My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

stepper.cpp 50KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #if MB(ALLIGATOR)
  49. #include "dac_dac084s085.h"
  50. #endif
  51. #include "temperature.h"
  52. #include "ultralcd.h"
  53. #include "language.h"
  54. #include "cardreader.h"
  55. #ifdef ARDUINO_ARCH_AVR
  56. #include "speed_lookuptable.h"
  57. #endif
  58. #if HAS_DIGIPOTSS
  59. #include <SPI.h>
  60. #endif
  61. Stepper stepper; // Singleton
  62. // public:
  63. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  64. extern bool ubl_lcd_map_control;
  65. #endif
  66. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  67. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  68. bool Stepper::abort_on_endstop_hit = false;
  69. #endif
  70. #if ENABLED(Z_DUAL_ENDSTOPS)
  71. bool Stepper::performing_homing = false;
  72. #endif
  73. #if HAS_MOTOR_CURRENT_PWM
  74. uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
  75. #endif
  76. // private:
  77. uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  78. uint16_t Stepper::cleaning_buffer_counter = 0;
  79. #if ENABLED(Z_DUAL_ENDSTOPS)
  80. bool Stepper::locked_z_motor = false;
  81. bool Stepper::locked_z2_motor = false;
  82. #endif
  83. long Stepper::counter_X = 0,
  84. Stepper::counter_Y = 0,
  85. Stepper::counter_Z = 0,
  86. Stepper::counter_E = 0;
  87. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  88. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  89. constexpr HAL_TIMER_TYPE ADV_NEVER = HAL_TIMER_TYPE_MAX;
  90. HAL_TIMER_TYPE Stepper::nextMainISR = 0,
  91. Stepper::nextAdvanceISR = ADV_NEVER,
  92. Stepper::eISR_Rate = ADV_NEVER;
  93. #if ENABLED(LIN_ADVANCE)
  94. volatile int Stepper::e_steps[E_STEPPERS];
  95. int Stepper::final_estep_rate,
  96. Stepper::current_estep_rate[E_STEPPERS],
  97. Stepper::current_adv_steps[E_STEPPERS];
  98. #else
  99. long Stepper::e_steps[E_STEPPERS],
  100. Stepper::final_advance = 0,
  101. Stepper::old_advance = 0,
  102. Stepper::advance_rate,
  103. Stepper::advance;
  104. #endif
  105. /**
  106. * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
  107. *
  108. * This fix isn't perfect and may lose steps - but better than locking up completely
  109. * in future the planner should slow down if advance stepping rate would be too high
  110. */
  111. FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
  112. if (steps) {
  113. const uint16_t rate = (timer * loops) / abs(steps);
  114. //return constrain(rate, 1, ADV_NEVER - 1)
  115. return rate ? rate : 1;
  116. }
  117. return ADV_NEVER;
  118. }
  119. #endif // ADVANCE || LIN_ADVANCE
  120. long Stepper::acceleration_time, Stepper::deceleration_time;
  121. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  122. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  123. #if ENABLED(MIXING_EXTRUDER)
  124. long Stepper::counter_m[MIXING_STEPPERS];
  125. #endif
  126. HAL_TIMER_TYPE Stepper::acc_step_rate; // needed for deceleration start point
  127. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  128. HAL_TIMER_TYPE Stepper::OCR1A_nominal;
  129. volatile long Stepper::endstops_trigsteps[XYZ];
  130. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  131. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  132. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  133. #elif ENABLED(DUAL_X_CARRIAGE)
  134. #define X_APPLY_DIR(v,ALWAYS) \
  135. if (extruder_duplication_enabled || ALWAYS) { \
  136. X_DIR_WRITE(v); \
  137. X2_DIR_WRITE(v); \
  138. } \
  139. else { \
  140. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  141. }
  142. #define X_APPLY_STEP(v,ALWAYS) \
  143. if (extruder_duplication_enabled || ALWAYS) { \
  144. X_STEP_WRITE(v); \
  145. X2_STEP_WRITE(v); \
  146. } \
  147. else { \
  148. if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  149. }
  150. #else
  151. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  152. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  153. #endif
  154. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  155. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  156. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  157. #else
  158. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  159. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  160. #endif
  161. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  162. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  163. #if ENABLED(Z_DUAL_ENDSTOPS)
  164. #define Z_APPLY_STEP(v,Q) \
  165. if (performing_homing) { \
  166. if (Z_HOME_DIR < 0) { \
  167. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  168. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  169. } \
  170. else { \
  171. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  172. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  173. } \
  174. } \
  175. else { \
  176. Z_STEP_WRITE(v); \
  177. Z2_STEP_WRITE(v); \
  178. }
  179. #else
  180. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  181. #endif
  182. #else
  183. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  184. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  185. #endif
  186. #if DISABLED(MIXING_EXTRUDER)
  187. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  188. #endif
  189. /**
  190. * __________________________
  191. * /| |\ _________________ ^
  192. * / | | \ /| |\ |
  193. * / | | \ / | | \ s
  194. * / | | | | | \ p
  195. * / | | | | | \ e
  196. * +-----+------------------------+---+--+---------------+----+ e
  197. * | BLOCK 1 | BLOCK 2 | d
  198. *
  199. * time ----->
  200. *
  201. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  202. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  203. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  204. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  205. */
  206. void Stepper::wake_up() {
  207. // TCNT1 = 0;
  208. ENABLE_STEPPER_DRIVER_INTERRUPT();
  209. }
  210. /**
  211. * Set the stepper direction of each axis
  212. *
  213. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  214. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  215. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  216. */
  217. void Stepper::set_directions() {
  218. #define SET_STEP_DIR(AXIS) \
  219. if (motor_direction(AXIS ##_AXIS)) { \
  220. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  221. count_direction[AXIS ##_AXIS] = -1; \
  222. } \
  223. else { \
  224. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  225. count_direction[AXIS ##_AXIS] = 1; \
  226. }
  227. #if HAS_X_DIR
  228. SET_STEP_DIR(X); // A
  229. #endif
  230. #if HAS_Y_DIR
  231. SET_STEP_DIR(Y); // B
  232. #endif
  233. #if HAS_Z_DIR
  234. SET_STEP_DIR(Z); // C
  235. #endif
  236. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  237. if (motor_direction(E_AXIS)) {
  238. REV_E_DIR();
  239. count_direction[E_AXIS] = -1;
  240. }
  241. else {
  242. NORM_E_DIR();
  243. count_direction[E_AXIS] = 1;
  244. }
  245. #endif // !ADVANCE && !LIN_ADVANCE
  246. }
  247. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  248. extern volatile uint8_t e_hit;
  249. #endif
  250. /**
  251. * Stepper Driver Interrupt
  252. *
  253. * Directly pulses the stepper motors at high frequency.
