My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin_main.cpp 203KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  37. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  38. #ifdef MESH_BED_LEVELING
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #include "ultralcd.h"
  42. #include "planner.h"
  43. #include "stepper.h"
  44. #include "temperature.h"
  45. #include "cardreader.h"
  46. #include "watchdog.h"
  47. #include "configuration_store.h"
  48. #include "language.h"
  49. #include "pins_arduino.h"
  50. #include "math.h"
  51. #ifdef BLINKM
  52. #include "blinkm.h"
  53. #include "Wire.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "servo.h"
  57. #endif
  58. #if HAS_DIGIPOTSS
  59. #include <SPI.h>
  60. #endif
  61. /**
  62. * Look here for descriptions of G-codes:
  63. * - http://linuxcnc.org/handbook/gcode/g-code.html
  64. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  65. *
  66. * Help us document these G-codes online:
  67. * - http://www.marlinfirmware.org/index.php/G-Code
  68. * - http://reprap.org/wiki/G-code
  69. *
  70. * -----------------
  71. * Implemented Codes
  72. * -----------------
  73. *
  74. * "G" Codes
  75. *
  76. * G0 -> G1
  77. * G1 - Coordinated Movement X Y Z E
  78. * G2 - CW ARC
  79. * G3 - CCW ARC
  80. * G4 - Dwell S<seconds> or P<milliseconds>
  81. * G10 - retract filament according to settings of M207
  82. * G11 - retract recover filament according to settings of M208
  83. * G28 - Home one or more axes
  84. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. * G30 - Single Z Probe, probes bed at current XY location.
  86. * G31 - Dock sled (Z_PROBE_SLED only)
  87. * G32 - Undock sled (Z_PROBE_SLED only)
  88. * G90 - Use Absolute Coordinates
  89. * G91 - Use Relative Coordinates
  90. * G92 - Set current position to coordinates given
  91. *
  92. * "M" Codes
  93. *
  94. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. * M1 - Same as M0
  96. * M17 - Enable/Power all stepper motors
  97. * M18 - Disable all stepper motors; same as M84
  98. * M20 - List SD card
  99. * M21 - Init SD card
  100. * M22 - Release SD card
  101. * M23 - Select SD file (M23 filename.g)
  102. * M24 - Start/resume SD print
  103. * M25 - Pause SD print
  104. * M26 - Set SD position in bytes (M26 S12345)
  105. * M27 - Report SD print status
  106. * M28 - Start SD write (M28 filename.g)
  107. * M29 - Stop SD write
  108. * M30 - Delete file from SD (M30 filename.g)
  109. * M31 - Output time since last M109 or SD card start to serial
  110. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  116. * M80 - Turn on Power Supply
  117. * M81 - Turn off Power Supply
  118. * M82 - Set E codes absolute (default)
  119. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  120. * M84 - Disable steppers until next move,
  121. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  122. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  123. * M92 - Set axis_steps_per_unit - same syntax as G92
  124. * M104 - Set extruder target temp
  125. * M105 - Read current temp
  126. * M106 - Fan on
  127. * M107 - Fan off
  128. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  129. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  130. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  131. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  132. * M112 - Emergency stop
  133. * M114 - Output current position to serial port
  134. * M115 - Capabilities string
  135. * M117 - Display a message on the controller screen
  136. * M119 - Output Endstop status to serial port
  137. * M120 - Enable endstop detection
  138. * M121 - Disable endstop detection
  139. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  140. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  141. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  142. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M140 - Set bed target temp
  144. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  145. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  146. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  147. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  148. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  149. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  150. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  151. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  152. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  153. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  154. * M206 - Set additional homing offset
  155. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  156. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  157. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  158. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  159. * M220 - Set speed factor override percentage: S<factor in percent>
  160. * M221 - Set extrude factor override percentage: S<factor in percent>
  161. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  162. * M240 - Trigger a camera to take a photograph
  163. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  164. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  165. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  166. * M301 - Set PID parameters P I and D
  167. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  168. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  169. * M304 - Set bed PID parameters P I and D
  170. * M380 - Activate solenoid on active extruder
  171. * M381 - Disable all solenoids
  172. * M400 - Finish all moves
  173. * M401 - Lower z-probe if present
  174. * M402 - Raise z-probe if present
  175. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  176. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  177. * M406 - Turn off Filament Sensor extrusion control
  178. * M407 - Display measured filament diameter
  179. * M410 - Quickstop. Abort all the planned moves
  180. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  181. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  182. * M428 - Set the home_offset logically based on the current_position
  183. * M500 - Store parameters in EEPROM
  184. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  185. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  186. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  187. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  188. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  189. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  190. * M666 - Set delta endstop adjustment
  191. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  192. * M907 - Set digital trimpot motor current using axis codes.
  193. * M908 - Control digital trimpot directly.
  194. * M350 - Set microstepping mode.
  195. * M351 - Toggle MS1 MS2 pins directly.
  196. *
  197. * ************ SCARA Specific - This can change to suit future G-code regulations
  198. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  199. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  200. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  201. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  202. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  203. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  204. * ************* SCARA End ***************
  205. *
  206. * M928 - Start SD logging (M928 filename.g) - ended by M29
  207. * M999 - Restart after being stopped by error
  208. *
  209. * "T" Codes
  210. *
  211. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  212. *
  213. */
  214. #ifdef SDSUPPORT
  215. CardReader card;
  216. #endif
  217. bool Running = true;
  218. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  219. static float feedrate = 1500.0, saved_feedrate;
  220. float current_position[NUM_AXIS] = { 0.0 };
  221. static float destination[NUM_AXIS] = { 0.0 };
  222. bool axis_known_position[3] = { false };
  223. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  224. static char *current_command, *current_command_args;
  225. static int cmd_queue_index_r = 0;
  226. static int cmd_queue_index_w = 0;
  227. static int commands_in_queue = 0;
  228. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  229. float homing_feedrate[] = HOMING_FEEDRATE;
  230. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  231. int feedrate_multiplier = 100; //100->1 200->2
  232. int saved_feedrate_multiplier;
  233. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  234. bool volumetric_enabled = false;
  235. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  236. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  237. float home_offset[3] = { 0 };
  238. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  239. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  240. uint8_t active_extruder = 0;
  241. int fanSpeed = 0;
  242. bool cancel_heatup = false;
  243. const char errormagic[] PROGMEM = "Error:";
  244. const char echomagic[] PROGMEM = "echo:";
  245. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  246. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  247. static char serial_char;
  248. static int serial_count = 0;
  249. static boolean comment_mode = false;
  250. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  251. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  252. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  253. // Inactivity shutdown
  254. millis_t previous_cmd_ms = 0;
  255. static millis_t max_inactive_time = 0;
  256. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  257. millis_t print_job_start_ms = 0; ///< Print job start time
  258. millis_t print_job_stop_ms = 0; ///< Print job stop time
  259. static uint8_t target_extruder;
  260. bool no_wait_for_cooling = true;
  261. bool target_direction;
  262. #ifdef ENABLE_AUTO_BED_LEVELING
  263. int xy_travel_speed = XY_TRAVEL_SPEED;
  264. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  265. #endif
  266. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  267. float z_endstop_adj = 0;
  268. #endif
  269. // Extruder offsets
  270. #if EXTRUDERS > 1
  271. #ifndef EXTRUDER_OFFSET_X
  272. #define EXTRUDER_OFFSET_X { 0 }
  273. #endif
  274. #ifndef EXTRUDER_OFFSET_Y
  275. #define EXTRUDER_OFFSET_Y { 0 }
  276. #endif
  277. float extruder_offset[][EXTRUDERS] = {
  278. EXTRUDER_OFFSET_X,
  279. EXTRUDER_OFFSET_Y
  280. #ifdef DUAL_X_CARRIAGE
  281. , { 0 } // supports offsets in XYZ plane
  282. #endif
  283. };
  284. #endif
  285. #ifdef SERVO_ENDSTOPS
  286. int servo_endstops[] = SERVO_ENDSTOPS;
  287. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  288. #endif
  289. #ifdef BARICUDA
  290. int ValvePressure = 0;
  291. int EtoPPressure = 0;
  292. #endif
  293. #ifdef FWRETRACT
  294. bool autoretract_enabled = false;
  295. bool retracted[EXTRUDERS] = { false };
  296. bool retracted_swap[EXTRUDERS] = { false };
  297. float retract_length = RETRACT_LENGTH;
  298. float retract_length_swap = RETRACT_LENGTH_SWAP;
  299. float retract_feedrate = RETRACT_FEEDRATE;
  300. float retract_zlift = RETRACT_ZLIFT;
  301. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  302. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  303. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  304. #endif // FWRETRACT
  305. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  306. bool powersupply =
  307. #ifdef PS_DEFAULT_OFF
  308. false
  309. #else
  310. true
  311. #endif
  312. ;
  313. #endif
  314. #ifdef DELTA
  315. float delta[3] = { 0 };
  316. #define SIN_60 0.8660254037844386
  317. #define COS_60 0.5
  318. float endstop_adj[3] = { 0 };
  319. // these are the default values, can be overriden with M665
  320. float delta_radius = DELTA_RADIUS;
  321. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  322. float delta_tower1_y = -COS_60 * delta_radius;
  323. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  324. float delta_tower2_y = -COS_60 * delta_radius;
  325. float delta_tower3_x = 0; // back middle tower
  326. float delta_tower3_y = delta_radius;
  327. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  328. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  329. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  330. #ifdef ENABLE_AUTO_BED_LEVELING
  331. int delta_grid_spacing[2] = { 0, 0 };
  332. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  333. #endif
  334. #else
  335. static bool home_all_axis = true;
  336. #endif
  337. #ifdef SCARA
  338. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  339. static float delta[3] = { 0 };
  340. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  341. #endif
  342. #ifdef FILAMENT_SENSOR
  343. //Variables for Filament Sensor input
  344. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  345. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  346. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  347. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  348. int delay_index1 = 0; //index into ring buffer
  349. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  350. float delay_dist = 0; //delay distance counter
  351. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  352. #endif
  353. #ifdef FILAMENT_RUNOUT_SENSOR
  354. static bool filrunoutEnqueued = false;
  355. #endif
  356. #ifdef SDSUPPORT
  357. static bool fromsd[BUFSIZE];
  358. #endif
  359. #if NUM_SERVOS > 0
  360. Servo servo[NUM_SERVOS];
  361. #endif
  362. #ifdef CHDK
  363. unsigned long chdkHigh = 0;
  364. boolean chdkActive = false;
  365. #endif
  366. //===========================================================================
  367. //================================ Functions ================================
  368. //===========================================================================
  369. void process_next_command();
  370. bool setTargetedHotend(int code);
  371. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  372. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  373. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  374. #ifdef PREVENT_DANGEROUS_EXTRUDE
  375. float extrude_min_temp = EXTRUDE_MINTEMP;
  376. #endif
  377. #ifdef SDSUPPORT
  378. #include "SdFatUtil.h"
  379. int freeMemory() { return SdFatUtil::FreeRam(); }
  380. #else
  381. extern "C" {
  382. extern unsigned int __bss_end;
  383. extern unsigned int __heap_start;
  384. extern void *__brkval;
  385. int freeMemory() {
  386. int free_memory;
  387. if ((int)__brkval == 0)
  388. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  389. else
  390. free_memory = ((int)&free_memory) - ((int)__brkval);
  391. return free_memory;
  392. }
  393. }
  394. #endif //!SDSUPPORT
  395. /**
  396. * Inject the next command from the command queue, when possible
  397. * Return false only if no command was pending
  398. */
  399. static bool drain_queued_commands_P() {
  400. if (!queued_commands_P) return false;
  401. // Get the next 30 chars from the sequence of gcodes to run
  402. char cmd[30];
  403. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  404. cmd[sizeof(cmd) - 1] = '\0';
  405. // Look for the end of line, or the end of sequence
  406. size_t i = 0;
  407. char c;
  408. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  409. cmd[i] = '\0';
  410. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  411. if (c)
  412. queued_commands_P += i + 1; // move to next command
  413. else
  414. queued_commands_P = NULL; // will have no more commands in the sequence
  415. }
  416. return true;
  417. }
  418. /**
  419. * Record one or many commands to run from program memory.
  420. * Aborts the current queue, if any.
  421. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  422. */
  423. void enqueuecommands_P(const char* pgcode) {
  424. queued_commands_P = pgcode;
  425. drain_queued_commands_P(); // first command executed asap (when possible)
  426. }
  427. /**
  428. * Copy a command directly into the main command buffer, from RAM.
  429. *
  430. * This is done in a non-safe way and needs a rework someday.
  431. * Returns false if it doesn't add any command
  432. */
  433. bool enqueuecommand(const char *cmd) {
  434. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  435. // This is dangerous if a mixing of serial and this happens
  436. char *command = command_queue[cmd_queue_index_w];
  437. strcpy(command, cmd);
  438. SERIAL_ECHO_START;
  439. SERIAL_ECHOPGM(MSG_Enqueueing);
  440. SERIAL_ECHO(command);
  441. SERIAL_ECHOLNPGM("\"");
  442. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  443. commands_in_queue++;
  444. return true;
  445. }
  446. void setup_killpin() {
  447. #if HAS_KILL
  448. SET_INPUT(KILL_PIN);
  449. WRITE(KILL_PIN, HIGH);
  450. #endif
  451. }
  452. void setup_filrunoutpin() {
  453. #if HAS_FILRUNOUT
  454. pinMode(FILRUNOUT_PIN, INPUT);
  455. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  456. WRITE(FILRUNOUT_PIN, HIGH);
  457. #endif
  458. #endif
  459. }
  460. // Set home pin
  461. void setup_homepin(void) {
  462. #if HAS_HOME
  463. SET_INPUT(HOME_PIN);
  464. WRITE(HOME_PIN, HIGH);
  465. #endif
  466. }
  467. void setup_photpin() {
  468. #if HAS_PHOTOGRAPH
  469. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  470. #endif
  471. }
  472. void setup_powerhold() {
  473. #if HAS_SUICIDE
  474. OUT_WRITE(SUICIDE_PIN, HIGH);
  475. #endif
  476. #if HAS_POWER_SWITCH
  477. #ifdef PS_DEFAULT_OFF
  478. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  479. #else
  480. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  481. #endif
  482. #endif
  483. }
  484. void suicide() {
  485. #if HAS_SUICIDE
  486. OUT_WRITE(SUICIDE_PIN, LOW);
  487. #endif
  488. }
  489. void servo_init() {
  490. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  491. servo[0].attach(SERVO0_PIN);
  492. #endif
  493. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  494. servo[1].attach(SERVO1_PIN);
  495. #endif
  496. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  497. servo[2].attach(SERVO2_PIN);
  498. #endif
  499. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  500. servo[3].attach(SERVO3_PIN);
  501. #endif
  502. // Set position of Servo Endstops that are defined
  503. #ifdef SERVO_ENDSTOPS
  504. for (int i = 0; i < 3; i++)
  505. if (servo_endstops[i] >= 0)
  506. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  507. #endif
  508. #if SERVO_LEVELING
  509. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  510. servo[servo_endstops[Z_AXIS]].detach();
  511. #endif
  512. }
  513. /**
  514. * Marlin entry-point: Set up before the program loop
  515. * - Set up the kill pin, filament runout, power hold
  516. * - Start the serial port
  517. * - Print startup messages and diagnostics
  518. * - Get EEPROM or default settings
  519. * - Initialize managers for:
  520. * • temperature
  521. * • planner
  522. * • watchdog
  523. * • stepper
  524. * • photo pin
  525. * • servos
  526. * • LCD controller
  527. * • Digipot I2C
  528. * • Z probe sled
  529. * • status LEDs
  530. */
  531. void setup() {
  532. setup_killpin();
  533. setup_filrunoutpin();
  534. setup_powerhold();
  535. MYSERIAL.begin(BAUDRATE);
  536. SERIAL_PROTOCOLLNPGM("start");
  537. SERIAL_ECHO_START;
  538. // Check startup - does nothing if bootloader sets MCUSR to 0
  539. byte mcu = MCUSR;
  540. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  541. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  542. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  543. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  544. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  545. MCUSR = 0;
  546. SERIAL_ECHOPGM(MSG_MARLIN);
  547. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  548. #ifdef STRING_VERSION_CONFIG_H
  549. #ifdef STRING_CONFIG_H_AUTHOR
  550. SERIAL_ECHO_START;
  551. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  552. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  553. SERIAL_ECHOPGM(MSG_AUTHOR);
  554. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  555. SERIAL_ECHOPGM("Compiled: ");
  556. SERIAL_ECHOLNPGM(__DATE__);
  557. #endif // STRING_CONFIG_H_AUTHOR
  558. #endif // STRING_VERSION_CONFIG_H
  559. SERIAL_ECHO_START;
  560. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  561. SERIAL_ECHO(freeMemory());
  562. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  563. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  564. #ifdef SDSUPPORT
  565. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  566. #endif
  567. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  568. Config_RetrieveSettings();
  569. tp_init(); // Initialize temperature loop
  570. plan_init(); // Initialize planner;
  571. watchdog_init();
  572. st_init(); // Initialize stepper, this enables interrupts!
  573. setup_photpin();
  574. servo_init();
  575. lcd_init();
  576. _delay_ms(1000); // wait 1sec to display the splash screen
  577. #if HAS_CONTROLLERFAN
  578. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  579. #endif
  580. #ifdef DIGIPOT_I2C
  581. digipot_i2c_init();
  582. #endif
  583. #ifdef Z_PROBE_SLED
  584. pinMode(SLED_PIN, OUTPUT);
  585. digitalWrite(SLED_PIN, LOW); // turn it off
  586. #endif // Z_PROBE_SLED
  587. setup_homepin();
  588. #ifdef STAT_LED_RED
  589. pinMode(STAT_LED_RED, OUTPUT);
  590. digitalWrite(STAT_LED_RED, LOW); // turn it off
  591. #endif
  592. #ifdef STAT_LED_BLUE
  593. pinMode(STAT_LED_BLUE, OUTPUT);
  594. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  595. #endif
  596. }
  597. /**
  598. * The main Marlin program loop
  599. *
  600. * - Save or log commands to SD
  601. * - Process available commands (if not saving)
  602. * - Call heater manager
  603. * - Call inactivity manager
  604. * - Call endstop manager
  605. * - Call LCD update
  606. */
  607. void loop() {
  608. if (commands_in_queue < BUFSIZE - 1) get_command();
  609. #ifdef SDSUPPORT
  610. card.checkautostart(false);
  611. #endif
  612. if (commands_in_queue) {
  613. #ifdef SDSUPPORT
  614. if (card.saving) {
  615. char *command = command_queue[cmd_queue_index_r];
  616. if (strstr_P(command, PSTR("M29"))) {
  617. // M29 closes the file
  618. card.closefile();
  619. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  620. }
  621. else {
  622. // Write the string from the read buffer to SD
  623. card.write_command(command);
  624. if (card.logging)
  625. process_next_command(); // The card is saving because it's logging
  626. else
  627. SERIAL_PROTOCOLLNPGM(MSG_OK);
  628. }
  629. }
  630. else
  631. process_next_command();
  632. #else
  633. process_next_command();
  634. #endif // SDSUPPORT
  635. commands_in_queue--;
  636. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  637. }
  638. // Check heater every n milliseconds
  639. manage_heater();
  640. manage_inactivity();
  641. checkHitEndstops();
  642. lcd_update();
  643. }
  644. void gcode_line_error(const char *err, bool doFlush=true) {
  645. SERIAL_ERROR_START;
  646. serialprintPGM(err);
  647. SERIAL_ERRORLN(gcode_LastN);
  648. //Serial.println(gcode_N);
  649. if (doFlush) FlushSerialRequestResend();
  650. serial_count = 0;
  651. }
  652. /**
  653. * Add to the circular command queue the next command from:
  654. * - The command-injection queue (queued_commands_P)
  655. * - The active serial input (usually USB)
  656. * - The SD card file being actively printed
  657. */
  658. void get_command() {
  659. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  660. #ifdef NO_TIMEOUTS
  661. static millis_t last_command_time = 0;
  662. millis_t ms = millis();
  663. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  664. SERIAL_ECHOLNPGM(MSG_WAIT);
  665. last_command_time = ms;
  666. }
  667. #endif
  668. //
  669. // Loop while serial characters are incoming and the queue is not full
  670. //
  671. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  672. #ifdef NO_TIMEOUTS
  673. last_command_time = ms;
  674. #endif
  675. serial_char = MYSERIAL.read();
  676. //
  677. // If the character ends the line, or the line is full...
