My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

planner.cpp 44KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.cpp
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. *
  30. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  31. *
  32. *
  33. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  34. *
  35. * s == speed, a == acceleration, t == time, d == distance
  36. *
  37. * Basic definitions:
  38. * Speed[s_, a_, t_] := s + (a*t)
  39. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  40. *
  41. * Distance to reach a specific speed with a constant acceleration:
  42. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  43. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  44. *
  45. * Speed after a given distance of travel with constant acceleration:
  46. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  47. * m -> Sqrt[2 a d + s^2]
  48. *
  49. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  50. *
  51. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  52. * from initial speed s1 without ever stopping at a plateau:
  53. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  54. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  55. *
  56. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  57. *
  58. */
  59. #include "Marlin.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "ultralcd.h"
  64. #include "language.h"
  65. #if ENABLED(MESH_BED_LEVELING)
  66. #include "mesh_bed_leveling.h"
  67. #endif
  68. Planner planner;
  69. // public:
  70. /**
  71. * A ring buffer of moves described in steps
  72. */
  73. block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
  74. volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed
  75. volatile uint8_t Planner::block_buffer_tail = 0;
  76. float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per second
  77. float Planner::axis_steps_per_mm[NUM_AXIS];
  78. unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
  79. unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
  80. millis_t Planner::min_segment_time;
  81. float Planner::min_feedrate;
  82. float Planner::acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  83. float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  84. float Planner::travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  85. float Planner::max_xy_jerk; // The largest speed change requiring no acceleration
  86. float Planner::max_z_jerk;
  87. float Planner::max_e_jerk;
  88. float Planner::min_travel_feedrate;
  89. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  90. matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
  91. #endif
  92. #if ENABLED(AUTOTEMP)
  93. float Planner::autotemp_max = 250;
  94. float Planner::autotemp_min = 210;
  95. float Planner::autotemp_factor = 0.1;
  96. bool Planner::autotemp_enabled = false;
  97. #endif
  98. // private:
  99. long Planner::position[NUM_AXIS] = { 0 };
  100. float Planner::previous_speed[NUM_AXIS];
  101. float Planner::previous_nominal_speed;
  102. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  103. uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
  104. #endif // DISABLE_INACTIVE_EXTRUDER
  105. #ifdef XY_FREQUENCY_LIMIT
  106. // Old direction bits. Used for speed calculations
  107. unsigned char Planner::old_direction_bits = 0;
  108. // Segment times (in µs). Used for speed calculations
  109. long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
  110. #endif
  111. /**
  112. * Class and Instance Methods
  113. */
  114. Planner::Planner() {
  115. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  116. bed_level_matrix.set_to_identity();
  117. #endif
  118. init();
  119. }
  120. void Planner::init() {
  121. block_buffer_head = block_buffer_tail = 0;
  122. memset(position, 0, sizeof(position)); // clear position
  123. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  124. previous_nominal_speed = 0.0;
  125. }
  126. /**
  127. * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
  128. * by the provided factors.
  129. */
  130. void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
  131. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor),
  132. final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
  133. // Limit minimal step rate (Otherwise the timer will overflow.)
  134. NOLESS(initial_rate, 120);
  135. NOLESS(final_rate, 120);
  136. long accel = block->acceleration_steps_per_s2;
  137. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel));
  138. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
  139. // Calculate the size of Plateau of Nominal Rate.
  140. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  141. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  142. // have to use intersection_distance() to calculate when to abort accel and start braking
  143. // in order to reach the final_rate exactly at the end of this block.
  144. if (plateau_steps < 0) {
  145. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
  146. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  147. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  148. plateau_steps = 0;
  149. }
  150. #if ENABLED(ADVANCE)
  151. volatile long initial_advance = block->advance * entry_factor * entry_factor;
  152. volatile long final_advance = block->advance * exit_factor * exit_factor;
  153. #endif // ADVANCE
  154. // block->accelerate_until = accelerate_steps;
  155. // block->decelerate_after = accelerate_steps+plateau_steps;
  156. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  157. if (!block->busy) { // Don't update variables if block is busy.
  158. block->accelerate_until = accelerate_steps;
  159. block->decelerate_after = accelerate_steps + plateau_steps;
  160. block->initial_rate = initial_rate;
  161. block->final_rate = final_rate;
  162. #if ENABLED(ADVANCE)
  163. block->initial_advance = initial_advance;
  164. block->final_advance = final_advance;
  165. #endif
  166. }
  167. CRITICAL_SECTION_END;
  168. }
  169. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  170. // This method will calculate the junction jerk as the euclidean distance between the nominal
  171. // velocities of the respective blocks.