  254. *
  255. * AVR :
  256. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  257. *
  258. * OCR1A Frequency
  259. * 1 2 MHz
  260. * 50 40 KHz
  261. * 100 20 KHz - capped max rate
  262. * 200 10 KHz - nominal max rate
  263. * 2000 1 KHz - sleep rate
  264. * 4000 500 Hz - init rate
  265. */
  266. HAL_STEP_TIMER_ISR {
  267. HAL_timer_isr_prologue(STEP_TIMER_NUM);
  268. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  269. Stepper::advance_isr_scheduler();
  270. #else
  271. Stepper::isr();
  272. #endif
  273. }
  274. void Stepper::isr() {
  275. HAL_TIMER_TYPE ocr_val;
  276. #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
  277. #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
  278. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  279. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  280. DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR
  281. DISABLE_STEPPER_DRIVER_INTERRUPT();
  282. #if !defined(CPU_32_BIT)
  283. sei();
  284. #endif
  285. #endif
  286. #define _SPLIT(L) (ocr_val = (HAL_TIMER_TYPE)L)
  287. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  288. #define SPLIT(L) _SPLIT(L)
  289. #else // sample endstops in between step pulses
  290. static uint32_t step_remaining = 0;
  291. #define SPLIT(L) do { \
  292. _SPLIT(L); \
  293. if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
  294. const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
  295. ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
  296. step_remaining = (uint16_t)L - ocr_val; \
  297. } \
  298. }while(0)
  299. if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
  300. endstops.update();
  301. if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
  302. step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
  303. ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
  304. }
  305. else {
  306. ocr_val = step_remaining;
  307. step_remaining = 0; // last one before the ISR that does the step
  308. }
  309. _NEXT_ISR(ocr_val);
  310. #ifdef CPU_32_BIT
  311. //todo: HAL?
  312. #else
  313. NOLESS(OCR1A, TCNT1 + 16);
  314. #endif
  315. HAL_ENABLE_ISRs(); // re-enable ISRs
  316. return;
  317. }
  318. #endif
  319. if (cleaning_buffer_counter) {
  320. --cleaning_buffer_counter;
  321. current_block = NULL;
  322. planner.discard_current_block();
  323. #ifdef SD_FINISHED_RELEASECOMMAND
  324. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  325. #endif
  326. _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 10000); // Run at max speed - 10 KHz
  327. HAL_ENABLE_ISRs(); // re-enable ISRs
  328. return;
  329. }
  330. // If there is no current block, attempt to pop one from the buffer
  331. if (!current_block) {
  332. // Anything in the buffer?
  333. current_block = planner.get_current_block();
  334. if (current_block) {
  335. trapezoid_generator_reset();
  336. // Initialize Bresenham counters to 1/2 the ceiling
  337. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  338. #if ENABLED(MIXING_EXTRUDER)
  339. MIXING_STEPPERS_LOOP(i)
  340. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  341. #endif
  342. step_events_completed = 0;
  343. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  344. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  345. // No 'change' can be detected.
  346. #endif
  347. #if ENABLED(Z_LATE_ENABLE)
  348. if (current_block->steps[Z_AXIS] > 0) {
  349. enable_Z();
  350. _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
  351. HAL_ENABLE_ISRs(); // re-enable ISRs
  352. return;
  353. }
  354. #endif
  355. // #if ENABLED(ADVANCE)
  356. // e_steps[TOOL_E_INDEX] = 0;
  357. // #endif
  358. }
  359. else {
  360. _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
  361. HAL_ENABLE_ISRs(); // re-enable ISRs
  362. return;
  363. }
  364. }
  365. // Update endstops state, if enabled
  366. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  367. if (e_hit && ENDSTOPS_ENABLED) {
  368. endstops.update();
  369. e_hit--;
  370. }
  371. #else
  372. if (ENDSTOPS_ENABLED) endstops.update();
  373. #endif
  374. // Take multiple steps per interrupt (For high speed moves)
  375. bool all_steps_done = false;
  376. for (uint8_t i = step_loops; i--;) {
  377. #if ENABLED(LIN_ADVANCE)
  378. counter_E += current_block->steps[E_AXIS];
  379. if (counter_E > 0) {
  380. counter_E -= current_block->step_event_count;
  381. #if DISABLED(MIXING_EXTRUDER)
  382. // Don't step E here for mixing extruder
  383. count_position[E_AXIS] += count_direction[E_AXIS];
  384. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  385. #endif
  386. }
  387. #if ENABLED(MIXING_EXTRUDER)
  388. // Step mixing steppers proportionally
  389. const bool dir = motor_direction(E_AXIS);
  390. MIXING_STEPPERS_LOOP(j) {
  391. counter_m[j] += current_block->steps[E_AXIS];
  392. if (counter_m[j] > 0) {
  393. counter_m[j] -= current_block->mix_event_count[j];
  394. dir ? --e_steps[j] : ++e_steps[j];
  395. }
  396. }
  397. #endif
  398. #elif ENABLED(ADVANCE)
  399. // Always count the unified E axis
  400. counter_E += current_block->steps[E_AXIS];
  401. if (counter_E > 0) {
  402. counter_E -= current_block->step_event_count;
  403. #if DISABLED(MIXING_EXTRUDER)
  404. // Don't step E here for mixing extruder
  405. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  406. #endif
  407. }
  408. #if ENABLED(MIXING_EXTRUDER)
  409. // Step mixing steppers proportionally
  410. const bool dir = motor_direction(E_AXIS);
  411. MIXING_STEPPERS_LOOP(j) {
  412. counter_m[j] += current_block->steps[E_AXIS];
  413. if (counter_m[j] > 0) {
  414. counter_m[j] -= current_block->mix_event_count[j];
  415. dir ? --e_steps[j] : ++e_steps[j];
  416. }
  417. }
  418. #endif // MIXING_EXTRUDER
  419. #endif // ADVANCE or LIN_ADVANCE
  420. #define _COUNTER(AXIS) counter_## AXIS
  421. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  422. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  423. // Advance the Bresenham counter; start a pulse if the axis needs a step
  424. #define PULSE_START(AXIS) \
  425. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  426. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  427. // Stop an active pulse, reset the Bresenham counter, update the position
  428. #define PULSE_STOP(AXIS) \
  429. if (_COUNTER(AXIS) > 0) { \
  430. _COUNTER(AXIS) -= current_block->step_event_count; \
  431. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  432. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  433. }
  434. /**
  435. * Estimate the number of cycles that the stepper logic already takes
  436. * up between the start and stop of the X stepper pulse.
