My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 262KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M108 - Cancel heatup and wait for the hotend and bed, this G-code is asynchronously handled in the get_serial_commands() parser
  151. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  152. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  153. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  154. * M110 - Set the current line number
  155. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  156. * M112 - Emergency stop
  157. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  158. * M114 - Output current position to serial port
  159. * M115 - Capabilities string
  160. * M117 - Display a message on the controller screen
  161. * M119 - Output Endstop status to serial port
  162. * M120 - Enable endstop detection
  163. * M121 - Disable endstop detection
  164. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  165. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  166. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  168. * M140 - Set bed target temp
  169. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  170. * M149 - Set temperature units
  171. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  172. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  173. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  174. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  175. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  176. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  177. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  178. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  179. * M205 - Set advanced settings. Current units apply:
  180. S<print> T<travel> minimum speeds
  181. B<minimum segment time>
  182. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  183. * M206 - Set additional homing offset
  184. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  185. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  186. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  187. Every normal extrude-only move will be classified as retract depending on the direction.
  188. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  189. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  190. * M221 - Set Flow Percentage: S<percent>
  191. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  192. * M240 - Trigger a camera to take a photograph
  193. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  194. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  195. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  196. * M301 - Set PID parameters P I and D
  197. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  198. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  199. * M304 - Set bed PID parameters P I and D
  200. * M380 - Activate solenoid on active extruder
  201. * M381 - Disable all solenoids
  202. * M400 - Finish all moves
  203. * M401 - Lower Z probe if present
  204. * M402 - Raise Z probe if present
  205. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  206. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  207. * M406 - Disable Filament Sensor extrusion control
  208. * M407 - Display measured filament diameter in millimeters
  209. * M410 - Quickstop. Abort all the planned moves
  210. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  211. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  212. * M428 - Set the home_offset logically based on the current_position
  213. * M500 - Store parameters in EEPROM
  214. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  215. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  216. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  217. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  218. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  219. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  220. * M666 - Set delta endstop adjustment
  221. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  222. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  223. * M907 - Set digital trimpot motor current using axis codes.
  224. * M908 - Control digital trimpot directly.
  225. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  226. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  227. * M350 - Set microstepping mode.
  228. * M351 - Toggle MS1 MS2 pins directly.
  229. *
  230. * ************ SCARA Specific - This can change to suit future G-code regulations
  231. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  232. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  233. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  234. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  235. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  236. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  237. * ************* SCARA End ***************
  238. *
  239. * ************ Custom codes - This can change to suit future G-code regulations
  240. * M100 - Watch Free Memory (For Debugging Only)
  241. * M928 - Start SD logging (M928 filename.g) - ended by M29
  242. * M999 - Restart after being stopped by error
  243. *
  244. * "T" Codes
  245. *
  246. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  247. *
  248. */
  249. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  250. void gcode_M100();
  251. #endif
  252. #if ENABLED(SDSUPPORT)
  253. CardReader card;
  254. #endif
  255. #if ENABLED(EXPERIMENTAL_I2CBUS)
  256. TWIBus i2c;
  257. #endif
  258. bool Running = true;
  259. uint8_t marlin_debug_flags = DEBUG_NONE;
  260. static float feedrate = 1500.0, saved_feedrate;
  261. float current_position[NUM_AXIS] = { 0.0 };
  262. static float destination[NUM_AXIS] = { 0.0 };
  263. bool axis_known_position[3] = { false };
  264. bool axis_homed[3] = { false };
  265. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  266. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  267. static char* current_command, *current_command_args;
  268. static uint8_t cmd_queue_index_r = 0,
  269. cmd_queue_index_w = 0,
  270. commands_in_queue = 0;
  271. #if ENABLED(INCH_MODE_SUPPORT)
  272. float linear_unit_factor = 1.0;
  273. float volumetric_unit_factor = 1.0;
  274. #endif
  275. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  276. TempUnit input_temp_units = TEMPUNIT_C;
  277. #endif
  278. const float homing_feedrate[] = HOMING_FEEDRATE;
  279. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  280. int feedrate_multiplier = 100; //100->1 200->2
  281. int saved_feedrate_multiplier;
  282. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  283. bool volumetric_enabled = false;
  284. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  285. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  286. // The distance that XYZ has been offset by G92. Reset by G28.
  287. float position_shift[3] = { 0 };
  288. // This offset is added to the configured home position.
  289. // Set by M206, M428, or menu item. Saved to EEPROM.
  290. float home_offset[3] = { 0 };
  291. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  292. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  293. // Software Endstops. Default to configured limits.
  294. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  295. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  296. #if FAN_COUNT > 0
  297. int fanSpeeds[FAN_COUNT] = { 0 };
  298. #endif
  299. // The active extruder (tool). Set with T<extruder> command.
  300. uint8_t active_extruder = 0;
  301. // Relative Mode. Enable with G91, disable with G90.
  302. static bool relative_mode = false;
  303. bool wait_for_heatup = true;
  304. const char errormagic[] PROGMEM = "Error:";
  305. const char echomagic[] PROGMEM = "echo:";
  306. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  307. static int serial_count = 0;
  308. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  309. static char* seen_pointer;
  310. // Next Immediate GCode Command pointer. NULL if none.
  311. const char* queued_commands_P = NULL;
  312. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  313. // Inactivity shutdown
  314. millis_t previous_cmd_ms = 0;
  315. static millis_t max_inactive_time = 0;
  316. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  317. // Print Job Timer
  318. #if ENABLED(PRINTCOUNTER)
  319. PrintCounter print_job_timer = PrintCounter();
  320. #else
  321. Stopwatch print_job_timer = Stopwatch();
  322. #endif
  323. // Buzzer
  324. #if HAS_BUZZER
  325. #if ENABLED(SPEAKER)
  326. Speaker buzzer;
  327. #else
  328. Buzzer buzzer;
  329. #endif
  330. #endif
  331. static uint8_t target_extruder;
  332. #if HAS_BED_PROBE
  333. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  334. #endif
  335. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  336. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  337. int xy_probe_speed = XY_PROBE_SPEED;
  338. bool bed_leveling_in_progress = false;
  339. #define XY_PROBE_FEEDRATE xy_probe_speed
  340. #elif defined(XY_PROBE_SPEED)
  341. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  342. #else
  343. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  344. #endif
  345. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  346. float z_endstop_adj = 0;
  347. #endif
  348. // Extruder offsets
  349. #if HOTENDS > 1
  350. #ifndef HOTEND_OFFSET_X
  351. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  352. #endif
  353. #ifndef HOTEND_OFFSET_Y
  354. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  355. #endif
  356. float hotend_offset[][HOTENDS] = {
  357. HOTEND_OFFSET_X,
  358. HOTEND_OFFSET_Y
  359. #if ENABLED(DUAL_X_CARRIAGE)
  360. , { 0 } // Z offsets for each extruder
  361. #endif
  362. };
  363. #endif
  364. #if HAS_Z_SERVO_ENDSTOP
  365. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  366. #endif
  367. #if ENABLED(BARICUDA)
  368. int baricuda_valve_pressure = 0;
  369. int baricuda_e_to_p_pressure = 0;
  370. #endif
  371. #if ENABLED(FWRETRACT)
  372. bool autoretract_enabled = false;
  373. bool retracted[EXTRUDERS] = { false };
  374. bool retracted_swap[EXTRUDERS] = { false };
  375. float retract_length = RETRACT_LENGTH;
  376. float retract_length_swap = RETRACT_LENGTH_SWAP;
  377. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  378. float retract_zlift = RETRACT_ZLIFT;
  379. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  380. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  381. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  382. #endif // FWRETRACT
  383. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  384. bool powersupply =
  385. #if ENABLED(PS_DEFAULT_OFF)
  386. false
  387. #else
  388. true
  389. #endif
  390. ;
  391. #endif
  392. #if ENABLED(DELTA)
  393. #define TOWER_1 X_AXIS
  394. #define TOWER_2 Y_AXIS
  395. #define TOWER_3 Z_AXIS
  396. float delta[3] = { 0 };
  397. #define SIN_60 0.8660254037844386
  398. #define COS_60 0.5
  399. float endstop_adj[3] = { 0 };
  400. // these are the default values, can be overriden with M665
  401. float delta_radius = DELTA_RADIUS;
  402. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  403. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  404. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  405. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  406. float delta_tower3_x = 0; // back middle tower
  407. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  408. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  409. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  410. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  411. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  412. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  413. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  414. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  415. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  416. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  417. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  418. int delta_grid_spacing[2] = { 0, 0 };
  419. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  420. #endif
  421. #else
  422. static bool home_all_axis = true;
  423. #endif
  424. #if ENABLED(SCARA)
  425. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  426. static float delta[3] = { 0 };
  427. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  428. #endif
  429. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  430. //Variables for Filament Sensor input
  431. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  432. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  433. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  434. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  435. int filwidth_delay_index1 = 0; //index into ring buffer
  436. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  437. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  438. #endif
  439. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  440. static bool filament_ran_out = false;
  441. #endif
  442. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  443. FilamentChangeMenuResponse filament_change_menu_response;
  444. #endif
  445. static bool send_ok[BUFSIZE];
  446. #if HAS_SERVOS
  447. Servo servo[NUM_SERVOS];
  448. #define MOVE_SERVO(I, P) servo[I].move(P)
  449. #if HAS_Z_SERVO_ENDSTOP
  450. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  451. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  452. #endif
  453. #endif
  454. #ifdef CHDK
  455. millis_t chdkHigh = 0;
  456. boolean chdkActive = false;
  457. #endif
  458. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  459. int lpq_len = 20;
  460. #endif
  461. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  462. // States for managing Marlin and host communication
  463. // Marlin sends messages if blocked or busy
  464. enum MarlinBusyState {
  465. NOT_BUSY, // Not in a handler
  466. IN_HANDLER, // Processing a GCode
  467. IN_PROCESS, // Known to be blocking command input (as in G29)
  468. PAUSED_FOR_USER, // Blocking pending any input
  469. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  470. };
  471. static MarlinBusyState busy_state = NOT_BUSY;
  472. static millis_t next_busy_signal_ms = 0;
  473. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  474. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  475. #else
  476. #define host_keepalive() ;
  477. #define KEEPALIVE_STATE(n) ;
  478. #endif // HOST_KEEPALIVE_FEATURE
  479. /**
  480. * ***************************************************************************
  481. * ******************************** FUNCTIONS ********************************
  482. * ***************************************************************************
  483. */
  484. void stop();
  485. void get_available_commands();
  486. void process_next_command();
  487. void prepare_move_to_destination();
  488. #if ENABLED(ARC_SUPPORT)
  489. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  490. #endif
  491. #if ENABLED(BEZIER_CURVE_SUPPORT)
  492. void plan_cubic_move(const float offset[4]);
  493. #endif
  494. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  495. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  496. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  497. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  498. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  499. static void report_current_position();
  500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  501. void print_xyz(const char* suffix, const float x, const float y, const float z) {
  502. SERIAL_ECHOPAIR("(", x);
  503. SERIAL_ECHOPAIR(", ", y);
  504. SERIAL_ECHOPAIR(", ", z);
  505. SERIAL_ECHOLNPGM(") ");
  506. SERIAL_ECHO(suffix);
  507. }
  508. void print_xyz(const char* suffix, const float xyz[]) {
  509. print_xyz(suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  510. }
  511. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  512. void print_xyz(const char* suffix, const vector_3 &xyz) {
  513. print_xyz(suffix, xyz.x, xyz.y, xyz.z);
  514. }
  515. #endif
  516. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  517. #endif
  518. #if ENABLED(DELTA) || ENABLED(SCARA)
  519. inline void sync_plan_position_delta() {
  520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  521. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  522. #endif
  523. calculate_delta(current_position);
  524. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  525. }
  526. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  527. #else
  528. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  529. #endif
  530. #if ENABLED(SDSUPPORT)
  531. #include "SdFatUtil.h"
  532. int freeMemory() { return SdFatUtil::FreeRam(); }
  533. #else
  534. extern "C" {
  535. extern unsigned int __bss_end;
  536. extern unsigned int __heap_start;
  537. extern void* __brkval;
  538. int freeMemory() {
  539. int free_memory;
  540. if ((int)__brkval == 0)
  541. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  542. else
  543. free_memory = ((int)&free_memory) - ((int)__brkval);
  544. return free_memory;
  545. }
  546. }
  547. #endif //!SDSUPPORT
  548. #if ENABLED(DIGIPOT_I2C)
  549. extern void digipot_i2c_set_current(int channel, float current);
  550. extern void digipot_i2c_init();
  551. #endif
  552. /**
  553. * Inject the next "immediate" command, when possible.
  554. * Return true if any immediate commands remain to inject.
  555. */
  556. static bool drain_queued_commands_P() {
  557. if (queued_commands_P != NULL) {
  558. size_t i = 0;
  559. char c, cmd[30];
  560. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  561. cmd[sizeof(cmd) - 1] = '\0';
  562. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  563. cmd[i] = '\0';
  564. if (enqueue_and_echo_command(cmd)) { // success?
  565. if (c) // newline char?
  566. queued_commands_P += i + 1; // advance to the next command
  567. else
  568. queued_commands_P = NULL; // nul char? no more commands
  569. }
  570. }
  571. return (queued_commands_P != NULL); // return whether any more remain
  572. }
  573. /**
  574. * Record one or many commands to run from program memory.
  575. * Aborts the current queue, if any.
  576. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  577. */
  578. void enqueue_and_echo_commands_P(const char* pgcode) {
  579. queued_commands_P = pgcode;
  580. drain_queued_commands_P(); // first command executed asap (when possible)
  581. }
  582. void clear_command_queue() {
  583. cmd_queue_index_r = cmd_queue_index_w;
  584. commands_in_queue = 0;
  585. }
  586. /**
  587. * Once a new command is in the ring buffer, call this to commit it
  588. */
  589. inline void _commit_command(bool say_ok) {
  590. send_ok[cmd_queue_index_w] = say_ok;
  591. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  592. commands_in_queue++;
  593. }
  594. /**
  595. * Copy a command directly into the main command buffer, from RAM.
  596. * Returns true if successfully adds the command
  597. */
  598. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  599. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  600. strcpy(command_queue[cmd_queue_index_w], cmd);
  601. _commit_command(say_ok);
  602. return true;
  603. }
  604. void enqueue_and_echo_command_now(const char* cmd) {
  605. while (!enqueue_and_echo_command(cmd)) idle();
  606. }
  607. /**
  608. * Enqueue with Serial Echo
  609. */
  610. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  611. if (_enqueuecommand(cmd, say_ok)) {
  612. SERIAL_ECHO_START;
  613. SERIAL_ECHOPGM(MSG_Enqueueing);
  614. SERIAL_ECHO(cmd);
  615. SERIAL_ECHOLNPGM("\"");
  616. return true;
  617. }
  618. return false;
  619. }
  620. void setup_killpin() {
  621. #if HAS_KILL
  622. SET_INPUT(KILL_PIN);
  623. WRITE(KILL_PIN, HIGH);
  624. #endif
  625. }
  626. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  627. void setup_filrunoutpin() {
  628. pinMode(FIL_RUNOUT_PIN, INPUT);
  629. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  630. WRITE(FIL_RUNOUT_PIN, HIGH);
  631. #endif
  632. }
  633. #endif
  634. // Set home pin
  635. void setup_homepin(void) {
  636. #if HAS_HOME
  637. SET_INPUT(HOME_PIN);
  638. WRITE(HOME_PIN, HIGH);
  639. #endif
  640. }
  641. void setup_photpin() {
  642. #if HAS_PHOTOGRAPH
  643. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  644. #endif
  645. }
  646. void setup_powerhold() {
  647. #if HAS_SUICIDE
  648. OUT_WRITE(SUICIDE_PIN, HIGH);
  649. #endif
  650. #if HAS_POWER_SWITCH
  651. #if ENABLED(PS_DEFAULT_OFF)
  652. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  653. #else
  654. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  655. #endif
  656. #endif
  657. }
  658. void suicide() {
  659. #if HAS_SUICIDE
  660. OUT_WRITE(SUICIDE_PIN, LOW);
  661. #endif
  662. }
  663. void servo_init() {
  664. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  665. servo[0].attach(SERVO0_PIN);
  666. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  667. #endif
  668. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  669. servo[1].attach(SERVO1_PIN);
  670. servo[1].detach();
  671. #endif
  672. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  673. servo[2].attach(SERVO2_PIN);
  674. servo[2].detach();
  675. #endif
  676. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  677. servo[3].attach(SERVO3_PIN);
  678. servo[3].detach();
  679. #endif
  680. #if HAS_Z_SERVO_ENDSTOP
  681. /**
  682. * Set position of Z Servo Endstop
  683. *
  684. * The servo might be deployed and positioned too low to stow
  685. * when starting up the machine or rebooting the board.
  686. * There's no way to know where the nozzle is positioned until
  687. * homing has been done - no homing with z-probe without init!
  688. *
  689. */
  690. STOW_Z_SERVO();
  691. #endif
  692. #if HAS_BED_PROBE
  693. endstops.enable_z_probe(false);
  694. #endif
  695. }
  696. /**
  697. * Stepper Reset (RigidBoard, et.al.)
  698. */
  699. #if HAS_STEPPER_RESET
  700. void disableStepperDrivers() {
  701. pinMode(STEPPER_RESET_PIN, OUTPUT);
  702. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  703. }
  704. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  705. #endif
  706. /**
  707. * Marlin entry-point: Set up before the program loop
  708. * - Set up the kill pin, filament runout, power hold
  709. * - Start the serial port
  710. * - Print startup messages and diagnostics
  711. * - Get EEPROM or default settings
  712. * - Initialize managers for:
  713. * • temperature
  714. * • planner
  715. * • watchdog
  716. * • stepper
  717. * • photo pin
  718. * • servos
  719. * • LCD controller
  720. * • Digipot I2C
  721. * • Z probe sled
  722. * • status LEDs
  723. */
  724. void setup() {
  725. #ifdef DISABLE_JTAG
  726. // Disable JTAG on AT90USB chips to free up pins for IO
  727. MCUCR = 0x80;
  728. MCUCR = 0x80;
  729. #endif
  730. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  731. setup_filrunoutpin();
  732. #endif
  733. setup_killpin();
  734. setup_powerhold();
  735. #if HAS_STEPPER_RESET
  736. disableStepperDrivers();
  737. #endif
  738. MYSERIAL.begin(BAUDRATE);
  739. SERIAL_PROTOCOLLNPGM("start");
  740. SERIAL_ECHO_START;
  741. // Check startup - does nothing if bootloader sets MCUSR to 0
  742. byte mcu = MCUSR;
  743. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  744. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  745. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  746. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  747. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  748. MCUSR = 0;
  749. SERIAL_ECHOPGM(MSG_MARLIN);
  750. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  751. #ifdef STRING_DISTRIBUTION_DATE
  752. #ifdef STRING_CONFIG_H_AUTHOR
  753. SERIAL_ECHO_START;
  754. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  755. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  756. SERIAL_ECHOPGM(MSG_AUTHOR);
  757. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  758. SERIAL_ECHOPGM("Compiled: ");
  759. SERIAL_ECHOLNPGM(__DATE__);
  760. #endif // STRING_CONFIG_H_AUTHOR
  761. #endif // STRING_DISTRIBUTION_DATE
  762. SERIAL_ECHO_START;
  763. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  764. SERIAL_ECHO(freeMemory());
  765. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  766. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  767. // Send "ok" after commands by default
  768. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  769. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  770. Config_RetrieveSettings();
  771. // Initialize current position based on home_offset
  772. memcpy(current_position, home_offset, sizeof(home_offset));
  773. #if ENABLED(DELTA) || ENABLED(SCARA)
  774. // Vital to init kinematic equivalent for X0 Y0 Z0
  775. SYNC_PLAN_POSITION_KINEMATIC();
  776. #endif
  777. thermalManager.init(); // Initialize temperature loop
  778. #if ENABLED(USE_WATCHDOG)
  779. watchdog_init();
  780. #endif
  781. stepper.init(); // Initialize stepper, this enables interrupts!
  782. setup_photpin();
  783. servo_init();
  784. #if HAS_CONTROLLERFAN
  785. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  786. #endif
  787. #if HAS_STEPPER_RESET
  788. enableStepperDrivers();
  789. #endif
  790. #if ENABLED(DIGIPOT_I2C)
  791. digipot_i2c_init();
  792. #endif
  793. #if ENABLED(DAC_STEPPER_CURRENT)
  794. dac_init();
  795. #endif
  796. #if ENABLED(Z_PROBE_SLED)
  797. pinMode(SLED_PIN, OUTPUT);
  798. digitalWrite(SLED_PIN, LOW); // turn it off
  799. #endif // Z_PROBE_SLED
  800. setup_homepin();
  801. #ifdef STAT_LED_RED
  802. pinMode(STAT_LED_RED, OUTPUT);
  803. digitalWrite(STAT_LED_RED, LOW); // turn it off
  804. #endif
  805. #ifdef STAT_LED_BLUE
  806. pinMode(STAT_LED_BLUE, OUTPUT);
  807. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  808. #endif
  809. lcd_init();
  810. #if ENABLED(SHOW_BOOTSCREEN)
  811. #if ENABLED(DOGLCD)
  812. delay(1000);
  813. #elif ENABLED(ULTRA_LCD)
  814. bootscreen();
  815. lcd_init();
  816. #endif
  817. #endif
  818. }
  819. /**
  820. * The main Marlin program loop
  821. *
  822. * - Save or log commands to SD
  823. * - Process available commands (if not saving)
  824. * - Call heater manager
  825. * - Call inactivity manager
  826. * - Call endstop manager
  827. * - Call LCD update
  828. */
  829. void loop() {
  830. if (commands_in_queue < BUFSIZE) get_available_commands();
  831. #if ENABLED(SDSUPPORT)
  832. card.checkautostart(false);
  833. #endif
  834. if (commands_in_queue) {
  835. #if ENABLED(SDSUPPORT)
  836. if (card.saving) {
  837. char* command = command_queue[cmd_queue_index_r];
  838. if (strstr_P(command, PSTR("M29"))) {
  839. // M29 closes the file
  840. card.closefile();
  841. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  842. ok_to_send();
  843. }
  844. else {
  845. // Write the string from the read buffer to SD
  846. card.write_command(command);
  847. if (card.logging)
  848. process_next_command(); // The card is saving because it's logging
  849. else
  850. ok_to_send();
  851. }
  852. }
  853. else
  854. process_next_command();
  855. #else
  856. process_next_command();
  857. #endif // SDSUPPORT
  858. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  859. if (commands_in_queue) {
  860. --commands_in_queue;
  861. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  862. }
  863. }
  864. endstops.report_state();
  865. idle();
  866. }
  867. void gcode_line_error(const char* err, bool doFlush = true) {
  868. SERIAL_ERROR_START;
  869. serialprintPGM(err);
  870. SERIAL_ERRORLN(gcode_LastN);
  871. //Serial.println(gcode_N);
  872. if (doFlush) FlushSerialRequestResend();
  873. serial_count = 0;
  874. }
  875. inline void get_serial_commands() {
  876. static char serial_line_buffer[MAX_CMD_SIZE];
  877. static boolean serial_comment_mode = false;
  878. // If the command buffer is empty for too long,
  879. // send "wait" to indicate Marlin is still waiting.
  880. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  881. static millis_t last_command_time = 0;
  882. millis_t ms = millis();
  883. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  884. SERIAL_ECHOLNPGM(MSG_WAIT);
  885. last_command_time = ms;
  886. }
  887. #endif
  888. /**
  889. * Loop while serial characters are incoming and the queue is not full
  890. */
  891. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  892. char serial_char = MYSERIAL.read();
  893. /**
  894. * If the character ends the line
  895. */
  896. if (serial_char == '\n' || serial_char == '\r') {
  897. serial_comment_mode = false; // end of line == end of comment
  898. if (!serial_count) continue; // skip empty lines
  899. serial_line_buffer[serial_count] = 0; // terminate string
  900. serial_count = 0; //reset buffer
  901. char* command = serial_line_buffer;
  902. while (*command == ' ') command++; // skip any leading spaces
  903. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  904. char* apos = strchr(command, '*');
  905. if (npos) {
  906. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  907. if (M110) {
  908. char* n2pos = strchr(command + 4, 'N');
  909. if (n2pos) npos = n2pos;
  910. }
  911. gcode_N = strtol(npos + 1, NULL, 10);
  912. if (gcode_N != gcode_LastN + 1 && !M110) {
  913. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  914. return;
  915. }
  916. if (apos) {
  917. byte checksum = 0, count = 0;
  918. while (command[count] != '*') checksum ^= command[count++];
  919. if (strtol(apos + 1, NULL, 10) != checksum) {
  920. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  921. return;
  922. }
  923. // if no errors, continue parsing
  924. }
  925. else {
  926. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  927. return;
  928. }
  929. gcode_LastN = gcode_N;
  930. // if no errors, continue parsing
  931. }
  932. else if (apos) { // No '*' without 'N'
  933. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  934. return;
  935. }
  936. // Movement commands alert when stopped
  937. if (IsStopped()) {
  938. char* gpos = strchr(command, 'G');
  939. if (gpos) {
  940. int codenum = strtol(gpos + 1, NULL, 10);
  941. switch (codenum) {
  942. case 0:
  943. case 1:
  944. case 2:
  945. case 3:
  946. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  947. LCD_MESSAGEPGM(MSG_STOPPED);
  948. break;
  949. }
  950. }
  951. }
  952. // If command was e-stop process now
  953. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  954. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  955. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  956. last_command_time = ms;
  957. #endif
  958. // Add the command to the queue
  959. _enqueuecommand(serial_line_buffer, true);
  960. }
  961. else if (serial_count >= MAX_CMD_SIZE - 1) {
  962. // Keep fetching, but ignore normal characters beyond the max length
  963. // The command will be injected when EOL is reached
  964. }
  965. else if (serial_char == '\\') { // Handle escapes
  966. if (MYSERIAL.available() > 0) {
  967. // if we have one more character, copy it over
  968. serial_char = MYSERIAL.read();
  969. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  970. }
  971. // otherwise do nothing
  972. }
  973. else { // it's not a newline, carriage return or escape char
  974. if (serial_char == ';') serial_comment_mode = true;
  975. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  976. }
  977. } // queue has space, serial has data
  978. }
  979. #if ENABLED(SDSUPPORT)
  980. inline void get_sdcard_commands() {
  981. static bool stop_buffering = false,
  982. sd_comment_mode = false;
  983. if (!card.sdprinting) return;
  984. /**
  985. * '#' stops reading from SD to the buffer prematurely, so procedural
  986. * macro calls are possible. If it occurs, stop_buffering is triggered
  987. * and the buffer is run dry; this character _can_ occur in serial com
  988. * due to checksums, however, no checksums are used in SD printing.
