My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

stepper.cpp 40KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t *current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #ifdef Z_DUAL_ENDSTOPS
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #ifdef ADVANCE
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static char step_loops;
  62. static unsigned short OCR1A_nominal;
  63. static unsigned short step_loops_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
  67. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  68. bool abort_on_endstop_hit = false;
  69. #endif
  70. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  71. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  72. #endif
  73. #if HAS_X_MIN
  74. static bool old_x_min_endstop = false;
  75. #endif
  76. #if HAS_X_MAX
  77. static bool old_x_max_endstop = false;
  78. #endif
  79. #if HAS_Y_MIN
  80. static bool old_y_min_endstop = false;
  81. #endif
  82. #if HAS_Y_MAX
  83. static bool old_y_max_endstop = false;
  84. #endif
  85. static bool old_z_min_endstop = false;
  86. static bool old_z_max_endstop = false;
  87. #ifdef Z_DUAL_ENDSTOPS
  88. static bool old_z2_min_endstop = false;
  89. static bool old_z2_max_endstop = false;
  90. #endif
  91. #ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
  92. static bool old_z_probe_endstop = false;
  93. #endif
  94. static bool check_endstops = true;
  95. volatile long count_position[NUM_AXIS] = { 0 };
  96. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. //===========================================================================
  98. //================================ functions ================================
  99. //===========================================================================
  100. #ifdef DUAL_X_CARRIAGE
  101. #define X_APPLY_DIR(v,ALWAYS) \
  102. if (extruder_duplication_enabled || ALWAYS) { \
  103. X_DIR_WRITE(v); \
  104. X2_DIR_WRITE(v); \
  105. } \
  106. else { \
  107. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  108. }
  109. #define X_APPLY_STEP(v,ALWAYS) \
  110. if (extruder_duplication_enabled || ALWAYS) { \
  111. X_STEP_WRITE(v); \
  112. X2_STEP_WRITE(v); \
  113. } \
  114. else { \
  115. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  116. }
  117. #else
  118. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  119. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  120. #endif
  121. #ifdef Y_DUAL_STEPPER_DRIVERS
  122. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  123. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  124. #else
  125. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  126. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  127. #endif
  128. #ifdef Z_DUAL_STEPPER_DRIVERS
  129. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  130. #ifdef Z_DUAL_ENDSTOPS
  131. #define Z_APPLY_STEP(v,Q) \
  132. if (performing_homing) { \
  133. if (Z_HOME_DIR > 0) {\
  134. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  135. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  136. } else {\
  137. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  138. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  139. } \
  140. } else { \
  141. Z_STEP_WRITE(v); \
  142. Z2_STEP_WRITE(v); \
  143. }
  144. #else
  145. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  146. #endif
  147. #else
  148. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  149. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  150. #endif
  151. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  152. // intRes = intIn1 * intIn2 >> 16
  153. // uses:
  154. // r26 to store 0
  155. // r27 to store the byte 1 of the 24 bit result
  156. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  157. asm volatile ( \
  158. "clr r26 \n\t" \
  159. "mul %A1, %B2 \n\t" \
  160. "movw %A0, r0 \n\t" \
  161. "mul %A1, %A2 \n\t" \
  162. "add %A0, r1 \n\t" \
  163. "adc %B0, r26 \n\t" \
  164. "lsr r0 \n\t" \
  165. "adc %A0, r26 \n\t" \
  166. "adc %B0, r26 \n\t" \
  167. "clr r1 \n\t" \
  168. : \
  169. "=&r" (intRes) \
  170. : \
  171. "d" (charIn1), \
  172. "d" (intIn2) \
  173. : \
  174. "r26" \
  175. )
  176. // intRes = longIn1 * longIn2 >> 24
  177. // uses:
  178. // r26 to store 0
  179. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  180. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  181. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  182. // B0 A0 are bits 24-39 and are the returned value
  183. // C1 B1 A1 is longIn1
  184. // D2 C2 B2 A2 is longIn2
  185. //
  186. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  187. asm volatile ( \
  188. "clr r26 \n\t" \
  189. "mul %A1, %B2 \n\t" \
  190. "mov r27, r1 \n\t" \
  191. "mul %B1, %C2 \n\t" \
  192. "movw %A0, r0 \n\t" \
  193. "mul %C1, %C2 \n\t" \
  194. "add %B0, r0 \n\t" \
  195. "mul %C1, %B2 \n\t" \
  196. "add %A0, r0 \n\t" \
  197. "adc %B0, r1 \n\t" \
  198. "mul %A1, %C2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %B1, %B2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %C1, %A2 \n\t" \
  207. "add r27, r0 \n\t" \
  208. "adc %A0, r1 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "mul %B1, %A2 \n\t" \
  211. "add r27, r1 \n\t" \
  212. "adc %A0, r26 \n\t" \
  213. "adc %B0, r26 \n\t" \
  214. "lsr r27 \n\t" \
  215. "adc %A0, r26 \n\t" \
  216. "adc %B0, r26 \n\t" \
  217. "mul %D2, %A1 \n\t" \
  218. "add %A0, r0 \n\t" \
  219. "adc %B0, r1 \n\t" \
  220. "mul %D2, %B1 \n\t" \
  221. "add %B0, r0 \n\t" \
  222. "clr r1 \n\t" \
  223. : \
  224. "=&r" (intRes) \
  225. : \
  226. "d" (longIn1), \
  227. "d" (longIn2) \
  228. : \
  229. "r26" , "r27" \
  230. )
  231. // Some useful constants
  232. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  233. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  234. void endstops_hit_on_purpose() {
  235. endstop_hit_bits = 0;
  236. }
  237. void checkHitEndstops() {
  238. if (endstop_hit_bits) { // #ifdef || endstop_z_probe_hit to save space if needed.
