My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_motion.cpp 27KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include "stepper.h"
  28. #include <avr/io.h>
  29. #include <math.h>
  30. #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
  31. inline void set_current_from_destination() { COPY(current_position, destination); }
  32. #else
  33. extern void set_current_from_destination();
  34. #endif
  35. void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
  36. /**
  37. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  38. * as possible to determine if this is the case. If this move is within the same cell, we will
  39. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  40. */
  41. const float start[XYZE] = {
  42. current_position[X_AXIS],
  43. current_position[Y_AXIS],
  44. current_position[Z_AXIS],
  45. current_position[E_AXIS]
  46. },
  47. end[XYZE] = {
  48. destination[X_AXIS],
  49. destination[Y_AXIS],
  50. destination[Z_AXIS],
  51. destination[E_AXIS]
  52. };
  53. const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
  54. cell_start_yi = get_cell_index_y(start[Y_AXIS]),
  55. cell_dest_xi = get_cell_index_x(end[X_AXIS]),
  56. cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
  57. if (g26_debug_flag) {
  58. SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
  59. SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
  60. SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
  61. SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
  62. SERIAL_CHAR(')');
  63. SERIAL_EOL();
  64. debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
  65. }
  66. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  67. /**
  68. * we don't need to break up the move
  69. *
  70. * If we are moving off the print bed, we are going to allow the move at this level.
  71. * But we detect it and isolate it. For now, we just pass along the request.
  72. */
  73. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  74. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  75. // a reasonable correction would be.
  76. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder);
  77. set_current_from_destination();
  78. if (g26_debug_flag)
  79. debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
  80. return;
  81. }
  82. FINAL_MOVE:
  83. /**
  84. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  85. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  86. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  87. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  88. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  89. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  90. */
  91. const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
  92. float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  93. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  94. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  95. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  96. if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
  97. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  98. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  99. const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
  100. float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
  101. /**
  102. * If part of the Mesh is undefined, it will show up as NAN
  103. * in z_values[][] and propagate through the
  104. * calculations. If our correction is NAN, we throw it out
  105. * because part of the Mesh is undefined and we don't have the
  106. * information we need to complete the height correction.
  107. */
  108. if (isnan(z0)) z0 = 0.0;
  109. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
  110. if (g26_debug_flag)
  111. debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
  112. set_current_from_destination();
  113. return;
  114. }
  115. /**
  116. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  117. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  118. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  119. * computation and in fact most lines are of this nature. We will check for that in the following
  120. * blocks of code:
  121. */
  122. const float dx = end[X_AXIS] - start[X_AXIS],
  123. dy = end[Y_AXIS] - start[Y_AXIS];
  124. const int left_flag = dx < 0.0 ? 1 : 0,
  125. down_flag = dy < 0.0 ? 1 : 0;
  126. const float adx = left_flag ? -dx : dx,
  127. ady = down_flag ? -dy : dy;
  128. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  129. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  130. /**
  131. * Compute the scaling factor for the extruder for each partial move.
  132. * We need to watch out for zero length moves because it will cause us to
  133. * have an infinate scaling factor. We are stuck doing a floating point
  134. * divide to get our scaling factor, but after that, we just multiply by this
  135. * number. We also pick our scaling factor based on whether the X or Y
  136. * component is larger. We use the biggest of the two to preserve precision.
  137. */
  138. const bool use_x_dist = adx > ady;
  139. float on_axis_distance = use_x_dist ? dx : dy,
  140. e_position = end[E_AXIS] - start[E_AXIS],
  141. z_position = end[Z_AXIS] - start[Z_AXIS];
  142. const float e_normalized_dist = e_position / on_axis_distance,
  143. z_normalized_dist = z_position / on_axis_distance;
  144. int current_xi = cell_start_xi,
  145. current_yi = cell_start_yi;
  146. const float m = dy / dx,
  147. c = start[Y_AXIS] - m * start[X_AXIS];
  148. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  149. inf_m_flag = (isinf(m) != 0);
  150. /**
  151. * This block handles vertical lines. These are lines that stay within the same
  152. * X Cell column. They do not need to be perfectly vertical. They just can
  153. * not cross into another X Cell column.