  437. *
  438. * Currently this uses very modest estimates of around 5 cycles.
  439. * True values may be derived by careful testing.
  440. *
  441. * Once any delay is added, the cost of the delay code itself
  442. * may be subtracted from this value to get a more accurate delay.
  443. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
  444. * Longer delays use a loop. The resolution is 8 cycles.
  445. */
  446. #if HAS_X_STEP
  447. #define _CYCLE_APPROX_1 5
  448. #else
  449. #define _CYCLE_APPROX_1 0
  450. #endif
  451. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  452. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
  453. #else
  454. #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
  455. #endif
  456. #if HAS_Y_STEP
  457. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
  458. #else
  459. #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
  460. #endif
  461. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  462. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
  463. #else
  464. #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
  465. #endif
  466. #if HAS_Z_STEP
  467. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
  468. #else
  469. #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
  470. #endif
  471. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  472. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
  473. #else
  474. #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
  475. #endif
  476. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  477. #if ENABLED(MIXING_EXTRUDER)
  478. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
  479. #else
  480. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
  481. #endif
  482. #else
  483. #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
  484. #endif
  485. #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
  486. #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
  487. /**
  488. * If a minimum pulse time was specified get the timer 0 value.
  489. *
  490. * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
  491. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
  492. * 20 counts of TCNT0 -by itself- is a good pulse delay.
  493. * 10µs = 160 or 200 cycles.
  494. */
  495. #if EXTRA_CYCLES_XYZE > 20
  496. uint32_t pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM);
  497. #endif
  498. #if HAS_X_STEP
  499. PULSE_START(X);
  500. #endif
  501. #if HAS_Y_STEP
  502. PULSE_START(Y);
  503. #endif
  504. #if HAS_Z_STEP
  505. PULSE_START(Z);
  506. #endif
  507. // For non-advance use linear interpolation for E also
  508. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  509. #if ENABLED(MIXING_EXTRUDER)
  510. // Keep updating the single E axis
  511. counter_E += current_block->steps[E_AXIS];
  512. // Tick the counters used for this mix
  513. MIXING_STEPPERS_LOOP(j) {
  514. // Step mixing steppers (proportionally)
  515. counter_m[j] += current_block->steps[E_AXIS];
  516. // Step when the counter goes over zero
  517. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  518. }
  519. #else // !MIXING_EXTRUDER
  520. PULSE_START(E);
  521. #endif
  522. #endif // !ADVANCE && !LIN_ADVANCE
  523. // For minimum pulse time wait before stopping pulses
  524. #if EXTRA_CYCLES_XYZE > 20
  525. while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (STEPPER_TIMER_PRESCALE)) { /* nada */ }
  526. pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM);
  527. #elif EXTRA_CYCLES_XYZE > 0
  528. DELAY_NOPS(EXTRA_CYCLES_XYZE);
  529. #endif
  530. #if HAS_X_STEP
  531. PULSE_STOP(X);
  532. #endif
  533. #if HAS_Y_STEP
  534. PULSE_STOP(Y);
  535. #endif
  536. #if HAS_Z_STEP
  537. PULSE_STOP(Z);
  538. #endif
  539. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  540. #if ENABLED(MIXING_EXTRUDER)
  541. // Always step the single E axis
  542. if (counter_E > 0) {
  543. counter_E -= current_block->step_event_count;
  544. count_position[E_AXIS] += count_direction[E_AXIS];
  545. }
  546. MIXING_STEPPERS_LOOP(j) {
  547. if (counter_m[j] > 0) {
  548. counter_m[j] -= current_block->mix_event_count[j];
  549. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  550. }
  551. }
  552. #else // !MIXING_EXTRUDER
  553. PULSE_STOP(E);
  554. #endif
  555. #endif // !ADVANCE && !LIN_ADVANCE
  556. if (++step_events_completed >= current_block->step_event_count) {
  557. all_steps_done = true;
  558. break;
  559. }
  560. // For minimum pulse time wait after stopping pulses also
  561. #if EXTRA_CYCLES_XYZE > 20
  562. if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (STEPPER_TIMER_PRESCALE)) { /* nada */ }
  563. #elif EXTRA_CYCLES_XYZE > 0
  564. if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
  565. #endif
  566. } // steps_loop
  567. #if ENABLED(LIN_ADVANCE)
  568. if (current_block->use_advance_lead) {
  569. const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  570. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  571. #if ENABLED(MIXING_EXTRUDER)
  572. // Mixing extruders apply advance lead proportionally
  573. MIXING_STEPPERS_LOOP(j)
  574. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  575. #else
  576. // For most extruders, advance the single E stepper
  577. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  578. #endif
  579. }
  580. #endif
  581. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  582. // If we have esteps to execute, fire the next advance_isr "now"
  583. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  584. #endif
  585. // Calculate new timer value
  586. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  587. #ifdef CPU_32_BIT
  588. MultiU32X24toH32(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  589. #else
  590. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  591. #endif
  592. acc_step_rate += current_block->initial_rate;
  593. // upper limit
  594. NOMORE(acc_step_rate, current_block->nominal_rate);
  595. // step_rate to timer interval
  596. const HAL_TIMER_TYPE timer = calc_timer(acc_step_rate);
  597. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  598. _NEXT_ISR(ocr_val);
  599. acceleration_time += timer;
  600. #if ENABLED(LIN_ADVANCE)
  601. if (current_block->use_advance_lead) {
  602. #if ENABLED(MIXING_EXTRUDER)
  603. MIXING_STEPPERS_LOOP(j)
  604. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  605. #else
  606. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  607. #endif
  608. }
  609. #elif ENABLED(ADVANCE)
  610. advance += advance_rate * step_loops;
  611. //NOLESS(advance, current_block->advance);
  612. const long advance_whole = advance >> 8,
  613. advance_factor = advance_whole - old_advance;
  614. // Do E steps + advance steps
  615. #if ENABLED(MIXING_EXTRUDER)
  616. // ...for mixing steppers proportionally
  617. MIXING_STEPPERS_LOOP(j)
  618. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  619. #else
  620. // ...for the active extruder
  621. e_steps[TOOL_E_INDEX] += advance_factor;
  622. #endif
  623. old_advance = advance_whole;
  624. #endif // ADVANCE or LIN_ADVANCE
  625. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  626. // TODO: HAL
  627. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  628. #endif
  629. }
  630. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  631. HAL_TIMER_TYPE step_rate;
  632. #ifdef CPU_32_BIT
  633. MultiU32X24toH32(step_rate, deceleration_time, current_block->acceleration_rate);
  634. #else
  635. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  636. #endif
  637. if (step_rate < acc_step_rate) { // Still decelerating?
