My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 40KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t *current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #ifdef Z_DUAL_ENDSTOPS
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #ifdef ADVANCE
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static char step_loops;
  62. static unsigned short OCR1A_nominal;
  63. static unsigned short step_loops_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
  67. #ifndef Z_DUAL_ENDSTOPS
  68. static byte
  69. #else
  70. static uint16_t
  71. #endif
  72. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX
  73. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  74. bool abort_on_endstop_hit = false;
  75. #endif
  76. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  77. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. #endif
  79. static bool check_endstops = true;
  80. volatile long count_position[NUM_AXIS] = { 0 };
  81. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  82. //===========================================================================
  83. //================================ functions ================================
  84. //===========================================================================
  85. #ifdef DUAL_X_CARRIAGE
  86. #define X_APPLY_DIR(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_DIR_WRITE(v); \
  89. X2_DIR_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  93. }
  94. #define X_APPLY_STEP(v,ALWAYS) \
  95. if (extruder_duplication_enabled || ALWAYS) { \
  96. X_STEP_WRITE(v); \
  97. X2_STEP_WRITE(v); \
  98. } \
  99. else { \
  100. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  101. }
  102. #else
  103. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  104. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  105. #endif
  106. #ifdef Y_DUAL_STEPPER_DRIVERS
  107. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  108. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  109. #else
  110. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  111. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  112. #endif
  113. #ifdef Z_DUAL_STEPPER_DRIVERS
  114. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  115. #ifdef Z_DUAL_ENDSTOPS
  116. #define Z_APPLY_STEP(v,Q) \
  117. if (performing_homing) { \
  118. if (Z_HOME_DIR > 0) {\
  119. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  120. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  121. } else {\
  122. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  123. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  124. } \
  125. } else { \
  126. Z_STEP_WRITE(v); \
  127. Z2_STEP_WRITE(v); \
  128. }
  129. #else
  130. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  131. #endif
  132. #else
  133. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  134. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  135. #endif
  136. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  137. // intRes = intIn1 * intIn2 >> 16
  138. // uses:
  139. // r26 to store 0
  140. // r27 to store the byte 1 of the 24 bit result
  141. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  142. asm volatile ( \
  143. "clr r26 \n\t" \
  144. "mul %A1, %B2 \n\t" \
  145. "movw %A0, r0 \n\t" \
  146. "mul %A1, %A2 \n\t" \
  147. "add %A0, r1 \n\t" \
  148. "adc %B0, r26 \n\t" \
  149. "lsr r0 \n\t" \
  150. "adc %A0, r26 \n\t" \
  151. "adc %B0, r26 \n\t" \
  152. "clr r1 \n\t" \
  153. : \
  154. "=&r" (intRes) \
  155. : \
  156. "d" (charIn1), \
  157. "d" (intIn2) \
  158. : \
  159. "r26" \
  160. )
  161. // intRes = longIn1 * longIn2 >> 24
  162. // uses:
  163. // r26 to store 0
  164. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  165. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  166. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  167. // B0 A0 are bits 24-39 and are the returned value
  168. // C1 B1 A1 is longIn1
  169. // D2 C2 B2 A2 is longIn2
  170. //
  171. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  172. asm volatile ( \
  173. "clr r26 \n\t" \
  174. "mul %A1, %B2 \n\t" \
  175. "mov r27, r1 \n\t" \
  176. "mul %B1, %C2 \n\t" \
  177. "movw %A0, r0 \n\t" \
  178. "mul %C1, %C2 \n\t" \
  179. "add %B0, r0 \n\t" \
  180. "mul %C1, %B2 \n\t" \
  181. "add %A0, r0 \n\t" \
  182. "adc %B0, r1 \n\t" \
  183. "mul %A1, %C2 \n\t" \
  184. "add r27, r0 \n\t" \
  185. "adc %A0, r1 \n\t" \
  186. "adc %B0, r26 \n\t" \
  187. "mul %B1, %B2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %C1, %A2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %B1, %A2 \n\t" \
  196. "add r27, r1 \n\t" \
  197. "adc %A0, r26 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "lsr r27 \n\t" \
  200. "adc %A0, r26 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %D2, %A1 \n\t" \
  203. "add %A0, r0 \n\t" \
  204. "adc %B0, r1 \n\t" \
  205. "mul %D2, %B1 \n\t" \
  206. "add %B0, r0 \n\t" \
  207. "clr r1 \n\t" \
  208. : \
  209. "=&r" (intRes) \
  210. : \
  211. "d" (longIn1), \
  212. "d" (longIn2) \
  213. : \
  214. "r26" , "r27" \
  215. )
  216. // Some useful constants
  217. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  218. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  219. void endstops_hit_on_purpose() {
  220. endstop_hit_bits = 0;
  221. }
  222. void checkHitEndstops() {
  223. if (endstop_hit_bits) {
  224. SERIAL_ECHO_START;
  225. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  226. if (endstop_hit_bits & BIT(X_MIN)) {
  227. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  228. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  229. }
  230. if (endstop_hit_bits & BIT(Y_MIN)) {
  231. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  232. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  233. }
  234. if (endstop_hit_bits & BIT(Z_MIN)) {
  235. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  236. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  237. }
  238. #ifdef Z_PROBE_ENDSTOP
  239. if (endstop_hit_bits & BIT(Z_PROBE)) {
  240. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  242. }
  243. #endif
  244. SERIAL_EOL;
  245. endstops_hit_on_purpose();
  246. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  247. if (abort_on_endstop_hit) {
  248. card.sdprinting = false;
  249. card.closefile();
  250. quickStop();
  251. disable_all_heaters(); // switch off all heaters.
