialprintPGM(err);
  903. SERIAL_ERRORLN(gcode_LastN);
  904. //Serial.println(gcode_N);
  905. if (doFlush) FlushSerialRequestResend();
  906. serial_count = 0;
  907. }
  908. inline void get_serial_commands() {
  909. static char serial_line_buffer[MAX_CMD_SIZE];
  910. static boolean serial_comment_mode = false;
  911. // If the command buffer is empty for too long,
  912. // send "wait" to indicate Marlin is still waiting.
  913. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  914. static millis_t last_command_time = 0;
  915. millis_t ms = millis();
  916. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  917. SERIAL_ECHOLNPGM(MSG_WAIT);
  918. last_command_time = ms;
  919. }
  920. #endif
  921. /**
  922. * Loop while serial characters are incoming and the queue is not full
  923. */
  924. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  925. char serial_char = MYSERIAL.read();
  926. /**
  927. * If the character ends the line
  928. */
  929. if (serial_char == '\n' || serial_char == '\r') {
  930. serial_comment_mode = false; // end of line == end of comment
  931. if (!serial_count) continue; // skip empty lines
  932. serial_line_buffer[serial_count] = 0; // terminate string
  933. serial_count = 0; //reset buffer
  934. char* command = serial_line_buffer;
  935. while (*command == ' ') command++; // skip any leading spaces
  936. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  937. char* apos = strchr(command, '*');
  938. if (npos) {
  939. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  940. if (M110) {
  941. char* n2pos = strchr(command + 4, 'N');
  942. if (n2pos) npos = n2pos;
  943. }
  944. gcode_N = strtol(npos + 1, NULL, 10);
  945. if (gcode_N != gcode_LastN + 1 && !M110) {
  946. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  947. return;
  948. }
  949. if (apos) {
  950. byte checksum = 0, count = 0;
  951. while (command[count] != '*') checksum ^= command[count++];
  952. if (strtol(apos + 1, NULL, 10) != checksum) {
  953. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  954. return;
  955. }
  956. // if no errors, continue parsing
  957. }
  958. else {
  959. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  960. return;
  961. }
  962. gcode_LastN = gcode_N;
  963. // if no errors, continue parsing
  964. }
  965. else if (apos) { // No '*' without 'N'
  966. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  967. return;
  968. }
  969. // Movement commands alert when stopped
  970. if (IsStopped()) {
  971. char* gpos = strchr(command, 'G');
  972. if (gpos) {
  973. int codenum = strtol(gpos + 1, NULL, 10);
  974. switch (codenum) {
  975. case 0:
  976. case 1:
  977. case 2:
  978. case 3:
  979. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  980. LCD_MESSAGEPGM(MSG_STOPPED);
  981. break;
  982. }
  983. }
  984. }
  985. #if DISABLED(EMERGENCY_PARSER)
  986. // If command was e-stop process now
  987. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  988. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  989. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  990. #endif
  991. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  992. last_command_time = ms;
  993. #endif
  994. // Add the command to the queue
  995. _enqueuecommand(serial_line_buffer, true);
  996. }
  997. else if (serial_count >= MAX_CMD_SIZE - 1) {
  998. // Keep fetching, but ignore normal characters beyond the max length
  999. // The command will be injected when EOL is reached
  1000. }
  1001. else if (serial_char == '\\') { // Handle escapes
  1002. if (MYSERIAL.available() > 0) {
  1003. // if we have one more character, copy it over
  1004. serial_char = MYSERIAL.read();
  1005. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1006. }
  1007. // otherwise do nothing
  1008. }
  1009. else { // it's not a newline, carriage return or escape char
  1010. if (serial_char == ';') serial_comment_mode = true;
  1011. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1012. }
  1013. } // queue has space, serial has data
  1014. }
  1015. #if ENABLED(SDSUPPORT)
  1016. inline void get_sdcard_commands() {
  1017. static bool stop_buffering = false,
  1018. sd_comment_mode = false;
  1019. if (!card.sdprinting) return;
  1020. /**
  1021. * '#' stops reading from SD to the buffer prematurely, so procedural
  1022. * macro calls are possible. If it occurs, stop_buffering is triggered
  1023. * and the buffer is run dry; this character _can_ occur in serial com
  1024. * due to checksums, however, no checksums are used in SD printing.
  1025. */
  1026. if (commands_in_queue == 0) stop_buffering = false;
  1027. uint16_t sd_count = 0;
  1028. bool card_eof = card.eof();
  1029. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1030. int16_t n = card.get();
  1031. char sd_char = (char)n;
  1032. card_eof = card.eof();
  1033. if (card_eof || n == -1
  1034. || sd_char == '\n' || sd_char == '\r'
  1035. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1036. ) {
  1037. if (card_eof) {
  1038. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1039. card.printingHasFinished();
  1040. card.checkautostart(true);
  1041. }
  1042. else if (n == -1) {
  1043. SERIAL_ERROR_START;
  1044. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1045. }
  1046. if (sd_char == '#') stop_buffering = true;
  1047. sd_comment_mode = false; //for new command
  1048. if (!sd_count) continue; //skip empty lines
  1049. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1050. sd_count = 0; //clear buffer
  1051. _commit_command(false);
  1052. }
  1053. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1054. /**
  1055. * Keep fetching, but ignore normal characters beyond the max length
  1056. * The command will be injected when EOL is reached
  1057. */
  1058. }
  1059. else {
  1060. if (sd_char == ';') sd_comment_mode = true;
  1061. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1062. }
  1063. }
  1064. }
  1065. #endif // SDSUPPORT
  1066. /**
  1067. * Add to the circular command queue the next command from:
  1068. * - The command-injection queue (queued_commands_P)
  1069. * - The active serial input (usually USB)
  1070. * - The SD card file being actively printed
  1071. */
  1072. void get_available_commands() {
  1073. // if any immediate commands remain, don't get other commands yet
  1074. if (drain_queued_commands_P()) return;
  1075. get_serial_commands();
  1076. #if ENABLED(SDSUPPORT)
  1077. get_sdcard_commands();
  1078. #endif
  1079. }
  1080. inline bool code_has_value() {
  1081. int i = 1;
  1082. char c = seen_pointer[i];
  1083. while (c == ' ') c = seen_pointer[++i];
  1084. if (c == '-' || c == '+') c = seen_pointer[++i];
  1085. if (c == '.') c = seen_pointer[++i];
  1086. return NUMERIC(c);
  1087. }
  1088. inline float code_value_float() {
  1089. float ret;
  1090. char* e = strchr(seen_pointer, 'E');
  1091. if (e) {
  1092. *e = 0;
  1093. ret = strtod(seen_pointer + 1, NULL);
  1094. *e = 'E';
  1095. }
  1096. else
  1097. ret = strtod(seen_pointer + 1, NULL);
  1098. return ret;
  1099. }
  1100. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1101. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1102. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1103. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1104. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1105. inline bool code_value_bool() { return code_value_byte() > 0; }
  1106. #if ENABLED(INCH_MODE_SUPPORT)
  1107. inline void set_input_linear_units(LinearUnit units) {
  1108. switch (units) {
  1109. case LINEARUNIT_INCH:
  1110. linear_unit_factor = 25.4;
  1111. break;
  1112. case LINEARUNIT_MM:
  1113. default:
  1114. linear_unit_factor = 1.0;
  1115. break;
  1116. }
  1117. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1118. }
  1119. inline float axis_unit_factor(int axis) {
  1120. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1121. }
  1122. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1123. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1124. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1125. #else
  1126. inline float code_value_linear_units() { return code_value_float(); }
  1127. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1128. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1129. #endif
  1130. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1131. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1132. float code_value_temp_abs() {
  1133. switch (input_temp_units) {
  1134. case TEMPUNIT_C:
  1135. return code_value_float();
  1136. case TEMPUNIT_F:
  1137. return (code_value_float() - 32) * 0.5555555556;
  1138. case TEMPUNIT_K:
  1139. return code_value_float() - 272.15;
  1140. default:
  1141. return code_value_float();
  1142. }
  1143. }
  1144. float code_value_temp_diff() {
  1145. switch (input_temp_units) {
  1146. case TEMPUNIT_C:
  1147. case TEMPUNIT_K:
  1148. return code_value_float();
  1149. case TEMPUNIT_F:
  1150. return code_value_float() * 0.5555555556;
  1151. default:
  1152. return code_value_float();
  1153. }
  1154. }
  1155. #else
  1156. float code_value_temp_abs() { return code_value_float(); }
  1157. float code_value_temp_diff() { return code_value_float(); }
  1158. #endif
  1159. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1160. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1161. bool code_seen(char code) {
  1162. seen_pointer = strchr(current_command_args, code);
  1163. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1164. }
  1165. /**
  1166. * Set target_extruder from the T parameter or the active_extruder
  1167. *
  1168. * Returns TRUE if the target is invalid
  1169. */
  1170. bool get_target_extruder_from_command(int code) {
  1171. if (code_seen('T')) {
  1172. if (code_value_byte() >= EXTRUDERS) {
  1173. SERIAL_ECHO_START;
  1174. SERIAL_CHAR('M');
  1175. SERIAL_ECHO(code);
  1176. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1177. SERIAL_EOL;
  1178. return true;
  1179. }
  1180. target_extruder = code_value_byte();
  1181. }
  1182. else
  1183. target_extruder = active_extruder;
  1184. return false;
  1185. }
  1186. #define DEFINE_PGM_READ_ANY(type, reader) \
  1187. static inline type pgm_read_any(const type *p) \
  1188. { return pgm_read_##reader##_near(p); }
  1189. DEFINE_PGM_READ_ANY(float, float);
  1190. DEFINE_PGM_READ_ANY(signed char, byte);
  1191. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1192. static const PROGMEM type array##_P[3] = \
  1193. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1194. static inline type array(int axis) \
  1195. { return pgm_read_any(&array##_P[axis]); }
  1196. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1197. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1198. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1199. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1200. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1201. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1202. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1203. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1204. #endif
  1205. #if ENABLED(DUAL_X_CARRIAGE)
  1206. #define DXC_FULL_CONTROL_MODE 0
  1207. #define DXC_AUTO_PARK_MODE 1
  1208. #define DXC_DUPLICATION_MODE 2
  1209. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1210. static float x_home_pos(int extruder) {
  1211. if (extruder == 0)
  1212. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1213. else
  1214. /**
  1215. * In dual carriage mode the extruder offset provides an override of the
  1216. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1217. * This allow soft recalibration of the second extruder offset position
  1218. * without firmware reflash (through the M218 command).
  1219. */
  1220. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1221. }
  1222. static int x_home_dir(int extruder) {
  1223. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1224. }
  1225. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1226. static bool active_extruder_parked = false; // used in mode 1 & 2
  1227. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1228. static millis_t delayed_move_time = 0; // used in mode 1
  1229. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1230. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1231. #endif //DUAL_X_CARRIAGE
  1232. /**
  1233. * Software endstops can be used to monitor the open end of
  1234. * an axis that has a hardware endstop on the other end. Or
  1235. * they can prevent axes from moving past endstops and grinding.
  1236. *
  1237. * To keep doing their job as the coordinate system changes,
  1238. * the software endstop positions must be refreshed to remain
  1239. * at the same positions relative to the machine.
  1240. */
  1241. static void update_software_endstops(AxisEnum axis) {
  1242. float offs = LOGICAL_POSITION(0, axis);
  1243. #if ENABLED(DUAL_X_CARRIAGE)
  1244. if (axis == X_AXIS) {
  1245. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1246. if (active_extruder != 0) {
  1247. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1248. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1249. return;
  1250. }
  1251. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1252. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1253. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1254. return;
  1255. }
  1256. }
  1257. else
  1258. #endif
  1259. {
  1260. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1261. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1262. }
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. if (DEBUGGING(LEVELING)) {
  1265. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1266. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1267. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1268. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1269. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1270. SERIAL_EOL;
  1271. }
  1272. #endif
  1273. #if ENABLED(DELTA)
  1274. if (axis == Z_AXIS) {
  1275. delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
  1276. }
  1277. #endif
  1278. }
  1279. /**
  1280. * Change the home offset for an axis, update the current
  1281. * position and the software endstops to retain the same
  1282. * relative distance to the new home.
  1283. *
  1284. * Since this changes the current_position, code should
  1285. * call sync_plan_position soon after this.
  1286. */
  1287. static void set_home_offset(AxisEnum axis, float v) {
  1288. current_position[axis] += v - home_offset[axis];
  1289. home_offset[axis] = v;
  1290. update_software_endstops(axis);
  1291. }
  1292. static void set_axis_is_at_home(AxisEnum axis) {
  1293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1294. if (DEBUGGING(LEVELING)) {
  1295. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1296. SERIAL_ECHOLNPGM(")");
  1297. }
  1298. #endif
  1299. position_shift[axis] = 0;
  1300. #if ENABLED(DUAL_X_CARRIAGE)
  1301. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1302. if (active_extruder != 0)
  1303. current_position[X_AXIS] = x_home_pos(active_extruder);
  1304. else
  1305. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1306. update_software_endstops(X_AXIS);
  1307. return;
  1308. }
  1309. #endif
  1310. #if ENABLED(SCARA)
  1311. if (axis == X_AXIS || axis == Y_AXIS) {
  1312. float homeposition[3];
  1313. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1314. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1315. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1316. /**
  1317. * Works out real Homeposition angles using inverse kinematics,
  1318. * and calculates homing offset using forward kinematics
  1319. */
  1320. inverse_kinematics(homeposition);
  1321. forward_kinematics_SCARA(delta);
  1322. // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
  1323. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1324. current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
  1325. /**
  1326. * SCARA home positions are based on configuration since the actual
  1327. * limits are determined by the inverse kinematic transform.
  1328. */
  1329. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1330. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1331. }
  1332. else
  1333. #endif
  1334. {
  1335. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1336. update_software_endstops(axis);
  1337. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1338. if (axis == Z_AXIS) {
  1339. current_position[Z_AXIS] -= zprobe_zoffset;
  1340. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1341. if (DEBUGGING(LEVELING)) {
  1342. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1343. SERIAL_EOL;
  1344. }
  1345. #endif
  1346. }
  1347. #endif
  1348. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1349. if (DEBUGGING(LEVELING)) {
  1350. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1351. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1352. SERIAL_EOL;
  1353. DEBUG_POS("", current_position);
  1354. }
  1355. #endif
  1356. }
  1357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1358. if (DEBUGGING(LEVELING)) {
  1359. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1360. SERIAL_ECHOLNPGM(")");
  1361. }
  1362. #endif
  1363. }
  1364. /**
  1365. * Some planner shorthand inline functions
  1366. */
  1367. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1368. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1369. int hbd = homing_bump_divisor[axis];
  1370. if (hbd < 1) {
  1371. hbd = 10;
  1372. SERIAL_ECHO_START;
  1373. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1374. }
  1375. return homing_feedrate_mm_m[axis] / hbd;
  1376. }
  1377. //
  1378. // line_to_current_position
  1379. // Move the planner to the current position from wherever it last moved
  1380. // (or from wherever it has been told it is located).
  1381. //
  1382. inline void line_to_current_position() {
  1383. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1384. }
  1385. inline void line_to_z(float zPosition) {
  1386. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1387. }
  1388. inline void line_to_axis_pos(AxisEnum axis, float where, float fr_mm_m = 0.0) {
  1389. float old_feedrate_mm_m = feedrate_mm_m;
  1390. current_position[axis] = where;
  1391. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[axis];
  1392. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
  1393. stepper.synchronize();
  1394. feedrate_mm_m = old_feedrate_mm_m;
  1395. }
  1396. //
  1397. // line_to_destination
  1398. // Move the planner, not necessarily synced with current_position
  1399. //
  1400. inline void line_to_destination(float fr_mm_m) {
  1401. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS(fr_mm_m), active_extruder);
  1402. }
  1403. inline void line_to_destination() { line_to_destination(feedrate_mm_m); }
  1404. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1405. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1406. #if ENABLED(DELTA)
  1407. /**
  1408. * Calculate delta, start a line, and set current_position to destination
  1409. */
  1410. void prepare_move_to_destination_raw() {
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1413. #endif
  1414. refresh_cmd_timeout();
  1415. inverse_kinematics(destination);
  1416. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
  1417. set_current_to_destination();
  1418. }
  1419. #endif
  1420. /**
  1421. * Plan a move to (X, Y, Z) and set the current_position
  1422. * The final current_position may not be the one that was requested
  1423. */
  1424. void do_blocking_move_to(float x, float y, float z, float fr_mm_m /*=0.0*/) {
  1425. float old_feedrate_mm_m = feedrate_mm_m;
  1426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1427. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1428. #endif
  1429. #if ENABLED(DELTA)
  1430. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
  1431. set_destination_to_current(); // sync destination at the start
  1432. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1433. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1434. #endif
  1435. // when in the danger zone
  1436. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1437. if (z > delta_clip_start_height) { // staying in the danger zone
  1438. destination[X_AXIS] = x; // move directly (uninterpolated)
  1439. destination[Y_AXIS] = y;
  1440. destination[Z_AXIS] = z;
  1441. prepare_move_to_destination_raw(); // set_current_to_destination
  1442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1443. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1444. #endif
  1445. return;
  1446. }
  1447. else {
  1448. destination[Z_AXIS] = delta_clip_start_height;
  1449. prepare_move_to_destination_raw(); // set_current_to_destination
  1450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1451. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1452. #endif
  1453. }
  1454. }
  1455. if (z > current_position[Z_AXIS]) { // raising?
  1456. destination[Z_AXIS] = z;
  1457. prepare_move_to_destination_raw(); // set_current_to_destination
  1458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1459. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1460. #endif
  1461. }
  1462. destination[X_AXIS] = x;
  1463. destination[Y_AXIS] = y;
  1464. prepare_move_to_destination(); // set_current_to_destination
  1465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1466. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1467. #endif
  1468. if (z < current_position[Z_AXIS]) { // lowering?
  1469. destination[Z_AXIS] = z;
  1470. prepare_move_to_destination_raw(); // set_current_to_destination
  1471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1472. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1473. #endif
  1474. }
  1475. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1476. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1477. #endif
  1478. #else
  1479. // If Z needs to raise, do it before moving XY
  1480. if (current_position[Z_AXIS] < z) {
  1481. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
  1482. current_position[Z_AXIS] = z;
  1483. line_to_current_position();
  1484. }
  1485. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
  1486. current_position[X_AXIS] = x;
  1487. current_position[Y_AXIS] = y;
  1488. line_to_current_position();
  1489. // If Z needs to lower, do it after moving XY
  1490. if (current_position[Z_AXIS] > z) {
  1491. feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
  1492. current_position[Z_AXIS] = z;
  1493. line_to_current_position();
  1494. }
  1495. #endif
  1496. stepper.synchronize();
  1497. feedrate_mm_m = old_feedrate_mm_m;
  1498. }
  1499. void do_blocking_move_to_x(float x, float fr_mm_m/*=0.0*/) {
  1500. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
  1501. }
  1502. void do_blocking_move_to_z(float z, float fr_mm_m/*=0.0*/) {
  1503. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_m);
  1504. }
  1505. void do_blocking_move_to_xy(float x, float y, float fr_mm_m/*=0.0*/) {
  1506. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_m);
  1507. }
  1508. //
  1509. // Prepare to do endstop or probe moves
  1510. // with custom feedrates.
  1511. //
  1512. // - Save current feedrates
  1513. // - Reset the rate multiplier
  1514. // - Reset the command timeout
  1515. // - Enable the endstops (for endstop moves)
  1516. //
  1517. static void setup_for_endstop_or_probe_move() {
  1518. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1519. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1520. #endif
  1521. saved_feedrate_mm_m = feedrate_mm_m;
  1522. saved_feedrate_percentage = feedrate_percentage;
  1523. feedrate_percentage = 100;
  1524. refresh_cmd_timeout();
  1525. }
  1526. static void clean_up_after_endstop_or_probe_move() {
  1527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1528. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1529. #endif
  1530. feedrate_mm_m = saved_feedrate_mm_m;
  1531. feedrate_percentage = saved_feedrate_percentage;
  1532. refresh_cmd_timeout();
  1533. }
  1534. #if HAS_BED_PROBE
  1535. /**
  1536. * Raise Z to a minimum height to make room for a probe to move
  1537. */
  1538. inline void do_probe_raise(float z_raise) {
  1539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1540. if (DEBUGGING(LEVELING)) {
  1541. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1542. SERIAL_ECHOLNPGM(")");
  1543. }
  1544. #endif
  1545. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1546. if (zprobe_zoffset < 0)
  1547. z_dest -= zprobe_zoffset;
  1548. if (z_dest > current_position[Z_AXIS])
  1549. do_blocking_move_to_z(z_dest);
  1550. }
  1551. #endif //HAS_BED_PROBE
  1552. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1553. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1554. const bool xx = x && !axis_homed[X_AXIS],
  1555. yy = y && !axis_homed[Y_AXIS],
  1556. zz = z && !axis_homed[Z_AXIS];
  1557. if (xx || yy || zz) {
  1558. SERIAL_ECHO_START;
  1559. SERIAL_ECHOPGM(MSG_HOME " ");
  1560. if (xx) SERIAL_ECHOPGM(MSG_X);
  1561. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1562. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1563. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1564. #if ENABLED(ULTRA_LCD)
  1565. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1566. strcat_P(message, PSTR(MSG_HOME " "));
  1567. if (xx) strcat_P(message, PSTR(MSG_X));
  1568. if (yy) strcat_P(message, PSTR(MSG_Y));
  1569. if (zz) strcat_P(message, PSTR(MSG_Z));
  1570. strcat_P(message, PSTR(" " MSG_FIRST));
  1571. lcd_setstatus(message);
  1572. #endif
  1573. return true;
  1574. }
  1575. return false;
  1576. }
  1577. #endif
  1578. #if ENABLED(Z_PROBE_SLED)
  1579. #ifndef SLED_DOCKING_OFFSET
  1580. #define SLED_DOCKING_OFFSET 0
  1581. #endif
  1582. /**
  1583. * Method to dock/undock a sled designed by Charles Bell.
  1584. *
  1585. * stow[in] If false, move to MAX_X and engage the solenoid
  1586. * If true, move to MAX_X and release the solenoid
  1587. */
  1588. static void dock_sled(bool stow) {
  1589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1590. if (DEBUGGING(LEVELING)) {
  1591. SERIAL_ECHOPAIR("dock_sled(", stow);
  1592. SERIAL_ECHOLNPGM(")");
  1593. }
  1594. #endif
  1595. // Dock sled a bit closer to ensure proper capturing
  1596. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1597. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1598. }
  1599. #endif // Z_PROBE_SLED
  1600. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1601. void run_deploy_moves_script() {
  1602. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1603. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1604. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1605. #endif
  1606. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1607. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1608. #endif
  1609. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1610. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1613. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1614. #endif
  1615. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1616. #endif
  1617. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1618. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1619. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1620. #endif
  1621. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1622. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1625. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1628. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1629. #endif
  1630. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1631. #endif
  1632. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1633. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1634. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1635. #endif
  1636. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1637. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1638. #endif
  1639. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1640. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1641. #endif
  1642. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1643. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1644. #endif
  1645. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1646. #endif
  1647. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1648. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1649. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1650. #endif
  1651. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1652. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1653. #endif
  1654. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1655. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1656. #endif
  1657. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1658. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1659. #endif
  1660. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1661. #endif
  1662. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1663. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1664. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1665. #endif
  1666. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1667. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1670. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1671. #endif
  1672. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1673. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1674. #endif
  1675. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1676. #endif
  1677. }
  1678. void run_stow_moves_script() {
  1679. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1680. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1681. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1682. #endif
  1683. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1684. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1687. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1690. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1691. #endif
  1692. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1693. #endif
  1694. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1695. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1696. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1697. #endif
  1698. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1699. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1700. #endif
  1701. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1702. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1703. #endif
  1704. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1705. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1706. #endif
  1707. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1708. #endif
  1709. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1710. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1711. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1712. #endif
  1713. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1714. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1715. #endif
  1716. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1717. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1718. #endif
  1719. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1720. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1721. #endif
  1722. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1723. #endif
  1724. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1725. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1726. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1727. #endif
  1728. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1729. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1730. #endif
  1731. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1732. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1733. #endif
  1734. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1735. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1736. #endif
  1737. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1738. #endif
  1739. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1740. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1741. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1742. #endif
  1743. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1744. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1745. #endif
  1746. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1747. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1748. #endif
  1749. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1750. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1751. #endif
  1752. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1753. #endif
  1754. }
  1755. #endif
  1756. #if HAS_BED_PROBE
  1757. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1758. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1759. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1760. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1761. #else
  1762. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1763. #endif
  1764. #endif
  1765. #define DEPLOY_PROBE() set_probe_deployed( true )
  1766. #define STOW_PROBE() set_probe_deployed( false )
  1767. // returns false for ok and true for failure
  1768. static bool set_probe_deployed(bool deploy) {
  1769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1770. if (DEBUGGING(LEVELING)) {
  1771. DEBUG_POS("set_probe_deployed", current_position);
  1772. SERIAL_ECHOPAIR("deploy: ", deploy);
  1773. SERIAL_EOL;
  1774. }
  1775. #endif
  1776. if (endstops.z_probe_enabled == deploy) return false;
  1777. // Make room for probe
  1778. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1779. #if ENABLED(Z_PROBE_SLED)
  1780. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1781. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1782. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1783. #endif
  1784. float oldXpos = current_position[X_AXIS]; // save x position
  1785. float oldYpos = current_position[Y_AXIS]; // save y position
  1786. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1787. // If endstop is already false, the Z probe is deployed
  1788. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1789. // Would a goto be less ugly?
