My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 40KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  65. bool abort_on_endstop_hit = false;
  66. #endif
  67. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  68. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  69. #endif
  70. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  71. static bool old_x_min_endstop = false;
  72. #endif
  73. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  74. static bool old_x_max_endstop = false;
  75. #endif
  76. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  77. static bool old_y_min_endstop = false;
  78. #endif
  79. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  80. static bool old_y_max_endstop = false;
  81. #endif
  82. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  83. static bool old_z_min_endstop = false;
  84. #endif
  85. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  86. static bool old_z_max_endstop = false;
  87. #endif
  88. #ifdef Z_DUAL_ENDSTOPS
  89. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
  90. static bool old_z2_min_endstop = false;
  91. #endif
  92. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  93. static bool old_z2_max_endstop = false;
  94. #endif
  95. #endif
  96. static bool check_endstops = true;
  97. volatile long count_position[NUM_AXIS] = { 0 };
  98. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  99. //===========================================================================
  100. //================================ functions ================================
  101. //===========================================================================
  102. #ifdef DUAL_X_CARRIAGE
  103. #define X_APPLY_DIR(v,ALWAYS) \
  104. if (extruder_duplication_enabled || ALWAYS) { \
  105. X_DIR_WRITE(v); \
  106. X2_DIR_WRITE(v); \
  107. } \
  108. else { \
  109. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  110. }
  111. #define X_APPLY_STEP(v,ALWAYS) \
  112. if (extruder_duplication_enabled || ALWAYS) { \
  113. X_STEP_WRITE(v); \
  114. X2_STEP_WRITE(v); \
  115. } \
  116. else { \
  117. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  118. }
  119. #else
  120. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  121. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  122. #endif
  123. #ifdef Y_DUAL_STEPPER_DRIVERS
  124. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  125. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  126. #else
  127. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  128. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  129. #endif
  130. #ifdef Z_DUAL_STEPPER_DRIVERS
  131. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  132. #ifdef Z_DUAL_ENDSTOPS
  133. #define Z_APPLY_STEP(v,Q) \
  134. if (performing_homing) { \
  135. if (Z_HOME_DIR > 0) {\
  136. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  137. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  138. } else {\
  139. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  140. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  141. } \
  142. } else { \
  143. Z_STEP_WRITE(v); \
  144. Z2_STEP_WRITE(v); \
  145. }
  146. #else
  147. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  148. #endif
  149. #else
  150. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  151. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  152. #endif
  153. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  154. // intRes = intIn1 * intIn2 >> 16
  155. // uses:
  156. // r26 to store 0
  157. // r27 to store the byte 1 of the 24 bit result
  158. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  159. asm volatile ( \
  160. "clr r26 \n\t" \
  161. "mul %A1, %B2 \n\t" \
  162. "movw %A0, r0 \n\t" \
  163. "mul %A1, %A2 \n\t" \
  164. "add %A0, r1 \n\t" \
  165. "adc %B0, r26 \n\t" \
  166. "lsr r0 \n\t" \
  167. "adc %A0, r26 \n\t" \
  168. "adc %B0, r26 \n\t" \
  169. "clr r1 \n\t" \
  170. : \
  171. "=&r" (intRes) \
  172. : \
  173. "d" (charIn1), \
  174. "d" (intIn2) \
  175. : \
  176. "r26" \
  177. )
  178. // intRes = longIn1 * longIn2 >> 24
  179. // uses:
  180. // r26 to store 0
  181. // r27 to store the byte 1 of the 48bit result
  182. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  183. asm volatile ( \
  184. "clr r26 \n\t" \
  185. "mul %A1, %B2 \n\t" \
  186. "mov r27, r1 \n\t" \
  187. "mul %B1, %C2 \n\t" \
  188. "movw %A0, r0 \n\t" \
  189. "mul %C1, %C2 \n\t" \
  190. "add %B0, r0 \n\t" \
  191. "mul %C1, %B2 \n\t" \
  192. "add %A0, r0 \n\t" \
  193. "adc %B0, r1 \n\t" \
  194. "mul %A1, %C2 \n\t" \
  195. "add r27, r0 \n\t" \
  196. "adc %A0, r1 \n\t" \
  197. "adc %B0, r26 \n\t" \
  198. "mul %B1, %B2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %C1, %A2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %B1, %A2 \n\t" \
  207. "add r27, r1 \n\t" \
  208. "adc %A0, r26 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "lsr r27 \n\t" \
  211. "adc %A0, r26 \n\t" \
  212. "adc %B0, r26 \n\t" \
  213. "clr r1 \n\t" \
  214. : \
  215. "=&r" (intRes) \
  216. : \
  217. "d" (longIn1), \
  218. "d" (longIn2) \
  219. : \