  172. //inline float junction_jerk(block_t *before, block_t *after) {
  173. // return sqrt(
  174. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  175. //}
  176. // The kernel called by recalculate() when scanning the plan from last to first entry.
  177. void Planner::reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  178. if (!current) return;
  179. UNUSED(previous);
  180. if (next) {
  181. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  182. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  183. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  184. float max_entry_speed = current->max_entry_speed;
  185. if (current->entry_speed != max_entry_speed) {
  186. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  187. // for max allowable speed if block is decelerating and nominal length is false.
  188. if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
  189. current->entry_speed = min(max_entry_speed,
  190. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  191. }
  192. else {
  193. current->entry_speed = max_entry_speed;
  194. }
  195. current->recalculate_flag = true;
  196. }
  197. } // Skip last block. Already initialized and set for recalculation.
  198. }
  199. /**
  200. * recalculate() needs to go over the current plan twice.
  201. * Once in reverse and once forward. This implements the reverse pass.
  202. */
  203. void Planner::reverse_pass() {
  204. if (movesplanned() > 3) {
  205. block_t* block[3] = { NULL, NULL, NULL };
  206. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  207. CRITICAL_SECTION_START;
  208. uint8_t tail = block_buffer_tail;
  209. CRITICAL_SECTION_END
  210. uint8_t b = BLOCK_MOD(block_buffer_head - 3);
  211. while (b != tail) {
  212. b = prev_block_index(b);
  213. block[2] = block[1];
  214. block[1] = block[0];
  215. block[0] = &block_buffer[b];
  216. reverse_pass_kernel(block[0], block[1], block[2]);
  217. }
  218. }
  219. }
  220. // The kernel called by recalculate() when scanning the plan from first to last entry.
  221. void Planner::forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
  222. if (!previous) return;
  223. UNUSED(next);
  224. // If the previous block is an acceleration block, but it is not long enough to complete the
  225. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  226. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  227. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  228. if (!previous->nominal_length_flag) {
  229. if (previous->entry_speed < current->entry_speed) {
  230. double entry_speed = min(current->entry_speed,
  231. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  232. // Check for junction speed change
  233. if (current->entry_speed != entry_speed) {
  234. current->entry_speed = entry_speed;
  235. current->recalculate_flag = true;
  236. }
  237. }
  238. }
  239. }
  240. /**
  241. * recalculate() needs to go over the current plan twice.
  242. * Once in reverse and once forward. This implements the forward pass.
  243. */
  244. void Planner::forward_pass() {
  245. block_t* block[3] = { NULL, NULL, NULL };
  246. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  247. block[0] = block[1];
  248. block[1] = block[2];
  249. block[2] = &block_buffer[b];
  250. forward_pass_kernel(block[0], block[1], block[2]);
  251. }
  252. forward_pass_kernel(block[1], block[2], NULL);
  253. }
  254. /**
  255. * Recalculate the trapezoid speed profiles for all blocks in the plan
  256. * according to the entry_factor for each junction. Must be called by
  257. * recalculate() after updating the blocks.
  258. */
  259. void Planner::recalculate_trapezoids() {
  260. int8_t block_index = block_buffer_tail;
  261. block_t* current;
  262. block_t* next = NULL;
  263. while (block_index != block_buffer_head) {
  264. current = next;
  265. next = &block_buffer[block_index];
  266. if (current) {
  267. // Recalculate if current block entry or exit junction speed has changed.
  268. if (current->recalculate_flag || next->recalculate_flag) {
  269. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  270. float nom = current->nominal_speed;
  271. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  272. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  273. }
  274. }
  275. block_index = next_block_index(block_index);
  276. }
  277. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  278. if (next) {
  279. float nom = next->nominal_speed;
  280. calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
  281. next->recalculate_flag = false;
  282. }
  283. }
  284. /*
  285. * Recalculate the motion plan according to the following algorithm:
  286. *
  287. * 1. Go over every block in reverse order...
  288. *
  289. * Calculate a junction speed reduction (block_t.entry_factor) so:
  290. *
  291. * a. The junction jerk is within the set limit, and
  292. *
  293. * b. No speed reduction within one block requires faster
  294. * deceleration than the one, true constant acceleration.
  295. *
  296. * 2. Go over every block in chronological order...