  154. */
  155. if (dxi == 0) { // Check for a vertical line
  156. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  157. while (current_yi != cell_dest_yi + down_flag) {
  158. current_yi += dyi;
  159. const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
  160. /**
  161. * if the slope of the line is infinite, we won't do the calculations
  162. * else, we know the next X is the same so we can recover and continue!
  163. * Calculate X at the next Y mesh line
  164. */
  165. const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  166. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
  167. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  168. /**
  169. * If part of the Mesh is undefined, it will show up as NAN
  170. * in z_values[][] and propagate through the
  171. * calculations. If our correction is NAN, we throw it out
  172. * because part of the Mesh is undefined and we don't have the
  173. * information we need to complete the height correction.
  174. */
  175. if (isnan(z0)) z0 = 0.0;
  176. const float ry = mesh_index_to_ypos(current_yi);
  177. /**
  178. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  179. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  180. * happens, it might be best to remove the check and always 'schedule' the move because
  181. * the planner.buffer_segment() routine will filter it if that happens.
  182. */
  183. if (ry != start[Y_AXIS]) {
  184. if (!inf_normalized_flag) {
  185. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  186. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  187. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  188. }
  189. else {
  190. e_position = end[E_AXIS];
  191. z_position = end[Z_AXIS];
  192. }
  193. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  194. } //else printf("FIRST MOVE PRUNED ");
  195. }
  196. if (g26_debug_flag)
  197. debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
  198. //
  199. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  200. //
  201. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  202. goto FINAL_MOVE;
  203. set_current_from_destination();
  204. return;
  205. }
  206. /**
  207. *
  208. * This block handles horizontal lines. These are lines that stay within the same
  209. * Y Cell row. They do not need to be perfectly horizontal. They just can
  210. * not cross into another Y Cell row.
  211. *
  212. */
  213. if (dyi == 0) { // Check for a horizontal line
  214. current_xi += left_flag; // Line is heading left, we just want to go to the left
  215. // edge of this cell for the first move.
  216. while (current_xi != cell_dest_xi + left_flag) {
  217. current_xi += dxi;
  218. const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
  219. ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  220. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
  221. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  222. /**
  223. * If part of the Mesh is undefined, it will show up as NAN
  224. * in z_values[][] and propagate through the
  225. * calculations. If our correction is NAN, we throw it out
  226. * because part of the Mesh is undefined and we don't have the
  227. * information we need to complete the height correction.
  228. */
  229. if (isnan(z0)) z0 = 0.0;
  230. const float rx = mesh_index_to_xpos(current_xi);
  231. /**
  232. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  233. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  234. * that happens, it might be best to remove the check and always 'schedule' the move because
  235. * the planner.buffer_segment() routine will filter it if that happens.
  236. */
  237. if (rx != start[X_AXIS]) {
  238. if (!inf_normalized_flag) {
  239. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  240. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  241. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  242. }
  243. else {
  244. e_position = end[E_AXIS];
  245. z_position = end[Z_AXIS];
  246. }
  247. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  248. } //else printf("FIRST MOVE PRUNED ");
  249. }
  250. if (g26_debug_flag)
  251. debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
  252. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  253. goto FINAL_MOVE;
  254. set_current_from_destination();
  255. return;
  256. }
  257. /**
  258. *
  259. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  260. *
  261. */
  262. int xi_cnt = cell_start_xi - cell_dest_xi,
  263. yi_cnt = cell_start_yi - cell_dest_yi;
  264. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  265. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  266. current_xi += left_flag;
  267. current_yi += down_flag;
  268. while (xi_cnt > 0 || yi_cnt > 0) {
  269. const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
  270. next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
  271. ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  272. rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  273. // (No need to worry about m being zero.
  274. // If that was the case, it was already detected
  275. // as a vertical line move above.)
  276. if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
  277. // Yes! Crossing a Y Mesh Line next
  278. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
  279. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  280. /**
  281. * If part of the Mesh is undefined, it will show up as NAN
  282. * in z_values[][] and propagate through the
  283. * calculations. If our correction is NAN, we throw it out
  284. * because part of the Mesh is undefined and we don't have the
  285. * information we need to complete the height correction.