  678. //
  679. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  680. // end of line == end of comment
  681. comment_mode = false;
  682. if (!serial_count) return; // empty lines just exit
  683. char *command = command_queue[cmd_queue_index_w];
  684. command[serial_count] = 0; // terminate string
  685. // this item in the queue is not from sd
  686. #ifdef SDSUPPORT
  687. fromsd[cmd_queue_index_w] = false;
  688. #endif
  689. char *npos = strchr(command, 'N');
  690. char *apos = strchr(command, '*');
  691. if (npos) {
  692. gcode_N = strtol(npos + 1, NULL, 10);
  693. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  694. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  695. return;
  696. }
  697. if (apos) {
  698. byte checksum = 0, count = 0;
  699. while (command[count] != '*') checksum ^= command[count++];
  700. if (strtol(apos + 1, NULL, 10) != checksum) {
  701. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  702. return;
  703. }
  704. // if no errors, continue parsing
  705. }
  706. else {
  707. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  708. return;
  709. }
  710. gcode_LastN = gcode_N;
  711. // if no errors, continue parsing
  712. }
  713. else if (apos) { // No '*' without 'N'
  714. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  715. return;
  716. }
  717. // Movement commands alert when stopped
  718. if (IsStopped()) {
  719. char *gpos = strchr(command, 'G');
  720. if (gpos) {
  721. int codenum = strtol(gpos + 1, NULL, 10);
  722. switch (codenum) {
  723. case 0:
  724. case 1:
  725. case 2:
  726. case 3:
  727. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  728. LCD_MESSAGEPGM(MSG_STOPPED);
  729. break;
  730. }
  731. }
  732. }
  733. // If command was e-stop process now
  734. if (strcmp(command, "M112") == 0) kill();
  735. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  736. commands_in_queue += 1;
  737. serial_count = 0; //clear buffer
  738. }
  739. else if (serial_char == '\\') { // Handle escapes
  740. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  741. // if we have one more character, copy it over
  742. serial_char = MYSERIAL.read();
  743. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  744. }
  745. // otherwise do nothing
  746. }
  747. else { // its not a newline, carriage return or escape char
  748. if (serial_char == ';') comment_mode = true;
  749. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  750. }
  751. }
  752. #ifdef SDSUPPORT
  753. if (!card.sdprinting || serial_count) return;
  754. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  755. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  756. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  757. static bool stop_buffering = false;
  758. if (commands_in_queue == 0) stop_buffering = false;
  759. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  760. int16_t n = card.get();
  761. serial_char = (char)n;
  762. if (serial_char == '\n' || serial_char == '\r' ||
  763. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  764. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  765. ) {
  766. if (card.eof()) {
  767. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  768. print_job_stop_ms = millis();
  769. char time[30];
  770. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  771. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  772. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  773. SERIAL_ECHO_START;
  774. SERIAL_ECHOLN(time);
  775. lcd_setstatus(time, true);
  776. card.printingHasFinished();
  777. card.checkautostart(true);
  778. }
  779. if (serial_char == '#') stop_buffering = true;
  780. if (!serial_count) {
  781. comment_mode = false; //for new command
  782. return; //if empty line
  783. }
  784. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  785. // if (!comment_mode) {
  786. fromsd[cmd_queue_index_w] = true;
  787. commands_in_queue += 1;
  788. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  789. // }
  790. comment_mode = false; //for new command
  791. serial_count = 0; //clear buffer
  792. }
  793. else {
  794. if (serial_char == ';') comment_mode = true;
  795. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  796. }
  797. }
  798. #endif // SDSUPPORT
  799. }
  800. bool code_has_value() {
  801. int i = 1;
  802. char c = seen_pointer[i];
  803. if (c == '-' || c == '+') c = seen_pointer[++i];
  804. if (c == '.') c = seen_pointer[++i];
  805. return (c >= '0' && c <= '9');
  806. }
  807. float code_value() {
  808. float ret;
  809. char *e = strchr(seen_pointer, 'E');
  810. if (e) {
  811. *e = 0;
  812. ret = strtod(seen_pointer+1, NULL);
  813. *e = 'E';
  814. }
  815. else
  816. ret = strtod(seen_pointer+1, NULL);
  817. return ret;
  818. }
  819. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  820. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  821. bool code_seen(char code) {
  822. seen_pointer = strchr(current_command_args, code); // +3 since "G0 " is the shortest prefix
  823. return (seen_pointer != NULL); //Return True if a character was found
  824. }
  825. #define DEFINE_PGM_READ_ANY(type, reader) \
  826. static inline type pgm_read_any(const type *p) \
  827. { return pgm_read_##reader##_near(p); }
  828. DEFINE_PGM_READ_ANY(float, float);
  829. DEFINE_PGM_READ_ANY(signed char, byte);
  830. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  831. static const PROGMEM type array##_P[3] = \
  832. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  833. static inline type array(int axis) \
  834. { return pgm_read_any(&array##_P[axis]); }
  835. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  836. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  837. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  838. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  839. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  840. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  841. #ifdef DUAL_X_CARRIAGE
  842. #define DXC_FULL_CONTROL_MODE 0
  843. #define DXC_AUTO_PARK_MODE 1
  844. #define DXC_DUPLICATION_MODE 2
  845. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  846. static float x_home_pos(int extruder) {
  847. if (extruder == 0)
  848. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  849. else
  850. // In dual carriage mode the extruder offset provides an override of the
  851. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  852. // This allow soft recalibration of the second extruder offset position without firmware reflash
  853. // (through the M218 command).
  854. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  855. }
  856. static int x_home_dir(int extruder) {
  857. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  858. }
  859. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  860. static bool active_extruder_parked = false; // used in mode 1 & 2
  861. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  862. static millis_t delayed_move_time = 0; // used in mode 1
  863. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  864. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  865. bool extruder_duplication_enabled = false; // used in mode 2
  866. #endif //DUAL_X_CARRIAGE
  867. static void axis_is_at_home(AxisEnum axis) {
  868. #ifdef DUAL_X_CARRIAGE
  869. if (axis == X_AXIS) {
  870. if (active_extruder != 0) {
  871. current_position[X_AXIS] = x_home_pos(active_extruder);
  872. min_pos[X_AXIS] = X2_MIN_POS;
  873. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  874. return;
  875. }
  876. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  877. float xoff = home_offset[X_AXIS];
  878. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  879. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  880. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  881. return;
  882. }
  883. }
  884. #endif
  885. #ifdef SCARA
  886. if (axis == X_AXIS || axis == Y_AXIS) {
  887. float homeposition[3];
  888. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  889. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  890. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  891. // Works out real Homeposition angles using inverse kinematics,
  892. // and calculates homing offset using forward kinematics
  893. calculate_delta(homeposition);
  894. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  895. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  896. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  897. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  898. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  899. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  900. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  901. calculate_SCARA_forward_Transform(delta);
  902. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  903. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  904. current_position[axis] = delta[axis];
  905. // SCARA home positions are based on configuration since the actual limits are determined by the
  906. // inverse kinematic transform.
  907. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  908. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  909. }
  910. else
  911. #endif
  912. {
  913. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  914. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  915. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  916. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  917. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  918. #endif
  919. }
  920. }
  921. /**
  922. * Some planner shorthand inline functions
  923. */
  924. inline void set_homing_bump_feedrate(AxisEnum axis) {
  925. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  926. if (homing_bump_divisor[axis] >= 1)
  927. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  928. else {
  929. feedrate = homing_feedrate[axis] / 10;
  930. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  931. }
  932. }
  933. inline void line_to_current_position() {
  934. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  935. }
  936. inline void line_to_z(float zPosition) {
  937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  938. }
  939. inline void line_to_destination(float mm_m) {
  940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  941. }
  942. inline void line_to_destination() {
  943. line_to_destination(feedrate);
  944. }
  945. inline void sync_plan_position() {
  946. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  947. }
  948. #if defined(DELTA) || defined(SCARA)
  949. inline void sync_plan_position_delta() {
  950. calculate_delta(current_position);
  951. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  952. }
  953. #endif
  954. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  955. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  956. static void setup_for_endstop_move() {
  957. saved_feedrate = feedrate;
  958. saved_feedrate_multiplier = feedrate_multiplier;
  959. feedrate_multiplier = 100;
  960. refresh_cmd_timeout();
  961. enable_endstops(true);
  962. }
  963. #ifdef ENABLE_AUTO_BED_LEVELING
  964. #ifdef DELTA
  965. /**
  966. * Calculate delta, start a line, and set current_position to destination
  967. */
  968. void prepare_move_raw() {
  969. refresh_cmd_timeout();
  970. calculate_delta(destination);
  971. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  972. set_current_to_destination();
  973. }
  974. #endif
  975. #ifdef AUTO_BED_LEVELING_GRID
  976. #ifndef DELTA
  977. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  978. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  979. planeNormal.debug("planeNormal");
  980. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  981. //bedLevel.debug("bedLevel");
  982. //plan_bed_level_matrix.debug("bed level before");
  983. //vector_3 uncorrected_position = plan_get_position_mm();
  984. //uncorrected_position.debug("position before");
  985. vector_3 corrected_position = plan_get_position();
  986. //corrected_position.debug("position after");
  987. current_position[X_AXIS] = corrected_position.x;
  988. current_position[Y_AXIS] = corrected_position.y;
  989. current_position[Z_AXIS] = corrected_position.z;
  990. sync_plan_position();
  991. }
  992. #endif // !DELTA
  993. #else // !AUTO_BED_LEVELING_GRID
  994. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  995. plan_bed_level_matrix.set_to_identity();
  996. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  997. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  998. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  999. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1000. if (planeNormal.z < 0) {
  1001. planeNormal.x = -planeNormal.x;
  1002. planeNormal.y = -planeNormal.y;
  1003. planeNormal.z = -planeNormal.z;
  1004. }
  1005. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1006. vector_3 corrected_position = plan_get_position();
  1007. current_position[X_AXIS] = corrected_position.x;
  1008. current_position[Y_AXIS] = corrected_position.y;
  1009. current_position[Z_AXIS] = corrected_position.z;
  1010. sync_plan_position();
  1011. }
  1012. #endif // !AUTO_BED_LEVELING_GRID
  1013. static void run_z_probe() {
  1014. #ifdef DELTA
  1015. float start_z = current_position[Z_AXIS];
  1016. long start_steps = st_get_position(Z_AXIS);
  1017. // move down slowly until you find the bed
  1018. feedrate = homing_feedrate[Z_AXIS] / 4;
  1019. destination[Z_AXIS] = -10;
  1020. prepare_move_raw(); // this will also set_current_to_destination
  1021. st_synchronize();
  1022. endstops_hit_on_purpose(); // clear endstop hit flags
  1023. // we have to let the planner know where we are right now as it is not where we said to go.
  1024. long stop_steps = st_get_position(Z_AXIS);
  1025. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1026. current_position[Z_AXIS] = mm;
  1027. sync_plan_position_delta();
  1028. #else // !DELTA
  1029. plan_bed_level_matrix.set_to_identity();
  1030. feedrate = homing_feedrate[Z_AXIS];
  1031. // Move down until the probe (or endstop?) is triggered
  1032. float zPosition = -10;
  1033. line_to_z(zPosition);
  1034. st_synchronize();
  1035. // Tell the planner where we ended up - Get this from the stepper handler
  1036. zPosition = st_get_position_mm(Z_AXIS);
  1037. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1038. // move up the retract distance
  1039. zPosition += home_bump_mm(Z_AXIS);
  1040. line_to_z(zPosition);
  1041. st_synchronize();
  1042. endstops_hit_on_purpose(); // clear endstop hit flags
  1043. // move back down slowly to find bed
  1044. set_homing_bump_feedrate(Z_AXIS);
  1045. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1046. line_to_z(zPosition);
  1047. st_synchronize();
  1048. endstops_hit_on_purpose(); // clear endstop hit flags
  1049. // Get the current stepper position after bumping an endstop
  1050. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1051. sync_plan_position();
  1052. #endif // !DELTA
  1053. }
  1054. /**
  1055. * Plan a move to (X, Y, Z) and set the current_position
  1056. * The final current_position may not be the one that was requested
  1057. */
  1058. static void do_blocking_move_to(float x, float y, float z) {
  1059. float oldFeedRate = feedrate;
  1060. #ifdef DELTA
  1061. feedrate = XY_TRAVEL_SPEED;
  1062. destination[X_AXIS] = x;
  1063. destination[Y_AXIS] = y;
  1064. destination[Z_AXIS] = z;
  1065. prepare_move_raw(); // this will also set_current_to_destination
  1066. st_synchronize();
  1067. #else
  1068. feedrate = homing_feedrate[Z_AXIS];
  1069. current_position[Z_AXIS] = z;
  1070. line_to_current_position();
  1071. st_synchronize();
  1072. feedrate = xy_travel_speed;
  1073. current_position[X_AXIS] = x;
  1074. current_position[Y_AXIS] = y;
  1075. line_to_current_position();
  1076. st_synchronize();
  1077. #endif
  1078. feedrate = oldFeedRate;
  1079. }
  1080. static void clean_up_after_endstop_move() {
  1081. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1082. enable_endstops(false);
  1083. #endif
  1084. feedrate = saved_feedrate;
  1085. feedrate_multiplier = saved_feedrate_multiplier;
  1086. refresh_cmd_timeout();
  1087. }
  1088. static void deploy_z_probe() {
  1089. #ifdef SERVO_ENDSTOPS
  1090. // Engage Z Servo endstop if enabled
  1091. if (servo_endstops[Z_AXIS] >= 0) {
  1092. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1093. #if SERVO_LEVELING
  1094. srv->attach(0);
  1095. #endif
  1096. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1097. #if SERVO_LEVELING
  1098. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1099. srv->detach();
  1100. #endif
  1101. }
  1102. #elif defined(Z_PROBE_ALLEN_KEY)
  1103. feedrate = homing_feedrate[X_AXIS];
  1104. // Move to the start position to initiate deployment
  1105. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1106. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1107. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1108. prepare_move_raw(); // this will also set_current_to_destination
  1109. // Home X to touch the belt
  1110. feedrate = homing_feedrate[X_AXIS]/10;
  1111. destination[X_AXIS] = 0;
  1112. prepare_move_raw(); // this will also set_current_to_destination
  1113. // Home Y for safety
  1114. feedrate = homing_feedrate[X_AXIS]/2;
  1115. destination[Y_AXIS] = 0;
  1116. prepare_move_raw(); // this will also set_current_to_destination
  1117. st_synchronize();
  1118. #ifdef Z_PROBE_ENDSTOP
  1119. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1120. if (z_probe_endstop)
  1121. #else
  1122. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1123. if (z_min_endstop)
  1124. #endif
  1125. {
  1126. if (IsRunning()) {
  1127. SERIAL_ERROR_START;
  1128. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1129. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1130. }
  1131. Stop();
  1132. }
  1133. #endif // Z_PROBE_ALLEN_KEY
  1134. }
  1135. static void stow_z_probe(bool doRaise=true) {
  1136. #ifdef SERVO_ENDSTOPS
  1137. // Retract Z Servo endstop if enabled
  1138. if (servo_endstops[Z_AXIS] >= 0) {
  1139. #if Z_RAISE_AFTER_PROBING > 0
  1140. if (doRaise) {
  1141. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1142. st_synchronize();
  1143. }
  1144. #endif
  1145. // Change the Z servo angle
  1146. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1147. #if SERVO_LEVELING
  1148. srv->attach(0);
  1149. #endif
  1150. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1151. #if SERVO_LEVELING
  1152. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1153. srv->detach();
  1154. #endif
  1155. }
  1156. #elif defined(Z_PROBE_ALLEN_KEY)
  1157. // Move up for safety
  1158. feedrate = homing_feedrate[X_AXIS];
  1159. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1160. prepare_move_raw(); // this will also set_current_to_destination
  1161. // Move to the start position to initiate retraction
  1162. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1163. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1164. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1165. prepare_move_raw(); // this will also set_current_to_destination
  1166. // Move the nozzle down to push the probe into retracted position
  1167. feedrate = homing_feedrate[Z_AXIS]/10;
  1168. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1169. prepare_move_raw(); // this will also set_current_to_destination
  1170. // Move up for safety
  1171. feedrate = homing_feedrate[Z_AXIS]/2;
  1172. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1173. prepare_move_raw(); // this will also set_current_to_destination
  1174. // Home XY for safety
  1175. feedrate = homing_feedrate[X_AXIS]/2;
  1176. destination[X_AXIS] = 0;
  1177. destination[Y_AXIS] = 0;
  1178. prepare_move_raw(); // this will also set_current_to_destination
  1179. st_synchronize();
  1180. #ifdef Z_PROBE_ENDSTOP
  1181. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1182. if (!z_probe_endstop)
  1183. #else
  1184. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1185. if (!z_min_endstop)
  1186. #endif
  1187. {
  1188. if (IsRunning()) {
  1189. SERIAL_ERROR_START;
  1190. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1191. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1192. }
  1193. Stop();
  1194. }
  1195. #endif // Z_PROBE_ALLEN_KEY
  1196. }
  1197. enum ProbeAction {
  1198. ProbeStay = 0,
  1199. ProbeDeploy = BIT(0),
  1200. ProbeStow = BIT(1),
  1201. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1202. };
  1203. // Probe bed height at position (x,y), returns the measured z value
  1204. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1205. // move to right place
  1206. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1207. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1208. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1209. if (probe_action & ProbeDeploy) deploy_z_probe();
  1210. #endif
  1211. run_z_probe();
  1212. float measured_z = current_position[Z_AXIS];
  1213. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1214. if (probe_action == ProbeStay) {
  1215. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1216. st_synchronize();
  1217. }
  1218. #endif
  1219. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1220. if (probe_action & ProbeStow) stow_z_probe();
  1221. #endif
  1222. if (verbose_level > 2) {
  1223. SERIAL_PROTOCOLPGM("Bed X: ");
  1224. SERIAL_PROTOCOL_F(x, 3);
  1225. SERIAL_PROTOCOLPGM(" Y: ");
  1226. SERIAL_PROTOCOL_F(y, 3);
  1227. SERIAL_PROTOCOLPGM(" Z: ");
  1228. SERIAL_PROTOCOL_F(measured_z, 3);
  1229. SERIAL_EOL;
  1230. }
  1231. return measured_z;
  1232. }
  1233. #ifdef DELTA
  1234. /**
  1235. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1236. */
  1237. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1238. if (bed_level[x][y] != 0.0) {
  1239. return; // Don't overwrite good values.
  1240. }
  1241. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1242. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1243. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1244. float median = c; // Median is robust (ignores outliers).
  1245. if (a < b) {
  1246. if (b < c) median = b;
  1247. if (c < a) median = a;
  1248. } else { // b <= a
  1249. if (c < b) median = b;
  1250. if (a < c) median = a;
  1251. }
  1252. bed_level[x][y] = median;
  1253. }
  1254. // Fill in the unprobed points (corners of circular print surface)
  1255. // using linear extrapolation, away from the center.
  1256. static void extrapolate_unprobed_bed_level() {
  1257. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1258. for (int y = 0; y <= half; y++) {
  1259. for (int x = 0; x <= half; x++) {
  1260. if (x + y < 3) continue;
  1261. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1262. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1263. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1264. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1265. }
  1266. }
  1267. }
  1268. // Print calibration results for plotting or manual frame adjustment.
  1269. static void print_bed_level() {
  1270. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1271. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1272. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1273. SERIAL_PROTOCOLCHAR(' ');
  1274. }
  1275. SERIAL_EOL;
  1276. }
  1277. }
  1278. // Reset calibration results to zero.
  1279. void reset_bed_level() {
  1280. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1281. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1282. bed_level[x][y] = 0.0;
  1283. }
  1284. }
  1285. }
  1286. #endif // DELTA
  1287. #endif // ENABLE_AUTO_BED_LEVELING
  1288. #ifdef Z_PROBE_SLED
  1289. #ifndef SLED_DOCKING_OFFSET
  1290. #define SLED_DOCKING_OFFSET 0
  1291. #endif
  1292. /**
  1293. * Method to dock/undock a sled designed by Charles Bell.