  297. *
  298. * Dial down junction speed reduction values if:
  299. * a. The speed increase within one block would require faster
  300. * acceleration than the one, true constant acceleration.
  301. *
  302. * After that, all blocks will have an entry_factor allowing all speed changes to
  303. * be performed using only the one, true constant acceleration, and where no junction
  304. * jerk is jerkier than the set limit, Jerky. Finally it will:
  305. *
  306. * 3. Recalculate "trapezoids" for all blocks.
  307. */
  308. void Planner::recalculate() {
  309. reverse_pass();
  310. forward_pass();
  311. recalculate_trapezoids();
  312. }
  313. #if ENABLED(AUTOTEMP)
  314. void Planner::getHighESpeed() {
  315. static float oldt = 0;
  316. if (!autotemp_enabled) return;
  317. if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
  318. float high = 0.0;
  319. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  320. block_t* block = &block_buffer[b];
  321. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  322. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  323. NOLESS(high, se);
  324. }
  325. }
  326. float t = autotemp_min + high * autotemp_factor;
  327. t = constrain(t, autotemp_min, autotemp_max);
  328. if (oldt > t) {
  329. t *= (1 - (AUTOTEMP_OLDWEIGHT));
  330. t += (AUTOTEMP_OLDWEIGHT) * oldt;
  331. }
  332. oldt = t;
  333. thermalManager.setTargetHotend(t, 0);
  334. }
  335. #endif //AUTOTEMP
  336. /**
  337. * Maintain fans, paste extruder pressure,
  338. */
  339. void Planner::check_axes_activity() {
  340. unsigned char axis_active[NUM_AXIS] = { 0 },
  341. tail_fan_speed[FAN_COUNT];
  342. #if FAN_COUNT > 0
  343. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
  344. #endif
  345. #if ENABLED(BARICUDA)
  346. #if HAS_HEATER_1
  347. unsigned char tail_valve_pressure = baricuda_valve_pressure;
  348. #endif
  349. #if HAS_HEATER_2
  350. unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure;
  351. #endif
  352. #endif
  353. if (blocks_queued()) {
  354. #if FAN_COUNT > 0
  355. for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
  356. #endif
  357. block_t* block;
  358. #if ENABLED(BARICUDA)
  359. block = &block_buffer[block_buffer_tail];
  360. #if HAS_HEATER_1
  361. tail_valve_pressure = block->valve_pressure;
  362. #endif
  363. #if HAS_HEATER_2
  364. tail_e_to_p_pressure = block->e_to_p_pressure;
  365. #endif
  366. #endif
  367. for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
  368. block = &block_buffer[b];
  369. for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
  370. }
  371. }
  372. #if ENABLED(DISABLE_X)
  373. if (!axis_active[X_AXIS]) disable_x();
  374. #endif
  375. #if ENABLED(DISABLE_Y)
  376. if (!axis_active[Y_AXIS]) disable_y();
  377. #endif
  378. #if ENABLED(DISABLE_Z)
  379. if (!axis_active[Z_AXIS]) disable_z();
  380. #endif
  381. #if ENABLED(DISABLE_E)
  382. if (!axis_active[E_AXIS]) {
  383. disable_e0();
  384. disable_e1();
  385. disable_e2();
  386. disable_e3();
  387. }
  388. #endif
  389. #if FAN_COUNT > 0
  390. #if defined(FAN_MIN_PWM)
  391. #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  392. #else
  393. #define CALC_FAN_SPEED(f) tail_fan_speed[f]
  394. #endif
  395. #ifdef FAN_KICKSTART_TIME
  396. static millis_t fan_kick_end[FAN_COUNT] = { 0 };
  397. #define KICKSTART_FAN(f) \
  398. if (tail_fan_speed[f]) { \
  399. millis_t ms = millis(); \
  400. if (fan_kick_end[f] == 0) { \
  401. fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
  402. tail_fan_speed[f] = 255; \
  403. } else { \
  404. if (PENDING(ms, fan_kick_end[f])) { \
  405. tail_fan_speed[f] = 255; \
  406. } \
  407. } \
  408. } else { \
  409. fan_kick_end[f] = 0; \
  410. }
  411. #if HAS_FAN0
  412. KICKSTART_FAN(0);
  413. #endif
  414. #if HAS_FAN1
  415. KICKSTART_FAN(1);
  416. #endif
  417. #if HAS_FAN2
  418. KICKSTART_FAN(2);
  419. #endif
  420. #endif //FAN_KICKSTART_TIME
  421. #if ENABLED(FAN_SOFT_PWM)
  422. #if HAS_FAN0
  423. thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
  424. #endif
  425. #if HAS_FAN1
  426. thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
  427. #endif
  428. #if HAS_FAN2
  429. thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
  430. #endif
  431. #else
  432. #if HAS_FAN0
  433. analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
  434. #endif
  435. #if HAS_FAN1
  436. analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
  437. #endif
  438. #if HAS_FAN2
  439. analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
  440. #endif
  441. #endif
  442. #endif // FAN_COUNT > 0
  443. #if ENABLED(AUTOTEMP)
  444. getHighESpeed();
  445. #endif
  446. #if ENABLED(BARICUDA)
  447. #if HAS_HEATER_1
  448. analogWrite(HEATER_1_PIN, tail_valve_pressure);
  449. #endif
  450. #if HAS_HEATER_2
  451. analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
  452. #endif
  453. #endif
  454. }
  455. /**
  456. * Planner::buffer_line
  457. *
  458. * Add a new linear movement to the buffer.