  239. SERIAL_ECHO_START;
  240. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  241. if (endstop_hit_bits & BIT(X_MIN)) {
  242. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  243. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  244. }
  245. if (endstop_hit_bits & BIT(Y_MIN)) {
  246. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  247. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  248. }
  249. if (endstop_hit_bits & BIT(Z_MIN)) {
  250. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  251. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  252. }
  253. #ifdef Z_PROBE_ENDSTOP
  254. if (endstop_hit_bits & BIT(Z_PROBE)) {
  255. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  256. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  257. }
  258. #endif
  259. SERIAL_EOL;
  260. endstops_hit_on_purpose();
  261. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  262. if (abort_on_endstop_hit) {
  263. card.sdprinting = false;
  264. card.closefile();
  265. quickStop();
  266. setTargetHotend0(0);
  267. setTargetHotend1(0);
  268. setTargetHotend2(0);
  269. setTargetHotend3(0);
  270. setTargetBed(0);
  271. }
  272. #endif
  273. }
  274. }
  275. void enable_endstops(bool check) { check_endstops = check; }
  276. // __________________________
  277. // /| |\ _________________ ^
  278. // / | | \ /| |\ |
  279. // / | | \ / | | \ s
  280. // / | | | | | \ p
  281. // / | | | | | \ e
  282. // +-----+------------------------+---+--+---------------+----+ e
  283. // | BLOCK 1 | BLOCK 2 | d
  284. //
  285. // time ----->
  286. //
  287. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  288. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  289. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  290. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  291. void st_wake_up() {
  292. // TCNT1 = 0;
  293. ENABLE_STEPPER_DRIVER_INTERRUPT();
  294. }
  295. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  296. unsigned short timer;
  297. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  298. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  299. step_rate = (step_rate >> 2) & 0x3fff;
  300. step_loops = 4;
  301. }
  302. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  303. step_rate = (step_rate >> 1) & 0x7fff;
  304. step_loops = 2;
  305. }
  306. else {
  307. step_loops = 1;
  308. }
  309. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  310. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  311. if (step_rate >= (8 * 256)) { // higher step rate
  312. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  313. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  314. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  315. MultiU16X8toH16(timer, tmp_step_rate, gain);
  316. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  317. }
  318. else { // lower step rates
  319. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  320. table_address += ((step_rate)>>1) & 0xfffc;
  321. timer = (unsigned short)pgm_read_word_near(table_address);
  322. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  323. }
  324. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  325. return timer;
  326. }
  327. // set the stepper direction of each axis
  328. void set_stepper_direction() {
  329. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  330. if (TEST(out_bits, X_AXIS)) {
  331. X_APPLY_DIR(INVERT_X_DIR,0);
  332. count_direction[X_AXIS] = -1;
  333. }
  334. else {
  335. X_APPLY_DIR(!INVERT_X_DIR,0);
  336. count_direction[X_AXIS] = 1;
  337. }
  338. if (TEST(out_bits, Y_AXIS)) {
  339. Y_APPLY_DIR(INVERT_Y_DIR,0);
  340. count_direction[Y_AXIS] = -1;
  341. }
  342. else {
  343. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  344. count_direction[Y_AXIS] = 1;
  345. }
  346. if (TEST(out_bits, Z_AXIS)) {
  347. Z_APPLY_DIR(INVERT_Z_DIR,0);
  348. count_direction[Z_AXIS] = -1;
  349. }
  350. else {
  351. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  352. count_direction[Z_AXIS] = 1;
  353. }
  354. #ifndef ADVANCE
  355. if (TEST(out_bits, E_AXIS)) {
  356. REV_E_DIR();
  357. count_direction[E_AXIS] = -1;
  358. }
  359. else {
  360. NORM_E_DIR();
  361. count_direction[E_AXIS] = 1;
  362. }
  363. #endif //!ADVANCE
  364. }
  365. // Initializes the trapezoid generator from the current block. Called whenever a new
  366. // block begins.