  1790. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1791. // for a triggered when stowed manual probe.
  1792. #endif
  1793. #if ENABLED(Z_PROBE_SLED)
  1794. dock_sled(!deploy);
  1795. #elif HAS_Z_SERVO_ENDSTOP
  1796. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1797. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1798. if (!deploy) run_stow_moves_script();
  1799. else run_deploy_moves_script();
  1800. #else
  1801. // Nothing to be done. Just enable_z_probe below...
  1802. #endif
  1803. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1804. }; // opened before the probe specific actions
  1805. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1806. if (IsRunning()) {
  1807. SERIAL_ERROR_START;
  1808. SERIAL_ERRORLNPGM("Z-Probe failed");
  1809. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1810. }
  1811. stop();
  1812. return true;
  1813. }
  1814. #endif
  1815. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1816. endstops.enable_z_probe( deploy );
  1817. return false;
  1818. }
  1819. // Do a single Z probe and return with current_position[Z_AXIS]
  1820. // at the height where the probe triggered.
  1821. static float run_z_probe() {
  1822. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1823. refresh_cmd_timeout();
  1824. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1825. planner.bed_level_matrix.set_to_identity();
  1826. #endif
  1827. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1828. do_blocking_move_to_z(-(Z_MAX_LENGTH + 10), Z_PROBE_SPEED_FAST);
  1829. endstops.hit_on_purpose();
  1830. set_current_from_steppers_for_axis(Z_AXIS);
  1831. SYNC_PLAN_POSITION_KINEMATIC();
  1832. // move up the retract distance
  1833. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), Z_PROBE_SPEED_FAST);
  1834. #else
  1835. // move fast, close to the bed
  1836. do_blocking_move_to_z(home_bump_mm(Z_AXIS), Z_PROBE_SPEED_FAST);
  1837. #endif
  1838. // move down slowly to find bed
  1839. do_blocking_move_to_z(current_position[Z_AXIS] -2.0*home_bump_mm(Z_AXIS), Z_PROBE_SPEED_SLOW);
  1840. endstops.hit_on_purpose();
  1841. set_current_from_steppers_for_axis(Z_AXIS);
  1842. SYNC_PLAN_POSITION_KINEMATIC();
  1843. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1844. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1845. #endif
  1846. return current_position[Z_AXIS];
  1847. }
  1848. //
  1849. // - Move to the given XY
  1850. // - Deploy the probe, if not already deployed
  1851. // - Probe the bed, get the Z position
  1852. // - Depending on the 'stow' flag
  1853. // - Stow the probe, or
  1854. // - Raise to the BETWEEN height
  1855. // - Return the probed Z position
  1856. //
  1857. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1858. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1859. if (DEBUGGING(LEVELING)) {
  1860. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1861. SERIAL_ECHOPAIR(", ", y);
  1862. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1863. SERIAL_ECHOLNPGM(")");
  1864. DEBUG_POS("", current_position);
  1865. }
  1866. #endif
  1867. float old_feedrate_mm_m = feedrate_mm_m;
  1868. // Ensure a minimum height before moving the probe
  1869. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1870. // Move to the XY where we shall probe
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) {
  1873. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1874. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1875. SERIAL_ECHOLNPGM(")");
  1876. }
  1877. #endif
  1878. feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
  1879. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1880. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1881. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1882. #endif
  1883. if (DEPLOY_PROBE()) return NAN;
  1884. float measured_z = run_z_probe();
  1885. if (stow) {
  1886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1887. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1888. #endif
  1889. if (STOW_PROBE()) return NAN;
  1890. }
  1891. else {
  1892. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1893. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1894. #endif
  1895. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1896. }
  1897. if (verbose_level > 2) {
  1898. SERIAL_PROTOCOLPGM("Bed X: ");
  1899. SERIAL_PROTOCOL_F(x, 3);
  1900. SERIAL_PROTOCOLPGM(" Y: ");
  1901. SERIAL_PROTOCOL_F(y, 3);
  1902. SERIAL_PROTOCOLPGM(" Z: ");
  1903. SERIAL_PROTOCOL_F(measured_z, 3);
  1904. SERIAL_EOL;
  1905. }
  1906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1907. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1908. #endif
  1909. feedrate_mm_m = old_feedrate_mm_m;
  1910. return measured_z;
  1911. }
  1912. #endif // HAS_BED_PROBE
  1913. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1914. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1915. #if DISABLED(DELTA)
  1916. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1917. //planner.bed_level_matrix.debug("bed level before");
  1918. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1919. planner.bed_level_matrix.set_to_identity();
  1920. if (DEBUGGING(LEVELING)) {
  1921. vector_3 uncorrected_position = planner.adjusted_position();
  1922. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1923. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1924. }
  1925. #endif
  1926. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1927. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1928. vector_3 corrected_position = planner.adjusted_position();
  1929. current_position[X_AXIS] = corrected_position.x;
  1930. current_position[Y_AXIS] = corrected_position.y;
  1931. current_position[Z_AXIS] = corrected_position.z;
  1932. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1933. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1934. #endif
  1935. SYNC_PLAN_POSITION_KINEMATIC();
  1936. }
  1937. #endif // !DELTA
  1938. #else // !AUTO_BED_LEVELING_GRID
  1939. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1940. planner.bed_level_matrix.set_to_identity();
  1941. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1942. if (DEBUGGING(LEVELING)) {
  1943. vector_3 uncorrected_position = planner.adjusted_position();
  1944. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1945. }
  1946. #endif
  1947. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1948. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1949. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1950. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1951. if (planeNormal.z < 0) {
  1952. planeNormal.x = -planeNormal.x;
  1953. planeNormal.y = -planeNormal.y;
  1954. planeNormal.z = -planeNormal.z;
  1955. }
  1956. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1957. vector_3 corrected_position = planner.adjusted_position();
  1958. current_position[X_AXIS] = corrected_position.x;
  1959. current_position[Y_AXIS] = corrected_position.y;
  1960. current_position[Z_AXIS] = corrected_position.z;
  1961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1962. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1963. #endif
  1964. SYNC_PLAN_POSITION_KINEMATIC();
  1965. }
  1966. #endif // !AUTO_BED_LEVELING_GRID
  1967. #if ENABLED(DELTA)
  1968. /**
  1969. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1970. */
  1971. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1972. if (bed_level[x][y] != 0.0) {
  1973. return; // Don't overwrite good values.
  1974. }
  1975. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1976. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1977. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1978. float median = c; // Median is robust (ignores outliers).
  1979. if (a < b) {
  1980. if (b < c) median = b;
  1981. if (c < a) median = a;
  1982. }
  1983. else { // b <= a
  1984. if (c < b) median = b;
  1985. if (a < c) median = a;
  1986. }
  1987. bed_level[x][y] = median;
  1988. }
  1989. /**
  1990. * Fill in the unprobed points (corners of circular print surface)
  1991. * using linear extrapolation, away from the center.
  1992. */
  1993. static void extrapolate_unprobed_bed_level() {
  1994. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1995. for (int y = 0; y <= half; y++) {
  1996. for (int x = 0; x <= half; x++) {
  1997. if (x + y < 3) continue;
  1998. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1999. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  2000. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  2001. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  2002. }
  2003. }
  2004. }
  2005. /**
  2006. * Print calibration results for plotting or manual frame adjustment.
  2007. */
  2008. static void print_bed_level() {
  2009. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2010. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2011. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  2012. SERIAL_PROTOCOLCHAR(' ');
  2013. }
  2014. SERIAL_EOL;
  2015. }
  2016. }
  2017. /**
  2018. * Reset calibration results to zero.
  2019. */
  2020. void reset_bed_level() {
  2021. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2022. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2023. #endif
  2024. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2025. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2026. bed_level[x][y] = 0.0;
  2027. }
  2028. }
  2029. }
  2030. #endif // DELTA
  2031. #endif // AUTO_BED_LEVELING_FEATURE
  2032. /**
  2033. * Home an individual axis
  2034. */
  2035. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2036. static void homeaxis(AxisEnum axis) {
  2037. #define HOMEAXIS_DO(LETTER) \
  2038. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2039. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2040. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2041. if (DEBUGGING(LEVELING)) {
  2042. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2043. SERIAL_ECHOLNPGM(")");
  2044. }
  2045. #endif
  2046. int axis_home_dir =
  2047. #if ENABLED(DUAL_X_CARRIAGE)
  2048. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2049. #endif
  2050. home_dir(axis);
  2051. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2052. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2053. if (axis == Z_AXIS && axis_home_dir < 0) {
  2054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2055. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2056. #endif
  2057. if (DEPLOY_PROBE()) return;
  2058. }
  2059. #endif
  2060. // Set the axis position as setup for the move
  2061. current_position[axis] = 0;
  2062. sync_plan_position();
  2063. // Set a flag for Z motor locking
  2064. #if ENABLED(Z_DUAL_ENDSTOPS)
  2065. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2066. #endif
  2067. // Move towards the endstop until an endstop is triggered
  2068. line_to_axis_pos(axis, 1.5 * max_length(axis) * axis_home_dir);
  2069. // Set the axis position as setup for the move
  2070. current_position[axis] = 0;
  2071. sync_plan_position();
  2072. // Move away from the endstop by the axis HOME_BUMP_MM
  2073. line_to_axis_pos(axis, -home_bump_mm(axis) * axis_home_dir);
  2074. // Move slowly towards the endstop until triggered
  2075. line_to_axis_pos(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  2076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2077. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2078. #endif
  2079. #if ENABLED(Z_DUAL_ENDSTOPS)
  2080. if (axis == Z_AXIS) {
  2081. float adj = fabs(z_endstop_adj);
  2082. bool lockZ1;
  2083. if (axis_home_dir > 0) {
  2084. adj = -adj;
  2085. lockZ1 = (z_endstop_adj > 0);
  2086. }
  2087. else
  2088. lockZ1 = (z_endstop_adj < 0);
  2089. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2090. sync_plan_position();
  2091. // Move to the adjusted endstop height
  2092. line_to_axis_pos(axis, adj);
  2093. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2094. stepper.set_homing_flag(false);
  2095. } // Z_AXIS
  2096. #endif
  2097. #if ENABLED(DELTA)
  2098. // retrace by the amount specified in endstop_adj
  2099. if (endstop_adj[axis] * axis_home_dir < 0) {
  2100. sync_plan_position();
  2101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2102. if (DEBUGGING(LEVELING)) {
  2103. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2104. DEBUG_POS("", current_position);
  2105. }
  2106. #endif
  2107. line_to_axis_pos(axis, endstop_adj[axis]);
  2108. }
  2109. #endif
  2110. // Set the axis position to its home position (plus home offsets)
  2111. set_axis_is_at_home(axis);
  2112. SYNC_PLAN_POSITION_KINEMATIC();
  2113. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2114. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2115. #endif
  2116. destination[axis] = current_position[axis];
  2117. endstops.hit_on_purpose(); // clear endstop hit flags
  2118. axis_known_position[axis] = true;
  2119. axis_homed[axis] = true;
  2120. // Put away the Z probe
  2121. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2122. if (axis == Z_AXIS && axis_home_dir < 0) {
  2123. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2124. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2125. #endif
  2126. if (STOW_PROBE()) return;
  2127. }
  2128. #endif
  2129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2130. if (DEBUGGING(LEVELING)) {
  2131. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2132. SERIAL_ECHOLNPGM(")");
  2133. }
  2134. #endif
  2135. }
  2136. #if ENABLED(FWRETRACT)
  2137. void retract(bool retracting, bool swapping = false) {
  2138. if (retracting == retracted[active_extruder]) return;
  2139. float old_feedrate_mm_m = feedrate_mm_m;
  2140. set_destination_to_current();
  2141. if (retracting) {
  2142. feedrate_mm_m = MMS_TO_MMM(retract_feedrate_mm_s);
  2143. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2144. sync_plan_position_e();
  2145. prepare_move_to_destination();
  2146. if (retract_zlift > 0.01) {
  2147. current_position[Z_AXIS] -= retract_zlift;
  2148. SYNC_PLAN_POSITION_KINEMATIC();
  2149. prepare_move_to_destination();
  2150. }
  2151. }
  2152. else {
  2153. if (retract_zlift > 0.01) {
  2154. current_position[Z_AXIS] += retract_zlift;
  2155. SYNC_PLAN_POSITION_KINEMATIC();
  2156. }
  2157. feedrate_mm_m = MMM_TO_MMS(retract_recover_feedrate_mm_s);
  2158. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2159. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2160. sync_plan_position_e();
  2161. prepare_move_to_destination();
  2162. }
  2163. feedrate_mm_m = old_feedrate_mm_m;
  2164. retracted[active_extruder] = retracting;
  2165. } // retract()
  2166. #endif // FWRETRACT
  2167. #if ENABLED(MIXING_EXTRUDER)
  2168. void normalize_mix() {
  2169. float mix_total = 0.0;
  2170. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2171. float v = mixing_factor[i];
  2172. if (v < 0) v = mixing_factor[i] = 0;
  2173. mix_total += v;
  2174. }
  2175. // Scale all values if they don't add up to ~1.0
  2176. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2177. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2178. float mix_scale = 1.0 / mix_total;
  2179. for (int i = 0; i < MIXING_STEPPERS; i++)
  2180. mixing_factor[i] *= mix_scale;
  2181. }
  2182. }
  2183. #if ENABLED(DIRECT_MIXING_IN_G1)
  2184. // Get mixing parameters from the GCode
  2185. // Factors that are left out are set to 0
  2186. // The total "must" be 1.0 (but it will be normalized)
  2187. void gcode_get_mix() {
  2188. const char* mixing_codes = "ABCDHI";
  2189. for (int i = 0; i < MIXING_STEPPERS; i++)
  2190. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2191. normalize_mix();
  2192. }
  2193. #endif
  2194. #endif
  2195. /**
  2196. * ***************************************************************************
  2197. * ***************************** G-CODE HANDLING *****************************
  2198. * ***************************************************************************
  2199. */
  2200. /**
  2201. * Set XYZE destination and feedrate from the current GCode command
  2202. *
  2203. * - Set destination from included axis codes
  2204. * - Set to current for missing axis codes
  2205. * - Set the feedrate, if included
  2206. */
  2207. void gcode_get_destination() {
  2208. LOOP_XYZE(i) {
  2209. if (code_seen(axis_codes[i]))
  2210. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2211. else
  2212. destination[i] = current_position[i];
  2213. }
  2214. if (code_seen('F') && code_value_linear_units() > 0.0)
  2215. feedrate_mm_m = code_value_linear_units();
  2216. #if ENABLED(PRINTCOUNTER)
  2217. if (!DEBUGGING(DRYRUN))
  2218. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2219. #endif
  2220. // Get ABCDHI mixing factors
  2221. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2222. gcode_get_mix();
  2223. #endif
  2224. }
  2225. void unknown_command_error() {
  2226. SERIAL_ECHO_START;
  2227. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2228. SERIAL_ECHO(current_command);
  2229. SERIAL_ECHOLNPGM("\"");
  2230. }
  2231. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2232. /**
  2233. * Output a "busy" message at regular intervals
  2234. * while the machine is not accepting commands.
  2235. */
  2236. void host_keepalive() {
  2237. millis_t ms = millis();
  2238. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2239. if (PENDING(ms, next_busy_signal_ms)) return;
  2240. switch (busy_state) {
  2241. case IN_HANDLER:
  2242. case IN_PROCESS:
  2243. SERIAL_ECHO_START;
  2244. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2245. break;
  2246. case PAUSED_FOR_USER:
  2247. SERIAL_ECHO_START;
  2248. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2249. break;
  2250. case PAUSED_FOR_INPUT:
  2251. SERIAL_ECHO_START;
  2252. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2253. break;
  2254. default:
  2255. break;
  2256. }
  2257. }
  2258. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2259. }
  2260. #endif //HOST_KEEPALIVE_FEATURE
  2261. /**
  2262. * G0, G1: Coordinated movement of X Y Z E axes
  2263. */
  2264. inline void gcode_G0_G1() {
  2265. if (IsRunning()) {
  2266. gcode_get_destination(); // For X Y Z E F
  2267. #if ENABLED(FWRETRACT)
  2268. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2269. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2270. // Is this move an attempt to retract or recover?
  2271. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2272. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2273. sync_plan_position_e(); // AND from the planner
  2274. retract(!retracted[active_extruder]);
  2275. return;
  2276. }
  2277. }
  2278. #endif //FWRETRACT
  2279. prepare_move_to_destination();
  2280. }
  2281. }
  2282. /**
  2283. * G2: Clockwise Arc
  2284. * G3: Counterclockwise Arc
  2285. */
  2286. #if ENABLED(ARC_SUPPORT)
  2287. inline void gcode_G2_G3(bool clockwise) {
  2288. if (IsRunning()) {
  2289. #if ENABLED(SF_ARC_FIX)
  2290. bool relative_mode_backup = relative_mode;
  2291. relative_mode = true;
  2292. #endif
  2293. gcode_get_destination();
  2294. #if ENABLED(SF_ARC_FIX)
  2295. relative_mode = relative_mode_backup;
  2296. #endif
  2297. // Center of arc as offset from current_position
  2298. float arc_offset[2] = {
  2299. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2300. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2301. };
  2302. // Send an arc to the planner
  2303. plan_arc(destination, arc_offset, clockwise);
  2304. refresh_cmd_timeout();
  2305. }
  2306. }
  2307. #endif
  2308. /**
  2309. * G4: Dwell S<seconds> or P<milliseconds>
  2310. */
  2311. inline void gcode_G4() {
  2312. millis_t dwell_ms = 0;
  2313. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2314. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2315. stepper.synchronize();
  2316. refresh_cmd_timeout();
  2317. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2318. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2319. while (PENDING(millis(), dwell_ms)) idle();
  2320. }
  2321. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2322. /**
  2323. * Parameters interpreted according to:
  2324. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2325. * However I, J omission is not supported at this point; all
  2326. * parameters can be omitted and default to zero.
  2327. */
  2328. /**
  2329. * G5: Cubic B-spline
  2330. */
  2331. inline void gcode_G5() {
  2332. if (IsRunning()) {
  2333. gcode_get_destination();
  2334. float offset[] = {
  2335. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2336. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2337. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2338. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2339. };
  2340. plan_cubic_move(offset);
  2341. }
  2342. }
  2343. #endif // BEZIER_CURVE_SUPPORT
  2344. #if ENABLED(FWRETRACT)
  2345. /**
  2346. * G10 - Retract filament according to settings of M207
  2347. * G11 - Recover filament according to settings of M208
  2348. */
  2349. inline void gcode_G10_G11(bool doRetract=false) {
  2350. #if EXTRUDERS > 1
  2351. if (doRetract) {
  2352. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2353. }
  2354. #endif
  2355. retract(doRetract
  2356. #if EXTRUDERS > 1
  2357. , retracted_swap[active_extruder]
  2358. #endif
  2359. );
  2360. }
  2361. #endif //FWRETRACT
  2362. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2363. /**
  2364. * G12: Clean the nozzle
  2365. */
  2366. inline void gcode_G12() {
  2367. // Don't allow nozzle cleaning without homing first
  2368. if (axis_unhomed_error(true, true, true)) { return; }
  2369. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2370. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2371. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2372. Nozzle::clean(pattern, strokes, objects);
  2373. }
  2374. #endif
  2375. #if ENABLED(INCH_MODE_SUPPORT)
  2376. /**
  2377. * G20: Set input mode to inches
  2378. */
  2379. inline void gcode_G20() {
  2380. set_input_linear_units(LINEARUNIT_INCH);
  2381. }
  2382. /**
  2383. * G21: Set input mode to millimeters
  2384. */
  2385. inline void gcode_G21() {
  2386. set_input_linear_units(LINEARUNIT_MM);
  2387. }
  2388. #endif
  2389. #if ENABLED(NOZZLE_PARK_FEATURE)
  2390. /**
  2391. * G27: Park the nozzle
  2392. */
  2393. inline void gcode_G27() {
  2394. // Don't allow nozzle parking without homing first
  2395. if (axis_unhomed_error(true, true, true)) { return; }
  2396. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2397. Nozzle::park(z_action);
  2398. }
  2399. #endif // NOZZLE_PARK_FEATURE
  2400. #if ENABLED(QUICK_HOME)
  2401. static void quick_home_xy() {
  2402. // Pretend the current position is 0,0
  2403. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2404. sync_plan_position();
  2405. int x_axis_home_dir =
  2406. #if ENABLED(DUAL_X_CARRIAGE)
  2407. x_home_dir(active_extruder)
  2408. #else
  2409. home_dir(X_AXIS)
  2410. #endif
  2411. ;
  2412. float mlx = max_length(X_AXIS),
  2413. mly = max_length(Y_AXIS),
  2414. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2415. fr_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2416. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_m);
  2417. endstops.hit_on_purpose(); // clear endstop hit flags
  2418. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2419. }
  2420. #endif // QUICK_HOME
  2421. /**
  2422. * G28: Home all axes according to settings
  2423. *
  2424. * Parameters
  2425. *
  2426. * None Home to all axes with no parameters.
  2427. * With QUICK_HOME enabled XY will home together, then Z.
  2428. *
  2429. * Cartesian parameters
  2430. *
  2431. * X Home to the X endstop
  2432. * Y Home to the Y endstop
  2433. * Z Home to the Z endstop
  2434. *
  2435. */
  2436. inline void gcode_G28() {
  2437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2438. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2439. #endif
  2440. // Wait for planner moves to finish!
  2441. stepper.synchronize();
  2442. // For auto bed leveling, clear the level matrix
  2443. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2444. planner.bed_level_matrix.set_to_identity();
  2445. #if ENABLED(DELTA)
  2446. reset_bed_level();
  2447. #endif
  2448. #endif
  2449. // Always home with tool 0 active
  2450. #if HOTENDS > 1
  2451. uint8_t old_tool_index = active_extruder;
  2452. tool_change(0, 0, true);
  2453. #endif
  2454. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2455. extruder_duplication_enabled = false;
  2456. #endif
  2457. /**
  2458. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2459. * on again when homing all axis
  2460. */
  2461. #if ENABLED(MESH_BED_LEVELING)
  2462. float pre_home_z = MESH_HOME_SEARCH_Z;
  2463. if (mbl.active()) {
  2464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2465. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2466. #endif
  2467. // Save known Z position if already homed
  2468. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2469. pre_home_z = current_position[Z_AXIS];
  2470. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2471. }
  2472. mbl.set_active(false);
  2473. current_position[Z_AXIS] = pre_home_z;
  2474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2475. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2476. #endif
  2477. }
  2478. #endif
  2479. setup_for_endstop_or_probe_move();
  2480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2481. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2482. #endif
  2483. endstops.enable(true); // Enable endstops for next homing move
  2484. #if ENABLED(DELTA)
  2485. /**
  2486. * A delta can only safely home all axes at the same time
  2487. */
  2488. // Pretend the current position is 0,0,0
  2489. // This is like quick_home_xy() but for 3 towers.
  2490. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2491. sync_plan_position();
  2492. // Move all carriages up together until the first endstop is hit.
  2493. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
  2494. feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS];
  2495. line_to_current_position();
  2496. stepper.synchronize();
  2497. endstops.hit_on_purpose(); // clear endstop hit flags
  2498. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2499. // take care of back off and rehome. Now one carriage is at the top.
  2500. HOMEAXIS(X);
  2501. HOMEAXIS(Y);
  2502. HOMEAXIS(Z);
  2503. SYNC_PLAN_POSITION_KINEMATIC();
  2504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2505. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2506. #endif
  2507. #else // NOT DELTA
  2508. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2509. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2510. set_destination_to_current();
  2511. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2512. if (home_all_axis || homeZ) {
  2513. HOMEAXIS(Z);
  2514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2515. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2516. #endif
  2517. }
  2518. #else
  2519. if (home_all_axis || homeX || homeY) {
  2520. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2521. destination[Z_AXIS] = LOGICAL_Z_POSITION(MIN_Z_HEIGHT_FOR_HOMING);
  2522. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2524. if (DEBUGGING(LEVELING)) {
  2525. SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2526. SERIAL_EOL;
  2527. }
  2528. #endif
  2529. do_blocking_move_to_z(destination[Z_AXIS]);
  2530. }
  2531. }
  2532. #endif
  2533. #if ENABLED(QUICK_HOME)
  2534. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2535. #endif
  2536. #if ENABLED(HOME_Y_BEFORE_X)
  2537. // Home Y
  2538. if (home_all_axis || homeY) {
  2539. HOMEAXIS(Y);
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2542. #endif
  2543. }
  2544. #endif
  2545. // Home X
  2546. if (home_all_axis || homeX) {
  2547. #if ENABLED(DUAL_X_CARRIAGE)
  2548. int tmp_extruder = active_extruder;
  2549. active_extruder = !active_extruder;
  2550. HOMEAXIS(X);
  2551. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2552. active_extruder = tmp_extruder;
  2553. HOMEAXIS(X);
  2554. // reset state used by the different modes
  2555. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2556. delayed_move_time = 0;
  2557. active_extruder_parked = true;
  2558. #else
  2559. HOMEAXIS(X);
  2560. #endif
  2561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2562. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2563. #endif
  2564. }
  2565. #if DISABLED(HOME_Y_BEFORE_X)
  2566. // Home Y
  2567. if (home_all_axis || homeY) {
  2568. HOMEAXIS(Y);
  2569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2570. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2571. #endif
  2572. }
  2573. #endif
  2574. // Home Z last if homing towards the bed
  2575. #if Z_HOME_DIR < 0
  2576. if (home_all_axis || homeZ) {
  2577. #if ENABLED(Z_SAFE_HOMING)
  2578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2579. if (DEBUGGING(LEVELING)) {
  2580. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2581. }
  2582. #endif
  2583. if (home_all_axis) {
  2584. /**
  2585. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2586. * No need to move Z any more as this height should already be safe
  2587. * enough to reach Z_SAFE_HOMING XY positions.