  252. }
  253. #endif
  254. }
  255. }
  256. void enable_endstops(bool check) { check_endstops = check; }
  257. // __________________________
  258. // /| |\ _________________ ^
  259. // / | | \ /| |\ |
  260. // / | | \ / | | \ s
  261. // / | | | | | \ p
  262. // / | | | | | \ e
  263. // +-----+------------------------+---+--+---------------+----+ e
  264. // | BLOCK 1 | BLOCK 2 | d
  265. //
  266. // time ----->
  267. //
  268. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  269. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  270. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  271. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  272. void st_wake_up() {
  273. // TCNT1 = 0;
  274. ENABLE_STEPPER_DRIVER_INTERRUPT();
  275. }
  276. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  277. unsigned short timer;
  278. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  279. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  280. step_rate = (step_rate >> 2) & 0x3fff;
  281. step_loops = 4;
  282. }
  283. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  284. step_rate = (step_rate >> 1) & 0x7fff;
  285. step_loops = 2;
  286. }
  287. else {
  288. step_loops = 1;
  289. }
  290. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  291. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  292. if (step_rate >= (8 * 256)) { // higher step rate
  293. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  294. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  295. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  296. MultiU16X8toH16(timer, tmp_step_rate, gain);
  297. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  298. }
  299. else { // lower step rates
  300. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  301. table_address += ((step_rate)>>1) & 0xfffc;
  302. timer = (unsigned short)pgm_read_word_near(table_address);
  303. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  304. }
  305. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  306. return timer;
  307. }
  308. /**
  309. * Set the stepper direction of each axis
  310. *
  311. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  312. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  313. */
  314. void set_stepper_direction() {
  315. if (TEST(out_bits, X_AXIS)) { // A_AXIS
  316. X_APPLY_DIR(INVERT_X_DIR, 0);
  317. count_direction[X_AXIS] = -1;
  318. }
  319. else {
  320. X_APPLY_DIR(!INVERT_X_DIR, 0);
  321. count_direction[X_AXIS] = 1;
  322. }
  323. if (TEST(out_bits, Y_AXIS)) { // B_AXIS
  324. Y_APPLY_DIR(INVERT_Y_DIR, 0);
  325. count_direction[Y_AXIS] = -1;
  326. }
  327. else {
  328. Y_APPLY_DIR(!INVERT_Y_DIR, 0);
  329. count_direction[Y_AXIS] = 1;
  330. }
  331. if (TEST(out_bits, Z_AXIS)) { // C_AXIS
  332. Z_APPLY_DIR(INVERT_Z_DIR, 0);
  333. count_direction[Z_AXIS] = -1;
  334. }
  335. else {
  336. Z_APPLY_DIR(!INVERT_Z_DIR, 0);
  337. count_direction[Z_AXIS] = 1;
  338. }
  339. #ifndef ADVANCE
  340. if (TEST(out_bits, E_AXIS)) {
  341. REV_E_DIR();
  342. count_direction[E_AXIS] = -1;
  343. }
  344. else {
  345. NORM_E_DIR();
  346. count_direction[E_AXIS] = 1;
  347. }
  348. #endif //!ADVANCE
  349. }
  350. // Initializes the trapezoid generator from the current block. Called whenever a new
  351. // block begins.