  989. */
  990. if (commands_in_queue == 0) stop_buffering = false;
  991. uint16_t sd_count = 0;
  992. bool card_eof = card.eof();
  993. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  994. int16_t n = card.get();
  995. char sd_char = (char)n;
  996. card_eof = card.eof();
  997. if (card_eof || n == -1
  998. || sd_char == '\n' || sd_char == '\r'
  999. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1000. ) {
  1001. if (card_eof) {
  1002. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1003. print_job_timer.stop();
  1004. char time[30];
  1005. millis_t t = print_job_timer.duration();
  1006. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  1007. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  1008. SERIAL_ECHO_START;
  1009. SERIAL_ECHOLN(time);
  1010. lcd_setstatus(time, true);
  1011. card.printingHasFinished();
  1012. card.checkautostart(true);
  1013. }
  1014. else if (n == -1) {
  1015. SERIAL_ERROR_START;
  1016. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1017. }
  1018. if (sd_char == '#') stop_buffering = true;
  1019. sd_comment_mode = false; //for new command
  1020. if (!sd_count) continue; //skip empty lines
  1021. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1022. sd_count = 0; //clear buffer
  1023. _commit_command(false);
  1024. }
  1025. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1026. /**
  1027. * Keep fetching, but ignore normal characters beyond the max length
  1028. * The command will be injected when EOL is reached
  1029. */
  1030. }
  1031. else {
  1032. if (sd_char == ';') sd_comment_mode = true;
  1033. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1034. }
  1035. }
  1036. }
  1037. #endif // SDSUPPORT
  1038. /**
  1039. * Add to the circular command queue the next command from:
  1040. * - The command-injection queue (queued_commands_P)
  1041. * - The active serial input (usually USB)
  1042. * - The SD card file being actively printed
  1043. */
  1044. void get_available_commands() {
  1045. // if any immediate commands remain, don't get other commands yet
  1046. if (drain_queued_commands_P()) return;
  1047. get_serial_commands();
  1048. #if ENABLED(SDSUPPORT)
  1049. get_sdcard_commands();
  1050. #endif
  1051. }
  1052. inline bool code_has_value() {
  1053. int i = 1;
  1054. char c = seen_pointer[i];
  1055. while (c == ' ') c = seen_pointer[++i];
  1056. if (c == '-' || c == '+') c = seen_pointer[++i];
  1057. if (c == '.') c = seen_pointer[++i];
  1058. return NUMERIC(c);
  1059. }
  1060. inline float code_value_float() {
  1061. float ret;
  1062. char* e = strchr(seen_pointer, 'E');
  1063. if (e) {
  1064. *e = 0;
  1065. ret = strtod(seen_pointer + 1, NULL);
  1066. *e = 'E';
  1067. }
  1068. else
  1069. ret = strtod(seen_pointer + 1, NULL);
  1070. return ret;
  1071. }
  1072. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1073. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1074. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1075. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1076. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1077. inline bool code_value_bool() { return code_value_byte() > 0; }
  1078. #if ENABLED(INCH_MODE_SUPPORT)
  1079. inline void set_input_linear_units(LinearUnit units) {
  1080. switch (units) {
  1081. case LINEARUNIT_INCH:
  1082. linear_unit_factor = 25.4;
  1083. break;
  1084. case LINEARUNIT_MM:
  1085. default:
  1086. linear_unit_factor = 1.0;
  1087. break;
  1088. }
  1089. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1090. }
  1091. inline float axis_unit_factor(int axis) {
  1092. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1093. }
  1094. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1095. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1096. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1097. #else
  1098. inline float code_value_linear_units() { return code_value_float(); }
  1099. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1100. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1101. #endif
  1102. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1103. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1104. float code_value_temp_abs() {
  1105. switch (input_temp_units) {
  1106. case TEMPUNIT_C:
  1107. return code_value_float();
  1108. case TEMPUNIT_F:
  1109. return (code_value_float() - 32) / 1.8;
  1110. case TEMPUNIT_K:
  1111. return code_value_float() - 272.15;
  1112. default:
  1113. return code_value_float();
  1114. }
  1115. }
  1116. float code_value_temp_diff() {
  1117. switch (input_temp_units) {
  1118. case TEMPUNIT_C:
  1119. case TEMPUNIT_K:
  1120. return code_value_float();
  1121. case TEMPUNIT_F:
  1122. return code_value_float() / 1.8;
  1123. default:
  1124. return code_value_float();
  1125. }
  1126. }
  1127. #else
  1128. float code_value_temp_abs() { return code_value_float(); }
  1129. float code_value_temp_diff() { return code_value_float(); }
  1130. #endif
  1131. inline millis_t code_value_millis() { return code_value_ulong(); }
  1132. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1133. bool code_seen(char code) {
  1134. seen_pointer = strchr(current_command_args, code);
  1135. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1136. }
  1137. /**
  1138. * Set target_extruder from the T parameter or the active_extruder
  1139. *
  1140. * Returns TRUE if the target is invalid
  1141. */
  1142. bool get_target_extruder_from_command(int code) {
  1143. if (code_seen('T')) {
  1144. uint8_t t = code_value_byte();
  1145. if (t >= EXTRUDERS) {
  1146. SERIAL_ECHO_START;
  1147. SERIAL_CHAR('M');
  1148. SERIAL_ECHO(code);
  1149. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1150. SERIAL_EOL;
  1151. return true;
  1152. }
  1153. target_extruder = t;
  1154. }
  1155. else
  1156. target_extruder = active_extruder;
  1157. return false;
  1158. }
  1159. #define DEFINE_PGM_READ_ANY(type, reader) \
  1160. static inline type pgm_read_any(const type *p) \
  1161. { return pgm_read_##reader##_near(p); }
  1162. DEFINE_PGM_READ_ANY(float, float);
  1163. DEFINE_PGM_READ_ANY(signed char, byte);
  1164. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1165. static const PROGMEM type array##_P[3] = \
  1166. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1167. static inline type array(int axis) \
  1168. { return pgm_read_any(&array##_P[axis]); }
  1169. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1170. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1171. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1172. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1173. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1174. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1175. #if ENABLED(DUAL_X_CARRIAGE)
  1176. #define DXC_FULL_CONTROL_MODE 0
  1177. #define DXC_AUTO_PARK_MODE 1
  1178. #define DXC_DUPLICATION_MODE 2
  1179. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1180. static float x_home_pos(int extruder) {
  1181. if (extruder == 0)
  1182. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1183. else
  1184. /**
  1185. * In dual carriage mode the extruder offset provides an override of the
  1186. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1187. * This allow soft recalibration of the second extruder offset position
  1188. * without firmware reflash (through the M218 command).
  1189. */
  1190. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1191. }
  1192. static int x_home_dir(int extruder) {
  1193. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1194. }
  1195. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1196. static bool active_extruder_parked = false; // used in mode 1 & 2
  1197. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1198. static millis_t delayed_move_time = 0; // used in mode 1
  1199. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1200. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1201. bool extruder_duplication_enabled = false; // used in mode 2
  1202. #endif //DUAL_X_CARRIAGE
  1203. /**
  1204. * Software endstops can be used to monitor the open end of
  1205. * an axis that has a hardware endstop on the other end. Or
  1206. * they can prevent axes from moving past endstops and grinding.
  1207. *
  1208. * To keep doing their job as the coordinate system changes,
  1209. * the software endstop positions must be refreshed to remain
  1210. * at the same positions relative to the machine.
  1211. */
  1212. static void update_software_endstops(AxisEnum axis) {
  1213. float offs = home_offset[axis] + position_shift[axis];
  1214. #if ENABLED(DUAL_X_CARRIAGE)
  1215. if (axis == X_AXIS) {
  1216. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1217. if (active_extruder != 0) {
  1218. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1219. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1220. return;
  1221. }
  1222. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1223. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1224. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1225. return;
  1226. }
  1227. }
  1228. else
  1229. #endif
  1230. {
  1231. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1232. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1233. }
  1234. }
  1235. /**
  1236. * Change the home offset for an axis, update the current
  1237. * position and the software endstops to retain the same
  1238. * relative distance to the new home.
  1239. *
  1240. * Since this changes the current_position, code should
  1241. * call sync_plan_position soon after this.
  1242. */
  1243. static void set_home_offset(AxisEnum axis, float v) {
  1244. current_position[axis] += v - home_offset[axis];
  1245. home_offset[axis] = v;
  1246. update_software_endstops(axis);
  1247. }
  1248. static void set_axis_is_at_home(AxisEnum axis) {
  1249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1250. if (DEBUGGING(LEVELING)) {
  1251. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1252. SERIAL_ECHOLNPGM(")");
  1253. }
  1254. #endif
  1255. position_shift[axis] = 0;
  1256. #if ENABLED(DUAL_X_CARRIAGE)
  1257. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1258. if (active_extruder != 0)
  1259. current_position[X_AXIS] = x_home_pos(active_extruder);
  1260. else
  1261. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1262. update_software_endstops(X_AXIS);
  1263. return;
  1264. }
  1265. #endif
  1266. #if ENABLED(SCARA)
  1267. if (axis == X_AXIS || axis == Y_AXIS) {
  1268. float homeposition[3];
  1269. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1270. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1271. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1272. /**
  1273. * Works out real Homeposition angles using inverse kinematics,
  1274. * and calculates homing offset using forward kinematics
  1275. */
  1276. calculate_delta(homeposition);
  1277. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1278. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1279. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1280. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1281. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1282. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1283. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1284. calculate_SCARA_forward_Transform(delta);
  1285. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1286. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1287. current_position[axis] = delta[axis];
  1288. /**
  1289. * SCARA home positions are based on configuration since the actual
  1290. * limits are determined by the inverse kinematic transform.
  1291. */
  1292. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1293. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1294. }
  1295. else
  1296. #endif
  1297. {
  1298. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1299. update_software_endstops(axis);
  1300. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1301. if (axis == Z_AXIS) {
  1302. current_position[Z_AXIS] -= zprobe_zoffset;
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) {
  1305. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1306. SERIAL_EOL;
  1307. }
  1308. #endif
  1309. }
  1310. #endif
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) {
  1313. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1314. DEBUG_POS("", current_position);
  1315. }
  1316. #endif
  1317. }
  1318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1319. if (DEBUGGING(LEVELING)) {
  1320. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1321. SERIAL_ECHOLNPGM(")");
  1322. }
  1323. #endif
  1324. }
  1325. /**
  1326. * Some planner shorthand inline functions
  1327. */
  1328. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1329. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1330. int hbd = homing_bump_divisor[axis];
  1331. if (hbd < 1) {
  1332. hbd = 10;
  1333. SERIAL_ECHO_START;
  1334. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1335. }
  1336. feedrate = homing_feedrate[axis] / hbd;
  1337. }
  1338. //
  1339. // line_to_current_position
  1340. // Move the planner to the current position from wherever it last moved
  1341. // (or from wherever it has been told it is located).
  1342. //
  1343. inline void line_to_current_position() {
  1344. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1345. }
  1346. inline void line_to_z(float zPosition) {
  1347. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1348. }
  1349. //
  1350. // line_to_destination
  1351. // Move the planner, not necessarily synced with current_position
  1352. //
  1353. inline void line_to_destination(float mm_m) {
  1354. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1355. }
  1356. inline void line_to_destination() { line_to_destination(feedrate); }
  1357. /**
  1358. * sync_plan_position
  1359. * Set planner / stepper positions to the cartesian current_position.
  1360. * The stepper code translates these coordinates into step units.
  1361. * Allows translation between steps and millimeters for cartesian & core robots
  1362. */
  1363. inline void sync_plan_position() {
  1364. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1365. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1366. #endif
  1367. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1368. }
  1369. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1370. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1371. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1372. //
  1373. // Prepare to do endstop or probe moves
  1374. // with custom feedrates.
  1375. //
  1376. // - Save current feedrates
  1377. // - Reset the rate multiplier
  1378. // - Reset the command timeout
  1379. // - Enable the endstops (for endstop moves)
  1380. //
  1381. static void setup_for_endstop_or_probe_move() {
  1382. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1383. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1384. #endif
  1385. saved_feedrate = feedrate;
  1386. saved_feedrate_multiplier = feedrate_multiplier;
  1387. feedrate_multiplier = 100;
  1388. refresh_cmd_timeout();
  1389. }
  1390. static void setup_for_endstop_move() {
  1391. setup_for_endstop_or_probe_move();
  1392. endstops.enable();
  1393. }
  1394. static void clean_up_after_endstop_or_probe_move() {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1397. #endif
  1398. feedrate = saved_feedrate;
  1399. feedrate_multiplier = saved_feedrate_multiplier;
  1400. refresh_cmd_timeout();
  1401. }
  1402. #if HAS_BED_PROBE
  1403. #if ENABLED(DELTA)
  1404. /**
  1405. * Calculate delta, start a line, and set current_position to destination
  1406. */
  1407. void prepare_move_to_destination_raw() {
  1408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1409. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1410. #endif
  1411. refresh_cmd_timeout();
  1412. calculate_delta(destination);
  1413. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1414. set_current_to_destination();
  1415. }
  1416. #endif
  1417. /**
  1418. * Plan a move to (X, Y, Z) and set the current_position
  1419. * The final current_position may not be the one that was requested
  1420. */
  1421. static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
  1422. float old_feedrate = feedrate;
  1423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1424. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1425. #endif
  1426. #if ENABLED(DELTA)
  1427. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1428. destination[X_AXIS] = x;
  1429. destination[Y_AXIS] = y;
  1430. destination[Z_AXIS] = z;
  1431. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1432. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1433. else
  1434. prepare_move_to_destination(); // this will also set_current_to_destination
  1435. #else
  1436. // If Z needs to raise, do it before moving XY
  1437. if (current_position[Z_AXIS] < z) {
  1438. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1439. current_position[Z_AXIS] = z;
  1440. line_to_current_position();
  1441. }
  1442. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1443. current_position[X_AXIS] = x;
  1444. current_position[Y_AXIS] = y;
  1445. line_to_current_position();
  1446. // If Z needs to lower, do it after moving XY
  1447. if (current_position[Z_AXIS] > z) {
  1448. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1449. current_position[Z_AXIS] = z;
  1450. line_to_current_position();
  1451. }
  1452. #endif
  1453. stepper.synchronize();
  1454. feedrate = old_feedrate;
  1455. }
  1456. inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
  1457. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
  1458. }
  1459. inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
  1460. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
  1461. }
  1462. /**
  1463. * Raise Z to a minimum height to make room for a probe to move
  1464. *
  1465. * zprobe_zoffset: Negative of the Z height where the probe engages
  1466. * z_raise: The probing raise distance
  1467. *
  1468. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1469. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1470. */
  1471. inline void do_probe_raise(float z_raise) {
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) {
  1474. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1475. SERIAL_ECHOLNPGM(")");
  1476. }
  1477. #endif
  1478. float z_dest = home_offset[Z_AXIS] + z_raise;
  1479. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1480. z_dest -= zprobe_zoffset;
  1481. if (z_dest > current_position[Z_AXIS])
  1482. do_blocking_move_to_z(z_dest);
  1483. }
  1484. #endif //HAS_BED_PROBE
  1485. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE
  1486. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1487. const bool xx = x && !axis_homed[X_AXIS],
  1488. yy = y && !axis_homed[Y_AXIS],
  1489. zz = z && !axis_homed[Z_AXIS];
  1490. if (xx || yy || zz) {
  1491. SERIAL_ECHO_START;
  1492. SERIAL_ECHOPGM(MSG_HOME " ");
  1493. if (xx) SERIAL_ECHOPGM(MSG_X);
  1494. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1495. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1496. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1497. #if ENABLED(ULTRA_LCD)
  1498. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1499. strcat_P(message, PSTR(MSG_HOME " "));
  1500. if (xx) strcat_P(message, PSTR(MSG_X));
  1501. if (yy) strcat_P(message, PSTR(MSG_Y));
  1502. if (zz) strcat_P(message, PSTR(MSG_Z));
  1503. strcat_P(message, PSTR(" " MSG_FIRST));
  1504. lcd_setstatus(message);
  1505. #endif
  1506. return true;
  1507. }
  1508. return false;
  1509. }
  1510. #endif
  1511. #if ENABLED(Z_PROBE_SLED)
  1512. #ifndef SLED_DOCKING_OFFSET
  1513. #define SLED_DOCKING_OFFSET 0
  1514. #endif
  1515. /**
  1516. * Method to dock/undock a sled designed by Charles Bell.
  1517. *
  1518. * stow[in] If false, move to MAX_X and engage the solenoid
  1519. * If true, move to MAX_X and release the solenoid
  1520. */
  1521. static void dock_sled(bool stow) {
  1522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1523. if (DEBUGGING(LEVELING)) {
  1524. SERIAL_ECHOPAIR("dock_sled(", stow);
  1525. SERIAL_ECHOLNPGM(")");
  1526. }
  1527. #endif
  1528. // Dock sled a bit closer to ensure proper capturing
  1529. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1530. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1531. }
  1532. #endif // Z_PROBE_SLED
  1533. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1534. void run_deploy_moves_script() {
  1535. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1536. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1537. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1538. #endif
  1539. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1540. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1541. #endif
  1542. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1543. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1544. #endif
  1545. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1546. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1547. #endif
  1548. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1549. #endif
  1550. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1551. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1552. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1553. #endif
  1554. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1555. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1558. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1559. #endif
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1562. #endif
  1563. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1564. #endif
  1565. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1566. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1567. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1568. #endif
  1569. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1570. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1573. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1577. #endif
  1578. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1579. #endif
  1580. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1581. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1582. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1583. #endif
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1592. #endif
  1593. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1594. #endif
  1595. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1596. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1597. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1607. #endif
  1608. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1609. #endif
  1610. }
  1611. void run_stow_moves_script() {
  1612. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1613. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1614. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1617. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1620. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1623. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1624. #endif
  1625. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1626. #endif
  1627. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1628. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1629. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1632. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1635. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1638. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1639. #endif
  1640. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1641. #endif
  1642. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1643. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1644. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1647. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1650. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1653. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1654. #endif
  1655. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1656. #endif
  1657. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1658. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1659. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1662. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1665. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1668. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1669. #endif
  1670. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1671. #endif
  1672. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1673. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1674. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1675. #endif
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1677. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1680. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1683. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1684. #endif
  1685. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1686. #endif
  1687. }
  1688. #endif
  1689. #if HAS_BED_PROBE
  1690. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1691. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1692. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1693. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1694. #else
  1695. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1696. #endif
  1697. #endif
  1698. #define DEPLOY_PROBE() set_probe_deployed( true )
  1699. #define STOW_PROBE() set_probe_deployed( false )
  1700. // returns false for ok and true for failure
  1701. static bool set_probe_deployed(bool deploy) {
  1702. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1703. if (DEBUGGING(LEVELING)) {
  1704. DEBUG_POS("set_probe_deployed", current_position);
  1705. SERIAL_ECHOPAIR("deploy: ", deploy);
  1706. }
  1707. #endif
  1708. if (endstops.z_probe_enabled == deploy) return false;
  1709. // Make room for probe
  1710. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1711. #if ENABLED(Z_PROBE_SLED)
  1712. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1713. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1714. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1715. #endif
  1716. float oldXpos = current_position[X_AXIS]; // save x position
  1717. float oldYpos = current_position[Y_AXIS]; // save y position
  1718. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1719. // If endstop is already false, the Z probe is deployed
  1720. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1721. // Would a goto be less ugly?
  1722. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1723. // for a triggered when stowed manual probe.
  1724. #endif
  1725. #if ENABLED(Z_PROBE_SLED)
  1726. dock_sled(!deploy);
  1727. #elif HAS_Z_SERVO_ENDSTOP
  1728. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1729. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1730. if (!deploy) run_stow_moves_script();
  1731. else run_deploy_moves_script();
  1732. #else
  1733. // Nothing to be done. Just enable_z_probe below...
  1734. #endif
  1735. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1736. }; // opened before the probe specific actions
  1737. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1738. if (IsRunning()) {
  1739. SERIAL_ERROR_START;
  1740. SERIAL_ERRORLNPGM("Z-Probe failed");
  1741. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1742. }
  1743. stop();
  1744. return true;
  1745. }
  1746. #endif
  1747. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1748. endstops.enable_z_probe( deploy );
  1749. return false;
  1750. }
  1751. // Do a single Z probe and return with current_position[Z_AXIS]
  1752. // at the height where the probe triggered.
  1753. static float run_z_probe() {
  1754. float old_feedrate = feedrate;
  1755. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1756. refresh_cmd_timeout();
  1757. #if ENABLED(DELTA)
  1758. float start_z = current_position[Z_AXIS];
  1759. long start_steps = stepper.position(Z_AXIS);
  1760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1761. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1762. #endif
  1763. // move down slowly until you find the bed
  1764. feedrate = homing_feedrate[Z_AXIS] / 4;
  1765. destination[Z_AXIS] = -10;
  1766. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1767. stepper.synchronize();
  1768. endstops.hit_on_purpose(); // clear endstop hit flags
  1769. /**
  1770. * We have to let the planner know where we are right now as it
  1771. * is not where we said to go.
  1772. */
  1773. long stop_steps = stepper.position(Z_AXIS);
  1774. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1775. current_position[Z_AXIS] = mm;
  1776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1777. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1778. #endif
  1779. #else // !DELTA
  1780. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1781. planner.bed_level_matrix.set_to_identity();
  1782. #endif
  1783. feedrate = homing_feedrate[Z_AXIS];
  1784. // Move down until the Z probe (or endstop?) is triggered
  1785. float zPosition = -(Z_MAX_LENGTH + 10);
  1786. line_to_z(zPosition);
  1787. stepper.synchronize();
  1788. // Tell the planner where we ended up - Get this from the stepper handler
  1789. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1790. planner.set_position_mm(
  1791. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1792. current_position[E_AXIS]
  1793. );
  1794. // move up the retract distance
  1795. zPosition += home_bump_mm(Z_AXIS);
  1796. line_to_z(zPosition);
  1797. stepper.synchronize();
  1798. endstops.hit_on_purpose(); // clear endstop hit flags
  1799. // move back down slowly to find bed
  1800. set_homing_bump_feedrate(Z_AXIS);
  1801. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1802. line_to_z(zPosition);
  1803. stepper.synchronize();
  1804. endstops.hit_on_purpose(); // clear endstop hit flags
  1805. // Get the current stepper position after bumping an endstop
  1806. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1808. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1809. #endif
  1810. #endif // !DELTA
  1811. SYNC_PLAN_POSITION_KINEMATIC();
  1812. feedrate = old_feedrate;
  1813. return current_position[Z_AXIS];
  1814. }
  1815. inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
  1816. do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
  1817. }
  1818. //
  1819. // - Move to the given XY
  1820. // - Deploy the probe, if not already deployed
  1821. // - Probe the bed, get the Z position
  1822. // - Depending on the 'stow' flag
  1823. // - Stow the probe, or
  1824. // - Raise to the BETWEEN height
  1825. // - Return the probed Z position
  1826. //
  1827. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1829. if (DEBUGGING(LEVELING)) {
  1830. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1831. SERIAL_ECHOPAIR(", ", y);
  1832. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1833. SERIAL_ECHOLNPGM(")");
  1834. DEBUG_POS("", current_position);
  1835. }
  1836. #endif
  1837. float old_feedrate = feedrate;
  1838. // Ensure a minimum height before moving the probe
  1839. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1840. // Move to the XY where we shall probe
  1841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1842. if (DEBUGGING(LEVELING)) {
  1843. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1844. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1845. SERIAL_ECHOLNPGM(")");
  1846. }
  1847. #endif
  1848. feedrate = XY_PROBE_FEEDRATE;
  1849. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1851. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1852. #endif
  1853. if (DEPLOY_PROBE()) return NAN;
  1854. float measured_z = run_z_probe();
  1855. if (stow) {
  1856. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1857. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1858. #endif
  1859. if (STOW_PROBE()) return NAN;
  1860. }
  1861. else {
  1862. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1863. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1864. #endif
  1865. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1866. }
  1867. if (verbose_level > 2) {
  1868. SERIAL_PROTOCOLPGM("Bed X: ");
  1869. SERIAL_PROTOCOL_F(x, 3);
  1870. SERIAL_PROTOCOLPGM(" Y: ");
  1871. SERIAL_PROTOCOL_F(y, 3);
  1872. SERIAL_PROTOCOLPGM(" Z: ");
  1873. SERIAL_PROTOCOL_F(measured_z, 3);
  1874. SERIAL_EOL;
  1875. }
  1876. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1877. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1878. #endif
  1879. feedrate = old_feedrate;
  1880. return measured_z;
  1881. }
  1882. #endif // HAS_BED_PROBE
  1883. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1884. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1885. #if DISABLED(DELTA)
  1886. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1887. //planner.bed_level_matrix.debug("bed level before");
  1888. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1889. planner.bed_level_matrix.set_to_identity();
  1890. if (DEBUGGING(LEVELING)) {
  1891. vector_3 uncorrected_position = planner.adjusted_position();
  1892. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1893. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1894. }
  1895. #endif
  1896. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1897. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1898. vector_3 corrected_position = planner.adjusted_position();
  1899. current_position[X_AXIS] = corrected_position.x;
  1900. current_position[Y_AXIS] = corrected_position.y;
  1901. current_position[Z_AXIS] = corrected_position.z;
  1902. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1903. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1904. #endif
  1905. SYNC_PLAN_POSITION_KINEMATIC();
  1906. }
  1907. #endif // !DELTA
  1908. #else // !AUTO_BED_LEVELING_GRID
  1909. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1910. planner.bed_level_matrix.set_to_identity();
  1911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1912. if (DEBUGGING(LEVELING)) {
  1913. vector_3 uncorrected_position = planner.adjusted_position();
  1914. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1915. }
  1916. #endif
  1917. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1918. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1919. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1920. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1921. if (planeNormal.z < 0) {
  1922. planeNormal.x = -planeNormal.x;
  1923. planeNormal.y = -planeNormal.y;
  1924. planeNormal.z = -planeNormal.z;
  1925. }
  1926. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1927. vector_3 corrected_position = planner.adjusted_position();
  1928. current_position[X_AXIS] = corrected_position.x;
  1929. current_position[Y_AXIS] = corrected_position.y;
  1930. current_position[Z_AXIS] = corrected_position.z;
  1931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1932. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1933. #endif
  1934. SYNC_PLAN_POSITION_KINEMATIC();
  1935. }
  1936. #endif // !AUTO_BED_LEVELING_GRID
  1937. #if ENABLED(DELTA)
  1938. /**
  1939. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1940. */
  1941. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1942. if (bed_level[x][y] != 0.0) {
  1943. return; // Don't overwrite good values.