  1294. *
  1295. * dock[in] If true, move to MAX_X and engage the electromagnet
  1296. * offset[in] The additional distance to move to adjust docking location
  1297. */
  1298. static void dock_sled(bool dock, int offset=0) {
  1299. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1300. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1301. SERIAL_ECHO_START;
  1302. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1303. return;
  1304. }
  1305. if (dock) {
  1306. float oldXpos = current_position[X_AXIS]; // save x position
  1307. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1308. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1309. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1310. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1311. } else {
  1312. float oldXpos = current_position[X_AXIS]; // save x position
  1313. float z_loc = current_position[Z_AXIS];
  1314. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1315. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1316. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1317. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1318. }
  1319. }
  1320. #endif // Z_PROBE_SLED
  1321. /**
  1322. * Home an individual axis
  1323. */
  1324. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1325. static void homeaxis(AxisEnum axis) {
  1326. #define HOMEAXIS_DO(LETTER) \
  1327. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1328. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1329. int axis_home_dir =
  1330. #ifdef DUAL_X_CARRIAGE
  1331. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1332. #endif
  1333. home_dir(axis);
  1334. // Set the axis position as setup for the move
  1335. current_position[axis] = 0;
  1336. sync_plan_position();
  1337. #ifdef Z_PROBE_SLED
  1338. // Get Probe
  1339. if (axis == Z_AXIS) {
  1340. if (axis_home_dir < 0) dock_sled(false);
  1341. }
  1342. #endif
  1343. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1344. // Deploy a probe if there is one, and homing towards the bed
  1345. if (axis == Z_AXIS) {
  1346. if (axis_home_dir < 0) deploy_z_probe();
  1347. }
  1348. #endif
  1349. #ifdef SERVO_ENDSTOPS
  1350. if (axis != Z_AXIS) {
  1351. // Engage Servo endstop if enabled
  1352. if (servo_endstops[axis] > -1)
  1353. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1354. }
  1355. #endif
  1356. // Set a flag for Z motor locking
  1357. #ifdef Z_DUAL_ENDSTOPS
  1358. if (axis == Z_AXIS) In_Homing_Process(true);
  1359. #endif
  1360. // Move towards the endstop until an endstop is triggered
  1361. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1362. feedrate = homing_feedrate[axis];
  1363. line_to_destination();
  1364. st_synchronize();
  1365. // Set the axis position as setup for the move
  1366. current_position[axis] = 0;
  1367. sync_plan_position();
  1368. enable_endstops(false); // Disable endstops while moving away
  1369. // Move away from the endstop by the axis HOME_BUMP_MM
  1370. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1371. line_to_destination();
  1372. st_synchronize();
  1373. enable_endstops(true); // Enable endstops for next homing move
  1374. // Slow down the feedrate for the next move
  1375. set_homing_bump_feedrate(axis);
  1376. // Move slowly towards the endstop until triggered
  1377. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1378. line_to_destination();
  1379. st_synchronize();
  1380. #ifdef Z_DUAL_ENDSTOPS
  1381. if (axis == Z_AXIS) {
  1382. float adj = fabs(z_endstop_adj);
  1383. bool lockZ1;
  1384. if (axis_home_dir > 0) {
  1385. adj = -adj;
  1386. lockZ1 = (z_endstop_adj > 0);
  1387. }
  1388. else
  1389. lockZ1 = (z_endstop_adj < 0);
  1390. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1391. sync_plan_position();
  1392. // Move to the adjusted endstop height
  1393. feedrate = homing_feedrate[axis];
  1394. destination[Z_AXIS] = adj;
  1395. line_to_destination();
  1396. st_synchronize();
  1397. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1398. In_Homing_Process(false);
  1399. } // Z_AXIS
  1400. #endif
  1401. #ifdef DELTA
  1402. // retrace by the amount specified in endstop_adj
  1403. if (endstop_adj[axis] * axis_home_dir < 0) {
  1404. enable_endstops(false); // Disable endstops while moving away
  1405. sync_plan_position();
  1406. destination[axis] = endstop_adj[axis];
  1407. line_to_destination();
  1408. st_synchronize();
  1409. enable_endstops(true); // Enable endstops for next homing move
  1410. }
  1411. #endif
  1412. // Set the axis position to its home position (plus home offsets)
  1413. axis_is_at_home(axis);
  1414. sync_plan_position();
  1415. destination[axis] = current_position[axis];
  1416. feedrate = 0.0;
  1417. endstops_hit_on_purpose(); // clear endstop hit flags
  1418. axis_known_position[axis] = true;
  1419. #ifdef Z_PROBE_SLED
  1420. // bring probe back
  1421. if (axis == Z_AXIS) {
  1422. if (axis_home_dir < 0) dock_sled(true);
  1423. }
  1424. #endif
  1425. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1426. // Deploy a probe if there is one, and homing towards the bed
  1427. if (axis == Z_AXIS) {
  1428. if (axis_home_dir < 0) stow_z_probe();
  1429. }
  1430. else
  1431. #endif
  1432. #ifdef SERVO_ENDSTOPS
  1433. {
  1434. // Retract Servo endstop if enabled
  1435. if (servo_endstops[axis] > -1)
  1436. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1437. }
  1438. #endif
  1439. }
  1440. }
  1441. #ifdef FWRETRACT
  1442. void retract(bool retracting, bool swapping=false) {
  1443. if (retracting == retracted[active_extruder]) return;
  1444. float oldFeedrate = feedrate;
  1445. set_destination_to_current();
  1446. if (retracting) {
  1447. feedrate = retract_feedrate * 60;
  1448. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1449. plan_set_e_position(current_position[E_AXIS]);
  1450. prepare_move();
  1451. if (retract_zlift > 0.01) {
  1452. current_position[Z_AXIS] -= retract_zlift;
  1453. #ifdef DELTA
  1454. sync_plan_position_delta();
  1455. #else
  1456. sync_plan_position();
  1457. #endif
  1458. prepare_move();
  1459. }
  1460. }
  1461. else {
  1462. if (retract_zlift > 0.01) {
  1463. current_position[Z_AXIS] += retract_zlift;
  1464. #ifdef DELTA
  1465. sync_plan_position_delta();
  1466. #else
  1467. sync_plan_position();
  1468. #endif
  1469. //prepare_move();
  1470. }
  1471. feedrate = retract_recover_feedrate * 60;
  1472. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1473. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1474. plan_set_e_position(current_position[E_AXIS]);
  1475. prepare_move();
  1476. }
  1477. feedrate = oldFeedrate;
  1478. retracted[active_extruder] = retracting;
  1479. } // retract()
  1480. #endif // FWRETRACT
  1481. /**
  1482. *
  1483. * G-Code Handler functions
  1484. *
  1485. */
  1486. /**
  1487. * Set XYZE destination and feedrate from the current GCode command
  1488. *
  1489. * - Set destination from included axis codes
  1490. * - Set to current for missing axis codes
  1491. * - Set the feedrate, if included
  1492. */
  1493. void gcode_get_destination() {
  1494. for (int i = 0; i < NUM_AXIS; i++) {
  1495. if (code_seen(axis_codes[i]))
  1496. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1497. else
  1498. destination[i] = current_position[i];
  1499. }
  1500. if (code_seen('F')) {
  1501. float next_feedrate = code_value();
  1502. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1503. }
  1504. }
  1505. void unknown_command_error() {
  1506. SERIAL_ECHO_START;
  1507. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1508. SERIAL_ECHO(current_command);
  1509. SERIAL_ECHOPGM("\"\n");
  1510. }
  1511. /**
  1512. * G0, G1: Coordinated movement of X Y Z E axes
  1513. */
  1514. inline void gcode_G0_G1() {
  1515. if (IsRunning()) {
  1516. gcode_get_destination(); // For X Y Z E F
  1517. #ifdef FWRETRACT
  1518. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1519. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1520. // Is this move an attempt to retract or recover?
  1521. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1522. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1523. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1524. retract(!retracted[active_extruder]);
  1525. return;
  1526. }
  1527. }
  1528. #endif //FWRETRACT
  1529. prepare_move();
  1530. }
  1531. }
  1532. /**
  1533. * Plan an arc in 2 dimensions
  1534. *
  1535. * The arc is approximated by generating many small linear segments.
  1536. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1537. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1538. * larger segments will tend to be more efficient. Your slicer should have
  1539. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1540. */
  1541. void plan_arc(
  1542. float *target, // Destination position
  1543. float *offset, // Center of rotation relative to current_position
  1544. uint8_t clockwise // Clockwise?
  1545. ) {
  1546. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1547. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1548. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1549. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1550. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1551. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1552. r_axis1 = -offset[Y_AXIS],
  1553. rt_axis0 = target[X_AXIS] - center_axis0,
  1554. rt_axis1 = target[Y_AXIS] - center_axis1;
  1555. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1556. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1557. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1558. if (clockwise) { angular_travel -= RADIANS(360); }
  1559. // Make a circle if the angular rotation is 0
  1560. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1561. angular_travel += RADIANS(360);
  1562. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1563. if (mm_of_travel < 0.001) { return; }
  1564. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1565. if (segments == 0) segments = 1;
  1566. float theta_per_segment = angular_travel/segments;
  1567. float linear_per_segment = linear_travel/segments;
  1568. float extruder_per_segment = extruder_travel/segments;
  1569. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1570. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1571. r_T = [cos(phi) -sin(phi);
  1572. sin(phi) cos(phi] * r ;
  1573. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1574. defined from the circle center to the initial position. Each line segment is formed by successive
  1575. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1576. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1577. all double numbers are single precision on the Arduino. (True double precision will not have
  1578. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1579. tool precision in some cases. Therefore, arc path correction is implemented.
  1580. Small angle approximation may be used to reduce computation overhead further. This approximation
  1581. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1582. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1583. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1584. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1585. issue for CNC machines with the single precision Arduino calculations.
  1586. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1587. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1588. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1589. This is important when there are successive arc motions.
  1590. */
  1591. // Vector rotation matrix values
  1592. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1593. float sin_T = theta_per_segment;
  1594. float arc_target[4];
  1595. float sin_Ti;
  1596. float cos_Ti;
  1597. float r_axisi;
  1598. uint16_t i;
  1599. int8_t count = 0;
  1600. // Initialize the linear axis
  1601. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1602. // Initialize the extruder axis
  1603. arc_target[E_AXIS] = current_position[E_AXIS];
  1604. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1605. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1606. if (count < N_ARC_CORRECTION) {
  1607. // Apply vector rotation matrix to previous r_axis0 / 1
  1608. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1609. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1610. r_axis1 = r_axisi;
  1611. count++;
  1612. }
  1613. else {
  1614. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1615. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1616. cos_Ti = cos(i*theta_per_segment);
  1617. sin_Ti = sin(i*theta_per_segment);
  1618. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1619. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1620. count = 0;
  1621. }
  1622. // Update arc_target location
  1623. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1624. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1625. arc_target[Z_AXIS] += linear_per_segment;
  1626. arc_target[E_AXIS] += extruder_per_segment;
  1627. clamp_to_software_endstops(arc_target);
  1628. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1629. }
  1630. // Ensure last segment arrives at target location.
  1631. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1632. // As far as the parser is concerned, the position is now == target. In reality the
  1633. // motion control system might still be processing the action and the real tool position
  1634. // in any intermediate location.
  1635. set_current_to_destination();
  1636. }
  1637. /**
  1638. * G2: Clockwise Arc
  1639. * G3: Counterclockwise Arc
  1640. */
  1641. inline void gcode_G2_G3(bool clockwise) {
  1642. if (IsRunning()) {
  1643. #ifdef SF_ARC_FIX
  1644. bool relative_mode_backup = relative_mode;
  1645. relative_mode = true;
  1646. #endif
  1647. gcode_get_destination();
  1648. #ifdef SF_ARC_FIX
  1649. relative_mode = relative_mode_backup;
  1650. #endif
  1651. // Center of arc as offset from current_position
  1652. float arc_offset[2] = {
  1653. code_seen('I') ? code_value() : 0,
  1654. code_seen('J') ? code_value() : 0
  1655. };
  1656. // Send an arc to the planner
  1657. plan_arc(destination, arc_offset, clockwise);
  1658. refresh_cmd_timeout();
  1659. }
  1660. }
  1661. /**
  1662. * G4: Dwell S<seconds> or P<milliseconds>
  1663. */
  1664. inline void gcode_G4() {
  1665. millis_t codenum = 0;
  1666. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1667. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1668. st_synchronize();
  1669. refresh_cmd_timeout();
  1670. codenum += previous_cmd_ms; // keep track of when we started waiting
  1671. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1672. while (millis() < codenum) {
  1673. manage_heater();
  1674. manage_inactivity();
  1675. lcd_update();
  1676. }
  1677. }
  1678. #ifdef FWRETRACT
  1679. /**
  1680. * G10 - Retract filament according to settings of M207
  1681. * G11 - Recover filament according to settings of M208
  1682. */
  1683. inline void gcode_G10_G11(bool doRetract=false) {
  1684. #if EXTRUDERS > 1
  1685. if (doRetract) {
  1686. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1687. }
  1688. #endif
  1689. retract(doRetract
  1690. #if EXTRUDERS > 1
  1691. , retracted_swap[active_extruder]
  1692. #endif
  1693. );
  1694. }
  1695. #endif //FWRETRACT
  1696. /**
  1697. * G28: Home all axes according to settings
  1698. *
  1699. * Parameters
  1700. *
  1701. * None Home to all axes with no parameters.
  1702. * With QUICK_HOME enabled XY will home together, then Z.
  1703. *
  1704. * Cartesian parameters
  1705. *
  1706. * X Home to the X endstop
  1707. * Y Home to the Y endstop
  1708. * Z Home to the Z endstop
  1709. *
  1710. */
  1711. inline void gcode_G28() {
  1712. // Wait for planner moves to finish!
  1713. st_synchronize();
  1714. // For auto bed leveling, clear the level matrix
  1715. #ifdef ENABLE_AUTO_BED_LEVELING
  1716. plan_bed_level_matrix.set_to_identity();
  1717. #ifdef DELTA
  1718. reset_bed_level();
  1719. #endif
  1720. #endif
  1721. // For manual bed leveling deactivate the matrix temporarily
  1722. #ifdef MESH_BED_LEVELING
  1723. uint8_t mbl_was_active = mbl.active;
  1724. mbl.active = 0;
  1725. #endif
  1726. setup_for_endstop_move();
  1727. set_destination_to_current();
  1728. feedrate = 0.0;
  1729. #ifdef DELTA
  1730. // A delta can only safely home all axis at the same time
  1731. // all axis have to home at the same time
  1732. // Pretend the current position is 0,0,0
  1733. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1734. sync_plan_position();
  1735. // Move all carriages up together until the first endstop is hit.
  1736. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1737. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1738. line_to_destination();
  1739. st_synchronize();
  1740. endstops_hit_on_purpose(); // clear endstop hit flags
  1741. // Destination reached
  1742. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1743. // take care of back off and rehome now we are all at the top
  1744. HOMEAXIS(X);
  1745. HOMEAXIS(Y);
  1746. HOMEAXIS(Z);
  1747. sync_plan_position_delta();
  1748. #else // NOT DELTA
  1749. bool homeX = code_seen(axis_codes[X_AXIS]),
  1750. homeY = code_seen(axis_codes[Y_AXIS]),
  1751. homeZ = code_seen(axis_codes[Z_AXIS]);
  1752. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1753. if (home_all_axis || homeZ) {
  1754. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1755. HOMEAXIS(Z);
  1756. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1757. // Raise Z before homing any other axes
  1758. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1759. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1760. feedrate = max_feedrate[Z_AXIS] * 60;
  1761. line_to_destination();
  1762. st_synchronize();
  1763. #endif
  1764. } // home_all_axis || homeZ
  1765. #ifdef QUICK_HOME
  1766. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1767. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1768. #ifdef DUAL_X_CARRIAGE
  1769. int x_axis_home_dir = x_home_dir(active_extruder);
  1770. extruder_duplication_enabled = false;
  1771. #else
  1772. int x_axis_home_dir = home_dir(X_AXIS);
  1773. #endif
  1774. sync_plan_position();
  1775. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1776. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1777. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1778. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1779. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1780. line_to_destination();
  1781. st_synchronize();
  1782. axis_is_at_home(X_AXIS);
  1783. axis_is_at_home(Y_AXIS);
  1784. sync_plan_position();
  1785. destination[X_AXIS] = current_position[X_AXIS];
  1786. destination[Y_AXIS] = current_position[Y_AXIS];
  1787. line_to_destination();
  1788. feedrate = 0.0;
  1789. st_synchronize();
  1790. endstops_hit_on_purpose(); // clear endstop hit flags
  1791. current_position[X_AXIS] = destination[X_AXIS];
  1792. current_position[Y_AXIS] = destination[Y_AXIS];
  1793. #ifndef SCARA
  1794. current_position[Z_AXIS] = destination[Z_AXIS];
  1795. #endif
  1796. }
  1797. #endif // QUICK_HOME
  1798. #ifdef HOME_Y_BEFORE_X
  1799. // Home Y
  1800. if (home_all_axis || homeY) HOMEAXIS(Y);
  1801. #endif
  1802. // Home X
  1803. if (home_all_axis || homeX) {
  1804. #ifdef DUAL_X_CARRIAGE
  1805. int tmp_extruder = active_extruder;
  1806. extruder_duplication_enabled = false;
  1807. active_extruder = !active_extruder;
  1808. HOMEAXIS(X);
  1809. inactive_extruder_x_pos = current_position[X_AXIS];
  1810. active_extruder = tmp_extruder;
  1811. HOMEAXIS(X);
  1812. // reset state used by the different modes
  1813. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1814. delayed_move_time = 0;
  1815. active_extruder_parked = true;
  1816. #else
  1817. HOMEAXIS(X);
  1818. #endif
  1819. }
  1820. #ifndef HOME_Y_BEFORE_X
  1821. // Home Y
  1822. if (home_all_axis || homeY) HOMEAXIS(Y);
  1823. #endif
  1824. // Home Z last if homing towards the bed
  1825. #if Z_HOME_DIR < 0
  1826. if (home_all_axis || homeZ) {
  1827. #ifdef Z_SAFE_HOMING
  1828. if (home_all_axis) {
  1829. current_position[Z_AXIS] = 0;
  1830. sync_plan_position();
  1831. //
  1832. // Set the probe (or just the nozzle) destination to the safe homing point
  1833. //
  1834. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1835. // then this may not work as expected.
  1836. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1837. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1838. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1839. feedrate = XY_TRAVEL_SPEED;
  1840. // This could potentially move X, Y, Z all together
  1841. line_to_destination();
  1842. st_synchronize();
  1843. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1844. current_position[X_AXIS] = destination[X_AXIS];
  1845. current_position[Y_AXIS] = destination[Y_AXIS];
  1846. // Home the Z axis
  1847. HOMEAXIS(Z);
  1848. }
  1849. else if (homeZ) { // Don't need to Home Z twice
  1850. // Let's see if X and Y are homed
  1851. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1852. // Make sure the probe is within the physical limits
  1853. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1854. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1855. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1856. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1857. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1858. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1859. // Set the plan current position to X, Y, 0
  1860. current_position[Z_AXIS] = 0;
  1861. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1862. // Set Z destination away from bed and raise the axis
  1863. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1864. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1865. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1866. line_to_destination();
  1867. st_synchronize();
  1868. // Home the Z axis
  1869. HOMEAXIS(Z);
  1870. }
  1871. else {
  1872. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1873. SERIAL_ECHO_START;
  1874. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1875. }
  1876. }
  1877. else {
  1878. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1879. SERIAL_ECHO_START;
  1880. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1881. }
  1882. } // !home_all_axes && homeZ
  1883. #else // !Z_SAFE_HOMING
  1884. HOMEAXIS(Z);
  1885. #endif // !Z_SAFE_HOMING
  1886. } // home_all_axis || homeZ
  1887. #endif // Z_HOME_DIR < 0
  1888. sync_plan_position();
  1889. #endif // else DELTA
  1890. #ifdef SCARA
  1891. sync_plan_position_delta();
  1892. #endif
  1893. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1894. enable_endstops(false);
  1895. #endif
  1896. // For manual leveling move back to 0,0
  1897. #ifdef MESH_BED_LEVELING
  1898. if (mbl_was_active) {
  1899. current_position[X_AXIS] = mbl.get_x(0);
  1900. current_position[Y_AXIS] = mbl.get_y(0);
  1901. set_destination_to_current();
  1902. feedrate = homing_feedrate[X_AXIS];
  1903. line_to_destination();
  1904. st_synchronize();
  1905. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1906. sync_plan_position();
  1907. mbl.active = 1;
  1908. }
  1909. #endif
  1910. feedrate = saved_feedrate;
  1911. feedrate_multiplier = saved_feedrate_multiplier;
  1912. refresh_cmd_timeout();
  1913. endstops_hit_on_purpose(); // clear endstop hit flags
  1914. }
  1915. #ifdef MESH_BED_LEVELING
  1916. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1917. /**
  1918. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1919. * mesh to compensate for variable bed height
  1920. *
  1921. * Parameters With MESH_BED_LEVELING:
  1922. *
  1923. * S0 Produce a mesh report
  1924. * S1 Start probing mesh points
  1925. * S2 Probe the next mesh point
  1926. * S3 Xn Yn Zn.nn Manually modify a single point
  1927. *
  1928. * The S0 report the points as below
  1929. *
  1930. * +----> X-axis
  1931. * |
  1932. * |
  1933. * v Y-axis
  1934. *
  1935. */
  1936. inline void gcode_G29() {
  1937. static int probe_point = -1;
  1938. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1939. if (state < 0 || state > 3) {
  1940. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1941. return;
  1942. }
  1943. int ix, iy;
  1944. float z;
  1945. switch(state) {
  1946. case MeshReport:
  1947. if (mbl.active) {
  1948. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1949. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1950. SERIAL_PROTOCOLCHAR(',');
  1951. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1952. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1953. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1954. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1955. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1956. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1957. SERIAL_PROTOCOLPGM(" ");
  1958. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1959. }
  1960. SERIAL_EOL;
  1961. }
  1962. }
  1963. else
  1964. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1965. break;
  1966. case MeshStart:
  1967. mbl.reset();
  1968. probe_point = 0;
  1969. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1970. break;
  1971. case MeshNext:
  1972. if (probe_point < 0) {
  1973. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1974. return;
  1975. }
  1976. if (probe_point == 0) {
  1977. // Set Z to a positive value before recording the first Z.
  1978. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1979. sync_plan_position();
  1980. }
  1981. else {
  1982. // For others, save the Z of the previous point, then raise Z again.
  1983. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1984. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1985. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1986. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1987. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1989. st_synchronize();
  1990. }
  1991. // Is there another point to sample? Move there.
  1992. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1993. ix = probe_point % MESH_NUM_X_POINTS;
  1994. iy = probe_point / MESH_NUM_X_POINTS;
  1995. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1996. current_position[X_AXIS] = mbl.get_x(ix);
  1997. current_position[Y_AXIS] = mbl.get_y(iy);
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1999. st_synchronize();
  2000. probe_point++;
  2001. }
  2002. else {
  2003. // After recording the last point, activate the mbl and home
  2004. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2005. probe_point = -1;
  2006. mbl.active = 1;
  2007. enqueuecommands_P(PSTR("G28"));
  2008. }
  2009. break;
  2010. case MeshSet:
  2011. if (code_seen('X') || code_seen('x')) {
  2012. ix = code_value_long()-1;
  2013. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2014. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2015. return;
  2016. }
  2017. } else {
  2018. SERIAL_PROTOCOLPGM("X not entered.\n");
  2019. return;
  2020. }
  2021. if (code_seen('Y') || code_seen('y')) {
  2022. iy = code_value_long()-1;
  2023. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2024. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2025. return;
  2026. }
  2027. } else {
  2028. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2029. return;
  2030. }
  2031. if (code_seen('Z') || code_seen('z')) {
  2032. z = code_value();
  2033. } else {
  2034. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2035. return;
  2036. }
  2037. mbl.z_values[iy][ix] = z;
  2038. } // switch(state)
  2039. }
  2040. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2041. /**
  2042. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2043. * Will fail if the printer has not been homed with G28.
  2044. *
  2045. * Enhanced G29 Auto Bed Leveling Probe Routine
  2046. *
  2047. * Parameters With AUTO_BED_LEVELING_GRID:
  2048. *
  2049. * P Set the size of the grid that will be probed (P x P points).