  459. *
  460. * x,y,z,e - target position in mm
  461. * feed_rate - (target) speed of the move
  462. * extruder - target extruder
  463. */
  464. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  465. void Planner::buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
  466. #else
  467. void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
  468. #endif // AUTO_BED_LEVELING_FEATURE
  469. {
  470. // Calculate the buffer head after we push this byte
  471. int next_buffer_head = next_block_index(block_buffer_head);
  472. // If the buffer is full: good! That means we are well ahead of the robot.
  473. // Rest here until there is room in the buffer.
  474. while (block_buffer_tail == next_buffer_head) idle();
  475. #if ENABLED(MESH_BED_LEVELING)
  476. if (mbl.active())
  477. z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
  478. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  479. apply_rotation_xyz(bed_level_matrix, x, y, z);
  480. #endif
  481. // The target position of the tool in absolute steps
  482. // Calculate target position in absolute steps
  483. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  484. long target[NUM_AXIS] = {
  485. lround(x * axis_steps_per_mm[X_AXIS]),
  486. lround(y * axis_steps_per_mm[Y_AXIS]),
  487. lround(z * axis_steps_per_mm[Z_AXIS]),
  488. lround(e * axis_steps_per_mm[E_AXIS])
  489. };
  490. long dx = target[X_AXIS] - position[X_AXIS],
  491. dy = target[Y_AXIS] - position[Y_AXIS],
  492. dz = target[Z_AXIS] - position[Z_AXIS];
  493. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  494. if (DEBUGGING(DRYRUN))
  495. position[E_AXIS] = target[E_AXIS];
  496. long de = target[E_AXIS] - position[E_AXIS];
  497. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  498. if (de) {
  499. if (thermalManager.tooColdToExtrude(extruder)) {
  500. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  501. de = 0; // no difference
  502. SERIAL_ECHO_START;
  503. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  504. }
  505. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  506. if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
  507. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  508. de = 0; // no difference
  509. SERIAL_ECHO_START;
  510. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  511. }
  512. #endif
  513. }
  514. #endif
  515. // Prepare to set up new block
  516. block_t* block = &block_buffer[block_buffer_head];
  517. // Mark block as not busy (Not executed by the stepper interrupt)
  518. block->busy = false;
  519. // Number of steps for each axis
  520. #if ENABLED(COREXY)
  521. // corexy planning
  522. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  523. block->steps[A_AXIS] = labs(dx + dy);
  524. block->steps[B_AXIS] = labs(dx - dy);
  525. block->steps[Z_AXIS] = labs(dz);
  526. #elif ENABLED(COREXZ)
  527. // corexz planning
  528. block->steps[A_AXIS] = labs(dx + dz);
  529. block->steps[Y_AXIS] = labs(dy);
  530. block->steps[C_AXIS] = labs(dx - dz);
  531. #elif ENABLED(COREYZ)
  532. // coreyz planning
  533. block->steps[X_AXIS] = labs(dx);
  534. block->steps[B_AXIS] = labs(dy + dz);
  535. block->steps[C_AXIS] = labs(dy - dz);
  536. #else
  537. // default non-h-bot planning
  538. block->steps[X_AXIS] = labs(dx);
  539. block->steps[Y_AXIS] = labs(dy);
  540. block->steps[Z_AXIS] = labs(dz);
  541. #endif
  542. block->steps[E_AXIS] = labs(de);
  543. block->steps[E_AXIS] *= volumetric_multiplier[extruder];
  544. block->steps[E_AXIS] *= extruder_multiplier[extruder];
  545. block->steps[E_AXIS] /= 100;
  546. block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
  547. // Bail if this is a zero-length block
  548. if (block->step_event_count <= dropsegments) return;
  549. #if FAN_COUNT > 0
  550. for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
  551. #endif
  552. #if ENABLED(BARICUDA)
  553. block->valve_pressure = baricuda_valve_pressure;
  554. block->e_to_p_pressure = baricuda_e_to_p_pressure;
  555. #endif
  556. // Compute direction bits for this block
  557. uint8_t db = 0;