  1944. }
  1945. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1946. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1947. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1948. float median = c; // Median is robust (ignores outliers).
  1949. if (a < b) {
  1950. if (b < c) median = b;
  1951. if (c < a) median = a;
  1952. }
  1953. else { // b <= a
  1954. if (c < b) median = b;
  1955. if (a < c) median = a;
  1956. }
  1957. bed_level[x][y] = median;
  1958. }
  1959. /**
  1960. * Fill in the unprobed points (corners of circular print surface)
  1961. * using linear extrapolation, away from the center.
  1962. */
  1963. static void extrapolate_unprobed_bed_level() {
  1964. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1965. for (int y = 0; y <= half; y++) {
  1966. for (int x = 0; x <= half; x++) {
  1967. if (x + y < 3) continue;
  1968. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1969. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1970. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1971. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1972. }
  1973. }
  1974. }
  1975. /**
  1976. * Print calibration results for plotting or manual frame adjustment.
  1977. */
  1978. static void print_bed_level() {
  1979. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1980. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1981. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1982. SERIAL_PROTOCOLCHAR(' ');
  1983. }
  1984. SERIAL_EOL;
  1985. }
  1986. }
  1987. /**
  1988. * Reset calibration results to zero.
  1989. */
  1990. void reset_bed_level() {
  1991. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1992. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1993. #endif
  1994. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1995. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1996. bed_level[x][y] = 0.0;
  1997. }
  1998. }
  1999. }
  2000. #endif // DELTA
  2001. #endif // AUTO_BED_LEVELING_FEATURE
  2002. /**
  2003. * Home an individual axis
  2004. */
  2005. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2006. static void homeaxis(AxisEnum axis) {
  2007. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2008. if (DEBUGGING(LEVELING)) {
  2009. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2010. SERIAL_ECHOLNPGM(")");
  2011. }
  2012. #endif
  2013. #define HOMEAXIS_DO(LETTER) \
  2014. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2015. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  2016. int axis_home_dir =
  2017. #if ENABLED(DUAL_X_CARRIAGE)
  2018. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2019. #endif
  2020. home_dir(axis);
  2021. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2022. #if HAS_BED_PROBE
  2023. if (axis == Z_AXIS && axis_home_dir < 0) {
  2024. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2025. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2026. #endif
  2027. if (DEPLOY_PROBE()) return;
  2028. }
  2029. #endif
  2030. // Set the axis position as setup for the move
  2031. current_position[axis] = 0;
  2032. sync_plan_position();
  2033. // Set a flag for Z motor locking
  2034. #if ENABLED(Z_DUAL_ENDSTOPS)
  2035. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2036. #endif
  2037. // Move towards the endstop until an endstop is triggered
  2038. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2039. feedrate = homing_feedrate[axis];
  2040. line_to_destination();
  2041. stepper.synchronize();
  2042. // Set the axis position as setup for the move
  2043. current_position[axis] = 0;
  2044. sync_plan_position();
  2045. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2046. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2047. #endif
  2048. endstops.enable(false); // Disable endstops while moving away
  2049. // Move away from the endstop by the axis HOME_BUMP_MM
  2050. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  2051. line_to_destination();
  2052. stepper.synchronize();
  2053. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2054. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2055. #endif
  2056. endstops.enable(true); // Enable endstops for next homing move
  2057. // Slow down the feedrate for the next move
  2058. set_homing_bump_feedrate(axis);
  2059. // Move slowly towards the endstop until triggered
  2060. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2061. line_to_destination();
  2062. stepper.synchronize();
  2063. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2064. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2065. #endif
  2066. #if ENABLED(Z_DUAL_ENDSTOPS)
  2067. if (axis == Z_AXIS) {
  2068. float adj = fabs(z_endstop_adj);
  2069. bool lockZ1;
  2070. if (axis_home_dir > 0) {
  2071. adj = -adj;
  2072. lockZ1 = (z_endstop_adj > 0);
  2073. }
  2074. else
  2075. lockZ1 = (z_endstop_adj < 0);
  2076. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2077. sync_plan_position();
  2078. // Move to the adjusted endstop height
  2079. feedrate = homing_feedrate[axis];
  2080. destination[Z_AXIS] = adj;
  2081. line_to_destination();
  2082. stepper.synchronize();
  2083. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2084. stepper.set_homing_flag(false);
  2085. } // Z_AXIS
  2086. #endif
  2087. #if ENABLED(DELTA)
  2088. // retrace by the amount specified in endstop_adj
  2089. if (endstop_adj[axis] * axis_home_dir < 0) {
  2090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2091. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2092. #endif
  2093. endstops.enable(false); // Disable endstops while moving away
  2094. sync_plan_position();
  2095. destination[axis] = endstop_adj[axis];
  2096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2097. if (DEBUGGING(LEVELING)) {
  2098. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2099. DEBUG_POS("", destination);
  2100. }
  2101. #endif
  2102. line_to_destination();
  2103. stepper.synchronize();
  2104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2105. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2106. #endif
  2107. endstops.enable(true); // Enable endstops for next homing move
  2108. }
  2109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2110. else {
  2111. if (DEBUGGING(LEVELING)) {
  2112. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2113. SERIAL_EOL;
  2114. }
  2115. }
  2116. #endif
  2117. #endif
  2118. // Set the axis position to its home position (plus home offsets)
  2119. set_axis_is_at_home(axis);
  2120. SYNC_PLAN_POSITION_KINEMATIC();
  2121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2122. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2123. #endif
  2124. destination[axis] = current_position[axis];
  2125. endstops.hit_on_purpose(); // clear endstop hit flags
  2126. axis_known_position[axis] = true;
  2127. axis_homed[axis] = true;
  2128. // Put away the Z probe
  2129. #if HAS_BED_PROBE
  2130. if (axis == Z_AXIS && axis_home_dir < 0) {
  2131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2132. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2133. #endif
  2134. if (STOW_PROBE()) return;
  2135. }
  2136. #endif
  2137. }
  2138. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2139. if (DEBUGGING(LEVELING)) {
  2140. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2141. SERIAL_ECHOLNPGM(")");
  2142. }
  2143. #endif
  2144. }
  2145. #if ENABLED(FWRETRACT)
  2146. void retract(bool retracting, bool swapping = false) {
  2147. if (retracting == retracted[active_extruder]) return;
  2148. float old_feedrate = feedrate;
  2149. set_destination_to_current();
  2150. if (retracting) {
  2151. feedrate = retract_feedrate_mm_s * 60;
  2152. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2153. sync_plan_position_e();
  2154. prepare_move_to_destination();
  2155. if (retract_zlift > 0.01) {
  2156. current_position[Z_AXIS] -= retract_zlift;
  2157. SYNC_PLAN_POSITION_KINEMATIC();
  2158. prepare_move_to_destination();
  2159. }
  2160. }
  2161. else {
  2162. if (retract_zlift > 0.01) {
  2163. current_position[Z_AXIS] += retract_zlift;
  2164. SYNC_PLAN_POSITION_KINEMATIC();
  2165. }
  2166. feedrate = retract_recover_feedrate * 60;
  2167. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2168. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2169. sync_plan_position_e();
  2170. prepare_move_to_destination();
  2171. }
  2172. feedrate = old_feedrate;
  2173. retracted[active_extruder] = retracting;
  2174. } // retract()
  2175. #endif // FWRETRACT
  2176. /**
  2177. * ***************************************************************************
  2178. * ***************************** G-CODE HANDLING *****************************
  2179. * ***************************************************************************
  2180. */
  2181. /**
  2182. * Set XYZE destination and feedrate from the current GCode command
  2183. *
  2184. * - Set destination from included axis codes
  2185. * - Set to current for missing axis codes
  2186. * - Set the feedrate, if included
  2187. */
  2188. void gcode_get_destination() {
  2189. for (int i = 0; i < NUM_AXIS; i++) {
  2190. if (code_seen(axis_codes[i]))
  2191. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2192. else
  2193. destination[i] = current_position[i];
  2194. }
  2195. if (code_seen('F')) {
  2196. float next_feedrate = code_value_linear_units();
  2197. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2198. }
  2199. }
  2200. void unknown_command_error() {
  2201. SERIAL_ECHO_START;
  2202. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2203. SERIAL_ECHO(current_command);
  2204. SERIAL_ECHOLNPGM("\"");
  2205. }
  2206. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2207. /**
  2208. * Output a "busy" message at regular intervals
  2209. * while the machine is not accepting commands.
  2210. */
  2211. void host_keepalive() {
  2212. millis_t ms = millis();
  2213. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2214. if (PENDING(ms, next_busy_signal_ms)) return;
  2215. switch (busy_state) {
  2216. case IN_HANDLER:
  2217. case IN_PROCESS:
  2218. SERIAL_ECHO_START;
  2219. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2220. break;
  2221. case PAUSED_FOR_USER:
  2222. SERIAL_ECHO_START;
  2223. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2224. break;
  2225. case PAUSED_FOR_INPUT:
  2226. SERIAL_ECHO_START;
  2227. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2228. break;
  2229. default:
  2230. break;
  2231. }
  2232. }
  2233. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2234. }
  2235. #endif //HOST_KEEPALIVE_FEATURE
  2236. /**
  2237. * G0, G1: Coordinated movement of X Y Z E axes
  2238. */
  2239. inline void gcode_G0_G1() {
  2240. if (IsRunning()) {
  2241. gcode_get_destination(); // For X Y Z E F
  2242. #if ENABLED(FWRETRACT)
  2243. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2244. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2245. // Is this move an attempt to retract or recover?
  2246. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2247. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2248. sync_plan_position_e(); // AND from the planner
  2249. retract(!retracted[active_extruder]);
  2250. return;
  2251. }
  2252. }
  2253. #endif //FWRETRACT
  2254. prepare_move_to_destination();
  2255. }
  2256. }
  2257. /**
  2258. * G2: Clockwise Arc
  2259. * G3: Counterclockwise Arc
  2260. */
  2261. #if ENABLED(ARC_SUPPORT)
  2262. inline void gcode_G2_G3(bool clockwise) {
  2263. if (IsRunning()) {
  2264. #if ENABLED(SF_ARC_FIX)
  2265. bool relative_mode_backup = relative_mode;
  2266. relative_mode = true;
  2267. #endif
  2268. gcode_get_destination();
  2269. #if ENABLED(SF_ARC_FIX)
  2270. relative_mode = relative_mode_backup;
  2271. #endif
  2272. // Center of arc as offset from current_position
  2273. float arc_offset[2] = {
  2274. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2275. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2276. };
  2277. // Send an arc to the planner
  2278. plan_arc(destination, arc_offset, clockwise);
  2279. refresh_cmd_timeout();
  2280. }
  2281. }
  2282. #endif
  2283. /**
  2284. * G4: Dwell S<seconds> or P<milliseconds>
  2285. */
  2286. inline void gcode_G4() {
  2287. millis_t codenum = 0;
  2288. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2289. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2290. stepper.synchronize();
  2291. refresh_cmd_timeout();
  2292. codenum += previous_cmd_ms; // keep track of when we started waiting
  2293. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2294. while (PENDING(millis(), codenum)) idle();
  2295. }
  2296. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2297. /**
  2298. * Parameters interpreted according to:
  2299. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2300. * However I, J omission is not supported at this point; all
  2301. * parameters can be omitted and default to zero.
  2302. */
  2303. /**
  2304. * G5: Cubic B-spline
  2305. */
  2306. inline void gcode_G5() {
  2307. if (IsRunning()) {
  2308. gcode_get_destination();
  2309. float offset[] = {
  2310. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2311. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2312. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2313. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2314. };
  2315. plan_cubic_move(offset);
  2316. }
  2317. }
  2318. #endif // BEZIER_CURVE_SUPPORT
  2319. #if ENABLED(FWRETRACT)
  2320. /**
  2321. * G10 - Retract filament according to settings of M207
  2322. * G11 - Recover filament according to settings of M208
  2323. */
  2324. inline void gcode_G10_G11(bool doRetract=false) {
  2325. #if EXTRUDERS > 1
  2326. if (doRetract) {
  2327. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2328. }
  2329. #endif
  2330. retract(doRetract
  2331. #if EXTRUDERS > 1
  2332. , retracted_swap[active_extruder]
  2333. #endif
  2334. );
  2335. }
  2336. #endif //FWRETRACT
  2337. #if ENABLED(INCH_MODE_SUPPORT)
  2338. /**
  2339. * G20: Set input mode to inches
  2340. */
  2341. inline void gcode_G20() {
  2342. set_input_linear_units(LINEARUNIT_INCH);
  2343. }
  2344. /**
  2345. * G21: Set input mode to millimeters
  2346. */
  2347. inline void gcode_G21() {
  2348. set_input_linear_units(LINEARUNIT_MM);
  2349. }
  2350. #endif
  2351. #if ENABLED(QUICK_HOME)
  2352. static void quick_home_xy() {
  2353. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2354. #if ENABLED(DUAL_X_CARRIAGE)
  2355. int x_axis_home_dir = x_home_dir(active_extruder);
  2356. extruder_duplication_enabled = false;
  2357. #else
  2358. int x_axis_home_dir = home_dir(X_AXIS);
  2359. #endif
  2360. SYNC_PLAN_POSITION_KINEMATIC();
  2361. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2362. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2363. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2364. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2365. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2366. line_to_destination();
  2367. stepper.synchronize();
  2368. set_axis_is_at_home(X_AXIS);
  2369. set_axis_is_at_home(Y_AXIS);
  2370. SYNC_PLAN_POSITION_KINEMATIC();
  2371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2372. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2373. #endif
  2374. destination[X_AXIS] = current_position[X_AXIS];
  2375. destination[Y_AXIS] = current_position[Y_AXIS];
  2376. line_to_destination();
  2377. stepper.synchronize();
  2378. endstops.hit_on_purpose(); // clear endstop hit flags
  2379. current_position[X_AXIS] = destination[X_AXIS];
  2380. current_position[Y_AXIS] = destination[Y_AXIS];
  2381. #if DISABLED(SCARA)
  2382. current_position[Z_AXIS] = destination[Z_AXIS];
  2383. #endif
  2384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2385. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2386. #endif
  2387. }
  2388. #endif // QUICK_HOME
  2389. /**
  2390. * G28: Home all axes according to settings
  2391. *
  2392. * Parameters
  2393. *
  2394. * None Home to all axes with no parameters.
  2395. * With QUICK_HOME enabled XY will home together, then Z.
  2396. *
  2397. * Cartesian parameters
  2398. *
  2399. * X Home to the X endstop
  2400. * Y Home to the Y endstop
  2401. * Z Home to the Z endstop
  2402. *
  2403. */
  2404. inline void gcode_G28() {
  2405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2406. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2407. #endif
  2408. // Wait for planner moves to finish!
  2409. stepper.synchronize();
  2410. // For auto bed leveling, clear the level matrix
  2411. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2412. planner.bed_level_matrix.set_to_identity();
  2413. #if ENABLED(DELTA)
  2414. reset_bed_level();
  2415. #endif
  2416. #endif
  2417. /**
  2418. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2419. * on again when homing all axis
  2420. */
  2421. #if ENABLED(MESH_BED_LEVELING)
  2422. float pre_home_z = MESH_HOME_SEARCH_Z;
  2423. if (mbl.active()) {
  2424. // Save known Z position if already homed
  2425. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2426. pre_home_z = current_position[Z_AXIS];
  2427. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2428. }
  2429. mbl.set_active(false);
  2430. current_position[Z_AXIS] = pre_home_z;
  2431. }
  2432. #endif
  2433. setup_for_endstop_move();
  2434. #if ENABLED(DELTA)
  2435. /**
  2436. * A delta can only safely home all axes at the same time
  2437. */
  2438. // Pretend the current position is 0,0,0
  2439. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2440. sync_plan_position();
  2441. // Move all carriages up together until the first endstop is hit.
  2442. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2443. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2444. line_to_destination();
  2445. stepper.synchronize();
  2446. endstops.hit_on_purpose(); // clear endstop hit flags
  2447. // Destination reached
  2448. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2449. // take care of back off and rehome now we are all at the top
  2450. HOMEAXIS(X);
  2451. HOMEAXIS(Y);
  2452. HOMEAXIS(Z);
  2453. SYNC_PLAN_POSITION_KINEMATIC();
  2454. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2455. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2456. #endif
  2457. #else // NOT DELTA
  2458. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2459. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2460. set_destination_to_current();
  2461. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2462. if (home_all_axis || homeZ) {
  2463. HOMEAXIS(Z);
  2464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2465. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2466. #endif
  2467. }
  2468. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2469. // Raise Z before homing X or Y, if specified
  2470. if (home_all_axis || homeX || homeY) {
  2471. float z_dest = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
  2472. if (z_dest > current_position[Z_AXIS]) {
  2473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2474. if (DEBUGGING(LEVELING)) {
  2475. SERIAL_ECHOPAIR("Raise Z (before homing) to ", z_dest);
  2476. SERIAL_EOL;
  2477. }
  2478. #endif
  2479. feedrate = homing_feedrate[Z_AXIS];
  2480. #if HAS_BED_PROBE
  2481. do_blocking_move_to_z(z_dest);
  2482. #else
  2483. line_to_z(z_dest);
  2484. stepper.synchronize();
  2485. #endif
  2486. destination[Z_AXIS] = current_position[Z_AXIS] = z_dest;
  2487. }
  2488. }
  2489. #endif // MIN_Z_HEIGHT_FOR_HOMING
  2490. #if ENABLED(QUICK_HOME)
  2491. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2492. #endif
  2493. #if ENABLED(HOME_Y_BEFORE_X)
  2494. // Home Y
  2495. if (home_all_axis || homeY) {
  2496. HOMEAXIS(Y);
  2497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2498. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2499. #endif
  2500. }
  2501. #endif
  2502. // Home X
  2503. if (home_all_axis || homeX) {
  2504. #if ENABLED(DUAL_X_CARRIAGE)
  2505. int tmp_extruder = active_extruder;
  2506. extruder_duplication_enabled = false;
  2507. active_extruder = !active_extruder;
  2508. HOMEAXIS(X);
  2509. inactive_extruder_x_pos = current_position[X_AXIS];
  2510. active_extruder = tmp_extruder;
  2511. HOMEAXIS(X);
  2512. // reset state used by the different modes
  2513. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2514. delayed_move_time = 0;
  2515. active_extruder_parked = true;
  2516. #else
  2517. HOMEAXIS(X);
  2518. #endif
  2519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2520. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2521. #endif
  2522. }
  2523. #if DISABLED(HOME_Y_BEFORE_X)
  2524. // Home Y
  2525. if (home_all_axis || homeY) {
  2526. HOMEAXIS(Y);
  2527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2528. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2529. #endif
  2530. }
  2531. #endif
  2532. // Home Z last if homing towards the bed
  2533. #if Z_HOME_DIR < 0
  2534. if (home_all_axis || homeZ) {
  2535. #if ENABLED(Z_SAFE_HOMING)
  2536. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2537. if (DEBUGGING(LEVELING)) {
  2538. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2539. }
  2540. #endif
  2541. if (home_all_axis) {
  2542. /**
  2543. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2544. * No need to move Z any more as this height should already be safe
  2545. * enough to reach Z_SAFE_HOMING XY positions.
  2546. * Just make sure the planner is in sync.
  2547. */
  2548. SYNC_PLAN_POSITION_KINEMATIC();
  2549. /**
  2550. * Set the Z probe (or just the nozzle) destination to the safe
  2551. * homing point
  2552. */
  2553. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2554. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2555. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2556. feedrate = XY_PROBE_FEEDRATE;
  2557. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2558. if (DEBUGGING(LEVELING)) {
  2559. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2560. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2561. }
  2562. #endif
  2563. // Move in the XY plane
  2564. line_to_destination();
  2565. stepper.synchronize();
  2566. /**
  2567. * Update the current positions for XY, Z is still at least at
  2568. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2569. */
  2570. current_position[X_AXIS] = destination[X_AXIS];
  2571. current_position[Y_AXIS] = destination[Y_AXIS];
  2572. // Home the Z axis
  2573. HOMEAXIS(Z);
  2574. }
  2575. else if (homeZ) { // Don't need to Home Z twice
  2576. // Let's see if X and Y are homed
  2577. if (axis_unhomed_error(true, true, false)) return;
  2578. /**
  2579. * Make sure the Z probe is within the physical limits
  2580. * NOTE: This doesn't necessarily ensure the Z probe is also
  2581. * within the bed!
  2582. */
  2583. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2584. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2585. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2586. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2587. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2588. // Home the Z axis
  2589. HOMEAXIS(Z);
  2590. }
  2591. else {
  2592. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2593. SERIAL_ECHO_START;
  2594. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2595. }
  2596. } // !home_all_axes && homeZ
  2597. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2598. if (DEBUGGING(LEVELING)) {
  2599. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2600. }
  2601. #endif
  2602. #else // !Z_SAFE_HOMING
  2603. HOMEAXIS(Z);
  2604. #endif // !Z_SAFE_HOMING
  2605. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2606. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2607. #endif
  2608. } // home_all_axis || homeZ
  2609. #endif // Z_HOME_DIR < 0
  2610. SYNC_PLAN_POSITION_KINEMATIC();
  2611. #endif // !DELTA (gcode_G28)
  2612. endstops.not_homing();
  2613. // Enable mesh leveling again
  2614. #if ENABLED(MESH_BED_LEVELING)
  2615. if (mbl.has_mesh()) {
  2616. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2617. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2618. #if Z_HOME_DIR > 0
  2619. + Z_MAX_POS
  2620. #endif
  2621. ;
  2622. SYNC_PLAN_POSITION_KINEMATIC();
  2623. mbl.set_active(true);
  2624. #if ENABLED(MESH_G28_REST_ORIGIN)
  2625. current_position[Z_AXIS] = 0.0;
  2626. set_destination_to_current();
  2627. feedrate = homing_feedrate[Z_AXIS];
  2628. line_to_destination();
  2629. stepper.synchronize();
  2630. #else
  2631. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2632. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2633. #if Z_HOME_DIR > 0
  2634. + Z_MAX_POS
  2635. #endif
  2636. ;
  2637. #endif
  2638. }
  2639. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2640. current_position[Z_AXIS] = pre_home_z;
  2641. SYNC_PLAN_POSITION_KINEMATIC();
  2642. mbl.set_active(true);
  2643. current_position[Z_AXIS] = pre_home_z -
  2644. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2645. }
  2646. }
  2647. #endif
  2648. clean_up_after_endstop_or_probe_move();
  2649. endstops.hit_on_purpose(); // clear endstop hit flags
  2650. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2651. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2652. #endif
  2653. report_current_position();
  2654. }
  2655. #if HAS_PROBING_PROCEDURE
  2656. void out_of_range_error(const char* p_edge) {
  2657. SERIAL_PROTOCOLPGM("?Probe ");
  2658. serialprintPGM(p_edge);
  2659. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2660. }
  2661. #endif
  2662. #if ENABLED(MESH_BED_LEVELING)
  2663. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2664. inline void _mbl_goto_xy(float x, float y) {
  2665. float old_feedrate = feedrate;
  2666. feedrate = homing_feedrate[X_AXIS];
  2667. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2668. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2669. + Z_RAISE_BETWEEN_PROBINGS
  2670. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2671. + MIN_Z_HEIGHT_FOR_HOMING
  2672. #endif
  2673. ;
  2674. line_to_current_position();
  2675. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2676. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2677. line_to_current_position();
  2678. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2679. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2680. line_to_current_position();
  2681. #endif
  2682. feedrate = old_feedrate;
  2683. stepper.synchronize();
  2684. }
  2685. /**
  2686. * G29: Mesh-based Z probe, probes a grid and produces a
  2687. * mesh to compensate for variable bed height
  2688. *
  2689. * Parameters With MESH_BED_LEVELING:
  2690. *
  2691. * S0 Produce a mesh report
  2692. * S1 Start probing mesh points
  2693. * S2 Probe the next mesh point
  2694. * S3 Xn Yn Zn.nn Manually modify a single point
  2695. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2696. * S5 Reset and disable mesh
  2697. *
  2698. * The S0 report the points as below
  2699. *
  2700. * +----> X-axis 1-n
  2701. * |
  2702. * |
  2703. * v Y-axis 1-n
  2704. *
  2705. */
  2706. inline void gcode_G29() {
  2707. static int probe_point = -1;
  2708. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2709. if (state < 0 || state > 5) {
  2710. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2711. return;
  2712. }
  2713. int8_t px, py;
  2714. float z;
  2715. switch (state) {
  2716. case MeshReport:
  2717. if (mbl.has_mesh()) {
  2718. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2719. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2720. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2721. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2722. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2723. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2724. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2725. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2726. SERIAL_PROTOCOLPGM(" ");
  2727. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2728. }
  2729. SERIAL_EOL;
  2730. }
  2731. }
  2732. else
  2733. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2734. break;
  2735. case MeshStart:
  2736. mbl.reset();
  2737. probe_point = 0;
  2738. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2739. break;
  2740. case MeshNext:
  2741. if (probe_point < 0) {
  2742. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2743. return;
  2744. }
  2745. // For each G29 S2...
  2746. if (probe_point == 0) {
  2747. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2748. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2749. #if Z_HOME_DIR > 0
  2750. + Z_MAX_POS
  2751. #endif
  2752. ;
  2753. SYNC_PLAN_POSITION_KINEMATIC();
  2754. }
  2755. else {
  2756. // For G29 S2 after adjusting Z.
  2757. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2758. }
  2759. // If there's another point to sample, move there with optional lift.