  2050. * Not supported by non-linear delta printer bed leveling.
  2051. * Example: "G29 P4"
  2052. *
  2053. * S Set the XY travel speed between probe points (in mm/min)
  2054. *
  2055. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2056. * or clean the rotation Matrix. Useful to check the topology
  2057. * after a first run of G29.
  2058. *
  2059. * V Set the verbose level (0-4). Example: "G29 V3"
  2060. *
  2061. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2062. * This is useful for manual bed leveling and finding flaws in the bed (to
  2063. * assist with part placement).
  2064. * Not supported by non-linear delta printer bed leveling.
  2065. *
  2066. * F Set the Front limit of the probing grid
  2067. * B Set the Back limit of the probing grid
  2068. * L Set the Left limit of the probing grid
  2069. * R Set the Right limit of the probing grid
  2070. *
  2071. * Global Parameters:
  2072. *
  2073. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2074. * Include "E" to engage/disengage the probe for each sample.
  2075. * There's no extra effect if you have a fixed probe.
  2076. * Usage: "G29 E" or "G29 e"
  2077. *
  2078. */
  2079. inline void gcode_G29() {
  2080. // Don't allow auto-leveling without homing first
  2081. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2082. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2083. SERIAL_ECHO_START;
  2084. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2085. return;
  2086. }
  2087. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2088. if (verbose_level < 0 || verbose_level > 4) {
  2089. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2090. return;
  2091. }
  2092. bool dryrun = code_seen('D') || code_seen('d'),
  2093. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2094. #ifdef AUTO_BED_LEVELING_GRID
  2095. #ifndef DELTA
  2096. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2097. #endif
  2098. if (verbose_level > 0) {
  2099. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2100. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2101. }
  2102. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2103. #ifndef DELTA
  2104. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2105. if (auto_bed_leveling_grid_points < 2) {
  2106. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2107. return;
  2108. }
  2109. #endif
  2110. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2111. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2112. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2113. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2114. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2115. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2116. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2117. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2118. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2119. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2120. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2121. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2122. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2123. if (left_out || right_out || front_out || back_out) {
  2124. if (left_out) {
  2125. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  2126. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2127. }
  2128. if (right_out) {
  2129. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  2130. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2131. }
  2132. if (front_out) {
  2133. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  2134. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2135. }
  2136. if (back_out) {
  2137. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  2138. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2139. }
  2140. return;
  2141. }
  2142. #endif // AUTO_BED_LEVELING_GRID
  2143. #ifdef Z_PROBE_SLED
  2144. dock_sled(false); // engage (un-dock) the probe
  2145. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2146. deploy_z_probe();
  2147. #endif
  2148. st_synchronize();
  2149. if (!dryrun) {
  2150. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2151. plan_bed_level_matrix.set_to_identity();
  2152. #ifdef DELTA
  2153. reset_bed_level();
  2154. #else //!DELTA
  2155. //vector_3 corrected_position = plan_get_position_mm();
  2156. //corrected_position.debug("position before G29");
  2157. vector_3 uncorrected_position = plan_get_position();
  2158. //uncorrected_position.debug("position during G29");
  2159. current_position[X_AXIS] = uncorrected_position.x;
  2160. current_position[Y_AXIS] = uncorrected_position.y;
  2161. current_position[Z_AXIS] = uncorrected_position.z;
  2162. sync_plan_position();
  2163. #endif // !DELTA
  2164. }
  2165. setup_for_endstop_move();
  2166. feedrate = homing_feedrate[Z_AXIS];
  2167. #ifdef AUTO_BED_LEVELING_GRID
  2168. // probe at the points of a lattice grid
  2169. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2170. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2171. #ifdef DELTA
  2172. delta_grid_spacing[0] = xGridSpacing;
  2173. delta_grid_spacing[1] = yGridSpacing;
  2174. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2175. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2176. #else // !DELTA
  2177. // solve the plane equation ax + by + d = z
  2178. // A is the matrix with rows [x y 1] for all the probed points
  2179. // B is the vector of the Z positions
  2180. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2181. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2182. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2183. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2184. eqnBVector[abl2], // "B" vector of Z points
  2185. mean = 0.0;
  2186. #endif // !DELTA
  2187. int probePointCounter = 0;
  2188. bool zig = true;
  2189. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2190. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2191. int xStart, xStop, xInc;
  2192. if (zig) {
  2193. xStart = 0;
  2194. xStop = auto_bed_leveling_grid_points;
  2195. xInc = 1;
  2196. }
  2197. else {
  2198. xStart = auto_bed_leveling_grid_points - 1;
  2199. xStop = -1;
  2200. xInc = -1;
  2201. }
  2202. #ifndef DELTA
  2203. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2204. // This gets the probe points in more readable order.
  2205. if (!do_topography_map) zig = !zig;
  2206. #endif
  2207. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2208. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2209. // raise extruder
  2210. float measured_z,
  2211. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2212. #ifdef DELTA
  2213. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2214. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2215. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2216. #endif //DELTA
  2217. ProbeAction act;
  2218. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2219. act = ProbeDeployAndStow;
  2220. else if (yCount == 0 && xCount == xStart)
  2221. act = ProbeDeploy;
  2222. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2223. act = ProbeStow;
  2224. else
  2225. act = ProbeStay;
  2226. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2227. #ifndef DELTA
  2228. mean += measured_z;
  2229. eqnBVector[probePointCounter] = measured_z;
  2230. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2231. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2232. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2233. #else
  2234. bed_level[xCount][yCount] = measured_z + z_offset;
  2235. #endif
  2236. probePointCounter++;
  2237. manage_heater();
  2238. manage_inactivity();
  2239. lcd_update();
  2240. } //xProbe
  2241. } //yProbe
  2242. clean_up_after_endstop_move();
  2243. #ifdef DELTA
  2244. if (!dryrun) extrapolate_unprobed_bed_level();
  2245. print_bed_level();
  2246. #else // !DELTA
  2247. // solve lsq problem
  2248. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2249. mean /= abl2;
  2250. if (verbose_level) {
  2251. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2252. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2253. SERIAL_PROTOCOLPGM(" b: ");
  2254. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2255. SERIAL_PROTOCOLPGM(" d: ");
  2256. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2257. SERIAL_EOL;
  2258. if (verbose_level > 2) {
  2259. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2260. SERIAL_PROTOCOL_F(mean, 8);
  2261. SERIAL_EOL;
  2262. }
  2263. }
  2264. // Show the Topography map if enabled
  2265. if (do_topography_map) {
  2266. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2267. SERIAL_PROTOCOLPGM("+-----------+\n");
  2268. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2269. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2270. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2271. SERIAL_PROTOCOLPGM("+-----------+\n");
  2272. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2273. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2274. int ind = yy * auto_bed_leveling_grid_points + xx;
  2275. float diff = eqnBVector[ind] - mean;
  2276. if (diff >= 0.0)
  2277. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2278. else
  2279. SERIAL_PROTOCOLCHAR(' ');
  2280. SERIAL_PROTOCOL_F(diff, 5);
  2281. } // xx
  2282. SERIAL_EOL;
  2283. } // yy
  2284. SERIAL_EOL;
  2285. } //do_topography_map
  2286. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2287. free(plane_equation_coefficients);
  2288. #endif //!DELTA
  2289. #else // !AUTO_BED_LEVELING_GRID
  2290. // Actions for each probe
  2291. ProbeAction p1, p2, p3;
  2292. if (deploy_probe_for_each_reading)
  2293. p1 = p2 = p3 = ProbeDeployAndStow;
  2294. else
  2295. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2296. // Probe at 3 arbitrary points
  2297. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2298. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2299. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2300. clean_up_after_endstop_move();
  2301. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2302. #endif // !AUTO_BED_LEVELING_GRID
  2303. #ifndef DELTA
  2304. if (verbose_level > 0)
  2305. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2306. if (!dryrun) {
  2307. // Correct the Z height difference from z-probe position and hotend tip position.
  2308. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2309. // When the bed is uneven, this height must be corrected.
  2310. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2311. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2312. z_tmp = current_position[Z_AXIS],
  2313. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2314. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2315. current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
  2316. sync_plan_position();
  2317. }
  2318. #endif // !DELTA
  2319. #ifdef Z_PROBE_SLED
  2320. dock_sled(true); // dock the probe
  2321. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2322. stow_z_probe();
  2323. #endif
  2324. #ifdef Z_PROBE_END_SCRIPT
  2325. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2326. st_synchronize();
  2327. #endif
  2328. }
  2329. #ifndef Z_PROBE_SLED
  2330. inline void gcode_G30() {
  2331. deploy_z_probe(); // Engage Z Servo endstop if available
  2332. st_synchronize();
  2333. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2334. setup_for_endstop_move();
  2335. feedrate = homing_feedrate[Z_AXIS];
  2336. run_z_probe();
  2337. SERIAL_PROTOCOLPGM("Bed X: ");
  2338. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2339. SERIAL_PROTOCOLPGM(" Y: ");
  2340. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2341. SERIAL_PROTOCOLPGM(" Z: ");
  2342. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2343. SERIAL_EOL;
  2344. clean_up_after_endstop_move();
  2345. stow_z_probe(); // Retract Z Servo endstop if available
  2346. }
  2347. #endif //!Z_PROBE_SLED
  2348. #endif //ENABLE_AUTO_BED_LEVELING
  2349. /**
  2350. * G92: Set current position to given X Y Z E
  2351. */
  2352. inline void gcode_G92() {
  2353. if (!code_seen(axis_codes[E_AXIS]))
  2354. st_synchronize();
  2355. bool didXYZ = false;
  2356. for (int i = 0; i < NUM_AXIS; i++) {
  2357. if (code_seen(axis_codes[i])) {
  2358. float v = current_position[i] = code_value();
  2359. if (i == E_AXIS)
  2360. plan_set_e_position(v);
  2361. else
  2362. didXYZ = true;
  2363. }
  2364. }
  2365. if (didXYZ) {
  2366. #if defined(DELTA) || defined(SCARA)
  2367. sync_plan_position_delta();
  2368. #else
  2369. sync_plan_position();
  2370. #endif
  2371. }
  2372. }
  2373. #ifdef ULTIPANEL
  2374. /**
  2375. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2376. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2377. */
  2378. inline void gcode_M0_M1() {
  2379. char *args = current_command_args;
  2380. millis_t codenum = 0;
  2381. bool hasP = false, hasS = false;
  2382. if (code_seen('P')) {
  2383. codenum = code_value_short(); // milliseconds to wait
  2384. hasP = codenum > 0;
  2385. }
  2386. if (code_seen('S')) {
  2387. codenum = code_value() * 1000; // seconds to wait
  2388. hasS = codenum > 0;
  2389. }
  2390. if (!hasP && !hasS && *args != '\0')
  2391. lcd_setstatus(args, true);
  2392. else {
  2393. LCD_MESSAGEPGM(MSG_USERWAIT);
  2394. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2395. dontExpireStatus();
  2396. #endif
  2397. }
  2398. lcd_ignore_click();
  2399. st_synchronize();
  2400. refresh_cmd_timeout();
  2401. if (codenum > 0) {
  2402. codenum += previous_cmd_ms; // keep track of when we started waiting
  2403. while(millis() < codenum && !lcd_clicked()) {
  2404. manage_heater();
  2405. manage_inactivity();
  2406. lcd_update();
  2407. }
  2408. lcd_ignore_click(false);
  2409. }
  2410. else {
  2411. if (!lcd_detected()) return;
  2412. while (!lcd_clicked()) {
  2413. manage_heater();
  2414. manage_inactivity();
  2415. lcd_update();
  2416. }
  2417. }
  2418. if (IS_SD_PRINTING)
  2419. LCD_MESSAGEPGM(MSG_RESUMING);
  2420. else
  2421. LCD_MESSAGEPGM(WELCOME_MSG);
  2422. }
  2423. #endif // ULTIPANEL
  2424. /**
  2425. * M17: Enable power on all stepper motors
  2426. */
  2427. inline void gcode_M17() {
  2428. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2429. enable_all_steppers();
  2430. }
  2431. #ifdef SDSUPPORT
  2432. /**
  2433. * M20: List SD card to serial output
  2434. */
  2435. inline void gcode_M20() {
  2436. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2437. card.ls();
  2438. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2439. }
  2440. /**
  2441. * M21: Init SD Card
  2442. */
  2443. inline void gcode_M21() {
  2444. card.initsd();
  2445. }
  2446. /**
  2447. * M22: Release SD Card
  2448. */
  2449. inline void gcode_M22() {
  2450. card.release();
  2451. }
  2452. /**
  2453. * M23: Select a file
  2454. */
  2455. inline void gcode_M23() {
  2456. card.openFile(current_command_args, true);
  2457. }
  2458. /**
  2459. * M24: Start SD Print
  2460. */
  2461. inline void gcode_M24() {
  2462. card.startFileprint();
  2463. print_job_start_ms = millis();
  2464. }
  2465. /**
  2466. * M25: Pause SD Print
  2467. */
  2468. inline void gcode_M25() {
  2469. card.pauseSDPrint();
  2470. }
  2471. /**
  2472. * M26: Set SD Card file index
  2473. */
  2474. inline void gcode_M26() {
  2475. if (card.cardOK && code_seen('S'))
  2476. card.setIndex(code_value_short());
  2477. }
  2478. /**
  2479. * M27: Get SD Card status
  2480. */
  2481. inline void gcode_M27() {
  2482. card.getStatus();
  2483. }
  2484. /**
  2485. * M28: Start SD Write
  2486. */
  2487. inline void gcode_M28() {
  2488. card.openFile(current_command_args, false);
  2489. }
  2490. /**
  2491. * M29: Stop SD Write
  2492. * Processed in write to file routine above
  2493. */
  2494. inline void gcode_M29() {
  2495. // card.saving = false;
  2496. }
  2497. /**
  2498. * M30 <filename>: Delete SD Card file
  2499. */
  2500. inline void gcode_M30() {
  2501. if (card.cardOK) {
  2502. card.closefile();
  2503. card.removeFile(current_command_args);
  2504. }
  2505. }
  2506. #endif
  2507. /**
  2508. * M31: Get the time since the start of SD Print (or last M109)
  2509. */
  2510. inline void gcode_M31() {
  2511. print_job_stop_ms = millis();
  2512. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2513. int min = t / 60, sec = t % 60;
  2514. char time[30];
  2515. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2516. SERIAL_ECHO_START;
  2517. SERIAL_ECHOLN(time);
  2518. lcd_setstatus(time);
  2519. autotempShutdown();
  2520. }
  2521. #ifdef SDSUPPORT
  2522. /**
  2523. * M32: Select file and start SD Print
  2524. */
  2525. inline void gcode_M32() {
  2526. if (card.sdprinting)
  2527. st_synchronize();
  2528. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2529. if (!namestartpos)
  2530. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2531. else
  2532. namestartpos++; //to skip the '!'
  2533. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2534. if (card.cardOK) {
  2535. card.openFile(namestartpos, true, !call_procedure);
  2536. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2537. card.setIndex(code_value_short());
  2538. card.startFileprint();
  2539. if (!call_procedure)
  2540. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2541. }
  2542. }
  2543. /**
  2544. * M928: Start SD Write
  2545. */
  2546. inline void gcode_M928() {
  2547. card.openLogFile(current_command_args);
  2548. }
  2549. #endif // SDSUPPORT
  2550. /**
  2551. * M42: Change pin status via GCode
  2552. */
  2553. inline void gcode_M42() {
  2554. if (code_seen('S')) {
  2555. int pin_status = code_value_short(),
  2556. pin_number = LED_PIN;
  2557. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2558. pin_number = code_value_short();
  2559. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2560. if (sensitive_pins[i] == pin_number) {
  2561. pin_number = -1;
  2562. break;
  2563. }
  2564. }
  2565. #if HAS_FAN
  2566. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2567. #endif
  2568. if (pin_number > -1) {
  2569. pinMode(pin_number, OUTPUT);
  2570. digitalWrite(pin_number, pin_status);
  2571. analogWrite(pin_number, pin_status);
  2572. }
  2573. } // code_seen('S')
  2574. }
  2575. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2576. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2577. #ifdef Z_PROBE_ENDSTOP
  2578. #if !HAS_Z_PROBE
  2579. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2580. #endif
  2581. #elif !HAS_Z_MIN
  2582. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2583. #endif
  2584. /**
  2585. * M48: Z-Probe repeatability measurement function.
  2586. *
  2587. * Usage:
  2588. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2589. * P = Number of sampled points (4-50, default 10)
  2590. * X = Sample X position
  2591. * Y = Sample Y position
  2592. * V = Verbose level (0-4, default=1)
  2593. * E = Engage probe for each reading
  2594. * L = Number of legs of movement before probe
  2595. *
  2596. * This function assumes the bed has been homed. Specifically, that a G28 command
  2597. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2598. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2599. * regenerated.
  2600. */
  2601. inline void gcode_M48() {
  2602. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2603. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2604. if (code_seen('V') || code_seen('v')) {
  2605. verbose_level = code_value_short();
  2606. if (verbose_level < 0 || verbose_level > 4 ) {
  2607. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2608. return;
  2609. }
  2610. }
  2611. if (verbose_level > 0)
  2612. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2613. if (code_seen('P') || code_seen('p')) {
  2614. n_samples = code_value_short();
  2615. if (n_samples < 4 || n_samples > 50) {
  2616. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2617. return;
  2618. }
  2619. }
  2620. double X_current = st_get_position_mm(X_AXIS),
  2621. Y_current = st_get_position_mm(Y_AXIS),
  2622. Z_current = st_get_position_mm(Z_AXIS),
  2623. E_current = st_get_position_mm(E_AXIS),
  2624. X_probe_location = X_current, Y_probe_location = Y_current,
  2625. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2626. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2627. if (code_seen('X') || code_seen('x')) {
  2628. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2629. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2630. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2631. return;
  2632. }
  2633. }
  2634. if (code_seen('Y') || code_seen('y')) {
  2635. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2636. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2637. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2638. return;
  2639. }
  2640. }
  2641. if (code_seen('L') || code_seen('l')) {
  2642. n_legs = code_value_short();
  2643. if (n_legs == 1) n_legs = 2;
  2644. if (n_legs < 0 || n_legs > 15) {
  2645. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2646. return;
  2647. }
  2648. }
  2649. //
  2650. // Do all the preliminary setup work. First raise the probe.
  2651. //
  2652. st_synchronize();
  2653. plan_bed_level_matrix.set_to_identity();
  2654. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2655. st_synchronize();
  2656. //
  2657. // Now get everything to the specified probe point So we can safely do a probe to
  2658. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2659. // use that as a starting point for each probe.
  2660. //
  2661. if (verbose_level > 2)
  2662. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2663. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2664. E_current,
  2665. homing_feedrate[X_AXIS]/60,
  2666. active_extruder);
  2667. st_synchronize();
  2668. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2669. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2670. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2671. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2672. //
  2673. // OK, do the initial probe to get us close to the bed.