  367. FORCE_INLINE void trapezoid_generator_reset() {
  368. if (current_block->direction_bits != out_bits) {
  369. out_bits = current_block->direction_bits;
  370. set_stepper_direction();
  371. }
  372. #ifdef ADVANCE
  373. advance = current_block->initial_advance;
  374. final_advance = current_block->final_advance;
  375. // Do E steps + advance steps
  376. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  377. old_advance = advance >>8;
  378. #endif
  379. deceleration_time = 0;
  380. // step_rate to timer interval
  381. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  382. // make a note of the number of step loops required at nominal speed
  383. step_loops_nominal = step_loops;
  384. acc_step_rate = current_block->initial_rate;
  385. acceleration_time = calc_timer(acc_step_rate);
  386. OCR1A = acceleration_time;
  387. // SERIAL_ECHO_START;
  388. // SERIAL_ECHOPGM("advance :");
  389. // SERIAL_ECHO(current_block->advance/256.0);
  390. // SERIAL_ECHOPGM("advance rate :");
  391. // SERIAL_ECHO(current_block->advance_rate/256.0);
  392. // SERIAL_ECHOPGM("initial advance :");
  393. // SERIAL_ECHO(current_block->initial_advance/256.0);
  394. // SERIAL_ECHOPGM("final advance :");
  395. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  396. }
  397. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  398. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  399. ISR(TIMER1_COMPA_vect) {
  400. if(cleaning_buffer_counter)
  401. {
  402. current_block = NULL;
  403. plan_discard_current_block();
  404. #ifdef SD_FINISHED_RELEASECOMMAND
  405. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  406. #endif
  407. cleaning_buffer_counter--;
  408. OCR1A = 200;
  409. return;
  410. }
  411. // If there is no current block, attempt to pop one from the buffer
  412. if (!current_block) {
  413. // Anything in the buffer?
  414. current_block = plan_get_current_block();
  415. if (current_block) {
  416. current_block->busy = true;
  417. trapezoid_generator_reset();
  418. counter_x = -(current_block->step_event_count >> 1);
  419. counter_y = counter_z = counter_e = counter_x;
  420. step_events_completed = 0;
  421. #ifdef Z_LATE_ENABLE
  422. if (current_block->steps[Z_AXIS] > 0) {
  423. enable_z();
  424. OCR1A = 2000; //1ms wait
  425. return;
  426. }
  427. #endif
  428. // #ifdef ADVANCE
  429. // e_steps[current_block->active_extruder] = 0;
  430. // #endif
  431. }
  432. else {
  433. OCR1A = 2000; // 1kHz.
  434. }
  435. }
  436. if (current_block != NULL) {
  437. // Check endstops
  438. if (check_endstops) {
  439. #define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop
  440. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  441. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  442. #define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop
  443. #define _AXIS(AXIS) AXIS ##_AXIS
  444. #define _HIT_BIT(AXIS) AXIS ##_MIN
  445. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_HIT_BIT(AXIS))
  446. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  447. bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \
  448. if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  449. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  450. _ENDSTOP_HIT(AXIS); \
  451. step_events_completed = current_block->step_event_count; \
  452. } \
  453. _OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax);
  454. #ifdef COREXY
  455. // Head direction in -X axis for CoreXY bots.
  456. // If DeltaX == -DeltaY, the movement is only in Y axis
  457. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  458. if (TEST(out_bits, X_HEAD))
  459. #else
  460. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  461. #endif
  462. { // -direction
  463. #ifdef DUAL_X_CARRIAGE
  464. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  465. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  466. #endif
  467. {
  468. #if HAS_X_MIN
  469. UPDATE_ENDSTOP(x, X, min, MIN);
  470. #endif
  471. }
  472. }
  473. else { // +direction
  474. #ifdef DUAL_X_CARRIAGE
  475. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  476. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  477. #endif
  478. {
  479. #if HAS_X_MAX
  480. UPDATE_ENDSTOP(x, X, max, MAX);
  481. #endif
  482. }
  483. }
  484. #ifdef COREXY
  485. }
  486. // Head direction in -Y axis for CoreXY bots.