  220. "r26" , "r27" \
  221. )
  222. // Some useful constants
  223. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  224. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  225. void endstops_hit_on_purpose() {
  226. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  227. }
  228. void checkHitEndstops() {
  229. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  230. SERIAL_ECHO_START;
  231. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  232. if (endstop_x_hit) {
  233. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  234. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  235. }
  236. if (endstop_y_hit) {
  237. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  238. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  239. }
  240. if (endstop_z_hit) {
  241. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  242. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  243. }
  244. SERIAL_EOL;
  245. endstops_hit_on_purpose();
  246. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  247. if (abort_on_endstop_hit) {
  248. card.sdprinting = false;
  249. card.closefile();
  250. quickStop();
  251. setTargetHotend0(0);
  252. setTargetHotend1(0);
  253. setTargetHotend2(0);
  254. setTargetHotend3(0);
  255. setTargetBed(0);
  256. }
  257. #endif
  258. }
  259. }
  260. void enable_endstops(bool check) { check_endstops = check; }
  261. // __________________________
  262. // /| |\ _________________ ^
  263. // / | | \ /| |\ |
  264. // / | | \ / | | \ s
  265. // / | | | | | \ p
  266. // / | | | | | \ e
  267. // +-----+------------------------+---+--+---------------+----+ e
  268. // | BLOCK 1 | BLOCK 2 | d
  269. //
  270. // time ----->
  271. //
  272. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  273. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  274. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  275. // The slope of acceleration is calculated with the leib ramp alghorithm.
  276. void st_wake_up() {
  277. // TCNT1 = 0;
  278. ENABLE_STEPPER_DRIVER_INTERRUPT();
  279. }
  280. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  281. unsigned short timer;
  282. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  283. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  284. step_rate = (step_rate >> 2) & 0x3fff;
  285. step_loops = 4;
  286. }
  287. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  288. step_rate = (step_rate >> 1) & 0x7fff;
  289. step_loops = 2;
  290. }
  291. else {
  292. step_loops = 1;
  293. }
  294. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  295. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  296. if (step_rate >= (8 * 256)) { // higher step rate
  297. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  298. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  299. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  300. MultiU16X8toH16(timer, tmp_step_rate, gain);
  301. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  302. }
  303. else { // lower step rates
  304. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  305. table_address += ((step_rate)>>1) & 0xfffc;
  306. timer = (unsigned short)pgm_read_word_near(table_address);
  307. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  308. }
  309. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  310. return timer;
  311. }
  312. // Initializes the trapezoid generator from the current block. Called whenever a new
  313. // block begins.
  314. FORCE_INLINE void trapezoid_generator_reset() {
  315. #ifdef ADVANCE
  316. advance = current_block->initial_advance;
  317. final_advance = current_block->final_advance;
  318. // Do E steps + advance steps
  319. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  320. old_advance = advance >>8;
  321. #endif
  322. deceleration_time = 0;
  323. // step_rate to timer interval
  324. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  325. // make a note of the number of step loops required at nominal speed
  326. step_loops_nominal = step_loops;
  327. acc_step_rate = current_block->initial_rate;
  328. acceleration_time = calc_timer(acc_step_rate);
  329. OCR1A = acceleration_time;
  330. // SERIAL_ECHO_START;
  331. // SERIAL_ECHOPGM("advance :");
  332. // SERIAL_ECHO(current_block->advance/256.0);
  333. // SERIAL_ECHOPGM("advance rate :");
  334. // SERIAL_ECHO(current_block->advance_rate/256.0);
  335. // SERIAL_ECHOPGM("initial advance :");
  336. // SERIAL_ECHO(current_block->initial_advance/256.0);
  337. // SERIAL_ECHOPGM("final advance :");
  338. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  339. }
  340. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  341. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  342. ISR(TIMER1_COMPA_vect) {
  343. if(cleaning_buffer_counter)
  344. {
  345. current_block = NULL;
  346. plan_discard_current_block();
  347. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  348. cleaning_buffer_counter--;
  349. OCR1A = 200;
  350. return;
  351. }
  352. // If there is no current block, attempt to pop one from the buffer
  353. if (!current_block) {
  354. // Anything in the buffer?