  2588. * Just make sure the planner is in sync.
  2589. */
  2590. SYNC_PLAN_POSITION_KINEMATIC();
  2591. /**
  2592. * Move the Z probe (or just the nozzle) to the safe homing point
  2593. */
  2594. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2595. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2596. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2597. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2598. if (DEBUGGING(LEVELING)) {
  2599. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2600. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2601. }
  2602. #endif
  2603. // Move in the XY plane
  2604. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2605. }
  2606. // Let's see if X and Y are homed
  2607. if (axis_unhomed_error(true, true, false)) return;
  2608. /**
  2609. * Make sure the Z probe is within the physical limits
  2610. * NOTE: This doesn't necessarily ensure the Z probe is also
  2611. * within the bed!
  2612. */
  2613. float cpx = RAW_CURRENT_POSITION(X_AXIS), cpy = RAW_CURRENT_POSITION(Y_AXIS);
  2614. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2615. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2616. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2617. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2618. // Home the Z axis
  2619. HOMEAXIS(Z);
  2620. }
  2621. else {
  2622. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2623. SERIAL_ECHO_START;
  2624. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2625. }
  2626. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2627. if (DEBUGGING(LEVELING)) {
  2628. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2629. }
  2630. #endif
  2631. #else // !Z_SAFE_HOMING
  2632. HOMEAXIS(Z);
  2633. #endif // !Z_SAFE_HOMING
  2634. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2635. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2636. #endif
  2637. } // home_all_axis || homeZ
  2638. #endif // Z_HOME_DIR < 0
  2639. SYNC_PLAN_POSITION_KINEMATIC();
  2640. #endif // !DELTA (gcode_G28)
  2641. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2642. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2643. #endif
  2644. endstops.not_homing();
  2645. endstops.hit_on_purpose(); // clear endstop hit flags
  2646. // Enable mesh leveling again
  2647. #if ENABLED(MESH_BED_LEVELING)
  2648. if (mbl.has_mesh()) {
  2649. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2650. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2651. #endif
  2652. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2654. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2655. #endif
  2656. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2657. #if Z_HOME_DIR > 0
  2658. + Z_MAX_POS
  2659. #endif
  2660. ;
  2661. SYNC_PLAN_POSITION_KINEMATIC();
  2662. mbl.set_active(true);
  2663. #if ENABLED(MESH_G28_REST_ORIGIN)
  2664. current_position[Z_AXIS] = 0.0;
  2665. set_destination_to_current();
  2666. feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
  2667. line_to_destination();
  2668. stepper.synchronize();
  2669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2670. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2671. #endif
  2672. #else
  2673. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2674. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2675. #if Z_HOME_DIR > 0
  2676. + Z_MAX_POS
  2677. #endif
  2678. ;
  2679. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2680. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2681. #endif
  2682. #endif
  2683. }
  2684. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2685. current_position[Z_AXIS] = pre_home_z;
  2686. SYNC_PLAN_POSITION_KINEMATIC();
  2687. mbl.set_active(true);
  2688. current_position[Z_AXIS] = pre_home_z -
  2689. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2691. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2692. #endif
  2693. }
  2694. }
  2695. #endif
  2696. #if ENABLED(DELTA)
  2697. // move to a height where we can use the full xy-area
  2698. do_blocking_move_to_z(delta_clip_start_height);
  2699. #endif
  2700. clean_up_after_endstop_or_probe_move();
  2701. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2702. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2703. #endif
  2704. // Restore the active tool after homing
  2705. #if HOTENDS > 1
  2706. tool_change(old_tool_index, 0, true);
  2707. #endif
  2708. report_current_position();
  2709. }
  2710. #if HAS_PROBING_PROCEDURE
  2711. void out_of_range_error(const char* p_edge) {
  2712. SERIAL_PROTOCOLPGM("?Probe ");
  2713. serialprintPGM(p_edge);
  2714. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2715. }
  2716. #endif
  2717. #if ENABLED(MESH_BED_LEVELING)
  2718. inline void _mbl_goto_xy(float x, float y) {
  2719. float old_feedrate_mm_m = feedrate_mm_m;
  2720. feedrate_mm_m = homing_feedrate_mm_m[X_AXIS];
  2721. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2722. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2723. + Z_RAISE_BETWEEN_PROBINGS
  2724. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2725. + MIN_Z_HEIGHT_FOR_HOMING
  2726. #endif
  2727. ;
  2728. line_to_current_position();
  2729. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2730. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2731. line_to_current_position();
  2732. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2733. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2734. line_to_current_position();
  2735. #endif
  2736. feedrate_mm_m = old_feedrate_mm_m;
  2737. stepper.synchronize();
  2738. }
  2739. /**
  2740. * G29: Mesh-based Z probe, probes a grid and produces a
  2741. * mesh to compensate for variable bed height
  2742. *
  2743. * Parameters With MESH_BED_LEVELING:
  2744. *
  2745. * S0 Produce a mesh report
  2746. * S1 Start probing mesh points
  2747. * S2 Probe the next mesh point
  2748. * S3 Xn Yn Zn.nn Manually modify a single point
  2749. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2750. * S5 Reset and disable mesh
  2751. *
  2752. * The S0 report the points as below
  2753. *
  2754. * +----> X-axis 1-n
  2755. * |
  2756. * |
  2757. * v Y-axis 1-n
  2758. *
  2759. */
  2760. inline void gcode_G29() {
  2761. static int probe_point = -1;
  2762. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2763. if (state < 0 || state > 5) {
  2764. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2765. return;
  2766. }
  2767. int8_t px, py;
  2768. switch (state) {
  2769. case MeshReport:
  2770. if (mbl.has_mesh()) {
  2771. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2772. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2773. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2774. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2775. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2776. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2777. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2778. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2779. SERIAL_PROTOCOLPGM(" ");
  2780. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2781. }
  2782. SERIAL_EOL;
  2783. }
  2784. }
  2785. else
  2786. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2787. break;
  2788. case MeshStart:
  2789. mbl.reset();
  2790. probe_point = 0;
  2791. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2792. break;
  2793. case MeshNext:
  2794. if (probe_point < 0) {
  2795. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2796. return;
  2797. }
  2798. // For each G29 S2...
  2799. if (probe_point == 0) {
  2800. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2801. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2802. #if Z_HOME_DIR > 0
  2803. + Z_MAX_POS
  2804. #endif
  2805. ;
  2806. SYNC_PLAN_POSITION_KINEMATIC();
  2807. }
  2808. else {
  2809. // For G29 S2 after adjusting Z.
  2810. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2811. }
  2812. // If there's another point to sample, move there with optional lift.
  2813. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2814. mbl.zigzag(probe_point, px, py);
  2815. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2816. probe_point++;
  2817. }
  2818. else {
  2819. // One last "return to the bed" (as originally coded) at completion
  2820. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2821. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2822. + Z_RAISE_BETWEEN_PROBINGS
  2823. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2824. + MIN_Z_HEIGHT_FOR_HOMING
  2825. #endif
  2826. ;
  2827. line_to_current_position();
  2828. stepper.synchronize();
  2829. // After recording the last point, activate the mbl and home
  2830. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2831. probe_point = -1;
  2832. mbl.set_has_mesh(true);
  2833. enqueue_and_echo_commands_P(PSTR("G28"));
  2834. }
  2835. break;
  2836. case MeshSet:
  2837. if (code_seen('X')) {
  2838. px = code_value_int() - 1;
  2839. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2840. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2841. return;
  2842. }
  2843. }
  2844. else {
  2845. SERIAL_PROTOCOLLNPGM("X not entered.");
  2846. return;
  2847. }
  2848. if (code_seen('Y')) {
  2849. py = code_value_int() - 1;
  2850. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2851. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2852. return;
  2853. }
  2854. }
  2855. else {
  2856. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2857. return;
  2858. }
  2859. if (code_seen('Z')) {
  2860. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2861. }
  2862. else {
  2863. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2864. return;
  2865. }
  2866. break;
  2867. case MeshSetZOffset:
  2868. if (code_seen('Z')) {
  2869. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2870. }
  2871. else {
  2872. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2873. return;
  2874. }
  2875. break;
  2876. case MeshReset:
  2877. if (mbl.active()) {
  2878. current_position[Z_AXIS] +=
  2879. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2880. mbl.reset();
  2881. SYNC_PLAN_POSITION_KINEMATIC();
  2882. }
  2883. else
  2884. mbl.reset();
  2885. } // switch(state)
  2886. report_current_position();
  2887. }
  2888. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2889. /**
  2890. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2891. * Will fail if the printer has not been homed with G28.
  2892. *
  2893. * Enhanced G29 Auto Bed Leveling Probe Routine
  2894. *
  2895. * Parameters With AUTO_BED_LEVELING_GRID:
  2896. *
  2897. * P Set the size of the grid that will be probed (P x P points).
  2898. * Not supported by non-linear delta printer bed leveling.
  2899. * Example: "G29 P4"
  2900. *
  2901. * S Set the XY travel speed between probe points (in units/min)
  2902. *
  2903. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2904. * or clean the rotation Matrix. Useful to check the topology
  2905. * after a first run of G29.
  2906. *
  2907. * V Set the verbose level (0-4). Example: "G29 V3"
  2908. *
  2909. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2910. * This is useful for manual bed leveling and finding flaws in the bed (to
  2911. * assist with part placement).
  2912. * Not supported by non-linear delta printer bed leveling.
  2913. *
  2914. * F Set the Front limit of the probing grid
  2915. * B Set the Back limit of the probing grid
  2916. * L Set the Left limit of the probing grid
  2917. * R Set the Right limit of the probing grid
  2918. *
  2919. * Global Parameters:
  2920. *
  2921. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2922. * Include "E" to engage/disengage the Z probe for each sample.
  2923. * There's no extra effect if you have a fixed Z probe.
  2924. * Usage: "G29 E" or "G29 e"
  2925. *
  2926. */
  2927. inline void gcode_G29() {
  2928. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2929. if (DEBUGGING(LEVELING)) {
  2930. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2931. DEBUG_POS("", current_position);
  2932. }
  2933. #endif
  2934. // Don't allow auto-leveling without homing first
  2935. if (axis_unhomed_error(true, true, true)) return;
  2936. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2937. if (verbose_level < 0 || verbose_level > 4) {
  2938. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2939. return;
  2940. }
  2941. bool dryrun = code_seen('D');
  2942. bool stow_probe_after_each = code_seen('E');
  2943. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2944. #if DISABLED(DELTA)
  2945. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2946. #endif
  2947. if (verbose_level > 0) {
  2948. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2949. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2950. }
  2951. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2952. #if DISABLED(DELTA)
  2953. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2954. if (auto_bed_leveling_grid_points < 2) {
  2955. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2956. return;
  2957. }
  2958. #endif
  2959. xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2960. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2961. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2962. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2963. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2964. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2965. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2966. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2967. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2968. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2969. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2970. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2971. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2972. if (left_out || right_out || front_out || back_out) {
  2973. if (left_out) {
  2974. out_of_range_error(PSTR("(L)eft"));
  2975. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2976. }
  2977. if (right_out) {
  2978. out_of_range_error(PSTR("(R)ight"));
  2979. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2980. }
  2981. if (front_out) {
  2982. out_of_range_error(PSTR("(F)ront"));
  2983. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2984. }
  2985. if (back_out) {
  2986. out_of_range_error(PSTR("(B)ack"));
  2987. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2988. }
  2989. return;
  2990. }
  2991. #endif // AUTO_BED_LEVELING_GRID
  2992. if (!dryrun) {
  2993. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2994. if (DEBUGGING(LEVELING)) {
  2995. vector_3 corrected_position = planner.adjusted_position();
  2996. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2997. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2998. }
  2999. #endif
  3000. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  3001. planner.bed_level_matrix.set_to_identity();
  3002. #if ENABLED(DELTA)
  3003. reset_bed_level();
  3004. #else //!DELTA
  3005. //vector_3 corrected_position = planner.adjusted_position();
  3006. //corrected_position.debug("position before G29");
  3007. vector_3 uncorrected_position = planner.adjusted_position();
  3008. //uncorrected_position.debug("position during G29");
  3009. current_position[X_AXIS] = uncorrected_position.x;
  3010. current_position[Y_AXIS] = uncorrected_position.y;
  3011. current_position[Z_AXIS] = uncorrected_position.z;
  3012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3013. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  3014. #endif
  3015. SYNC_PLAN_POSITION_KINEMATIC();
  3016. #endif // !DELTA
  3017. }
  3018. stepper.synchronize();
  3019. setup_for_endstop_or_probe_move();
  3020. // Deploy the probe. Probe will raise if needed.
  3021. if (DEPLOY_PROBE()) return;
  3022. bed_leveling_in_progress = true;
  3023. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3024. // probe at the points of a lattice grid
  3025. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  3026. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  3027. #if ENABLED(DELTA)
  3028. delta_grid_spacing[0] = xGridSpacing;
  3029. delta_grid_spacing[1] = yGridSpacing;
  3030. float zoffset = zprobe_zoffset;
  3031. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3032. #else // !DELTA
  3033. /**
  3034. * solve the plane equation ax + by + d = z
  3035. * A is the matrix with rows [x y 1] for all the probed points
  3036. * B is the vector of the Z positions
  3037. * the normal vector to the plane is formed by the coefficients of the
  3038. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3039. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3040. */
  3041. int abl2 = sq(auto_bed_leveling_grid_points);
  3042. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3043. eqnBVector[abl2], // "B" vector of Z points
  3044. mean = 0.0;
  3045. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3046. #endif // !DELTA
  3047. int probePointCounter = 0;
  3048. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3049. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3050. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  3051. int xStart, xStop, xInc;
  3052. if (zig) {
  3053. xStart = 0;
  3054. xStop = auto_bed_leveling_grid_points;
  3055. xInc = 1;
  3056. }
  3057. else {
  3058. xStart = auto_bed_leveling_grid_points - 1;
  3059. xStop = -1;
  3060. xInc = -1;
  3061. }
  3062. zig = !zig;
  3063. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3064. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3065. #if ENABLED(DELTA)
  3066. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3067. float distance_from_center = HYPOT(xProbe, yProbe);
  3068. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3069. #endif //DELTA
  3070. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3071. #if DISABLED(DELTA)
  3072. mean += measured_z;
  3073. eqnBVector[probePointCounter] = measured_z;
  3074. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3075. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3076. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3077. indexIntoAB[xCount][yCount] = probePointCounter;
  3078. #else
  3079. bed_level[xCount][yCount] = measured_z + zoffset;
  3080. #endif
  3081. probePointCounter++;
  3082. idle();
  3083. } //xProbe
  3084. } //yProbe
  3085. #else // !AUTO_BED_LEVELING_GRID
  3086. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3087. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3088. #endif
  3089. // Probe at 3 arbitrary points
  3090. float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
  3091. LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
  3092. stow_probe_after_each, verbose_level),
  3093. z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
  3094. LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
  3095. stow_probe_after_each, verbose_level),
  3096. z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
  3097. LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
  3098. stow_probe_after_each, verbose_level);
  3099. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3100. #endif // !AUTO_BED_LEVELING_GRID
  3101. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3102. if (STOW_PROBE()) return;
  3103. // Restore state after probing
  3104. clean_up_after_endstop_or_probe_move();
  3105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3106. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3107. #endif
  3108. // Calculate leveling, print reports, correct the position
  3109. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3110. #if ENABLED(DELTA)
  3111. if (!dryrun) extrapolate_unprobed_bed_level();
  3112. print_bed_level();
  3113. #else // !DELTA
  3114. // solve lsq problem
  3115. double plane_equation_coefficients[3];
  3116. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3117. mean /= abl2;
  3118. if (verbose_level) {
  3119. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3120. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3121. SERIAL_PROTOCOLPGM(" b: ");
  3122. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3123. SERIAL_PROTOCOLPGM(" d: ");
  3124. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3125. SERIAL_EOL;
  3126. if (verbose_level > 2) {
  3127. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3128. SERIAL_PROTOCOL_F(mean, 8);
  3129. SERIAL_EOL;
  3130. }
  3131. }
  3132. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3133. // Show the Topography map if enabled
  3134. if (do_topography_map) {
  3135. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3136. " +--- BACK --+\n"
  3137. " | |\n"
  3138. " L | (+) | R\n"
  3139. " E | | I\n"
  3140. " F | (-) N (+) | G\n"
  3141. " T | | H\n"
  3142. " | (-) | T\n"
  3143. " | |\n"
  3144. " O-- FRONT --+\n"
  3145. " (0,0)");
  3146. float min_diff = 999;
  3147. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3148. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3149. int ind = indexIntoAB[xx][yy];
  3150. float diff = eqnBVector[ind] - mean;
  3151. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3152. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3153. z_tmp = 0;
  3154. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3155. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3156. if (diff >= 0.0)
  3157. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3158. else
  3159. SERIAL_PROTOCOLCHAR(' ');
  3160. SERIAL_PROTOCOL_F(diff, 5);
  3161. } // xx
  3162. SERIAL_EOL;
  3163. } // yy
  3164. SERIAL_EOL;
  3165. if (verbose_level > 3) {
  3166. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3167. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3168. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3169. int ind = indexIntoAB[xx][yy];
  3170. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3171. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3172. z_tmp = 0;
  3173. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3174. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3175. if (diff >= 0.0)
  3176. SERIAL_PROTOCOLPGM(" +");
  3177. // Include + for column alignment
  3178. else
  3179. SERIAL_PROTOCOLCHAR(' ');
  3180. SERIAL_PROTOCOL_F(diff, 5);
  3181. } // xx
  3182. SERIAL_EOL;
  3183. } // yy
  3184. SERIAL_EOL;
  3185. }
  3186. } //do_topography_map
  3187. #endif //!DELTA
  3188. #endif // AUTO_BED_LEVELING_GRID
  3189. #if DISABLED(DELTA)
  3190. if (verbose_level > 0)
  3191. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3192. if (!dryrun) {
  3193. /**
  3194. * Correct the Z height difference from Z probe position and nozzle tip position.
  3195. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3196. * from the nozzle. When the bed is uneven, this height must be corrected.
  3197. */
  3198. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3199. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3200. z_tmp = current_position[Z_AXIS],
  3201. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3202. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3203. if (DEBUGGING(LEVELING)) {
  3204. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3205. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3206. SERIAL_EOL;
  3207. }
  3208. #endif
  3209. // Apply the correction sending the Z probe offset
  3210. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3211. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3212. if (DEBUGGING(LEVELING)) {
  3213. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3214. SERIAL_EOL;
  3215. }
  3216. #endif
  3217. // Adjust the current Z and send it to the planner.
  3218. current_position[Z_AXIS] += z_tmp - stepper_z;
  3219. SYNC_PLAN_POSITION_KINEMATIC();
  3220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3221. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3222. #endif
  3223. }
  3224. #endif // !DELTA
  3225. #ifdef Z_PROBE_END_SCRIPT
  3226. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3227. if (DEBUGGING(LEVELING)) {
  3228. SERIAL_ECHOPGM("Z Probe End Script: ");
  3229. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3230. }
  3231. #endif
  3232. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3233. stepper.synchronize();
  3234. #endif
  3235. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3236. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3237. #endif
  3238. bed_leveling_in_progress = false;
  3239. report_current_position();
  3240. KEEPALIVE_STATE(IN_HANDLER);
  3241. }
  3242. #endif //AUTO_BED_LEVELING_FEATURE
  3243. #if HAS_BED_PROBE
  3244. /**
  3245. * G30: Do a single Z probe at the current XY
  3246. */
  3247. inline void gcode_G30() {
  3248. setup_for_endstop_or_probe_move();
  3249. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3250. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3251. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3252. true, 1);
  3253. SERIAL_PROTOCOLPGM("Bed X: ");
  3254. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3255. SERIAL_PROTOCOLPGM(" Y: ");
  3256. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3257. SERIAL_PROTOCOLPGM(" Z: ");
  3258. SERIAL_PROTOCOL(measured_z + 0.0001);
  3259. SERIAL_EOL;
  3260. clean_up_after_endstop_or_probe_move();
  3261. report_current_position();
  3262. }
  3263. #if ENABLED(Z_PROBE_SLED)
  3264. /**
  3265. * G31: Deploy the Z probe
  3266. */
  3267. inline void gcode_G31() { DEPLOY_PROBE(); }
  3268. /**
  3269. * G32: Stow the Z probe
  3270. */
  3271. inline void gcode_G32() { STOW_PROBE(); }
  3272. #endif // Z_PROBE_SLED
  3273. #endif // HAS_BED_PROBE
  3274. /**
  3275. * G92: Set current position to given X Y Z E
  3276. */
  3277. inline void gcode_G92() {
  3278. bool didE = code_seen('E');
  3279. if (!didE) stepper.synchronize();
  3280. bool didXYZ = false;
  3281. LOOP_XYZE(i) {
  3282. if (code_seen(axis_codes[i])) {
  3283. float p = current_position[i],
  3284. v = code_value_axis_units(i);
  3285. current_position[i] = v;
  3286. if (i != E_AXIS) {
  3287. position_shift[i] += v - p; // Offset the coordinate space
  3288. update_software_endstops((AxisEnum)i);
  3289. didXYZ = true;
  3290. }
  3291. }
  3292. }
  3293. if (didXYZ)
  3294. SYNC_PLAN_POSITION_KINEMATIC();
  3295. else if (didE)
  3296. sync_plan_position_e();
  3297. }
  3298. #if ENABLED(ULTIPANEL)
  3299. /**
  3300. * M0: Unconditional stop - Wait for user button press on LCD
  3301. * M1: Conditional stop - Wait for user button press on LCD
  3302. */
  3303. inline void gcode_M0_M1() {
  3304. char* args = current_command_args;
  3305. millis_t codenum = 0;
  3306. bool hasP = false, hasS = false;
  3307. if (code_seen('P')) {
  3308. codenum = code_value_millis(); // milliseconds to wait
  3309. hasP = codenum > 0;
  3310. }
  3311. if (code_seen('S')) {
  3312. codenum = code_value_millis_from_seconds(); // seconds to wait
  3313. hasS = codenum > 0;
  3314. }
  3315. if (!hasP && !hasS && *args != '\0')
  3316. lcd_setstatus(args, true);
  3317. else {
  3318. LCD_MESSAGEPGM(MSG_USERWAIT);
  3319. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3320. dontExpireStatus();
  3321. #endif
  3322. }
  3323. lcd_ignore_click();
  3324. stepper.synchronize();
  3325. refresh_cmd_timeout();
  3326. if (codenum > 0) {
  3327. codenum += previous_cmd_ms; // wait until this time for a click
  3328. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3329. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3330. KEEPALIVE_STATE(IN_HANDLER);
  3331. lcd_ignore_click(false);
  3332. }
  3333. else {
  3334. if (!lcd_detected()) return;
  3335. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3336. while (!lcd_clicked()) idle();
  3337. KEEPALIVE_STATE(IN_HANDLER);
  3338. }
  3339. if (IS_SD_PRINTING)
  3340. LCD_MESSAGEPGM(MSG_RESUMING);
  3341. else
  3342. LCD_MESSAGEPGM(WELCOME_MSG);
  3343. }
  3344. #endif // ULTIPANEL
  3345. /**
  3346. * M17: Enable power on all stepper motors
  3347. */
  3348. inline void gcode_M17() {
  3349. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3350. enable_all_steppers();
  3351. }
  3352. #if ENABLED(SDSUPPORT)
  3353. /**
  3354. * M20: List SD card to serial output
  3355. */
  3356. inline void gcode_M20() {
  3357. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3358. card.ls();
  3359. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3360. }
  3361. /**
  3362. * M21: Init SD Card
  3363. */
  3364. inline void gcode_M21() {
  3365. card.initsd();
  3366. }
  3367. /**
  3368. * M22: Release SD Card
  3369. */
  3370. inline void gcode_M22() {
  3371. card.release();
  3372. }
  3373. /**
  3374. * M23: Open a file
  3375. */
  3376. inline void gcode_M23() {
  3377. card.openFile(current_command_args, true);
  3378. }
  3379. /**
  3380. * M24: Start SD Print
  3381. */
  3382. inline void gcode_M24() {
  3383. card.startFileprint();
  3384. print_job_timer.start();
  3385. }
  3386. /**
  3387. * M25: Pause SD Print
  3388. */
  3389. inline void gcode_M25() {
  3390. card.pauseSDPrint();
  3391. }
  3392. /**
  3393. * M26: Set SD Card file index
  3394. */
  3395. inline void gcode_M26() {
  3396. if (card.cardOK && code_seen('S'))
  3397. card.setIndex(code_value_long());
  3398. }
  3399. /**
  3400. * M27: Get SD Card status
  3401. */
  3402. inline void gcode_M27() {
  3403. card.getStatus();
  3404. }
  3405. /**
  3406. * M28: Start SD Write
  3407. */
  3408. inline void gcode_M28() {
  3409. card.openFile(current_command_args, false);
  3410. }
  3411. /**
  3412. * M29: Stop SD Write
  3413. * Processed in write to file routine above
  3414. */
  3415. inline void gcode_M29() {
  3416. // card.saving = false;
  3417. }
  3418. /**
  3419. * M30 <filename>: Delete SD Card file
  3420. */
  3421. inline void gcode_M30() {
  3422. if (card.cardOK) {
  3423. card.closefile();
  3424. card.removeFile(current_command_args);
  3425. }
  3426. }
  3427. #endif //SDSUPPORT
  3428. /**
  3429. * M31: Get the time since the start of SD Print (or last M109)
  3430. */
  3431. inline void gcode_M31() {
  3432. char buffer[21];
  3433. duration_t elapsed = print_job_timer.duration();
  3434. elapsed.toString(buffer);
  3435. lcd_setstatus(buffer);
  3436. SERIAL_ECHO_START;
  3437. SERIAL_ECHOPGM("Print time: ");
  3438. SERIAL_ECHOLN(buffer);
  3439. thermalManager.autotempShutdown();
  3440. }
  3441. #if ENABLED(SDSUPPORT)
  3442. /**
  3443. * M32: Select file and start SD Print
  3444. */
  3445. inline void gcode_M32() {
  3446. if (card.sdprinting)
  3447. stepper.synchronize();
  3448. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3449. if (!namestartpos)
  3450. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3451. else
  3452. namestartpos++; //to skip the '!'