  638. step_rate = acc_step_rate - step_rate;
  639. NOLESS(step_rate, current_block->final_rate);
  640. }
  641. else
  642. step_rate = current_block->final_rate;
  643. // step_rate to timer interval
  644. const HAL_TIMER_TYPE timer = calc_timer(step_rate);
  645. SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  646. _NEXT_ISR(ocr_val);
  647. deceleration_time += timer;
  648. #if ENABLED(LIN_ADVANCE)
  649. if (current_block->use_advance_lead) {
  650. #if ENABLED(MIXING_EXTRUDER)
  651. MIXING_STEPPERS_LOOP(j)
  652. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  653. #else
  654. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  655. #endif
  656. }
  657. #elif ENABLED(ADVANCE)
  658. advance -= advance_rate * step_loops;
  659. NOLESS(advance, final_advance);
  660. // Do E steps + advance steps
  661. const long advance_whole = advance >> 8,
  662. advance_factor = advance_whole - old_advance;
  663. #if ENABLED(MIXING_EXTRUDER)
  664. MIXING_STEPPERS_LOOP(j)
  665. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  666. #else
  667. e_steps[TOOL_E_INDEX] += advance_factor;
  668. #endif
  669. old_advance = advance_whole;
  670. #endif // ADVANCE or LIN_ADVANCE
  671. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  672. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
  673. #endif
  674. }
  675. else {
  676. #if ENABLED(LIN_ADVANCE)
  677. if (current_block->use_advance_lead)
  678. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  679. eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
  680. #endif
  681. SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
  682. _NEXT_ISR(ocr_val);
  683. // ensure we're running at the correct step rate, even if we just came off an acceleration
  684. step_loops = step_loops_nominal;
  685. }
  686. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  687. #ifdef CPU_32_BIT
  688. // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
  689. uint32_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
  690. stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
  691. HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count));
  692. #else
  693. NOLESS(OCR1A, TCNT1 + 16);
  694. #endif
  695. #endif
  696. // If current block is finished, reset pointer
  697. if (all_steps_done) {
  698. current_block = NULL;
  699. planner.discard_current_block();
  700. }
  701. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  702. HAL_ENABLE_ISRs(); // re-enable ISRs
  703. #endif
  704. }
  705. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  706. #define CYCLES_EATEN_E (E_STEPPERS * 5)
  707. #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
  708. // Timer interrupt for E. e_steps is set in the main routine;
  709. void Stepper::advance_isr() {
  710. nextAdvanceISR = eISR_Rate;
  711. #if ENABLED(MK2_MULTIPLEXER)
  712. // Even-numbered steppers are reversed
  713. #define SET_E_STEP_DIR(INDEX) \
  714. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
  715. #else
  716. #define SET_E_STEP_DIR(INDEX) \
  717. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  718. #endif
  719. #define START_E_PULSE(INDEX) \
  720. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  721. #define STOP_E_PULSE(INDEX) \
  722. if (e_steps[INDEX]) { \
  723. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  724. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  725. }
  726. SET_E_STEP_DIR(0);
  727. #if E_STEPPERS > 1
  728. SET_E_STEP_DIR(1);
  729. #if E_STEPPERS > 2
  730. SET_E_STEP_DIR(2);
  731. #if E_STEPPERS > 3
  732. SET_E_STEP_DIR(3);
  733. #if E_STEPPERS > 4
  734. SET_E_STEP_DIR(4);
  735. #endif
  736. #endif
  737. #endif
  738. #endif
  739. // Step all E steppers that have steps
  740. for (uint8_t i = step_loops; i--;) {
  741. #if EXTRA_CYCLES_E > 20
  742. uint32_t pulse_start = TCNT0;
  743. #endif
  744. START_E_PULSE(0);
  745. #if E_STEPPERS > 1
  746. START_E_PULSE(1);
  747. #if E_STEPPERS > 2
  748. START_E_PULSE(2);
  749. #if E_STEPPERS > 3
  750. START_E_PULSE(3);
  751. #if E_STEPPERS > 4
  752. START_E_PULSE(4);
  753. #endif
  754. #endif
  755. #endif
  756. #endif
  757. // For minimum pulse time wait before stopping pulses
  758. #if EXTRA_CYCLES_E > 20
  759. while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  760. pulse_start = TCNT0;
  761. #elif EXTRA_CYCLES_E > 0
  762. DELAY_NOPS(EXTRA_CYCLES_E);
  763. #endif
  764. STOP_E_PULSE(0);
  765. #if E_STEPPERS > 1
  766. STOP_E_PULSE(1);
  767. #if E_STEPPERS > 2
  768. STOP_E_PULSE(2);
  769. #if E_STEPPERS > 3
  770. STOP_E_PULSE(3);
  771. #if E_STEPPERS > 4
  772. STOP_E_PULSE(4);
  773. #endif
  774. #endif
  775. #endif
  776. #endif
  777. // For minimum pulse time wait before looping
  778. #if EXTRA_CYCLES_E > 20
  779. if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  780. #elif EXTRA_CYCLES_E > 0
  781. if (i) DELAY_NOPS(EXTRA_CYCLES_E);
  782. #endif
  783. } // steps_loop
  784. }
  785. void Stepper::advance_isr_scheduler() {
  786. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  787. DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR
  788. DISABLE_STEPPER_DRIVER_INTERRUPT();
  789. sei();
  790. // Run main stepping ISR if flagged
  791. if (!nextMainISR) isr();
  792. // Run Advance stepping ISR if flagged
  793. if (!nextAdvanceISR) advance_isr();
  794. // Is the next advance ISR scheduled before the next main ISR?