  2760. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2761. mbl.zigzag(probe_point, px, py);
  2762. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2763. probe_point++;
  2764. }
  2765. else {
  2766. // One last "return to the bed" (as originally coded) at completion
  2767. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2768. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2769. + Z_RAISE_BETWEEN_PROBINGS
  2770. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2771. + MIN_Z_HEIGHT_FOR_HOMING
  2772. #endif
  2773. ;
  2774. line_to_current_position();
  2775. stepper.synchronize();
  2776. // After recording the last point, activate the mbl and home
  2777. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2778. probe_point = -1;
  2779. mbl.set_has_mesh(true);
  2780. enqueue_and_echo_commands_P(PSTR("G28"));
  2781. }
  2782. break;
  2783. case MeshSet:
  2784. if (code_seen('X')) {
  2785. px = code_value_int() - 1;
  2786. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2787. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2788. return;
  2789. }
  2790. }
  2791. else {
  2792. SERIAL_PROTOCOLLNPGM("X not entered.");
  2793. return;
  2794. }
  2795. if (code_seen('Y')) {
  2796. py = code_value_int() - 1;
  2797. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2798. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2799. return;
  2800. }
  2801. }
  2802. else {
  2803. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2804. return;
  2805. }
  2806. if (code_seen('Z')) {
  2807. z = code_value_axis_units(Z_AXIS);
  2808. }
  2809. else {
  2810. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2811. return;
  2812. }
  2813. mbl.z_values[py][px] = z;
  2814. break;
  2815. case MeshSetZOffset:
  2816. if (code_seen('Z')) {
  2817. z = code_value_axis_units(Z_AXIS);
  2818. }
  2819. else {
  2820. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2821. return;
  2822. }
  2823. mbl.z_offset = z;
  2824. break;
  2825. case MeshReset:
  2826. if (mbl.active()) {
  2827. current_position[Z_AXIS] +=
  2828. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2829. mbl.reset();
  2830. SYNC_PLAN_POSITION_KINEMATIC();
  2831. }
  2832. else
  2833. mbl.reset();
  2834. } // switch(state)
  2835. report_current_position();
  2836. }
  2837. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2838. /**
  2839. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2840. * Will fail if the printer has not been homed with G28.
  2841. *
  2842. * Enhanced G29 Auto Bed Leveling Probe Routine
  2843. *
  2844. * Parameters With AUTO_BED_LEVELING_GRID:
  2845. *
  2846. * P Set the size of the grid that will be probed (P x P points).
  2847. * Not supported by non-linear delta printer bed leveling.
  2848. * Example: "G29 P4"
  2849. *
  2850. * S Set the XY travel speed between probe points (in units/min)
  2851. *
  2852. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2853. * or clean the rotation Matrix. Useful to check the topology
  2854. * after a first run of G29.
  2855. *
  2856. * V Set the verbose level (0-4). Example: "G29 V3"
  2857. *
  2858. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2859. * This is useful for manual bed leveling and finding flaws in the bed (to
  2860. * assist with part placement).
  2861. * Not supported by non-linear delta printer bed leveling.
  2862. *
  2863. * F Set the Front limit of the probing grid
  2864. * B Set the Back limit of the probing grid
  2865. * L Set the Left limit of the probing grid
  2866. * R Set the Right limit of the probing grid
  2867. *
  2868. * Global Parameters:
  2869. *
  2870. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2871. * Include "E" to engage/disengage the Z probe for each sample.
  2872. * There's no extra effect if you have a fixed Z probe.
  2873. * Usage: "G29 E" or "G29 e"
  2874. *
  2875. */
  2876. inline void gcode_G29() {
  2877. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2878. if (DEBUGGING(LEVELING)) {
  2879. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2880. DEBUG_POS("", current_position);
  2881. }
  2882. #endif
  2883. // Don't allow auto-leveling without homing first
  2884. if (axis_unhomed_error(true, true, true)) return;
  2885. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2886. if (verbose_level < 0 || verbose_level > 4) {
  2887. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2888. return;
  2889. }
  2890. bool dryrun = code_seen('D');
  2891. bool stow_probe_after_each = code_seen('E');
  2892. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2893. #if DISABLED(DELTA)
  2894. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2895. #endif
  2896. if (verbose_level > 0) {
  2897. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2898. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2899. }
  2900. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2901. #if DISABLED(DELTA)
  2902. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2903. if (auto_bed_leveling_grid_points < 2) {
  2904. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2905. return;
  2906. }
  2907. #endif
  2908. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2909. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2910. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2911. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2912. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2913. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2914. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2915. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2916. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2917. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2918. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2919. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2920. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2921. if (left_out || right_out || front_out || back_out) {
  2922. if (left_out) {
  2923. out_of_range_error(PSTR("(L)eft"));
  2924. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2925. }
  2926. if (right_out) {
  2927. out_of_range_error(PSTR("(R)ight"));
  2928. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2929. }
  2930. if (front_out) {
  2931. out_of_range_error(PSTR("(F)ront"));
  2932. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2933. }
  2934. if (back_out) {
  2935. out_of_range_error(PSTR("(B)ack"));
  2936. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2937. }
  2938. return;
  2939. }
  2940. #endif // AUTO_BED_LEVELING_GRID
  2941. if (!dryrun) {
  2942. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2943. if (DEBUGGING(LEVELING)) {
  2944. vector_3 corrected_position = planner.adjusted_position();
  2945. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2946. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2947. }
  2948. #endif
  2949. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2950. planner.bed_level_matrix.set_to_identity();
  2951. #if ENABLED(DELTA)
  2952. reset_bed_level();
  2953. #else //!DELTA
  2954. //vector_3 corrected_position = planner.adjusted_position();
  2955. //corrected_position.debug("position before G29");
  2956. vector_3 uncorrected_position = planner.adjusted_position();
  2957. //uncorrected_position.debug("position during G29");
  2958. current_position[X_AXIS] = uncorrected_position.x;
  2959. current_position[Y_AXIS] = uncorrected_position.y;
  2960. current_position[Z_AXIS] = uncorrected_position.z;
  2961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2962. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2963. #endif
  2964. SYNC_PLAN_POSITION_KINEMATIC();
  2965. #endif // !DELTA
  2966. }
  2967. stepper.synchronize();
  2968. setup_for_endstop_or_probe_move();
  2969. // Deploy the probe. Probe will raise if needed.
  2970. if (DEPLOY_PROBE()) return;
  2971. bed_leveling_in_progress = true;
  2972. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2973. // probe at the points of a lattice grid
  2974. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2975. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2976. #if ENABLED(DELTA)
  2977. delta_grid_spacing[0] = xGridSpacing;
  2978. delta_grid_spacing[1] = yGridSpacing;
  2979. float zoffset = zprobe_zoffset;
  2980. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2981. #else // !DELTA
  2982. /**
  2983. * solve the plane equation ax + by + d = z
  2984. * A is the matrix with rows [x y 1] for all the probed points
  2985. * B is the vector of the Z positions
  2986. * the normal vector to the plane is formed by the coefficients of the
  2987. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2988. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2989. */
  2990. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2991. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2992. eqnBVector[abl2], // "B" vector of Z points
  2993. mean = 0.0;
  2994. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2995. #endif // !DELTA
  2996. int probePointCounter = 0;
  2997. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2998. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2999. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  3000. int xStart, xStop, xInc;
  3001. if (zig) {
  3002. xStart = 0;
  3003. xStop = auto_bed_leveling_grid_points;
  3004. xInc = 1;
  3005. }
  3006. else {
  3007. xStart = auto_bed_leveling_grid_points - 1;
  3008. xStop = -1;
  3009. xInc = -1;
  3010. }
  3011. zig = !zig;
  3012. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3013. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3014. #if ENABLED(DELTA)
  3015. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3016. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  3017. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3018. #endif //DELTA
  3019. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3020. #if DISABLED(DELTA)
  3021. mean += measured_z;
  3022. eqnBVector[probePointCounter] = measured_z;
  3023. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3024. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3025. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3026. indexIntoAB[xCount][yCount] = probePointCounter;
  3027. #else
  3028. bed_level[xCount][yCount] = measured_z + zoffset;
  3029. #endif
  3030. probePointCounter++;
  3031. idle();
  3032. } //xProbe
  3033. } //yProbe
  3034. #else // !AUTO_BED_LEVELING_GRID
  3035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3036. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3037. #endif
  3038. // Probe at 3 arbitrary points
  3039. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3040. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3041. stow_probe_after_each, verbose_level),
  3042. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3043. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3044. stow_probe_after_each, verbose_level),
  3045. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3046. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3047. stow_probe_after_each, verbose_level);
  3048. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3049. #endif // !AUTO_BED_LEVELING_GRID
  3050. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3051. if (STOW_PROBE()) return;
  3052. // Restore state after probing
  3053. clean_up_after_endstop_or_probe_move();
  3054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3055. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3056. #endif
  3057. // Calculate leveling, print reports, correct the position
  3058. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3059. #if ENABLED(DELTA)
  3060. if (!dryrun) extrapolate_unprobed_bed_level();
  3061. print_bed_level();
  3062. #else // !DELTA
  3063. // solve lsq problem
  3064. double plane_equation_coefficients[3];
  3065. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3066. mean /= abl2;
  3067. if (verbose_level) {
  3068. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3069. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3070. SERIAL_PROTOCOLPGM(" b: ");
  3071. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3072. SERIAL_PROTOCOLPGM(" d: ");
  3073. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3074. SERIAL_EOL;
  3075. if (verbose_level > 2) {
  3076. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3077. SERIAL_PROTOCOL_F(mean, 8);
  3078. SERIAL_EOL;
  3079. }
  3080. }
  3081. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3082. // Show the Topography map if enabled
  3083. if (do_topography_map) {
  3084. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3085. " +--- BACK --+\n"
  3086. " | |\n"
  3087. " L | (+) | R\n"
  3088. " E | | I\n"
  3089. " F | (-) N (+) | G\n"
  3090. " T | | H\n"
  3091. " | (-) | T\n"
  3092. " | |\n"
  3093. " O-- FRONT --+\n"
  3094. " (0,0)");
  3095. float min_diff = 999;
  3096. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3097. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3098. int ind = indexIntoAB[xx][yy];
  3099. float diff = eqnBVector[ind] - mean;
  3100. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3101. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3102. z_tmp = 0;
  3103. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3104. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3105. if (diff >= 0.0)
  3106. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3107. else
  3108. SERIAL_PROTOCOLCHAR(' ');
  3109. SERIAL_PROTOCOL_F(diff, 5);
  3110. } // xx
  3111. SERIAL_EOL;
  3112. } // yy
  3113. SERIAL_EOL;
  3114. if (verbose_level > 3) {
  3115. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3116. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3117. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3118. int ind = indexIntoAB[xx][yy];
  3119. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3120. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3121. z_tmp = 0;
  3122. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3123. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3124. if (diff >= 0.0)
  3125. SERIAL_PROTOCOLPGM(" +");
  3126. // Include + for column alignment
  3127. else
  3128. SERIAL_PROTOCOLCHAR(' ');
  3129. SERIAL_PROTOCOL_F(diff, 5);
  3130. } // xx
  3131. SERIAL_EOL;
  3132. } // yy
  3133. SERIAL_EOL;
  3134. }
  3135. } //do_topography_map
  3136. #endif //!DELTA
  3137. #endif // AUTO_BED_LEVELING_GRID
  3138. #if DISABLED(DELTA)
  3139. if (verbose_level > 0)
  3140. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3141. if (!dryrun) {
  3142. /**
  3143. * Correct the Z height difference from Z probe position and nozzle tip position.
  3144. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3145. * from the nozzle. When the bed is uneven, this height must be corrected.
  3146. */
  3147. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3148. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3149. z_tmp = current_position[Z_AXIS],
  3150. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3151. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3152. if (DEBUGGING(LEVELING)) {
  3153. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3154. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3155. SERIAL_EOL;
  3156. }
  3157. #endif
  3158. // Apply the correction sending the Z probe offset
  3159. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3160. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3161. if (DEBUGGING(LEVELING)) {
  3162. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3163. SERIAL_EOL;
  3164. }
  3165. #endif
  3166. // Adjust the current Z and send it to the planner.
  3167. current_position[Z_AXIS] += z_tmp - stepper_z;
  3168. SYNC_PLAN_POSITION_KINEMATIC();
  3169. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3170. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3171. #endif
  3172. }
  3173. #endif // !DELTA
  3174. #ifdef Z_PROBE_END_SCRIPT
  3175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3176. if (DEBUGGING(LEVELING)) {
  3177. SERIAL_ECHOPGM("Z Probe End Script: ");
  3178. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3179. }
  3180. #endif
  3181. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3182. stepper.synchronize();
  3183. #endif
  3184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3185. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3186. #endif
  3187. bed_leveling_in_progress = false;
  3188. report_current_position();
  3189. KEEPALIVE_STATE(IN_HANDLER);
  3190. }
  3191. #endif //AUTO_BED_LEVELING_FEATURE
  3192. #if HAS_BED_PROBE
  3193. /**
  3194. * G30: Do a single Z probe at the current XY
  3195. */
  3196. inline void gcode_G30() {
  3197. setup_for_endstop_or_probe_move();
  3198. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3199. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3200. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3201. true, 1);
  3202. SERIAL_PROTOCOLPGM("Bed X: ");
  3203. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3204. SERIAL_PROTOCOLPGM(" Y: ");
  3205. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3206. SERIAL_PROTOCOLPGM(" Z: ");
  3207. SERIAL_PROTOCOL(measured_z + 0.0001);
  3208. SERIAL_EOL;
  3209. clean_up_after_endstop_or_probe_move();
  3210. report_current_position();
  3211. }
  3212. #if ENABLED(Z_PROBE_SLED)
  3213. /**
  3214. * G31: Deploy the Z probe
  3215. */
  3216. inline void gcode_G31() { DEPLOY_PROBE(); }
  3217. /**
  3218. * G32: Stow the Z probe
  3219. */
  3220. inline void gcode_G32() { STOW_PROBE(); }
  3221. #endif // Z_PROBE_SLED
  3222. #endif // HAS_BED_PROBE
  3223. /**
  3224. * G92: Set current position to given X Y Z E
  3225. */
  3226. inline void gcode_G92() {
  3227. bool didE = code_seen('E');
  3228. if (!didE) stepper.synchronize();
  3229. bool didXYZ = false;
  3230. for (int i = 0; i < NUM_AXIS; i++) {
  3231. if (code_seen(axis_codes[i])) {
  3232. float p = current_position[i],
  3233. v = code_value_axis_units(i);
  3234. current_position[i] = v;
  3235. if (i != E_AXIS) {
  3236. position_shift[i] += v - p; // Offset the coordinate space
  3237. update_software_endstops((AxisEnum)i);
  3238. didXYZ = true;
  3239. }
  3240. }
  3241. }
  3242. if (didXYZ)
  3243. SYNC_PLAN_POSITION_KINEMATIC();
  3244. else if (didE)
  3245. sync_plan_position_e();
  3246. }
  3247. #if ENABLED(ULTIPANEL)
  3248. /**
  3249. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3250. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3251. */
  3252. inline void gcode_M0_M1() {
  3253. char* args = current_command_args;
  3254. uint8_t test_value = 12;
  3255. SERIAL_ECHOPAIR("TEST", test_value);
  3256. millis_t codenum = 0;
  3257. bool hasP = false, hasS = false;
  3258. if (code_seen('P')) {
  3259. codenum = code_value_millis(); // milliseconds to wait
  3260. hasP = codenum > 0;
  3261. }
  3262. if (code_seen('S')) {
  3263. codenum = code_value_millis_from_seconds(); // seconds to wait
  3264. hasS = codenum > 0;
  3265. }
  3266. if (!hasP && !hasS && *args != '\0')
  3267. lcd_setstatus(args, true);
  3268. else {
  3269. LCD_MESSAGEPGM(MSG_USERWAIT);
  3270. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3271. dontExpireStatus();
  3272. #endif
  3273. }
  3274. lcd_ignore_click();
  3275. stepper.synchronize();
  3276. refresh_cmd_timeout();
  3277. if (codenum > 0) {
  3278. codenum += previous_cmd_ms; // wait until this time for a click
  3279. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3280. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3281. KEEPALIVE_STATE(IN_HANDLER);
  3282. lcd_ignore_click(false);
  3283. }
  3284. else {
  3285. if (!lcd_detected()) return;
  3286. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3287. while (!lcd_clicked()) idle();
  3288. KEEPALIVE_STATE(IN_HANDLER);
  3289. }
  3290. if (IS_SD_PRINTING)
  3291. LCD_MESSAGEPGM(MSG_RESUMING);
  3292. else
  3293. LCD_MESSAGEPGM(WELCOME_MSG);
  3294. }
  3295. #endif // ULTIPANEL
  3296. /**
  3297. * M17: Enable power on all stepper motors
  3298. */
  3299. inline void gcode_M17() {
  3300. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3301. enable_all_steppers();
  3302. }
  3303. #if ENABLED(SDSUPPORT)
  3304. /**
  3305. * M20: List SD card to serial output
  3306. */
  3307. inline void gcode_M20() {
  3308. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3309. card.ls();
  3310. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3311. }
  3312. /**
  3313. * M21: Init SD Card
  3314. */
  3315. inline void gcode_M21() {
  3316. card.initsd();
  3317. }
  3318. /**
  3319. * M22: Release SD Card
  3320. */
  3321. inline void gcode_M22() {
  3322. card.release();
  3323. }
  3324. /**
  3325. * M23: Open a file
  3326. */
  3327. inline void gcode_M23() {
  3328. card.openFile(current_command_args, true);
  3329. }
  3330. /**
  3331. * M24: Start SD Print
  3332. */
  3333. inline void gcode_M24() {
  3334. card.startFileprint();
  3335. print_job_timer.start();
  3336. }
  3337. /**
  3338. * M25: Pause SD Print
  3339. */
  3340. inline void gcode_M25() {
  3341. card.pauseSDPrint();
  3342. }
  3343. /**
  3344. * M26: Set SD Card file index
  3345. */
  3346. inline void gcode_M26() {
  3347. if (card.cardOK && code_seen('S'))
  3348. card.setIndex(code_value_long());
  3349. }
  3350. /**
  3351. * M27: Get SD Card status
  3352. */
  3353. inline void gcode_M27() {
  3354. card.getStatus();
  3355. }
  3356. /**
  3357. * M28: Start SD Write
  3358. */
  3359. inline void gcode_M28() {
  3360. card.openFile(current_command_args, false);
  3361. }
  3362. /**
  3363. * M29: Stop SD Write
  3364. * Processed in write to file routine above
  3365. */
  3366. inline void gcode_M29() {
  3367. // card.saving = false;
  3368. }
  3369. /**
  3370. * M30 <filename>: Delete SD Card file
  3371. */
  3372. inline void gcode_M30() {
  3373. if (card.cardOK) {
  3374. card.closefile();
  3375. card.removeFile(current_command_args);
  3376. }
  3377. }
  3378. #endif //SDSUPPORT
  3379. /**
  3380. * M31: Get the time since the start of SD Print (or last M109)
  3381. */
  3382. inline void gcode_M31() {
  3383. millis_t t = print_job_timer.duration();
  3384. int min = t / 60, sec = t % 60;
  3385. char time[30];
  3386. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3387. SERIAL_ECHO_START;
  3388. SERIAL_ECHOLN(time);
  3389. lcd_setstatus(time);
  3390. thermalManager.autotempShutdown();
  3391. }
  3392. #if ENABLED(SDSUPPORT)
  3393. /**
  3394. * M32: Select file and start SD Print
  3395. */
  3396. inline void gcode_M32() {
  3397. if (card.sdprinting)
  3398. stepper.synchronize();
  3399. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3400. if (!namestartpos)
  3401. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3402. else
  3403. namestartpos++; //to skip the '!'
  3404. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3405. if (card.cardOK) {
  3406. card.openFile(namestartpos, true, call_procedure);
  3407. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3408. card.setIndex(code_value_long());
  3409. card.startFileprint();
  3410. // Procedure calls count as normal print time.
  3411. if (!call_procedure) print_job_timer.start();
  3412. }
  3413. }
  3414. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3415. /**
  3416. * M33: Get the long full path of a file or folder
  3417. *
  3418. * Parameters:
  3419. * <dospath> Case-insensitive DOS-style path to a file or folder
  3420. *
  3421. * Example:
  3422. * M33 miscel~1/armchair/armcha~1.gco
  3423. *
  3424. * Output:
  3425. * /Miscellaneous/Armchair/Armchair.gcode
  3426. */
  3427. inline void gcode_M33() {
  3428. card.printLongPath(current_command_args);
  3429. }
  3430. #endif
  3431. /**
  3432. * M928: Start SD Write
  3433. */
  3434. inline void gcode_M928() {
  3435. card.openLogFile(current_command_args);
  3436. }
  3437. #endif // SDSUPPORT
  3438. /**
  3439. * M42: Change pin status via GCode
  3440. *
  3441. * P<pin> Pin number (LED if omitted)
  3442. * S<byte> Pin status from 0 - 255
  3443. */
  3444. inline void gcode_M42() {
  3445. if (code_seen('S')) {
  3446. int pin_status = code_value_int();
  3447. if (pin_status < 0 || pin_status > 255) return;
  3448. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3449. if (pin_number < 0) return;
  3450. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3451. if (pin_number == sensitive_pins[i]) return;
  3452. pinMode(pin_number, OUTPUT);
  3453. digitalWrite(pin_number, pin_status);
  3454. analogWrite(pin_number, pin_status);
  3455. #if FAN_COUNT > 0
  3456. switch (pin_number) {
  3457. #if HAS_FAN0
  3458. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3459. #endif
  3460. #if HAS_FAN1
  3461. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3462. #endif
  3463. #if HAS_FAN2
  3464. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3465. #endif
  3466. }
  3467. #endif
  3468. } // code_seen('S')
  3469. }
  3470. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3471. /**
  3472. * M48: Z probe repeatability measurement function.
  3473. *
  3474. * Usage:
  3475. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3476. * P = Number of sampled points (4-50, default 10)
  3477. * X = Sample X position
  3478. * Y = Sample Y position
  3479. * V = Verbose level (0-4, default=1)
  3480. * E = Engage Z probe for each reading
  3481. * L = Number of legs of movement before probe
  3482. * S = Schizoid (Or Star if you prefer)
  3483. *
  3484. * This function assumes the bed has been homed. Specifically, that a G28 command
  3485. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3486. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3487. * regenerated.
  3488. */
  3489. inline void gcode_M48() {
  3490. if (axis_unhomed_error(true, true, true)) return;
  3491. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3492. if (verbose_level < 0 || verbose_level > 4) {
  3493. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3494. return;
  3495. }
  3496. if (verbose_level > 0)
  3497. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3498. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3499. if (n_samples < 4 || n_samples > 50) {
  3500. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3501. return;
  3502. }
  3503. float X_current = current_position[X_AXIS],
  3504. Y_current = current_position[Y_AXIS];
  3505. bool stow_probe_after_each = code_seen('E');
  3506. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3507. #if DISABLED(DELTA)
  3508. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3509. out_of_range_error(PSTR("X"));
  3510. return;
  3511. }
  3512. #endif
  3513. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3514. #if DISABLED(DELTA)
  3515. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3516. out_of_range_error(PSTR("Y"));
  3517. return;
  3518. }
  3519. #else
  3520. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3521. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3522. return;
  3523. }
  3524. #endif
  3525. bool seen_L = code_seen('L');
  3526. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3527. if (n_legs > 15) {
  3528. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3529. return;
  3530. }
  3531. if (n_legs == 1) n_legs = 2;
  3532. bool schizoid_flag = code_seen('S');
  3533. if (schizoid_flag && !seen_L) n_legs = 7;
  3534. /**
  3535. * Now get everything to the specified probe point So we can safely do a
  3536. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3537. * we don't want to use that as a starting point for each probe.
  3538. */
  3539. if (verbose_level > 2)
  3540. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3541. #if ENABLED(DELTA)
  3542. // we don't do bed level correction in M48 because we want the raw data when we probe
  3543. reset_bed_level();
  3544. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3545. // we don't do bed level correction in M48 because we want the raw data when we probe
  3546. planner.bed_level_matrix.set_to_identity();
  3547. #endif
  3548. setup_for_endstop_or_probe_move();
  3549. // Move to the first point, deploy, and probe
  3550. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3551. randomSeed(millis());
  3552. double mean = 0, sigma = 0, sample_set[n_samples];
  3553. for (uint8_t n = 0; n < n_samples; n++) {
  3554. if (n_legs) {
  3555. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3556. float angle = random(0.0, 360.0),
  3557. radius = random(
  3558. #if ENABLED(DELTA)
  3559. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3560. #else
  3561. 5, X_MAX_LENGTH / 8
  3562. #endif
  3563. );
  3564. if (verbose_level > 3) {
  3565. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3566. SERIAL_ECHOPAIR(" angle: ", angle);
  3567. SERIAL_ECHOPGM(" Direction: ");
  3568. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3569. SERIAL_ECHOLNPGM("Clockwise");
  3570. }
  3571. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3572. double delta_angle;
  3573. if (schizoid_flag)
  3574. // The points of a 5 point star are 72 degrees apart. We need to
  3575. // skip a point and go to the next one on the star.
  3576. delta_angle = dir * 2.0 * 72.0;
  3577. else
  3578. // If we do this line, we are just trying to move further
  3579. // around the circle.
  3580. delta_angle = dir * (float) random(25, 45);
  3581. angle += delta_angle;
  3582. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3583. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3584. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3585. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3586. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3587. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3588. #if DISABLED(DELTA)
  3589. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3590. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3591. #else
  3592. // If we have gone out too far, we can do a simple fix and scale the numbers
  3593. // back in closer to the origin.