  558. #if ENABLED(COREXY)
  559. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  560. if (dy < 0) SBI(db, Y_HEAD); // ...and Y
  561. if (dz < 0) SBI(db, Z_AXIS);
  562. if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
  563. if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
  564. #elif ENABLED(COREXZ)
  565. if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
  566. if (dy < 0) SBI(db, Y_AXIS);
  567. if (dz < 0) SBI(db, Z_HEAD); // ...and Z
  568. if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
  569. if (dx - dz < 0) SBI(db, C_AXIS); // Motor C direction
  570. #elif ENABLED(COREYZ)
  571. if (dx < 0) SBI(db, X_AXIS);
  572. if (dy < 0) SBI(db, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
  573. if (dz < 0) SBI(db, Z_HEAD); // ...and Z
  574. if (dy + dz < 0) SBI(db, B_AXIS); // Motor B direction
  575. if (dy - dz < 0) SBI(db, C_AXIS); // Motor C direction
  576. #else
  577. if (dx < 0) SBI(db, X_AXIS);
  578. if (dy < 0) SBI(db, Y_AXIS);
  579. if (dz < 0) SBI(db, Z_AXIS);
  580. #endif
  581. if (de < 0) SBI(db, E_AXIS);
  582. block->direction_bits = db;
  583. block->active_extruder = extruder;
  584. //enable active axes
  585. #if ENABLED(COREXY)
  586. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  587. enable_x();
  588. enable_y();
  589. }
  590. #if DISABLED(Z_LATE_ENABLE)
  591. if (block->steps[Z_AXIS]) enable_z();
  592. #endif
  593. #elif ENABLED(COREXZ)
  594. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  595. enable_x();
  596. enable_z();
  597. }
  598. if (block->steps[Y_AXIS]) enable_y();
  599. #else
  600. if (block->steps[X_AXIS]) enable_x();
  601. if (block->steps[Y_AXIS]) enable_y();
  602. #if DISABLED(Z_LATE_ENABLE)
  603. if (block->steps[Z_AXIS]) enable_z();
  604. #endif
  605. #endif
  606. // Enable extruder(s)
  607. if (block->steps[E_AXIS]) {
  608. #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
  609. for (int i = 0; i < EXTRUDERS; i++)
  610. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  611. switch(extruder) {
  612. case 0:
  613. enable_e0();
  614. #if ENABLED(DUAL_X_CARRIAGE)
  615. if (extruder_duplication_enabled) {
  616. enable_e1();
  617. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  618. }
  619. #endif
  620. g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
  621. #if EXTRUDERS > 1
  622. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  623. #if EXTRUDERS > 2
  624. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  625. #if EXTRUDERS > 3
  626. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  627. #endif
  628. #endif
  629. #endif
  630. break;
  631. #if EXTRUDERS > 1
  632. case 1:
  633. enable_e1();
  634. g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
  635. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  636. #if EXTRUDERS > 2
  637. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  638. #if EXTRUDERS > 3
  639. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  640. #endif
  641. #endif
  642. break;
  643. #if EXTRUDERS > 2
  644. case 2:
  645. enable_e2();
  646. g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
  647. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  648. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  649. #if EXTRUDERS > 3
  650. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  651. #endif
  652. break;
  653. #if EXTRUDERS > 3
  654. case 3:
  655. enable_e3();
  656. g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
  657. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  658. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  659. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  660. break;
  661. #endif // EXTRUDERS > 3
  662. #endif // EXTRUDERS > 2
  663. #endif // EXTRUDERS > 1
  664. }
  665. #else
  666. enable_e0();
  667. enable_e1();
  668. enable_e2();
  669. enable_e3();
  670. #endif
  671. }
  672. if (block->steps[E_AXIS])
  673. NOLESS(feed_rate, min_feedrate);
  674. else
  675. NOLESS(feed_rate, min_travel_feedrate);
  676. /**
  677. * This part of the code calculates the total length of the movement.