  795. if (nextAdvanceISR <= nextMainISR) {
  796. // Set up the next interrupt
  797. HAL_timer_set_count(STEP_TIMER_NUM, nextAdvanceISR);
  798. // New interval for the next main ISR
  799. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  800. // Will call Stepper::advance_isr on the next interrupt
  801. nextAdvanceISR = 0;
  802. }
  803. else {
  804. // The next main ISR comes first
  805. HAL_timer_set_count(STEP_TIMER_NUM, nextMainISR);
  806. // New interval for the next advance ISR, if any
  807. if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
  808. nextAdvanceISR -= nextMainISR;
  809. // Will call Stepper::isr on the next interrupt
  810. nextMainISR = 0;
  811. }
  812. // Don't run the ISR faster than possible
  813. #ifdef CPU_32_BIT
  814. // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
  815. uint32_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
  816. stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
  817. HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count));
  818. #else
  819. NOLESS(OCR1A, TCNT1 + 16);
  820. #endif
  821. // Restore original ISR settings
  822. HAL_ENABLE_ISRs();
  823. }
  824. #endif // ADVANCE or LIN_ADVANCE
  825. void Stepper::init() {
  826. // Init Digipot Motor Current
  827. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  828. digipot_init();
  829. #endif
  830. #if MB(ALLIGATOR)
  831. const float motor_current[] = MOTOR_CURRENT;
  832. unsigned int digipot_motor = 0;
  833. for (uint8_t i = 0; i < 3 + EXTRUDERS; i++) {
  834. digipot_motor = 255 * (motor_current[i] / 2.5);
  835. dac084s085::setValue(i, digipot_motor);
  836. }
  837. #endif//MB(ALLIGATOR)
  838. // Init Microstepping Pins
  839. #if HAS_MICROSTEPS
  840. microstep_init();
  841. #endif
  842. // Init TMC Steppers
  843. #if ENABLED(HAVE_TMCDRIVER)
  844. tmc_init();
  845. #endif
  846. // Init TMC2130 Steppers
  847. #if ENABLED(HAVE_TMC2130)
  848. tmc2130_init();
  849. #endif
  850. // Init L6470 Steppers
  851. #if ENABLED(HAVE_L6470DRIVER)
  852. L6470_init();
  853. #endif
  854. // Init Dir Pins
  855. #if HAS_X_DIR
  856. X_DIR_INIT;
  857. #endif
  858. #if HAS_X2_DIR
  859. X2_DIR_INIT;
  860. #endif
  861. #if HAS_Y_DIR
  862. Y_DIR_INIT;
  863. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  864. Y2_DIR_INIT;
  865. #endif
  866. #endif
  867. #if HAS_Z_DIR
  868. Z_DIR_INIT;
  869. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  870. Z2_DIR_INIT;
  871. #endif
  872. #endif
  873. #if HAS_E0_DIR
  874. E0_DIR_INIT;
  875. #endif
  876. #if HAS_E1_DIR
  877. E1_DIR_INIT;
  878. #endif
  879. #if HAS_E2_DIR
  880. E2_DIR_INIT;
  881. #endif
  882. #if HAS_E3_DIR
  883. E3_DIR_INIT;
  884. #endif
  885. #if HAS_E4_DIR
  886. E4_DIR_INIT;
  887. #endif
  888. // Init Enable Pins - steppers default to disabled.
  889. #if HAS_X_ENABLE
  890. X_ENABLE_INIT;
  891. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  892. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  893. X2_ENABLE_INIT;
  894. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  895. #endif
  896. #endif
  897. #if HAS_Y_ENABLE
  898. Y_ENABLE_INIT;
  899. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  900. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  901. Y2_ENABLE_INIT;
  902. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  903. #endif
  904. #endif
  905. #if HAS_Z_ENABLE
  906. Z_ENABLE_INIT;
  907. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  908. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  909. Z2_ENABLE_INIT;
  910. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  911. #endif
  912. #endif
  913. #if HAS_E0_ENABLE
  914. E0_ENABLE_INIT;
  915. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  916. #endif
  917. #if HAS_E1_ENABLE
  918. E1_ENABLE_INIT;
  919. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  920. #endif
  921. #if HAS_E2_ENABLE
  922. E2_ENABLE_INIT;
  923. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  924. #endif
  925. #if HAS_E3_ENABLE
  926. E3_ENABLE_INIT;
  927. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  928. #endif
  929. #if HAS_E4_ENABLE
  930. E4_ENABLE_INIT;
  931. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  932. #endif
  933. // Init endstops and pullups
  934. endstops.init();
  935. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  936. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  937. #define _DISABLE(AXIS) disable_## AXIS()
  938. #define AXIS_INIT(AXIS, PIN) \
  939. _STEP_INIT(AXIS); \
  940. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  941. _DISABLE(AXIS)
  942. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  943. // Init Step Pins
  944. #if HAS_X_STEP
  945. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  946. X2_STEP_INIT;
  947. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  948. #endif
  949. AXIS_INIT(X, X);
  950. #endif
  951. #if HAS_Y_STEP
  952. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  953. Y2_STEP_INIT;
  954. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  955. #endif
  956. AXIS_INIT(Y, Y);
  957. #endif
  958. #if HAS_Z_STEP
  959. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  960. Z2_STEP_INIT;
  961. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  962. #endif
  963. AXIS_INIT(Z, Z);
  964. #endif
  965. #if HAS_E0_STEP
  966. E_AXIS_INIT(0);
  967. #endif
  968. #if HAS_E1_STEP
  969. E_AXIS_INIT(1);
  970. #endif
  971. #if HAS_E2_STEP
  972. E_AXIS_INIT(2);
  973. #endif
  974. #if HAS_E3_STEP
  975. E_AXIS_INIT(3);
  976. #endif
  977. #if HAS_E4_STEP