  352. FORCE_INLINE void trapezoid_generator_reset() {
  353. if (current_block->direction_bits != out_bits) {
  354. out_bits = current_block->direction_bits;
  355. set_stepper_direction();
  356. }
  357. #ifdef ADVANCE
  358. advance = current_block->initial_advance;
  359. final_advance = current_block->final_advance;
  360. // Do E steps + advance steps
  361. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  362. old_advance = advance >>8;
  363. #endif
  364. deceleration_time = 0;
  365. // step_rate to timer interval
  366. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  367. // make a note of the number of step loops required at nominal speed
  368. step_loops_nominal = step_loops;
  369. acc_step_rate = current_block->initial_rate;
  370. acceleration_time = calc_timer(acc_step_rate);
  371. OCR1A = acceleration_time;
  372. // SERIAL_ECHO_START;
  373. // SERIAL_ECHOPGM("advance :");
  374. // SERIAL_ECHO(current_block->advance/256.0);
  375. // SERIAL_ECHOPGM("advance rate :");
  376. // SERIAL_ECHO(current_block->advance_rate/256.0);
  377. // SERIAL_ECHOPGM("initial advance :");
  378. // SERIAL_ECHO(current_block->initial_advance/256.0);
  379. // SERIAL_ECHOPGM("final advance :");
  380. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  381. }
  382. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  383. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  384. ISR(TIMER1_COMPA_vect) {
  385. if (cleaning_buffer_counter)
  386. {
  387. current_block = NULL;
  388. plan_discard_current_block();
  389. #ifdef SD_FINISHED_RELEASECOMMAND
  390. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  391. #endif
  392. cleaning_buffer_counter--;
  393. OCR1A = 200;
  394. return;
  395. }
  396. // If there is no current block, attempt to pop one from the buffer
  397. if (!current_block) {
  398. // Anything in the buffer?
  399. current_block = plan_get_current_block();
  400. if (current_block) {
  401. current_block->busy = true;
  402. trapezoid_generator_reset();
  403. counter_x = -(current_block->step_event_count >> 1);
  404. counter_y = counter_z = counter_e = counter_x;
  405. step_events_completed = 0;
  406. #ifdef Z_LATE_ENABLE
  407. if (current_block->steps[Z_AXIS] > 0) {
  408. enable_z();
  409. OCR1A = 2000; //1ms wait
  410. return;
  411. }
  412. #endif
  413. // #ifdef ADVANCE
  414. // e_steps[current_block->active_extruder] = 0;
  415. // #endif
  416. }
  417. else {
  418. OCR1A = 2000; // 1kHz.
  419. }
  420. }
  421. if (current_block != NULL) {
  422. // Check endstops
  423. if (check_endstops) {
  424. #ifdef Z_DUAL_ENDSTOPS
  425. uint16_t
  426. #else
  427. byte
  428. #endif
  429. current_endstop_bits = 0;
  430. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  431. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  432. #define _AXIS(AXIS) AXIS ##_AXIS
  433. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
  434. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  435. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  436. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  437. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  438. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  439. // TEST_ENDSTOP: test the old and the current status of an endstop
  440. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  441. #define UPDATE_ENDSTOP(AXIS,MINMAX) \
  442. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  443. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  444. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  445. _ENDSTOP_HIT(AXIS); \
  446. step_events_completed = current_block->step_event_count; \
  447. }
  448. #ifdef COREXY
  449. // Head direction in -X axis for CoreXY bots.
  450. // If DeltaX == -DeltaY, the movement is only in Y axis
  451. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  452. if (TEST(out_bits, X_HEAD))
  453. #elif defined(COREXZ)
  454. // Head direction in -X axis for CoreXZ bots.
  455. // If DeltaX == -DeltaZ, the movement is only in Z axis
  456. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
  457. if (TEST(out_bits, X_HEAD))
  458. #else
  459. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  460. #endif
  461. { // -direction
  462. #ifdef DUAL_X_CARRIAGE
  463. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  464. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  465. #endif
  466. {
  467. #if HAS_X_MIN
  468. UPDATE_ENDSTOP(X, MIN);
  469. #endif
  470. }
  471. }
  472. else { // +direction
  473. #ifdef DUAL_X_CARRIAGE
  474. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  475. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  476. #endif
  477. {
  478. #if HAS_X_MAX
  479. UPDATE_ENDSTOP(X, MAX);
  480. #endif
  481. }
  482. }
  483. #if defined(COREXY) || defined(COREXZ)
  484. }
  485. #endif
  486. #ifdef COREXY
  487. // Head direction in -Y axis for CoreXY bots.