  487. // If DeltaX == DeltaY, the movement is only in X axis
  488. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  489. if (TEST(out_bits, Y_HEAD))
  490. #else
  491. if (TEST(out_bits, Y_AXIS)) // -direction
  492. #endif
  493. { // -direction
  494. #if HAS_Y_MIN
  495. UPDATE_ENDSTOP(y, Y, min, MIN);
  496. #endif
  497. }
  498. else { // +direction
  499. #if HAS_Y_MAX
  500. UPDATE_ENDSTOP(y, Y, max, MAX);
  501. #endif
  502. }
  503. #ifdef COREXY
  504. }
  505. #endif
  506. if (TEST(out_bits, Z_AXIS)) { // z -direction
  507. #if HAS_Z_MIN
  508. #ifdef Z_DUAL_ENDSTOPS
  509. bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
  510. z2_min_endstop =
  511. #if HAS_Z2_MIN
  512. READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
  513. #else
  514. z_min_endstop
  515. #endif
  516. ;
  517. bool z_min_both = z_min_endstop && old_z_min_endstop,
  518. z2_min_both = z2_min_endstop && old_z2_min_endstop;
  519. if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
  520. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  521. endstop_hit_bits |= BIT(Z_MIN);
  522. if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
  523. step_events_completed = current_block->step_event_count;
  524. }
  525. old_z_min_endstop = z_min_endstop;
  526. old_z2_min_endstop = z2_min_endstop;
  527. #else // !Z_DUAL_ENDSTOPS
  528. UPDATE_ENDSTOP(z, Z, min, MIN);
  529. #endif // !Z_DUAL_ENDSTOPS
  530. #endif // Z_MIN_PIN
  531. #ifdef Z_PROBE_ENDSTOP
  532. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  533. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  534. if(z_probe_endstop && old_z_probe_endstop)
  535. {
  536. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  537. endstop_hit_bits |= BIT(Z_PROBE);
  538. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  539. }
  540. old_z_probe_endstop = z_probe_endstop;
  541. #endif
  542. }
  543. else { // z +direction
  544. #if HAS_Z_MAX
  545. #ifdef Z_DUAL_ENDSTOPS
  546. bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
  547. z2_max_endstop =
  548. #if HAS_Z2_MAX
  549. READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
  550. #else
  551. z_max_endstop
  552. #endif
  553. ;
  554. bool z_max_both = z_max_endstop && old_z_max_endstop,
  555. z2_max_both = z2_max_endstop && old_z2_max_endstop;
  556. if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
  557. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  558. endstop_hit_bits |= BIT(Z_MIN);
  559. // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
  560. // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
  561. if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
  562. step_events_completed = current_block->step_event_count;
  563. }
  564. old_z_max_endstop = z_max_endstop;
  565. old_z2_max_endstop = z2_max_endstop;
  566. #else // !Z_DUAL_ENDSTOPS
  567. UPDATE_ENDSTOP(z, Z, max, MAX);
  568. #endif // !Z_DUAL_ENDSTOPS
  569. #endif // Z_MAX_PIN
  570. #ifdef Z_PROBE_ENDSTOP
  571. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  572. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  573. if(z_probe_endstop && old_z_probe_endstop)
  574. {
  575. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  576. endstop_hit_bits |= BIT(Z_PROBE);
  577. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  578. }
  579. old_z_probe_endstop = z_probe_endstop;
  580. #endif
  581. }
  582. }
  583. // Take multiple steps per interrupt (For high speed moves)