  678. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  679. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  680. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  681. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  682. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  683. */
  684. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  685. float delta_mm[6];
  686. #if ENABLED(COREXY)
  687. delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
  688. delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
  689. delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
  690. delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS];
  691. delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS];
  692. #elif ENABLED(COREXZ)
  693. delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
  694. delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
  695. delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
  696. delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS];
  697. delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS];
  698. #elif ENABLED(COREYZ)
  699. delta_mm[X_AXIS] = dx / axis_steps_per_mm[A_AXIS];
  700. delta_mm[Y_HEAD] = dy / axis_steps_per_mm[Y_AXIS];
  701. delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
  702. delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS];
  703. delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS];
  704. #endif
  705. #else
  706. float delta_mm[4];
  707. delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
  708. delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
  709. delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
  710. #endif
  711. delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
  712. if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
  713. block->millimeters = fabs(delta_mm[E_AXIS]);
  714. }
  715. else {
  716. block->millimeters = sqrt(
  717. #if ENABLED(COREXY)
  718. square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
  719. #elif ENABLED(COREXZ)
  720. square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
  721. #elif ENABLED(COREYZ)
  722. square(delta_mm[X_AXIS]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_HEAD])
  723. #else
  724. square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
  725. #endif
  726. );
  727. }
  728. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  729. // Calculate moves/second for this move. No divide by zero due to previous checks.
  730. float inverse_second = feed_rate * inverse_millimeters;
  731. int moves_queued = movesplanned();
  732. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  733. #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
  734. bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
  735. #if ENABLED(OLD_SLOWDOWN)
  736. if (mq) feed_rate *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
  737. #endif
  738. #if ENABLED(SLOWDOWN)
  739. // segment time im micro seconds
  740. unsigned long segment_time = lround(1000000.0/inverse_second);
  741. if (mq) {
  742. if (segment_time < min_segment_time) {
  743. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  744. inverse_second = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
  745. #ifdef XY_FREQUENCY_LIMIT
  746. segment_time = lround(1000000.0 / inverse_second);
  747. #endif
  748. }
  749. }
  750. #endif
  751. #endif
  752. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  753. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  754. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  755. static float filwidth_e_count = 0, filwidth_delay_dist = 0;
  756. //FMM update ring buffer used for delay with filament measurements
  757. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index2 >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
  758. const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
  759. // increment counters with next move in e axis
  760. filwidth_e_count += delta_mm[E_AXIS];
  761. filwidth_delay_dist += delta_mm[E_AXIS];
  762. // Only get new measurements on forward E movement
  763. if (filwidth_e_count > 0.0001) {
  764. // Loop the delay distance counter (modulus by the mm length)
  765. while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
  766. // Convert into an index into the measurement array
  767. filwidth_delay_index1 = (int)(filwidth_delay_dist / 10.0 + 0.0001);
  768. // If the index has changed (must have gone forward)...
  769. if (filwidth_delay_index1 != filwidth_delay_index2) {
  770. filwidth_e_count = 0; // Reset the E movement counter
  771. int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  772. do {
  773. filwidth_delay_index2 = (filwidth_delay_index2 + 1) % MMD_CM; // The next unused slot
  774. measurement_delay[filwidth_delay_index2] = meas_sample; // Store the measurement
  775. } while (filwidth_delay_index1 != filwidth_delay_index2); // More slots to fill?
  776. }
  777. }
  778. }
  779. #endif
  780. // Calculate and limit speed in mm/sec for each axis
  781. float current_speed[NUM_AXIS];
  782. float speed_factor = 1.0; //factor <=1 do decrease speed
  783. for (int i = 0; i < NUM_AXIS; i++) {
  784. current_speed[i] = delta_mm[i] * inverse_second;
  785. float cs = fabs(current_speed[i]), mf = max_feedrate[i];
  786. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  787. }
  788. // Max segement time in us.