  488. // If DeltaX == DeltaY, the movement is only in X axis
  489. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  490. if (TEST(out_bits, Y_HEAD))
  491. #else
  492. if (TEST(out_bits, Y_AXIS)) // -direction
  493. #endif
  494. { // -direction
  495. #if HAS_Y_MIN
  496. UPDATE_ENDSTOP(Y, MIN);
  497. #endif
  498. }
  499. else { // +direction
  500. #if HAS_Y_MAX
  501. UPDATE_ENDSTOP(Y, MAX);
  502. #endif
  503. }
  504. #if defined(COREXY) || defined(COREXZ)
  505. }
  506. #endif
  507. #ifdef COREXZ
  508. // Head direction in -Z axis for CoreXZ bots.
  509. // If DeltaX == DeltaZ, the movement is only in X axis
  510. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  511. if (TEST(out_bits, Z_HEAD))
  512. #else
  513. if (TEST(out_bits, Z_AXIS))
  514. #endif
  515. { // z -direction
  516. #if HAS_Z_MIN
  517. #ifdef Z_DUAL_ENDSTOPS
  518. SET_ENDSTOP_BIT(Z, MIN);
  519. #if HAS_Z2_MIN
  520. SET_ENDSTOP_BIT(Z2, MIN);
  521. #else
  522. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  523. #endif
  524. byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
  525. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  526. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  527. endstop_hit_bits |= BIT(Z_MIN);
  528. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  529. step_events_completed = current_block->step_event_count;
  530. }
  531. #else // !Z_DUAL_ENDSTOPS
  532. UPDATE_ENDSTOP(Z, MIN);
  533. #endif // !Z_DUAL_ENDSTOPS
  534. #endif // Z_MIN_PIN
  535. #ifdef Z_PROBE_ENDSTOP
  536. UPDATE_ENDSTOP(Z, PROBE);
  537. if (TEST_ENDSTOP(Z_PROBE))
  538. {
  539. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  540. endstop_hit_bits |= BIT(Z_PROBE);
  541. }
  542. #endif
  543. }
  544. else { // z +direction
  545. #if HAS_Z_MAX
  546. #ifdef Z_DUAL_ENDSTOPS
  547. SET_ENDSTOP_BIT(Z, MAX);
  548. #if HAS_Z2_MAX
  549. SET_ENDSTOP_BIT(Z2, MAX);
  550. #else
  551. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
  552. #endif
  553. byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
  554. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  555. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  556. endstop_hit_bits |= BIT(Z_MIN);
  557. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  558. step_events_completed = current_block->step_event_count;
  559. }
  560. #else // !Z_DUAL_ENDSTOPS
  561. UPDATE_ENDSTOP(Z, MAX);
  562. #endif // !Z_DUAL_ENDSTOPS
  563. #endif // Z_MAX_PIN
  564. #ifdef Z_PROBE_ENDSTOP
  565. UPDATE_ENDSTOP(Z, PROBE);
  566. if (TEST_ENDSTOP(Z_PROBE))
  567. {
  568. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  569. endstop_hit_bits |= BIT(Z_PROBE);
  570. }
  571. #endif
  572. }
  573. old_endstop_bits = current_endstop_bits;
  574. }
  575. // Take multiple steps per interrupt (For high speed moves)
  576. for (int8_t i = 0; i < step_loops; i++) {
  577. #ifndef USBCON
  578. MSerial.checkRx(); // Check for serial chars.
  579. #endif
  580. #ifdef ADVANCE
  581. counter_e += current_block->steps[E_AXIS];
  582. if (counter_e > 0) {
  583. counter_e -= current_block->step_event_count;
  584. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  585. }
  586. #endif //ADVANCE
  587. #define _COUNTER(axis) counter_## axis
  588. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  589. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  590. #define STEP_ADD(axis, AXIS) \
  591. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  592. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  593. STEP_ADD(x,X);
  594. STEP_ADD(y,Y);
  595. STEP_ADD(z,Z);
  596. #ifndef ADVANCE
  597. STEP_ADD(e,E);
  598. #endif
  599. #define STEP_IF_COUNTER(axis, AXIS) \
  600. if (_COUNTER(axis) > 0) { \
  601. _COUNTER(axis) -= current_block->step_event_count; \
  602. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  603. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  604. }
  605. STEP_IF_COUNTER(x, X);
  606. STEP_IF_COUNTER(y, Y);
  607. STEP_IF_COUNTER(z, Z);
  608. #ifndef ADVANCE
  609. STEP_IF_COUNTER(e, E);
  610. #endif
  611. step_events_completed++;
  612. if (step_events_completed >= current_block->step_event_count) break;
  613. }
  614. // Calculate new timer value
  615. unsigned short timer;
  616. unsigned short step_rate;
  617. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  618. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  619. acc_step_rate += current_block->initial_rate;
  620. // upper limit
  621. if (acc_step_rate > current_block->nominal_rate)
  622. acc_step_rate = current_block->nominal_rate;
  623. // step_rate to timer interval
  624. timer = calc_timer(acc_step_rate);
  625. OCR1A = timer;
  626. acceleration_time += timer;
  627. #ifdef ADVANCE
  628. for(int8_t i=0; i < step_loops; i++) {