  3594. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3595. X_current /= 1.25;
  3596. Y_current /= 1.25;
  3597. if (verbose_level > 3) {
  3598. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3599. SERIAL_ECHOPAIR(", ", Y_current);
  3600. SERIAL_EOL;
  3601. }
  3602. }
  3603. #endif
  3604. if (verbose_level > 3) {
  3605. SERIAL_PROTOCOLPGM("Going to:");
  3606. SERIAL_ECHOPAIR(" X", X_current);
  3607. SERIAL_ECHOPAIR(" Y", Y_current);
  3608. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3609. SERIAL_EOL;
  3610. }
  3611. do_blocking_move_to_xy(X_current, Y_current);
  3612. } // n_legs loop
  3613. } // n_legs
  3614. // Probe a single point
  3615. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3616. /**
  3617. * Get the current mean for the data points we have so far
  3618. */
  3619. double sum = 0.0;
  3620. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3621. mean = sum / (n + 1);
  3622. /**
  3623. * Now, use that mean to calculate the standard deviation for the
  3624. * data points we have so far
  3625. */
  3626. sum = 0.0;
  3627. for (uint8_t j = 0; j <= n; j++) {
  3628. float ss = sample_set[j] - mean;
  3629. sum += ss * ss;
  3630. }
  3631. sigma = sqrt(sum / (n + 1));
  3632. if (verbose_level > 0) {
  3633. if (verbose_level > 1) {
  3634. SERIAL_PROTOCOL(n + 1);
  3635. SERIAL_PROTOCOLPGM(" of ");
  3636. SERIAL_PROTOCOL((int)n_samples);
  3637. SERIAL_PROTOCOLPGM(" z: ");
  3638. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3639. if (verbose_level > 2) {
  3640. SERIAL_PROTOCOLPGM(" mean: ");
  3641. SERIAL_PROTOCOL_F(mean, 6);
  3642. SERIAL_PROTOCOLPGM(" sigma: ");
  3643. SERIAL_PROTOCOL_F(sigma, 6);
  3644. }
  3645. }
  3646. SERIAL_EOL;
  3647. }
  3648. } // End of probe loop
  3649. if (STOW_PROBE()) return;
  3650. if (verbose_level > 0) {
  3651. SERIAL_PROTOCOLPGM("Mean: ");
  3652. SERIAL_PROTOCOL_F(mean, 6);
  3653. SERIAL_EOL;
  3654. }
  3655. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3656. SERIAL_PROTOCOL_F(sigma, 6);
  3657. SERIAL_EOL; SERIAL_EOL;
  3658. clean_up_after_endstop_or_probe_move();
  3659. report_current_position();
  3660. }
  3661. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3662. /**
  3663. * M75: Start print timer
  3664. */
  3665. inline void gcode_M75() { print_job_timer.start(); }
  3666. /**
  3667. * M76: Pause print timer
  3668. */
  3669. inline void gcode_M76() { print_job_timer.pause(); }
  3670. /**
  3671. * M77: Stop print timer
  3672. */
  3673. inline void gcode_M77() { print_job_timer.stop(); }
  3674. #if ENABLED(PRINTCOUNTER)
  3675. /*+
  3676. * M78: Show print statistics
  3677. */
  3678. inline void gcode_M78() {
  3679. // "M78 S78" will reset the statistics
  3680. if (code_seen('S') && code_value_int() == 78)
  3681. print_job_timer.initStats();
  3682. else print_job_timer.showStats();
  3683. }
  3684. #endif
  3685. /**
  3686. * M104: Set hot end temperature
  3687. */
  3688. inline void gcode_M104() {
  3689. if (get_target_extruder_from_command(104)) return;
  3690. if (DEBUGGING(DRYRUN)) return;
  3691. #if ENABLED(SINGLENOZZLE)
  3692. if (target_extruder != active_extruder) return;
  3693. #endif
  3694. if (code_seen('S')) {
  3695. float temp = code_value_temp_abs();
  3696. thermalManager.setTargetHotend(temp, target_extruder);
  3697. #if ENABLED(DUAL_X_CARRIAGE)
  3698. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3699. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3700. #endif
  3701. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3702. /**
  3703. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3704. * stand by mode, for instance in a dual extruder setup, without affecting
  3705. * the running print timer.
  3706. */
  3707. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3708. print_job_timer.stop();
  3709. LCD_MESSAGEPGM(WELCOME_MSG);
  3710. }
  3711. /**
  3712. * We do not check if the timer is already running because this check will
  3713. * be done for us inside the Stopwatch::start() method thus a running timer
  3714. * will not restart.
  3715. */
  3716. else print_job_timer.start();
  3717. #endif
  3718. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3719. }
  3720. }
  3721. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3722. void print_heaterstates() {
  3723. #if HAS_TEMP_HOTEND
  3724. SERIAL_PROTOCOLPGM(" T:");
  3725. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3726. SERIAL_PROTOCOLPGM(" /");
  3727. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3728. #endif
  3729. #if HAS_TEMP_BED
  3730. SERIAL_PROTOCOLPGM(" B:");
  3731. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3732. SERIAL_PROTOCOLPGM(" /");
  3733. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3734. #endif
  3735. #if HOTENDS > 1
  3736. for (int8_t e = 0; e < HOTENDS; ++e) {
  3737. SERIAL_PROTOCOLPGM(" T");
  3738. SERIAL_PROTOCOL(e);
  3739. SERIAL_PROTOCOLCHAR(':');
  3740. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3741. SERIAL_PROTOCOLPGM(" /");
  3742. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3743. }
  3744. #endif
  3745. #if HAS_TEMP_BED
  3746. SERIAL_PROTOCOLPGM(" B@:");
  3747. #ifdef BED_WATTS
  3748. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3749. SERIAL_PROTOCOLCHAR('W');
  3750. #else
  3751. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3752. #endif
  3753. #endif
  3754. SERIAL_PROTOCOLPGM(" @:");
  3755. #ifdef EXTRUDER_WATTS
  3756. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3757. SERIAL_PROTOCOLCHAR('W');
  3758. #else
  3759. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3760. #endif
  3761. #if HOTENDS > 1
  3762. for (int8_t e = 0; e < HOTENDS; ++e) {
  3763. SERIAL_PROTOCOLPGM(" @");
  3764. SERIAL_PROTOCOL(e);
  3765. SERIAL_PROTOCOLCHAR(':');
  3766. #ifdef EXTRUDER_WATTS
  3767. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3768. SERIAL_PROTOCOLCHAR('W');
  3769. #else
  3770. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3771. #endif
  3772. }
  3773. #endif
  3774. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3775. #if HAS_TEMP_BED
  3776. SERIAL_PROTOCOLPGM(" ADC B:");
  3777. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3778. SERIAL_PROTOCOLPGM("C->");
  3779. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3780. #endif
  3781. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3782. SERIAL_PROTOCOLPGM(" T");
  3783. SERIAL_PROTOCOL(cur_hotend);
  3784. SERIAL_PROTOCOLCHAR(':');
  3785. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3786. SERIAL_PROTOCOLPGM("C->");
  3787. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3788. }
  3789. #endif
  3790. }
  3791. #endif
  3792. /**
  3793. * M105: Read hot end and bed temperature
  3794. */
  3795. inline void gcode_M105() {
  3796. if (get_target_extruder_from_command(105)) return;
  3797. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3798. SERIAL_PROTOCOLPGM(MSG_OK);
  3799. print_heaterstates();
  3800. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3801. SERIAL_ERROR_START;
  3802. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3803. #endif
  3804. SERIAL_EOL;
  3805. }
  3806. #if FAN_COUNT > 0
  3807. /**
  3808. * M106: Set Fan Speed
  3809. *
  3810. * S<int> Speed between 0-255
  3811. * P<index> Fan index, if more than one fan
  3812. */
  3813. inline void gcode_M106() {
  3814. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3815. p = code_seen('P') ? code_value_ushort() : 0;
  3816. NOMORE(s, 255);
  3817. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3818. }
  3819. /**
  3820. * M107: Fan Off
  3821. */
  3822. inline void gcode_M107() {
  3823. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3824. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3825. }
  3826. #endif // FAN_COUNT > 0
  3827. /**
  3828. * M108: Cancel heatup and wait for the hotend and bed, this G-code is asynchronously handled in the get_serial_commands() parser
  3829. */
  3830. inline void gcode_M108() { wait_for_heatup = false; }
  3831. /**
  3832. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3833. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3834. */
  3835. inline void gcode_M109() {
  3836. if (get_target_extruder_from_command(109)) return;
  3837. if (DEBUGGING(DRYRUN)) return;
  3838. #if ENABLED(SINGLENOZZLE)
  3839. if (target_extruder != active_extruder) return;
  3840. #endif
  3841. bool no_wait_for_cooling = code_seen('S');
  3842. if (no_wait_for_cooling || code_seen('R')) {
  3843. float temp = code_value_temp_abs();
  3844. thermalManager.setTargetHotend(temp, target_extruder);
  3845. #if ENABLED(DUAL_X_CARRIAGE)
  3846. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3847. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3848. #endif
  3849. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3850. /**
  3851. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3852. * stand by mode, for instance in a dual extruder setup, without affecting
  3853. * the running print timer.
  3854. */
  3855. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3856. print_job_timer.stop();
  3857. LCD_MESSAGEPGM(WELCOME_MSG);
  3858. }
  3859. /**
  3860. * We do not check if the timer is already running because this check will
  3861. * be done for us inside the Stopwatch::start() method thus a running timer
  3862. * will not restart.
  3863. */
  3864. else print_job_timer.start();
  3865. #endif
  3866. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3867. }
  3868. #if ENABLED(AUTOTEMP)
  3869. planner.autotemp_M109();
  3870. #endif
  3871. #if TEMP_RESIDENCY_TIME > 0
  3872. millis_t residency_start_ms = 0;
  3873. // Loop until the temperature has stabilized
  3874. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3875. #else
  3876. // Loop until the temperature is very close target
  3877. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3878. #endif //TEMP_RESIDENCY_TIME > 0
  3879. float theTarget = -1.0, old_temp = 9999.0;
  3880. bool wants_to_cool = false;
  3881. wait_for_heatup = true;
  3882. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3883. KEEPALIVE_STATE(NOT_BUSY);
  3884. do {
  3885. // Target temperature might be changed during the loop
  3886. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3887. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3888. theTarget = thermalManager.degTargetHotend(target_extruder);
  3889. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3890. if (no_wait_for_cooling && wants_to_cool) break;
  3891. }
  3892. now = millis();
  3893. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3894. next_temp_ms = now + 1000UL;
  3895. print_heaterstates();
  3896. #if TEMP_RESIDENCY_TIME > 0
  3897. SERIAL_PROTOCOLPGM(" W:");
  3898. if (residency_start_ms) {
  3899. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3900. SERIAL_PROTOCOLLN(rem);
  3901. }
  3902. else {
  3903. SERIAL_PROTOCOLLNPGM("?");
  3904. }
  3905. #else
  3906. SERIAL_EOL;
  3907. #endif
  3908. }
  3909. idle();
  3910. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3911. float temp = thermalManager.degHotend(target_extruder);
  3912. #if TEMP_RESIDENCY_TIME > 0
  3913. float temp_diff = fabs(theTarget - temp);
  3914. if (!residency_start_ms) {
  3915. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3916. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3917. }
  3918. else if (temp_diff > TEMP_HYSTERESIS) {
  3919. // Restart the timer whenever the temperature falls outside the hysteresis.
  3920. residency_start_ms = now;
  3921. }
  3922. #endif //TEMP_RESIDENCY_TIME > 0
  3923. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3924. if (wants_to_cool) {
  3925. if (temp < (EXTRUDE_MINTEMP) / 2) break; // always break at (default) 85°
  3926. // break after 20 seconds if cooling stalls
  3927. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3928. if (old_temp - temp < 1.0) break;
  3929. next_cool_check_ms = now + 20000;
  3930. old_temp = temp;
  3931. }
  3932. }
  3933. } while (wait_for_heatup && TEMP_CONDITIONS);
  3934. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3935. KEEPALIVE_STATE(IN_HANDLER);
  3936. }
  3937. #if HAS_TEMP_BED
  3938. /**
  3939. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3940. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3941. */
  3942. inline void gcode_M190() {
  3943. if (DEBUGGING(DRYRUN)) return;
  3944. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3945. bool no_wait_for_cooling = code_seen('S');
  3946. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  3947. #if TEMP_BED_RESIDENCY_TIME > 0
  3948. millis_t residency_start_ms = 0;
  3949. // Loop until the temperature has stabilized
  3950. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3951. #else
  3952. // Loop until the temperature is very close target
  3953. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3954. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3955. float theTarget = -1.0, old_temp = 9999.0;
  3956. bool wants_to_cool = false;
  3957. wait_for_heatup = true;
  3958. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3959. KEEPALIVE_STATE(NOT_BUSY);
  3960. do {
  3961. // Target temperature might be changed during the loop
  3962. if (theTarget != thermalManager.degTargetBed()) {
  3963. wants_to_cool = thermalManager.isCoolingBed();
  3964. theTarget = thermalManager.degTargetBed();
  3965. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3966. if (no_wait_for_cooling && wants_to_cool) break;
  3967. }
  3968. now = millis();
  3969. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3970. next_temp_ms = now + 1000UL;
  3971. print_heaterstates();
  3972. #if TEMP_BED_RESIDENCY_TIME > 0
  3973. SERIAL_PROTOCOLPGM(" W:");
  3974. if (residency_start_ms) {
  3975. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3976. SERIAL_PROTOCOLLN(rem);
  3977. }
  3978. else {
  3979. SERIAL_PROTOCOLLNPGM("?");
  3980. }
  3981. #else
  3982. SERIAL_EOL;
  3983. #endif
  3984. }
  3985. idle();
  3986. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3987. float temp = thermalManager.degBed();
  3988. #if TEMP_BED_RESIDENCY_TIME > 0
  3989. float temp_diff = fabs(theTarget - temp);
  3990. if (!residency_start_ms) {
  3991. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3992. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3993. }
  3994. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3995. // Restart the timer whenever the temperature falls outside the hysteresis.
  3996. residency_start_ms = now;
  3997. }
  3998. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3999. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4000. if (wants_to_cool) {
  4001. if (temp < 30.0) break; // always break at 30°
  4002. // break after 20 seconds if cooling stalls
  4003. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4004. if (old_temp - temp < 1.0) break;
  4005. next_cool_check_ms = now + 20000;
  4006. old_temp = temp;
  4007. }
  4008. }
  4009. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4010. LCD_MESSAGEPGM(MSG_BED_DONE);
  4011. KEEPALIVE_STATE(IN_HANDLER);
  4012. }
  4013. #endif // HAS_TEMP_BED
  4014. /**
  4015. * M110: Set Current Line Number
  4016. */
  4017. inline void gcode_M110() {
  4018. if (code_seen('N')) gcode_N = code_value_long();
  4019. }
  4020. /**
  4021. * M111: Set the debug level
  4022. */
  4023. inline void gcode_M111() {
  4024. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4025. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4026. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4027. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4028. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4029. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4030. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4031. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4032. #endif
  4033. const static char* const debug_strings[] PROGMEM = {
  4034. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4036. str_debug_32
  4037. #endif
  4038. };
  4039. SERIAL_ECHO_START;
  4040. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4041. if (marlin_debug_flags) {
  4042. uint8_t comma = 0;
  4043. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4044. if (TEST(marlin_debug_flags, i)) {
  4045. if (comma++) SERIAL_CHAR(',');
  4046. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4047. }
  4048. }
  4049. }
  4050. else {
  4051. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4052. }
  4053. SERIAL_EOL;
  4054. }
  4055. /**
  4056. * M112: Emergency Stop
  4057. */
  4058. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4059. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4060. /**
  4061. * M113: Get or set Host Keepalive interval (0 to disable)
  4062. *
  4063. * S<seconds> Optional. Set the keepalive interval.
  4064. */
  4065. inline void gcode_M113() {
  4066. if (code_seen('S')) {
  4067. host_keepalive_interval = code_value_byte();
  4068. NOMORE(host_keepalive_interval, 60);
  4069. }
  4070. else {
  4071. SERIAL_ECHO_START;
  4072. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4073. SERIAL_EOL;
  4074. }
  4075. }
  4076. #endif
  4077. #if ENABLED(BARICUDA)
  4078. #if HAS_HEATER_1
  4079. /**
  4080. * M126: Heater 1 valve open
  4081. */
  4082. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4083. /**
  4084. * M127: Heater 1 valve close
  4085. */
  4086. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4087. #endif
  4088. #if HAS_HEATER_2
  4089. /**
  4090. * M128: Heater 2 valve open
  4091. */
  4092. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4093. /**
  4094. * M129: Heater 2 valve close
  4095. */
  4096. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4097. #endif
  4098. #endif //BARICUDA
  4099. /**
  4100. * M140: Set bed temperature
  4101. */
  4102. inline void gcode_M140() {
  4103. if (DEBUGGING(DRYRUN)) return;
  4104. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4105. }
  4106. #if ENABLED(ULTIPANEL)
  4107. /**
  4108. * M145: Set the heatup state for a material in the LCD menu
  4109. * S<material> (0=PLA, 1=ABS)
  4110. * H<hotend temp>
  4111. * B<bed temp>
  4112. * F<fan speed>
  4113. */
  4114. inline void gcode_M145() {
  4115. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4116. if (material < 0 || material > 1) {
  4117. SERIAL_ERROR_START;
  4118. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4119. }
  4120. else {
  4121. int v;
  4122. switch (material) {
  4123. case 0:
  4124. if (code_seen('H')) {
  4125. v = code_value_int();
  4126. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4127. }
  4128. if (code_seen('F')) {
  4129. v = code_value_int();
  4130. plaPreheatFanSpeed = constrain(v, 0, 255);
  4131. }
  4132. #if TEMP_SENSOR_BED != 0
  4133. if (code_seen('B')) {
  4134. v = code_value_int();
  4135. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4136. }
  4137. #endif
  4138. break;
  4139. case 1:
  4140. if (code_seen('H')) {
  4141. v = code_value_int();
  4142. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4143. }
  4144. if (code_seen('F')) {
  4145. v = code_value_int();
  4146. absPreheatFanSpeed = constrain(v, 0, 255);
  4147. }
  4148. #if TEMP_SENSOR_BED != 0
  4149. if (code_seen('B')) {
  4150. v = code_value_int();
  4151. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4152. }
  4153. #endif
  4154. break;
  4155. }
  4156. }
  4157. }
  4158. #endif
  4159. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4160. /**
  4161. * M149: Set temperature units
  4162. */
  4163. inline void gcode_M149() {
  4164. if (code_seen('C')) {
  4165. set_input_temp_units(TEMPUNIT_C);
  4166. } else if (code_seen('K')) {
  4167. set_input_temp_units(TEMPUNIT_K);
  4168. } else if (code_seen('F')) {
  4169. set_input_temp_units(TEMPUNIT_F);
  4170. }
  4171. }
  4172. #endif
  4173. #if HAS_POWER_SWITCH
  4174. /**
  4175. * M80: Turn on Power Supply
  4176. */
  4177. inline void gcode_M80() {
  4178. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4179. /**
  4180. * If you have a switch on suicide pin, this is useful
  4181. * if you want to start another print with suicide feature after
  4182. * a print without suicide...
  4183. */
  4184. #if HAS_SUICIDE
  4185. OUT_WRITE(SUICIDE_PIN, HIGH);
  4186. #endif
  4187. #if ENABLED(ULTIPANEL)
  4188. powersupply = true;
  4189. LCD_MESSAGEPGM(WELCOME_MSG);
  4190. lcd_update();
  4191. #endif
  4192. }
  4193. #endif // HAS_POWER_SWITCH
  4194. /**
  4195. * M81: Turn off Power, including Power Supply, if there is one.
  4196. *
  4197. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4198. */
  4199. inline void gcode_M81() {
  4200. thermalManager.disable_all_heaters();
  4201. stepper.finish_and_disable();
  4202. #if FAN_COUNT > 0
  4203. #if FAN_COUNT > 1
  4204. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4205. #else
  4206. fanSpeeds[0] = 0;
  4207. #endif
  4208. #endif
  4209. delay(1000); // Wait 1 second before switching off
  4210. #if HAS_SUICIDE
  4211. stepper.synchronize();
  4212. suicide();
  4213. #elif HAS_POWER_SWITCH
  4214. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4215. #endif
  4216. #if ENABLED(ULTIPANEL)
  4217. #if HAS_POWER_SWITCH
  4218. powersupply = false;
  4219. #endif
  4220. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4221. lcd_update();
  4222. #endif
  4223. }
  4224. /**
  4225. * M82: Set E codes absolute (default)
  4226. */
  4227. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4228. /**
  4229. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4230. */
  4231. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4232. /**
  4233. * M18, M84: Disable all stepper motors
  4234. */
  4235. inline void gcode_M18_M84() {
  4236. if (code_seen('S')) {
  4237. stepper_inactive_time = code_value_millis_from_seconds();
  4238. }
  4239. else {
  4240. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4241. if (all_axis) {
  4242. stepper.finish_and_disable();
  4243. }
  4244. else {
  4245. stepper.synchronize();
  4246. if (code_seen('X')) disable_x();
  4247. if (code_seen('Y')) disable_y();
  4248. if (code_seen('Z')) disable_z();
  4249. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4250. if (code_seen('E')) {
  4251. disable_e0();
  4252. disable_e1();
  4253. disable_e2();
  4254. disable_e3();
  4255. }
  4256. #endif
  4257. }
  4258. }
  4259. }
  4260. /**
  4261. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4262. */
  4263. inline void gcode_M85() {
  4264. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4265. }
  4266. /**
  4267. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4268. * (Follows the same syntax as G92)
  4269. */
  4270. inline void gcode_M92() {
  4271. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4272. if (code_seen(axis_codes[i])) {
  4273. if (i == E_AXIS) {
  4274. float value = code_value_per_axis_unit(i);
  4275. if (value < 20.0) {
  4276. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4277. planner.max_e_jerk *= factor;
  4278. planner.max_feedrate[i] *= factor;
  4279. planner.max_acceleration_steps_per_s2[i] *= factor;
  4280. }
  4281. planner.axis_steps_per_mm[i] = value;
  4282. }
  4283. else {
  4284. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4285. }
  4286. }
  4287. }
  4288. }
  4289. /**
  4290. * Output the current position to serial
  4291. */
  4292. static void report_current_position() {
  4293. SERIAL_PROTOCOLPGM("X:");
  4294. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4295. SERIAL_PROTOCOLPGM(" Y:");
  4296. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4297. SERIAL_PROTOCOLPGM(" Z:");
  4298. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4299. SERIAL_PROTOCOLPGM(" E:");
  4300. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4301. stepper.report_positions();
  4302. #if ENABLED(SCARA)
  4303. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4304. SERIAL_PROTOCOL(delta[X_AXIS]);
  4305. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4306. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4307. SERIAL_EOL;
  4308. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4309. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4310. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4311. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4312. SERIAL_EOL;
  4313. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4314. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4315. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4316. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4317. SERIAL_EOL; SERIAL_EOL;
  4318. #endif
  4319. }
  4320. /**
  4321. * M114: Output current position to serial port
  4322. */
  4323. inline void gcode_M114() { report_current_position(); }
  4324. /**
  4325. * M115: Capabilities string
  4326. */
  4327. inline void gcode_M115() {
  4328. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4329. }
  4330. /**
  4331. * M117: Set LCD Status Message
  4332. */
  4333. inline void gcode_M117() {
  4334. lcd_setstatus(current_command_args);
  4335. }
  4336. /**
  4337. * M119: Output endstop states to serial output
  4338. */
  4339. inline void gcode_M119() { endstops.M119(); }
  4340. /**
  4341. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4342. */
  4343. inline void gcode_M120() { endstops.enable_globally(true); }
  4344. /**
  4345. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4346. */
  4347. inline void gcode_M121() { endstops.enable_globally(false); }
  4348. #if ENABLED(BLINKM)
  4349. /**
  4350. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4351. */
  4352. inline void gcode_M150() {
  4353. SendColors(
  4354. code_seen('R') ? code_value_byte() : 0,
  4355. code_seen('U') ? code_value_byte() : 0,
  4356. code_seen('B') ? code_value_byte() : 0
  4357. );
  4358. }
  4359. #endif // BLINKM
  4360. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4361. /**
  4362. * M155: Send data to a I2C slave device
  4363. *
  4364. * This is a PoC, the formating and arguments for the GCODE will
  4365. * change to be more compatible, the current proposal is:
  4366. *
  4367. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4368. *
  4369. * M155 B<byte-1 value in base 10>
  4370. * M155 B<byte-2 value in base 10>
  4371. * M155 B<byte-3 value in base 10>
  4372. *
  4373. * M155 S1 ; Send the buffered data and reset the buffer
  4374. * M155 R1 ; Reset the buffer without sending data
  4375. *
  4376. */
  4377. inline void gcode_M155() {
  4378. // Set the target address
  4379. if (code_seen('A'))
  4380. i2c.address(code_value_byte());
  4381. // Add a new byte to the buffer
  4382. else if (code_seen('B'))
  4383. i2c.addbyte(code_value_int());
  4384. // Flush the buffer to the bus
  4385. else if (code_seen('S')) i2c.send();
  4386. // Reset and rewind the buffer
  4387. else if (code_seen('R')) i2c.reset();
  4388. }
  4389. /**
  4390. * M156: Request X bytes from I2C slave device
  4391. *
  4392. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4393. */
  4394. inline void gcode_M156() {
  4395. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4396. int bytes = code_seen('B') ? code_value_int() : 1;
  4397. if (addr && bytes > 0 && bytes <= 32) {
  4398. i2c.address(addr);
  4399. i2c.reqbytes(bytes);
  4400. }
  4401. else {
  4402. SERIAL_ERROR_START;
  4403. SERIAL_ERRORLN("Bad i2c request");
  4404. }
  4405. }
  4406. #endif //EXPERIMENTAL_I2CBUS
  4407. /**
  4408. * M200: Set filament diameter and set E axis units to cubic units
  4409. *
  4410. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4411. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4412. */
  4413. inline void gcode_M200() {
  4414. if (get_target_extruder_from_command(200)) return;
  4415. if (code_seen('D')) {
  4416. float diameter = code_value_linear_units();
  4417. // setting any extruder filament size disables volumetric on the assumption that
  4418. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4419. // for all extruders
  4420. volumetric_enabled = (diameter != 0.0);
  4421. if (volumetric_enabled) {
  4422. filament_size[target_extruder] = diameter;
  4423. // make sure all extruders have some sane value for the filament size
  4424. for (int i = 0; i < EXTRUDERS; i++)
  4425. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4426. }
  4427. }
  4428. else {
  4429. //reserved for setting filament diameter via UFID or filament measuring device
  4430. return;
  4431. }
  4432. calculate_volumetric_multipliers();
  4433. }
  4434. /**
  4435. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4436. */
  4437. inline void gcode_M201() {
  4438. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4439. if (code_seen(axis_codes[i])) {
  4440. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4441. }
  4442. }
  4443. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4444. planner.reset_acceleration_rates();
  4445. }
  4446. #if 0 // Not used for Sprinter/grbl gen6
  4447. inline void gcode_M202() {
  4448. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4449. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4450. }
  4451. }
  4452. #endif
  4453. /**
  4454. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4455. */
  4456. inline void gcode_M203() {
  4457. for (int8_t i = 0; i < NUM_AXIS; i++)
  4458. if (code_seen(axis_codes[i]))
  4459. planner.max_feedrate[i] = code_value_axis_units(i);
  4460. }
  4461. /**
  4462. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4463. *
  4464. * P = Printing moves
  4465. * R = Retract only (no X, Y, Z) moves
  4466. * T = Travel (non printing) moves
  4467. *
  4468. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4469. */
  4470. inline void gcode_M204() {
  4471. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4472. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4473. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4474. SERIAL_EOL;
  4475. }
  4476. if (code_seen('P')) {
  4477. planner.acceleration = code_value_linear_units();
  4478. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4479. SERIAL_EOL;
  4480. }
  4481. if (code_seen('R')) {
  4482. planner.retract_acceleration = code_value_linear_units();
  4483. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4484. SERIAL_EOL;
  4485. }
  4486. if (code_seen('T')) {
  4487. planner.travel_acceleration = code_value_linear_units();
  4488. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4489. SERIAL_EOL;
  4490. }
  4491. }
  4492. /**
  4493. * M205: Set Advanced Settings
  4494. *
  4495. * S = Min Feed Rate (units/s)
  4496. * T = Min Travel Feed Rate (units/s)
  4497. * B = Min Segment Time (µs)
  4498. * X = Max XY Jerk (units/sec^2)
  4499. * Z = Max Z Jerk (units/sec^2)
  4500. * E = Max E Jerk (units/sec^2)
  4501. */
  4502. inline void gcode_M205() {
  4503. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4504. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4505. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4506. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4507. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4508. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4509. }
  4510. /**
  4511. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4512. */
  4513. inline void gcode_M206() {
  4514. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4515. if (code_seen(axis_codes[i]))
  4516. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4517. #if ENABLED(SCARA)
  4518. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4519. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4520. #endif
  4521. SYNC_PLAN_POSITION_KINEMATIC();
  4522. report_current_position();
  4523. }
  4524. #if ENABLED(DELTA)
  4525. /**
  4526. * M665: Set delta configurations
  4527. *
  4528. * L = diagonal rod
  4529. * R = delta radius
  4530. * S = segments per second
  4531. * A = Alpha (Tower 1) diagonal rod trim
  4532. * B = Beta (Tower 2) diagonal rod trim
  4533. * C = Gamma (Tower 3) diagonal rod trim
  4534. */
  4535. inline void gcode_M665() {
  4536. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4537. if (code_seen('R')) delta_radius = code_value_linear_units();
  4538. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4539. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4540. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4541. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4542. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4543. }
  4544. /**
  4545. * M666: Set delta endstop adjustment
  4546. */
  4547. inline void gcode_M666() {
  4548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4549. if (DEBUGGING(LEVELING)) {
  4550. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4551. }
  4552. #endif
  4553. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4554. if (code_seen(axis_codes[i])) {
  4555. endstop_adj[i] = code_value_axis_units(i);
  4556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4557. if (DEBUGGING(LEVELING)) {
  4558. SERIAL_ECHOPGM("endstop_adj[");
  4559. SERIAL_ECHO(axis_codes[i]);
  4560. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4561. SERIAL_EOL;
  4562. }
  4563. #endif
  4564. }
  4565. }
  4566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4567. if (DEBUGGING(LEVELING)) {
  4568. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4569. }
  4570. #endif
  4571. }
  4572. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4573. /**
  4574. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4575. */
  4576. inline void gcode_M666() {
  4577. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4578. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4579. SERIAL_EOL;
  4580. }
  4581. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4582. #if ENABLED(FWRETRACT)
  4583. /**
  4584. * M207: Set firmware retraction values
  4585. *
  4586. * S[+units] retract_length
  4587. * W[+units] retract_length_swap (multi-extruder)
  4588. * F[units/min] retract_feedrate_mm_s
  4589. * Z[units] retract_zlift
  4590. */
  4591. inline void gcode_M207() {
  4592. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4593. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4594. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4595. #if EXTRUDERS > 1
  4596. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4597. #endif
  4598. }
  4599. /**
  4600. * M208: Set firmware un-retraction values
  4601. *
  4602. * S[+units] retract_recover_length (in addition to M207 S*)
  4603. * W[+units] retract_recover_length_swap (multi-extruder)
  4604. * F[units/min] retract_recover_feedrate
  4605. */
  4606. inline void gcode_M208() {
  4607. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4608. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4609. #if EXTRUDERS > 1
  4610. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4611. #endif
  4612. }
  4613. /**
  4614. * M209: Enable automatic retract (M209 S1)
  4615. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4616. */
  4617. inline void gcode_M209() {
  4618. if (code_seen('S')) {
  4619. int t = code_value_int();
  4620. switch (t) {
  4621. case 0:
  4622. autoretract_enabled = false;
  4623. break;
  4624. case 1:
  4625. autoretract_enabled = true;
  4626. break;
  4627. default:
  4628. unknown_command_error();
  4629. return;
  4630. }
  4631. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4632. }
  4633. }
  4634. #endif // FWRETRACT
  4635. #if HOTENDS > 1
  4636. /**
  4637. * M218 - set hotend offset (in linear units)
  4638. *
  4639. * T<tool>
  4640. * X<xoffset>
  4641. * Y<yoffset>
  4642. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4643. */
  4644. inline void gcode_M218() {
  4645. if (get_target_extruder_from_command(218)) return;
  4646. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4647. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4648. #if ENABLED(DUAL_X_CARRIAGE)
  4649. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4650. #endif
  4651. SERIAL_ECHO_START;
  4652. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4653. for (int e = 0; e < HOTENDS; e++) {
  4654. SERIAL_CHAR(' ');
  4655. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4656. SERIAL_CHAR(',');
  4657. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4658. #if ENABLED(DUAL_X_CARRIAGE)
  4659. SERIAL_CHAR(',');
  4660. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4661. #endif
  4662. }
  4663. SERIAL_EOL;
  4664. }
  4665. #endif // HOTENDS > 1
  4666. /**
  4667. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4668. */
  4669. inline void gcode_M220() {
  4670. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4671. }
  4672. /**
  4673. * M221: Set extrusion percentage (M221 T0 S95)
  4674. */
  4675. inline void gcode_M221() {
  4676. if (code_seen('S')) {
  4677. int sval = code_value_int();
  4678. if (get_target_extruder_from_command(221)) return;
  4679. extruder_multiplier[target_extruder] = sval;
  4680. }
  4681. }
  4682. /**
  4683. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4684. */
  4685. inline void gcode_M226() {
  4686. if (code_seen('P')) {
  4687. int pin_number = code_value_int();
  4688. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4689. if (pin_state >= -1 && pin_state <= 1) {
  4690. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4691. if (sensitive_pins[i] == pin_number) {
  4692. pin_number = -1;
  4693. break;
  4694. }
  4695. }
  4696. if (pin_number > -1) {
  4697. int target = LOW;
  4698. stepper.synchronize();
  4699. pinMode(pin_number, INPUT);
  4700. switch (pin_state) {
  4701. case 1:
  4702. target = HIGH;
  4703. break;
  4704. case 0:
  4705. target = LOW;
  4706. break;
  4707. case -1:
  4708. target = !digitalRead(pin_number);
  4709. break;
  4710. }
  4711. while (digitalRead(pin_number) != target) idle();
  4712. } // pin_number > -1
  4713. } // pin_state -1 0 1
  4714. } // code_seen('P')
  4715. }
  4716. #if HAS_SERVOS
  4717. /**
  4718. * M280: Get or set servo position. P<index> S<angle>
  4719. */
  4720. inline void gcode_M280() {
  4721. int servo_index = code_seen('P') ? code_value_int() : -1;
  4722. int servo_position = 0;
  4723. if (code_seen('S')) {
  4724. servo_position = code_value_int();
  4725. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4726. MOVE_SERVO(servo_index, servo_position);
  4727. else {
  4728. SERIAL_ERROR_START;
  4729. SERIAL_ERROR("Servo ");
  4730. SERIAL_ERROR(servo_index);
  4731. SERIAL_ERRORLN(" out of range");
  4732. }
  4733. }
  4734. else if (servo_index >= 0) {
  4735. SERIAL_ECHO_START;
  4736. SERIAL_ECHOPGM(" Servo ");
  4737. SERIAL_ECHO(servo_index);
  4738. SERIAL_ECHOPGM(": ");
  4739. SERIAL_ECHOLN(servo[servo_index].read());
  4740. }
  4741. }
  4742. #endif // HAS_SERVOS
  4743. #if HAS_BUZZER
  4744. /**
  4745. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4746. */
  4747. inline void gcode_M300() {
  4748. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4749. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4750. // Limits the tone duration to 0-5 seconds.