  355. current_block = plan_get_current_block();
  356. if (current_block) {
  357. current_block->busy = true;
  358. trapezoid_generator_reset();
  359. counter_x = -(current_block->step_event_count >> 1);
  360. counter_y = counter_z = counter_e = counter_x;
  361. step_events_completed = 0;
  362. #ifdef Z_LATE_ENABLE
  363. if (current_block->steps[Z_AXIS] > 0) {
  364. enable_z();
  365. OCR1A = 2000; //1ms wait
  366. return;
  367. }
  368. #endif
  369. // #ifdef ADVANCE
  370. // e_steps[current_block->active_extruder] = 0;
  371. // #endif
  372. }
  373. else {
  374. OCR1A = 2000; // 1kHz.
  375. }
  376. }
  377. if (current_block != NULL) {
  378. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  379. out_bits = current_block->direction_bits;
  380. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  381. if (TEST(out_bits, X_AXIS)) {
  382. X_APPLY_DIR(INVERT_X_DIR,0);
  383. count_direction[X_AXIS] = -1;
  384. }
  385. else {
  386. X_APPLY_DIR(!INVERT_X_DIR,0);
  387. count_direction[X_AXIS] = 1;
  388. }
  389. if (TEST(out_bits, Y_AXIS)) {
  390. Y_APPLY_DIR(INVERT_Y_DIR,0);
  391. count_direction[Y_AXIS] = -1;
  392. }
  393. else {
  394. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  395. count_direction[Y_AXIS] = 1;
  396. }
  397. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  398. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  399. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  400. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  401. endstop_## axis ##_hit = true; \
  402. step_events_completed = current_block->step_event_count; \
  403. } \
  404. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  405. // Check X and Y endstops
  406. if (check_endstops) {
  407. #ifdef COREXY
  408. // Head direction in -X axis for CoreXY bots.
  409. // If DeltaX == -DeltaY, the movement is only in Y axis
  410. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  411. if (TEST(out_bits, X_HEAD))
  412. #else
  413. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  414. #endif
  415. { // -direction
  416. #ifdef DUAL_X_CARRIAGE
  417. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  418. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  419. #endif
  420. {
  421. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  422. UPDATE_ENDSTOP(x, X, min, MIN);
  423. #endif
  424. }
  425. }
  426. else { // +direction
  427. #ifdef DUAL_X_CARRIAGE
  428. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  429. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  430. #endif
  431. {
  432. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  433. UPDATE_ENDSTOP(x, X, max, MAX);
  434. #endif
  435. }
  436. }
  437. #ifdef COREXY
  438. }
  439. // Head direction in -Y axis for CoreXY bots.
  440. // If DeltaX == DeltaY, the movement is only in X axis
  441. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  442. if (TEST(out_bits, Y_HEAD))
  443. #else
  444. if (TEST(out_bits, Y_AXIS)) // -direction
  445. #endif
  446. { // -direction
  447. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  448. UPDATE_ENDSTOP(y, Y, min, MIN);
  449. #endif
  450. }
  451. else { // +direction
  452. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  453. UPDATE_ENDSTOP(y, Y, max, MAX);
  454. #endif
  455. }
  456. #ifdef COREXY
  457. }
  458. #endif
  459. }
  460. if (TEST(out_bits, Z_AXIS)) { // -direction
  461. Z_APPLY_DIR(INVERT_Z_DIR,0);
  462. count_direction[Z_AXIS] = -1;
  463. if (check_endstops) {
  464. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  465. #ifdef Z_DUAL_ENDSTOPS
  466. bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
  467. z2_min_endstop =
  468. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
  469. READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
  470. #else
  471. z_min_endstop
  472. #endif
  473. ;
  474. bool z_min_both = z_min_endstop && old_z_min_endstop,
  475. z2_min_both = z2_min_endstop && old_z2_min_endstop;
  476. if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
  477. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  478. endstop_z_hit = true;
  479. if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
  480. step_events_completed = current_block->step_event_count;
  481. }
  482. old_z_min_endstop = z_min_endstop;
  483. old_z2_min_endstop = z2_min_endstop;
  484. #else // !Z_DUAL_ENDSTOPS
  485. UPDATE_ENDSTOP(z, Z, min, MIN);
  486. #endif // !Z_DUAL_ENDSTOPS
  487. #endif // Z_MIN_PIN
  488. } // check_endstops
  489. }
  490. else { // +direction
  491. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  492. count_direction[Z_AXIS] = 1;