  978. E_AXIS_INIT(4);
  979. #endif
  980. #ifdef ARDUINO_ARCH_AVR
  981. // waveform generation = 0100 = CTC
  982. SET_WGM(1, CTC_OCRnA);
  983. // output mode = 00 (disconnected)
  984. SET_COMA(1, NORMAL);
  985. // Set the timer pre-scaler
  986. // Generally we use a divider of 8, resulting in a 2MHz timer
  987. // frequency on a 16MHz MCU. If you are going to change this, be
  988. // sure to regenerate speed_lookuptable.h with
  989. // create_speed_lookuptable.py
  990. SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
  991. // Init Stepper ISR to 122 Hz for quick starting
  992. OCR1A = 0x4000;
  993. TCNT1 = 0;
  994. #else
  995. // Init Stepper ISR to 122 Hz for quick starting
  996. HAL_timer_start(STEP_TIMER_NUM, 122);
  997. #endif
  998. ENABLE_STEPPER_DRIVER_INTERRUPT();
  999. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  1000. for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
  1001. #if ENABLED(LIN_ADVANCE)
  1002. ZERO(current_adv_steps);
  1003. #endif
  1004. #endif // ADVANCE || LIN_ADVANCE
  1005. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  1006. sei();
  1007. set_directions(); // Init directions to last_direction_bits = 0
  1008. }
  1009. /**
  1010. * Block until all buffered steps are executed
  1011. */
  1012. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  1013. /**
  1014. * Set the stepper positions directly in steps
  1015. *
  1016. * The input is based on the typical per-axis XYZ steps.
  1017. * For CORE machines XYZ needs to be translated to ABC.
  1018. *
  1019. * This allows get_axis_position_mm to correctly
  1020. * derive the current XYZ position later on.
  1021. */
  1022. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  1023. synchronize(); // Bad to set stepper counts in the middle of a move
  1024. CRITICAL_SECTION_START;
  1025. #if CORE_IS_XY
  1026. // corexy positioning
  1027. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  1028. count_position[A_AXIS] = a + b;
  1029. count_position[B_AXIS] = CORESIGN(a - b);
  1030. count_position[Z_AXIS] = c;
  1031. #elif CORE_IS_XZ
  1032. // corexz planning
  1033. count_position[A_AXIS] = a + c;
  1034. count_position[Y_AXIS] = b;
  1035. count_position[C_AXIS] = CORESIGN(a - c);
  1036. #elif CORE_IS_YZ
  1037. // coreyz planning
  1038. count_position[X_AXIS] = a;
  1039. count_position[B_AXIS] = b + c;
  1040. count_position[C_AXIS] = CORESIGN(b - c);
  1041. #else
  1042. // default non-h-bot planning
  1043. count_position[X_AXIS] = a;
  1044. count_position[Y_AXIS] = b;
  1045. count_position[Z_AXIS] = c;
  1046. #endif
  1047. count_position[E_AXIS] = e;
  1048. CRITICAL_SECTION_END;
  1049. }
  1050. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  1051. CRITICAL_SECTION_START;
  1052. count_position[axis] = v;
  1053. CRITICAL_SECTION_END;
  1054. }
  1055. void Stepper::set_e_position(const long &e) {
  1056. CRITICAL_SECTION_START;
  1057. count_position[E_AXIS] = e;
  1058. CRITICAL_SECTION_END;
  1059. }
  1060. /**
  1061. * Get a stepper's position in steps.
  1062. */
  1063. long Stepper::position(AxisEnum axis) {
  1064. CRITICAL_SECTION_START;
  1065. const long count_pos = count_position[axis];
  1066. CRITICAL_SECTION_END;
  1067. return count_pos;
  1068. }
  1069. /**
  1070. * Get an axis position according to stepper position(s)
  1071. * For CORE machines apply translation from ABC to XYZ.
  1072. */
  1073. float Stepper::get_axis_position_mm(AxisEnum axis) {
  1074. float axis_steps;
  1075. #if IS_CORE
  1076. // Requesting one of the "core" axes?
  1077. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  1078. CRITICAL_SECTION_START;
  1079. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  1080. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  1081. axis_steps = 0.5f * (
  1082. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1083. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1084. );
  1085. CRITICAL_SECTION_END;
  1086. }
  1087. else
  1088. axis_steps = position(axis);
  1089. #else
  1090. axis_steps = position(axis);
  1091. #endif
  1092. return axis_steps * planner.steps_to_mm[axis];
  1093. }
  1094. void Stepper::finish_and_disable() {
  1095. synchronize();
  1096. disable_all_steppers();
  1097. }
  1098. void Stepper::quick_stop() {
  1099. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
  1100. if (!ubl_lcd_map_control)
  1101. cleaning_buffer_counter = 5000;
  1102. #else
  1103. cleaning_buffer_counter = 5000;
  1104. #endif
  1105. DISABLE_STEPPER_DRIVER_INTERRUPT();
  1106. while (planner.blocks_queued()) planner.discard_current_block();
  1107. current_block = NULL;
  1108. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1109. #if ENABLED(ULTRA_LCD)
  1110. planner.clear_block_buffer_runtime();
  1111. #endif
  1112. }
  1113. void Stepper::endstop_triggered(AxisEnum axis) {
  1114. #if IS_CORE
  1115. endstops_trigsteps[axis] = 0.5f * (
  1116. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  1117. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  1118. );
  1119. #else // !COREXY && !COREXZ && !COREYZ
  1120. endstops_trigsteps[axis] = count_position[axis];
  1121. #endif // !COREXY && !COREXZ && !COREYZ
  1122. kill_current_block();
  1123. }
  1124. void Stepper::report_positions() {
  1125. CRITICAL_SECTION_START;
  1126. const long xpos = count_position[X_AXIS],
  1127. ypos = count_position[Y_AXIS],
  1128. zpos = count_position[Z_AXIS];
  1129. CRITICAL_SECTION_END;
  1130. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  1131. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  1132. #else