  584. for (int8_t i = 0; i < step_loops; i++) {
  585. #ifndef AT90USB
  586. MSerial.checkRx(); // Check for serial chars.
  587. #endif
  588. #ifdef ADVANCE
  589. counter_e += current_block->steps[E_AXIS];
  590. if (counter_e > 0) {
  591. counter_e -= current_block->step_event_count;
  592. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  593. }
  594. #endif //ADVANCE
  595. #define _COUNTER(axis) counter_## axis
  596. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  597. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  598. #define STEP_ADD(axis, AXIS) \
  599. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  600. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  601. STEP_ADD(x,X);
  602. STEP_ADD(y,Y);
  603. STEP_ADD(z,Z);
  604. #ifndef ADVANCE
  605. STEP_ADD(e,E);
  606. #endif
  607. #define STEP_IF_COUNTER(axis, AXIS) \
  608. if (_COUNTER(axis) > 0) { \
  609. _COUNTER(axis) -= current_block->step_event_count; \
  610. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  611. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  612. }
  613. STEP_IF_COUNTER(x, X);
  614. STEP_IF_COUNTER(y, Y);
  615. STEP_IF_COUNTER(z, Z);
  616. #ifndef ADVANCE
  617. STEP_IF_COUNTER(e, E);
  618. #endif
  619. step_events_completed++;
  620. if (step_events_completed >= current_block->step_event_count) break;
  621. }
  622. // Calculate new timer value
  623. unsigned short timer;
  624. unsigned short step_rate;
  625. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  626. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  627. acc_step_rate += current_block->initial_rate;
  628. // upper limit
  629. if (acc_step_rate > current_block->nominal_rate)
  630. acc_step_rate = current_block->nominal_rate;
  631. // step_rate to timer interval
  632. timer = calc_timer(acc_step_rate);
  633. OCR1A = timer;
  634. acceleration_time += timer;
  635. #ifdef ADVANCE
  636. for(int8_t i=0; i < step_loops; i++) {
  637. advance += advance_rate;
  638. }
  639. //if (advance > current_block->advance) advance = current_block->advance;
  640. // Do E steps + advance steps
  641. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  642. old_advance = advance >>8;
  643. #endif
  644. }
  645. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  646. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  647. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  648. step_rate = current_block->final_rate;
  649. }
  650. else {
  651. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  652. }
  653. // lower limit
  654. if (step_rate < current_block->final_rate)
  655. step_rate = current_block->final_rate;
  656. // step_rate to timer interval
  657. timer = calc_timer(step_rate);
  658. OCR1A = timer;
  659. deceleration_time += timer;
  660. #ifdef ADVANCE
  661. for(int8_t i=0; i < step_loops; i++) {
  662. advance -= advance_rate;
  663. }
  664. if (advance < final_advance) advance = final_advance;
  665. // Do E steps + advance steps
  666. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  667. old_advance = advance >>8;
  668. #endif //ADVANCE
  669. }
  670. else {
  671. OCR1A = OCR1A_nominal;
  672. // ensure we're running at the correct step rate, even if we just came off an acceleration
  673. step_loops = step_loops_nominal;
  674. }
  675. // If current block is finished, reset pointer
  676. if (step_events_completed >= current_block->step_event_count) {
  677. current_block = NULL;
  678. plan_discard_current_block();
  679. }
  680. }
  681. }
  682. #ifdef ADVANCE
  683. unsigned char old_OCR0A;
  684. // Timer interrupt for E. e_steps is set in the main routine;
  685. // Timer 0 is shared with millies
  686. ISR(TIMER0_COMPA_vect)
  687. {
  688. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  689. OCR0A = old_OCR0A;
  690. // Set E direction (Depends on E direction + advance)
  691. for(unsigned char i=0; i<4;i++) {
  692. if (e_steps[0] != 0) {
  693. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  694. if (e_steps[0] < 0) {
  695. E0_DIR_WRITE(INVERT_E0_DIR);
  696. e_steps[0]++;
  697. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  698. }
  699. else if (e_steps[0] > 0) {
  700. E0_DIR_WRITE(!INVERT_E0_DIR);
  701. e_steps[0]--;
  702. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  703. }
  704. }
  705. #if EXTRUDERS > 1
  706. if (e_steps[1] != 0) {
  707. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  708. if (e_steps[1] < 0) {
  709. E1_DIR_WRITE(INVERT_E1_DIR);
  710. e_steps[1]++;
  711. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  712. }
  713. else if (e_steps[1] > 0) {
  714. E1_DIR_WRITE(!INVERT_E1_DIR);
  715. e_steps[1]--;
  716. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  717. }
  718. }
  719. #endif
  720. #if EXTRUDERS > 2
  721. if (e_steps[2] != 0) {
  722. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  723. if (e_steps[2] < 0) {
  724. E2_DIR_WRITE(INVERT_E2_DIR);
  725. e_steps[2]++;
  726. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  727. }
  728. else if (e_steps[2] > 0) {
  729. E2_DIR_WRITE(!INVERT_E2_DIR);
  730. e_steps[2]--;
  731. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  732. }
  733. }
  734. #endif
  735. #if EXTRUDERS > 3
  736. if (e_steps[3] != 0) {
  737. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  738. if (e_steps[3] < 0) {
  739. E3_DIR_WRITE(INVERT_E3_DIR);
  740. e_steps[3]++;
  741. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  742. }
  743. else if (e_steps[3] > 0) {
  744. E3_DIR_WRITE(!INVERT_E3_DIR);
  745. e_steps[3]--;
  746. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  747. }
  748. }
  749. #endif
  750. }
  751. }
  752. #endif // ADVANCE
  753. void st_init() {
  754. digipot_init(); //Initialize Digipot Motor Current
  755. microstep_init(); //Initialize Microstepping Pins
  756. // initialise TMC Steppers
  757. #ifdef HAVE_TMCDRIVER
  758. tmc_init();
  759. #endif
  760. // initialise L6470 Steppers
  761. #ifdef HAVE_L6470DRIVER
  762. L6470_init();
  763. #endif
  764. // Initialize Dir Pins
  765. #if HAS_X_DIR
  766. X_DIR_INIT;
  767. #endif
  768. #if HAS_X2_DIR
  769. X2_DIR_INIT;
  770. #endif
  771. #if HAS_Y_DIR
  772. Y_DIR_INIT;
  773. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  774. Y2_DIR_INIT;
  775. #endif
  776. #endif
  777. #if HAS_Z_DIR
  778. Z_DIR_INIT;
  779. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  780. Z2_DIR_INIT;
  781. #endif
  782. #endif
  783. #if HAS_E0_DIR
  784. E0_DIR_INIT;
  785. #endif
  786. #if HAS_E1_DIR
  787. E1_DIR_INIT;
  788. #endif
  789. #if HAS_E2_DIR
  790. E2_DIR_INIT;
  791. #endif
  792. #if HAS_E3_DIR
  793. E3_DIR_INIT;
  794. #endif
  795. //Initialize Enable Pins - steppers default to disabled.