  3453. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3454. if (card.cardOK) {
  3455. card.openFile(namestartpos, true, call_procedure);
  3456. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3457. card.setIndex(code_value_long());
  3458. card.startFileprint();
  3459. // Procedure calls count as normal print time.
  3460. if (!call_procedure) print_job_timer.start();
  3461. }
  3462. }
  3463. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3464. /**
  3465. * M33: Get the long full path of a file or folder
  3466. *
  3467. * Parameters:
  3468. * <dospath> Case-insensitive DOS-style path to a file or folder
  3469. *
  3470. * Example:
  3471. * M33 miscel~1/armchair/armcha~1.gco
  3472. *
  3473. * Output:
  3474. * /Miscellaneous/Armchair/Armchair.gcode
  3475. */
  3476. inline void gcode_M33() {
  3477. card.printLongPath(current_command_args);
  3478. }
  3479. #endif
  3480. /**
  3481. * M928: Start SD Write
  3482. */
  3483. inline void gcode_M928() {
  3484. card.openLogFile(current_command_args);
  3485. }
  3486. #endif // SDSUPPORT
  3487. /**
  3488. * M42: Change pin status via GCode
  3489. *
  3490. * P<pin> Pin number (LED if omitted)
  3491. * S<byte> Pin status from 0 - 255
  3492. */
  3493. inline void gcode_M42() {
  3494. if (!code_seen('S')) return;
  3495. int pin_status = code_value_int();
  3496. if (pin_status < 0 || pin_status > 255) return;
  3497. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3498. if (pin_number < 0) return;
  3499. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3500. if (pin_number == sensitive_pins[i]) return;
  3501. pinMode(pin_number, OUTPUT);
  3502. digitalWrite(pin_number, pin_status);
  3503. analogWrite(pin_number, pin_status);
  3504. #if FAN_COUNT > 0
  3505. switch (pin_number) {
  3506. #if HAS_FAN0
  3507. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3508. #endif
  3509. #if HAS_FAN1
  3510. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3511. #endif
  3512. #if HAS_FAN2
  3513. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3514. #endif
  3515. }
  3516. #endif
  3517. }
  3518. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3519. /**
  3520. * M48: Z probe repeatability measurement function.
  3521. *
  3522. * Usage:
  3523. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3524. * P = Number of sampled points (4-50, default 10)
  3525. * X = Sample X position
  3526. * Y = Sample Y position
  3527. * V = Verbose level (0-4, default=1)
  3528. * E = Engage Z probe for each reading
  3529. * L = Number of legs of movement before probe
  3530. * S = Schizoid (Or Star if you prefer)
  3531. *
  3532. * This function assumes the bed has been homed. Specifically, that a G28 command
  3533. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3534. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3535. * regenerated.
  3536. */
  3537. inline void gcode_M48() {
  3538. if (axis_unhomed_error(true, true, true)) return;
  3539. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3540. if (verbose_level < 0 || verbose_level > 4) {
  3541. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3542. return;
  3543. }
  3544. if (verbose_level > 0)
  3545. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3546. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3547. if (n_samples < 4 || n_samples > 50) {
  3548. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3549. return;
  3550. }
  3551. float X_current = current_position[X_AXIS],
  3552. Y_current = current_position[Y_AXIS];
  3553. bool stow_probe_after_each = code_seen('E');
  3554. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3555. #if DISABLED(DELTA)
  3556. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3557. out_of_range_error(PSTR("X"));
  3558. return;
  3559. }
  3560. #endif
  3561. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3562. #if DISABLED(DELTA)
  3563. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3564. out_of_range_error(PSTR("Y"));
  3565. return;
  3566. }
  3567. #else
  3568. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3569. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3570. return;
  3571. }
  3572. #endif
  3573. bool seen_L = code_seen('L');
  3574. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3575. if (n_legs > 15) {
  3576. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3577. return;
  3578. }
  3579. if (n_legs == 1) n_legs = 2;
  3580. bool schizoid_flag = code_seen('S');
  3581. if (schizoid_flag && !seen_L) n_legs = 7;
  3582. /**
  3583. * Now get everything to the specified probe point So we can safely do a
  3584. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3585. * we don't want to use that as a starting point for each probe.
  3586. */
  3587. if (verbose_level > 2)
  3588. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3589. #if ENABLED(DELTA)
  3590. // we don't do bed level correction in M48 because we want the raw data when we probe
  3591. reset_bed_level();
  3592. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3593. // we don't do bed level correction in M48 because we want the raw data when we probe
  3594. planner.bed_level_matrix.set_to_identity();
  3595. #endif
  3596. setup_for_endstop_or_probe_move();
  3597. // Move to the first point, deploy, and probe
  3598. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3599. randomSeed(millis());
  3600. double mean = 0, sigma = 0, sample_set[n_samples];
  3601. for (uint8_t n = 0; n < n_samples; n++) {
  3602. if (n_legs) {
  3603. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3604. float angle = random(0.0, 360.0),
  3605. radius = random(
  3606. #if ENABLED(DELTA)
  3607. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3608. #else
  3609. 5, X_MAX_LENGTH / 8
  3610. #endif
  3611. );
  3612. if (verbose_level > 3) {
  3613. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3614. SERIAL_ECHOPAIR(" angle: ", angle);
  3615. SERIAL_ECHOPGM(" Direction: ");
  3616. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3617. SERIAL_ECHOLNPGM("Clockwise");
  3618. }
  3619. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3620. double delta_angle;
  3621. if (schizoid_flag)
  3622. // The points of a 5 point star are 72 degrees apart. We need to
  3623. // skip a point and go to the next one on the star.
  3624. delta_angle = dir * 2.0 * 72.0;
  3625. else
  3626. // If we do this line, we are just trying to move further
  3627. // around the circle.
  3628. delta_angle = dir * (float) random(25, 45);
  3629. angle += delta_angle;
  3630. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3631. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3632. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3633. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3634. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3635. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3636. #if DISABLED(DELTA)
  3637. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3638. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3639. #else
  3640. // If we have gone out too far, we can do a simple fix and scale the numbers
  3641. // back in closer to the origin.
  3642. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3643. X_current /= 1.25;
  3644. Y_current /= 1.25;
  3645. if (verbose_level > 3) {
  3646. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3647. SERIAL_ECHOPAIR(", ", Y_current);
  3648. SERIAL_EOL;
  3649. }
  3650. }
  3651. #endif
  3652. if (verbose_level > 3) {
  3653. SERIAL_PROTOCOLPGM("Going to:");
  3654. SERIAL_ECHOPAIR(" X", X_current);
  3655. SERIAL_ECHOPAIR(" Y", Y_current);
  3656. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3657. SERIAL_EOL;
  3658. }
  3659. do_blocking_move_to_xy(X_current, Y_current);
  3660. } // n_legs loop
  3661. } // n_legs
  3662. // Probe a single point
  3663. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3664. /**
  3665. * Get the current mean for the data points we have so far
  3666. */
  3667. double sum = 0.0;
  3668. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3669. mean = sum / (n + 1);
  3670. /**
  3671. * Now, use that mean to calculate the standard deviation for the
  3672. * data points we have so far
  3673. */
  3674. sum = 0.0;
  3675. for (uint8_t j = 0; j <= n; j++)
  3676. sum += sq(sample_set[j] - mean);
  3677. sigma = sqrt(sum / (n + 1));
  3678. if (verbose_level > 0) {
  3679. if (verbose_level > 1) {
  3680. SERIAL_PROTOCOL(n + 1);
  3681. SERIAL_PROTOCOLPGM(" of ");
  3682. SERIAL_PROTOCOL((int)n_samples);
  3683. SERIAL_PROTOCOLPGM(" z: ");
  3684. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3685. if (verbose_level > 2) {
  3686. SERIAL_PROTOCOLPGM(" mean: ");
  3687. SERIAL_PROTOCOL_F(mean, 6);
  3688. SERIAL_PROTOCOLPGM(" sigma: ");
  3689. SERIAL_PROTOCOL_F(sigma, 6);
  3690. }
  3691. }
  3692. SERIAL_EOL;
  3693. }
  3694. } // End of probe loop
  3695. if (STOW_PROBE()) return;
  3696. if (verbose_level > 0) {
  3697. SERIAL_PROTOCOLPGM("Mean: ");
  3698. SERIAL_PROTOCOL_F(mean, 6);
  3699. SERIAL_EOL;
  3700. }
  3701. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3702. SERIAL_PROTOCOL_F(sigma, 6);
  3703. SERIAL_EOL; SERIAL_EOL;
  3704. clean_up_after_endstop_or_probe_move();
  3705. report_current_position();
  3706. }
  3707. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3708. /**
  3709. * M75: Start print timer
  3710. */
  3711. inline void gcode_M75() { print_job_timer.start(); }
  3712. /**
  3713. * M76: Pause print timer
  3714. */
  3715. inline void gcode_M76() { print_job_timer.pause(); }
  3716. /**
  3717. * M77: Stop print timer
  3718. */
  3719. inline void gcode_M77() { print_job_timer.stop(); }
  3720. #if ENABLED(PRINTCOUNTER)
  3721. /**
  3722. * M78: Show print statistics
  3723. */
  3724. inline void gcode_M78() {
  3725. // "M78 S78" will reset the statistics
  3726. if (code_seen('S') && code_value_int() == 78)
  3727. print_job_timer.initStats();
  3728. else print_job_timer.showStats();
  3729. }
  3730. #endif
  3731. /**
  3732. * M104: Set hot end temperature
  3733. */
  3734. inline void gcode_M104() {
  3735. if (get_target_extruder_from_command(104)) return;
  3736. if (DEBUGGING(DRYRUN)) return;
  3737. #if ENABLED(SINGLENOZZLE)
  3738. if (target_extruder != active_extruder) return;
  3739. #endif
  3740. if (code_seen('S')) {
  3741. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3742. #if ENABLED(DUAL_X_CARRIAGE)
  3743. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3744. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3745. #endif
  3746. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3747. /**
  3748. * Stop the timer at the end of print, starting is managed by
  3749. * 'heat and wait' M109.
  3750. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3751. * stand by mode, for instance in a dual extruder setup, without affecting
  3752. * the running print timer.
  3753. */
  3754. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3755. print_job_timer.stop();
  3756. LCD_MESSAGEPGM(WELCOME_MSG);
  3757. }
  3758. #endif
  3759. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3760. }
  3761. }
  3762. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3763. void print_heaterstates() {
  3764. #if HAS_TEMP_HOTEND
  3765. SERIAL_PROTOCOLPGM(" T:");
  3766. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3767. SERIAL_PROTOCOLPGM(" /");
  3768. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3769. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3770. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3771. SERIAL_CHAR(')')
  3772. #endif
  3773. #endif
  3774. #if HAS_TEMP_BED
  3775. SERIAL_PROTOCOLPGM(" B:");
  3776. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3777. SERIAL_PROTOCOLPGM(" /");
  3778. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3779. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3780. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3781. SERIAL_CHAR(')')
  3782. #endif
  3783. #endif
  3784. #if HOTENDS > 1
  3785. HOTEND_LOOP() {
  3786. SERIAL_PROTOCOLPAIR(" T", e);
  3787. SERIAL_PROTOCOLCHAR(':');
  3788. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3789. SERIAL_PROTOCOLPGM(" /");
  3790. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3791. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3792. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3793. SERIAL_CHAR(')')
  3794. #endif
  3795. }
  3796. #endif
  3797. SERIAL_PROTOCOLPGM(" @:");
  3798. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3799. #if HAS_TEMP_BED
  3800. SERIAL_PROTOCOLPGM(" B@:");
  3801. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3802. #endif
  3803. #if HOTENDS > 1
  3804. HOTEND_LOOP() {
  3805. SERIAL_PROTOCOLPAIR(" @", e);
  3806. SERIAL_PROTOCOLCHAR(':');
  3807. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3808. }
  3809. #endif
  3810. }
  3811. #endif
  3812. /**
  3813. * M105: Read hot end and bed temperature
  3814. */
  3815. inline void gcode_M105() {
  3816. if (get_target_extruder_from_command(105)) return;
  3817. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3818. SERIAL_PROTOCOLPGM(MSG_OK);
  3819. print_heaterstates();
  3820. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3821. SERIAL_ERROR_START;
  3822. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3823. #endif
  3824. SERIAL_EOL;
  3825. }
  3826. #if FAN_COUNT > 0
  3827. /**
  3828. * M106: Set Fan Speed
  3829. *
  3830. * S<int> Speed between 0-255
  3831. * P<index> Fan index, if more than one fan
  3832. */
  3833. inline void gcode_M106() {
  3834. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3835. p = code_seen('P') ? code_value_ushort() : 0;
  3836. NOMORE(s, 255);
  3837. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3838. }
  3839. /**
  3840. * M107: Fan Off
  3841. */
  3842. inline void gcode_M107() {
  3843. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3844. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3845. }
  3846. #endif // FAN_COUNT > 0
  3847. #if DISABLED(EMERGENCY_PARSER)
  3848. /**
  3849. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3850. */
  3851. inline void gcode_M108() { wait_for_heatup = false; }
  3852. /**
  3853. * M112: Emergency Stop
  3854. */
  3855. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3856. /**
  3857. * M410: Quickstop - Abort all planned moves
  3858. *
  3859. * This will stop the carriages mid-move, so most likely they
  3860. * will be out of sync with the stepper position after this.
  3861. */
  3862. inline void gcode_M410() { quickstop_stepper(); }
  3863. #endif
  3864. #ifndef MIN_COOLING_SLOPE_DEG
  3865. #define MIN_COOLING_SLOPE_DEG 1.50
  3866. #endif
  3867. #ifndef MIN_COOLING_SLOPE_TIME
  3868. #define MIN_COOLING_SLOPE_TIME 60
  3869. #endif
  3870. /**
  3871. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3872. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3873. */
  3874. inline void gcode_M109() {
  3875. if (get_target_extruder_from_command(109)) return;
  3876. if (DEBUGGING(DRYRUN)) return;
  3877. #if ENABLED(SINGLENOZZLE)
  3878. if (target_extruder != active_extruder) return;
  3879. #endif
  3880. bool no_wait_for_cooling = code_seen('S');
  3881. if (no_wait_for_cooling || code_seen('R')) {
  3882. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3883. #if ENABLED(DUAL_X_CARRIAGE)
  3884. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3885. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3886. #endif
  3887. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3888. /**
  3889. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3890. * stand by mode, for instance in a dual extruder setup, without affecting
  3891. * the running print timer.
  3892. */
  3893. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3894. print_job_timer.stop();
  3895. LCD_MESSAGEPGM(WELCOME_MSG);
  3896. }
  3897. /**
  3898. * We do not check if the timer is already running because this check will
  3899. * be done for us inside the Stopwatch::start() method thus a running timer
  3900. * will not restart.
  3901. */
  3902. else print_job_timer.start();
  3903. #endif
  3904. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3905. }
  3906. #if ENABLED(AUTOTEMP)
  3907. planner.autotemp_M109();
  3908. #endif
  3909. #if TEMP_RESIDENCY_TIME > 0
  3910. millis_t residency_start_ms = 0;
  3911. // Loop until the temperature has stabilized
  3912. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3913. #else
  3914. // Loop until the temperature is very close target
  3915. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3916. #endif //TEMP_RESIDENCY_TIME > 0
  3917. float theTarget = -1.0, old_temp = 9999.0;
  3918. bool wants_to_cool = false;
  3919. wait_for_heatup = true;
  3920. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3921. KEEPALIVE_STATE(NOT_BUSY);
  3922. do {
  3923. // Target temperature might be changed during the loop
  3924. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3925. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3926. theTarget = thermalManager.degTargetHotend(target_extruder);
  3927. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3928. if (no_wait_for_cooling && wants_to_cool) break;
  3929. }
  3930. now = millis();
  3931. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3932. next_temp_ms = now + 1000UL;
  3933. print_heaterstates();
  3934. #if TEMP_RESIDENCY_TIME > 0
  3935. SERIAL_PROTOCOLPGM(" W:");
  3936. if (residency_start_ms) {
  3937. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3938. SERIAL_PROTOCOLLN(rem);
  3939. }
  3940. else {
  3941. SERIAL_PROTOCOLLNPGM("?");
  3942. }
  3943. #else
  3944. SERIAL_EOL;
  3945. #endif
  3946. }
  3947. idle();
  3948. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3949. float temp = thermalManager.degHotend(target_extruder);
  3950. #if TEMP_RESIDENCY_TIME > 0
  3951. float temp_diff = fabs(theTarget - temp);
  3952. if (!residency_start_ms) {
  3953. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3954. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3955. }
  3956. else if (temp_diff > TEMP_HYSTERESIS) {
  3957. // Restart the timer whenever the temperature falls outside the hysteresis.
  3958. residency_start_ms = now;
  3959. }
  3960. #endif //TEMP_RESIDENCY_TIME > 0
  3961. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3962. if (wants_to_cool) {
  3963. // break after MIN_COOLING_SLOPE_TIME seconds
  3964. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3965. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3966. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3967. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3968. old_temp = temp;
  3969. }
  3970. }
  3971. } while (wait_for_heatup && TEMP_CONDITIONS);
  3972. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3973. KEEPALIVE_STATE(IN_HANDLER);
  3974. }
  3975. #if HAS_TEMP_BED
  3976. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3977. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3978. #endif
  3979. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3980. #define MIN_COOLING_SLOPE_TIME_BED 60
  3981. #endif
  3982. /**
  3983. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3984. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3985. */
  3986. inline void gcode_M190() {
  3987. if (DEBUGGING(DRYRUN)) return;
  3988. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3989. bool no_wait_for_cooling = code_seen('S');
  3990. if (no_wait_for_cooling || code_seen('R')) {
  3991. thermalManager.setTargetBed(code_value_temp_abs());
  3992. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3993. if (code_value_temp_abs() > BED_MINTEMP) {
  3994. /**
  3995. * We start the timer when 'heating and waiting' command arrives, LCD
  3996. * functions never wait. Cooling down managed by extruders.
  3997. *
  3998. * We do not check if the timer is already running because this check will
  3999. * be done for us inside the Stopwatch::start() method thus a running timer
  4000. * will not restart.
  4001. */
  4002. print_job_timer.start();
  4003. }
  4004. #endif
  4005. }
  4006. #if TEMP_BED_RESIDENCY_TIME > 0
  4007. millis_t residency_start_ms = 0;
  4008. // Loop until the temperature has stabilized
  4009. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4010. #else
  4011. // Loop until the temperature is very close target
  4012. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4013. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4014. float theTarget = -1.0, old_temp = 9999.0;
  4015. bool wants_to_cool = false;
  4016. wait_for_heatup = true;
  4017. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4018. KEEPALIVE_STATE(NOT_BUSY);
  4019. target_extruder = active_extruder; // for print_heaterstates
  4020. do {
  4021. // Target temperature might be changed during the loop
  4022. if (theTarget != thermalManager.degTargetBed()) {
  4023. wants_to_cool = thermalManager.isCoolingBed();
  4024. theTarget = thermalManager.degTargetBed();
  4025. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4026. if (no_wait_for_cooling && wants_to_cool) break;
  4027. }
  4028. now = millis();
  4029. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4030. next_temp_ms = now + 1000UL;
  4031. print_heaterstates();
  4032. #if TEMP_BED_RESIDENCY_TIME > 0
  4033. SERIAL_PROTOCOLPGM(" W:");
  4034. if (residency_start_ms) {
  4035. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4036. SERIAL_PROTOCOLLN(rem);
  4037. }
  4038. else {
  4039. SERIAL_PROTOCOLLNPGM("?");
  4040. }
  4041. #else
  4042. SERIAL_EOL;
  4043. #endif
  4044. }
  4045. idle();
  4046. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4047. float temp = thermalManager.degBed();
  4048. #if TEMP_BED_RESIDENCY_TIME > 0
  4049. float temp_diff = fabs(theTarget - temp);
  4050. if (!residency_start_ms) {
  4051. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4052. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4053. }
  4054. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4055. // Restart the timer whenever the temperature falls outside the hysteresis.
  4056. residency_start_ms = now;
  4057. }
  4058. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4059. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4060. if (wants_to_cool) {
  4061. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4062. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4063. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4064. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4065. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4066. old_temp = temp;
  4067. }
  4068. }
  4069. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4070. LCD_MESSAGEPGM(MSG_BED_DONE);
  4071. KEEPALIVE_STATE(IN_HANDLER);
  4072. }
  4073. #endif // HAS_TEMP_BED
  4074. /**
  4075. * M110: Set Current Line Number
  4076. */
  4077. inline void gcode_M110() {
  4078. if (code_seen('N')) gcode_N = code_value_long();
  4079. }
  4080. /**
  4081. * M111: Set the debug level
  4082. */
  4083. inline void gcode_M111() {
  4084. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4085. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4086. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4087. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4088. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4089. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4091. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4092. #endif
  4093. const static char* const debug_strings[] PROGMEM = {
  4094. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4096. str_debug_32
  4097. #endif
  4098. };
  4099. SERIAL_ECHO_START;
  4100. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4101. if (marlin_debug_flags) {
  4102. uint8_t comma = 0;
  4103. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4104. if (TEST(marlin_debug_flags, i)) {
  4105. if (comma++) SERIAL_CHAR(',');
  4106. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4107. }
  4108. }
  4109. }
  4110. else {
  4111. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4112. }
  4113. SERIAL_EOL;
  4114. }
  4115. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4116. /**
  4117. * M113: Get or set Host Keepalive interval (0 to disable)
  4118. *
  4119. * S<seconds> Optional. Set the keepalive interval.
  4120. */
  4121. inline void gcode_M113() {
  4122. if (code_seen('S')) {
  4123. host_keepalive_interval = code_value_byte();
  4124. NOMORE(host_keepalive_interval, 60);
  4125. }
  4126. else {
  4127. SERIAL_ECHO_START;
  4128. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4129. SERIAL_EOL;
  4130. }
  4131. }
  4132. #endif
  4133. #if ENABLED(BARICUDA)
  4134. #if HAS_HEATER_1
  4135. /**
  4136. * M126: Heater 1 valve open
  4137. */
  4138. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4139. /**
  4140. * M127: Heater 1 valve close
  4141. */
  4142. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4143. #endif
  4144. #if HAS_HEATER_2
  4145. /**
  4146. * M128: Heater 2 valve open
  4147. */
  4148. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4149. /**
  4150. * M129: Heater 2 valve close
  4151. */
  4152. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4153. #endif
  4154. #endif //BARICUDA
  4155. /**
  4156. * M140: Set bed temperature
  4157. */
  4158. inline void gcode_M140() {
  4159. if (DEBUGGING(DRYRUN)) return;
  4160. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4161. }
  4162. #if ENABLED(ULTIPANEL)
  4163. /**
  4164. * M145: Set the heatup state for a material in the LCD menu
  4165. * S<material> (0=PLA, 1=ABS)
  4166. * H<hotend temp>
  4167. * B<bed temp>
  4168. * F<fan speed>
  4169. */
  4170. inline void gcode_M145() {
  4171. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4172. if (material < 0 || material > 1) {
  4173. SERIAL_ERROR_START;
  4174. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4175. }
  4176. else {
  4177. int v;
  4178. switch (material) {
  4179. case 0:
  4180. if (code_seen('H')) {
  4181. v = code_value_int();
  4182. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4183. }
  4184. if (code_seen('F')) {
  4185. v = code_value_int();
  4186. preheatFanSpeed1 = constrain(v, 0, 255);
  4187. }
  4188. #if TEMP_SENSOR_BED != 0
  4189. if (code_seen('B')) {
  4190. v = code_value_int();
  4191. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4192. }
  4193. #endif
  4194. break;
  4195. case 1:
  4196. if (code_seen('H')) {
  4197. v = code_value_int();
  4198. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4199. }
  4200. if (code_seen('F')) {
  4201. v = code_value_int();
  4202. preheatFanSpeed2 = constrain(v, 0, 255);
  4203. }
  4204. #if TEMP_SENSOR_BED != 0
  4205. if (code_seen('B')) {
  4206. v = code_value_int();
  4207. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4208. }
  4209. #endif
  4210. break;
  4211. }
  4212. }
  4213. }
  4214. #endif
  4215. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4216. /**
  4217. * M149: Set temperature units
  4218. */
  4219. inline void gcode_M149() {
  4220. if (code_seen('C')) {
  4221. set_input_temp_units(TEMPUNIT_C);
  4222. } else if (code_seen('K')) {
  4223. set_input_temp_units(TEMPUNIT_K);
  4224. } else if (code_seen('F')) {
  4225. set_input_temp_units(TEMPUNIT_F);
  4226. }
  4227. }
  4228. #endif
  4229. #if HAS_POWER_SWITCH
  4230. /**
  4231. * M80: Turn on Power Supply
  4232. */
  4233. inline void gcode_M80() {
  4234. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4235. /**
  4236. * If you have a switch on suicide pin, this is useful
  4237. * if you want to start another print with suicide feature after
  4238. * a print without suicide...