  789. #ifdef XY_FREQUENCY_LIMIT
  790. // Check and limit the xy direction change frequency
  791. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  792. old_direction_bits = block->direction_bits;
  793. segment_time = lround((float)segment_time / speed_factor);
  794. long xs0 = axis_segment_time[X_AXIS][0],
  795. xs1 = axis_segment_time[X_AXIS][1],
  796. xs2 = axis_segment_time[X_AXIS][2],
  797. ys0 = axis_segment_time[Y_AXIS][0],
  798. ys1 = axis_segment_time[Y_AXIS][1],
  799. ys2 = axis_segment_time[Y_AXIS][2];
  800. if (TEST(direction_change, X_AXIS)) {
  801. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  802. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  803. xs0 = 0;
  804. }
  805. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  806. if (TEST(direction_change, Y_AXIS)) {
  807. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  808. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  809. ys0 = 0;
  810. }
  811. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  812. long max_x_segment_time = max(xs0, max(xs1, xs2)),
  813. max_y_segment_time = max(ys0, max(ys1, ys2)),
  814. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  815. if (min_xy_segment_time < MAX_FREQ_TIME) {
  816. float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
  817. speed_factor = min(speed_factor, low_sf);
  818. }
  819. #endif // XY_FREQUENCY_LIMIT
  820. // Correct the speed
  821. if (speed_factor < 1.0) {
  822. for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
  823. block->nominal_speed *= speed_factor;
  824. block->nominal_rate *= speed_factor;
  825. }
  826. // Compute and limit the acceleration rate for the trapezoid generator.
  827. float steps_per_mm = block->step_event_count / block->millimeters;
  828. long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  829. if (bsx == 0 && bsy == 0 && bsz == 0) {
  830. block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  831. }
  832. else if (bse == 0) {
  833. block->acceleration_steps_per_s2 = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  834. }
  835. else {
  836. block->acceleration_steps_per_s2 = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  837. }
  838. // Limit acceleration per axis
  839. unsigned long acc_st = block->acceleration_steps_per_s2,
  840. x_acc_st = max_acceleration_steps_per_s2[X_AXIS],
  841. y_acc_st = max_acceleration_steps_per_s2[Y_AXIS],
  842. z_acc_st = max_acceleration_steps_per_s2[Z_AXIS],
  843. e_acc_st = max_acceleration_steps_per_s2[E_AXIS],
  844. allsteps = block->step_event_count;
  845. if (x_acc_st < (acc_st * bsx) / allsteps) acc_st = (x_acc_st * allsteps) / bsx;
  846. if (y_acc_st < (acc_st * bsy) / allsteps) acc_st = (y_acc_st * allsteps) / bsy;
  847. if (z_acc_st < (acc_st * bsz) / allsteps) acc_st = (z_acc_st * allsteps) / bsz;
  848. if (e_acc_st < (acc_st * bse) / allsteps) acc_st = (e_acc_st * allsteps) / bse;
  849. block->acceleration_steps_per_s2 = acc_st;
  850. block->acceleration = acc_st / steps_per_mm;
  851. block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
  852. #if 0 // Use old jerk for now
  853. float junction_deviation = 0.1;
  854. // Compute path unit vector
  855. double unit_vec[3];
  856. unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
  857. unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
  858. unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
  859. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  860. // Let a circle be tangent to both previous and current path line segments, where the junction
  861. // deviation is defined as the distance from the junction to the closest edge of the circle,
  862. // collinear with the circle center. The circular segment joining the two paths represents the
  863. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  864. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  865. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  866. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  867. // nonlinearities of both the junction angle and junction velocity.
  868. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  869. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  870. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  871. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  872. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  873. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  874. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  875. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  876. // Skip and use default max junction speed for 0 degree acute junction.
  877. if (cos_theta < 0.95) {
  878. vmax_junction = min(previous_nominal_speed, block->nominal_speed);
  879. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  880. if (cos_theta > -0.95) {
  881. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  882. double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
  883. vmax_junction = min(vmax_junction,
  884. sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
  885. }
  886. }
  887. }
  888. #endif
  889. // Start with a safe speed
  890. float vmax_junction = max_xy_jerk / 2;
  891. float vmax_junction_factor = 1.0;
  892. float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  893. float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  894. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  895. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  896. vmax_junction = min(vmax_junction, block->nominal_speed);
  897. float safe_speed = vmax_junction;
  898. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  899. float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  900. dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  901. dsz = fabs(csz - previous_speed[Z_AXIS]),
  902. dse = fabs(cse - previous_speed[E_AXIS]),
  903. jerk = sqrt(dsx * dsx + dsy * dsy);
  904. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  905. vmax_junction = block->nominal_speed;
  906. // }
  907. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  908. if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz);
  909. if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse);
  910. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  911. }
  912. block->max_entry_speed = vmax_junction;
  913. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  914. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  915. block->entry_speed = min(vmax_junction, v_allowable);
  916. // Initialize planner efficiency flags
  917. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  918. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  919. // the current block and next block junction speeds are guaranteed to always be at their maximum
  920. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  921. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  922. // the reverse and forward planners, the corresponding block junction speed will always be at the
  923. // the maximum junction speed and may always be ignored for any speed reduction checks.