  2674. // Then retrace the right amount and use that in subsequent probes
  2675. //
  2676. deploy_z_probe();
  2677. setup_for_endstop_move();
  2678. run_z_probe();
  2679. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2680. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2681. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2682. E_current,
  2683. homing_feedrate[X_AXIS]/60,
  2684. active_extruder);
  2685. st_synchronize();
  2686. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2687. if (deploy_probe_for_each_reading) stow_z_probe();
  2688. for (uint8_t n=0; n < n_samples; n++) {
  2689. // Make sure we are at the probe location
  2690. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2691. if (n_legs) {
  2692. millis_t ms = millis();
  2693. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2694. theta = RADIANS(ms % 360L);
  2695. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2696. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2697. //SERIAL_ECHOPAIR(" theta: ",theta);
  2698. //SERIAL_ECHOPAIR(" direction: ",dir);
  2699. //SERIAL_EOL;
  2700. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2701. ms = millis();
  2702. theta += RADIANS(dir * (ms % 20L));
  2703. radius += (ms % 10L) - 5L;
  2704. if (radius < 0.0) radius = -radius;
  2705. X_current = X_probe_location + cos(theta) * radius;
  2706. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2707. Y_current = Y_probe_location + sin(theta) * radius;
  2708. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2709. if (verbose_level > 3) {
  2710. SERIAL_ECHOPAIR("x: ", X_current);
  2711. SERIAL_ECHOPAIR("y: ", Y_current);
  2712. SERIAL_EOL;
  2713. }
  2714. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2715. } // n_legs loop
  2716. // Go back to the probe location
  2717. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2718. } // n_legs
  2719. if (deploy_probe_for_each_reading) {
  2720. deploy_z_probe();
  2721. delay(1000);
  2722. }
  2723. setup_for_endstop_move();
  2724. run_z_probe();
  2725. sample_set[n] = current_position[Z_AXIS];
  2726. //
  2727. // Get the current mean for the data points we have so far
  2728. //
  2729. sum = 0.0;
  2730. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2731. mean = sum / (n + 1);
  2732. //
  2733. // Now, use that mean to calculate the standard deviation for the
  2734. // data points we have so far
  2735. //
  2736. sum = 0.0;
  2737. for (uint8_t j = 0; j <= n; j++) {
  2738. float ss = sample_set[j] - mean;
  2739. sum += ss * ss;
  2740. }
  2741. sigma = sqrt(sum / (n + 1));
  2742. if (verbose_level > 1) {
  2743. SERIAL_PROTOCOL(n+1);
  2744. SERIAL_PROTOCOLPGM(" of ");
  2745. SERIAL_PROTOCOL(n_samples);
  2746. SERIAL_PROTOCOLPGM(" z: ");
  2747. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2748. if (verbose_level > 2) {
  2749. SERIAL_PROTOCOLPGM(" mean: ");
  2750. SERIAL_PROTOCOL_F(mean,6);
  2751. SERIAL_PROTOCOLPGM(" sigma: ");
  2752. SERIAL_PROTOCOL_F(sigma,6);
  2753. }
  2754. }
  2755. if (verbose_level > 0) SERIAL_EOL;
  2756. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2757. st_synchronize();
  2758. // Stow between
  2759. if (deploy_probe_for_each_reading) {
  2760. stow_z_probe();
  2761. delay(1000);
  2762. }
  2763. }
  2764. // Stow after
  2765. if (!deploy_probe_for_each_reading) {
  2766. stow_z_probe();
  2767. delay(1000);
  2768. }
  2769. clean_up_after_endstop_move();
  2770. if (verbose_level > 0) {
  2771. SERIAL_PROTOCOLPGM("Mean: ");
  2772. SERIAL_PROTOCOL_F(mean, 6);
  2773. SERIAL_EOL;
  2774. }
  2775. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2776. SERIAL_PROTOCOL_F(sigma, 6);
  2777. SERIAL_EOL; SERIAL_EOL;
  2778. }
  2779. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2780. /**
  2781. * M104: Set hot end temperature
  2782. */
  2783. inline void gcode_M104() {
  2784. if (setTargetedHotend(104)) return;
  2785. if (code_seen('S')) {
  2786. float temp = code_value();
  2787. setTargetHotend(temp, target_extruder);
  2788. #ifdef DUAL_X_CARRIAGE
  2789. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2790. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2791. #endif
  2792. #ifdef THERMAL_PROTECTION_HOTENDS
  2793. start_watching_heater(target_extruder);
  2794. #endif
  2795. }
  2796. }
  2797. /**
  2798. * M105: Read hot end and bed temperature
  2799. */
  2800. inline void gcode_M105() {
  2801. if (setTargetedHotend(105)) return;
  2802. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2803. SERIAL_PROTOCOLPGM(MSG_OK);
  2804. #if HAS_TEMP_0
  2805. SERIAL_PROTOCOLPGM(" T:");
  2806. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2807. SERIAL_PROTOCOLPGM(" /");
  2808. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2809. #endif
  2810. #if HAS_TEMP_BED
  2811. SERIAL_PROTOCOLPGM(" B:");
  2812. SERIAL_PROTOCOL_F(degBed(), 1);
  2813. SERIAL_PROTOCOLPGM(" /");
  2814. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2815. #endif
  2816. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2817. SERIAL_PROTOCOLPGM(" T");
  2818. SERIAL_PROTOCOL(e);
  2819. SERIAL_PROTOCOLCHAR(':');
  2820. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2821. SERIAL_PROTOCOLPGM(" /");
  2822. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2823. }
  2824. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2825. SERIAL_ERROR_START;
  2826. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2827. #endif
  2828. SERIAL_PROTOCOLPGM(" @:");
  2829. #ifdef EXTRUDER_WATTS
  2830. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2831. SERIAL_PROTOCOLCHAR('W');
  2832. #else
  2833. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2834. #endif
  2835. SERIAL_PROTOCOLPGM(" B@:");
  2836. #ifdef BED_WATTS
  2837. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2838. SERIAL_PROTOCOLCHAR('W');
  2839. #else
  2840. SERIAL_PROTOCOL(getHeaterPower(-1));
  2841. #endif
  2842. #ifdef SHOW_TEMP_ADC_VALUES
  2843. #if HAS_TEMP_BED
  2844. SERIAL_PROTOCOLPGM(" ADC B:");
  2845. SERIAL_PROTOCOL_F(degBed(),1);
  2846. SERIAL_PROTOCOLPGM("C->");
  2847. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2848. #endif
  2849. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2850. SERIAL_PROTOCOLPGM(" T");
  2851. SERIAL_PROTOCOL(cur_extruder);
  2852. SERIAL_PROTOCOLCHAR(':');
  2853. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2854. SERIAL_PROTOCOLPGM("C->");
  2855. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2856. }
  2857. #endif
  2858. SERIAL_EOL;
  2859. }
  2860. #if HAS_FAN
  2861. /**
  2862. * M106: Set Fan Speed
  2863. */
  2864. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2865. /**
  2866. * M107: Fan Off
  2867. */
  2868. inline void gcode_M107() { fanSpeed = 0; }
  2869. #endif // HAS_FAN
  2870. /**
  2871. * M109: Wait for extruder(s) to reach temperature
  2872. */
  2873. inline void gcode_M109() {
  2874. if (setTargetedHotend(109)) return;
  2875. LCD_MESSAGEPGM(MSG_HEATING);
  2876. no_wait_for_cooling = code_seen('S');
  2877. if (no_wait_for_cooling || code_seen('R')) {
  2878. float temp = code_value();
  2879. setTargetHotend(temp, target_extruder);
  2880. #ifdef DUAL_X_CARRIAGE
  2881. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2882. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2883. #endif
  2884. }
  2885. #ifdef AUTOTEMP
  2886. autotemp_enabled = code_seen('F');
  2887. if (autotemp_enabled) autotemp_factor = code_value();
  2888. if (code_seen('S')) autotemp_min = code_value();
  2889. if (code_seen('B')) autotemp_max = code_value();
  2890. #endif
  2891. #ifdef THERMAL_PROTECTION_HOTENDS
  2892. start_watching_heater(target_extruder);
  2893. #endif
  2894. millis_t temp_ms = millis();
  2895. /* See if we are heating up or cooling down */
  2896. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2897. cancel_heatup = false;
  2898. #ifdef TEMP_RESIDENCY_TIME
  2899. long residency_start_ms = -1;
  2900. /* continue to loop until we have reached the target temp
  2901. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2902. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2903. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2904. #else
  2905. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2906. #endif //TEMP_RESIDENCY_TIME
  2907. { // while loop
  2908. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2909. SERIAL_PROTOCOLPGM("T:");
  2910. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2911. SERIAL_PROTOCOLPGM(" E:");
  2912. SERIAL_PROTOCOL((int)target_extruder);
  2913. #ifdef TEMP_RESIDENCY_TIME
  2914. SERIAL_PROTOCOLPGM(" W:");
  2915. if (residency_start_ms > -1) {
  2916. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2917. SERIAL_PROTOCOLLN(temp_ms);
  2918. }
  2919. else {
  2920. SERIAL_PROTOCOLLNPGM("?");
  2921. }
  2922. #else
  2923. SERIAL_EOL;
  2924. #endif
  2925. temp_ms = millis();
  2926. }
  2927. manage_heater();
  2928. manage_inactivity();
  2929. lcd_update();
  2930. #ifdef TEMP_RESIDENCY_TIME
  2931. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2932. // or when current temp falls outside the hysteresis after target temp was reached
  2933. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2934. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2935. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2936. {
  2937. residency_start_ms = millis();
  2938. }
  2939. #endif //TEMP_RESIDENCY_TIME
  2940. }
  2941. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2942. refresh_cmd_timeout();
  2943. print_job_start_ms = previous_cmd_ms;
  2944. }
  2945. #if HAS_TEMP_BED
  2946. /**
  2947. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2948. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2949. */
  2950. inline void gcode_M190() {
  2951. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2952. no_wait_for_cooling = code_seen('S');
  2953. if (no_wait_for_cooling || code_seen('R'))
  2954. setTargetBed(code_value());
  2955. millis_t temp_ms = millis();
  2956. cancel_heatup = false;
  2957. target_direction = isHeatingBed(); // true if heating, false if cooling
  2958. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2959. millis_t ms = millis();
  2960. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2961. temp_ms = ms;
  2962. float tt = degHotend(active_extruder);
  2963. SERIAL_PROTOCOLPGM("T:");
  2964. SERIAL_PROTOCOL(tt);
  2965. SERIAL_PROTOCOLPGM(" E:");
  2966. SERIAL_PROTOCOL((int)active_extruder);
  2967. SERIAL_PROTOCOLPGM(" B:");
  2968. SERIAL_PROTOCOL_F(degBed(), 1);
  2969. SERIAL_EOL;
  2970. }
  2971. manage_heater();
  2972. manage_inactivity();
  2973. lcd_update();
  2974. }
  2975. LCD_MESSAGEPGM(MSG_BED_DONE);
  2976. refresh_cmd_timeout();
  2977. }
  2978. #endif // HAS_TEMP_BED
  2979. /**
  2980. * M111: Set the debug level
  2981. */
  2982. inline void gcode_M111() {
  2983. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2984. }
  2985. /**
  2986. * M112: Emergency Stop
  2987. */
  2988. inline void gcode_M112() { kill(); }
  2989. #ifdef BARICUDA
  2990. #if HAS_HEATER_1
  2991. /**
  2992. * M126: Heater 1 valve open
  2993. */
  2994. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2995. /**
  2996. * M127: Heater 1 valve close
  2997. */
  2998. inline void gcode_M127() { ValvePressure = 0; }
  2999. #endif
  3000. #if HAS_HEATER_2
  3001. /**
  3002. * M128: Heater 2 valve open
  3003. */
  3004. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3005. /**
  3006. * M129: Heater 2 valve close
  3007. */
  3008. inline void gcode_M129() { EtoPPressure = 0; }
  3009. #endif
  3010. #endif //BARICUDA
  3011. /**
  3012. * M140: Set bed temperature
  3013. */
  3014. inline void gcode_M140() {
  3015. if (code_seen('S')) setTargetBed(code_value());
  3016. }
  3017. #ifdef ULTIPANEL
  3018. /**
  3019. * M145: Set the heatup state for a material in the LCD menu
  3020. * S<material> (0=PLA, 1=ABS)
  3021. * H<hotend temp>
  3022. * B<bed temp>
  3023. * F<fan speed>
  3024. */
  3025. inline void gcode_M145() {
  3026. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3027. if (material < 0 || material > 1) {
  3028. SERIAL_ERROR_START;
  3029. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3030. }
  3031. else {
  3032. int v;
  3033. switch (material) {
  3034. case 0:
  3035. if (code_seen('H')) {
  3036. v = code_value_short();
  3037. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3038. }
  3039. if (code_seen('F')) {
  3040. v = code_value_short();
  3041. plaPreheatFanSpeed = constrain(v, 0, 255);
  3042. }
  3043. #if TEMP_SENSOR_BED != 0
  3044. if (code_seen('B')) {
  3045. v = code_value_short();
  3046. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3047. }
  3048. #endif
  3049. break;
  3050. case 1:
  3051. if (code_seen('H')) {
  3052. v = code_value_short();
  3053. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3054. }
  3055. if (code_seen('F')) {
  3056. v = code_value_short();
  3057. absPreheatFanSpeed = constrain(v, 0, 255);
  3058. }
  3059. #if TEMP_SENSOR_BED != 0
  3060. if (code_seen('B')) {
  3061. v = code_value_short();
  3062. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3063. }
  3064. #endif
  3065. break;
  3066. }
  3067. }
  3068. }
  3069. #endif
  3070. #if HAS_POWER_SWITCH
  3071. /**
  3072. * M80: Turn on Power Supply
  3073. */
  3074. inline void gcode_M80() {
  3075. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3076. // If you have a switch on suicide pin, this is useful
  3077. // if you want to start another print with suicide feature after
  3078. // a print without suicide...
  3079. #if HAS_SUICIDE
  3080. OUT_WRITE(SUICIDE_PIN, HIGH);
  3081. #endif
  3082. #ifdef ULTIPANEL
  3083. powersupply = true;
  3084. LCD_MESSAGEPGM(WELCOME_MSG);
  3085. lcd_update();
  3086. #endif
  3087. }
  3088. #endif // HAS_POWER_SWITCH
  3089. /**
  3090. * M81: Turn off Power, including Power Supply, if there is one.
  3091. *
  3092. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3093. */
  3094. inline void gcode_M81() {
  3095. disable_all_heaters();
  3096. st_synchronize();
  3097. disable_e0();
  3098. disable_e1();
  3099. disable_e2();
  3100. disable_e3();
  3101. finishAndDisableSteppers();
  3102. fanSpeed = 0;
  3103. delay(1000); // Wait 1 second before switching off
  3104. #if HAS_SUICIDE
  3105. st_synchronize();
  3106. suicide();
  3107. #elif HAS_POWER_SWITCH
  3108. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3109. #endif
  3110. #ifdef ULTIPANEL
  3111. #if HAS_POWER_SWITCH
  3112. powersupply = false;
  3113. #endif
  3114. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3115. lcd_update();
  3116. #endif
  3117. }
  3118. /**
  3119. * M82: Set E codes absolute (default)
  3120. */
  3121. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3122. /**
  3123. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3124. */
  3125. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3126. /**
  3127. * M18, M84: Disable all stepper motors
  3128. */
  3129. inline void gcode_M18_M84() {
  3130. if (code_seen('S')) {
  3131. stepper_inactive_time = code_value() * 1000;
  3132. }
  3133. else {
  3134. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3135. if (all_axis) {
  3136. st_synchronize();
  3137. disable_e0();
  3138. disable_e1();
  3139. disable_e2();
  3140. disable_e3();
  3141. finishAndDisableSteppers();
  3142. }
  3143. else {
  3144. st_synchronize();
  3145. if (code_seen('X')) disable_x();
  3146. if (code_seen('Y')) disable_y();
  3147. if (code_seen('Z')) disable_z();
  3148. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3149. if (code_seen('E')) {
  3150. disable_e0();
  3151. disable_e1();
  3152. disable_e2();
  3153. disable_e3();
  3154. }
  3155. #endif
  3156. }
  3157. }
  3158. }
  3159. /**
  3160. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3161. */
  3162. inline void gcode_M85() {
  3163. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3164. }
  3165. /**
  3166. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3167. * (Follows the same syntax as G92)
  3168. */
  3169. inline void gcode_M92() {
  3170. for(int8_t i=0; i < NUM_AXIS; i++) {
  3171. if (code_seen(axis_codes[i])) {
  3172. if (i == E_AXIS) {
  3173. float value = code_value();
  3174. if (value < 20.0) {
  3175. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3176. max_e_jerk *= factor;
  3177. max_feedrate[i] *= factor;
  3178. axis_steps_per_sqr_second[i] *= factor;
  3179. }
  3180. axis_steps_per_unit[i] = value;
  3181. }
  3182. else {
  3183. axis_steps_per_unit[i] = code_value();
  3184. }
  3185. }
  3186. }
  3187. }
  3188. /**
  3189. * M114: Output current position to serial port
  3190. */
  3191. inline void gcode_M114() {
  3192. SERIAL_PROTOCOLPGM("X:");
  3193. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3194. SERIAL_PROTOCOLPGM(" Y:");
  3195. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3196. SERIAL_PROTOCOLPGM(" Z:");
  3197. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3198. SERIAL_PROTOCOLPGM(" E:");
  3199. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3200. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3201. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3202. SERIAL_PROTOCOLPGM(" Y:");
  3203. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3204. SERIAL_PROTOCOLPGM(" Z:");
  3205. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3206. SERIAL_EOL;
  3207. #ifdef SCARA
  3208. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3209. SERIAL_PROTOCOL(delta[X_AXIS]);
  3210. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3211. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3212. SERIAL_EOL;
  3213. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3214. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3215. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3216. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3217. SERIAL_EOL;
  3218. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3219. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3220. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3221. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3222. SERIAL_EOL; SERIAL_EOL;
  3223. #endif
  3224. }
  3225. /**
  3226. * M115: Capabilities string
  3227. */
  3228. inline void gcode_M115() {
  3229. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3230. }
  3231. /**
  3232. * M117: Set LCD Status Message
  3233. */
  3234. inline void gcode_M117() {
  3235. lcd_setstatus(current_command_args);
  3236. }
  3237. /**
  3238. * M119: Output endstop states to serial output
  3239. */
  3240. inline void gcode_M119() {
  3241. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3242. #if HAS_X_MIN
  3243. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3244. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3245. #endif
  3246. #if HAS_X_MAX
  3247. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3248. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3249. #endif
  3250. #if HAS_Y_MIN
  3251. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3252. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3253. #endif
  3254. #if HAS_Y_MAX
  3255. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3256. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3257. #endif
  3258. #if HAS_Z_MIN
  3259. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3260. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3261. #endif
  3262. #if HAS_Z_MAX
  3263. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3264. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3265. #endif
  3266. #if HAS_Z2_MAX
  3267. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3268. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3269. #endif
  3270. #if HAS_Z_PROBE
  3271. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3272. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3273. #endif
  3274. }
  3275. /**
  3276. * M120: Enable endstops
  3277. */
  3278. inline void gcode_M120() { enable_endstops(false); }
  3279. /**
  3280. * M121: Disable endstops
  3281. */
  3282. inline void gcode_M121() { enable_endstops(true); }
  3283. #ifdef BLINKM
  3284. /**
  3285. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3286. */
  3287. inline void gcode_M150() {
  3288. SendColors(
  3289. code_seen('R') ? (byte)code_value_short() : 0,
  3290. code_seen('U') ? (byte)code_value_short() : 0,
  3291. code_seen('B') ? (byte)code_value_short() : 0
  3292. );
  3293. }
  3294. #endif // BLINKM
  3295. /**
  3296. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3297. * T<extruder>
  3298. * D<millimeters>
  3299. */
  3300. inline void gcode_M200() {
  3301. int tmp_extruder = active_extruder;
  3302. if (code_seen('T')) {
  3303. tmp_extruder = code_value_short();
  3304. if (tmp_extruder >= EXTRUDERS) {
  3305. SERIAL_ECHO_START;
  3306. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3307. return;
  3308. }
  3309. }
  3310. if (code_seen('D')) {
  3311. float diameter = code_value();
  3312. // setting any extruder filament size disables volumetric on the assumption that
  3313. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3314. // for all extruders
  3315. volumetric_enabled = (diameter != 0.0);
  3316. if (volumetric_enabled) {
  3317. filament_size[tmp_extruder] = diameter;
  3318. // make sure all extruders have some sane value for the filament size
  3319. for (int i=0; i<EXTRUDERS; i++)
  3320. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3321. }
  3322. }
  3323. else {
  3324. //reserved for setting filament diameter via UFID or filament measuring device
  3325. return;
  3326. }
  3327. calculate_volumetric_multipliers();
  3328. }
  3329. /**
  3330. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3331. */
  3332. inline void gcode_M201() {
  3333. for (int8_t i=0; i < NUM_AXIS; i++) {
  3334. if (code_seen(axis_codes[i])) {
  3335. max_acceleration_units_per_sq_second[i] = code_value();
  3336. }
  3337. }
  3338. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3339. reset_acceleration_rates();
  3340. }
  3341. #if 0 // Not used for Sprinter/grbl gen6
  3342. inline void gcode_M202() {
  3343. for(int8_t i=0; i < NUM_AXIS; i++) {
  3344. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3345. }
  3346. }
  3347. #endif
  3348. /**
  3349. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3350. */
  3351. inline void gcode_M203() {
  3352. for (int8_t i=0; i < NUM_AXIS; i++) {
  3353. if (code_seen(axis_codes[i])) {
  3354. max_feedrate[i] = code_value();
  3355. }
  3356. }
  3357. }
  3358. /**
  3359. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3360. *
  3361. * P = Printing moves
  3362. * R = Retract only (no X, Y, Z) moves
  3363. * T = Travel (non printing) moves
  3364. *
  3365. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3366. */
  3367. inline void gcode_M204() {
  3368. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3369. acceleration = code_value();
  3370. travel_acceleration = acceleration;
  3371. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3372. SERIAL_EOL;
  3373. }
  3374. if (code_seen('P')) {
  3375. acceleration = code_value();
  3376. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3377. SERIAL_EOL;
  3378. }
  3379. if (code_seen('R')) {
  3380. retract_acceleration = code_value();
  3381. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3382. SERIAL_EOL;
  3383. }
  3384. if (code_seen('T')) {
  3385. travel_acceleration = code_value();
  3386. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3387. SERIAL_EOL;
  3388. }
  3389. }
  3390. /**
  3391. * M205: Set Advanced Settings
  3392. *
  3393. * S = Min Feed Rate (mm/s)
  3394. * T = Min Travel Feed Rate (mm/s)
  3395. * B = Min Segment Time (µs)
  3396. * X = Max XY Jerk (mm/s/s)
  3397. * Z = Max Z Jerk (mm/s/s)
  3398. * E = Max E Jerk (mm/s/s)
  3399. */
  3400. inline void gcode_M205() {
  3401. if (code_seen('S')) minimumfeedrate = code_value();
  3402. if (code_seen('T')) mintravelfeedrate = code_value();
  3403. if (code_seen('B')) minsegmenttime = code_value();
  3404. if (code_seen('X')) max_xy_jerk = code_value();
  3405. if (code_seen('Z')) max_z_jerk = code_value();
  3406. if (code_seen('E')) max_e_jerk = code_value();
  3407. }
  3408. /**
  3409. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3410. */
  3411. inline void gcode_M206() {
  3412. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3413. if (code_seen(axis_codes[i])) {
  3414. home_offset[i] = code_value();
  3415. }
  3416. }
  3417. #ifdef SCARA
  3418. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3419. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3420. #endif
  3421. }
  3422. #ifdef DELTA
  3423. /**
  3424. * M665: Set delta configurations