  4239. */
  4240. #if HAS_SUICIDE
  4241. OUT_WRITE(SUICIDE_PIN, HIGH);
  4242. #endif
  4243. #if ENABLED(ULTIPANEL)
  4244. powersupply = true;
  4245. LCD_MESSAGEPGM(WELCOME_MSG);
  4246. lcd_update();
  4247. #endif
  4248. }
  4249. #endif // HAS_POWER_SWITCH
  4250. /**
  4251. * M81: Turn off Power, including Power Supply, if there is one.
  4252. *
  4253. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4254. */
  4255. inline void gcode_M81() {
  4256. thermalManager.disable_all_heaters();
  4257. stepper.finish_and_disable();
  4258. #if FAN_COUNT > 0
  4259. #if FAN_COUNT > 1
  4260. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4261. #else
  4262. fanSpeeds[0] = 0;
  4263. #endif
  4264. #endif
  4265. delay(1000); // Wait 1 second before switching off
  4266. #if HAS_SUICIDE
  4267. stepper.synchronize();
  4268. suicide();
  4269. #elif HAS_POWER_SWITCH
  4270. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4271. #endif
  4272. #if ENABLED(ULTIPANEL)
  4273. #if HAS_POWER_SWITCH
  4274. powersupply = false;
  4275. #endif
  4276. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4277. lcd_update();
  4278. #endif
  4279. }
  4280. /**
  4281. * M82: Set E codes absolute (default)
  4282. */
  4283. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4284. /**
  4285. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4286. */
  4287. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4288. /**
  4289. * M18, M84: Disable all stepper motors
  4290. */
  4291. inline void gcode_M18_M84() {
  4292. if (code_seen('S')) {
  4293. stepper_inactive_time = code_value_millis_from_seconds();
  4294. }
  4295. else {
  4296. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4297. if (all_axis) {
  4298. stepper.finish_and_disable();
  4299. }
  4300. else {
  4301. stepper.synchronize();
  4302. if (code_seen('X')) disable_x();
  4303. if (code_seen('Y')) disable_y();
  4304. if (code_seen('Z')) disable_z();
  4305. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4306. if (code_seen('E')) {
  4307. disable_e0();
  4308. disable_e1();
  4309. disable_e2();
  4310. disable_e3();
  4311. }
  4312. #endif
  4313. }
  4314. }
  4315. }
  4316. /**
  4317. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4318. */
  4319. inline void gcode_M85() {
  4320. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4321. }
  4322. /**
  4323. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4324. * (Follows the same syntax as G92)
  4325. */
  4326. inline void gcode_M92() {
  4327. LOOP_XYZE(i) {
  4328. if (code_seen(axis_codes[i])) {
  4329. if (i == E_AXIS) {
  4330. float value = code_value_per_axis_unit(i);
  4331. if (value < 20.0) {
  4332. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4333. planner.max_e_jerk *= factor;
  4334. planner.max_feedrate_mm_s[i] *= factor;
  4335. planner.max_acceleration_steps_per_s2[i] *= factor;
  4336. }
  4337. planner.axis_steps_per_mm[i] = value;
  4338. }
  4339. else {
  4340. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4341. }
  4342. }
  4343. }
  4344. planner.refresh_positioning();
  4345. }
  4346. /**
  4347. * Output the current position to serial
  4348. */
  4349. static void report_current_position() {
  4350. SERIAL_PROTOCOLPGM("X:");
  4351. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4352. SERIAL_PROTOCOLPGM(" Y:");
  4353. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4354. SERIAL_PROTOCOLPGM(" Z:");
  4355. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4356. SERIAL_PROTOCOLPGM(" E:");
  4357. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4358. stepper.report_positions();
  4359. #if ENABLED(SCARA)
  4360. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4361. SERIAL_PROTOCOL(delta[X_AXIS]);
  4362. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4363. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4364. SERIAL_EOL;
  4365. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4366. SERIAL_PROTOCOL(delta[X_AXIS]);
  4367. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4368. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4369. SERIAL_EOL;
  4370. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4371. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4372. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4373. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4374. SERIAL_EOL; SERIAL_EOL;
  4375. #endif
  4376. }
  4377. /**
  4378. * M114: Output current position to serial port
  4379. */
  4380. inline void gcode_M114() { report_current_position(); }
  4381. /**
  4382. * M115: Capabilities string
  4383. */
  4384. inline void gcode_M115() {
  4385. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4386. }
  4387. /**
  4388. * M117: Set LCD Status Message
  4389. */
  4390. inline void gcode_M117() {
  4391. lcd_setstatus(current_command_args);
  4392. }
  4393. /**
  4394. * M119: Output endstop states to serial output
  4395. */
  4396. inline void gcode_M119() { endstops.M119(); }
  4397. /**
  4398. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4399. */
  4400. inline void gcode_M120() { endstops.enable_globally(true); }
  4401. /**
  4402. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4403. */
  4404. inline void gcode_M121() { endstops.enable_globally(false); }
  4405. #if ENABLED(BLINKM)
  4406. /**
  4407. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4408. */
  4409. inline void gcode_M150() {
  4410. SendColors(
  4411. code_seen('R') ? code_value_byte() : 0,
  4412. code_seen('U') ? code_value_byte() : 0,
  4413. code_seen('B') ? code_value_byte() : 0
  4414. );
  4415. }
  4416. #endif // BLINKM
  4417. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4418. /**
  4419. * M155: Send data to a I2C slave device
  4420. *
  4421. * This is a PoC, the formating and arguments for the GCODE will
  4422. * change to be more compatible, the current proposal is:
  4423. *
  4424. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4425. *
  4426. * M155 B<byte-1 value in base 10>
  4427. * M155 B<byte-2 value in base 10>
  4428. * M155 B<byte-3 value in base 10>
  4429. *
  4430. * M155 S1 ; Send the buffered data and reset the buffer
  4431. * M155 R1 ; Reset the buffer without sending data
  4432. *
  4433. */
  4434. inline void gcode_M155() {
  4435. // Set the target address
  4436. if (code_seen('A'))
  4437. i2c.address(code_value_byte());
  4438. // Add a new byte to the buffer
  4439. else if (code_seen('B'))
  4440. i2c.addbyte(code_value_int());
  4441. // Flush the buffer to the bus
  4442. else if (code_seen('S')) i2c.send();
  4443. // Reset and rewind the buffer
  4444. else if (code_seen('R')) i2c.reset();
  4445. }
  4446. /**
  4447. * M156: Request X bytes from I2C slave device
  4448. *
  4449. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4450. */
  4451. inline void gcode_M156() {
  4452. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4453. int bytes = code_seen('B') ? code_value_int() : 1;
  4454. if (addr && bytes > 0 && bytes <= 32) {
  4455. i2c.address(addr);
  4456. i2c.reqbytes(bytes);
  4457. }
  4458. else {
  4459. SERIAL_ERROR_START;
  4460. SERIAL_ERRORLN("Bad i2c request");
  4461. }
  4462. }
  4463. #endif //EXPERIMENTAL_I2CBUS
  4464. /**
  4465. * M200: Set filament diameter and set E axis units to cubic units
  4466. *
  4467. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4468. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4469. */
  4470. inline void gcode_M200() {
  4471. if (get_target_extruder_from_command(200)) return;
  4472. if (code_seen('D')) {
  4473. // setting any extruder filament size disables volumetric on the assumption that
  4474. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4475. // for all extruders
  4476. volumetric_enabled = (code_value_linear_units() != 0.0);
  4477. if (volumetric_enabled) {
  4478. filament_size[target_extruder] = code_value_linear_units();
  4479. // make sure all extruders have some sane value for the filament size
  4480. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4481. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4482. }
  4483. }
  4484. else {
  4485. //reserved for setting filament diameter via UFID or filament measuring device
  4486. return;
  4487. }
  4488. calculate_volumetric_multipliers();
  4489. }
  4490. /**
  4491. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4492. */
  4493. inline void gcode_M201() {
  4494. LOOP_XYZE(i) {
  4495. if (code_seen(axis_codes[i])) {
  4496. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4497. }
  4498. }
  4499. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4500. planner.reset_acceleration_rates();
  4501. }
  4502. #if 0 // Not used for Sprinter/grbl gen6
  4503. inline void gcode_M202() {
  4504. LOOP_XYZE(i) {
  4505. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4506. }
  4507. }
  4508. #endif
  4509. /**
  4510. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4511. */
  4512. inline void gcode_M203() {
  4513. LOOP_XYZE(i)
  4514. if (code_seen(axis_codes[i]))
  4515. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4516. }
  4517. /**
  4518. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4519. *
  4520. * P = Printing moves
  4521. * R = Retract only (no X, Y, Z) moves
  4522. * T = Travel (non printing) moves
  4523. *
  4524. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4525. */
  4526. inline void gcode_M204() {
  4527. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4528. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4529. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4530. SERIAL_EOL;
  4531. }
  4532. if (code_seen('P')) {
  4533. planner.acceleration = code_value_linear_units();
  4534. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4535. SERIAL_EOL;
  4536. }
  4537. if (code_seen('R')) {
  4538. planner.retract_acceleration = code_value_linear_units();
  4539. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4540. SERIAL_EOL;
  4541. }
  4542. if (code_seen('T')) {
  4543. planner.travel_acceleration = code_value_linear_units();
  4544. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4545. SERIAL_EOL;
  4546. }
  4547. }
  4548. /**
  4549. * M205: Set Advanced Settings
  4550. *
  4551. * S = Min Feed Rate (units/s)
  4552. * T = Min Travel Feed Rate (units/s)
  4553. * B = Min Segment Time (µs)
  4554. * X = Max XY Jerk (units/sec^2)
  4555. * Z = Max Z Jerk (units/sec^2)
  4556. * E = Max E Jerk (units/sec^2)
  4557. */
  4558. inline void gcode_M205() {
  4559. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4560. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4561. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4562. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4563. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4564. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4565. }
  4566. /**
  4567. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4568. */
  4569. inline void gcode_M206() {
  4570. LOOP_XYZ(i)
  4571. if (code_seen(axis_codes[i]))
  4572. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4573. #if ENABLED(SCARA)
  4574. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4575. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4576. #endif
  4577. SYNC_PLAN_POSITION_KINEMATIC();
  4578. report_current_position();
  4579. }
  4580. #if ENABLED(DELTA)
  4581. /**
  4582. * M665: Set delta configurations
  4583. *
  4584. * L = diagonal rod
  4585. * R = delta radius
  4586. * S = segments per second
  4587. * A = Alpha (Tower 1) diagonal rod trim
  4588. * B = Beta (Tower 2) diagonal rod trim
  4589. * C = Gamma (Tower 3) diagonal rod trim
  4590. */
  4591. inline void gcode_M665() {
  4592. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4593. if (code_seen('R')) delta_radius = code_value_linear_units();
  4594. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4595. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4596. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4597. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4598. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4599. }
  4600. /**
  4601. * M666: Set delta endstop adjustment
  4602. */
  4603. inline void gcode_M666() {
  4604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4605. if (DEBUGGING(LEVELING)) {
  4606. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4607. }
  4608. #endif
  4609. LOOP_XYZ(i) {
  4610. if (code_seen(axis_codes[i])) {
  4611. endstop_adj[i] = code_value_axis_units(i);
  4612. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4613. if (DEBUGGING(LEVELING)) {
  4614. SERIAL_ECHOPGM("endstop_adj[");
  4615. SERIAL_ECHO(axis_codes[i]);
  4616. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4617. SERIAL_EOL;
  4618. }
  4619. #endif
  4620. }
  4621. }
  4622. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4623. if (DEBUGGING(LEVELING)) {
  4624. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4625. }
  4626. #endif
  4627. }
  4628. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4629. /**
  4630. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4631. */
  4632. inline void gcode_M666() {
  4633. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4634. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4635. SERIAL_EOL;
  4636. }
  4637. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4638. #if ENABLED(FWRETRACT)
  4639. /**
  4640. * M207: Set firmware retraction values
  4641. *
  4642. * S[+units] retract_length
  4643. * W[+units] retract_length_swap (multi-extruder)
  4644. * F[units/min] retract_feedrate_mm_s
  4645. * Z[units] retract_zlift
  4646. */
  4647. inline void gcode_M207() {
  4648. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4649. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4650. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4651. #if EXTRUDERS > 1
  4652. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4653. #endif
  4654. }
  4655. /**
  4656. * M208: Set firmware un-retraction values
  4657. *
  4658. * S[+units] retract_recover_length (in addition to M207 S*)
  4659. * W[+units] retract_recover_length_swap (multi-extruder)
  4660. * F[units/min] retract_recover_feedrate_mm_s
  4661. */
  4662. inline void gcode_M208() {
  4663. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4664. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4665. #if EXTRUDERS > 1
  4666. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4667. #endif
  4668. }
  4669. /**
  4670. * M209: Enable automatic retract (M209 S1)
  4671. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4672. */
  4673. inline void gcode_M209() {
  4674. if (code_seen('S')) {
  4675. int t = code_value_int();
  4676. switch (t) {
  4677. case 0:
  4678. autoretract_enabled = false;
  4679. break;
  4680. case 1:
  4681. autoretract_enabled = true;
  4682. break;
  4683. default:
  4684. unknown_command_error();
  4685. return;
  4686. }
  4687. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4688. }
  4689. }
  4690. #endif // FWRETRACT
  4691. #if HOTENDS > 1
  4692. /**
  4693. * M218 - set hotend offset (in linear units)
  4694. *
  4695. * T<tool>
  4696. * X<xoffset>
  4697. * Y<yoffset>
  4698. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4699. */
  4700. inline void gcode_M218() {
  4701. if (get_target_extruder_from_command(218)) return;
  4702. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4703. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4704. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4705. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4706. #endif
  4707. SERIAL_ECHO_START;
  4708. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4709. HOTEND_LOOP() {
  4710. SERIAL_CHAR(' ');
  4711. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4712. SERIAL_CHAR(',');
  4713. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4714. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4715. SERIAL_CHAR(',');
  4716. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4717. #endif
  4718. }
  4719. SERIAL_EOL;
  4720. }
  4721. #endif // HOTENDS > 1
  4722. /**
  4723. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4724. */
  4725. inline void gcode_M220() {
  4726. if (code_seen('S')) feedrate_percentage = code_value_int();
  4727. }
  4728. /**
  4729. * M221: Set extrusion percentage (M221 T0 S95)
  4730. */
  4731. inline void gcode_M221() {
  4732. if (get_target_extruder_from_command(221)) return;
  4733. if (code_seen('S'))
  4734. extruder_multiplier[target_extruder] = code_value_int();
  4735. }
  4736. /**
  4737. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4738. */
  4739. inline void gcode_M226() {
  4740. if (code_seen('P')) {
  4741. int pin_number = code_value_int();
  4742. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4743. if (pin_state >= -1 && pin_state <= 1) {
  4744. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4745. if (sensitive_pins[i] == pin_number) {
  4746. pin_number = -1;
  4747. break;
  4748. }
  4749. }
  4750. if (pin_number > -1) {
  4751. int target = LOW;
  4752. stepper.synchronize();
  4753. pinMode(pin_number, INPUT);
  4754. switch (pin_state) {
  4755. case 1:
  4756. target = HIGH;
  4757. break;
  4758. case 0:
  4759. target = LOW;
  4760. break;
  4761. case -1:
  4762. target = !digitalRead(pin_number);
  4763. break;
  4764. }
  4765. while (digitalRead(pin_number) != target) idle();
  4766. } // pin_number > -1
  4767. } // pin_state -1 0 1
  4768. } // code_seen('P')
  4769. }
  4770. #if HAS_SERVOS
  4771. /**
  4772. * M280: Get or set servo position. P<index> [S<angle>]
  4773. */
  4774. inline void gcode_M280() {
  4775. if (!code_seen('P')) return;
  4776. int servo_index = code_value_int();
  4777. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4778. if (code_seen('S'))
  4779. MOVE_SERVO(servo_index, code_value_int());
  4780. else {
  4781. SERIAL_ECHO_START;
  4782. SERIAL_ECHOPGM(" Servo ");
  4783. SERIAL_ECHO(servo_index);
  4784. SERIAL_ECHOPGM(": ");
  4785. SERIAL_ECHOLN(servo[servo_index].read());
  4786. }
  4787. }
  4788. else {
  4789. SERIAL_ERROR_START;
  4790. SERIAL_ERROR("Servo ");
  4791. SERIAL_ERROR(servo_index);
  4792. SERIAL_ERRORLN(" out of range");
  4793. }
  4794. }
  4795. #endif // HAS_SERVOS
  4796. #if HAS_BUZZER
  4797. /**
  4798. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4799. */
  4800. inline void gcode_M300() {
  4801. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4802. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4803. // Limits the tone duration to 0-5 seconds.
  4804. NOMORE(duration, 5000);
  4805. buzzer.tone(duration, frequency);
  4806. }
  4807. #endif // HAS_BUZZER
  4808. #if ENABLED(PIDTEMP)
  4809. /**
  4810. * M301: Set PID parameters P I D (and optionally C, L)
  4811. *
  4812. * P[float] Kp term
  4813. * I[float] Ki term (unscaled)
  4814. * D[float] Kd term (unscaled)
  4815. *
  4816. * With PID_ADD_EXTRUSION_RATE:
  4817. *
  4818. * C[float] Kc term
  4819. * L[float] LPQ length
  4820. */
  4821. inline void gcode_M301() {
  4822. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4823. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4824. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4825. if (e < HOTENDS) { // catch bad input value
  4826. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4827. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4828. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4829. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4830. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4831. if (code_seen('L')) lpq_len = code_value_float();
  4832. NOMORE(lpq_len, LPQ_MAX_LEN);
  4833. #endif
  4834. thermalManager.updatePID();
  4835. SERIAL_ECHO_START;
  4836. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4837. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4838. SERIAL_ECHO(e);
  4839. #endif // PID_PARAMS_PER_HOTEND
  4840. SERIAL_ECHOPGM(" p:");
  4841. SERIAL_ECHO(PID_PARAM(Kp, e));
  4842. SERIAL_ECHOPGM(" i:");
  4843. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4844. SERIAL_ECHOPGM(" d:");
  4845. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4846. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4847. SERIAL_ECHOPGM(" c:");
  4848. //Kc does not have scaling applied above, or in resetting defaults
  4849. SERIAL_ECHO(PID_PARAM(Kc, e));
  4850. #endif
  4851. SERIAL_EOL;
  4852. }
  4853. else {
  4854. SERIAL_ERROR_START;
  4855. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4856. }
  4857. }
  4858. #endif // PIDTEMP
  4859. #if ENABLED(PIDTEMPBED)
  4860. inline void gcode_M304() {
  4861. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4862. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4863. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4864. thermalManager.updatePID();
  4865. SERIAL_ECHO_START;
  4866. SERIAL_ECHOPGM(" p:");
  4867. SERIAL_ECHO(thermalManager.bedKp);
  4868. SERIAL_ECHOPGM(" i:");
  4869. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4870. SERIAL_ECHOPGM(" d:");
  4871. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4872. }
  4873. #endif // PIDTEMPBED
  4874. #if defined(CHDK) || HAS_PHOTOGRAPH
  4875. /**
  4876. * M240: Trigger a camera by emulating a Canon RC-1
  4877. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4878. */
  4879. inline void gcode_M240() {
  4880. #ifdef CHDK
  4881. OUT_WRITE(CHDK, HIGH);
  4882. chdkHigh = millis();
  4883. chdkActive = true;
  4884. #elif HAS_PHOTOGRAPH
  4885. const uint8_t NUM_PULSES = 16;
  4886. const float PULSE_LENGTH = 0.01524;
  4887. for (int i = 0; i < NUM_PULSES; i++) {
  4888. WRITE(PHOTOGRAPH_PIN, HIGH);
  4889. _delay_ms(PULSE_LENGTH);
  4890. WRITE(PHOTOGRAPH_PIN, LOW);
  4891. _delay_ms(PULSE_LENGTH);
  4892. }
  4893. delay(7.33);
  4894. for (int i = 0; i < NUM_PULSES; i++) {
  4895. WRITE(PHOTOGRAPH_PIN, HIGH);
  4896. _delay_ms(PULSE_LENGTH);
  4897. WRITE(PHOTOGRAPH_PIN, LOW);
  4898. _delay_ms(PULSE_LENGTH);
  4899. }
  4900. #endif // !CHDK && HAS_PHOTOGRAPH
  4901. }
  4902. #endif // CHDK || PHOTOGRAPH_PIN
  4903. #if HAS_LCD_CONTRAST
  4904. /**
  4905. * M250: Read and optionally set the LCD contrast
  4906. */
  4907. inline void gcode_M250() {
  4908. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4909. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4910. SERIAL_PROTOCOL(lcd_contrast);
  4911. SERIAL_EOL;
  4912. }
  4913. #endif // HAS_LCD_CONTRAST
  4914. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4915. /**
  4916. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4917. *
  4918. * S<temperature> sets the minimum extrude temperature
  4919. * P<bool> enables (1) or disables (0) cold extrusion
  4920. *
  4921. * Examples:
  4922. *
  4923. * M302 ; report current cold extrusion state
  4924. * M302 P0 ; enable cold extrusion checking
  4925. * M302 P1 ; disables cold extrusion checking
  4926. * M302 S0 ; always allow extrusion (disables checking)
  4927. * M302 S170 ; only allow extrusion above 170
  4928. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4929. */
  4930. inline void gcode_M302() {
  4931. bool seen_S = code_seen('S');
  4932. if (seen_S) {
  4933. thermalManager.extrude_min_temp = code_value_temp_abs();
  4934. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4935. }
  4936. if (code_seen('P'))
  4937. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4938. else if (!seen_S) {
  4939. // Report current state
  4940. SERIAL_ECHO_START;
  4941. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4942. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4943. SERIAL_ECHOLNPGM("C)");
  4944. }
  4945. }
  4946. #endif // PREVENT_DANGEROUS_EXTRUDE
  4947. /**
  4948. * M303: PID relay autotune
  4949. *
  4950. * S<temperature> sets the target temperature. (default 150C)
  4951. * E<extruder> (-1 for the bed) (default 0)
  4952. * C<cycles>
  4953. * U<bool> with a non-zero value will apply the result to current settings
  4954. */
  4955. inline void gcode_M303() {
  4956. #if HAS_PID_HEATING
  4957. int e = code_seen('E') ? code_value_int() : 0;
  4958. int c = code_seen('C') ? code_value_int() : 5;
  4959. bool u = code_seen('U') && code_value_bool();
  4960. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4961. if (e >= 0 && e < HOTENDS)
  4962. target_extruder = e;
  4963. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4964. thermalManager.PID_autotune(temp, e, c, u);
  4965. KEEPALIVE_STATE(IN_HANDLER);
  4966. #else
  4967. SERIAL_ERROR_START;
  4968. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4969. #endif
  4970. }
  4971. #if ENABLED(SCARA)
  4972. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4973. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4974. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4975. if (IsRunning()) {
  4976. //gcode_get_destination(); // For X Y Z E F
  4977. delta[X_AXIS] = delta_x;
  4978. delta[Y_AXIS] = delta_y;
  4979. forward_kinematics_SCARA(delta);
  4980. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4981. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4982. prepare_move_to_destination();
  4983. //ok_to_send();
  4984. return true;
  4985. }
  4986. return false;
  4987. }
  4988. /**
  4989. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4990. */
  4991. inline bool gcode_M360() {
  4992. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4993. return SCARA_move_to_cal(0, 120);
  4994. }
  4995. /**
  4996. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4997. */
  4998. inline bool gcode_M361() {
  4999. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5000. return SCARA_move_to_cal(90, 130);
  5001. }
  5002. /**
  5003. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5004. */
  5005. inline bool gcode_M362() {
  5006. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5007. return SCARA_move_to_cal(60, 180);
  5008. }
  5009. /**
  5010. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5011. */
  5012. inline bool gcode_M363() {
  5013. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5014. return SCARA_move_to_cal(50, 90);
  5015. }
  5016. /**
  5017. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5018. */
  5019. inline bool gcode_M364() {
  5020. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5021. return SCARA_move_to_cal(45, 135);
  5022. }
  5023. /**
  5024. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5025. */
  5026. inline void gcode_M365() {
  5027. LOOP_XYZ(i)
  5028. if (code_seen(axis_codes[i]))
  5029. axis_scaling[i] = code_value_float();
  5030. }
  5031. #endif // SCARA
  5032. #if ENABLED(EXT_SOLENOID)
  5033. void enable_solenoid(uint8_t num) {
  5034. switch (num) {
  5035. case 0:
  5036. OUT_WRITE(SOL0_PIN, HIGH);
  5037. break;
  5038. #if HAS_SOLENOID_1
  5039. case 1:
  5040. OUT_WRITE(SOL1_PIN, HIGH);
  5041. break;
  5042. #endif
  5043. #if HAS_SOLENOID_2
  5044. case 2:
  5045. OUT_WRITE(SOL2_PIN, HIGH);
  5046. break;
  5047. #endif
  5048. #if HAS_SOLENOID_3
  5049. case 3:
  5050. OUT_WRITE(SOL3_PIN, HIGH);
  5051. break;
  5052. #endif
  5053. default:
  5054. SERIAL_ECHO_START;
  5055. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5056. break;
  5057. }
  5058. }
  5059. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5060. void disable_all_solenoids() {
  5061. OUT_WRITE(SOL0_PIN, LOW);
  5062. OUT_WRITE(SOL1_PIN, LOW);
  5063. OUT_WRITE(SOL2_PIN, LOW);
  5064. OUT_WRITE(SOL3_PIN, LOW);
  5065. }
  5066. /**
  5067. * M380: Enable solenoid on the active extruder
  5068. */
  5069. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5070. /**
  5071. * M381: Disable all solenoids
  5072. */
  5073. inline void gcode_M381() { disable_all_solenoids(); }
  5074. #endif // EXT_SOLENOID
  5075. /**
  5076. * M400: Finish all moves
  5077. */
  5078. inline void gcode_M400() { stepper.synchronize(); }
  5079. #if HAS_BED_PROBE
  5080. /**
  5081. * M401: Engage Z Servo endstop if available
  5082. */
  5083. inline void gcode_M401() { DEPLOY_PROBE(); }
  5084. /**
  5085. * M402: Retract Z Servo endstop if enabled
  5086. */
  5087. inline void gcode_M402() { STOW_PROBE(); }
  5088. #endif // HAS_BED_PROBE
  5089. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5090. /**
  5091. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5092. */
  5093. inline void gcode_M404() {
  5094. if (code_seen('W')) {
  5095. filament_width_nominal = code_value_linear_units();
  5096. }
  5097. else {
  5098. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5099. SERIAL_PROTOCOLLN(filament_width_nominal);
  5100. }
  5101. }
  5102. /**
  5103. * M405: Turn on filament sensor for control
  5104. */
  5105. inline void gcode_M405() {
  5106. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5107. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5108. if (code_seen('D')) meas_delay_cm = code_value_int();
  5109. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5110. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5111. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5112. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5113. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5114. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5115. }
  5116. filament_sensor = true;
  5117. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5118. //SERIAL_PROTOCOL(filament_width_meas);
  5119. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5120. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5121. }
  5122. /**
  5123. * M406: Turn off filament sensor for control
  5124. */
  5125. inline void gcode_M406() { filament_sensor = false; }
  5126. /**
  5127. * M407: Get measured filament diameter on serial output
  5128. */
  5129. inline void gcode_M407() {
  5130. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5131. SERIAL_PROTOCOLLN(filament_width_meas);
  5132. }
  5133. #endif // FILAMENT_WIDTH_SENSOR
  5134. void quickstop_stepper() {
  5135. stepper.quick_stop();
  5136. #if DISABLED(SCARA)
  5137. stepper.synchronize();
  5138. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5139. SYNC_PLAN_POSITION_KINEMATIC();
  5140. #endif
  5141. }
  5142. #if ENABLED(MESH_BED_LEVELING)
  5143. /**
  5144. * M420: Enable/Disable Mesh Bed Leveling
  5145. */
  5146. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5147. /**
  5148. * M421: Set a single Mesh Bed Leveling Z coordinate
  5149. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5150. */
  5151. inline void gcode_M421() {
  5152. int8_t px = 0, py = 0;
  5153. float z = 0;
  5154. bool hasX, hasY, hasZ, hasI, hasJ;
  5155. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5156. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5157. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5158. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5159. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5160. if (hasX && hasY && hasZ) {
  5161. if (px >= 0 && py >= 0)
  5162. mbl.set_z(px, py, z);
  5163. else {
  5164. SERIAL_ERROR_START;
  5165. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5166. }
  5167. }
  5168. else if (hasI && hasJ && hasZ) {
  5169. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5170. mbl.set_z(px, py, z);
  5171. else {
  5172. SERIAL_ERROR_START;
  5173. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5174. }
  5175. }
  5176. else {
  5177. SERIAL_ERROR_START;
  5178. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5179. }
  5180. }
  5181. #endif
  5182. /**
  5183. * M428: Set home_offset based on the distance between the
  5184. * current_position and the nearest "reference point."