  493. if (check_endstops) {
  494. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  495. #ifdef Z_DUAL_ENDSTOPS
  496. bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
  497. z2_max_endstop =
  498. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  499. READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
  500. #else
  501. z_max_endstop
  502. #endif
  503. ;
  504. bool z_max_both = z_max_endstop && old_z_max_endstop,
  505. z2_max_both = z2_max_endstop && old_z2_max_endstop;
  506. if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
  507. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  508. endstop_z_hit = true;
  509. // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
  510. // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
  511. if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
  512. step_events_completed = current_block->step_event_count;
  513. }
  514. old_z_max_endstop = z_max_endstop;
  515. old_z2_max_endstop = z2_max_endstop;
  516. #else // !Z_DUAL_ENDSTOPS
  517. UPDATE_ENDSTOP(z, Z, max, MAX);
  518. #endif // !Z_DUAL_ENDSTOPS
  519. #endif // Z_MAX_PIN
  520. } // check_endstops
  521. } // +direction
  522. #ifndef ADVANCE
  523. if (TEST(out_bits, E_AXIS)) { // -direction
  524. REV_E_DIR();
  525. count_direction[E_AXIS] = -1;
  526. }
  527. else { // +direction
  528. NORM_E_DIR();
  529. count_direction[E_AXIS] = 1;
  530. }
  531. #endif //!ADVANCE
  532. // Take multiple steps per interrupt (For high speed moves)
  533. for (int8_t i = 0; i < step_loops; i++) {
  534. #ifndef AT90USB
  535. MSerial.checkRx(); // Check for serial chars.
  536. #endif
  537. #ifdef ADVANCE
  538. counter_e += current_block->steps[E_AXIS];
  539. if (counter_e > 0) {
  540. counter_e -= current_block->step_event_count;
  541. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  542. }
  543. #endif //ADVANCE
  544. #ifdef CONFIG_STEPPERS_TOSHIBA
  545. /**
  546. * The Toshiba stepper controller require much longer pulses.
  547. * So we 'stage' decompose the pulses between high and low
  548. * instead of doing each in turn. The extra tests add enough
  549. * lag to allow it work with without needing NOPs
  550. */
  551. #define STEP_ADD(axis, AXIS) \
  552. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  553. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  554. STEP_ADD(x,X);
  555. STEP_ADD(y,Y);
  556. STEP_ADD(z,Z);
  557. #ifndef ADVANCE
  558. STEP_ADD(e,E);
  559. #endif
  560. #define STEP_IF_COUNTER(axis, AXIS) \
  561. if (counter_## axis > 0) { \
  562. counter_## axis -= current_block->step_event_count; \
  563. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  564. AXIS ##_STEP_WRITE(LOW); \
  565. }
  566. STEP_IF_COUNTER(x, X);
  567. STEP_IF_COUNTER(y, Y);
  568. STEP_IF_COUNTER(z, Z);
  569. #ifndef ADVANCE
  570. STEP_IF_COUNTER(e, E);
  571. #endif
  572. #else // !CONFIG_STEPPERS_TOSHIBA
  573. #define APPLY_MOVEMENT(axis, AXIS) \
  574. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  575. if (counter_## axis > 0) { \
  576. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  577. counter_## axis -= current_block->step_event_count; \
  578. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  579. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  580. }
  581. APPLY_MOVEMENT(x, X);
  582. APPLY_MOVEMENT(y, Y);
  583. APPLY_MOVEMENT(z, Z);
  584. #ifndef ADVANCE
  585. APPLY_MOVEMENT(e, E);
  586. #endif
  587. #endif // CONFIG_STEPPERS_TOSHIBA
  588. step_events_completed++;
  589. if (step_events_completed >= current_block->step_event_count) break;
  590. }
  591. // Calculare new timer value
  592. unsigned short timer;
  593. unsigned short step_rate;
  594. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  595. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  596. acc_step_rate += current_block->initial_rate;
  597. // upper limit
  598. if (acc_step_rate > current_block->nominal_rate)
  599. acc_step_rate = current_block->nominal_rate;
  600. // step_rate to timer interval
  601. timer = calc_timer(acc_step_rate);
  602. OCR1A = timer;
  603. acceleration_time += timer;
  604. #ifdef ADVANCE
  605. for(int8_t i=0; i < step_loops; i++) {
  606. advance += advance_rate;
  607. }
  608. //if (advance > current_block->advance) advance = current_block->advance;
  609. // Do E steps + advance steps
  610. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  611. old_advance = advance >>8;
  612. #endif
  613. }
  614. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  615. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  616. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  617. step_rate = current_block->final_rate;