  3425. *
  3426. * L = diagonal rod
  3427. * R = delta radius
  3428. * S = segments per second
  3429. */
  3430. inline void gcode_M665() {
  3431. if (code_seen('L')) delta_diagonal_rod = code_value();
  3432. if (code_seen('R')) delta_radius = code_value();
  3433. if (code_seen('S')) delta_segments_per_second = code_value();
  3434. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3435. }
  3436. /**
  3437. * M666: Set delta endstop adjustment
  3438. */
  3439. inline void gcode_M666() {
  3440. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3441. if (code_seen(axis_codes[i])) {
  3442. endstop_adj[i] = code_value();
  3443. }
  3444. }
  3445. }
  3446. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3447. /**
  3448. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3449. */
  3450. inline void gcode_M666() {
  3451. if (code_seen('Z')) z_endstop_adj = code_value();
  3452. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3453. SERIAL_EOL;
  3454. }
  3455. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3456. #ifdef FWRETRACT
  3457. /**
  3458. * M207: Set firmware retraction values
  3459. *
  3460. * S[+mm] retract_length
  3461. * W[+mm] retract_length_swap (multi-extruder)
  3462. * F[mm/min] retract_feedrate
  3463. * Z[mm] retract_zlift
  3464. */
  3465. inline void gcode_M207() {
  3466. if (code_seen('S')) retract_length = code_value();
  3467. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3468. if (code_seen('Z')) retract_zlift = code_value();
  3469. #if EXTRUDERS > 1
  3470. if (code_seen('W')) retract_length_swap = code_value();
  3471. #endif
  3472. }
  3473. /**
  3474. * M208: Set firmware un-retraction values
  3475. *
  3476. * S[+mm] retract_recover_length (in addition to M207 S*)
  3477. * W[+mm] retract_recover_length_swap (multi-extruder)
  3478. * F[mm/min] retract_recover_feedrate
  3479. */
  3480. inline void gcode_M208() {
  3481. if (code_seen('S')) retract_recover_length = code_value();
  3482. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3483. #if EXTRUDERS > 1
  3484. if (code_seen('W')) retract_recover_length_swap = code_value();
  3485. #endif
  3486. }
  3487. /**
  3488. * M209: Enable automatic retract (M209 S1)
  3489. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3490. */
  3491. inline void gcode_M209() {
  3492. if (code_seen('S')) {
  3493. int t = code_value_short();
  3494. switch(t) {
  3495. case 0:
  3496. autoretract_enabled = false;
  3497. break;
  3498. case 1:
  3499. autoretract_enabled = true;
  3500. break;
  3501. default:
  3502. unknown_command_error();
  3503. return;
  3504. }
  3505. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3506. }
  3507. }
  3508. #endif // FWRETRACT
  3509. #if EXTRUDERS > 1
  3510. /**
  3511. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3512. */
  3513. inline void gcode_M218() {
  3514. if (setTargetedHotend(218)) return;
  3515. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3516. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3517. #ifdef DUAL_X_CARRIAGE
  3518. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3519. #endif
  3520. SERIAL_ECHO_START;
  3521. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3522. for (int e = 0; e < EXTRUDERS; e++) {
  3523. SERIAL_CHAR(' ');
  3524. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3525. SERIAL_CHAR(',');
  3526. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3527. #ifdef DUAL_X_CARRIAGE
  3528. SERIAL_CHAR(',');
  3529. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3530. #endif
  3531. }
  3532. SERIAL_EOL;
  3533. }
  3534. #endif // EXTRUDERS > 1
  3535. /**
  3536. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3537. */
  3538. inline void gcode_M220() {
  3539. if (code_seen('S')) feedrate_multiplier = code_value();
  3540. }
  3541. /**
  3542. * M221: Set extrusion percentage (M221 T0 S95)
  3543. */
  3544. inline void gcode_M221() {
  3545. if (code_seen('S')) {
  3546. int sval = code_value();
  3547. if (code_seen('T')) {
  3548. if (setTargetedHotend(221)) return;
  3549. extruder_multiply[target_extruder] = sval;
  3550. }
  3551. else {
  3552. extruder_multiply[active_extruder] = sval;
  3553. }
  3554. }
  3555. }
  3556. /**
  3557. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3558. */
  3559. inline void gcode_M226() {
  3560. if (code_seen('P')) {
  3561. int pin_number = code_value();
  3562. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3563. if (pin_state >= -1 && pin_state <= 1) {
  3564. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3565. if (sensitive_pins[i] == pin_number) {
  3566. pin_number = -1;
  3567. break;
  3568. }
  3569. }
  3570. if (pin_number > -1) {
  3571. int target = LOW;
  3572. st_synchronize();
  3573. pinMode(pin_number, INPUT);
  3574. switch(pin_state){
  3575. case 1:
  3576. target = HIGH;
  3577. break;
  3578. case 0:
  3579. target = LOW;
  3580. break;
  3581. case -1:
  3582. target = !digitalRead(pin_number);
  3583. break;
  3584. }
  3585. while(digitalRead(pin_number) != target) {
  3586. manage_heater();
  3587. manage_inactivity();
  3588. lcd_update();
  3589. }
  3590. } // pin_number > -1
  3591. } // pin_state -1 0 1
  3592. } // code_seen('P')
  3593. }
  3594. #if NUM_SERVOS > 0
  3595. /**
  3596. * M280: Get or set servo position. P<index> S<angle>
  3597. */
  3598. inline void gcode_M280() {
  3599. int servo_index = code_seen('P') ? code_value_short() : -1;
  3600. int servo_position = 0;
  3601. if (code_seen('S')) {
  3602. servo_position = code_value_short();
  3603. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3604. Servo *srv = &servo[servo_index];
  3605. #if SERVO_LEVELING
  3606. srv->attach(0);
  3607. #endif
  3608. srv->write(servo_position);
  3609. #if SERVO_LEVELING
  3610. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3611. srv->detach();
  3612. #endif
  3613. }
  3614. else {
  3615. SERIAL_ECHO_START;
  3616. SERIAL_ECHO("Servo ");
  3617. SERIAL_ECHO(servo_index);
  3618. SERIAL_ECHOLN(" out of range");
  3619. }
  3620. }
  3621. else if (servo_index >= 0) {
  3622. SERIAL_PROTOCOL(MSG_OK);
  3623. SERIAL_PROTOCOL(" Servo ");
  3624. SERIAL_PROTOCOL(servo_index);
  3625. SERIAL_PROTOCOL(": ");
  3626. SERIAL_PROTOCOL(servo[servo_index].read());
  3627. SERIAL_EOL;
  3628. }
  3629. }
  3630. #endif // NUM_SERVOS > 0
  3631. #if HAS_LCD_BUZZ
  3632. /**
  3633. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3634. */
  3635. inline void gcode_M300() {
  3636. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3637. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3638. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3639. lcd_buzz(beepP, beepS);
  3640. }
  3641. #endif // HAS_LCD_BUZZ
  3642. #ifdef PIDTEMP
  3643. /**
  3644. * M301: Set PID parameters P I D (and optionally C)
  3645. */
  3646. inline void gcode_M301() {
  3647. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3648. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3649. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3650. if (e < EXTRUDERS) { // catch bad input value
  3651. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3652. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3653. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3654. #ifdef PID_ADD_EXTRUSION_RATE
  3655. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3656. #endif
  3657. updatePID();
  3658. SERIAL_PROTOCOL(MSG_OK);
  3659. #ifdef PID_PARAMS_PER_EXTRUDER
  3660. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3661. SERIAL_PROTOCOL(e);
  3662. #endif // PID_PARAMS_PER_EXTRUDER
  3663. SERIAL_PROTOCOL(" p:");
  3664. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3665. SERIAL_PROTOCOL(" i:");
  3666. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3667. SERIAL_PROTOCOL(" d:");
  3668. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3669. #ifdef PID_ADD_EXTRUSION_RATE
  3670. SERIAL_PROTOCOL(" c:");
  3671. //Kc does not have scaling applied above, or in resetting defaults
  3672. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3673. #endif
  3674. SERIAL_EOL;
  3675. }
  3676. else {
  3677. SERIAL_ECHO_START;
  3678. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3679. }
  3680. }
  3681. #endif // PIDTEMP
  3682. #ifdef PIDTEMPBED
  3683. inline void gcode_M304() {
  3684. if (code_seen('P')) bedKp = code_value();
  3685. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3686. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3687. updatePID();
  3688. SERIAL_PROTOCOL(MSG_OK);
  3689. SERIAL_PROTOCOL(" p:");
  3690. SERIAL_PROTOCOL(bedKp);
  3691. SERIAL_PROTOCOL(" i:");
  3692. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3693. SERIAL_PROTOCOL(" d:");
  3694. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3695. SERIAL_EOL;
  3696. }
  3697. #endif // PIDTEMPBED
  3698. #if defined(CHDK) || HAS_PHOTOGRAPH
  3699. /**
  3700. * M240: Trigger a camera by emulating a Canon RC-1
  3701. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3702. */
  3703. inline void gcode_M240() {
  3704. #ifdef CHDK
  3705. OUT_WRITE(CHDK, HIGH);
  3706. chdkHigh = millis();
  3707. chdkActive = true;
  3708. #elif HAS_PHOTOGRAPH
  3709. const uint8_t NUM_PULSES = 16;
  3710. const float PULSE_LENGTH = 0.01524;
  3711. for (int i = 0; i < NUM_PULSES; i++) {
  3712. WRITE(PHOTOGRAPH_PIN, HIGH);
  3713. _delay_ms(PULSE_LENGTH);
  3714. WRITE(PHOTOGRAPH_PIN, LOW);
  3715. _delay_ms(PULSE_LENGTH);
  3716. }
  3717. delay(7.33);
  3718. for (int i = 0; i < NUM_PULSES; i++) {
  3719. WRITE(PHOTOGRAPH_PIN, HIGH);
  3720. _delay_ms(PULSE_LENGTH);
  3721. WRITE(PHOTOGRAPH_PIN, LOW);
  3722. _delay_ms(PULSE_LENGTH);
  3723. }
  3724. #endif // !CHDK && HAS_PHOTOGRAPH
  3725. }
  3726. #endif // CHDK || PHOTOGRAPH_PIN
  3727. #ifdef HAS_LCD_CONTRAST
  3728. /**
  3729. * M250: Read and optionally set the LCD contrast
  3730. */
  3731. inline void gcode_M250() {
  3732. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3733. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3734. SERIAL_PROTOCOL(lcd_contrast);
  3735. SERIAL_EOL;
  3736. }
  3737. #endif // HAS_LCD_CONTRAST
  3738. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3739. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3740. /**
  3741. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3742. */
  3743. inline void gcode_M302() {
  3744. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3745. }
  3746. #endif // PREVENT_DANGEROUS_EXTRUDE
  3747. /**
  3748. * M303: PID relay autotune
  3749. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3750. * E<extruder> (-1 for the bed)
  3751. * C<cycles>
  3752. */
  3753. inline void gcode_M303() {
  3754. int e = code_seen('E') ? code_value_short() : 0;
  3755. int c = code_seen('C') ? code_value_short() : 5;
  3756. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3757. PID_autotune(temp, e, c);
  3758. }
  3759. #ifdef SCARA
  3760. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3761. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3762. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3763. if (IsRunning()) {
  3764. //gcode_get_destination(); // For X Y Z E F
  3765. delta[X_AXIS] = delta_x;
  3766. delta[Y_AXIS] = delta_y;
  3767. calculate_SCARA_forward_Transform(delta);
  3768. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3769. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3770. prepare_move();
  3771. //ok_to_send();
  3772. return true;
  3773. }
  3774. return false;
  3775. }
  3776. /**
  3777. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3778. */
  3779. inline bool gcode_M360() {
  3780. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3781. return SCARA_move_to_cal(0, 120);
  3782. }
  3783. /**
  3784. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3785. */
  3786. inline bool gcode_M361() {
  3787. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3788. return SCARA_move_to_cal(90, 130);
  3789. }
  3790. /**
  3791. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3792. */
  3793. inline bool gcode_M362() {
  3794. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3795. return SCARA_move_to_cal(60, 180);
  3796. }
  3797. /**
  3798. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3799. */
  3800. inline bool gcode_M363() {
  3801. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3802. return SCARA_move_to_cal(50, 90);
  3803. }
  3804. /**
  3805. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3806. */
  3807. inline bool gcode_M364() {
  3808. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3809. return SCARA_move_to_cal(45, 135);
  3810. }
  3811. /**
  3812. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3813. */
  3814. inline void gcode_M365() {
  3815. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3816. if (code_seen(axis_codes[i])) {
  3817. axis_scaling[i] = code_value();
  3818. }
  3819. }
  3820. }
  3821. #endif // SCARA
  3822. #ifdef EXT_SOLENOID
  3823. void enable_solenoid(uint8_t num) {
  3824. switch(num) {
  3825. case 0:
  3826. OUT_WRITE(SOL0_PIN, HIGH);
  3827. break;
  3828. #if HAS_SOLENOID_1
  3829. case 1:
  3830. OUT_WRITE(SOL1_PIN, HIGH);
  3831. break;
  3832. #endif
  3833. #if HAS_SOLENOID_2
  3834. case 2:
  3835. OUT_WRITE(SOL2_PIN, HIGH);
  3836. break;
  3837. #endif
  3838. #if HAS_SOLENOID_3
  3839. case 3:
  3840. OUT_WRITE(SOL3_PIN, HIGH);
  3841. break;
  3842. #endif
  3843. default:
  3844. SERIAL_ECHO_START;
  3845. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3846. break;
  3847. }
  3848. }
  3849. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3850. void disable_all_solenoids() {
  3851. OUT_WRITE(SOL0_PIN, LOW);
  3852. OUT_WRITE(SOL1_PIN, LOW);
  3853. OUT_WRITE(SOL2_PIN, LOW);
  3854. OUT_WRITE(SOL3_PIN, LOW);
  3855. }
  3856. /**
  3857. * M380: Enable solenoid on the active extruder
  3858. */
  3859. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3860. /**
  3861. * M381: Disable all solenoids
  3862. */
  3863. inline void gcode_M381() { disable_all_solenoids(); }
  3864. #endif // EXT_SOLENOID
  3865. /**
  3866. * M400: Finish all moves
  3867. */
  3868. inline void gcode_M400() { st_synchronize(); }
  3869. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3870. #ifdef SERVO_ENDSTOPS
  3871. void raise_z_for_servo() {
  3872. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3873. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3874. if (zpos < z_dest)
  3875. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3876. }
  3877. #endif
  3878. /**
  3879. * M401: Engage Z Servo endstop if available
  3880. */
  3881. inline void gcode_M401() {
  3882. #ifdef SERVO_ENDSTOPS
  3883. raise_z_for_servo();
  3884. #endif
  3885. deploy_z_probe();
  3886. }
  3887. /**
  3888. * M402: Retract Z Servo endstop if enabled
  3889. */
  3890. inline void gcode_M402() {
  3891. #ifdef SERVO_ENDSTOPS
  3892. raise_z_for_servo();
  3893. #endif
  3894. stow_z_probe(false);
  3895. }
  3896. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3897. #ifdef FILAMENT_SENSOR
  3898. /**
  3899. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3900. */
  3901. inline void gcode_M404() {
  3902. #if HAS_FILWIDTH
  3903. if (code_seen('W')) {
  3904. filament_width_nominal = code_value();
  3905. }
  3906. else {
  3907. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3908. SERIAL_PROTOCOLLN(filament_width_nominal);
  3909. }
  3910. #endif
  3911. }
  3912. /**
  3913. * M405: Turn on filament sensor for control
  3914. */
  3915. inline void gcode_M405() {
  3916. if (code_seen('D')) meas_delay_cm = code_value();
  3917. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3918. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3919. int temp_ratio = widthFil_to_size_ratio();
  3920. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3921. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3922. delay_index1 = delay_index2 = 0;
  3923. }
  3924. filament_sensor = true;
  3925. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3926. //SERIAL_PROTOCOL(filament_width_meas);
  3927. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3928. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3929. }
  3930. /**
  3931. * M406: Turn off filament sensor for control
  3932. */
  3933. inline void gcode_M406() { filament_sensor = false; }
  3934. /**
  3935. * M407: Get measured filament diameter on serial output
  3936. */
  3937. inline void gcode_M407() {
  3938. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3939. SERIAL_PROTOCOLLN(filament_width_meas);
  3940. }
  3941. #endif // FILAMENT_SENSOR
  3942. /**
  3943. * M410: Quickstop - Abort all planned moves
  3944. *
  3945. * This will stop the carriages mid-move, so most likely they
  3946. * will be out of sync with the stepper position after this.
  3947. */
  3948. inline void gcode_M410() { quickStop(); }
  3949. #ifdef MESH_BED_LEVELING
  3950. /**
  3951. * M420: Enable/Disable Mesh Bed Leveling
  3952. */
  3953. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3954. /**
  3955. * M421: Set a single Mesh Bed Leveling Z coordinate
  3956. */
  3957. inline void gcode_M421() {
  3958. float x, y, z;
  3959. bool err = false, hasX, hasY, hasZ;
  3960. if ((hasX = code_seen('X'))) x = code_value();
  3961. if ((hasY = code_seen('Y'))) y = code_value();
  3962. if ((hasZ = code_seen('Z'))) z = code_value();
  3963. if (!hasX || !hasY || !hasZ) {
  3964. SERIAL_ERROR_START;
  3965. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3966. err = true;
  3967. }
  3968. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3969. SERIAL_ERROR_START;
  3970. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3971. err = true;
  3972. }
  3973. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3974. }
  3975. #endif
  3976. /**
  3977. * M428: Set home_offset based on the distance between the
  3978. * current_position and the nearest "reference point."
  3979. * If an axis is past center its endstop position
  3980. * is the reference-point. Otherwise it uses 0. This allows
  3981. * the Z offset to be set near the bed when using a max endstop.
  3982. *
  3983. * M428 can't be used more than 2cm away from 0 or an endstop.
  3984. *
  3985. * Use M206 to set these values directly.
  3986. */
  3987. inline void gcode_M428() {
  3988. bool err = false;
  3989. float new_offs[3], new_pos[3];
  3990. memcpy(new_pos, current_position, sizeof(new_pos));
  3991. memcpy(new_offs, home_offset, sizeof(new_offs));
  3992. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3993. if (axis_known_position[i]) {
  3994. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3995. diff = new_pos[i] - base;
  3996. if (diff > -20 && diff < 20) {
  3997. new_offs[i] -= diff;
  3998. new_pos[i] = base;
  3999. }
  4000. else {
  4001. SERIAL_ERROR_START;
  4002. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4003. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4004. #if HAS_LCD_BUZZ
  4005. enqueuecommands_P(PSTR("M300 S40 P200"));
  4006. #endif
  4007. err = true;
  4008. break;
  4009. }
  4010. }
  4011. }
  4012. if (!err) {
  4013. memcpy(current_position, new_pos, sizeof(new_pos));
  4014. memcpy(home_offset, new_offs, sizeof(new_offs));
  4015. sync_plan_position();
  4016. LCD_ALERTMESSAGEPGM("Offset applied.");
  4017. #if HAS_LCD_BUZZ
  4018. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4019. #endif
  4020. }
  4021. }
  4022. /**
  4023. * M500: Store settings in EEPROM
  4024. */
  4025. inline void gcode_M500() {
  4026. Config_StoreSettings();
  4027. }
  4028. /**
  4029. * M501: Read settings from EEPROM
  4030. */
  4031. inline void gcode_M501() {
  4032. Config_RetrieveSettings();
  4033. }
  4034. /**
  4035. * M502: Revert to default settings
  4036. */
  4037. inline void gcode_M502() {
  4038. Config_ResetDefault();
  4039. }
  4040. /**
  4041. * M503: print settings currently in memory
  4042. */
  4043. inline void gcode_M503() {
  4044. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4045. }
  4046. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4047. /**
  4048. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4049. */
  4050. inline void gcode_M540() {
  4051. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4052. }
  4053. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4054. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4055. inline void gcode_SET_Z_PROBE_OFFSET() {
  4056. float value;
  4057. if (code_seen('Z')) {
  4058. value = code_value();
  4059. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4060. zprobe_zoffset = -value;
  4061. SERIAL_ECHO_START;
  4062. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4063. SERIAL_EOL;
  4064. }
  4065. else {
  4066. SERIAL_ECHO_START;
  4067. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4068. SERIAL_ECHOPGM(MSG_Z_MIN);
  4069. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4070. SERIAL_ECHOPGM(MSG_Z_MAX);
  4071. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4072. SERIAL_EOL;
  4073. }
  4074. }
  4075. else {
  4076. SERIAL_ECHO_START;
  4077. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  4078. SERIAL_ECHO(-zprobe_zoffset);
  4079. SERIAL_EOL;
  4080. }
  4081. }
  4082. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4083. #ifdef FILAMENTCHANGEENABLE
  4084. /**
  4085. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4086. */
  4087. inline void gcode_M600() {
  4088. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4089. for (int i=0; i<NUM_AXIS; i++)
  4090. target[i] = lastpos[i] = current_position[i];
  4091. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  4092. #ifdef DELTA
  4093. #define RUNPLAN calculate_delta(target); BASICPLAN
  4094. #else
  4095. #define RUNPLAN BASICPLAN
  4096. #endif
  4097. //retract by E
  4098. if (code_seen('E')) target[E_AXIS] += code_value();
  4099. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4100. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4101. #endif
  4102. RUNPLAN;
  4103. //lift Z
  4104. if (code_seen('Z')) target[Z_AXIS] += code_value();
  4105. #ifdef FILAMENTCHANGE_ZADD
  4106. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4107. #endif
  4108. RUNPLAN;
  4109. //move xy
  4110. if (code_seen('X')) target[X_AXIS] = code_value();
  4111. #ifdef FILAMENTCHANGE_XPOS
  4112. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  4113. #endif
  4114. if (code_seen('Y')) target[Y_AXIS] = code_value();
  4115. #ifdef FILAMENTCHANGE_YPOS
  4116. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4117. #endif
  4118. RUNPLAN;
  4119. if (code_seen('L')) target[E_AXIS] += code_value();
  4120. #ifdef FILAMENTCHANGE_FINALRETRACT
  4121. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4122. #endif
  4123. RUNPLAN;
  4124. //finish moves
  4125. st_synchronize();
  4126. //disable extruder steppers so filament can be removed
  4127. disable_e0();
  4128. disable_e1();
  4129. disable_e2();
  4130. disable_e3();
  4131. delay(100);
  4132. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4133. uint8_t cnt = 0;
  4134. while (!lcd_clicked()) {
  4135. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  4136. manage_heater();
  4137. manage_inactivity(true);
  4138. lcd_update();
  4139. } // while(!lcd_clicked)
  4140. //return to normal
  4141. if (code_seen('L')) target[E_AXIS] -= code_value();
  4142. #ifdef FILAMENTCHANGE_FINALRETRACT
  4143. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4144. #endif
  4145. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4146. plan_set_e_position(current_position[E_AXIS]);
  4147. RUNPLAN; //should do nothing
  4148. lcd_reset_alert_level();
  4149. #ifdef DELTA
  4150. calculate_delta(lastpos);
  4151. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4152. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4153. #else
  4154. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4155. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4156. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4157. #endif
  4158. #ifdef FILAMENT_RUNOUT_SENSOR
  4159. filrunoutEnqueued = false;
  4160. #endif
  4161. }
  4162. #endif // FILAMENTCHANGEENABLE
  4163. #ifdef DUAL_X_CARRIAGE
  4164. /**
  4165. * M605: Set dual x-carriage movement mode
  4166. *
  4167. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4168. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4169. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4170. * millimeters x-offset and an optional differential hotend temperature of
  4171. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4172. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4173. *
  4174. * Note: the X axis should be homed after changing dual x-carriage mode.