  629. advance += advance_rate;
  630. }
  631. //if (advance > current_block->advance) advance = current_block->advance;
  632. // Do E steps + advance steps
  633. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  634. old_advance = advance >>8;
  635. #endif
  636. }
  637. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  638. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  639. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  640. step_rate = current_block->final_rate;
  641. }
  642. else {
  643. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  644. }
  645. // lower limit
  646. if (step_rate < current_block->final_rate)
  647. step_rate = current_block->final_rate;
  648. // step_rate to timer interval
  649. timer = calc_timer(step_rate);
  650. OCR1A = timer;
  651. deceleration_time += timer;
  652. #ifdef ADVANCE
  653. for(int8_t i=0; i < step_loops; i++) {
  654. advance -= advance_rate;
  655. }
  656. if (advance < final_advance) advance = final_advance;
  657. // Do E steps + advance steps
  658. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  659. old_advance = advance >>8;
  660. #endif //ADVANCE
  661. }
  662. else {
  663. OCR1A = OCR1A_nominal;
  664. // ensure we're running at the correct step rate, even if we just came off an acceleration
  665. step_loops = step_loops_nominal;
  666. }
  667. // If current block is finished, reset pointer
  668. if (step_events_completed >= current_block->step_event_count) {
  669. current_block = NULL;
  670. plan_discard_current_block();
  671. }
  672. }
  673. }
  674. #ifdef ADVANCE
  675. unsigned char old_OCR0A;
  676. // Timer interrupt for E. e_steps is set in the main routine;
  677. // Timer 0 is shared with millies
  678. ISR(TIMER0_COMPA_vect)
  679. {
  680. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  681. OCR0A = old_OCR0A;
  682. // Set E direction (Depends on E direction + advance)
  683. for(unsigned char i=0; i<4;i++) {
  684. if (e_steps[0] != 0) {
  685. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  686. if (e_steps[0] < 0) {
  687. E0_DIR_WRITE(INVERT_E0_DIR);
  688. e_steps[0]++;
  689. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  690. }
  691. else if (e_steps[0] > 0) {
  692. E0_DIR_WRITE(!INVERT_E0_DIR);
  693. e_steps[0]--;
  694. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  695. }
  696. }
  697. #if EXTRUDERS > 1
  698. if (e_steps[1] != 0) {
  699. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  700. if (e_steps[1] < 0) {
  701. E1_DIR_WRITE(INVERT_E1_DIR);
  702. e_steps[1]++;
  703. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  704. }
  705. else if (e_steps[1] > 0) {
  706. E1_DIR_WRITE(!INVERT_E1_DIR);
  707. e_steps[1]--;
  708. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  709. }
  710. }
  711. #endif
  712. #if EXTRUDERS > 2
  713. if (e_steps[2] != 0) {
  714. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  715. if (e_steps[2] < 0) {
  716. E2_DIR_WRITE(INVERT_E2_DIR);
  717. e_steps[2]++;
  718. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  719. }
  720. else if (e_steps[2] > 0) {
  721. E2_DIR_WRITE(!INVERT_E2_DIR);
  722. e_steps[2]--;
  723. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  724. }
  725. }
  726. #endif
  727. #if EXTRUDERS > 3
  728. if (e_steps[3] != 0) {
  729. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  730. if (e_steps[3] < 0) {
  731. E3_DIR_WRITE(INVERT_E3_DIR);
  732. e_steps[3]++;
  733. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  734. }
  735. else if (e_steps[3] > 0) {
  736. E3_DIR_WRITE(!INVERT_E3_DIR);
  737. e_steps[3]--;
  738. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  739. }
  740. }
  741. #endif
  742. }
  743. }
  744. #endif // ADVANCE
  745. void st_init() {
  746. digipot_init(); //Initialize Digipot Motor Current
  747. microstep_init(); //Initialize Microstepping Pins
  748. // initialise TMC Steppers
  749. #ifdef HAVE_TMCDRIVER
  750. tmc_init();
  751. #endif
  752. // initialise L6470 Steppers
  753. #ifdef HAVE_L6470DRIVER
  754. L6470_init();
  755. #endif
  756. // Initialize Dir Pins
  757. #if HAS_X_DIR
  758. X_DIR_INIT;
  759. #endif
  760. #if HAS_X2_DIR
  761. X2_DIR_INIT;
  762. #endif
  763. #if HAS_Y_DIR
  764. Y_DIR_INIT;
  765. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  766. Y2_DIR_INIT;
  767. #endif
  768. #endif
  769. #if HAS_Z_DIR
  770. Z_DIR_INIT;
  771. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  772. Z2_DIR_INIT;
  773. #endif
  774. #endif
  775. #if HAS_E0_DIR
  776. E0_DIR_INIT;
  777. #endif
  778. #if HAS_E1_DIR
  779. E1_DIR_INIT;
  780. #endif
  781. #if HAS_E2_DIR
  782. E2_DIR_INIT;
  783. #endif
  784. #if HAS_E3_DIR
  785. E3_DIR_INIT;
  786. #endif
  787. //Initialize Enable Pins - steppers default to disabled.