  5185. * If an axis is past center its endstop position
  5186. * is the reference-point. Otherwise it uses 0. This allows
  5187. * the Z offset to be set near the bed when using a max endstop.
  5188. *
  5189. * M428 can't be used more than 2cm away from 0 or an endstop.
  5190. *
  5191. * Use M206 to set these values directly.
  5192. */
  5193. inline void gcode_M428() {
  5194. bool err = false;
  5195. LOOP_XYZ(i) {
  5196. if (axis_homed[i]) {
  5197. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5198. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5199. if (diff > -20 && diff < 20) {
  5200. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5201. }
  5202. else {
  5203. SERIAL_ERROR_START;
  5204. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5205. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5206. #if HAS_BUZZER
  5207. buzzer.tone(200, 40);
  5208. #endif
  5209. err = true;
  5210. break;
  5211. }
  5212. }
  5213. }
  5214. if (!err) {
  5215. SYNC_PLAN_POSITION_KINEMATIC();
  5216. report_current_position();
  5217. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5218. #if HAS_BUZZER
  5219. buzzer.tone(200, 659);
  5220. buzzer.tone(200, 698);
  5221. #endif
  5222. }
  5223. }
  5224. /**
  5225. * M500: Store settings in EEPROM
  5226. */
  5227. inline void gcode_M500() {
  5228. Config_StoreSettings();
  5229. }
  5230. /**
  5231. * M501: Read settings from EEPROM
  5232. */
  5233. inline void gcode_M501() {
  5234. Config_RetrieveSettings();
  5235. }
  5236. /**
  5237. * M502: Revert to default settings
  5238. */
  5239. inline void gcode_M502() {
  5240. Config_ResetDefault();
  5241. }
  5242. /**
  5243. * M503: print settings currently in memory
  5244. */
  5245. inline void gcode_M503() {
  5246. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5247. }
  5248. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5249. /**
  5250. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5251. */
  5252. inline void gcode_M540() {
  5253. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5254. }
  5255. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5256. #if HAS_BED_PROBE
  5257. inline void gcode_M851() {
  5258. SERIAL_ECHO_START;
  5259. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5260. SERIAL_CHAR(' ');
  5261. if (code_seen('Z')) {
  5262. float value = code_value_axis_units(Z_AXIS);
  5263. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5264. zprobe_zoffset = value;
  5265. SERIAL_ECHO(zprobe_zoffset);
  5266. }
  5267. else {
  5268. SERIAL_ECHOPGM(MSG_Z_MIN);
  5269. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5270. SERIAL_CHAR(' ');
  5271. SERIAL_ECHOPGM(MSG_Z_MAX);
  5272. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5273. }
  5274. }
  5275. else {
  5276. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5277. }
  5278. SERIAL_EOL;
  5279. }
  5280. #endif // HAS_BED_PROBE
  5281. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5282. /**
  5283. * M600: Pause for filament change
  5284. *
  5285. * E[distance] - Retract the filament this far (negative value)
  5286. * Z[distance] - Move the Z axis by this distance
  5287. * X[position] - Move to this X position, with Y
  5288. * Y[position] - Move to this Y position, with X
  5289. * L[distance] - Retract distance for removal (manual reload)
  5290. *
  5291. * Default values are used for omitted arguments.
  5292. *
  5293. */
  5294. inline void gcode_M600() {
  5295. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5296. SERIAL_ERROR_START;
  5297. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5298. return;
  5299. }
  5300. // Show initial message and wait for synchronize steppers
  5301. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5302. stepper.synchronize();
  5303. float lastpos[NUM_AXIS];
  5304. // Save current position of all axes
  5305. LOOP_XYZE(i)
  5306. lastpos[i] = destination[i] = current_position[i];
  5307. // Define runplan for move axes
  5308. #if ENABLED(DELTA)
  5309. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5310. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5311. #else
  5312. #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
  5313. #endif
  5314. KEEPALIVE_STATE(IN_HANDLER);
  5315. // Initial retract before move to filament change position
  5316. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5317. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5318. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5319. #endif
  5320. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5321. // Lift Z axis
  5322. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5323. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5324. FILAMENT_CHANGE_Z_ADD
  5325. #else
  5326. 0
  5327. #endif
  5328. ;
  5329. if (z_lift > 0) {
  5330. destination[Z_AXIS] += z_lift;
  5331. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5332. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5333. }
  5334. // Move XY axes to filament exchange position
  5335. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5336. #ifdef FILAMENT_CHANGE_X_POS
  5337. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5338. #endif
  5339. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5340. #ifdef FILAMENT_CHANGE_Y_POS
  5341. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5342. #endif
  5343. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5344. stepper.synchronize();
  5345. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5346. // Unload filament
  5347. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5348. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5349. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5350. #endif
  5351. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5352. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5353. stepper.synchronize();
  5354. disable_e0();
  5355. disable_e1();
  5356. disable_e2();
  5357. disable_e3();
  5358. delay(100);
  5359. #if HAS_BUZZER
  5360. millis_t next_tick = 0;
  5361. #endif
  5362. // Wait for filament insert by user and press button
  5363. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5364. while (!lcd_clicked()) {
  5365. #if HAS_BUZZER
  5366. millis_t ms = millis();
  5367. if (ms >= next_tick) {
  5368. buzzer.tone(300, 2000);
  5369. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5370. }
  5371. #endif
  5372. idle(true);
  5373. }
  5374. delay(100);
  5375. while (lcd_clicked()) idle(true);
  5376. delay(100);
  5377. // Show load message
  5378. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5379. // Load filament
  5380. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5381. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5382. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5383. #endif
  5384. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5385. stepper.synchronize();
  5386. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5387. do {
  5388. // Extrude filament to get into hotend
  5389. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5390. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5391. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5392. stepper.synchronize();
  5393. // Ask user if more filament should be extruded
  5394. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5395. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5396. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5397. KEEPALIVE_STATE(IN_HANDLER);
  5398. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5399. #endif
  5400. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5401. KEEPALIVE_STATE(IN_HANDLER);
  5402. // Set extruder to saved position
  5403. current_position[E_AXIS] = lastpos[E_AXIS];
  5404. destination[E_AXIS] = lastpos[E_AXIS];
  5405. planner.set_e_position_mm(current_position[E_AXIS]);
  5406. #if ENABLED(DELTA)
  5407. // Move XYZ to starting position, then E
  5408. inverse_kinematics(lastpos);
  5409. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5410. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5411. #else
  5412. // Move XY to starting position, then Z, then E
  5413. destination[X_AXIS] = lastpos[X_AXIS];
  5414. destination[Y_AXIS] = lastpos[Y_AXIS];
  5415. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5416. destination[Z_AXIS] = lastpos[Z_AXIS];
  5417. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5418. #endif
  5419. stepper.synchronize();
  5420. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5421. filament_ran_out = false;
  5422. #endif
  5423. // Show status screen
  5424. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5425. }
  5426. #endif // FILAMENT_CHANGE_FEATURE
  5427. #if ENABLED(DUAL_X_CARRIAGE)
  5428. /**
  5429. * M605: Set dual x-carriage movement mode
  5430. *
  5431. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5432. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5433. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5434. * units x-offset and an optional differential hotend temperature of
  5435. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5436. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5437. *
  5438. * Note: the X axis should be homed after changing dual x-carriage mode.
  5439. */
  5440. inline void gcode_M605() {
  5441. stepper.synchronize();
  5442. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5443. switch (dual_x_carriage_mode) {
  5444. case DXC_DUPLICATION_MODE:
  5445. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5446. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5447. SERIAL_ECHO_START;
  5448. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5449. SERIAL_CHAR(' ');
  5450. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5451. SERIAL_CHAR(',');
  5452. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5453. SERIAL_CHAR(' ');
  5454. SERIAL_ECHO(duplicate_extruder_x_offset);
  5455. SERIAL_CHAR(',');
  5456. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5457. break;
  5458. case DXC_FULL_CONTROL_MODE:
  5459. case DXC_AUTO_PARK_MODE:
  5460. break;
  5461. default:
  5462. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5463. break;
  5464. }
  5465. active_extruder_parked = false;
  5466. extruder_duplication_enabled = false;
  5467. delayed_move_time = 0;
  5468. }
  5469. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5470. inline void gcode_M605() {
  5471. stepper.synchronize();
  5472. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5473. SERIAL_ECHO_START;
  5474. SERIAL_ECHOPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5475. SERIAL_EOL;
  5476. }
  5477. #endif // M605
  5478. #if ENABLED(LIN_ADVANCE)
  5479. /**
  5480. * M905: Set advance factor
  5481. */
  5482. inline void gcode_M905() {
  5483. stepper.synchronize();
  5484. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5485. }
  5486. #endif
  5487. /**
  5488. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5489. */
  5490. inline void gcode_M907() {
  5491. #if HAS_DIGIPOTSS
  5492. LOOP_XYZE(i)
  5493. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5494. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5495. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5496. #endif
  5497. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5498. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5499. #endif
  5500. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5501. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5502. #endif
  5503. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5504. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5505. #endif
  5506. #if ENABLED(DIGIPOT_I2C)
  5507. // this one uses actual amps in floating point
  5508. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5509. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5510. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5511. #endif
  5512. #if ENABLED(DAC_STEPPER_CURRENT)
  5513. if (code_seen('S')) {
  5514. float dac_percent = code_value_float();
  5515. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5516. }
  5517. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5518. #endif
  5519. }
  5520. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5521. /**
  5522. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5523. */
  5524. inline void gcode_M908() {
  5525. #if HAS_DIGIPOTSS
  5526. stepper.digitalPotWrite(
  5527. code_seen('P') ? code_value_int() : 0,
  5528. code_seen('S') ? code_value_int() : 0
  5529. );
  5530. #endif
  5531. #ifdef DAC_STEPPER_CURRENT
  5532. dac_current_raw(
  5533. code_seen('P') ? code_value_byte() : -1,
  5534. code_seen('S') ? code_value_ushort() : 0
  5535. );
  5536. #endif
  5537. }
  5538. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5539. inline void gcode_M909() { dac_print_values(); }
  5540. inline void gcode_M910() { dac_commit_eeprom(); }
  5541. #endif
  5542. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5543. #if HAS_MICROSTEPS
  5544. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5545. inline void gcode_M350() {
  5546. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5547. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5548. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5549. stepper.microstep_readings();
  5550. }
  5551. /**
  5552. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5553. * S# determines MS1 or MS2, X# sets the pin high/low.
  5554. */
  5555. inline void gcode_M351() {
  5556. if (code_seen('S')) switch (code_value_byte()) {
  5557. case 1:
  5558. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5559. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5560. break;
  5561. case 2:
  5562. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5563. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5564. break;
  5565. }
  5566. stepper.microstep_readings();
  5567. }
  5568. #endif // HAS_MICROSTEPS
  5569. #if ENABLED(MIXING_EXTRUDER)
  5570. /**
  5571. * M163: Set a single mix factor for a mixing extruder
  5572. * This is called "weight" by some systems.
  5573. *
  5574. * S[index] The channel index to set
  5575. * P[float] The mix value
  5576. *
  5577. */
  5578. inline void gcode_M163() {
  5579. int mix_index = code_seen('S') ? code_value_int() : 0;
  5580. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5581. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5582. }
  5583. #if MIXING_VIRTUAL_TOOLS > 1
  5584. /**
  5585. * M164: Store the current mix factors as a virtual tool.
  5586. *
  5587. * S[index] The virtual tool to store
  5588. *
  5589. */
  5590. inline void gcode_M164() {
  5591. int tool_index = code_seen('S') ? code_value_int() : 0;
  5592. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5593. normalize_mix();
  5594. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5595. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5596. }
  5597. }
  5598. #endif
  5599. #if ENABLED(DIRECT_MIXING_IN_G1)
  5600. /**
  5601. * M165: Set multiple mix factors for a mixing extruder.
  5602. * Factors that are left out will be set to 0.
  5603. * All factors together must add up to 1.0.
  5604. *
  5605. * A[factor] Mix factor for extruder stepper 1
  5606. * B[factor] Mix factor for extruder stepper 2
  5607. * C[factor] Mix factor for extruder stepper 3
  5608. * D[factor] Mix factor for extruder stepper 4
  5609. * H[factor] Mix factor for extruder stepper 5
  5610. * I[factor] Mix factor for extruder stepper 6
  5611. *
  5612. */
  5613. inline void gcode_M165() { gcode_get_mix(); }
  5614. #endif
  5615. #endif // MIXING_EXTRUDER
  5616. /**
  5617. * M999: Restart after being stopped
  5618. *
  5619. * Default behaviour is to flush the serial buffer and request
  5620. * a resend to the host starting on the last N line received.
  5621. *
  5622. * Sending "M999 S1" will resume printing without flushing the
  5623. * existing command buffer.
  5624. *
  5625. */
  5626. inline void gcode_M999() {
  5627. Running = true;
  5628. lcd_reset_alert_level();
  5629. if (code_seen('S') && code_value_bool()) return;
  5630. // gcode_LastN = Stopped_gcode_LastN;
  5631. FlushSerialRequestResend();
  5632. }
  5633. #if ENABLED(SWITCHING_EXTRUDER)
  5634. inline void move_extruder_servo(uint8_t e) {
  5635. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5636. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5637. }
  5638. #endif
  5639. inline void invalid_extruder_error(const uint8_t &e) {
  5640. SERIAL_ECHO_START;
  5641. SERIAL_CHAR('T');
  5642. SERIAL_PROTOCOL_F(e, DEC);
  5643. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5644. }
  5645. void tool_change(const uint8_t tmp_extruder, const float fr_mm_m/*=0.0*/, bool no_move/*=false*/) {
  5646. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5647. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5648. invalid_extruder_error(tmp_extruder);
  5649. return;
  5650. }
  5651. // T0-Tnnn: Switch virtual tool by changing the mix
  5652. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5653. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5654. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5655. #if HOTENDS > 1
  5656. if (tmp_extruder >= EXTRUDERS) {
  5657. invalid_extruder_error(tmp_extruder);
  5658. return;
  5659. }
  5660. float old_feedrate_mm_m = feedrate_mm_m;
  5661. feedrate_mm_m = fr_mm_m > 0.0 ? (old_feedrate_mm_m = fr_mm_m) : XY_PROBE_FEEDRATE_MM_M;
  5662. if (tmp_extruder != active_extruder) {
  5663. if (!no_move && axis_unhomed_error(true, true, true)) {
  5664. SERIAL_ECHOLNPGM("No move on toolchange");
  5665. no_move = true;
  5666. }
  5667. // Save current position to destination, for use later
  5668. set_destination_to_current();
  5669. #if ENABLED(DUAL_X_CARRIAGE)
  5670. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5671. if (DEBUGGING(LEVELING)) {
  5672. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5673. switch (dual_x_carriage_mode) {
  5674. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5675. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5676. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5677. }
  5678. }
  5679. #endif
  5680. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5681. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5682. ) {
  5683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5684. if (DEBUGGING(LEVELING)) {
  5685. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5686. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5687. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5688. }
  5689. #endif
  5690. // Park old head: 1) raise 2) move to park position 3) lower
  5691. for (uint8_t i = 0; i < 3; i++)
  5692. planner.buffer_line(
  5693. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5694. current_position[Y_AXIS],
  5695. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5696. current_position[E_AXIS],
  5697. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5698. active_extruder
  5699. );
  5700. stepper.synchronize();
  5701. }
  5702. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5703. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5704. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5705. active_extruder = tmp_extruder;
  5706. // This function resets the max/min values - the current position may be overwritten below.
  5707. set_axis_is_at_home(X_AXIS);
  5708. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5709. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5710. #endif
  5711. switch (dual_x_carriage_mode) {
  5712. case DXC_FULL_CONTROL_MODE:
  5713. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5714. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5715. break;
  5716. case DXC_DUPLICATION_MODE:
  5717. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5718. if (active_extruder_parked)
  5719. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5720. else
  5721. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5722. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5723. extruder_duplication_enabled = false;
  5724. break;
  5725. default:
  5726. // record raised toolhead position for use by unpark
  5727. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5728. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5729. active_extruder_parked = true;
  5730. delayed_move_time = 0;
  5731. break;
  5732. }
  5733. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5734. if (DEBUGGING(LEVELING)) {
  5735. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5736. SERIAL_EOL;
  5737. DEBUG_POS("New extruder (parked)", current_position);
  5738. }
  5739. #endif
  5740. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5741. #else // !DUAL_X_CARRIAGE
  5742. #if ENABLED(SWITCHING_EXTRUDER)
  5743. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5744. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5745. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5746. // Always raise by some amount
  5747. planner.buffer_line(
  5748. current_position[X_AXIS],
  5749. current_position[Y_AXIS],
  5750. current_position[Z_AXIS] + z_raise,
  5751. current_position[E_AXIS],
  5752. planner.max_feedrate_mm_s[Z_AXIS],
  5753. active_extruder
  5754. );
  5755. stepper.synchronize();
  5756. move_extruder_servo(active_extruder);
  5757. delay(500);
  5758. // Move back down, if needed
  5759. if (z_raise != z_diff) {
  5760. planner.buffer_line(
  5761. current_position[X_AXIS],
  5762. current_position[Y_AXIS],
  5763. current_position[Z_AXIS] + z_diff,
  5764. current_position[E_AXIS],
  5765. planner.max_feedrate_mm_s[Z_AXIS],
  5766. active_extruder
  5767. );
  5768. stepper.synchronize();
  5769. }
  5770. #endif
  5771. /**
  5772. * Set current_position to the position of the new nozzle.
  5773. * Offsets are based on linear distance, so we need to get
  5774. * the resulting position in coordinate space.
  5775. *
  5776. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5777. * - With mesh leveling, update Z for the new position
  5778. * - Otherwise, just use the raw linear distance
  5779. *
  5780. * Software endstops are altered here too. Consider a case where:
  5781. * E0 at X=0 ... E1 at X=10
  5782. * When we switch to E1 now X=10, but E1 can't move left.
  5783. * To express this we apply the change in XY to the software endstops.
  5784. * E1 can move farther right than E0, so the right limit is extended.
  5785. *
  5786. * Note that we don't adjust the Z software endstops. Why not?
  5787. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5788. * because the bed is 1mm lower at the new position. As long as
  5789. * the first nozzle is out of the way, the carriage should be
  5790. * allowed to move 1mm lower. This technically "breaks" the
  5791. * Z software endstop. But this is technically correct (and
  5792. * there is no viable alternative).
  5793. */
  5794. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5795. // Offset extruder, make sure to apply the bed level rotation matrix
  5796. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5797. hotend_offset[Y_AXIS][tmp_extruder],
  5798. 0),
  5799. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5800. hotend_offset[Y_AXIS][active_extruder],
  5801. 0),
  5802. offset_vec = tmp_offset_vec - act_offset_vec;
  5803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5804. if (DEBUGGING(LEVELING)) {
  5805. tmp_offset_vec.debug("tmp_offset_vec");
  5806. act_offset_vec.debug("act_offset_vec");
  5807. offset_vec.debug("offset_vec (BEFORE)");
  5808. }
  5809. #endif
  5810. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5812. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5813. #endif
  5814. // Adjustments to the current position
  5815. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5816. current_position[Z_AXIS] += offset_vec.z;
  5817. #else // !AUTO_BED_LEVELING_FEATURE
  5818. float xydiff[2] = {
  5819. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5820. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5821. };
  5822. #if ENABLED(MESH_BED_LEVELING)
  5823. if (mbl.active()) {
  5824. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5825. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5826. #endif
  5827. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5828. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5829. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5831. if (DEBUGGING(LEVELING)) {
  5832. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5833. SERIAL_EOL;
  5834. }
  5835. #endif
  5836. }
  5837. #endif // MESH_BED_LEVELING
  5838. #endif // !AUTO_BED_LEVELING_FEATURE
  5839. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5840. if (DEBUGGING(LEVELING)) {
  5841. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5842. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5843. SERIAL_ECHOLNPGM(" }");
  5844. }
  5845. #endif
  5846. // The newly-selected extruder XY is actually at...