  4751. NOMORE(duration, 5000);
  4752. buzzer.tone(duration, frequency);
  4753. }
  4754. #endif // HAS_BUZZER
  4755. #if ENABLED(PIDTEMP)
  4756. /**
  4757. * M301: Set PID parameters P I D (and optionally C, L)
  4758. *
  4759. * P[float] Kp term
  4760. * I[float] Ki term (unscaled)
  4761. * D[float] Kd term (unscaled)
  4762. *
  4763. * With PID_ADD_EXTRUSION_RATE:
  4764. *
  4765. * C[float] Kc term
  4766. * L[float] LPQ length
  4767. */
  4768. inline void gcode_M301() {
  4769. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4770. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4771. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4772. if (e < HOTENDS) { // catch bad input value
  4773. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4774. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4775. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4776. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4777. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4778. if (code_seen('L')) lpq_len = code_value_float();
  4779. NOMORE(lpq_len, LPQ_MAX_LEN);
  4780. #endif
  4781. thermalManager.updatePID();
  4782. SERIAL_ECHO_START;
  4783. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4784. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4785. SERIAL_ECHO(e);
  4786. #endif // PID_PARAMS_PER_HOTEND
  4787. SERIAL_ECHOPGM(" p:");
  4788. SERIAL_ECHO(PID_PARAM(Kp, e));
  4789. SERIAL_ECHOPGM(" i:");
  4790. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4791. SERIAL_ECHOPGM(" d:");
  4792. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4793. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4794. SERIAL_ECHOPGM(" c:");
  4795. //Kc does not have scaling applied above, or in resetting defaults
  4796. SERIAL_ECHO(PID_PARAM(Kc, e));
  4797. #endif
  4798. SERIAL_EOL;
  4799. }
  4800. else {
  4801. SERIAL_ERROR_START;
  4802. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4803. }
  4804. }
  4805. #endif // PIDTEMP
  4806. #if ENABLED(PIDTEMPBED)
  4807. inline void gcode_M304() {
  4808. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4809. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4810. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4811. thermalManager.updatePID();
  4812. SERIAL_ECHO_START;
  4813. SERIAL_ECHOPGM(" p:");
  4814. SERIAL_ECHO(thermalManager.bedKp);
  4815. SERIAL_ECHOPGM(" i:");
  4816. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4817. SERIAL_ECHOPGM(" d:");
  4818. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4819. }
  4820. #endif // PIDTEMPBED
  4821. #if defined(CHDK) || HAS_PHOTOGRAPH
  4822. /**
  4823. * M240: Trigger a camera by emulating a Canon RC-1
  4824. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4825. */
  4826. inline void gcode_M240() {
  4827. #ifdef CHDK
  4828. OUT_WRITE(CHDK, HIGH);
  4829. chdkHigh = millis();
  4830. chdkActive = true;
  4831. #elif HAS_PHOTOGRAPH
  4832. const uint8_t NUM_PULSES = 16;
  4833. const float PULSE_LENGTH = 0.01524;
  4834. for (int i = 0; i < NUM_PULSES; i++) {
  4835. WRITE(PHOTOGRAPH_PIN, HIGH);
  4836. _delay_ms(PULSE_LENGTH);
  4837. WRITE(PHOTOGRAPH_PIN, LOW);
  4838. _delay_ms(PULSE_LENGTH);
  4839. }
  4840. delay(7.33);
  4841. for (int i = 0; i < NUM_PULSES; i++) {
  4842. WRITE(PHOTOGRAPH_PIN, HIGH);
  4843. _delay_ms(PULSE_LENGTH);
  4844. WRITE(PHOTOGRAPH_PIN, LOW);
  4845. _delay_ms(PULSE_LENGTH);
  4846. }
  4847. #endif // !CHDK && HAS_PHOTOGRAPH
  4848. }
  4849. #endif // CHDK || PHOTOGRAPH_PIN
  4850. #if HAS_LCD_CONTRAST
  4851. /**
  4852. * M250: Read and optionally set the LCD contrast
  4853. */
  4854. inline void gcode_M250() {
  4855. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4856. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4857. SERIAL_PROTOCOL(lcd_contrast);
  4858. SERIAL_EOL;
  4859. }
  4860. #endif // HAS_LCD_CONTRAST
  4861. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4862. /**
  4863. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4864. */
  4865. inline void gcode_M302() {
  4866. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4867. }
  4868. #endif // PREVENT_DANGEROUS_EXTRUDE
  4869. /**
  4870. * M303: PID relay autotune
  4871. *
  4872. * S<temperature> sets the target temperature. (default 150C)
  4873. * E<extruder> (-1 for the bed) (default 0)
  4874. * C<cycles>
  4875. * U<bool> with a non-zero value will apply the result to current settings
  4876. */
  4877. inline void gcode_M303() {
  4878. #if HAS_PID_HEATING
  4879. int e = code_seen('E') ? code_value_int() : 0;
  4880. int c = code_seen('C') ? code_value_int() : 5;
  4881. bool u = code_seen('U') && code_value_bool();
  4882. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4883. if (e >= 0 && e < HOTENDS)
  4884. target_extruder = e;
  4885. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4886. thermalManager.PID_autotune(temp, e, c, u);
  4887. KEEPALIVE_STATE(IN_HANDLER);
  4888. #else
  4889. SERIAL_ERROR_START;
  4890. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4891. #endif
  4892. }
  4893. #if ENABLED(SCARA)
  4894. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4895. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4896. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4897. if (IsRunning()) {
  4898. //gcode_get_destination(); // For X Y Z E F
  4899. delta[X_AXIS] = delta_x;
  4900. delta[Y_AXIS] = delta_y;
  4901. calculate_SCARA_forward_Transform(delta);
  4902. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4903. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4904. prepare_move_to_destination();
  4905. //ok_to_send();
  4906. return true;
  4907. }
  4908. return false;
  4909. }
  4910. /**
  4911. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4912. */
  4913. inline bool gcode_M360() {
  4914. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4915. return SCARA_move_to_cal(0, 120);
  4916. }
  4917. /**
  4918. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4919. */
  4920. inline bool gcode_M361() {
  4921. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4922. return SCARA_move_to_cal(90, 130);
  4923. }
  4924. /**
  4925. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4926. */
  4927. inline bool gcode_M362() {
  4928. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4929. return SCARA_move_to_cal(60, 180);
  4930. }
  4931. /**
  4932. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4933. */
  4934. inline bool gcode_M363() {
  4935. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4936. return SCARA_move_to_cal(50, 90);
  4937. }
  4938. /**
  4939. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4940. */
  4941. inline bool gcode_M364() {
  4942. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4943. return SCARA_move_to_cal(45, 135);
  4944. }
  4945. /**
  4946. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4947. */
  4948. inline void gcode_M365() {
  4949. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4950. if (code_seen(axis_codes[i])) {
  4951. axis_scaling[i] = code_value_float();
  4952. }
  4953. }
  4954. }
  4955. #endif // SCARA
  4956. #if ENABLED(EXT_SOLENOID)
  4957. void enable_solenoid(uint8_t num) {
  4958. switch (num) {
  4959. case 0:
  4960. OUT_WRITE(SOL0_PIN, HIGH);
  4961. break;
  4962. #if HAS_SOLENOID_1
  4963. case 1:
  4964. OUT_WRITE(SOL1_PIN, HIGH);
  4965. break;
  4966. #endif
  4967. #if HAS_SOLENOID_2
  4968. case 2:
  4969. OUT_WRITE(SOL2_PIN, HIGH);
  4970. break;
  4971. #endif
  4972. #if HAS_SOLENOID_3
  4973. case 3:
  4974. OUT_WRITE(SOL3_PIN, HIGH);
  4975. break;
  4976. #endif
  4977. default:
  4978. SERIAL_ECHO_START;
  4979. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4980. break;
  4981. }
  4982. }
  4983. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4984. void disable_all_solenoids() {
  4985. OUT_WRITE(SOL0_PIN, LOW);
  4986. OUT_WRITE(SOL1_PIN, LOW);
  4987. OUT_WRITE(SOL2_PIN, LOW);
  4988. OUT_WRITE(SOL3_PIN, LOW);
  4989. }
  4990. /**
  4991. * M380: Enable solenoid on the active extruder
  4992. */
  4993. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4994. /**
  4995. * M381: Disable all solenoids
  4996. */
  4997. inline void gcode_M381() { disable_all_solenoids(); }
  4998. #endif // EXT_SOLENOID
  4999. /**
  5000. * M400: Finish all moves
  5001. */
  5002. inline void gcode_M400() { stepper.synchronize(); }
  5003. #if HAS_BED_PROBE
  5004. /**
  5005. * M401: Engage Z Servo endstop if available
  5006. */
  5007. inline void gcode_M401() { DEPLOY_PROBE(); }
  5008. /**
  5009. * M402: Retract Z Servo endstop if enabled
  5010. */
  5011. inline void gcode_M402() { STOW_PROBE(); }
  5012. #endif // HAS_BED_PROBE
  5013. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5014. /**
  5015. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5016. */
  5017. inline void gcode_M404() {
  5018. if (code_seen('W')) {
  5019. filament_width_nominal = code_value_linear_units();
  5020. }
  5021. else {
  5022. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5023. SERIAL_PROTOCOLLN(filament_width_nominal);
  5024. }
  5025. }
  5026. /**
  5027. * M405: Turn on filament sensor for control
  5028. */
  5029. inline void gcode_M405() {
  5030. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5031. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5032. if (code_seen('D')) meas_delay_cm = code_value_int();
  5033. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5034. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5035. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5036. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5037. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5038. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5039. }
  5040. filament_sensor = true;
  5041. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5042. //SERIAL_PROTOCOL(filament_width_meas);
  5043. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5044. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5045. }
  5046. /**
  5047. * M406: Turn off filament sensor for control
  5048. */
  5049. inline void gcode_M406() { filament_sensor = false; }
  5050. /**
  5051. * M407: Get measured filament diameter on serial output
  5052. */
  5053. inline void gcode_M407() {
  5054. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5055. SERIAL_PROTOCOLLN(filament_width_meas);
  5056. }
  5057. #endif // FILAMENT_WIDTH_SENSOR
  5058. #if DISABLED(DELTA) && DISABLED(SCARA)
  5059. void set_current_position_from_planner() {
  5060. stepper.synchronize();
  5061. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5062. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5063. current_position[X_AXIS] = pos.x;
  5064. current_position[Y_AXIS] = pos.y;
  5065. current_position[Z_AXIS] = pos.z;
  5066. #else
  5067. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5068. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5069. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5070. #endif
  5071. sync_plan_position(); // ...re-apply to planner position
  5072. }
  5073. #endif
  5074. /**
  5075. * M410: Quickstop - Abort all planned moves
  5076. *
  5077. * This will stop the carriages mid-move, so most likely they
  5078. * will be out of sync with the stepper position after this.
  5079. */
  5080. inline void gcode_M410() {
  5081. stepper.quick_stop();
  5082. #if DISABLED(DELTA) && DISABLED(SCARA)
  5083. set_current_position_from_planner();
  5084. #endif
  5085. }
  5086. #if ENABLED(MESH_BED_LEVELING)
  5087. /**
  5088. * M420: Enable/Disable Mesh Bed Leveling
  5089. */
  5090. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5091. /**
  5092. * M421: Set a single Mesh Bed Leveling Z coordinate
  5093. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5094. */
  5095. inline void gcode_M421() {
  5096. int8_t px, py;
  5097. float z = 0;
  5098. bool hasX, hasY, hasZ, hasI, hasJ;
  5099. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5100. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5101. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5102. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5103. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5104. if (hasX && hasY && hasZ) {
  5105. if (px >= 0 && py >= 0)
  5106. mbl.set_z(px, py, z);
  5107. else {
  5108. SERIAL_ERROR_START;
  5109. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5110. }
  5111. }
  5112. else if (hasI && hasJ && hasZ) {
  5113. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5114. mbl.set_z(px, py, z);
  5115. else {
  5116. SERIAL_ERROR_START;
  5117. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5118. }
  5119. }
  5120. else {
  5121. SERIAL_ERROR_START;
  5122. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5123. }
  5124. }
  5125. #endif
  5126. /**
  5127. * M428: Set home_offset based on the distance between the
  5128. * current_position and the nearest "reference point."
  5129. * If an axis is past center its endstop position
  5130. * is the reference-point. Otherwise it uses 0. This allows
  5131. * the Z offset to be set near the bed when using a max endstop.
  5132. *
  5133. * M428 can't be used more than 2cm away from 0 or an endstop.
  5134. *
  5135. * Use M206 to set these values directly.
  5136. */
  5137. inline void gcode_M428() {
  5138. bool err = false;
  5139. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5140. if (axis_homed[i]) {
  5141. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5142. diff = current_position[i] - base;
  5143. if (diff > -20 && diff < 20) {
  5144. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5145. }
  5146. else {
  5147. SERIAL_ERROR_START;
  5148. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5149. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5150. #if HAS_BUZZER
  5151. buzzer.tone(200, 40);
  5152. #endif
  5153. err = true;
  5154. break;
  5155. }
  5156. }
  5157. }
  5158. if (!err) {
  5159. SYNC_PLAN_POSITION_KINEMATIC();
  5160. report_current_position();
  5161. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5162. #if HAS_BUZZER
  5163. buzzer.tone(200, 659);
  5164. buzzer.tone(200, 698);
  5165. #endif
  5166. }
  5167. }
  5168. /**
  5169. * M500: Store settings in EEPROM
  5170. */
  5171. inline void gcode_M500() {
  5172. Config_StoreSettings();
  5173. }
  5174. /**
  5175. * M501: Read settings from EEPROM
  5176. */
  5177. inline void gcode_M501() {
  5178. Config_RetrieveSettings();
  5179. }
  5180. /**
  5181. * M502: Revert to default settings
  5182. */
  5183. inline void gcode_M502() {
  5184. Config_ResetDefault();
  5185. }
  5186. /**
  5187. * M503: print settings currently in memory
  5188. */
  5189. inline void gcode_M503() {
  5190. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5191. }
  5192. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5193. /**
  5194. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5195. */
  5196. inline void gcode_M540() {
  5197. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5198. }
  5199. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5200. #if HAS_BED_PROBE
  5201. inline void gcode_M851() {
  5202. SERIAL_ECHO_START;
  5203. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5204. SERIAL_CHAR(' ');
  5205. if (code_seen('Z')) {
  5206. float value = code_value_axis_units(Z_AXIS);
  5207. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5208. zprobe_zoffset = value;
  5209. SERIAL_ECHO(zprobe_zoffset);
  5210. }
  5211. else {
  5212. SERIAL_ECHOPGM(MSG_Z_MIN);
  5213. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5214. SERIAL_CHAR(' ');
  5215. SERIAL_ECHOPGM(MSG_Z_MAX);
  5216. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5217. }
  5218. }
  5219. else {
  5220. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5221. }
  5222. SERIAL_EOL;
  5223. }
  5224. #endif // HAS_BED_PROBE
  5225. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5226. /**
  5227. * M600: Pause for filament change
  5228. *
  5229. * E[distance] - Retract the filament this far (negative value)
  5230. * Z[distance] - Move the Z axis by this distance
  5231. * X[position] - Move to this X position, with Y
  5232. * Y[position] - Move to this Y position, with X
  5233. * L[distance] - Retract distance for removal (manual reload)
  5234. *
  5235. * Default values are used for omitted arguments.
  5236. *
  5237. */
  5238. inline void gcode_M600() {
  5239. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5240. SERIAL_ERROR_START;
  5241. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5242. return;
  5243. }
  5244. // Show initial message and wait for synchronize steppers
  5245. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5246. stepper.synchronize();
  5247. float lastpos[NUM_AXIS];
  5248. // Save current position of all axes
  5249. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5250. lastpos[i] = destination[i] = current_position[i];
  5251. // Define runplan for move axes
  5252. #if ENABLED(DELTA)
  5253. #define RUNPLAN(RATE) calculate_delta(destination); \
  5254. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
  5255. #else
  5256. #define RUNPLAN(RATE) line_to_destination(RATE * 60);
  5257. #endif
  5258. KEEPALIVE_STATE(IN_HANDLER);
  5259. // Initial retract before move to filament change position
  5260. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5261. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5262. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5263. #endif
  5264. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5265. // Lift Z axis
  5266. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5267. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5268. FILAMENT_CHANGE_Z_ADD
  5269. #else
  5270. 0
  5271. #endif
  5272. ;
  5273. if (z_lift > 0) {
  5274. destination[Z_AXIS] += z_lift;
  5275. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5276. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5277. }
  5278. // Move XY axes to filament exchange position
  5279. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5280. #ifdef FILAMENT_CHANGE_X_POS
  5281. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5282. #endif
  5283. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5284. #ifdef FILAMENT_CHANGE_Y_POS
  5285. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5286. #endif
  5287. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5288. stepper.synchronize();
  5289. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5290. // Unload filament
  5291. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5292. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5293. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5294. #endif
  5295. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5296. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5297. stepper.synchronize();
  5298. disable_e0();
  5299. disable_e1();
  5300. disable_e2();
  5301. disable_e3();
  5302. delay(100);
  5303. millis_t next_tick = 0;
  5304. // Wait for filament insert by user and press button
  5305. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5306. while (!lcd_clicked()) {
  5307. #if HAS_BUZZER
  5308. millis_t ms = millis();
  5309. if (ms >= next_tick) {
  5310. buzzer.tone(300, 2000);
  5311. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5312. }
  5313. #endif
  5314. idle(true);
  5315. }
  5316. delay(100);
  5317. while (lcd_clicked()) idle(true);
  5318. delay(100);
  5319. // Show load message
  5320. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5321. // Load filament
  5322. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5323. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5324. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5325. #endif
  5326. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5327. stepper.synchronize();
  5328. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5329. do {
  5330. // Extrude filament to get into hotend
  5331. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5332. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5333. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5334. stepper.synchronize();
  5335. // Ask user if more filament should be extruded
  5336. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5337. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5338. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5339. KEEPALIVE_STATE(IN_HANDLER);
  5340. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5341. #endif
  5342. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5343. KEEPALIVE_STATE(IN_HANDLER);
  5344. // Set extruder to saved position
  5345. current_position[E_AXIS] = lastpos[E_AXIS];
  5346. destination[E_AXIS] = lastpos[E_AXIS];
  5347. planner.set_e_position_mm(current_position[E_AXIS]);
  5348. #if ENABLED(DELTA)
  5349. // Move XYZ to starting position, then E
  5350. calculate_delta(lastpos);
  5351. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5352. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5353. #else
  5354. // Move XY to starting position, then Z, then E
  5355. destination[X_AXIS] = lastpos[X_AXIS];
  5356. destination[Y_AXIS] = lastpos[Y_AXIS];
  5357. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5358. destination[Z_AXIS] = lastpos[Z_AXIS];
  5359. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5360. #endif
  5361. stepper.synchronize();
  5362. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5363. filament_ran_out = false;
  5364. #endif
  5365. // Show status screen
  5366. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5367. }
  5368. #endif // FILAMENT_CHANGE_FEATURE
  5369. #if ENABLED(DUAL_X_CARRIAGE)
  5370. /**
  5371. * M605: Set dual x-carriage movement mode
  5372. *
  5373. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5374. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5375. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5376. * units x-offset and an optional differential hotend temperature of
  5377. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5378. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5379. *
  5380. * Note: the X axis should be homed after changing dual x-carriage mode.