  788. #if HAS_X_ENABLE
  789. X_ENABLE_INIT;
  790. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  791. #endif
  792. #if HAS_X2_ENABLE
  793. X2_ENABLE_INIT;
  794. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  795. #endif
  796. #if HAS_Y_ENABLE
  797. Y_ENABLE_INIT;
  798. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  799. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  800. Y2_ENABLE_INIT;
  801. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  802. #endif
  803. #endif
  804. #if HAS_Z_ENABLE
  805. Z_ENABLE_INIT;
  806. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  807. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  808. Z2_ENABLE_INIT;
  809. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  810. #endif
  811. #endif
  812. #if HAS_E0_ENABLE
  813. E0_ENABLE_INIT;
  814. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  815. #endif
  816. #if HAS_E1_ENABLE
  817. E1_ENABLE_INIT;
  818. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  819. #endif
  820. #if HAS_E2_ENABLE
  821. E2_ENABLE_INIT;
  822. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  823. #endif
  824. #if HAS_E3_ENABLE
  825. E3_ENABLE_INIT;
  826. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  827. #endif
  828. //endstops and pullups
  829. #if HAS_X_MIN
  830. SET_INPUT(X_MIN_PIN);
  831. #ifdef ENDSTOPPULLUP_XMIN
  832. WRITE(X_MIN_PIN,HIGH);
  833. #endif
  834. #endif
  835. #if HAS_Y_MIN
  836. SET_INPUT(Y_MIN_PIN);
  837. #ifdef ENDSTOPPULLUP_YMIN
  838. WRITE(Y_MIN_PIN,HIGH);
  839. #endif
  840. #endif
  841. #if HAS_Z_MIN
  842. SET_INPUT(Z_MIN_PIN);
  843. #ifdef ENDSTOPPULLUP_ZMIN
  844. WRITE(Z_MIN_PIN,HIGH);
  845. #endif
  846. #endif
  847. #if HAS_X_MAX
  848. SET_INPUT(X_MAX_PIN);
  849. #ifdef ENDSTOPPULLUP_XMAX
  850. WRITE(X_MAX_PIN,HIGH);
  851. #endif
  852. #endif
  853. #if HAS_Y_MAX
  854. SET_INPUT(Y_MAX_PIN);
  855. #ifdef ENDSTOPPULLUP_YMAX
  856. WRITE(Y_MAX_PIN,HIGH);
  857. #endif
  858. #endif
  859. #if HAS_Z_MAX
  860. SET_INPUT(Z_MAX_PIN);
  861. #ifdef ENDSTOPPULLUP_ZMAX
  862. WRITE(Z_MAX_PIN,HIGH);
  863. #endif
  864. #endif
  865. #if HAS_Z2_MAX
  866. SET_INPUT(Z2_MAX_PIN);
  867. #ifdef ENDSTOPPULLUP_ZMAX
  868. WRITE(Z2_MAX_PIN,HIGH);
  869. #endif
  870. #endif
  871. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  872. SET_INPUT(Z_PROBE_PIN);
  873. #ifdef ENDSTOPPULLUP_ZPROBE
  874. WRITE(Z_PROBE_PIN,HIGH);
  875. #endif
  876. #endif
  877. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  878. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  879. #define _DISABLE(axis) disable_## axis()
  880. #define AXIS_INIT(axis, AXIS, PIN) \
  881. _STEP_INIT(AXIS); \
  882. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  883. _DISABLE(axis)
  884. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  885. // Initialize Step Pins
  886. #if HAS_X_STEP
  887. AXIS_INIT(x, X, X);
  888. #endif
  889. #if HAS_X2_STEP
  890. AXIS_INIT(x, X2, X);
  891. #endif
  892. #if HAS_Y_STEP
  893. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  894. Y2_STEP_INIT;
  895. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  896. #endif
  897. AXIS_INIT(y, Y, Y);
  898. #endif
  899. #if HAS_Z_STEP
  900. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  901. Z2_STEP_INIT;
  902. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  903. #endif
  904. AXIS_INIT(z, Z, Z);
  905. #endif
  906. #if HAS_E0_STEP
  907. E_AXIS_INIT(0);
  908. #endif
  909. #if HAS_E1_STEP
  910. E_AXIS_INIT(1);
  911. #endif
  912. #if HAS_E2_STEP
  913. E_AXIS_INIT(2);
  914. #endif
  915. #if HAS_E3_STEP
  916. E_AXIS_INIT(3);
  917. #endif
  918. // waveform generation = 0100 = CTC
  919. TCCR1B &= ~BIT(WGM13);
  920. TCCR1B |= BIT(WGM12);
  921. TCCR1A &= ~BIT(WGM11);
  922. TCCR1A &= ~BIT(WGM10);
  923. // output mode = 00 (disconnected)
  924. TCCR1A &= ~(3<<COM1A0);
  925. TCCR1A &= ~(3<<COM1B0);