  796. #if HAS_X_ENABLE
  797. X_ENABLE_INIT;
  798. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  799. #endif
  800. #if HAS_X2_ENABLE
  801. X2_ENABLE_INIT;
  802. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  803. #endif
  804. #if HAS_Y_ENABLE
  805. Y_ENABLE_INIT;
  806. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  807. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  808. Y2_ENABLE_INIT;
  809. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  810. #endif
  811. #endif
  812. #if HAS_Z_ENABLE
  813. Z_ENABLE_INIT;
  814. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  815. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  816. Z2_ENABLE_INIT;
  817. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  818. #endif
  819. #endif
  820. #if HAS_E0_ENABLE
  821. E0_ENABLE_INIT;
  822. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  823. #endif
  824. #if HAS_E1_ENABLE
  825. E1_ENABLE_INIT;
  826. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  827. #endif
  828. #if HAS_E2_ENABLE
  829. E2_ENABLE_INIT;
  830. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  831. #endif
  832. #if HAS_E3_ENABLE
  833. E3_ENABLE_INIT;
  834. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  835. #endif
  836. //endstops and pullups
  837. #if HAS_X_MIN
  838. SET_INPUT(X_MIN_PIN);
  839. #ifdef ENDSTOPPULLUP_XMIN
  840. WRITE(X_MIN_PIN,HIGH);
  841. #endif
  842. #endif
  843. #if HAS_Y_MIN
  844. SET_INPUT(Y_MIN_PIN);
  845. #ifdef ENDSTOPPULLUP_YMIN
  846. WRITE(Y_MIN_PIN,HIGH);
  847. #endif
  848. #endif
  849. #if HAS_Z_MIN
  850. SET_INPUT(Z_MIN_PIN);
  851. #ifdef ENDSTOPPULLUP_ZMIN
  852. WRITE(Z_MIN_PIN,HIGH);
  853. #endif
  854. #endif
  855. #if HAS_X_MAX
  856. SET_INPUT(X_MAX_PIN);
  857. #ifdef ENDSTOPPULLUP_XMAX
  858. WRITE(X_MAX_PIN,HIGH);
  859. #endif
  860. #endif
  861. #if HAS_Y_MAX
  862. SET_INPUT(Y_MAX_PIN);
  863. #ifdef ENDSTOPPULLUP_YMAX
  864. WRITE(Y_MAX_PIN,HIGH);
  865. #endif
  866. #endif
  867. #if HAS_Z_MAX
  868. SET_INPUT(Z_MAX_PIN);
  869. #ifdef ENDSTOPPULLUP_ZMAX
  870. WRITE(Z_MAX_PIN,HIGH);
  871. #endif
  872. #endif
  873. #if HAS_Z2_MAX
  874. SET_INPUT(Z2_MAX_PIN);
  875. #ifdef ENDSTOPPULLUP_ZMAX
  876. WRITE(Z2_MAX_PIN,HIGH);
  877. #endif
  878. #endif
  879. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  880. SET_INPUT(Z_PROBE_PIN);
  881. #ifdef ENDSTOPPULLUP_ZPROBE
  882. WRITE(Z_PROBE_PIN,HIGH);
  883. #endif
  884. #endif
  885. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  886. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  887. #define _DISABLE(axis) disable_## axis()
  888. #define AXIS_INIT(axis, AXIS, PIN) \
  889. _STEP_INIT(AXIS); \
  890. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  891. _DISABLE(axis)
  892. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  893. // Initialize Step Pins
  894. #if HAS_X_STEP
  895. AXIS_INIT(x, X, X);
  896. #endif
  897. #if HAS_X2_STEP
  898. AXIS_INIT(x, X2, X);
  899. #endif
  900. #if HAS_Y_STEP
  901. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  902. Y2_STEP_INIT;
  903. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  904. #endif
  905. AXIS_INIT(y, Y, Y);
  906. #endif
  907. #if HAS_Z_STEP
  908. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  909. Z2_STEP_INIT;
  910. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  911. #endif
  912. AXIS_INIT(z, Z, Z);
  913. #endif
  914. #if HAS_E0_STEP
  915. E_AXIS_INIT(0);
  916. #endif
  917. #if HAS_E1_STEP
  918. E_AXIS_INIT(1);
  919. #endif
  920. #if HAS_E2_STEP
  921. E_AXIS_INIT(2);
  922. #endif
  923. #if HAS_E3_STEP
  924. E_AXIS_INIT(3);
  925. #endif
  926. // waveform generation = 0100 = CTC
  927. TCCR1B &= ~BIT(WGM13);
  928. TCCR1B |= BIT(WGM12);
  929. TCCR1A &= ~BIT(WGM11);
  930. TCCR1A &= ~BIT(WGM10);
  931. // output mode = 00 (disconnected)
  932. TCCR1A &= ~(3<<COM1A0);
  933. TCCR1A &= ~(3<<COM1B0);
  934. // Set the timer pre-scaler
  935. // Generally we use a divider of 8, resulting in a 2MHz timer