  1133. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1134. #endif
  1135. SERIAL_PROTOCOL(xpos);
  1136. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  1137. SERIAL_PROTOCOLPGM(" B:");
  1138. #else
  1139. SERIAL_PROTOCOLPGM(" Y:");
  1140. #endif
  1141. SERIAL_PROTOCOL(ypos);
  1142. #if CORE_IS_XZ || CORE_IS_YZ
  1143. SERIAL_PROTOCOLPGM(" C:");
  1144. #else
  1145. SERIAL_PROTOCOLPGM(" Z:");
  1146. #endif
  1147. SERIAL_PROTOCOL(zpos);
  1148. SERIAL_EOL();
  1149. }
  1150. #if ENABLED(BABYSTEPPING)
  1151. #if ENABLED(DELTA)
  1152. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  1153. #else
  1154. #define CYCLES_EATEN_BABYSTEP 0
  1155. #endif
  1156. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  1157. #define _ENABLE(AXIS) enable_## AXIS()
  1158. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1159. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1160. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1161. #if EXTRA_CYCLES_BABYSTEP > 20
  1162. #define _SAVE_START const uint32_t pulse_start = TCNT0
  1163. #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
  1164. #else
  1165. #define _SAVE_START NOOP
  1166. #if EXTRA_CYCLES_BABYSTEP > 0
  1167. #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
  1168. #elif STEP_PULSE_CYCLES > 0
  1169. #define _PULSE_WAIT NOOP
  1170. #elif ENABLED(DELTA)
  1171. #define _PULSE_WAIT delayMicroseconds(2);
  1172. #else
  1173. #define _PULSE_WAIT delayMicroseconds(4);
  1174. #endif
  1175. #endif
  1176. #define BABYSTEP_AXIS(AXIS, INVERT) { \
  1177. const uint8_t old_dir = _READ_DIR(AXIS); \
  1178. _ENABLE(AXIS); \
  1179. _SAVE_START; \
  1180. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1181. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1182. _PULSE_WAIT; \
  1183. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1184. _APPLY_DIR(AXIS, old_dir); \
  1185. }
  1186. // MUST ONLY BE CALLED BY AN ISR,
  1187. // No other ISR should ever interrupt this!
  1188. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1189. cli();
  1190. switch (axis) {
  1191. #if ENABLED(BABYSTEP_XY)
  1192. case X_AXIS:
  1193. BABYSTEP_AXIS(X, false);
  1194. break;
  1195. case Y_AXIS:
  1196. BABYSTEP_AXIS(Y, false);
  1197. break;
  1198. #endif
  1199. case Z_AXIS: {
  1200. #if DISABLED(DELTA)
  1201. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
  1202. #else // DELTA
  1203. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1204. enable_X();
  1205. enable_Y();
  1206. enable_Z();
  1207. const uint8_t old_x_dir_pin = X_DIR_READ,
  1208. old_y_dir_pin = Y_DIR_READ,
  1209. old_z_dir_pin = Z_DIR_READ;
  1210. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1211. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1212. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1213. _SAVE_START;
  1214. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1215. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1216. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1217. _PULSE_WAIT;
  1218. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1219. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1220. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1221. // Restore direction bits
  1222. X_DIR_WRITE(old_x_dir_pin);
  1223. Y_DIR_WRITE(old_y_dir_pin);
  1224. Z_DIR_WRITE(old_z_dir_pin);
  1225. #endif
  1226. } break;
  1227. default: break;
  1228. }
  1229. sei();
  1230. }
  1231. #endif // BABYSTEPPING
  1232. /**
  1233. * Software-controlled Stepper Motor Current
  1234. */
  1235. #if HAS_DIGIPOTSS
  1236. // From Arduino DigitalPotControl example
  1237. void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
  1238. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  1239. SPI.transfer(address); // Send the address and value via SPI
  1240. SPI.transfer(value);
  1241. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  1242. //delay(10);
  1243. }
  1244. #endif // HAS_DIGIPOTSS
  1245. #if HAS_MOTOR_CURRENT_PWM
  1246. void Stepper::refresh_motor_power() {
  1247. for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
  1248. switch (i) {
  1249. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1250. case 0:
  1251. #endif
  1252. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1253. case 1:
  1254. #endif
  1255. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1256. case 2:
  1257. #endif
  1258. digipot_current(i, motor_current_setting[i]);
  1259. default: break;
  1260. }
  1261. }
  1262. }
  1263. #endif // HAS_MOTOR_CURRENT_PWM
  1264. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1265. void Stepper::digipot_current(const uint8_t driver, const int current) {
  1266. #if HAS_DIGIPOTSS
  1267. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1268. digitalPotWrite(digipot_ch[driver], current);
  1269. #elif HAS_MOTOR_CURRENT_PWM
  1270. if (WITHIN(driver, 0, 2))
  1271. motor_current_setting[driver] = current; // update motor_current_setting
  1272. #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1273. switch (driver) {
  1274. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1275. case 0: _WRITE_CURRENT_PWM(XY); break;
  1276. #endif
  1277. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1278. case 1: _WRITE_CURRENT_PWM(Z); break;
  1279. #endif
  1280. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1281. case 2: _WRITE_CURRENT_PWM(E); break;
  1282. #endif
  1283. }
  1284. #endif
  1285. }
  1286. void Stepper::digipot_init() {
  1287. #if HAS_DIGIPOTSS
  1288. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1289. SPI.begin();