  926. // Set the timer pre-scaler
  927. // Generally we use a divider of 8, resulting in a 2MHz timer
  928. // frequency on a 16MHz MCU. If you are going to change this, be
  929. // sure to regenerate speed_lookuptable.h with
  930. // create_speed_lookuptable.py
  931. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  932. OCR1A = 0x4000;
  933. TCNT1 = 0;
  934. ENABLE_STEPPER_DRIVER_INTERRUPT();
  935. #ifdef ADVANCE
  936. #if defined(TCCR0A) && defined(WGM01)
  937. TCCR0A &= ~BIT(WGM01);
  938. TCCR0A &= ~BIT(WGM00);
  939. #endif
  940. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  941. TIMSK0 |= BIT(OCIE0A);
  942. #endif //ADVANCE
  943. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  944. sei();
  945. set_stepper_direction(); // Init directions to out_bits = 0
  946. }
  947. /**
  948. * Block until all buffered steps are executed
  949. */
  950. void st_synchronize() { while (blocks_queued()) idle(); }
  951. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  952. CRITICAL_SECTION_START;
  953. count_position[X_AXIS] = x;
  954. count_position[Y_AXIS] = y;
  955. count_position[Z_AXIS] = z;
  956. count_position[E_AXIS] = e;
  957. CRITICAL_SECTION_END;
  958. }
  959. void st_set_e_position(const long &e) {
  960. CRITICAL_SECTION_START;
  961. count_position[E_AXIS] = e;
  962. CRITICAL_SECTION_END;
  963. }
  964. long st_get_position(uint8_t axis) {
  965. long count_pos;
  966. CRITICAL_SECTION_START;
  967. count_pos = count_position[axis];
  968. CRITICAL_SECTION_END;
  969. return count_pos;
  970. }
  971. float st_get_position_mm(AxisEnum axis) { return st_get_position(axis) / axis_steps_per_unit[axis]; }
  972. void finishAndDisableSteppers() {
  973. st_synchronize();
  974. disable_all_steppers();
  975. }
  976. void quickStop() {
  977. cleaning_buffer_counter = 5000;
  978. DISABLE_STEPPER_DRIVER_INTERRUPT();
  979. while (blocks_queued()) plan_discard_current_block();
  980. current_block = NULL;
  981. ENABLE_STEPPER_DRIVER_INTERRUPT();
  982. }
  983. #ifdef BABYSTEPPING
  984. // MUST ONLY BE CALLED BY AN ISR,
  985. // No other ISR should ever interrupt this!
  986. void babystep(const uint8_t axis, const bool direction) {
  987. #define _ENABLE(axis) enable_## axis()
  988. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  989. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  990. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  991. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  992. _ENABLE(axis); \
  993. uint8_t old_pin = _READ_DIR(AXIS); \
  994. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  995. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  996. delayMicroseconds(2); \
  997. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  998. _APPLY_DIR(AXIS, old_pin); \
  999. }
  1000. switch(axis) {
  1001. case X_AXIS:
  1002. BABYSTEP_AXIS(x, X, false);
  1003. break;
  1004. case Y_AXIS:
  1005. BABYSTEP_AXIS(y, Y, false);
  1006. break;
  1007. case Z_AXIS: {
  1008. #ifndef DELTA
  1009. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1010. #else // DELTA
  1011. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1012. enable_x();
  1013. enable_y();
  1014. enable_z();
  1015. uint8_t old_x_dir_pin = X_DIR_READ,
  1016. old_y_dir_pin = Y_DIR_READ,
  1017. old_z_dir_pin = Z_DIR_READ;
  1018. //setup new step
  1019. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1020. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1021. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1022. //perform step
  1023. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1024. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1025. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1026. delayMicroseconds(2);
  1027. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1028. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1029. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1030. //get old pin state back.