  936. // frequency on a 16MHz MCU. If you are going to change this, be
  937. // sure to regenerate speed_lookuptable.h with
  938. // create_speed_lookuptable.py
  939. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  940. OCR1A = 0x4000;
  941. TCNT1 = 0;
  942. ENABLE_STEPPER_DRIVER_INTERRUPT();
  943. #ifdef ADVANCE
  944. #if defined(TCCR0A) && defined(WGM01)
  945. TCCR0A &= ~BIT(WGM01);
  946. TCCR0A &= ~BIT(WGM00);
  947. #endif
  948. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  949. TIMSK0 |= BIT(OCIE0A);
  950. #endif //ADVANCE
  951. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  952. sei();
  953. set_stepper_direction(); // Init directions to out_bits = 0
  954. }
  955. // Block until all buffered steps are executed
  956. void st_synchronize() {
  957. while (blocks_queued()) {
  958. manage_heater();
  959. manage_inactivity();
  960. lcd_update();
  961. }
  962. }
  963. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  964. CRITICAL_SECTION_START;
  965. count_position[X_AXIS] = x;
  966. count_position[Y_AXIS] = y;
  967. count_position[Z_AXIS] = z;
  968. count_position[E_AXIS] = e;
  969. CRITICAL_SECTION_END;
  970. }
  971. void st_set_e_position(const long &e) {
  972. CRITICAL_SECTION_START;
  973. count_position[E_AXIS] = e;
  974. CRITICAL_SECTION_END;
  975. }
  976. long st_get_position(uint8_t axis) {
  977. long count_pos;
  978. CRITICAL_SECTION_START;
  979. count_pos = count_position[axis];
  980. CRITICAL_SECTION_END;
  981. return count_pos;
  982. }
  983. #ifdef ENABLE_AUTO_BED_LEVELING
  984. float st_get_position_mm(AxisEnum axis) {
  985. return st_get_position(axis) / axis_steps_per_unit[axis];
  986. }
  987. #endif // ENABLE_AUTO_BED_LEVELING
  988. void finishAndDisableSteppers() {
  989. st_synchronize();
  990. disable_all_steppers();
  991. }
  992. void quickStop() {
  993. cleaning_buffer_counter = 5000;
  994. DISABLE_STEPPER_DRIVER_INTERRUPT();
  995. while (blocks_queued()) plan_discard_current_block();
  996. current_block = NULL;
  997. ENABLE_STEPPER_DRIVER_INTERRUPT();
  998. }
  999. #ifdef BABYSTEPPING
  1000. // MUST ONLY BE CALLED BY AN ISR,
  1001. // No other ISR should ever interrupt this!
  1002. void babystep(const uint8_t axis, const bool direction) {
  1003. #define _ENABLE(axis) enable_## axis()
  1004. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1005. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1006. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1007. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1008. _ENABLE(axis); \
  1009. uint8_t old_pin = _READ_DIR(AXIS); \
  1010. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1011. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1012. delayMicroseconds(2); \
  1013. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1014. _APPLY_DIR(AXIS, old_pin); \
  1015. }
  1016. switch(axis) {
  1017. case X_AXIS:
  1018. BABYSTEP_AXIS(x, X, false);
  1019. break;
  1020. case Y_AXIS:
  1021. BABYSTEP_AXIS(y, Y, false);
  1022. break;
  1023. case Z_AXIS: {
  1024. #ifndef DELTA
  1025. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1026. #else // DELTA
  1027. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1028. enable_x();
  1029. enable_y();
  1030. enable_z();
  1031. uint8_t old_x_dir_pin = X_DIR_READ,
  1032. old_y_dir_pin = Y_DIR_READ,
  1033. old_z_dir_pin = Z_DIR_READ;
  1034. //setup new step
  1035. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1036. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1037. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1038. //perform step
  1039. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1040. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1041. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1042. delayMicroseconds(2);
  1043. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1044. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1045. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1046. //get old pin state back.