  618. }
  619. else {
  620. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  621. }
  622. // lower limit
  623. if (step_rate < current_block->final_rate)
  624. step_rate = current_block->final_rate;
  625. // step_rate to timer interval
  626. timer = calc_timer(step_rate);
  627. OCR1A = timer;
  628. deceleration_time += timer;
  629. #ifdef ADVANCE
  630. for(int8_t i=0; i < step_loops; i++) {
  631. advance -= advance_rate;
  632. }
  633. if (advance < final_advance) advance = final_advance;
  634. // Do E steps + advance steps
  635. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  636. old_advance = advance >>8;
  637. #endif //ADVANCE
  638. }
  639. else {
  640. OCR1A = OCR1A_nominal;
  641. // ensure we're running at the correct step rate, even if we just came off an acceleration
  642. step_loops = step_loops_nominal;
  643. }
  644. // If current block is finished, reset pointer
  645. if (step_events_completed >= current_block->step_event_count) {
  646. current_block = NULL;
  647. plan_discard_current_block();
  648. }
  649. }
  650. }
  651. #ifdef ADVANCE
  652. unsigned char old_OCR0A;
  653. // Timer interrupt for E. e_steps is set in the main routine;
  654. // Timer 0 is shared with millies
  655. ISR(TIMER0_COMPA_vect)
  656. {
  657. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  658. OCR0A = old_OCR0A;
  659. // Set E direction (Depends on E direction + advance)
  660. for(unsigned char i=0; i<4;i++) {
  661. if (e_steps[0] != 0) {
  662. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  663. if (e_steps[0] < 0) {
  664. E0_DIR_WRITE(INVERT_E0_DIR);
  665. e_steps[0]++;
  666. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  667. }
  668. else if (e_steps[0] > 0) {
  669. E0_DIR_WRITE(!INVERT_E0_DIR);
  670. e_steps[0]--;
  671. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  672. }
  673. }
  674. #if EXTRUDERS > 1
  675. if (e_steps[1] != 0) {
  676. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  677. if (e_steps[1] < 0) {
  678. E1_DIR_WRITE(INVERT_E1_DIR);
  679. e_steps[1]++;
  680. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  681. }
  682. else if (e_steps[1] > 0) {
  683. E1_DIR_WRITE(!INVERT_E1_DIR);
  684. e_steps[1]--;
  685. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  686. }
  687. }
  688. #endif
  689. #if EXTRUDERS > 2
  690. if (e_steps[2] != 0) {
  691. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  692. if (e_steps[2] < 0) {
  693. E2_DIR_WRITE(INVERT_E2_DIR);
  694. e_steps[2]++;
  695. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  696. }
  697. else if (e_steps[2] > 0) {
  698. E2_DIR_WRITE(!INVERT_E2_DIR);
  699. e_steps[2]--;
  700. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  701. }
  702. }
  703. #endif
  704. #if EXTRUDERS > 3
  705. if (e_steps[3] != 0) {
  706. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  707. if (e_steps[3] < 0) {
  708. E3_DIR_WRITE(INVERT_E3_DIR);
  709. e_steps[3]++;
  710. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  711. }
  712. else if (e_steps[3] > 0) {
  713. E3_DIR_WRITE(!INVERT_E3_DIR);
  714. e_steps[3]--;
  715. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  716. }
  717. }
  718. #endif
  719. }
  720. }
  721. #endif // ADVANCE
  722. void st_init() {
  723. digipot_init(); //Initialize Digipot Motor Current
  724. microstep_init(); //Initialize Microstepping Pins
  725. // initialise TMC Steppers
  726. #ifdef HAVE_TMCDRIVER
  727. tmc_init();
  728. #endif
  729. // initialise L6470 Steppers
  730. #ifdef HAVE_L6470DRIVER
  731. L6470_init();
  732. #endif
  733. // Initialize Dir Pins
  734. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  735. X_DIR_INIT;
  736. #endif
  737. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  738. X2_DIR_INIT;
  739. #endif
  740. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  741. Y_DIR_INIT;
  742. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  743. Y2_DIR_INIT;
  744. #endif
  745. #endif
  746. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  747. Z_DIR_INIT;
  748. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  749. Z2_DIR_INIT;
  750. #endif
  751. #endif
  752. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  753. E0_DIR_INIT;
  754. #endif
  755. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  756. E1_DIR_INIT;
  757. #endif
  758. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  759. E2_DIR_INIT;
  760. #endif
  761. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  762. E3_DIR_INIT;
  763. #endif
  764. //Initialize Enable Pins - steppers default to disabled.