  4175. */
  4176. inline void gcode_M605() {
  4177. st_synchronize();
  4178. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4179. switch(dual_x_carriage_mode) {
  4180. case DXC_DUPLICATION_MODE:
  4181. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4182. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4183. SERIAL_ECHO_START;
  4184. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4185. SERIAL_CHAR(' ');
  4186. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4187. SERIAL_CHAR(',');
  4188. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4189. SERIAL_CHAR(' ');
  4190. SERIAL_ECHO(duplicate_extruder_x_offset);
  4191. SERIAL_CHAR(',');
  4192. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4193. break;
  4194. case DXC_FULL_CONTROL_MODE:
  4195. case DXC_AUTO_PARK_MODE:
  4196. break;
  4197. default:
  4198. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4199. break;
  4200. }
  4201. active_extruder_parked = false;
  4202. extruder_duplication_enabled = false;
  4203. delayed_move_time = 0;
  4204. }
  4205. #endif // DUAL_X_CARRIAGE
  4206. /**
  4207. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4208. */
  4209. inline void gcode_M907() {
  4210. #if HAS_DIGIPOTSS
  4211. for (int i=0;i<NUM_AXIS;i++)
  4212. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4213. if (code_seen('B')) digipot_current(4, code_value());
  4214. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4215. #endif
  4216. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4217. if (code_seen('X')) digipot_current(0, code_value());
  4218. #endif
  4219. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4220. if (code_seen('Z')) digipot_current(1, code_value());
  4221. #endif
  4222. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4223. if (code_seen('E')) digipot_current(2, code_value());
  4224. #endif
  4225. #ifdef DIGIPOT_I2C
  4226. // this one uses actual amps in floating point
  4227. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4228. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4229. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4230. #endif
  4231. }
  4232. #if HAS_DIGIPOTSS
  4233. /**
  4234. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4235. */
  4236. inline void gcode_M908() {
  4237. digitalPotWrite(
  4238. code_seen('P') ? code_value() : 0,
  4239. code_seen('S') ? code_value() : 0
  4240. );
  4241. }
  4242. #endif // HAS_DIGIPOTSS
  4243. #if HAS_MICROSTEPS
  4244. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4245. inline void gcode_M350() {
  4246. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4247. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4248. if(code_seen('B')) microstep_mode(4,code_value());
  4249. microstep_readings();
  4250. }
  4251. /**
  4252. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4253. * S# determines MS1 or MS2, X# sets the pin high/low.
  4254. */
  4255. inline void gcode_M351() {
  4256. if (code_seen('S')) switch(code_value_short()) {
  4257. case 1:
  4258. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4259. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4260. break;
  4261. case 2:
  4262. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4263. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4264. break;
  4265. }
  4266. microstep_readings();
  4267. }
  4268. #endif // HAS_MICROSTEPS
  4269. /**
  4270. * M999: Restart after being stopped
  4271. */
  4272. inline void gcode_M999() {
  4273. Running = true;
  4274. lcd_reset_alert_level();
  4275. gcode_LastN = Stopped_gcode_LastN;
  4276. FlushSerialRequestResend();
  4277. }
  4278. /**
  4279. * T0-T3: Switch tool, usually switching extruders
  4280. *
  4281. * F[mm/min] Set the movement feedrate
  4282. */
  4283. inline void gcode_T(uint8_t tmp_extruder) {
  4284. if (tmp_extruder >= EXTRUDERS) {
  4285. SERIAL_ECHO_START;
  4286. SERIAL_CHAR('T');
  4287. SERIAL_ECHO(tmp_extruder);
  4288. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4289. }
  4290. else {
  4291. target_extruder = tmp_extruder;
  4292. #if EXTRUDERS > 1
  4293. bool make_move = false;
  4294. #endif
  4295. if (code_seen('F')) {
  4296. #if EXTRUDERS > 1
  4297. make_move = true;
  4298. #endif
  4299. float next_feedrate = code_value();
  4300. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4301. }
  4302. #if EXTRUDERS > 1
  4303. if (tmp_extruder != active_extruder) {
  4304. // Save current position to return to after applying extruder offset
  4305. set_destination_to_current();
  4306. #ifdef DUAL_X_CARRIAGE
  4307. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4308. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4309. // Park old head: 1) raise 2) move to park position 3) lower
  4310. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4311. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4312. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4313. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4314. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4315. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4316. st_synchronize();
  4317. }
  4318. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4319. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4320. extruder_offset[Y_AXIS][active_extruder] +
  4321. extruder_offset[Y_AXIS][tmp_extruder];
  4322. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4323. extruder_offset[Z_AXIS][active_extruder] +
  4324. extruder_offset[Z_AXIS][tmp_extruder];
  4325. active_extruder = tmp_extruder;
  4326. // This function resets the max/min values - the current position may be overwritten below.
  4327. axis_is_at_home(X_AXIS);
  4328. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4329. current_position[X_AXIS] = inactive_extruder_x_pos;
  4330. inactive_extruder_x_pos = destination[X_AXIS];
  4331. }
  4332. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4333. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4334. if (active_extruder == 0 || active_extruder_parked)
  4335. current_position[X_AXIS] = inactive_extruder_x_pos;
  4336. else
  4337. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4338. inactive_extruder_x_pos = destination[X_AXIS];
  4339. extruder_duplication_enabled = false;
  4340. }
  4341. else {
  4342. // record raised toolhead position for use by unpark
  4343. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4344. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4345. active_extruder_parked = true;
  4346. delayed_move_time = 0;
  4347. }
  4348. #else // !DUAL_X_CARRIAGE
  4349. // Offset extruder (only by XY)
  4350. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4351. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4352. // Set the new active extruder and position
  4353. active_extruder = tmp_extruder;
  4354. #endif // !DUAL_X_CARRIAGE
  4355. #ifdef DELTA
  4356. sync_plan_position_delta();
  4357. #else
  4358. sync_plan_position();
  4359. #endif
  4360. // Move to the old position if 'F' was in the parameters
  4361. if (make_move && IsRunning()) prepare_move();
  4362. }
  4363. #ifdef EXT_SOLENOID
  4364. st_synchronize();
  4365. disable_all_solenoids();
  4366. enable_solenoid_on_active_extruder();
  4367. #endif // EXT_SOLENOID
  4368. #endif // EXTRUDERS > 1
  4369. SERIAL_ECHO_START;
  4370. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4371. SERIAL_PROTOCOLLN((int)active_extruder);
  4372. }
  4373. }
  4374. /**
  4375. * Process a single command and dispatch it to its handler
  4376. * This is called from the main loop()
  4377. */
  4378. void process_next_command() {
  4379. current_command = command_queue[cmd_queue_index_r];
  4380. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4381. SERIAL_ECHO_START;
  4382. SERIAL_ECHOLN(current_command);
  4383. }
  4384. // Sanitize the current command:
  4385. // - Skip leading spaces
  4386. // - Bypass N...
  4387. // - Overwrite * with nul to mark the end
  4388. while (*current_command == ' ') ++current_command;
  4389. if (*current_command == 'N' && current_command[1] >= '0' && current_command[1] <= '9') {
  4390. while (*current_command != ' ') ++current_command;
  4391. while (*current_command == ' ') ++current_command;
  4392. }
  4393. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4394. if (starpos) *starpos = '\0';
  4395. // Get the command code, which must be G, M, or T
  4396. char command_code = *current_command;
  4397. // The code must have a numeric value
  4398. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4399. int codenum; // define ahead of goto
  4400. // Bail early if there's no code
  4401. if (!code_is_good) goto ExitUnknownCommand;
  4402. // Args pointer optimizes code_seen, especially those taking XYZEF
  4403. // This wastes a little cpu on commands that expect no arguments.
  4404. current_command_args = current_command;
  4405. while (*current_command_args != ' ') ++current_command_args;
  4406. while (*current_command_args == ' ') ++current_command_args;
  4407. // Interpret the code int
  4408. codenum = code_value_short();
  4409. // Handle a known G, M, or T
  4410. switch(command_code) {
  4411. case 'G': switch (codenum) {
  4412. // G0, G1
  4413. case 0:
  4414. case 1:
  4415. gcode_G0_G1();
  4416. break;
  4417. // G2, G3
  4418. #ifndef SCARA
  4419. case 2: // G2 - CW ARC
  4420. case 3: // G3 - CCW ARC
  4421. gcode_G2_G3(codenum == 2);
  4422. break;
  4423. #endif
  4424. // G4 Dwell
  4425. case 4:
  4426. gcode_G4();
  4427. break;
  4428. #ifdef FWRETRACT
  4429. case 10: // G10: retract
  4430. case 11: // G11: retract_recover
  4431. gcode_G10_G11(codenum == 10);
  4432. break;
  4433. #endif //FWRETRACT
  4434. case 28: // G28: Home all axes, one at a time
  4435. gcode_G28();
  4436. break;
  4437. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4438. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4439. gcode_G29();
  4440. break;
  4441. #endif
  4442. #ifdef ENABLE_AUTO_BED_LEVELING
  4443. #ifndef Z_PROBE_SLED
  4444. case 30: // G30 Single Z Probe
  4445. gcode_G30();
  4446. break;
  4447. #else // Z_PROBE_SLED
  4448. case 31: // G31: dock the sled
  4449. case 32: // G32: undock the sled
  4450. dock_sled(codenum == 31);
  4451. break;
  4452. #endif // Z_PROBE_SLED
  4453. #endif // ENABLE_AUTO_BED_LEVELING
  4454. case 90: // G90
  4455. relative_mode = false;
  4456. break;
  4457. case 91: // G91
  4458. relative_mode = true;
  4459. break;
  4460. case 92: // G92
  4461. gcode_G92();
  4462. break;
  4463. default: code_is_good = false;
  4464. }
  4465. break;
  4466. case 'M': switch (codenum) {
  4467. #ifdef ULTIPANEL
  4468. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4469. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4470. gcode_M0_M1();
  4471. break;
  4472. #endif // ULTIPANEL
  4473. case 17:
  4474. gcode_M17();
  4475. break;
  4476. #ifdef SDSUPPORT
  4477. case 20: // M20 - list SD card
  4478. gcode_M20(); break;
  4479. case 21: // M21 - init SD card
  4480. gcode_M21(); break;
  4481. case 22: //M22 - release SD card
  4482. gcode_M22(); break;
  4483. case 23: //M23 - Select file
  4484. gcode_M23(); break;
  4485. case 24: //M24 - Start SD print
  4486. gcode_M24(); break;
  4487. case 25: //M25 - Pause SD print
  4488. gcode_M25(); break;
  4489. case 26: //M26 - Set SD index
  4490. gcode_M26(); break;
  4491. case 27: //M27 - Get SD status
  4492. gcode_M27(); break;
  4493. case 28: //M28 - Start SD write
  4494. gcode_M28(); break;
  4495. case 29: //M29 - Stop SD write
  4496. gcode_M29(); break;
  4497. case 30: //M30 <filename> Delete File
  4498. gcode_M30(); break;
  4499. case 32: //M32 - Select file and start SD print
  4500. gcode_M32(); break;
  4501. case 928: //M928 - Start SD write
  4502. gcode_M928(); break;
  4503. #endif //SDSUPPORT
  4504. case 31: //M31 take time since the start of the SD print or an M109 command
  4505. gcode_M31();
  4506. break;
  4507. case 42: //M42 -Change pin status via gcode
  4508. gcode_M42();
  4509. break;
  4510. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4511. case 48: // M48 Z-Probe repeatability
  4512. gcode_M48();
  4513. break;
  4514. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4515. case 104: // M104
  4516. gcode_M104();
  4517. break;
  4518. case 111: // M111: Set debug level
  4519. gcode_M111();
  4520. break;
  4521. case 112: // M112: Emergency Stop
  4522. gcode_M112();
  4523. break;
  4524. case 140: // M140: Set bed temp
  4525. gcode_M140();
  4526. break;
  4527. case 105: // M105: Read current temperature
  4528. gcode_M105();
  4529. return; // "ok" already printed
  4530. case 109: // M109: Wait for temperature
  4531. gcode_M109();
  4532. break;
  4533. #if HAS_TEMP_BED
  4534. case 190: // M190: Wait for bed heater to reach target
  4535. gcode_M190();
  4536. break;
  4537. #endif // HAS_TEMP_BED
  4538. #if HAS_FAN
  4539. case 106: // M106: Fan On
  4540. gcode_M106();
  4541. break;
  4542. case 107: // M107: Fan Off
  4543. gcode_M107();
  4544. break;
  4545. #endif // HAS_FAN
  4546. #ifdef BARICUDA
  4547. // PWM for HEATER_1_PIN
  4548. #if HAS_HEATER_1
  4549. case 126: // M126: valve open
  4550. gcode_M126();
  4551. break;
  4552. case 127: // M127: valve closed
  4553. gcode_M127();
  4554. break;
  4555. #endif // HAS_HEATER_1
  4556. // PWM for HEATER_2_PIN
  4557. #if HAS_HEATER_2
  4558. case 128: // M128: valve open
  4559. gcode_M128();
  4560. break;
  4561. case 129: // M129: valve closed
  4562. gcode_M129();
  4563. break;
  4564. #endif // HAS_HEATER_2
  4565. #endif // BARICUDA
  4566. #if HAS_POWER_SWITCH
  4567. case 80: // M80: Turn on Power Supply
  4568. gcode_M80();
  4569. break;
  4570. #endif // HAS_POWER_SWITCH
  4571. case 81: // M81: Turn off Power, including Power Supply, if possible
  4572. gcode_M81();
  4573. break;
  4574. case 82:
  4575. gcode_M82();
  4576. break;
  4577. case 83:
  4578. gcode_M83();
  4579. break;
  4580. case 18: // (for compatibility)
  4581. case 84: // M84
  4582. gcode_M18_M84();
  4583. break;
  4584. case 85: // M85
  4585. gcode_M85();
  4586. break;
  4587. case 92: // M92: Set the steps-per-unit for one or more axes
  4588. gcode_M92();
  4589. break;
  4590. case 115: // M115: Report capabilities
  4591. gcode_M115();
  4592. break;
  4593. case 117: // M117: Set LCD message text, if possible
  4594. gcode_M117();
  4595. break;
  4596. case 114: // M114: Report current position
  4597. gcode_M114();
  4598. break;
  4599. case 120: // M120: Enable endstops
  4600. gcode_M120();
  4601. break;
  4602. case 121: // M121: Disable endstops
  4603. gcode_M121();
  4604. break;
  4605. case 119: // M119: Report endstop states
  4606. gcode_M119();
  4607. break;
  4608. #ifdef ULTIPANEL
  4609. case 145: // M145: Set material heatup parameters
  4610. gcode_M145();
  4611. break;
  4612. #endif
  4613. #ifdef BLINKM
  4614. case 150: // M150
  4615. gcode_M150();
  4616. break;
  4617. #endif //BLINKM
  4618. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4619. gcode_M200();
  4620. break;
  4621. case 201: // M201
  4622. gcode_M201();
  4623. break;
  4624. #if 0 // Not used for Sprinter/grbl gen6
  4625. case 202: // M202
  4626. gcode_M202();
  4627. break;
  4628. #endif
  4629. case 203: // M203 max feedrate mm/sec
  4630. gcode_M203();
  4631. break;
  4632. case 204: // M204 acclereration S normal moves T filmanent only moves
  4633. gcode_M204();
  4634. break;
  4635. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4636. gcode_M205();
  4637. break;
  4638. case 206: // M206 additional homing offset
  4639. gcode_M206();
  4640. break;
  4641. #ifdef DELTA
  4642. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4643. gcode_M665();
  4644. break;
  4645. #endif
  4646. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4647. case 666: // M666 set delta / dual endstop adjustment
  4648. gcode_M666();
  4649. break;
  4650. #endif
  4651. #ifdef FWRETRACT
  4652. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4653. gcode_M207();
  4654. break;
  4655. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4656. gcode_M208();
  4657. break;
  4658. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4659. gcode_M209();
  4660. break;
  4661. #endif // FWRETRACT
  4662. #if EXTRUDERS > 1
  4663. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4664. gcode_M218();
  4665. break;
  4666. #endif
  4667. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4668. gcode_M220();
  4669. break;
  4670. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4671. gcode_M221();
  4672. break;
  4673. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4674. gcode_M226();
  4675. break;
  4676. #if NUM_SERVOS > 0
  4677. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4678. gcode_M280();
  4679. break;
  4680. #endif // NUM_SERVOS > 0
  4681. #if HAS_LCD_BUZZ
  4682. case 300: // M300 - Play beep tone
  4683. gcode_M300();
  4684. break;
  4685. #endif // HAS_LCD_BUZZ
  4686. #ifdef PIDTEMP
  4687. case 301: // M301
  4688. gcode_M301();
  4689. break;
  4690. #endif // PIDTEMP
  4691. #ifdef PIDTEMPBED
  4692. case 304: // M304
  4693. gcode_M304();
  4694. break;
  4695. #endif // PIDTEMPBED
  4696. #if defined(CHDK) || HAS_PHOTOGRAPH
  4697. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4698. gcode_M240();
  4699. break;
  4700. #endif // CHDK || PHOTOGRAPH_PIN
  4701. #ifdef HAS_LCD_CONTRAST
  4702. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4703. gcode_M250();
  4704. break;
  4705. #endif // HAS_LCD_CONTRAST
  4706. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4707. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4708. gcode_M302();
  4709. break;
  4710. #endif // PREVENT_DANGEROUS_EXTRUDE
  4711. case 303: // M303 PID autotune
  4712. gcode_M303();
  4713. break;
  4714. #ifdef SCARA
  4715. case 360: // M360 SCARA Theta pos1
  4716. if (gcode_M360()) return;
  4717. break;
  4718. case 361: // M361 SCARA Theta pos2
  4719. if (gcode_M361()) return;
  4720. break;
  4721. case 362: // M362 SCARA Psi pos1
  4722. if (gcode_M362()) return;
  4723. break;
  4724. case 363: // M363 SCARA Psi pos2
  4725. if (gcode_M363()) return;
  4726. break;
  4727. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4728. if (gcode_M364()) return;
  4729. break;
  4730. case 365: // M365 Set SCARA scaling for X Y Z
  4731. gcode_M365();
  4732. break;
  4733. #endif // SCARA
  4734. case 400: // M400 finish all moves
  4735. gcode_M400();
  4736. break;
  4737. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4738. case 401:
  4739. gcode_M401();
  4740. break;
  4741. case 402:
  4742. gcode_M402();
  4743. break;
  4744. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4745. #ifdef FILAMENT_SENSOR
  4746. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4747. gcode_M404();
  4748. break;
  4749. case 405: //M405 Turn on filament sensor for control
  4750. gcode_M405();
  4751. break;
  4752. case 406: //M406 Turn off filament sensor for control
  4753. gcode_M406();
  4754. break;
  4755. case 407: //M407 Display measured filament diameter
  4756. gcode_M407();
  4757. break;
  4758. #endif // FILAMENT_SENSOR
  4759. case 410: // M410 quickstop - Abort all the planned moves.
  4760. gcode_M410();
  4761. break;
  4762. #ifdef MESH_BED_LEVELING
  4763. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4764. gcode_M420();
  4765. break;
  4766. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4767. gcode_M421();
  4768. break;
  4769. #endif
  4770. case 428: // M428 Apply current_position to home_offset
  4771. gcode_M428();
  4772. break;
  4773. case 500: // M500 Store settings in EEPROM
  4774. gcode_M500();
  4775. break;
  4776. case 501: // M501 Read settings from EEPROM
  4777. gcode_M501();
  4778. break;
  4779. case 502: // M502 Revert to default settings
  4780. gcode_M502();
  4781. break;
  4782. case 503: // M503 print settings currently in memory
  4783. gcode_M503();
  4784. break;
  4785. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4786. case 540:
  4787. gcode_M540();
  4788. break;
  4789. #endif
  4790. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4791. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4792. gcode_SET_Z_PROBE_OFFSET();
  4793. break;
  4794. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4795. #ifdef FILAMENTCHANGEENABLE
  4796. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4797. gcode_M600();
  4798. break;
  4799. #endif // FILAMENTCHANGEENABLE
  4800. #ifdef DUAL_X_CARRIAGE
  4801. case 605:
  4802. gcode_M605();
  4803. break;
  4804. #endif // DUAL_X_CARRIAGE
  4805. case 907: // M907 Set digital trimpot motor current using axis codes.