  5847. current_position[X_AXIS] += xydiff[X_AXIS];
  5848. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5849. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5850. position_shift[i] += xydiff[i];
  5851. update_software_endstops((AxisEnum)i);
  5852. }
  5853. // Set the new active extruder
  5854. active_extruder = tmp_extruder;
  5855. #endif // !DUAL_X_CARRIAGE
  5856. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5857. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5858. #endif
  5859. // Tell the planner the new "current position"
  5860. SYNC_PLAN_POSITION_KINEMATIC();
  5861. // Move to the "old position" (move the extruder into place)
  5862. if (!no_move && IsRunning()) {
  5863. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5864. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5865. #endif
  5866. prepare_move_to_destination();
  5867. }
  5868. } // (tmp_extruder != active_extruder)
  5869. stepper.synchronize();
  5870. #if ENABLED(EXT_SOLENOID)
  5871. disable_all_solenoids();
  5872. enable_solenoid_on_active_extruder();
  5873. #endif // EXT_SOLENOID
  5874. feedrate_mm_m = old_feedrate_mm_m;
  5875. #else // HOTENDS <= 1
  5876. // Set the new active extruder
  5877. active_extruder = tmp_extruder;
  5878. UNUSED(fr_mm_m);
  5879. UNUSED(no_move);
  5880. #endif // HOTENDS <= 1
  5881. SERIAL_ECHO_START;
  5882. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5883. SERIAL_PROTOCOLLN((int)active_extruder);
  5884. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5885. }
  5886. /**
  5887. * T0-T3: Switch tool, usually switching extruders
  5888. *
  5889. * F[units/min] Set the movement feedrate
  5890. * S1 Don't move the tool in XY after change
  5891. */
  5892. inline void gcode_T(uint8_t tmp_extruder) {
  5893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5894. if (DEBUGGING(LEVELING)) {
  5895. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5896. SERIAL_ECHOLNPGM(")");
  5897. DEBUG_POS("BEFORE", current_position);
  5898. }
  5899. #endif
  5900. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5901. tool_change(tmp_extruder);
  5902. #elif HOTENDS > 1
  5903. tool_change(
  5904. tmp_extruder,
  5905. code_seen('F') ? code_value_axis_units(X_AXIS) : 0.0,
  5906. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5907. );
  5908. #endif
  5909. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5910. if (DEBUGGING(LEVELING)) {
  5911. DEBUG_POS("AFTER", current_position);
  5912. SERIAL_ECHOLNPGM("<<< gcode_T");
  5913. }
  5914. #endif
  5915. }
  5916. /**
  5917. * Process a single command and dispatch it to its handler
  5918. * This is called from the main loop()
  5919. */
  5920. void process_next_command() {
  5921. current_command = command_queue[cmd_queue_index_r];
  5922. if (DEBUGGING(ECHO)) {
  5923. SERIAL_ECHO_START;
  5924. SERIAL_ECHOLN(current_command);
  5925. }
  5926. // Sanitize the current command:
  5927. // - Skip leading spaces
  5928. // - Bypass N[-0-9][0-9]*[ ]*
  5929. // - Overwrite * with nul to mark the end
  5930. while (*current_command == ' ') ++current_command;
  5931. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5932. current_command += 2; // skip N[-0-9]
  5933. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5934. while (*current_command == ' ') ++current_command; // skip [ ]*
  5935. }
  5936. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5937. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5938. char *cmd_ptr = current_command;
  5939. // Get the command code, which must be G, M, or T
  5940. char command_code = *cmd_ptr++;
  5941. // Skip spaces to get the numeric part
  5942. while (*cmd_ptr == ' ') cmd_ptr++;
  5943. uint16_t codenum = 0; // define ahead of goto
  5944. // Bail early if there's no code
  5945. bool code_is_good = NUMERIC(*cmd_ptr);
  5946. if (!code_is_good) goto ExitUnknownCommand;
  5947. // Get and skip the code number
  5948. do {
  5949. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5950. cmd_ptr++;
  5951. } while (NUMERIC(*cmd_ptr));
  5952. // Skip all spaces to get to the first argument, or nul
  5953. while (*cmd_ptr == ' ') cmd_ptr++;
  5954. // The command's arguments (if any) start here, for sure!
  5955. current_command_args = cmd_ptr;
  5956. KEEPALIVE_STATE(IN_HANDLER);
  5957. // Handle a known G, M, or T
  5958. switch (command_code) {
  5959. case 'G': switch (codenum) {
  5960. // G0, G1
  5961. case 0:
  5962. case 1:
  5963. gcode_G0_G1();
  5964. break;
  5965. // G2, G3
  5966. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5967. case 2: // G2 - CW ARC
  5968. case 3: // G3 - CCW ARC
  5969. gcode_G2_G3(codenum == 2);
  5970. break;
  5971. #endif
  5972. // G4 Dwell
  5973. case 4:
  5974. gcode_G4();
  5975. break;
  5976. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5977. // G5
  5978. case 5: // G5 - Cubic B_spline
  5979. gcode_G5();
  5980. break;
  5981. #endif // BEZIER_CURVE_SUPPORT
  5982. #if ENABLED(FWRETRACT)
  5983. case 10: // G10: retract
  5984. case 11: // G11: retract_recover
  5985. gcode_G10_G11(codenum == 10);
  5986. break;
  5987. #endif // FWRETRACT
  5988. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5989. case 12:
  5990. gcode_G12(); // G12: Nozzle Clean
  5991. break;
  5992. #endif // NOZZLE_CLEAN_FEATURE
  5993. #if ENABLED(INCH_MODE_SUPPORT)
  5994. case 20: //G20: Inch Mode
  5995. gcode_G20();
  5996. break;
  5997. case 21: //G21: MM Mode
  5998. gcode_G21();
  5999. break;
  6000. #endif // INCH_MODE_SUPPORT
  6001. #if ENABLED(NOZZLE_PARK_FEATURE)
  6002. case 27: // G27: Nozzle Park
  6003. gcode_G27();
  6004. break;
  6005. #endif // NOZZLE_PARK_FEATURE
  6006. case 28: // G28: Home all axes, one at a time
  6007. gcode_G28();
  6008. break;
  6009. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6010. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6011. gcode_G29();
  6012. break;
  6013. #endif // AUTO_BED_LEVELING_FEATURE
  6014. #if HAS_BED_PROBE
  6015. case 30: // G30 Single Z probe
  6016. gcode_G30();
  6017. break;
  6018. #if ENABLED(Z_PROBE_SLED)
  6019. case 31: // G31: dock the sled
  6020. gcode_G31();
  6021. break;
  6022. case 32: // G32: undock the sled
  6023. gcode_G32();
  6024. break;
  6025. #endif // Z_PROBE_SLED
  6026. #endif // HAS_BED_PROBE
  6027. case 90: // G90
  6028. relative_mode = false;
  6029. break;
  6030. case 91: // G91
  6031. relative_mode = true;
  6032. break;
  6033. case 92: // G92
  6034. gcode_G92();
  6035. break;
  6036. }
  6037. break;
  6038. case 'M': switch (codenum) {
  6039. #if ENABLED(ULTIPANEL)
  6040. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6041. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6042. gcode_M0_M1();
  6043. break;
  6044. #endif // ULTIPANEL
  6045. case 17:
  6046. gcode_M17();
  6047. break;
  6048. #if ENABLED(SDSUPPORT)
  6049. case 20: // M20 - list SD card
  6050. gcode_M20(); break;
  6051. case 21: // M21 - init SD card
  6052. gcode_M21(); break;
  6053. case 22: //M22 - release SD card
  6054. gcode_M22(); break;
  6055. case 23: //M23 - Select file
  6056. gcode_M23(); break;
  6057. case 24: //M24 - Start SD print
  6058. gcode_M24(); break;
  6059. case 25: //M25 - Pause SD print
  6060. gcode_M25(); break;
  6061. case 26: //M26 - Set SD index
  6062. gcode_M26(); break;
  6063. case 27: //M27 - Get SD status
  6064. gcode_M27(); break;
  6065. case 28: //M28 - Start SD write
  6066. gcode_M28(); break;
  6067. case 29: //M29 - Stop SD write
  6068. gcode_M29(); break;
  6069. case 30: //M30 <filename> Delete File
  6070. gcode_M30(); break;
  6071. case 32: //M32 - Select file and start SD print
  6072. gcode_M32(); break;
  6073. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6074. case 33: //M33 - Get the long full path to a file or folder
  6075. gcode_M33(); break;
  6076. #endif // LONG_FILENAME_HOST_SUPPORT
  6077. case 928: //M928 - Start SD write
  6078. gcode_M928(); break;
  6079. #endif //SDSUPPORT
  6080. case 31: //M31 take time since the start of the SD print or an M109 command
  6081. gcode_M31();
  6082. break;
  6083. case 42: //M42 -Change pin status via gcode
  6084. gcode_M42();
  6085. break;
  6086. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6087. case 48: // M48 Z probe repeatability
  6088. gcode_M48();
  6089. break;
  6090. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6091. case 75: // Start print timer
  6092. gcode_M75();
  6093. break;
  6094. case 76: // Pause print timer
  6095. gcode_M76();
  6096. break;
  6097. case 77: // Stop print timer
  6098. gcode_M77();
  6099. break;
  6100. #if ENABLED(PRINTCOUNTER)
  6101. case 78: // Show print statistics
  6102. gcode_M78();
  6103. break;
  6104. #endif
  6105. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6106. case 100:
  6107. gcode_M100();
  6108. break;
  6109. #endif
  6110. case 104: // M104
  6111. gcode_M104();
  6112. break;
  6113. case 110: // M110: Set Current Line Number
  6114. gcode_M110();
  6115. break;
  6116. case 111: // M111: Set debug level
  6117. gcode_M111();
  6118. break;
  6119. #if DISABLED(EMERGENCY_PARSER)
  6120. case 108: // M108: Cancel Waiting
  6121. gcode_M108();
  6122. break;
  6123. case 112: // M112: Emergency Stop
  6124. gcode_M112();
  6125. break;
  6126. case 410: // M410 quickstop - Abort all the planned moves.
  6127. gcode_M410();
  6128. break;
  6129. #endif
  6130. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6131. case 113: // M113: Set Host Keepalive interval
  6132. gcode_M113();
  6133. break;
  6134. #endif
  6135. case 140: // M140: Set bed temp
  6136. gcode_M140();
  6137. break;
  6138. case 105: // M105: Read current temperature
  6139. gcode_M105();
  6140. KEEPALIVE_STATE(NOT_BUSY);
  6141. return; // "ok" already printed
  6142. case 109: // M109: Wait for temperature
  6143. gcode_M109();
  6144. break;
  6145. #if HAS_TEMP_BED
  6146. case 190: // M190: Wait for bed heater to reach target
  6147. gcode_M190();
  6148. break;
  6149. #endif // HAS_TEMP_BED
  6150. #if FAN_COUNT > 0
  6151. case 106: // M106: Fan On
  6152. gcode_M106();
  6153. break;
  6154. case 107: // M107: Fan Off
  6155. gcode_M107();
  6156. break;
  6157. #endif // FAN_COUNT > 0
  6158. #if ENABLED(BARICUDA)
  6159. // PWM for HEATER_1_PIN
  6160. #if HAS_HEATER_1
  6161. case 126: // M126: valve open
  6162. gcode_M126();
  6163. break;
  6164. case 127: // M127: valve closed
  6165. gcode_M127();
  6166. break;
  6167. #endif // HAS_HEATER_1
  6168. // PWM for HEATER_2_PIN
  6169. #if HAS_HEATER_2
  6170. case 128: // M128: valve open
  6171. gcode_M128();
  6172. break;
  6173. case 129: // M129: valve closed
  6174. gcode_M129();
  6175. break;
  6176. #endif // HAS_HEATER_2
  6177. #endif // BARICUDA
  6178. #if HAS_POWER_SWITCH
  6179. case 80: // M80: Turn on Power Supply
  6180. gcode_M80();
  6181. break;
  6182. #endif // HAS_POWER_SWITCH
  6183. case 81: // M81: Turn off Power, including Power Supply, if possible
  6184. gcode_M81();
  6185. break;
  6186. case 82:
  6187. gcode_M82();
  6188. break;
  6189. case 83:
  6190. gcode_M83();
  6191. break;
  6192. case 18: // (for compatibility)
  6193. case 84: // M84
  6194. gcode_M18_M84();
  6195. break;
  6196. case 85: // M85
  6197. gcode_M85();
  6198. break;
  6199. case 92: // M92: Set the steps-per-unit for one or more axes
  6200. gcode_M92();
  6201. break;
  6202. case 115: // M115: Report capabilities
  6203. gcode_M115();
  6204. break;
  6205. case 117: // M117: Set LCD message text, if possible
  6206. gcode_M117();
  6207. break;
  6208. case 114: // M114: Report current position
  6209. gcode_M114();
  6210. break;
  6211. case 120: // M120: Enable endstops
  6212. gcode_M120();
  6213. break;
  6214. case 121: // M121: Disable endstops
  6215. gcode_M121();
  6216. break;
  6217. case 119: // M119: Report endstop states
  6218. gcode_M119();
  6219. break;
  6220. #if ENABLED(ULTIPANEL)
  6221. case 145: // M145: Set material heatup parameters
  6222. gcode_M145();
  6223. break;
  6224. #endif
  6225. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6226. case 149:
  6227. gcode_M149();
  6228. break;
  6229. #endif
  6230. #if ENABLED(BLINKM)
  6231. case 150: // M150
  6232. gcode_M150();
  6233. break;
  6234. #endif //BLINKM
  6235. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6236. case 155:
  6237. gcode_M155();
  6238. break;
  6239. case 156:
  6240. gcode_M156();
  6241. break;
  6242. #endif //EXPERIMENTAL_I2CBUS
  6243. #if ENABLED(MIXING_EXTRUDER)
  6244. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6245. gcode_M163();
  6246. break;
  6247. #if MIXING_VIRTUAL_TOOLS > 1
  6248. case 164: // M164 S<int> save current mix as a virtual extruder
  6249. gcode_M164();
  6250. break;
  6251. #endif
  6252. #if ENABLED(DIRECT_MIXING_IN_G1)
  6253. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6254. gcode_M165();
  6255. break;
  6256. #endif
  6257. #endif
  6258. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6259. gcode_M200();
  6260. break;
  6261. case 201: // M201
  6262. gcode_M201();
  6263. break;
  6264. #if 0 // Not used for Sprinter/grbl gen6
  6265. case 202: // M202
  6266. gcode_M202();
  6267. break;
  6268. #endif
  6269. case 203: // M203 max feedrate units/sec
  6270. gcode_M203();
  6271. break;
  6272. case 204: // M204 acclereration S normal moves T filmanent only moves
  6273. gcode_M204();
  6274. break;
  6275. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6276. gcode_M205();
  6277. break;
  6278. case 206: // M206 additional homing offset
  6279. gcode_M206();
  6280. break;
  6281. #if ENABLED(DELTA)
  6282. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6283. gcode_M665();
  6284. break;
  6285. #endif
  6286. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6287. case 666: // M666 set delta / dual endstop adjustment
  6288. gcode_M666();
  6289. break;
  6290. #endif
  6291. #if ENABLED(FWRETRACT)
  6292. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6293. gcode_M207();
  6294. break;
  6295. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6296. gcode_M208();
  6297. break;
  6298. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6299. gcode_M209();
  6300. break;
  6301. #endif // FWRETRACT
  6302. #if HOTENDS > 1
  6303. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6304. gcode_M218();
  6305. break;
  6306. #endif
  6307. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6308. gcode_M220();
  6309. break;
  6310. case 221: // M221 - Set Flow Percentage: S<percent>
  6311. gcode_M221();
  6312. break;
  6313. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6314. gcode_M226();
  6315. break;
  6316. #if HAS_SERVOS
  6317. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6318. gcode_M280();
  6319. break;
  6320. #endif // HAS_SERVOS
  6321. #if HAS_BUZZER
  6322. case 300: // M300 - Play beep tone
  6323. gcode_M300();
  6324. break;
  6325. #endif // HAS_BUZZER
  6326. #if ENABLED(PIDTEMP)
  6327. case 301: // M301
  6328. gcode_M301();
  6329. break;
  6330. #endif // PIDTEMP
  6331. #if ENABLED(PIDTEMPBED)
  6332. case 304: // M304
  6333. gcode_M304();
  6334. break;
  6335. #endif // PIDTEMPBED
  6336. #if defined(CHDK) || HAS_PHOTOGRAPH
  6337. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6338. gcode_M240();
  6339. break;
  6340. #endif // CHDK || PHOTOGRAPH_PIN
  6341. #if HAS_LCD_CONTRAST
  6342. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6343. gcode_M250();
  6344. break;
  6345. #endif // HAS_LCD_CONTRAST
  6346. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6347. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6348. gcode_M302();
  6349. break;
  6350. #endif // PREVENT_DANGEROUS_EXTRUDE
  6351. case 303: // M303 PID autotune
  6352. gcode_M303();
  6353. break;
  6354. #if ENABLED(SCARA)
  6355. case 360: // M360 SCARA Theta pos1
  6356. if (gcode_M360()) return;
  6357. break;
  6358. case 361: // M361 SCARA Theta pos2
  6359. if (gcode_M361()) return;
  6360. break;
  6361. case 362: // M362 SCARA Psi pos1
  6362. if (gcode_M362()) return;
  6363. break;
  6364. case 363: // M363 SCARA Psi pos2
  6365. if (gcode_M363()) return;
  6366. break;
  6367. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6368. if (gcode_M364()) return;
  6369. break;
  6370. case 365: // M365 Set SCARA scaling for X Y Z
  6371. gcode_M365();
  6372. break;
  6373. #endif // SCARA
  6374. case 400: // M400 finish all moves
  6375. gcode_M400();
  6376. break;
  6377. #if HAS_BED_PROBE
  6378. case 401:
  6379. gcode_M401();
  6380. break;
  6381. case 402:
  6382. gcode_M402();
  6383. break;
  6384. #endif // HAS_BED_PROBE
  6385. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6386. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6387. gcode_M404();
  6388. break;
  6389. case 405: //M405 Turn on filament sensor for control
  6390. gcode_M405();
  6391. break;
  6392. case 406: //M406 Turn off filament sensor for control
  6393. gcode_M406();
  6394. break;
  6395. case 407: //M407 Display measured filament diameter
  6396. gcode_M407();
  6397. break;
  6398. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6399. #if ENABLED(MESH_BED_LEVELING)
  6400. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6401. gcode_M420();
  6402. break;
  6403. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6404. gcode_M421();
  6405. break;
  6406. #endif
  6407. case 428: // M428 Apply current_position to home_offset
  6408. gcode_M428();
  6409. break;
  6410. case 500: // M500 Store settings in EEPROM
  6411. gcode_M500();
  6412. break;
  6413. case 501: // M501 Read settings from EEPROM
  6414. gcode_M501();
  6415. break;
  6416. case 502: // M502 Revert to default settings
  6417. gcode_M502();
  6418. break;
  6419. case 503: // M503 print settings currently in memory
  6420. gcode_M503();
  6421. break;
  6422. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6423. case 540:
  6424. gcode_M540();
  6425. break;
  6426. #endif
  6427. #if HAS_BED_PROBE
  6428. case 851:
  6429. gcode_M851();
  6430. break;
  6431. #endif // HAS_BED_PROBE
  6432. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6433. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6434. gcode_M600();
  6435. break;
  6436. #endif // FILAMENT_CHANGE_FEATURE
  6437. #if ENABLED(DUAL_X_CARRIAGE)
  6438. case 605:
  6439. gcode_M605();
  6440. break;
  6441. #endif // DUAL_X_CARRIAGE
  6442. #if ENABLED(LIN_ADVANCE)
  6443. case 905: // M905 Set advance factor.
  6444. gcode_M905();
  6445. break;
  6446. #endif
  6447. case 907: // M907 Set digital trimpot motor current using axis codes.
  6448. gcode_M907();
  6449. break;
  6450. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6451. case 908: // M908 Control digital trimpot directly.
  6452. gcode_M908();
  6453. break;
  6454. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6455. case 909: // M909 Print digipot/DAC current value
  6456. gcode_M909();
  6457. break;
  6458. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6459. gcode_M910();
  6460. break;
  6461. #endif
  6462. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6463. #if HAS_MICROSTEPS
  6464. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6465. gcode_M350();
  6466. break;
  6467. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6468. gcode_M351();
  6469. break;
  6470. #endif // HAS_MICROSTEPS
  6471. case 999: // M999: Restart after being Stopped
  6472. gcode_M999();
  6473. break;
  6474. }
  6475. break;
  6476. case 'T':
  6477. gcode_T(codenum);
  6478. break;
  6479. default: code_is_good = false;
  6480. }
  6481. KEEPALIVE_STATE(NOT_BUSY);
  6482. ExitUnknownCommand:
  6483. // Still unknown command? Throw an error
  6484. if (!code_is_good) unknown_command_error();
  6485. ok_to_send();
  6486. }
  6487. void FlushSerialRequestResend() {
  6488. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6489. MYSERIAL.flush();
  6490. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6491. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6492. ok_to_send();
  6493. }
  6494. void ok_to_send() {
  6495. refresh_cmd_timeout();
  6496. if (!send_ok[cmd_queue_index_r]) return;
  6497. SERIAL_PROTOCOLPGM(MSG_OK);
  6498. #if ENABLED(ADVANCED_OK)
  6499. char* p = command_queue[cmd_queue_index_r];
  6500. if (*p == 'N') {
  6501. SERIAL_PROTOCOL(' ');
  6502. SERIAL_ECHO(*p++);
  6503. while (NUMERIC_SIGNED(*p))
  6504. SERIAL_ECHO(*p++);
  6505. }
  6506. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6507. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6508. #endif
  6509. SERIAL_EOL;
  6510. }
  6511. void clamp_to_software_endstops(float target[3]) {
  6512. if (min_software_endstops) {
  6513. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6514. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6515. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6516. }
  6517. if (max_software_endstops) {
  6518. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6519. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6520. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6521. }
  6522. }
  6523. #if ENABLED(DELTA)
  6524. void recalc_delta_settings(float radius, float diagonal_rod) {
  6525. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6526. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6527. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6528. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6529. delta_tower3_x = 0.0; // back middle tower
  6530. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6531. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6532. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6533. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6534. }
  6535. void inverse_kinematics(const float in_cartesian[3]) {
  6536. const float cartesian[3] = {
  6537. RAW_X_POSITION(in_cartesian[X_AXIS]),
  6538. RAW_Y_POSITION(in_cartesian[Y_AXIS]),
  6539. RAW_Z_POSITION(in_cartesian[Z_AXIS])
  6540. };
  6541. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6542. - sq(delta_tower1_x - cartesian[X_AXIS])
  6543. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6544. ) + cartesian[Z_AXIS];
  6545. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6546. - sq(delta_tower2_x - cartesian[X_AXIS])
  6547. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6548. ) + cartesian[Z_AXIS];
  6549. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6550. - sq(delta_tower3_x - cartesian[X_AXIS])
  6551. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6552. ) + cartesian[Z_AXIS];
  6553. /**
  6554. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6555. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6556. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6557. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6558. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6559. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6560. */
  6561. }
  6562. float delta_safe_distance_from_top() {
  6563. float cartesian[3] = {
  6564. LOGICAL_X_POSITION(0),
  6565. LOGICAL_Y_POSITION(0),
  6566. LOGICAL_Z_POSITION(0)
  6567. };
  6568. inverse_kinematics(cartesian);
  6569. float distance = delta[TOWER_3];
  6570. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6571. inverse_kinematics(cartesian);
  6572. return abs(distance - delta[TOWER_3]);
  6573. }
  6574. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6575. //As discussed in Wikipedia "Trilateration"
  6576. //we are establishing a new coordinate
  6577. //system in the plane of the three carriage points.
  6578. //This system will have the origin at tower1 and
  6579. //tower2 is on the x axis. tower3 is in the X-Y
  6580. //plane with a Z component of zero. We will define unit
  6581. //vectors in this coordinate system in our original
  6582. //coordinate system. Then when we calculate the
  6583. //Xnew, Ynew and Znew values, we can translate back into
  6584. //the original system by moving along those unit vectors
  6585. //by the corresponding values.
  6586. // https://en.wikipedia.org/wiki/Trilateration
  6587. // Variable names matched to Marlin, c-version
  6588. // and avoiding a vector library
  6589. // by Andreas Hardtung 2016-06-7
  6590. // based on a Java function from
  6591. // "Delta Robot Kinematics by Steve Graves" V3
  6592. // Result is in cartesian_position[].
  6593. //Create a vector in old coordinates along x axis of new coordinate
  6594. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6595. //Get the Magnitude of vector.
  6596. float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
  6597. //Create unit vector by dividing by magnitude.
  6598. float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
  6599. //Now find vector from the origin of the new system to the third point.
  6600. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6601. //Now use dot product to find the component of this vector on the X axis.
  6602. float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
  6603. //Now create a vector along the x axis that represents the x component of p13.
  6604. float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
  6605. //Now subtract the X component away from the original vector leaving only the Y component. We use the
  6606. //variable that will be the unit vector after we scale it.
  6607. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
  6608. //The magnitude of Y component
  6609. float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  6610. //Now make vector a unit vector
  6611. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6612. //The cross product of the unit x and y is the unit z
  6613. //float[] ez = vectorCrossProd(ex, ey);
  6614. float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
  6615. //Now we have the d, i and j values defined in Wikipedia.