  765. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  766. X_ENABLE_INIT;
  767. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  768. #endif
  769. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  770. X2_ENABLE_INIT;
  771. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  772. #endif
  773. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  774. Y_ENABLE_INIT;
  775. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  776. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  777. Y2_ENABLE_INIT;
  778. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  779. #endif
  780. #endif
  781. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  782. Z_ENABLE_INIT;
  783. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  784. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  785. Z2_ENABLE_INIT;
  786. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  787. #endif
  788. #endif
  789. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  790. E0_ENABLE_INIT;
  791. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  792. #endif
  793. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  794. E1_ENABLE_INIT;
  795. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  796. #endif
  797. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  798. E2_ENABLE_INIT;
  799. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  800. #endif
  801. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  802. E3_ENABLE_INIT;
  803. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  804. #endif
  805. //endstops and pullups
  806. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  807. SET_INPUT(X_MIN_PIN);
  808. #ifdef ENDSTOPPULLUP_XMIN
  809. WRITE(X_MIN_PIN,HIGH);
  810. #endif
  811. #endif
  812. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  813. SET_INPUT(Y_MIN_PIN);
  814. #ifdef ENDSTOPPULLUP_YMIN
  815. WRITE(Y_MIN_PIN,HIGH);
  816. #endif
  817. #endif
  818. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  819. SET_INPUT(Z_MIN_PIN);
  820. #ifdef ENDSTOPPULLUP_ZMIN
  821. WRITE(Z_MIN_PIN,HIGH);
  822. #endif
  823. #endif
  824. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  825. SET_INPUT(X_MAX_PIN);
  826. #ifdef ENDSTOPPULLUP_XMAX
  827. WRITE(X_MAX_PIN,HIGH);
  828. #endif
  829. #endif
  830. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  831. SET_INPUT(Y_MAX_PIN);
  832. #ifdef ENDSTOPPULLUP_YMAX
  833. WRITE(Y_MAX_PIN,HIGH);
  834. #endif
  835. #endif
  836. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  837. SET_INPUT(Z_MAX_PIN);
  838. #ifdef ENDSTOPPULLUP_ZMAX
  839. WRITE(Z_MAX_PIN,HIGH);
  840. #endif
  841. #endif
  842. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  843. SET_INPUT(Z2_MAX_PIN);
  844. #ifdef ENDSTOPPULLUP_ZMAX
  845. WRITE(Z2_MAX_PIN,HIGH);
  846. #endif
  847. #endif
  848. #define AXIS_INIT(axis, AXIS, PIN) \
  849. AXIS ##_STEP_INIT; \
  850. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  851. disable_## axis()
  852. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  853. // Initialize Step Pins
  854. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  855. AXIS_INIT(x, X, X);
  856. #endif
  857. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  858. AXIS_INIT(x, X2, X);
  859. #endif
  860. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  861. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  862. Y2_STEP_INIT;
  863. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  864. #endif
  865. AXIS_INIT(y, Y, Y);
  866. #endif
  867. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  868. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  869. Z2_STEP_INIT;
  870. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  871. #endif
  872. AXIS_INIT(z, Z, Z);
  873. #endif
  874. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  875. E_AXIS_INIT(0);
  876. #endif
  877. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  878. E_AXIS_INIT(1);
  879. #endif
  880. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  881. E_AXIS_INIT(2);
  882. #endif
  883. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  884. E_AXIS_INIT(3);
  885. #endif
  886. // waveform generation = 0100 = CTC
  887. TCCR1B &= ~BIT(WGM13);