  4806. gcode_M907();
  4807. break;
  4808. #if HAS_DIGIPOTSS
  4809. case 908: // M908 Control digital trimpot directly.
  4810. gcode_M908();
  4811. break;
  4812. #endif // HAS_DIGIPOTSS
  4813. #if HAS_MICROSTEPS
  4814. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4815. gcode_M350();
  4816. break;
  4817. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4818. gcode_M351();
  4819. break;
  4820. #endif // HAS_MICROSTEPS
  4821. case 999: // M999: Restart after being Stopped
  4822. gcode_M999();
  4823. break;
  4824. default: code_is_good = false;
  4825. }
  4826. break;
  4827. case 'T':
  4828. gcode_T(codenum);
  4829. break;
  4830. }
  4831. ExitUnknownCommand:
  4832. // Still unknown command? Throw an error
  4833. if (!code_is_good) unknown_command_error();
  4834. ok_to_send();
  4835. }
  4836. void FlushSerialRequestResend() {
  4837. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4838. MYSERIAL.flush();
  4839. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4840. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4841. ok_to_send();
  4842. }
  4843. void ok_to_send() {
  4844. refresh_cmd_timeout();
  4845. #ifdef SDSUPPORT
  4846. if (fromsd[cmd_queue_index_r]) return;
  4847. #endif
  4848. SERIAL_PROTOCOLPGM(MSG_OK);
  4849. #ifdef ADVANCED_OK
  4850. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4851. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4852. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4853. #endif
  4854. SERIAL_EOL;
  4855. }
  4856. void clamp_to_software_endstops(float target[3]) {
  4857. if (min_software_endstops) {
  4858. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4859. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4860. float negative_z_offset = 0;
  4861. #ifdef ENABLE_AUTO_BED_LEVELING
  4862. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4863. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4864. #endif
  4865. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4866. }
  4867. if (max_software_endstops) {
  4868. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4869. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4870. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4871. }
  4872. }
  4873. #ifdef DELTA
  4874. void recalc_delta_settings(float radius, float diagonal_rod) {
  4875. delta_tower1_x = -SIN_60 * radius; // front left tower
  4876. delta_tower1_y = -COS_60 * radius;
  4877. delta_tower2_x = SIN_60 * radius; // front right tower
  4878. delta_tower2_y = -COS_60 * radius;
  4879. delta_tower3_x = 0.0; // back middle tower
  4880. delta_tower3_y = radius;
  4881. delta_diagonal_rod_2 = sq(diagonal_rod);
  4882. }
  4883. void calculate_delta(float cartesian[3]) {
  4884. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4885. - sq(delta_tower1_x-cartesian[X_AXIS])
  4886. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4887. ) + cartesian[Z_AXIS];
  4888. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4889. - sq(delta_tower2_x-cartesian[X_AXIS])
  4890. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4891. ) + cartesian[Z_AXIS];
  4892. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4893. - sq(delta_tower3_x-cartesian[X_AXIS])
  4894. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4895. ) + cartesian[Z_AXIS];
  4896. /*
  4897. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4898. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4899. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4900. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4901. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4902. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4903. */
  4904. }
  4905. #ifdef ENABLE_AUTO_BED_LEVELING
  4906. // Adjust print surface height by linear interpolation over the bed_level array.
  4907. void adjust_delta(float cartesian[3]) {
  4908. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4909. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4910. float h1 = 0.001 - half, h2 = half - 0.001,
  4911. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4912. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4913. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4914. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4915. z1 = bed_level[floor_x + half][floor_y + half],
  4916. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4917. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4918. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4919. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4920. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4921. offset = (1 - ratio_x) * left + ratio_x * right;
  4922. delta[X_AXIS] += offset;
  4923. delta[Y_AXIS] += offset;
  4924. delta[Z_AXIS] += offset;
  4925. /*
  4926. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4927. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4928. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4929. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4930. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4931. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4932. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4933. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4934. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4935. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4936. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4937. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4938. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4939. */
  4940. }
  4941. #endif // ENABLE_AUTO_BED_LEVELING
  4942. #endif // DELTA
  4943. #ifdef MESH_BED_LEVELING
  4944. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4945. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4946. {
  4947. if (!mbl.active) {
  4948. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4949. set_current_to_destination();
  4950. return;
  4951. }
  4952. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4953. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4954. int ix = mbl.select_x_index(x);
  4955. int iy = mbl.select_y_index(y);
  4956. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4957. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4958. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4959. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4960. if (pix == ix && piy == iy) {
  4961. // Start and end on same mesh square
  4962. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4963. set_current_to_destination();
  4964. return;
  4965. }
  4966. float nx, ny, ne, normalized_dist;
  4967. if (ix > pix && (x_splits) & BIT(ix)) {
  4968. nx = mbl.get_x(ix);
  4969. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4970. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4971. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4972. x_splits ^= BIT(ix);
  4973. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4974. nx = mbl.get_x(pix);
  4975. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4976. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4977. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4978. x_splits ^= BIT(pix);
  4979. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4980. ny = mbl.get_y(iy);
  4981. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4982. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4983. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4984. y_splits ^= BIT(iy);
  4985. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4986. ny = mbl.get_y(piy);
  4987. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4988. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4989. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4990. y_splits ^= BIT(piy);
  4991. } else {
  4992. // Already split on a border
  4993. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4994. set_current_to_destination();
  4995. return;
  4996. }
  4997. // Do the split and look for more borders
  4998. destination[X_AXIS] = nx;
  4999. destination[Y_AXIS] = ny;
  5000. destination[E_AXIS] = ne;
  5001. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5002. destination[X_AXIS] = x;
  5003. destination[Y_AXIS] = y;
  5004. destination[E_AXIS] = e;
  5005. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5006. }
  5007. #endif // MESH_BED_LEVELING
  5008. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5009. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5010. float de = dest_e - curr_e;
  5011. if (de) {
  5012. if (degHotend(active_extruder) < extrude_min_temp) {
  5013. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5014. SERIAL_ECHO_START;
  5015. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5016. }
  5017. #ifdef PREVENT_LENGTHY_EXTRUDE
  5018. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5019. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5020. SERIAL_ECHO_START;
  5021. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5022. }
  5023. #endif
  5024. }
  5025. }
  5026. #endif // PREVENT_DANGEROUS_EXTRUDE
  5027. #if defined(DELTA) || defined(SCARA)
  5028. inline bool prepare_move_delta() {
  5029. float difference[NUM_AXIS];
  5030. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5031. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5032. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5033. if (cartesian_mm < 0.000001) return false;
  5034. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5035. int steps = max(1, int(delta_segments_per_second * seconds));
  5036. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5037. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5038. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5039. for (int s = 1; s <= steps; s++) {
  5040. float fraction = float(s) / float(steps);
  5041. for (int8_t i = 0; i < NUM_AXIS; i++)
  5042. destination[i] = current_position[i] + difference[i] * fraction;
  5043. calculate_delta(destination);
  5044. #ifdef ENABLE_AUTO_BED_LEVELING
  5045. adjust_delta(destination);
  5046. #endif
  5047. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5048. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5049. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5050. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5051. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5052. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5053. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5054. }
  5055. return true;
  5056. }
  5057. #endif // DELTA || SCARA
  5058. #ifdef SCARA
  5059. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5060. #endif
  5061. #ifdef DUAL_X_CARRIAGE
  5062. inline bool prepare_move_dual_x_carriage() {
  5063. if (active_extruder_parked) {
  5064. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5065. // move duplicate extruder into correct duplication position.
  5066. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5067. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5068. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5069. sync_plan_position();
  5070. st_synchronize();
  5071. extruder_duplication_enabled = true;
  5072. active_extruder_parked = false;
  5073. }
  5074. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5075. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5076. // This is a travel move (with no extrusion)
  5077. // Skip it, but keep track of the current position
  5078. // (so it can be used as the start of the next non-travel move)
  5079. if (delayed_move_time != 0xFFFFFFFFUL) {
  5080. set_current_to_destination();
  5081. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5082. delayed_move_time = millis();
  5083. return false;
  5084. }
  5085. }
  5086. delayed_move_time = 0;
  5087. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5088. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5090. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5091. active_extruder_parked = false;
  5092. }
  5093. }
  5094. return true;
  5095. }
  5096. #endif // DUAL_X_CARRIAGE
  5097. #if !defined(DELTA) && !defined(SCARA)
  5098. inline bool prepare_move_cartesian() {
  5099. // Do not use feedrate_multiplier for E or Z only moves
  5100. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5101. line_to_destination();
  5102. }
  5103. else {
  5104. #ifdef MESH_BED_LEVELING
  5105. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5106. return false;
  5107. #else
  5108. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5109. #endif
  5110. }
  5111. return true;
  5112. }
  5113. #endif // !DELTA && !SCARA
  5114. /**
  5115. * Prepare a single move and get ready for the next one
  5116. */
  5117. void prepare_move() {
  5118. clamp_to_software_endstops(destination);
  5119. refresh_cmd_timeout();
  5120. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5121. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5122. #endif
  5123. #ifdef SCARA
  5124. if (!prepare_move_scara()) return;
  5125. #elif defined(DELTA)
  5126. if (!prepare_move_delta()) return;
  5127. #endif
  5128. #ifdef DUAL_X_CARRIAGE
  5129. if (!prepare_move_dual_x_carriage()) return;
  5130. #endif
  5131. #if !defined(DELTA) && !defined(SCARA)
  5132. if (!prepare_move_cartesian()) return;
  5133. #endif
  5134. set_current_to_destination();
  5135. }
  5136. #if HAS_CONTROLLERFAN
  5137. void controllerFan() {
  5138. static millis_t lastMotor = 0; // Last time a motor was turned on
  5139. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5140. millis_t ms = millis();
  5141. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5142. lastMotorCheck = ms;
  5143. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5144. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5145. #if EXTRUDERS > 1
  5146. || E1_ENABLE_READ == E_ENABLE_ON
  5147. #if HAS_X2_ENABLE
  5148. || X2_ENABLE_READ == X_ENABLE_ON
  5149. #endif
  5150. #if EXTRUDERS > 2
  5151. || E2_ENABLE_READ == E_ENABLE_ON
  5152. #if EXTRUDERS > 3
  5153. || E3_ENABLE_READ == E_ENABLE_ON
  5154. #endif
  5155. #endif
  5156. #endif
  5157. ) {
  5158. lastMotor = ms; //... set time to NOW so the fan will turn on
  5159. }
  5160. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5161. // allows digital or PWM fan output to be used (see M42 handling)
  5162. digitalWrite(CONTROLLERFAN_PIN, speed);
  5163. analogWrite(CONTROLLERFAN_PIN, speed);
  5164. }
  5165. }
  5166. #endif // HAS_CONTROLLERFAN
  5167. #ifdef SCARA
  5168. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5169. // Perform forward kinematics, and place results in delta[3]
  5170. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5171. float x_sin, x_cos, y_sin, y_cos;
  5172. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5173. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5174. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5175. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5176. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5177. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5178. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5179. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5180. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5181. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5182. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5183. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5184. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5185. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5186. }
  5187. void calculate_delta(float cartesian[3]){
  5188. //reverse kinematics.
  5189. // Perform reversed kinematics, and place results in delta[3]
  5190. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5191. float SCARA_pos[2];
  5192. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5193. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5194. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5195. #if (Linkage_1 == Linkage_2)
  5196. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5197. #else
  5198. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5199. #endif
  5200. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5201. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5202. SCARA_K2 = Linkage_2 * SCARA_S2;
  5203. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5204. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5205. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5206. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5207. delta[Z_AXIS] = cartesian[Z_AXIS];
  5208. /*
  5209. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5210. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5211. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5212. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5213. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5214. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5215. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5216. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5217. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5218. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5219. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5220. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5221. SERIAL_EOL;
  5222. */
  5223. }
  5224. #endif // SCARA
  5225. #ifdef TEMP_STAT_LEDS
  5226. static bool red_led = false;
  5227. static millis_t next_status_led_update_ms = 0;
  5228. void handle_status_leds(void) {
  5229. float max_temp = 0.0;
  5230. if (millis() > next_status_led_update_ms) {
  5231. next_status_led_update_ms += 500; // Update every 0.5s
  5232. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5233. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5234. #if HAS_TEMP_BED
  5235. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5236. #endif
  5237. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5238. if (new_led != red_led) {
  5239. red_led = new_led;
  5240. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5241. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5242. }
  5243. }
  5244. }
  5245. #endif
  5246. void enable_all_steppers() {
  5247. enable_x();
  5248. enable_y();
  5249. enable_z();
  5250. enable_e0();
  5251. enable_e1();
  5252. enable_e2();
  5253. enable_e3();
  5254. }
  5255. void disable_all_steppers() {
  5256. disable_x();
  5257. disable_y();
  5258. disable_z();
  5259. disable_e0();
  5260. disable_e1();
  5261. disable_e2();
  5262. disable_e3();
  5263. }
  5264. /**
  5265. * Manage several activities:
  5266. * - Check for Filament Runout
  5267. * - Keep the command buffer full
  5268. * - Check for maximum inactive time between commands
  5269. * - Check for maximum inactive time between stepper commands
  5270. * - Check if pin CHDK needs to go LOW
  5271. * - Check for KILL button held down
  5272. * - Check for HOME button held down
  5273. * - Check if cooling fan needs to be switched on
  5274. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5275. */
  5276. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5277. #if HAS_FILRUNOUT
  5278. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5279. filrunout();
  5280. #endif
  5281. if (commands_in_queue < BUFSIZE - 1) get_command();
  5282. millis_t ms = millis();
  5283. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5284. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5285. && !ignore_stepper_queue && !blocks_queued())
  5286. disable_all_steppers();
  5287. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5288. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5289. chdkActive = false;
  5290. WRITE(CHDK, LOW);
  5291. }
  5292. #endif
  5293. #if HAS_KILL
  5294. // Check if the kill button was pressed and wait just in case it was an accidental
  5295. // key kill key press
  5296. // -------------------------------------------------------------------------------
  5297. static int killCount = 0; // make the inactivity button a bit less responsive
  5298. const int KILL_DELAY = 750;
  5299. if (!READ(KILL_PIN))
  5300. killCount++;
  5301. else if (killCount > 0)
  5302. killCount--;
  5303. // Exceeded threshold and we can confirm that it was not accidental
  5304. // KILL the machine
  5305. // ----------------------------------------------------------------
  5306. if (killCount >= KILL_DELAY) kill();
  5307. #endif
  5308. #if HAS_HOME
  5309. // Check to see if we have to home, use poor man's debouncer
  5310. // ---------------------------------------------------------
  5311. static int homeDebounceCount = 0; // poor man's debouncing count
  5312. const int HOME_DEBOUNCE_DELAY = 750;
  5313. if (!READ(HOME_PIN)) {
  5314. if (!homeDebounceCount) {
  5315. enqueuecommands_P(PSTR("G28"));
  5316. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5317. }
  5318. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5319. homeDebounceCount++;
  5320. else
  5321. homeDebounceCount = 0;
  5322. }
  5323. #endif
  5324. #if HAS_CONTROLLERFAN
  5325. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5326. #endif
  5327. #ifdef EXTRUDER_RUNOUT_PREVENT
  5328. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5329. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5330. bool oldstatus;
  5331. switch(active_extruder) {
  5332. case 0:
  5333. oldstatus = E0_ENABLE_READ;
  5334. enable_e0();
  5335. break;
  5336. #if EXTRUDERS > 1
  5337. case 1:
  5338. oldstatus = E1_ENABLE_READ;
  5339. enable_e1();
  5340. break;
  5341. #if EXTRUDERS > 2
  5342. case 2:
  5343. oldstatus = E2_ENABLE_READ;
  5344. enable_e2();
  5345. break;
  5346. #if EXTRUDERS > 3
  5347. case 3:
  5348. oldstatus = E3_ENABLE_READ;
  5349. enable_e3();
  5350. break;
  5351. #endif
  5352. #endif
  5353. #endif
  5354. }
  5355. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5356. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5357. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5358. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5359. current_position[E_AXIS] = oldepos;
  5360. destination[E_AXIS] = oldedes;
  5361. plan_set_e_position(oldepos);
  5362. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5363. st_synchronize();
  5364. switch(active_extruder) {
  5365. case 0:
  5366. E0_ENABLE_WRITE(oldstatus);
  5367. break;
  5368. #if EXTRUDERS > 1
  5369. case 1:
  5370. E1_ENABLE_WRITE(oldstatus);
  5371. break;
  5372. #if EXTRUDERS > 2
  5373. case 2:
  5374. E2_ENABLE_WRITE(oldstatus);
  5375. break;
  5376. #if EXTRUDERS > 3
  5377. case 3:
  5378. E3_ENABLE_WRITE(oldstatus);
  5379. break;
  5380. #endif
  5381. #endif
  5382. #endif
  5383. }
  5384. }
  5385. #endif
  5386. #ifdef DUAL_X_CARRIAGE
  5387. // handle delayed move timeout
  5388. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5389. // travel moves have been received so enact them
  5390. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5391. set_destination_to_current();
  5392. prepare_move();
  5393. }
  5394. #endif
  5395. #ifdef TEMP_STAT_LEDS
  5396. handle_status_leds();
  5397. #endif
  5398. check_axes_activity();
  5399. }
  5400. void kill()
  5401. {
  5402. cli(); // Stop interrupts
  5403. disable_all_heaters();
  5404. disable_all_steppers();
  5405. #if HAS_POWER_SWITCH
  5406. pinMode(PS_ON_PIN, INPUT);
  5407. #endif
  5408. SERIAL_ERROR_START;
  5409. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5410. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5411. // FMC small patch to update the LCD before ending
  5412. sei(); // enable interrupts
  5413. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5414. cli(); // disable interrupts
  5415. suicide();
  5416. while(1) { /* Intentionally left empty */ } // Wait for reset
  5417. }
  5418. #ifdef FILAMENT_RUNOUT_SENSOR
  5419. void filrunout() {
  5420. if (!filrunoutEnqueued) {
  5421. filrunoutEnqueued = true;
  5422. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5423. st_synchronize();
  5424. }
  5425. }
  5426. #endif // FILAMENT_RUNOUT_SENSOR
  5427. #ifdef FAST_PWM_FAN
  5428. void setPwmFrequency(uint8_t pin, int val) {
  5429. val &= 0x07;
  5430. switch (digitalPinToTimer(pin)) {
  5431. #if defined(TCCR0A)
  5432. case TIMER0A:
  5433. case TIMER0B:
  5434. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5435. // TCCR0B |= val;
  5436. break;
  5437. #endif
  5438. #if defined(TCCR1A)
  5439. case TIMER1A:
  5440. case TIMER1B:
  5441. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5442. // TCCR1B |= val;
  5443. break;
  5444. #endif
  5445. #if defined(TCCR2)
  5446. case TIMER2:
  5447. case TIMER2:
  5448. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5449. TCCR2 |= val;
  5450. break;
  5451. #endif
  5452. #if defined(TCCR2A)
  5453. case TIMER2A:
  5454. case TIMER2B:
  5455. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5456. TCCR2B |= val;
  5457. break;
  5458. #endif
  5459. #if defined(TCCR3A)
  5460. case TIMER3A:
  5461. case TIMER3B:
  5462. case TIMER3C:
  5463. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5464. TCCR3B |= val;
  5465. break;
  5466. #endif
  5467. #if defined(TCCR4A)
  5468. case TIMER4A:
  5469. case TIMER4B:
  5470. case TIMER4C:
  5471. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5472. TCCR4B |= val;
  5473. break;
  5474. #endif
  5475. #if defined(TCCR5A)
  5476. case TIMER5A:
  5477. case TIMER5B:
  5478. case TIMER5C:
  5479. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5480. TCCR5B |= val;
  5481. break;
  5482. #endif
  5483. }
  5484. }
  5485. #endif // FAST_PWM_FAN
  5486. void Stop() {
  5487. disable_all_heaters();
  5488. if (IsRunning()) {
  5489. Running = false;
  5490. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5491. SERIAL_ERROR_START;
  5492. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5493. LCD_MESSAGEPGM(MSG_STOPPED);
  5494. }
  5495. }
  5496. bool setTargetedHotend(int code){
  5497. target_extruder = active_extruder;
  5498. if (code_seen('T')) {
  5499. target_extruder = code_value_short();
  5500. if (target_extruder >= EXTRUDERS) {
  5501. SERIAL_ECHO_START;
  5502. switch(code){
  5503. case 104:
  5504. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5505. break;
  5506. case 105:
  5507. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5508. break;
  5509. case 109:
  5510. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5511. break;
  5512. case 218:
  5513. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5514. break;
  5515. case 221:
  5516. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5517. break;
  5518. }
  5519. SERIAL_ECHOLN(target_extruder);
  5520. return true;
  5521. }
  5522. }
  5523. return false;
  5524. }
  5525. float calculate_volumetric_multiplier(float diameter) {
  5526. if (!volumetric_enabled || diameter == 0) return 1.0;
  5527. float d2 = diameter * 0.5;
  5528. return 1.0 / (M_PI * d2 * d2);
  5529. }
  5530. void calculate_volumetric_multipliers() {
  5531. for (int i=0; i<EXTRUDERS; i++)
  5532. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5533. }