  5381. */
  5382. inline void gcode_M605() {
  5383. stepper.synchronize();
  5384. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5385. switch (dual_x_carriage_mode) {
  5386. case DXC_DUPLICATION_MODE:
  5387. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5388. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5389. SERIAL_ECHO_START;
  5390. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5391. SERIAL_CHAR(' ');
  5392. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5393. SERIAL_CHAR(',');
  5394. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5395. SERIAL_CHAR(' ');
  5396. SERIAL_ECHO(duplicate_extruder_x_offset);
  5397. SERIAL_CHAR(',');
  5398. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5399. break;
  5400. case DXC_FULL_CONTROL_MODE:
  5401. case DXC_AUTO_PARK_MODE:
  5402. break;
  5403. default:
  5404. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5405. break;
  5406. }
  5407. active_extruder_parked = false;
  5408. extruder_duplication_enabled = false;
  5409. delayed_move_time = 0;
  5410. }
  5411. #endif // DUAL_X_CARRIAGE
  5412. #if ENABLED(LIN_ADVANCE)
  5413. /**
  5414. * M905: Set advance factor
  5415. */
  5416. inline void gcode_M905() {
  5417. stepper.synchronize();
  5418. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5419. }
  5420. #endif
  5421. /**
  5422. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5423. */
  5424. inline void gcode_M907() {
  5425. #if HAS_DIGIPOTSS
  5426. for (int i = 0; i < NUM_AXIS; i++)
  5427. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5428. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5429. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5430. #endif
  5431. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5432. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5433. #endif
  5434. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5435. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5436. #endif
  5437. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5438. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5439. #endif
  5440. #if ENABLED(DIGIPOT_I2C)
  5441. // this one uses actual amps in floating point
  5442. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5443. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5444. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5445. #endif
  5446. #if ENABLED(DAC_STEPPER_CURRENT)
  5447. if (code_seen('S')) {
  5448. float dac_percent = code_value_float();
  5449. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5450. }
  5451. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5452. #endif
  5453. }
  5454. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5455. /**
  5456. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5457. */
  5458. inline void gcode_M908() {
  5459. #if HAS_DIGIPOTSS
  5460. stepper.digitalPotWrite(
  5461. code_seen('P') ? code_value_int() : 0,
  5462. code_seen('S') ? code_value_int() : 0
  5463. );
  5464. #endif
  5465. #ifdef DAC_STEPPER_CURRENT
  5466. dac_current_raw(
  5467. code_seen('P') ? code_value_byte() : -1,
  5468. code_seen('S') ? code_value_ushort() : 0
  5469. );
  5470. #endif
  5471. }
  5472. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5473. inline void gcode_M909() { dac_print_values(); }
  5474. inline void gcode_M910() { dac_commit_eeprom(); }
  5475. #endif
  5476. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5477. #if HAS_MICROSTEPS
  5478. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5479. inline void gcode_M350() {
  5480. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5481. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5482. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5483. stepper.microstep_readings();
  5484. }
  5485. /**
  5486. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5487. * S# determines MS1 or MS2, X# sets the pin high/low.
  5488. */
  5489. inline void gcode_M351() {
  5490. if (code_seen('S')) switch (code_value_byte()) {
  5491. case 1:
  5492. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5493. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5494. break;
  5495. case 2:
  5496. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5497. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5498. break;
  5499. }
  5500. stepper.microstep_readings();
  5501. }
  5502. #endif // HAS_MICROSTEPS
  5503. /**
  5504. * M999: Restart after being stopped
  5505. *
  5506. * Default behaviour is to flush the serial buffer and request
  5507. * a resend to the host starting on the last N line received.
  5508. *
  5509. * Sending "M999 S1" will resume printing without flushing the
  5510. * existing command buffer.
  5511. *
  5512. */
  5513. inline void gcode_M999() {
  5514. Running = true;
  5515. lcd_reset_alert_level();
  5516. if (code_seen('S') && code_value_bool()) return;
  5517. // gcode_LastN = Stopped_gcode_LastN;
  5518. FlushSerialRequestResend();
  5519. }
  5520. /**
  5521. * T0-T3: Switch tool, usually switching extruders
  5522. *
  5523. * F[units/min] Set the movement feedrate
  5524. * S1 Don't move the tool in XY after change
  5525. */
  5526. inline void gcode_T(uint8_t tmp_extruder) {
  5527. if (tmp_extruder >= EXTRUDERS) {
  5528. SERIAL_ECHO_START;
  5529. SERIAL_CHAR('T');
  5530. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5531. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5532. return;
  5533. }
  5534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5535. if (DEBUGGING(LEVELING)) {
  5536. SERIAL_ECHOLNPGM(">>> gcode_T");
  5537. DEBUG_POS("BEFORE", current_position);
  5538. }
  5539. #endif
  5540. #if HOTENDS > 1
  5541. float old_feedrate = feedrate;
  5542. if (code_seen('F')) {
  5543. float next_feedrate = code_value_axis_units(X_AXIS);
  5544. if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
  5545. }
  5546. else
  5547. feedrate = XY_PROBE_FEEDRATE;
  5548. if (tmp_extruder != active_extruder) {
  5549. bool no_move = code_seen('S') && code_value_bool();
  5550. // Save current position to return to after applying extruder offset
  5551. if (!no_move) set_destination_to_current();
  5552. #if ENABLED(DUAL_X_CARRIAGE)
  5553. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5554. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5555. // Park old head: 1) raise 2) move to park position 3) lower
  5556. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5557. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5558. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5559. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5560. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5561. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5562. stepper.synchronize();
  5563. }
  5564. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5565. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5566. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5567. active_extruder = tmp_extruder;
  5568. // This function resets the max/min values - the current position may be overwritten below.
  5569. set_axis_is_at_home(X_AXIS);
  5570. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5571. current_position[X_AXIS] = inactive_extruder_x_pos;
  5572. inactive_extruder_x_pos = destination[X_AXIS];
  5573. }
  5574. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5575. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5576. if (active_extruder_parked)
  5577. current_position[X_AXIS] = inactive_extruder_x_pos;
  5578. else
  5579. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5580. inactive_extruder_x_pos = destination[X_AXIS];
  5581. extruder_duplication_enabled = false;
  5582. }
  5583. else {
  5584. // record raised toolhead position for use by unpark
  5585. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5586. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5587. active_extruder_parked = true;
  5588. delayed_move_time = 0;
  5589. }
  5590. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5591. #else // !DUAL_X_CARRIAGE
  5592. //
  5593. // Set current_position to the position of the new nozzle.
  5594. // Offsets are based on linear distance, so we need to get
  5595. // the resulting position in coordinate space.
  5596. //
  5597. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5598. // - With mesh leveling, update Z for the new position
  5599. // - Otherwise, just use the raw linear distance
  5600. //
  5601. // Software endstops are altered here too. Consider a case where:
  5602. // E0 at X=0 ... E1 at X=10
  5603. // When we switch to E1 now X=10, but E1 can't move left.
  5604. // To express this we apply the change in XY to the software endstops.
  5605. // E1 can move farther right than E0, so the right limit is extended.
  5606. //
  5607. // Note that we don't adjust the Z software endstops. Why not?
  5608. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5609. // because the bed is 1mm lower at the new position. As long as
  5610. // the first nozzle is out of the way, the carriage should be
  5611. // allowed to move 1mm lower. This technically "breaks" the
  5612. // Z software endstop. But this is technically correct (and
  5613. // there is no viable alternative).
  5614. //
  5615. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5616. // Offset extruder, make sure to apply the bed level rotation matrix
  5617. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5618. hotend_offset[Y_AXIS][tmp_extruder],
  5619. 0),
  5620. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5621. hotend_offset[Y_AXIS][active_extruder],
  5622. 0),
  5623. offset_vec = tmp_offset_vec - act_offset_vec;
  5624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5625. if (DEBUGGING(LEVELING)) {
  5626. tmp_offset_vec.debug("tmp_offset_vec");
  5627. act_offset_vec.debug("act_offset_vec");
  5628. offset_vec.debug("offset_vec (BEFORE)");
  5629. }
  5630. #endif
  5631. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5632. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5633. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5634. #endif
  5635. // Adjustments to the current position
  5636. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5637. current_position[Z_AXIS] += offset_vec.z;
  5638. #else // !AUTO_BED_LEVELING_FEATURE
  5639. float xydiff[2] = {
  5640. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5641. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5642. };
  5643. #if ENABLED(MESH_BED_LEVELING)
  5644. if (mbl.active()) {
  5645. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5646. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5647. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5648. }
  5649. #endif // MESH_BED_LEVELING
  5650. #endif // !AUTO_BED_LEVELING_FEATURE
  5651. // The newly-selected extruder XY is actually at...
  5652. current_position[X_AXIS] += xydiff[X_AXIS];
  5653. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5654. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5655. position_shift[i] += xydiff[i];
  5656. update_software_endstops((AxisEnum)i);
  5657. }
  5658. // Set the new active extruder
  5659. active_extruder = tmp_extruder;
  5660. #endif // !DUAL_X_CARRIAGE
  5661. // Tell the planner the new "current position"
  5662. SYNC_PLAN_POSITION_KINEMATIC();
  5663. // Move to the "old position" (move the extruder into place)
  5664. if (!no_move && IsRunning()) prepare_move_to_destination();
  5665. } // (tmp_extruder != active_extruder)
  5666. #if ENABLED(EXT_SOLENOID)
  5667. stepper.synchronize();
  5668. disable_all_solenoids();
  5669. enable_solenoid_on_active_extruder();
  5670. #endif // EXT_SOLENOID
  5671. feedrate = old_feedrate;
  5672. #else // !HOTENDS > 1
  5673. // Set the new active extruder
  5674. active_extruder = tmp_extruder;
  5675. #endif
  5676. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5677. if (DEBUGGING(LEVELING)) {
  5678. DEBUG_POS("AFTER", current_position);
  5679. SERIAL_ECHOLNPGM("<<< gcode_T");
  5680. }
  5681. #endif
  5682. SERIAL_ECHO_START;
  5683. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5684. SERIAL_PROTOCOLLN((int)active_extruder);
  5685. }
  5686. /**
  5687. * Process a single command and dispatch it to its handler
  5688. * This is called from the main loop()
  5689. */
  5690. void process_next_command() {
  5691. current_command = command_queue[cmd_queue_index_r];
  5692. if (DEBUGGING(ECHO)) {
  5693. SERIAL_ECHO_START;
  5694. SERIAL_ECHOLN(current_command);
  5695. }
  5696. // Sanitize the current command:
  5697. // - Skip leading spaces
  5698. // - Bypass N[-0-9][0-9]*[ ]*
  5699. // - Overwrite * with nul to mark the end
  5700. while (*current_command == ' ') ++current_command;
  5701. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5702. current_command += 2; // skip N[-0-9]
  5703. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5704. while (*current_command == ' ') ++current_command; // skip [ ]*
  5705. }
  5706. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5707. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5708. char *cmd_ptr = current_command;
  5709. // Get the command code, which must be G, M, or T
  5710. char command_code = *cmd_ptr++;
  5711. // Skip spaces to get the numeric part
  5712. while (*cmd_ptr == ' ') cmd_ptr++;
  5713. uint16_t codenum = 0; // define ahead of goto
  5714. // Bail early if there's no code
  5715. bool code_is_good = NUMERIC(*cmd_ptr);
  5716. if (!code_is_good) goto ExitUnknownCommand;
  5717. // Get and skip the code number
  5718. do {
  5719. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5720. cmd_ptr++;
  5721. } while (NUMERIC(*cmd_ptr));
  5722. // Skip all spaces to get to the first argument, or nul
  5723. while (*cmd_ptr == ' ') cmd_ptr++;
  5724. // The command's arguments (if any) start here, for sure!
  5725. current_command_args = cmd_ptr;
  5726. KEEPALIVE_STATE(IN_HANDLER);
  5727. // Handle a known G, M, or T
  5728. switch (command_code) {
  5729. case 'G': switch (codenum) {
  5730. // G0, G1
  5731. case 0:
  5732. case 1:
  5733. gcode_G0_G1();
  5734. break;
  5735. // G2, G3
  5736. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5737. case 2: // G2 - CW ARC
  5738. case 3: // G3 - CCW ARC
  5739. gcode_G2_G3(codenum == 2);
  5740. break;
  5741. #endif
  5742. // G4 Dwell
  5743. case 4:
  5744. gcode_G4();
  5745. break;
  5746. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5747. // G5
  5748. case 5: // G5 - Cubic B_spline
  5749. gcode_G5();
  5750. break;
  5751. #endif // BEZIER_CURVE_SUPPORT
  5752. #if ENABLED(FWRETRACT)
  5753. case 10: // G10: retract
  5754. case 11: // G11: retract_recover
  5755. gcode_G10_G11(codenum == 10);
  5756. break;
  5757. #endif // FWRETRACT
  5758. #if ENABLED(INCH_MODE_SUPPORT)
  5759. case 20: //G20: Inch Mode
  5760. gcode_G20();
  5761. break;
  5762. case 21: //G21: MM Mode
  5763. gcode_G21();
  5764. break;
  5765. #endif
  5766. case 28: // G28: Home all axes, one at a time
  5767. gcode_G28();
  5768. break;
  5769. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5770. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5771. gcode_G29();
  5772. break;
  5773. #endif
  5774. #if HAS_BED_PROBE
  5775. case 30: // G30 Single Z probe
  5776. gcode_G30();
  5777. break;
  5778. #if ENABLED(Z_PROBE_SLED)
  5779. case 31: // G31: dock the sled
  5780. gcode_G31();
  5781. break;
  5782. case 32: // G32: undock the sled
  5783. gcode_G32();
  5784. break;
  5785. #endif // Z_PROBE_SLED
  5786. #endif // HAS_BED_PROBE
  5787. case 90: // G90
  5788. relative_mode = false;
  5789. break;
  5790. case 91: // G91
  5791. relative_mode = true;
  5792. break;
  5793. case 92: // G92
  5794. gcode_G92();
  5795. break;
  5796. }
  5797. break;
  5798. case 'M': switch (codenum) {
  5799. #if ENABLED(ULTIPANEL)
  5800. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5801. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5802. gcode_M0_M1();
  5803. break;
  5804. #endif // ULTIPANEL
  5805. case 17:
  5806. gcode_M17();
  5807. break;
  5808. #if ENABLED(SDSUPPORT)
  5809. case 20: // M20 - list SD card
  5810. gcode_M20(); break;
  5811. case 21: // M21 - init SD card
  5812. gcode_M21(); break;
  5813. case 22: //M22 - release SD card
  5814. gcode_M22(); break;
  5815. case 23: //M23 - Select file
  5816. gcode_M23(); break;
  5817. case 24: //M24 - Start SD print
  5818. gcode_M24(); break;
  5819. case 25: //M25 - Pause SD print
  5820. gcode_M25(); break;
  5821. case 26: //M26 - Set SD index
  5822. gcode_M26(); break;
  5823. case 27: //M27 - Get SD status
  5824. gcode_M27(); break;
  5825. case 28: //M28 - Start SD write
  5826. gcode_M28(); break;
  5827. case 29: //M29 - Stop SD write
  5828. gcode_M29(); break;
  5829. case 30: //M30 <filename> Delete File
  5830. gcode_M30(); break;
  5831. case 32: //M32 - Select file and start SD print
  5832. gcode_M32(); break;
  5833. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5834. case 33: //M33 - Get the long full path to a file or folder
  5835. gcode_M33(); break;
  5836. #endif // LONG_FILENAME_HOST_SUPPORT
  5837. case 928: //M928 - Start SD write
  5838. gcode_M928(); break;
  5839. #endif //SDSUPPORT
  5840. case 31: //M31 take time since the start of the SD print or an M109 command
  5841. gcode_M31();
  5842. break;
  5843. case 42: //M42 -Change pin status via gcode
  5844. gcode_M42();
  5845. break;
  5846. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5847. case 48: // M48 Z probe repeatability
  5848. gcode_M48();
  5849. break;
  5850. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5851. case 75: // Start print timer
  5852. gcode_M75();
  5853. break;
  5854. case 76: // Pause print timer
  5855. gcode_M76();
  5856. break;
  5857. case 77: // Stop print timer
  5858. gcode_M77();
  5859. break;
  5860. #if ENABLED(PRINTCOUNTER)
  5861. case 78: // Show print statistics
  5862. gcode_M78();
  5863. break;
  5864. #endif
  5865. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5866. case 100:
  5867. gcode_M100();
  5868. break;
  5869. #endif
  5870. case 104: // M104
  5871. gcode_M104();
  5872. break;
  5873. case 110: // M110: Set Current Line Number
  5874. gcode_M110();
  5875. break;
  5876. case 111: // M111: Set debug level
  5877. gcode_M111();
  5878. break;
  5879. case 112: // M112: Emergency Stop
  5880. gcode_M112();
  5881. break;
  5882. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5883. case 113: // M113: Set Host Keepalive interval
  5884. gcode_M113();
  5885. break;
  5886. #endif
  5887. case 140: // M140: Set bed temp
  5888. gcode_M140();
  5889. break;
  5890. case 105: // M105: Read current temperature
  5891. gcode_M105();
  5892. KEEPALIVE_STATE(NOT_BUSY);
  5893. return; // "ok" already printed
  5894. case 108:
  5895. gcode_M108();
  5896. break;
  5897. case 109: // M109: Wait for temperature
  5898. gcode_M109();
  5899. break;
  5900. #if HAS_TEMP_BED
  5901. case 190: // M190: Wait for bed heater to reach target
  5902. gcode_M190();
  5903. break;
  5904. #endif // HAS_TEMP_BED
  5905. #if FAN_COUNT > 0
  5906. case 106: // M106: Fan On
  5907. gcode_M106();
  5908. break;
  5909. case 107: // M107: Fan Off
  5910. gcode_M107();
  5911. break;
  5912. #endif // FAN_COUNT > 0
  5913. #if ENABLED(BARICUDA)
  5914. // PWM for HEATER_1_PIN
  5915. #if HAS_HEATER_1
  5916. case 126: // M126: valve open
  5917. gcode_M126();
  5918. break;
  5919. case 127: // M127: valve closed
  5920. gcode_M127();
  5921. break;
  5922. #endif // HAS_HEATER_1
  5923. // PWM for HEATER_2_PIN
  5924. #if HAS_HEATER_2
  5925. case 128: // M128: valve open
  5926. gcode_M128();
  5927. break;
  5928. case 129: // M129: valve closed
  5929. gcode_M129();
  5930. break;
  5931. #endif // HAS_HEATER_2
  5932. #endif // BARICUDA
  5933. #if HAS_POWER_SWITCH
  5934. case 80: // M80: Turn on Power Supply
  5935. gcode_M80();
  5936. break;
  5937. #endif // HAS_POWER_SWITCH
  5938. case 81: // M81: Turn off Power, including Power Supply, if possible
  5939. gcode_M81();
  5940. break;
  5941. case 82:
  5942. gcode_M82();
  5943. break;
  5944. case 83:
  5945. gcode_M83();
  5946. break;
  5947. case 18: // (for compatibility)
  5948. case 84: // M84
  5949. gcode_M18_M84();
  5950. break;
  5951. case 85: // M85
  5952. gcode_M85();
  5953. break;
  5954. case 92: // M92: Set the steps-per-unit for one or more axes
  5955. gcode_M92();
  5956. break;
  5957. case 115: // M115: Report capabilities
  5958. gcode_M115();
  5959. break;
  5960. case 117: // M117: Set LCD message text, if possible
  5961. gcode_M117();
  5962. break;
  5963. case 114: // M114: Report current position
  5964. gcode_M114();
  5965. break;
  5966. case 120: // M120: Enable endstops
  5967. gcode_M120();
  5968. break;
  5969. case 121: // M121: Disable endstops
  5970. gcode_M121();
  5971. break;
  5972. case 119: // M119: Report endstop states
  5973. gcode_M119();
  5974. break;
  5975. #if ENABLED(ULTIPANEL)
  5976. case 145: // M145: Set material heatup parameters
  5977. gcode_M145();
  5978. break;
  5979. #endif
  5980. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5981. case 149:
  5982. gcode_M149();
  5983. break;
  5984. #endif
  5985. #if ENABLED(BLINKM)
  5986. case 150: // M150
  5987. gcode_M150();
  5988. break;
  5989. #endif //BLINKM
  5990. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5991. case 155:
  5992. gcode_M155();
  5993. break;
  5994. case 156:
  5995. gcode_M156();
  5996. break;
  5997. #endif //EXPERIMENTAL_I2CBUS
  5998. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  5999. gcode_M200();
  6000. break;
  6001. case 201: // M201
  6002. gcode_M201();
  6003. break;
  6004. #if 0 // Not used for Sprinter/grbl gen6
  6005. case 202: // M202
  6006. gcode_M202();
  6007. break;
  6008. #endif
  6009. case 203: // M203 max feedrate units/sec
  6010. gcode_M203();
  6011. break;
  6012. case 204: // M204 acclereration S normal moves T filmanent only moves
  6013. gcode_M204();
  6014. break;
  6015. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6016. gcode_M205();
  6017. break;
  6018. case 206: // M206 additional homing offset
  6019. gcode_M206();
  6020. break;
  6021. #if ENABLED(DELTA)
  6022. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6023. gcode_M665();
  6024. break;
  6025. #endif
  6026. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6027. case 666: // M666 set delta / dual endstop adjustment
  6028. gcode_M666();
  6029. break;
  6030. #endif
  6031. #if ENABLED(FWRETRACT)
  6032. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6033. gcode_M207();
  6034. break;
  6035. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6036. gcode_M208();
  6037. break;
  6038. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6039. gcode_M209();
  6040. break;
  6041. #endif // FWRETRACT
  6042. #if HOTENDS > 1
  6043. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6044. gcode_M218();
  6045. break;
  6046. #endif
  6047. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6048. gcode_M220();
  6049. break;
  6050. case 221: // M221 - Set Flow Percentage: S<percent>
  6051. gcode_M221();
  6052. break;
  6053. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6054. gcode_M226();
  6055. break;
  6056. #if HAS_SERVOS
  6057. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6058. gcode_M280();
  6059. break;
  6060. #endif // HAS_SERVOS
  6061. #if HAS_BUZZER
  6062. case 300: // M300 - Play beep tone
  6063. gcode_M300();
  6064. break;
  6065. #endif // HAS_BUZZER
  6066. #if ENABLED(PIDTEMP)
  6067. case 301: // M301
  6068. gcode_M301();
  6069. break;
  6070. #endif // PIDTEMP
  6071. #if ENABLED(PIDTEMPBED)
  6072. case 304: // M304
  6073. gcode_M304();
  6074. break;
  6075. #endif // PIDTEMPBED
  6076. #if defined(CHDK) || HAS_PHOTOGRAPH
  6077. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6078. gcode_M240();
  6079. break;
  6080. #endif // CHDK || PHOTOGRAPH_PIN
  6081. #if HAS_LCD_CONTRAST
  6082. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6083. gcode_M250();
  6084. break;
  6085. #endif // HAS_LCD_CONTRAST
  6086. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6087. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6088. gcode_M302();
  6089. break;
  6090. #endif // PREVENT_DANGEROUS_EXTRUDE
  6091. case 303: // M303 PID autotune
  6092. gcode_M303();
  6093. break;
  6094. #if ENABLED(SCARA)
  6095. case 360: // M360 SCARA Theta pos1
  6096. if (gcode_M360()) return;
  6097. break;
  6098. case 361: // M361 SCARA Theta pos2
  6099. if (gcode_M361()) return;
  6100. break;
  6101. case 362: // M362 SCARA Psi pos1
  6102. if (gcode_M362()) return;
  6103. break;
  6104. case 363: // M363 SCARA Psi pos2
  6105. if (gcode_M363()) return;
  6106. break;
  6107. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6108. if (gcode_M364()) return;
  6109. break;
  6110. case 365: // M365 Set SCARA scaling for X Y Z
  6111. gcode_M365();
  6112. break;
  6113. #endif // SCARA
  6114. case 400: // M400 finish all moves
  6115. gcode_M400();
  6116. break;
  6117. #if HAS_BED_PROBE
  6118. case 401:
  6119. gcode_M401();
  6120. break;
  6121. case 402:
  6122. gcode_M402();
  6123. break;
  6124. #endif // HAS_BED_PROBE
  6125. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6126. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6127. gcode_M404();
  6128. break;
  6129. case 405: //M405 Turn on filament sensor for control
  6130. gcode_M405();
  6131. break;
  6132. case 406: //M406 Turn off filament sensor for control
  6133. gcode_M406();
  6134. break;
  6135. case 407: //M407 Display measured filament diameter
  6136. gcode_M407();
  6137. break;
  6138. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6139. case 410: // M410 quickstop - Abort all the planned moves.
  6140. gcode_M410();
  6141. break;
  6142. #if ENABLED(MESH_BED_LEVELING)
  6143. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6144. gcode_M420();
  6145. break;
  6146. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6147. gcode_M421();
  6148. break;
  6149. #endif
  6150. case 428: // M428 Apply current_position to home_offset
  6151. gcode_M428();
  6152. break;
  6153. case 500: // M500 Store settings in EEPROM
  6154. gcode_M500();
  6155. break;
  6156. case 501: // M501 Read settings from EEPROM
  6157. gcode_M501();
  6158. break;
  6159. case 502: // M502 Revert to default settings
  6160. gcode_M502();
  6161. break;
  6162. case 503: // M503 print settings currently in memory
  6163. gcode_M503();
  6164. break;
  6165. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6166. case 540:
  6167. gcode_M540();
  6168. break;
  6169. #endif
  6170. #if HAS_BED_PROBE
  6171. case 851:
  6172. gcode_M851();
  6173. break;
  6174. #endif // HAS_BED_PROBE
  6175. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6176. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6177. gcode_M600();
  6178. break;
  6179. #endif // FILAMENT_CHANGE_FEATURE
  6180. #if ENABLED(DUAL_X_CARRIAGE)
  6181. case 605:
  6182. gcode_M605();
  6183. break;
  6184. #endif // DUAL_X_CARRIAGE
  6185. #if ENABLED(LIN_ADVANCE)
  6186. case 905: // M905 Set advance factor.
  6187. gcode_M905();
  6188. break;
  6189. #endif
  6190. case 907: // M907 Set digital trimpot motor current using axis codes.
  6191. gcode_M907();
  6192. break;
  6193. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6194. case 908: // M908 Control digital trimpot directly.