  888. TCCR1B |= BIT(WGM12);
  889. TCCR1A &= ~BIT(WGM11);
  890. TCCR1A &= ~BIT(WGM10);
  891. // output mode = 00 (disconnected)
  892. TCCR1A &= ~(3<<COM1A0);
  893. TCCR1A &= ~(3<<COM1B0);
  894. // Set the timer pre-scaler
  895. // Generally we use a divider of 8, resulting in a 2MHz timer
  896. // frequency on a 16MHz MCU. If you are going to change this, be
  897. // sure to regenerate speed_lookuptable.h with
  898. // create_speed_lookuptable.py
  899. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  900. OCR1A = 0x4000;
  901. TCNT1 = 0;
  902. ENABLE_STEPPER_DRIVER_INTERRUPT();
  903. #ifdef ADVANCE
  904. #if defined(TCCR0A) && defined(WGM01)
  905. TCCR0A &= ~BIT(WGM01);
  906. TCCR0A &= ~BIT(WGM00);
  907. #endif
  908. e_steps[0] = 0;
  909. e_steps[1] = 0;
  910. e_steps[2] = 0;
  911. e_steps[3] = 0;
  912. TIMSK0 |= BIT(OCIE0A);
  913. #endif //ADVANCE
  914. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  915. sei();
  916. }
  917. // Block until all buffered steps are executed
  918. void st_synchronize() {
  919. while (blocks_queued()) {
  920. manage_heater();
  921. manage_inactivity();
  922. lcd_update();
  923. }
  924. }
  925. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  926. CRITICAL_SECTION_START;
  927. count_position[X_AXIS] = x;
  928. count_position[Y_AXIS] = y;
  929. count_position[Z_AXIS] = z;
  930. count_position[E_AXIS] = e;
  931. CRITICAL_SECTION_END;
  932. }
  933. void st_set_e_position(const long &e) {
  934. CRITICAL_SECTION_START;
  935. count_position[E_AXIS] = e;
  936. CRITICAL_SECTION_END;
  937. }
  938. long st_get_position(uint8_t axis) {
  939. long count_pos;
  940. CRITICAL_SECTION_START;
  941. count_pos = count_position[axis];
  942. CRITICAL_SECTION_END;
  943. return count_pos;
  944. }
  945. #ifdef ENABLE_AUTO_BED_LEVELING
  946. float st_get_position_mm(uint8_t axis) {
  947. float steper_position_in_steps = st_get_position(axis);
  948. return steper_position_in_steps / axis_steps_per_unit[axis];
  949. }
  950. #endif // ENABLE_AUTO_BED_LEVELING
  951. void finishAndDisableSteppers() {
  952. st_synchronize();
  953. disable_x();
  954. disable_y();
  955. disable_z();
  956. disable_e0();
  957. disable_e1();
  958. disable_e2();
  959. disable_e3();
  960. }
  961. void quickStop() {
  962. cleaning_buffer_counter = 5000;
  963. DISABLE_STEPPER_DRIVER_INTERRUPT();
  964. while (blocks_queued()) plan_discard_current_block();
  965. current_block = NULL;
  966. ENABLE_STEPPER_DRIVER_INTERRUPT();
  967. }
  968. #ifdef BABYSTEPPING
  969. // MUST ONLY BE CALLED BY AN ISR,
  970. // No other ISR should ever interrupt this!
  971. void babystep(const uint8_t axis, const bool direction) {
  972. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  973. enable_## axis(); \
  974. uint8_t old_pin = AXIS ##_DIR_READ; \
  975. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  976. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  977. _delay_us(1U); \
  978. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  979. AXIS ##_APPLY_DIR(old_pin, true); \
  980. }
  981. switch(axis) {
  982. case X_AXIS:
  983. BABYSTEP_AXIS(x, X, false);
  984. break;
  985. case Y_AXIS:
  986. BABYSTEP_AXIS(y, Y, false);
  987. break;
  988. case Z_AXIS: {
  989. #ifndef DELTA
  990. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  991. #else // DELTA
  992. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  993. enable_x();
  994. enable_y();
  995. enable_z();
  996. uint8_t old_x_dir_pin = X_DIR_READ,
  997. old_y_dir_pin = Y_DIR_READ,
  998. old_z_dir_pin = Z_DIR_READ;
  999. //setup new step
  1000. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1001. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1002. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1003. //perform step
  1004. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1005. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1006. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1007. _delay_us(1U);
  1008. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1009. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1010. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1011. //get old pin state back.