  1047. X_DIR_WRITE(old_x_dir_pin);
  1048. Y_DIR_WRITE(old_y_dir_pin);
  1049. Z_DIR_WRITE(old_z_dir_pin);
  1050. #endif
  1051. } break;
  1052. default: break;
  1053. }
  1054. }
  1055. #endif //BABYSTEPPING
  1056. // From Arduino DigitalPotControl example
  1057. void digitalPotWrite(int address, int value) {
  1058. #if HAS_DIGIPOTSS
  1059. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1060. SPI.transfer(address); // send in the address and value via SPI:
  1061. SPI.transfer(value);
  1062. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1063. //delay(10);
  1064. #endif
  1065. }
  1066. // Initialize Digipot Motor Current
  1067. void digipot_init() {
  1068. #if HAS_DIGIPOTSS
  1069. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1070. SPI.begin();
  1071. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1072. for (int i = 0; i <= 4; i++) {
  1073. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1074. digipot_current(i,digipot_motor_current[i]);
  1075. }
  1076. #endif
  1077. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1078. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1079. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1080. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1081. digipot_current(0, motor_current_setting[0]);
  1082. digipot_current(1, motor_current_setting[1]);
  1083. digipot_current(2, motor_current_setting[2]);
  1084. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1085. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1086. #endif
  1087. }
  1088. void digipot_current(uint8_t driver, int current) {
  1089. #if HAS_DIGIPOTSS
  1090. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1091. digitalPotWrite(digipot_ch[driver], current);
  1092. #endif
  1093. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1094. switch(driver) {
  1095. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1096. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1097. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1098. }
  1099. #endif
  1100. }
  1101. void microstep_init() {
  1102. #if HAS_MICROSTEPS_E1
  1103. pinMode(E1_MS1_PIN,OUTPUT);
  1104. pinMode(E1_MS2_PIN,OUTPUT);
  1105. #endif
  1106. #if HAS_MICROSTEPS
  1107. pinMode(X_MS1_PIN,OUTPUT);
  1108. pinMode(X_MS2_PIN,OUTPUT);
  1109. pinMode(Y_MS1_PIN,OUTPUT);
  1110. pinMode(Y_MS2_PIN,OUTPUT);
  1111. pinMode(Z_MS1_PIN,OUTPUT);
  1112. pinMode(Z_MS2_PIN,OUTPUT);
  1113. pinMode(E0_MS1_PIN,OUTPUT);
  1114. pinMode(E0_MS2_PIN,OUTPUT);
  1115. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1116. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1117. microstep_mode(i, microstep_modes[i]);
  1118. #endif
  1119. }
  1120. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1121. if (ms1 >= 0) switch(driver) {
  1122. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1123. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1124. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1125. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1126. #if HAS_MICROSTEPS_E1
  1127. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1128. #endif
  1129. }
  1130. if (ms2 >= 0) switch(driver) {
  1131. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1132. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1133. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1134. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1135. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1136. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1137. #endif
  1138. }
  1139. }
  1140. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1141. switch(stepping_mode) {
  1142. case 1: microstep_ms(driver,MICROSTEP1); break;
  1143. case 2: microstep_ms(driver,MICROSTEP2); break;
  1144. case 4: microstep_ms(driver,MICROSTEP4); break;
  1145. case 8: microstep_ms(driver,MICROSTEP8); break;
  1146. case 16: microstep_ms(driver,MICROSTEP16); break;
  1147. }
  1148. }
  1149. void microstep_readings() {
  1150. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1151. SERIAL_PROTOCOLPGM("X: ");
  1152. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1153. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1154. SERIAL_PROTOCOLPGM("Y: ");
  1155. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1156. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1157. SERIAL_PROTOCOLPGM("Z: ");
  1158. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1159. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1160. SERIAL_PROTOCOLPGM("E0: ");
  1161. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1162. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1163. #if HAS_MICROSTEPS_E1
  1164. SERIAL_PROTOCOLPGM("E1: ");
  1165. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1166. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1167. #endif
  1168. }
  1169. #ifdef Z_DUAL_ENDSTOPS
  1170. void In_Homing_Process(bool state) { performing_homing = state; }
  1171. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1172. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1173. #endif