  1031. X_DIR_WRITE(old_x_dir_pin);
  1032. Y_DIR_WRITE(old_y_dir_pin);
  1033. Z_DIR_WRITE(old_z_dir_pin);
  1034. #endif
  1035. } break;
  1036. default: break;
  1037. }
  1038. }
  1039. #endif //BABYSTEPPING
  1040. // From Arduino DigitalPotControl example
  1041. void digitalPotWrite(int address, int value) {
  1042. #if HAS_DIGIPOTSS
  1043. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1044. SPI.transfer(address); // send in the address and value via SPI:
  1045. SPI.transfer(value);
  1046. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1047. //delay(10);
  1048. #endif
  1049. }
  1050. // Initialize Digipot Motor Current
  1051. void digipot_init() {
  1052. #if HAS_DIGIPOTSS
  1053. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1054. SPI.begin();
  1055. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1056. for (int i = 0; i <= 4; i++) {
  1057. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1058. digipot_current(i,digipot_motor_current[i]);
  1059. }
  1060. #endif
  1061. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1062. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1063. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1064. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1065. digipot_current(0, motor_current_setting[0]);
  1066. digipot_current(1, motor_current_setting[1]);
  1067. digipot_current(2, motor_current_setting[2]);
  1068. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1069. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1070. #endif
  1071. }
  1072. void digipot_current(uint8_t driver, int current) {
  1073. #if HAS_DIGIPOTSS
  1074. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1075. digitalPotWrite(digipot_ch[driver], current);
  1076. #endif
  1077. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1078. switch(driver) {
  1079. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1080. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1081. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1082. }
  1083. #endif
  1084. }
  1085. void microstep_init() {
  1086. #if HAS_MICROSTEPS_E1
  1087. pinMode(E1_MS1_PIN,OUTPUT);
  1088. pinMode(E1_MS2_PIN,OUTPUT);
  1089. #endif
  1090. #if HAS_MICROSTEPS
  1091. pinMode(X_MS1_PIN,OUTPUT);
  1092. pinMode(X_MS2_PIN,OUTPUT);
  1093. pinMode(Y_MS1_PIN,OUTPUT);
  1094. pinMode(Y_MS2_PIN,OUTPUT);
  1095. pinMode(Z_MS1_PIN,OUTPUT);
  1096. pinMode(Z_MS2_PIN,OUTPUT);
  1097. pinMode(E0_MS1_PIN,OUTPUT);
  1098. pinMode(E0_MS2_PIN,OUTPUT);
  1099. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1100. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1101. microstep_mode(i, microstep_modes[i]);
  1102. #endif
  1103. }
  1104. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1105. if (ms1 >= 0) switch(driver) {
  1106. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1107. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1108. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1109. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1110. #if HAS_MICROSTEPS_E1
  1111. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1112. #endif
  1113. }
  1114. if (ms2 >= 0) switch(driver) {
  1115. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1116. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1117. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1118. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1119. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1120. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1121. #endif
  1122. }
  1123. }
  1124. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1125. switch(stepping_mode) {
  1126. case 1: microstep_ms(driver,MICROSTEP1); break;
  1127. case 2: microstep_ms(driver,MICROSTEP2); break;
  1128. case 4: microstep_ms(driver,MICROSTEP4); break;
  1129. case 8: microstep_ms(driver,MICROSTEP8); break;
  1130. case 16: microstep_ms(driver,MICROSTEP16); break;
  1131. }
  1132. }
  1133. void microstep_readings() {
  1134. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1135. SERIAL_PROTOCOLPGM("X: ");
  1136. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1137. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1138. SERIAL_PROTOCOLPGM("Y: ");
  1139. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1140. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1141. SERIAL_PROTOCOLPGM("Z: ");
  1142. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1143. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1144. SERIAL_PROTOCOLPGM("E0: ");
  1145. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1146. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1147. #if HAS_MICROSTEPS_E1
  1148. SERIAL_PROTOCOLPGM("E1: ");
  1149. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1150. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1151. #endif
  1152. }
  1153. #ifdef Z_DUAL_ENDSTOPS
  1154. void In_Homing_Process(bool state) { performing_homing = state; }
  1155. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1156. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1157. #endif