  6195. gcode_M908();
  6196. break;
  6197. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6198. case 909: // M909 Print digipot/DAC current value
  6199. gcode_M909();
  6200. break;
  6201. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6202. gcode_M910();
  6203. break;
  6204. #endif
  6205. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6206. #if HAS_MICROSTEPS
  6207. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6208. gcode_M350();
  6209. break;
  6210. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6211. gcode_M351();
  6212. break;
  6213. #endif // HAS_MICROSTEPS
  6214. case 999: // M999: Restart after being Stopped
  6215. gcode_M999();
  6216. break;
  6217. }
  6218. break;
  6219. case 'T':
  6220. gcode_T(codenum);
  6221. break;
  6222. default: code_is_good = false;
  6223. }
  6224. KEEPALIVE_STATE(NOT_BUSY);
  6225. ExitUnknownCommand:
  6226. // Still unknown command? Throw an error
  6227. if (!code_is_good) unknown_command_error();
  6228. ok_to_send();
  6229. }
  6230. void FlushSerialRequestResend() {
  6231. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6232. MYSERIAL.flush();
  6233. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6234. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6235. ok_to_send();
  6236. }
  6237. void ok_to_send() {
  6238. refresh_cmd_timeout();
  6239. if (!send_ok[cmd_queue_index_r]) return;
  6240. SERIAL_PROTOCOLPGM(MSG_OK);
  6241. #if ENABLED(ADVANCED_OK)
  6242. char* p = command_queue[cmd_queue_index_r];
  6243. if (*p == 'N') {
  6244. SERIAL_PROTOCOL(' ');
  6245. SERIAL_ECHO(*p++);
  6246. while (NUMERIC_SIGNED(*p))
  6247. SERIAL_ECHO(*p++);
  6248. }
  6249. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6250. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6251. #endif
  6252. SERIAL_EOL;
  6253. }
  6254. void clamp_to_software_endstops(float target[3]) {
  6255. if (min_software_endstops) {
  6256. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6257. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6258. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6259. }
  6260. if (max_software_endstops) {
  6261. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6262. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6263. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6264. }
  6265. }
  6266. #if ENABLED(DELTA)
  6267. void recalc_delta_settings(float radius, float diagonal_rod) {
  6268. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6269. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6270. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6271. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6272. delta_tower3_x = 0.0; // back middle tower
  6273. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6274. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6275. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6276. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6277. }
  6278. void calculate_delta(float cartesian[3]) {
  6279. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6280. - sq(delta_tower1_x - cartesian[X_AXIS])
  6281. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6282. ) + cartesian[Z_AXIS];
  6283. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6284. - sq(delta_tower2_x - cartesian[X_AXIS])
  6285. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6286. ) + cartesian[Z_AXIS];
  6287. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6288. - sq(delta_tower3_x - cartesian[X_AXIS])
  6289. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6290. ) + cartesian[Z_AXIS];
  6291. /**
  6292. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6293. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6294. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6295. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6296. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6297. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6298. */
  6299. }
  6300. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6301. // Adjust print surface height by linear interpolation over the bed_level array.
  6302. void adjust_delta(float cartesian[3]) {
  6303. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6304. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6305. float h1 = 0.001 - half, h2 = half - 0.001,
  6306. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6307. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6308. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6309. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6310. z1 = bed_level[floor_x + half][floor_y + half],
  6311. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6312. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6313. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6314. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6315. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6316. offset = (1 - ratio_x) * left + ratio_x * right;
  6317. delta[X_AXIS] += offset;
  6318. delta[Y_AXIS] += offset;
  6319. delta[Z_AXIS] += offset;
  6320. /**
  6321. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6322. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6323. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6324. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6325. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6326. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6327. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6328. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6329. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6330. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6331. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6332. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6333. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6334. */
  6335. }
  6336. #endif // AUTO_BED_LEVELING_FEATURE
  6337. #endif // DELTA
  6338. #if ENABLED(MESH_BED_LEVELING)
  6339. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6340. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6341. if (!mbl.active()) {
  6342. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6343. set_current_to_destination();
  6344. return;
  6345. }
  6346. int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6347. pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6348. cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)),
  6349. cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
  6350. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6351. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6352. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6353. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6354. if (pcx == cx && pcy == cy) {
  6355. // Start and end on same mesh square
  6356. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6357. set_current_to_destination();
  6358. return;
  6359. }
  6360. float nx, ny, nz, ne, normalized_dist;
  6361. if (cx > pcx && TEST(x_splits, cx)) {
  6362. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6363. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6364. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6365. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6366. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6367. CBI(x_splits, cx);
  6368. }
  6369. else if (cx < pcx && TEST(x_splits, pcx)) {
  6370. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6371. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6372. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6373. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6374. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6375. CBI(x_splits, pcx);
  6376. }
  6377. else if (cy > pcy && TEST(y_splits, cy)) {
  6378. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6379. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6380. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6381. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6382. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6383. CBI(y_splits, cy);
  6384. }
  6385. else if (cy < pcy && TEST(y_splits, pcy)) {
  6386. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6387. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6388. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6389. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6390. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6391. CBI(y_splits, pcy);
  6392. }
  6393. else {
  6394. // Already split on a border
  6395. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6396. set_current_to_destination();
  6397. return;
  6398. }
  6399. // Do the split and look for more borders
  6400. destination[X_AXIS] = nx;
  6401. destination[Y_AXIS] = ny;
  6402. destination[Z_AXIS] = nz;
  6403. destination[E_AXIS] = ne;
  6404. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6405. destination[X_AXIS] = x;
  6406. destination[Y_AXIS] = y;
  6407. destination[Z_AXIS] = z;
  6408. destination[E_AXIS] = e;
  6409. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6410. }
  6411. #endif // MESH_BED_LEVELING
  6412. #if ENABLED(DELTA) || ENABLED(SCARA)
  6413. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6414. float difference[NUM_AXIS];
  6415. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6416. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6417. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6418. if (cartesian_mm < 0.000001) return false;
  6419. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6420. float seconds = cartesian_mm / _feedrate;
  6421. int steps = max(1, int(delta_segments_per_second * seconds));
  6422. float inv_steps = 1.0/steps;
  6423. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6424. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6425. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6426. for (int s = 1; s <= steps; s++) {
  6427. float fraction = float(s) * inv_steps;
  6428. for (int8_t i = 0; i < NUM_AXIS; i++)
  6429. target[i] = current_position[i] + difference[i] * fraction;
  6430. calculate_delta(target);
  6431. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6432. if (!bed_leveling_in_progress) adjust_delta(target);
  6433. #endif
  6434. //DEBUG_POS("prepare_delta_move_to", target);
  6435. //DEBUG_POS("prepare_delta_move_to", delta);
  6436. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6437. }
  6438. return true;
  6439. }
  6440. #endif // DELTA || SCARA
  6441. #if ENABLED(SCARA)
  6442. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6443. #endif
  6444. #if ENABLED(DUAL_X_CARRIAGE)
  6445. inline bool prepare_move_to_destination_dualx() {
  6446. if (active_extruder_parked) {
  6447. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6448. // move duplicate extruder into correct duplication position.
  6449. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6450. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6451. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6452. SYNC_PLAN_POSITION_KINEMATIC();
  6453. stepper.synchronize();
  6454. extruder_duplication_enabled = true;
  6455. active_extruder_parked = false;
  6456. }
  6457. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6458. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6459. // This is a travel move (with no extrusion)
  6460. // Skip it, but keep track of the current position
  6461. // (so it can be used as the start of the next non-travel move)
  6462. if (delayed_move_time != 0xFFFFFFFFUL) {
  6463. set_current_to_destination();
  6464. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6465. delayed_move_time = millis();
  6466. return false;
  6467. }
  6468. }
  6469. delayed_move_time = 0;
  6470. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6471. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6472. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6473. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6474. active_extruder_parked = false;
  6475. }
  6476. }
  6477. return true;
  6478. }
  6479. #endif // DUAL_X_CARRIAGE
  6480. #if DISABLED(DELTA) && DISABLED(SCARA)
  6481. inline bool prepare_move_to_destination_cartesian() {
  6482. // Do not use feedrate_multiplier for E or Z only moves
  6483. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6484. line_to_destination();
  6485. }
  6486. else {
  6487. #if ENABLED(MESH_BED_LEVELING)
  6488. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6489. return false;
  6490. #else
  6491. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6492. #endif
  6493. }
  6494. return true;
  6495. }
  6496. #endif // !DELTA && !SCARA
  6497. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6498. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6499. if (DEBUGGING(DRYRUN)) return;
  6500. float de = dest_e - curr_e;
  6501. if (de) {
  6502. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6503. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6504. SERIAL_ECHO_START;
  6505. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6506. }
  6507. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6508. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6509. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6510. SERIAL_ECHO_START;
  6511. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6512. }
  6513. #endif
  6514. }
  6515. }
  6516. #endif // PREVENT_DANGEROUS_EXTRUDE
  6517. /**
  6518. * Prepare a single move and get ready for the next one
  6519. *
  6520. * (This may call planner.buffer_line several times to put
  6521. * smaller moves into the planner for DELTA or SCARA.)
  6522. */
  6523. void prepare_move_to_destination() {
  6524. clamp_to_software_endstops(destination);
  6525. refresh_cmd_timeout();
  6526. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6527. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6528. #endif
  6529. #if ENABLED(SCARA)
  6530. if (!prepare_scara_move_to(destination)) return;
  6531. #elif ENABLED(DELTA)
  6532. if (!prepare_delta_move_to(destination)) return;
  6533. #else
  6534. #if ENABLED(DUAL_X_CARRIAGE)
  6535. if (!prepare_move_to_destination_dualx()) return;
  6536. #endif
  6537. if (!prepare_move_to_destination_cartesian()) return;
  6538. #endif
  6539. set_current_to_destination();
  6540. }
  6541. #if ENABLED(ARC_SUPPORT)
  6542. /**
  6543. * Plan an arc in 2 dimensions
  6544. *
  6545. * The arc is approximated by generating many small linear segments.
  6546. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6547. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6548. * larger segments will tend to be more efficient. Your slicer should have
  6549. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6550. */
  6551. void plan_arc(
  6552. float target[NUM_AXIS], // Destination position
  6553. float* offset, // Center of rotation relative to current_position
  6554. uint8_t clockwise // Clockwise?
  6555. ) {
  6556. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6557. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6558. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6559. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6560. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6561. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6562. r_Y = -offset[Y_AXIS],
  6563. rt_X = target[X_AXIS] - center_X,
  6564. rt_Y = target[Y_AXIS] - center_Y;
  6565. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6566. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6567. if (angular_travel < 0) angular_travel += RADIANS(360);
  6568. if (clockwise) angular_travel -= RADIANS(360);
  6569. // Make a circle if the angular rotation is 0
  6570. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6571. angular_travel += RADIANS(360);
  6572. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6573. if (mm_of_travel < 0.001) return;
  6574. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6575. if (segments == 0) segments = 1;
  6576. float theta_per_segment = angular_travel / segments;
  6577. float linear_per_segment = linear_travel / segments;
  6578. float extruder_per_segment = extruder_travel / segments;
  6579. /**
  6580. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6581. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6582. * r_T = [cos(phi) -sin(phi);
  6583. * sin(phi) cos(phi] * r ;
  6584. *
  6585. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6586. * defined from the circle center to the initial position. Each line segment is formed by successive
  6587. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6588. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6589. * all double numbers are single precision on the Arduino. (True double precision will not have
  6590. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6591. * tool precision in some cases. Therefore, arc path correction is implemented.
  6592. *
  6593. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6594. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6595. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6596. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6597. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6598. * issue for CNC machines with the single precision Arduino calculations.
  6599. *
  6600. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6601. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6602. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6603. * This is important when there are successive arc motions.
  6604. */
  6605. // Vector rotation matrix values
  6606. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6607. float sin_T = theta_per_segment;
  6608. float arc_target[NUM_AXIS];
  6609. float sin_Ti, cos_Ti, r_new_Y;
  6610. uint16_t i;
  6611. int8_t count = 0;
  6612. // Initialize the linear axis
  6613. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6614. // Initialize the extruder axis
  6615. arc_target[E_AXIS] = current_position[E_AXIS];
  6616. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6617. millis_t next_idle_ms = millis() + 200UL;
  6618. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6619. thermalManager.manage_heater();
  6620. millis_t now = millis();
  6621. if (ELAPSED(now, next_idle_ms)) {
  6622. next_idle_ms = now + 200UL;
  6623. idle();
  6624. }
  6625. if (++count < N_ARC_CORRECTION) {
  6626. // Apply vector rotation matrix to previous r_X / 1
  6627. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6628. r_X = r_X * cos_T - r_Y * sin_T;
  6629. r_Y = r_new_Y;
  6630. }
  6631. else {
  6632. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6633. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6634. // To reduce stuttering, the sin and cos could be computed at different times.
  6635. // For now, compute both at the same time.
  6636. cos_Ti = cos(i * theta_per_segment);
  6637. sin_Ti = sin(i * theta_per_segment);
  6638. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6639. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6640. count = 0;
  6641. }
  6642. // Update arc_target location
  6643. arc_target[X_AXIS] = center_X + r_X;
  6644. arc_target[Y_AXIS] = center_Y + r_Y;
  6645. arc_target[Z_AXIS] += linear_per_segment;
  6646. arc_target[E_AXIS] += extruder_per_segment;
  6647. clamp_to_software_endstops(arc_target);
  6648. #if ENABLED(DELTA) || ENABLED(SCARA)
  6649. calculate_delta(arc_target);
  6650. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6651. adjust_delta(arc_target);
  6652. #endif
  6653. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6654. #else
  6655. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6656. #endif
  6657. }
  6658. // Ensure last segment arrives at target location.
  6659. #if ENABLED(DELTA) || ENABLED(SCARA)
  6660. calculate_delta(target);
  6661. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6662. adjust_delta(target);
  6663. #endif
  6664. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6665. #else
  6666. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6667. #endif
  6668. // As far as the parser is concerned, the position is now == target. In reality the
  6669. // motion control system might still be processing the action and the real tool position
  6670. // in any intermediate location.
  6671. set_current_to_destination();
  6672. }
  6673. #endif
  6674. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6675. void plan_cubic_move(const float offset[4]) {
  6676. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6677. // As far as the parser is concerned, the position is now == target. In reality the
  6678. // motion control system might still be processing the action and the real tool position
  6679. // in any intermediate location.
  6680. set_current_to_destination();
  6681. }
  6682. #endif // BEZIER_CURVE_SUPPORT
  6683. #if HAS_CONTROLLERFAN
  6684. void controllerFan() {
  6685. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6686. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6687. millis_t ms = millis();
  6688. if (ELAPSED(ms, nextMotorCheck)) {
  6689. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6690. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6691. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6692. #if EXTRUDERS > 1
  6693. || E1_ENABLE_READ == E_ENABLE_ON
  6694. #if HAS_X2_ENABLE
  6695. || X2_ENABLE_READ == X_ENABLE_ON
  6696. #endif
  6697. #if EXTRUDERS > 2
  6698. || E2_ENABLE_READ == E_ENABLE_ON
  6699. #if EXTRUDERS > 3
  6700. || E3_ENABLE_READ == E_ENABLE_ON
  6701. #endif
  6702. #endif
  6703. #endif
  6704. ) {
  6705. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6706. }
  6707. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6708. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6709. // allows digital or PWM fan output to be used (see M42 handling)
  6710. digitalWrite(CONTROLLERFAN_PIN, speed);
  6711. analogWrite(CONTROLLERFAN_PIN, speed);
  6712. }
  6713. }
  6714. #endif // HAS_CONTROLLERFAN
  6715. #if ENABLED(SCARA)
  6716. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6717. // Perform forward kinematics, and place results in delta[3]
  6718. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6719. float x_sin, x_cos, y_sin, y_cos;
  6720. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6721. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6722. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6723. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6724. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6725. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6726. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6727. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6728. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6729. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6730. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6731. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6732. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6733. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6734. }
  6735. void calculate_delta(float cartesian[3]) {
  6736. //reverse kinematics.
  6737. // Perform reversed kinematics, and place results in delta[3]
  6738. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6739. float SCARA_pos[2];
  6740. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6741. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6742. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6743. #if (Linkage_1 == Linkage_2)
  6744. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6745. #else
  6746. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6747. #endif
  6748. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6749. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6750. SCARA_K2 = Linkage_2 * SCARA_S2;
  6751. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6752. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6753. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6754. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6755. delta[Z_AXIS] = cartesian[Z_AXIS];
  6756. /**
  6757. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6758. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6759. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6760. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6761. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6762. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6763. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6764. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6765. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6766. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6767. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6768. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6769. SERIAL_EOL;
  6770. */
  6771. }
  6772. #endif // SCARA
  6773. #if ENABLED(TEMP_STAT_LEDS)
  6774. static bool red_led = false;
  6775. static millis_t next_status_led_update_ms = 0;
  6776. void handle_status_leds(void) {
  6777. float max_temp = 0.0;
  6778. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6779. next_status_led_update_ms += 500; // Update every 0.5s
  6780. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6781. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6782. #if HAS_TEMP_BED
  6783. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6784. #endif
  6785. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6786. if (new_led != red_led) {
  6787. red_led = new_led;
  6788. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6789. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6790. }
  6791. }
  6792. }
  6793. #endif
  6794. void enable_all_steppers() {
  6795. enable_x();
  6796. enable_y();
  6797. enable_z();
  6798. enable_e0();
  6799. enable_e1();
  6800. enable_e2();
  6801. enable_e3();
  6802. }
  6803. void disable_all_steppers() {
  6804. disable_x();
  6805. disable_y();
  6806. disable_z();
  6807. disable_e0();
  6808. disable_e1();
  6809. disable_e2();
  6810. disable_e3();
  6811. }
  6812. /**
  6813. * Standard idle routine keeps the machine alive
  6814. */
  6815. void idle(
  6816. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6817. bool no_stepper_sleep/*=false*/
  6818. #endif
  6819. ) {
  6820. lcd_update();
  6821. host_keepalive();
  6822. manage_inactivity(
  6823. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6824. no_stepper_sleep
  6825. #endif
  6826. );
  6827. thermalManager.manage_heater();
  6828. #if ENABLED(PRINTCOUNTER)
  6829. print_job_timer.tick();
  6830. #endif
  6831. #if HAS_BUZZER
  6832. buzzer.tick();
  6833. #endif
  6834. }
  6835. /**
  6836. * Manage several activities:
  6837. * - Check for Filament Runout
  6838. * - Keep the command buffer full
  6839. * - Check for maximum inactive time between commands
  6840. * - Check for maximum inactive time between stepper commands
  6841. * - Check if pin CHDK needs to go LOW
  6842. * - Check for KILL button held down
  6843. * - Check for HOME button held down
  6844. * - Check if cooling fan needs to be switched on
  6845. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6846. */
  6847. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6848. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6849. if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6850. handle_filament_runout();
  6851. #endif
  6852. if (commands_in_queue < BUFSIZE) get_available_commands();
  6853. millis_t ms = millis();
  6854. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6855. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6856. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6857. #if ENABLED(DISABLE_INACTIVE_X)
  6858. disable_x();
  6859. #endif
  6860. #if ENABLED(DISABLE_INACTIVE_Y)
  6861. disable_y();
  6862. #endif
  6863. #if ENABLED(DISABLE_INACTIVE_Z)
  6864. disable_z();
  6865. #endif
  6866. #if ENABLED(DISABLE_INACTIVE_E)
  6867. disable_e0();
  6868. disable_e1();
  6869. disable_e2();
  6870. disable_e3();
  6871. #endif
  6872. }
  6873. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6874. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6875. chdkActive = false;
  6876. WRITE(CHDK, LOW);
  6877. }
  6878. #endif
  6879. #if HAS_KILL
  6880. // Check if the kill button was pressed and wait just in case it was an accidental
  6881. // key kill key press
  6882. // -------------------------------------------------------------------------------
  6883. static int killCount = 0; // make the inactivity button a bit less responsive
  6884. const int KILL_DELAY = 750;
  6885. if (!READ(KILL_PIN))
  6886. killCount++;
  6887. else if (killCount > 0)
  6888. killCount--;
  6889. // Exceeded threshold and we can confirm that it was not accidental
  6890. // KILL the machine
  6891. // ----------------------------------------------------------------
  6892. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6893. #endif
  6894. #if HAS_HOME
  6895. // Check to see if we have to home, use poor man's debouncer
  6896. // ---------------------------------------------------------
  6897. static int homeDebounceCount = 0; // poor man's debouncing count
  6898. const int HOME_DEBOUNCE_DELAY = 2500;
  6899. if (!READ(HOME_PIN)) {
  6900. if (!homeDebounceCount) {
  6901. enqueue_and_echo_commands_P(PSTR("G28"));
  6902. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6903. }
  6904. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6905. homeDebounceCount++;
  6906. else
  6907. homeDebounceCount = 0;
  6908. }
  6909. #endif
  6910. #if HAS_CONTROLLERFAN
  6911. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6912. #endif
  6913. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6914. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6915. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6916. bool oldstatus;
  6917. switch (active_extruder) {
  6918. case 0:
  6919. oldstatus = E0_ENABLE_READ;
  6920. enable_e0();
  6921. break;
  6922. #if EXTRUDERS > 1
  6923. case 1:
  6924. oldstatus = E1_ENABLE_READ;
  6925. enable_e1();
  6926. break;
  6927. #if EXTRUDERS > 2
  6928. case 2:
  6929. oldstatus = E2_ENABLE_READ;
  6930. enable_e2();
  6931. break;
  6932. #if EXTRUDERS > 3
  6933. case 3:
  6934. oldstatus = E3_ENABLE_READ;
  6935. enable_e3();
  6936. break;
  6937. #endif
  6938. #endif
  6939. #endif
  6940. }
  6941. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6942. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6943. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6944. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6945. current_position[E_AXIS] = oldepos;
  6946. destination[E_AXIS] = oldedes;
  6947. planner.set_e_position_mm(oldepos);
  6948. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6949. stepper.synchronize();
  6950. switch (active_extruder) {
  6951. case 0:
  6952. E0_ENABLE_WRITE(oldstatus);
  6953. break;
  6954. #if EXTRUDERS > 1
  6955. case 1:
  6956. E1_ENABLE_WRITE(oldstatus);
  6957. break;
  6958. #if EXTRUDERS > 2
  6959. case 2:
  6960. E2_ENABLE_WRITE(oldstatus);
  6961. break;
  6962. #if EXTRUDERS > 3
  6963. case 3:
  6964. E3_ENABLE_WRITE(oldstatus);
  6965. break;
  6966. #endif
  6967. #endif
  6968. #endif
  6969. }
  6970. }
  6971. #endif
  6972. #if ENABLED(DUAL_X_CARRIAGE)
  6973. // handle delayed move timeout
  6974. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6975. // travel moves have been received so enact them
  6976. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6977. set_destination_to_current();
  6978. prepare_move_to_destination();
  6979. }
  6980. #endif
  6981. #if ENABLED(TEMP_STAT_LEDS)
  6982. handle_status_leds();
  6983. #endif
  6984. planner.check_axes_activity();
  6985. }
  6986. void kill(const char* lcd_msg) {
  6987. #if ENABLED(ULTRA_LCD)
  6988. lcd_init();
  6989. lcd_setalertstatuspgm(lcd_msg);
  6990. #else
  6991. UNUSED(lcd_msg);
  6992. #endif
  6993. cli(); // Stop interrupts
  6994. thermalManager.disable_all_heaters();
  6995. disable_all_steppers();
  6996. #if HAS_POWER_SWITCH
  6997. pinMode(PS_ON_PIN, INPUT);
  6998. #endif
  6999. SERIAL_ERROR_START;
  7000. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7001. // FMC small patch to update the LCD before ending
  7002. sei(); // enable interrupts
  7003. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  7004. cli(); // disable interrupts
  7005. suicide();
  7006. while (1) {
  7007. #if ENABLED(USE_WATCHDOG)
  7008. watchdog_reset();
  7009. #endif
  7010. } // Wait for reset
  7011. }
  7012. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7013. void handle_filament_runout() {
  7014. if (!filament_ran_out) {
  7015. filament_ran_out = true;
  7016. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7017. stepper.synchronize();
  7018. }
  7019. }
  7020. #endif // FILAMENT_RUNOUT_SENSOR
  7021. #if ENABLED(FAST_PWM_FAN)
  7022. void setPwmFrequency(uint8_t pin, int val) {
  7023. val &= 0x07;
  7024. switch (digitalPinToTimer(pin)) {
  7025. #if defined(TCCR0A)
  7026. case TIMER0A:
  7027. case TIMER0B:
  7028. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7029. // TCCR0B |= val;
  7030. break;
  7031. #endif
  7032. #if defined(TCCR1A)
  7033. case TIMER1A:
  7034. case TIMER1B:
  7035. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7036. // TCCR1B |= val;
  7037. break;
  7038. #endif
  7039. #if defined(TCCR2)
  7040. case TIMER2:
  7041. case TIMER2:
  7042. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7043. TCCR2 |= val;
  7044. break;
  7045. #endif
  7046. #if defined(TCCR2A)
  7047. case TIMER2A:
  7048. case TIMER2B:
  7049. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7050. TCCR2B |= val;
  7051. break;
  7052. #endif
  7053. #if defined(TCCR3A)
  7054. case TIMER3A:
  7055. case TIMER3B:
  7056. case TIMER3C:
  7057. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7058. TCCR3B |= val;
  7059. break;
  7060. #endif
  7061. #if defined(TCCR4A)
  7062. case TIMER4A:
  7063. case TIMER4B:
  7064. case TIMER4C:
  7065. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7066. TCCR4B |= val;
  7067. break;
  7068. #endif
  7069. #if defined(TCCR5A)
  7070. case TIMER5A:
  7071. case TIMER5B:
  7072. case TIMER5C:
  7073. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7074. TCCR5B |= val;
  7075. break;
  7076. #endif
  7077. }
  7078. }
  7079. #endif // FAST_PWM_FAN
  7080. void stop() {
  7081. thermalManager.disable_all_heaters();
  7082. if (IsRunning()) {
  7083. Running = false;
  7084. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7085. SERIAL_ERROR_START;
  7086. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7087. LCD_MESSAGEPGM(MSG_STOPPED);
  7088. }
  7089. }
  7090. float calculate_volumetric_multiplier(float diameter) {
  7091. if (!volumetric_enabled || diameter == 0) return 1.0;
  7092. float d2 = diameter * 0.5;
  7093. return 1.0 / (M_PI * d2 * d2);
  7094. }
  7095. void calculate_volumetric_multipliers() {
  7096. for (int i = 0; i < EXTRUDERS; i++)
  7097. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7098. }