  6616. //We can plug them into the equations defined in
  6617. //Wikipedia for Xnew, Ynew and Znew
  6618. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
  6619. float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
  6620. float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
  6621. //Now we can start from the origin in the old coords and
  6622. //add vectors in the old coords that represent the
  6623. //Xnew, Ynew and Znew to find the point in the old system
  6624. cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
  6625. cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
  6626. cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  6627. };
  6628. void forward_kinematics_DELTA(float point[3]) {
  6629. forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]);
  6630. }
  6631. void set_cartesian_from_steppers() {
  6632. forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
  6633. stepper.get_axis_position_mm(Y_AXIS),
  6634. stepper.get_axis_position_mm(Z_AXIS));
  6635. }
  6636. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6637. // Adjust print surface height by linear interpolation over the bed_level array.
  6638. void adjust_delta(float cartesian[3]) {
  6639. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6640. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6641. float h1 = 0.001 - half, h2 = half - 0.001,
  6642. grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[0])),
  6643. grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[1]));
  6644. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6645. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6646. z1 = bed_level[floor_x + half][floor_y + half],
  6647. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6648. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6649. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6650. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6651. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6652. offset = (1 - ratio_x) * left + ratio_x * right;
  6653. delta[X_AXIS] += offset;
  6654. delta[Y_AXIS] += offset;
  6655. delta[Z_AXIS] += offset;
  6656. /**
  6657. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6658. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6659. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6660. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6661. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6662. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6663. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6664. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6665. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6666. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6667. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6668. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6669. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6670. */
  6671. }
  6672. #endif // AUTO_BED_LEVELING_FEATURE
  6673. #endif // DELTA
  6674. void set_current_from_steppers_for_axis(AxisEnum axis) {
  6675. #if ENABLED(DELTA)
  6676. set_cartesian_from_steppers();
  6677. current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
  6678. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  6679. vector_3 pos = planner.adjusted_position();
  6680. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6681. #else
  6682. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6683. #endif
  6684. }
  6685. #if ENABLED(MESH_BED_LEVELING)
  6686. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6687. void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6688. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6689. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6690. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6691. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6692. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6693. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6694. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6695. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6696. if (cx1 == cx2 && cy1 == cy2) {
  6697. // Start and end on same mesh square
  6698. line_to_destination(fr_mm_m);
  6699. set_current_to_destination();
  6700. return;
  6701. }
  6702. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6703. float normalized_dist, end[NUM_AXIS];
  6704. // Split at the left/front border of the right/top square
  6705. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6706. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6707. memcpy(end, destination, sizeof(end));
  6708. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6709. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6710. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6711. CBI(x_splits, gcx);
  6712. }
  6713. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6714. memcpy(end, destination, sizeof(end));
  6715. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6716. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6717. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6718. CBI(y_splits, gcy);
  6719. }
  6720. else {
  6721. // Already split on a border
  6722. line_to_destination(fr_mm_m);
  6723. set_current_to_destination();
  6724. return;
  6725. }
  6726. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6727. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6728. // Do the split and look for more borders
  6729. mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
  6730. // Restore destination from stack
  6731. memcpy(destination, end, sizeof(end));
  6732. mesh_line_to_destination(fr_mm_m, x_splits, y_splits);
  6733. }
  6734. #endif // MESH_BED_LEVELING
  6735. #if ENABLED(DELTA) || ENABLED(SCARA)
  6736. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6737. float difference[NUM_AXIS];
  6738. LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
  6739. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6740. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6741. if (cartesian_mm < 0.000001) return false;
  6742. float _feedrate_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
  6743. float seconds = cartesian_mm / _feedrate_mm_s;
  6744. int steps = max(1, int(delta_segments_per_second * seconds));
  6745. float inv_steps = 1.0/steps;
  6746. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6747. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6748. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6749. for (int s = 1; s <= steps; s++) {
  6750. float fraction = float(s) * inv_steps;
  6751. LOOP_XYZE(i)
  6752. target[i] = current_position[i] + difference[i] * fraction;
  6753. inverse_kinematics(target);
  6754. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6755. if (!bed_leveling_in_progress) adjust_delta(target);
  6756. #endif
  6757. //DEBUG_POS("prepare_kinematic_move_to", target);
  6758. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6759. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6760. }
  6761. return true;
  6762. }
  6763. #endif // DELTA || SCARA
  6764. #if ENABLED(DUAL_X_CARRIAGE)
  6765. inline bool prepare_move_to_destination_dualx() {
  6766. if (active_extruder_parked) {
  6767. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6768. // move duplicate extruder into correct duplication position.
  6769. planner.set_position_mm(
  6770. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6771. current_position[Y_AXIS],
  6772. current_position[Z_AXIS],
  6773. current_position[E_AXIS]
  6774. );
  6775. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6776. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6777. SYNC_PLAN_POSITION_KINEMATIC();
  6778. stepper.synchronize();
  6779. extruder_duplication_enabled = true;
  6780. active_extruder_parked = false;
  6781. }
  6782. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6783. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6784. // This is a travel move (with no extrusion)
  6785. // Skip it, but keep track of the current position
  6786. // (so it can be used as the start of the next non-travel move)
  6787. if (delayed_move_time != 0xFFFFFFFFUL) {
  6788. set_current_to_destination();
  6789. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6790. delayed_move_time = millis();
  6791. return false;
  6792. }
  6793. }
  6794. delayed_move_time = 0;
  6795. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6796. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6797. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6798. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6799. active_extruder_parked = false;
  6800. }
  6801. }
  6802. return true;
  6803. }
  6804. #endif // DUAL_X_CARRIAGE
  6805. #if DISABLED(DELTA) && DISABLED(SCARA)
  6806. inline bool prepare_move_to_destination_cartesian() {
  6807. // Do not use feedrate_percentage for E or Z only moves
  6808. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6809. line_to_destination();
  6810. }
  6811. else {
  6812. #if ENABLED(MESH_BED_LEVELING)
  6813. if (mbl.active()) {
  6814. mesh_line_to_destination(MMM_SCALED(feedrate_mm_m));
  6815. return false;
  6816. }
  6817. else
  6818. #endif
  6819. line_to_destination(MMM_SCALED(feedrate_mm_m));
  6820. }
  6821. return true;
  6822. }
  6823. #endif // !DELTA && !SCARA
  6824. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6825. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6826. if (DEBUGGING(DRYRUN)) return;
  6827. float de = dest_e - curr_e;
  6828. if (de) {
  6829. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6830. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6831. SERIAL_ECHO_START;
  6832. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6833. }
  6834. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6835. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6836. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6837. SERIAL_ECHO_START;
  6838. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6839. }
  6840. #endif
  6841. }
  6842. }
  6843. #endif // PREVENT_DANGEROUS_EXTRUDE
  6844. /**
  6845. * Prepare a single move and get ready for the next one
  6846. *
  6847. * (This may call planner.buffer_line several times to put
  6848. * smaller moves into the planner for DELTA or SCARA.)
  6849. */
  6850. void prepare_move_to_destination() {
  6851. clamp_to_software_endstops(destination);
  6852. refresh_cmd_timeout();
  6853. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6854. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6855. #endif
  6856. #if ENABLED(DELTA) || ENABLED(SCARA)
  6857. if (!prepare_kinematic_move_to(destination)) return;
  6858. #else
  6859. #if ENABLED(DUAL_X_CARRIAGE)
  6860. if (!prepare_move_to_destination_dualx()) return;
  6861. #endif
  6862. if (!prepare_move_to_destination_cartesian()) return;
  6863. #endif
  6864. set_current_to_destination();
  6865. }
  6866. #if ENABLED(ARC_SUPPORT)
  6867. /**
  6868. * Plan an arc in 2 dimensions
  6869. *
  6870. * The arc is approximated by generating many small linear segments.
  6871. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6872. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6873. * larger segments will tend to be more efficient. Your slicer should have
  6874. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6875. */
  6876. void plan_arc(
  6877. float target[NUM_AXIS], // Destination position
  6878. float* offset, // Center of rotation relative to current_position
  6879. uint8_t clockwise // Clockwise?
  6880. ) {
  6881. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6882. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6883. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6884. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6885. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6886. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6887. r_Y = -offset[Y_AXIS],
  6888. rt_X = target[X_AXIS] - center_X,
  6889. rt_Y = target[Y_AXIS] - center_Y;
  6890. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6891. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6892. if (angular_travel < 0) angular_travel += RADIANS(360);
  6893. if (clockwise) angular_travel -= RADIANS(360);
  6894. // Make a circle if the angular rotation is 0
  6895. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6896. angular_travel += RADIANS(360);
  6897. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6898. if (mm_of_travel < 0.001) return;
  6899. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6900. if (segments == 0) segments = 1;
  6901. float theta_per_segment = angular_travel / segments;
  6902. float linear_per_segment = linear_travel / segments;
  6903. float extruder_per_segment = extruder_travel / segments;
  6904. /**
  6905. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6906. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6907. * r_T = [cos(phi) -sin(phi);
  6908. * sin(phi) cos(phi] * r ;
  6909. *
  6910. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6911. * defined from the circle center to the initial position. Each line segment is formed by successive
  6912. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6913. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6914. * all double numbers are single precision on the Arduino. (True double precision will not have
  6915. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6916. * tool precision in some cases. Therefore, arc path correction is implemented.
  6917. *
  6918. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6919. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6920. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6921. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6922. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6923. * issue for CNC machines with the single precision Arduino calculations.
  6924. *
  6925. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6926. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6927. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6928. * This is important when there are successive arc motions.
  6929. */
  6930. // Vector rotation matrix values
  6931. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6932. float sin_T = theta_per_segment;
  6933. float arc_target[NUM_AXIS];
  6934. float sin_Ti, cos_Ti, r_new_Y;
  6935. uint16_t i;
  6936. int8_t count = 0;
  6937. // Initialize the linear axis
  6938. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6939. // Initialize the extruder axis
  6940. arc_target[E_AXIS] = current_position[E_AXIS];
  6941. float fr_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
  6942. millis_t next_idle_ms = millis() + 200UL;
  6943. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6944. thermalManager.manage_heater();
  6945. millis_t now = millis();
  6946. if (ELAPSED(now, next_idle_ms)) {
  6947. next_idle_ms = now + 200UL;
  6948. idle();
  6949. }
  6950. if (++count < N_ARC_CORRECTION) {
  6951. // Apply vector rotation matrix to previous r_X / 1
  6952. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6953. r_X = r_X * cos_T - r_Y * sin_T;
  6954. r_Y = r_new_Y;
  6955. }
  6956. else {
  6957. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6958. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6959. // To reduce stuttering, the sin and cos could be computed at different times.
  6960. // For now, compute both at the same time.
  6961. cos_Ti = cos(i * theta_per_segment);
  6962. sin_Ti = sin(i * theta_per_segment);
  6963. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6964. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6965. count = 0;
  6966. }
  6967. // Update arc_target location
  6968. arc_target[X_AXIS] = center_X + r_X;
  6969. arc_target[Y_AXIS] = center_Y + r_Y;
  6970. arc_target[Z_AXIS] += linear_per_segment;
  6971. arc_target[E_AXIS] += extruder_per_segment;
  6972. clamp_to_software_endstops(arc_target);
  6973. #if ENABLED(DELTA) || ENABLED(SCARA)
  6974. inverse_kinematics(arc_target);
  6975. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6976. adjust_delta(arc_target);
  6977. #endif
  6978. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6979. #else
  6980. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6981. #endif
  6982. }
  6983. // Ensure last segment arrives at target location.
  6984. #if ENABLED(DELTA) || ENABLED(SCARA)
  6985. inverse_kinematics(target);
  6986. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6987. adjust_delta(target);
  6988. #endif
  6989. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6990. #else
  6991. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6992. #endif
  6993. // As far as the parser is concerned, the position is now == target. In reality the
  6994. // motion control system might still be processing the action and the real tool position
  6995. // in any intermediate location.
  6996. set_current_to_destination();
  6997. }
  6998. #endif
  6999. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7000. void plan_cubic_move(const float offset[4]) {
  7001. cubic_b_spline(current_position, destination, offset, MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
  7002. // As far as the parser is concerned, the position is now == target. In reality the
  7003. // motion control system might still be processing the action and the real tool position
  7004. // in any intermediate location.
  7005. set_current_to_destination();
  7006. }
  7007. #endif // BEZIER_CURVE_SUPPORT
  7008. #if HAS_CONTROLLERFAN
  7009. void controllerFan() {
  7010. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7011. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7012. millis_t ms = millis();
  7013. if (ELAPSED(ms, nextMotorCheck)) {
  7014. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7015. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7016. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7017. #if E_STEPPERS > 1
  7018. || E1_ENABLE_READ == E_ENABLE_ON
  7019. #if HAS_X2_ENABLE
  7020. || X2_ENABLE_READ == X_ENABLE_ON
  7021. #endif
  7022. #if E_STEPPERS > 2
  7023. || E2_ENABLE_READ == E_ENABLE_ON
  7024. #if E_STEPPERS > 3
  7025. || E3_ENABLE_READ == E_ENABLE_ON
  7026. #endif
  7027. #endif
  7028. #endif
  7029. ) {
  7030. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7031. }
  7032. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7033. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7034. // allows digital or PWM fan output to be used (see M42 handling)
  7035. digitalWrite(CONTROLLERFAN_PIN, speed);
  7036. analogWrite(CONTROLLERFAN_PIN, speed);
  7037. }
  7038. }
  7039. #endif // HAS_CONTROLLERFAN
  7040. #if ENABLED(SCARA)
  7041. void forward_kinematics_SCARA(float f_scara[3]) {
  7042. // Perform forward kinematics, and place results in delta[3]
  7043. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7044. float x_sin, x_cos, y_sin, y_cos;
  7045. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  7046. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  7047. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7048. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7049. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7050. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7051. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  7052. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  7053. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  7054. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  7055. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  7056. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  7057. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  7058. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  7059. }
  7060. void inverse_kinematics(const float cartesian[3]) {
  7061. // Inverse kinematics.
  7062. // Perform SCARA IK and place results in delta[3].
  7063. // The maths and first version were done by QHARLEY.
  7064. // Integrated, tweaked by Joachim Cerny in June 2014.
  7065. float SCARA_pos[2];
  7066. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  7067. SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  7068. SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  7069. #if (Linkage_1 == Linkage_2)
  7070. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  7071. #else
  7072. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  7073. #endif
  7074. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  7075. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  7076. SCARA_K2 = Linkage_2 * SCARA_S2;
  7077. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  7078. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  7079. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  7080. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  7081. delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
  7082. /**
  7083. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  7084. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  7085. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  7086. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  7087. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  7088. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  7089. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  7090. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  7091. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  7092. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  7093. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  7094. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  7095. SERIAL_EOL;
  7096. */
  7097. }
  7098. #endif // SCARA
  7099. #if ENABLED(TEMP_STAT_LEDS)
  7100. static bool red_led = false;
  7101. static millis_t next_status_led_update_ms = 0;
  7102. void handle_status_leds(void) {
  7103. float max_temp = 0.0;
  7104. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7105. next_status_led_update_ms += 500; // Update every 0.5s
  7106. HOTEND_LOOP() {
  7107. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  7108. }
  7109. #if HAS_TEMP_BED
  7110. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  7111. #endif
  7112. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7113. if (new_led != red_led) {
  7114. red_led = new_led;
  7115. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7116. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7117. }
  7118. }
  7119. }
  7120. #endif
  7121. void enable_all_steppers() {
  7122. enable_x();
  7123. enable_y();
  7124. enable_z();
  7125. enable_e0();
  7126. enable_e1();
  7127. enable_e2();
  7128. enable_e3();
  7129. }
  7130. void disable_all_steppers() {
  7131. disable_x();
  7132. disable_y();
  7133. disable_z();
  7134. disable_e0();
  7135. disable_e1();
  7136. disable_e2();
  7137. disable_e3();
  7138. }
  7139. /**
  7140. * Standard idle routine keeps the machine alive
  7141. */
  7142. void idle(
  7143. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7144. bool no_stepper_sleep/*=false*/
  7145. #endif
  7146. ) {
  7147. lcd_update();
  7148. host_keepalive();
  7149. manage_inactivity(
  7150. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7151. no_stepper_sleep
  7152. #endif
  7153. );
  7154. thermalManager.manage_heater();
  7155. #if ENABLED(PRINTCOUNTER)
  7156. print_job_timer.tick();
  7157. #endif
  7158. #if HAS_BUZZER
  7159. buzzer.tick();
  7160. #endif
  7161. }
  7162. /**
  7163. * Manage several activities:
  7164. * - Check for Filament Runout
  7165. * - Keep the command buffer full
  7166. * - Check for maximum inactive time between commands
  7167. * - Check for maximum inactive time between stepper commands
  7168. * - Check if pin CHDK needs to go LOW
  7169. * - Check for KILL button held down
  7170. * - Check for HOME button held down
  7171. * - Check if cooling fan needs to be switched on
  7172. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7173. */
  7174. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7175. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7176. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7177. handle_filament_runout();
  7178. #endif
  7179. if (commands_in_queue < BUFSIZE) get_available_commands();
  7180. millis_t ms = millis();
  7181. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7182. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7183. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7184. #if ENABLED(DISABLE_INACTIVE_X)
  7185. disable_x();
  7186. #endif
  7187. #if ENABLED(DISABLE_INACTIVE_Y)
  7188. disable_y();
  7189. #endif
  7190. #if ENABLED(DISABLE_INACTIVE_Z)
  7191. disable_z();
  7192. #endif
  7193. #if ENABLED(DISABLE_INACTIVE_E)
  7194. disable_e0();
  7195. disable_e1();
  7196. disable_e2();
  7197. disable_e3();
  7198. #endif
  7199. }
  7200. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7201. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7202. chdkActive = false;
  7203. WRITE(CHDK, LOW);
  7204. }
  7205. #endif
  7206. #if HAS_KILL
  7207. // Check if the kill button was pressed and wait just in case it was an accidental
  7208. // key kill key press
  7209. // -------------------------------------------------------------------------------
  7210. static int killCount = 0; // make the inactivity button a bit less responsive
  7211. const int KILL_DELAY = 750;
  7212. if (!READ(KILL_PIN))
  7213. killCount++;
  7214. else if (killCount > 0)
  7215. killCount--;
  7216. // Exceeded threshold and we can confirm that it was not accidental
  7217. // KILL the machine
  7218. // ----------------------------------------------------------------
  7219. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7220. #endif
  7221. #if HAS_HOME
  7222. // Check to see if we have to home, use poor man's debouncer
  7223. // ---------------------------------------------------------
  7224. static int homeDebounceCount = 0; // poor man's debouncing count
  7225. const int HOME_DEBOUNCE_DELAY = 2500;
  7226. if (!READ(HOME_PIN)) {
  7227. if (!homeDebounceCount) {
  7228. enqueue_and_echo_commands_P(PSTR("G28"));
  7229. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7230. }
  7231. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7232. homeDebounceCount++;
  7233. else
  7234. homeDebounceCount = 0;
  7235. }
  7236. #endif
  7237. #if HAS_CONTROLLERFAN
  7238. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7239. #endif
  7240. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7241. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7242. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7243. #if ENABLED(SWITCHING_EXTRUDER)
  7244. bool oldstatus = E0_ENABLE_READ;
  7245. enable_e0();
  7246. #else // !SWITCHING_EXTRUDER
  7247. bool oldstatus;
  7248. switch (active_extruder) {
  7249. case 0:
  7250. oldstatus = E0_ENABLE_READ;
  7251. enable_e0();
  7252. break;
  7253. #if E_STEPPERS > 1
  7254. case 1:
  7255. oldstatus = E1_ENABLE_READ;
  7256. enable_e1();
  7257. break;
  7258. #if E_STEPPERS > 2
  7259. case 2:
  7260. oldstatus = E2_ENABLE_READ;
  7261. enable_e2();
  7262. break;
  7263. #if E_STEPPERS > 3
  7264. case 3:
  7265. oldstatus = E3_ENABLE_READ;
  7266. enable_e3();
  7267. break;
  7268. #endif
  7269. #endif
  7270. #endif
  7271. }
  7272. #endif // !SWITCHING_EXTRUDER
  7273. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7274. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7275. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  7276. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  7277. current_position[E_AXIS] = oldepos;
  7278. destination[E_AXIS] = oldedes;
  7279. planner.set_e_position_mm(oldepos);
  7280. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7281. stepper.synchronize();
  7282. #if ENABLED(SWITCHING_EXTRUDER)
  7283. E0_ENABLE_WRITE(oldstatus);
  7284. #else
  7285. switch (active_extruder) {
  7286. case 0:
  7287. E0_ENABLE_WRITE(oldstatus);
  7288. break;
  7289. #if E_STEPPERS > 1
  7290. case 1:
  7291. E1_ENABLE_WRITE(oldstatus);
  7292. break;
  7293. #if E_STEPPERS > 2
  7294. case 2:
  7295. E2_ENABLE_WRITE(oldstatus);
  7296. break;
  7297. #if E_STEPPERS > 3
  7298. case 3:
  7299. E3_ENABLE_WRITE(oldstatus);
  7300. break;
  7301. #endif
  7302. #endif
  7303. #endif
  7304. }
  7305. #endif // !SWITCHING_EXTRUDER
  7306. }
  7307. #endif // EXTRUDER_RUNOUT_PREVENT
  7308. #if ENABLED(DUAL_X_CARRIAGE)
  7309. // handle delayed move timeout
  7310. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7311. // travel moves have been received so enact them
  7312. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7313. set_destination_to_current();
  7314. prepare_move_to_destination();
  7315. }
  7316. #endif
  7317. #if ENABLED(TEMP_STAT_LEDS)
  7318. handle_status_leds();
  7319. #endif
  7320. planner.check_axes_activity();
  7321. }
  7322. void kill(const char* lcd_msg) {
  7323. SERIAL_ERROR_START;
  7324. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7325. #if ENABLED(ULTRA_LCD)
  7326. kill_screen(lcd_msg);
  7327. #else
  7328. UNUSED(lcd_msg);
  7329. #endif
  7330. for (int i = 5; i--;) delay(100); // Wait a short time
  7331. cli(); // Stop interrupts
  7332. thermalManager.disable_all_heaters();
  7333. disable_all_steppers();
  7334. #if HAS_POWER_SWITCH
  7335. pinMode(PS_ON_PIN, INPUT);
  7336. #endif
  7337. suicide();
  7338. while (1) {
  7339. #if ENABLED(USE_WATCHDOG)
  7340. watchdog_reset();
  7341. #endif
  7342. } // Wait for reset
  7343. }
  7344. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7345. void handle_filament_runout() {
  7346. if (!filament_ran_out) {
  7347. filament_ran_out = true;
  7348. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7349. stepper.synchronize();
  7350. }
  7351. }
  7352. #endif // FILAMENT_RUNOUT_SENSOR
  7353. #if ENABLED(FAST_PWM_FAN)
  7354. void setPwmFrequency(uint8_t pin, int val) {
  7355. val &= 0x07;
  7356. switch (digitalPinToTimer(pin)) {
  7357. #if defined(TCCR0A)
  7358. case TIMER0A:
  7359. case TIMER0B:
  7360. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7361. // TCCR0B |= val;
  7362. break;
  7363. #endif
  7364. #if defined(TCCR1A)
  7365. case TIMER1A:
  7366. case TIMER1B:
  7367. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7368. // TCCR1B |= val;
  7369. break;
  7370. #endif
  7371. #if defined(TCCR2)
  7372. case TIMER2:
  7373. case TIMER2:
  7374. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7375. TCCR2 |= val;
  7376. break;
  7377. #endif
  7378. #if defined(TCCR2A)
  7379. case TIMER2A:
  7380. case TIMER2B:
  7381. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7382. TCCR2B |= val;
  7383. break;
  7384. #endif
  7385. #if defined(TCCR3A)
  7386. case TIMER3A:
  7387. case TIMER3B:
  7388. case TIMER3C:
  7389. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7390. TCCR3B |= val;
  7391. break;
  7392. #endif
  7393. #if defined(TCCR4A)
  7394. case TIMER4A:
  7395. case TIMER4B:
  7396. case TIMER4C:
  7397. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7398. TCCR4B |= val;
  7399. break;
  7400. #endif
  7401. #if defined(TCCR5A)
  7402. case TIMER5A:
  7403. case TIMER5B:
  7404. case TIMER5C:
  7405. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7406. TCCR5B |= val;
  7407. break;
  7408. #endif
  7409. }
  7410. }
  7411. #endif // FAST_PWM_FAN
  7412. void stop() {
  7413. thermalManager.disable_all_heaters();
  7414. if (IsRunning()) {
  7415. Running = false;
  7416. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7417. SERIAL_ERROR_START;
  7418. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7419. LCD_MESSAGEPGM(MSG_STOPPED);
  7420. }
  7421. }
  7422. float calculate_volumetric_multiplier(float diameter) {
  7423. if (!volumetric_enabled || diameter == 0) return 1.0;
  7424. float d2 = diameter * 0.5;
  7425. return 1.0 / (M_PI * d2 * d2);
  7426. }
  7427. void calculate_volumetric_multipliers() {
  7428. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7429. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7430. }