  924. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  925. block->recalculate_flag = true; // Always calculate trapezoid for new block
  926. // Update previous path unit_vector and nominal speed
  927. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  928. previous_nominal_speed = block->nominal_speed;
  929. #if ENABLED(LIN_ADVANCE)
  930. // bse == allsteps: A problem occurs when there's a very tiny move before a retract.
  931. // In this case, the retract and the move will be executed together.
  932. // This leads to an enormous number of advance steps due to a huge e_acceleration.
  933. // The math is correct, but you don't want a retract move done with advance!
  934. // So this situation is filtered out here.
  935. if (!bse || (!bsx && !bsy && !bsz) || stepper.get_advance_k() == 0 || (uint32_t) bse == allsteps) {
  936. block->use_advance_lead = false;
  937. }
  938. else {
  939. block->use_advance_lead = true;
  940. block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
  941. }
  942. #elif ENABLED(ADVANCE)
  943. // Calculate advance rate
  944. if (!bse || (!bsx && !bsy && !bsz)) {
  945. block->advance_rate = 0;
  946. block->advance = 0;
  947. }
  948. else {
  949. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
  950. float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
  951. block->advance = advance;
  952. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  953. }
  954. /**
  955. SERIAL_ECHO_START;
  956. SERIAL_ECHOPGM("advance :");
  957. SERIAL_ECHO(block->advance/256.0);
  958. SERIAL_ECHOPGM("advance rate :");
  959. SERIAL_ECHOLN(block->advance_rate/256.0);
  960. */
  961. #endif // ADVANCE or LIN_ADVANCE
  962. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  963. // Move buffer head
  964. block_buffer_head = next_buffer_head;
  965. // Update position
  966. for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
  967. recalculate();
  968. stepper.wake_up();
  969. } // buffer_line()
  970. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
  971. /**
  972. * Get the XYZ position of the steppers as a vector_3.
  973. *
  974. * On CORE machines XYZ is derived from ABC.
  975. */
  976. vector_3 Planner::adjusted_position() {
  977. vector_3 pos = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
  978. //pos.debug("in Planner::adjusted_position");
  979. //bed_level_matrix.debug("in Planner::adjusted_position");
  980. matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
  981. //inverse.debug("in Planner::inverse");
  982. pos.apply_rotation(inverse);
  983. //pos.debug("after rotation");
  984. return pos;
  985. }
  986. #endif // AUTO_BED_LEVELING_FEATURE && !DELTA
  987. /**
  988. * Directly set the planner XYZ position (hence the stepper positions).
  989. *
  990. * On CORE machines stepper ABC will be translated from the given XYZ.
  991. */
  992. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  993. void Planner::set_position_mm(float x, float y, float z, const float& e)
  994. #else
  995. void Planner::set_position_mm(const float& x, const float& y, const float& z, const float& e)
  996. #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
  997. {
  998. #if ENABLED(MESH_BED_LEVELING)
  999. if (mbl.active())
  1000. z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
  1001. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  1002. apply_rotation_xyz(bed_level_matrix, x, y, z);
  1003. #endif
  1004. long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
  1005. ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
  1006. nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
  1007. ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
  1008. stepper.set_position(nx, ny, nz, ne);
  1009. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1010. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
  1011. }
  1012. /**
  1013. * Directly set the planner E position (hence the stepper E position).
  1014. */
  1015. void Planner::set_e_position_mm(const float& e) {
  1016. position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
  1017. stepper.set_e_position(position[E_AXIS]);
  1018. }
  1019. // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
  1020. void Planner::reset_acceleration_rates() {
  1021. for (int i = 0; i < NUM_AXIS; i++)
  1022. max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
  1023. }
  1024. #if ENABLED(AUTOTEMP)
  1025. void Planner::autotemp_M109() {
  1026. autotemp_enabled = code_seen('F');
  1027. if (autotemp_enabled) autotemp_factor = code_value_temp_diff();
  1028. if (code_seen('S')) autotemp_min = code_value_temp_abs();
  1029. if (code_seen('B')) autotemp_max = code_value_temp_abs();
  1030. }
  1031. #endif