  1290. SET_OUTPUT(DIGIPOTSS_PIN);
  1291. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1292. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1293. digipot_current(i, digipot_motor_current[i]);
  1294. }
  1295. #elif HAS_MOTOR_CURRENT_PWM
  1296. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1297. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1298. #endif
  1299. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1300. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1301. #endif
  1302. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1303. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1304. #endif
  1305. refresh_motor_power();
  1306. // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1307. SET_CS5(PRESCALER_1);
  1308. #endif
  1309. }
  1310. #endif
  1311. #if HAS_MICROSTEPS
  1312. /**
  1313. * Software-controlled Microstepping
  1314. */
  1315. void Stepper::microstep_init() {
  1316. SET_OUTPUT(X_MS1_PIN);
  1317. SET_OUTPUT(X_MS2_PIN);
  1318. #if HAS_Y_MICROSTEPS
  1319. SET_OUTPUT(Y_MS1_PIN);
  1320. SET_OUTPUT(Y_MS2_PIN);
  1321. #endif
  1322. #if HAS_Z_MICROSTEPS
  1323. SET_OUTPUT(Z_MS1_PIN);
  1324. SET_OUTPUT(Z_MS2_PIN);
  1325. #endif
  1326. #if HAS_E0_MICROSTEPS
  1327. SET_OUTPUT(E0_MS1_PIN);
  1328. SET_OUTPUT(E0_MS2_PIN);
  1329. #endif
  1330. #if HAS_E1_MICROSTEPS
  1331. SET_OUTPUT(E1_MS1_PIN);
  1332. SET_OUTPUT(E1_MS2_PIN);
  1333. #endif
  1334. #if HAS_E2_MICROSTEPS
  1335. SET_OUTPUT(E2_MS1_PIN);
  1336. SET_OUTPUT(E2_MS2_PIN);
  1337. #endif
  1338. #if HAS_E3_MICROSTEPS
  1339. SET_OUTPUT(E3_MS1_PIN);
  1340. SET_OUTPUT(E3_MS2_PIN);
  1341. #endif
  1342. #if HAS_E4_MICROSTEPS
  1343. SET_OUTPUT(E4_MS1_PIN);
  1344. SET_OUTPUT(E4_MS2_PIN);
  1345. #endif
  1346. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1347. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1348. microstep_mode(i, microstep_modes[i]);
  1349. }
  1350. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
  1351. if (ms1 >= 0) switch (driver) {
  1352. case 0: WRITE(X_MS1_PIN, ms1); break;
  1353. #if HAS_Y_MICROSTEPS
  1354. case 1: WRITE(Y_MS1_PIN, ms1); break;
  1355. #endif
  1356. #if HAS_Z_MICROSTEPS
  1357. case 2: WRITE(Z_MS1_PIN, ms1); break;
  1358. #endif
  1359. #if HAS_E0_MICROSTEPS
  1360. case 3: WRITE(E0_MS1_PIN, ms1); break;
  1361. #endif
  1362. #if HAS_E1_MICROSTEPS
  1363. case 4: WRITE(E1_MS1_PIN, ms1); break;
  1364. #endif
  1365. #if HAS_E2_MICROSTEPS
  1366. case 5: WRITE(E2_MS1_PIN, ms1); break;
  1367. #endif
  1368. #if HAS_E3_MICROSTEPS
  1369. case 6: WRITE(E3_MS1_PIN, ms1); break;
  1370. #endif
  1371. #if HAS_E4_MICROSTEPS
  1372. case 7: WRITE(E4_MS1_PIN, ms1); break;
  1373. #endif
  1374. }
  1375. if (ms2 >= 0) switch (driver) {
  1376. case 0: WRITE(X_MS2_PIN, ms2); break;
  1377. #if HAS_Y_MICROSTEPS
  1378. case 1: WRITE(Y_MS2_PIN, ms2); break;
  1379. #endif
  1380. #if HAS_Z_MICROSTEPS
  1381. case 2: WRITE(Z_MS2_PIN, ms2); break;
  1382. #endif
  1383. #if HAS_E0_MICROSTEPS
  1384. case 3: WRITE(E0_MS2_PIN, ms2); break;
  1385. #endif
  1386. #if HAS_E1_MICROSTEPS
  1387. case 4: WRITE(E1_MS2_PIN, ms2); break;
  1388. #endif
  1389. #if HAS_E2_MICROSTEPS
  1390. case 5: WRITE(E2_MS2_PIN, ms2); break;
  1391. #endif
  1392. #if HAS_E3_MICROSTEPS
  1393. case 6: WRITE(E3_MS2_PIN, ms2); break;
  1394. #endif
  1395. #if HAS_E4_MICROSTEPS
  1396. case 7: WRITE(E4_MS2_PIN, ms2); break;
  1397. #endif
  1398. }
  1399. }
  1400. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  1401. switch (stepping_mode) {
  1402. case 1: microstep_ms(driver, MICROSTEP1); break;
  1403. case 2: microstep_ms(driver, MICROSTEP2); break;
  1404. case 4: microstep_ms(driver, MICROSTEP4); break;
  1405. case 8: microstep_ms(driver, MICROSTEP8); break;
  1406. case 16: microstep_ms(driver, MICROSTEP16); break;
  1407. #if MB(ALLIGATOR)
  1408. case 32: microstep_ms(driver, MICROSTEP32); break;
  1409. #endif
  1410. }
  1411. }
  1412. void Stepper::microstep_readings() {
  1413. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1414. SERIAL_PROTOCOLPGM("X: ");
  1415. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1416. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1417. #if HAS_Y_MICROSTEPS
  1418. SERIAL_PROTOCOLPGM("Y: ");
  1419. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1420. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1421. #endif
  1422. #if HAS_Z_MICROSTEPS
  1423. SERIAL_PROTOCOLPGM("Z: ");
  1424. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1425. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1426. #endif
  1427. #if HAS_E0_MICROSTEPS
  1428. SERIAL_PROTOCOLPGM("E0: ");
  1429. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1430. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1431. #endif
  1432. #if HAS_E1_MICROSTEPS
  1433. SERIAL_PROTOCOLPGM("E1: ");
  1434. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1435. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1436. #endif
  1437. #if HAS_E2_MICROSTEPS
  1438. SERIAL_PROTOCOLPGM("E2: ");
  1439. SERIAL_PROTOCOL(READ(E2_MS1_PIN));
  1440. SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
  1441. #endif
  1442. #if HAS_E3_MICROSTEPS
  1443. SERIAL_PROTOCOLPGM("E3: ");
  1444. SERIAL_PROTOCOL(READ(E3_MS1_PIN));
  1445. SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
  1446. #endif
  1447. #if HAS_E4_MICROSTEPS
  1448. SERIAL_PROTOCOLPGM("E4: ");
  1449. SERIAL_PROTOCOL(READ(E4_MS1_PIN));
  1450. SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
  1451. #endif
  1452. }
  1453. #endif // HAS_MICROSTEPS