  1012. X_DIR_WRITE(old_x_dir_pin);
  1013. Y_DIR_WRITE(old_y_dir_pin);
  1014. Z_DIR_WRITE(old_z_dir_pin);
  1015. #endif
  1016. } break;
  1017. default: break;
  1018. }
  1019. }
  1020. #endif //BABYSTEPPING
  1021. // From Arduino DigitalPotControl example
  1022. void digitalPotWrite(int address, int value) {
  1023. #if HAS_DIGIPOTSS
  1024. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1025. SPI.transfer(address); // send in the address and value via SPI:
  1026. SPI.transfer(value);
  1027. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1028. //delay(10);
  1029. #endif
  1030. }
  1031. // Initialize Digipot Motor Current
  1032. void digipot_init() {
  1033. #if HAS_DIGIPOTSS
  1034. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1035. SPI.begin();
  1036. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1037. for (int i = 0; i <= 4; i++) {
  1038. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1039. digipot_current(i,digipot_motor_current[i]);
  1040. }
  1041. #endif
  1042. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1043. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1044. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1045. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1046. digipot_current(0, motor_current_setting[0]);
  1047. digipot_current(1, motor_current_setting[1]);
  1048. digipot_current(2, motor_current_setting[2]);
  1049. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1050. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1051. #endif
  1052. }
  1053. void digipot_current(uint8_t driver, int current) {
  1054. #if HAS_DIGIPOTSS
  1055. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1056. digitalPotWrite(digipot_ch[driver], current);
  1057. #endif
  1058. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1059. switch(driver) {
  1060. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1061. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1062. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1063. }
  1064. #endif
  1065. }
  1066. void microstep_init() {
  1067. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1068. pinMode(E1_MS1_PIN,OUTPUT);
  1069. pinMode(E1_MS2_PIN,OUTPUT);
  1070. #endif
  1071. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  1072. pinMode(X_MS1_PIN,OUTPUT);
  1073. pinMode(X_MS2_PIN,OUTPUT);
  1074. pinMode(Y_MS1_PIN,OUTPUT);
  1075. pinMode(Y_MS2_PIN,OUTPUT);
  1076. pinMode(Z_MS1_PIN,OUTPUT);
  1077. pinMode(Z_MS2_PIN,OUTPUT);
  1078. pinMode(E0_MS1_PIN,OUTPUT);
  1079. pinMode(E0_MS2_PIN,OUTPUT);
  1080. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1081. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1082. microstep_mode(i, microstep_modes[i]);
  1083. #endif
  1084. }
  1085. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1086. if (ms1 >= 0) switch(driver) {
  1087. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1088. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1089. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1090. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1091. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1092. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1093. #endif
  1094. }
  1095. if (ms2 >= 0) switch(driver) {
  1096. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1097. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1098. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1099. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1100. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1101. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1102. #endif
  1103. }
  1104. }
  1105. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1106. switch(stepping_mode) {
  1107. case 1: microstep_ms(driver,MICROSTEP1); break;
  1108. case 2: microstep_ms(driver,MICROSTEP2); break;
  1109. case 4: microstep_ms(driver,MICROSTEP4); break;
  1110. case 8: microstep_ms(driver,MICROSTEP8); break;
  1111. case 16: microstep_ms(driver,MICROSTEP16); break;
  1112. }
  1113. }
  1114. void microstep_readings() {
  1115. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1116. SERIAL_PROTOCOLPGM("X: ");
  1117. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1118. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1119. SERIAL_PROTOCOLPGM("Y: ");
  1120. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1121. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1122. SERIAL_PROTOCOLPGM("Z: ");
  1123. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1124. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1125. SERIAL_PROTOCOLPGM("E0: ");
  1126. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1127. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1128. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1129. SERIAL_PROTOCOLPGM("E1: ");
  1130. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1131. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1132. #endif
  1133. }
  1134. #ifdef Z_DUAL_ENDSTOPS
  1135. void In_Homing_Process(bool state) { performing_homing = state; }
  1136. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1137. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1138. #endif