  286. */
  287. if (isnan(z0)) z0 = 0.0;
  288. if (!inf_normalized_flag) {
  289. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  290. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  291. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  292. }
  293. else {
  294. e_position = end[E_AXIS];
  295. z_position = end[Z_AXIS];
  296. }
  297. planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
  298. current_yi += dyi;
  299. yi_cnt--;
  300. }
  301. else {
  302. // Yes! Crossing a X Mesh Line next
  303. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
  304. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  305. /**
  306. * If part of the Mesh is undefined, it will show up as NAN
  307. * in z_values[][] and propagate through the
  308. * calculations. If our correction is NAN, we throw it out
  309. * because part of the Mesh is undefined and we don't have the
  310. * information we need to complete the height correction.
  311. */
  312. if (isnan(z0)) z0 = 0.0;
  313. if (!inf_normalized_flag) {
  314. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
  315. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  316. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  317. }
  318. else {
  319. e_position = end[E_AXIS];
  320. z_position = end[Z_AXIS];
  321. }
  322. planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
  323. current_xi += dxi;
  324. xi_cnt--;
  325. }
  326. if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
  327. }
  328. if (g26_debug_flag)
  329. debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
  330. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  331. goto FINAL_MOVE;
  332. set_current_from_destination();
  333. }
  334. #if UBL_SEGMENTED
  335. // macro to inline copy exactly 4 floats, don't rely on sizeof operator
  336. #define COPY_XYZE( target, source ) { \
  337. target[X_AXIS] = source[X_AXIS]; \
  338. target[Y_AXIS] = source[Y_AXIS]; \
  339. target[Z_AXIS] = source[Z_AXIS]; \
  340. target[E_AXIS] = source[E_AXIS]; \
  341. }
  342. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  343. static float scara_feed_factor, scara_oldA, scara_oldB;
  344. #endif
  345. // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
  346. // so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
  347. inline void _O2 ubl_buffer_segment_raw(const float (&raw)[XYZE], const float &fr) {
  348. #if ENABLED(DELTA) // apply delta inverse_kinematics
  349. DELTA_RAW_IK();
  350. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder);
  351. #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
  352. inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
  353. // should move the feedrate scaling to scara inverse_kinematics
  354. const float adiff = FABS(delta[A_AXIS] - scara_oldA),
  355. bdiff = FABS(delta[B_AXIS] - scara_oldB);
  356. scara_oldA = delta[A_AXIS];
  357. scara_oldB = delta[B_AXIS];
  358. float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
  359. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder);
  360. #else // CARTESIAN
  361. planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder);
  362. #endif
  363. }
  364. #if IS_SCARA
  365. #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
  366. #elif ENABLED(DELTA)
  367. #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
  368. #else // CARTESIAN
  369. #ifdef LEVELED_SEGMENT_LENGTH
  370. #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
  371. #else
  372. #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
  373. #endif
  374. #endif
  375. /**
  376. * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  377. * This calls planner.buffer_segment multiple times for small incremental moves.
  378. * Returns true if did NOT move, false if moved (requires current_position update).
  379. */
  380. bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&in_target)[XYZE], const float &feedrate) {
  381. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
  382. return true; // did not move, so current_position still accurate
  383. const float total[XYZE] = {
  384. rtarget[X_AXIS] - current_position[X_AXIS],
  385. rtarget[Y_AXIS] - current_position[Y_AXIS],
  386. rtarget[Z_AXIS] - current_position[Z_AXIS],
  387. rtarget[E_AXIS] - current_position[E_AXIS]
  388. };
  389. const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
  390. #if IS_KINEMATIC
  391. const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  392. uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
  393. seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  394. NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
  395. #else
  396. uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  397. #endif
  398. NOLESS(segments, 1); // must have at least one segment
  399. const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
  400. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  401. scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
  402. scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
  403. scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
  404. #endif
  405. const float diff[XYZE] = {
  406. total[X_AXIS] * inv_segments,
  407. total[Y_AXIS] * inv_segments,
  408. total[Z_AXIS] * inv_segments,
  409. total[E_AXIS] * inv_segments
  410. };
  411. // Note that E segment distance could vary slightly as z mesh height
  412. // changes for each segment, but small enough to ignore.
  413. float raw[XYZE] = {
  414. current_position[X_AXIS],
  415. current_position[Y_AXIS],
  416. current_position[Z_AXIS],
  417. current_position[E_AXIS]
  418. };
  419. // Only compute leveling per segment if ubl active and target below z_fade_height.
  420. if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
  421. while (--segments) {
  422. LOOP_XYZE(i) raw[i] += diff[i];
  423. ubl_buffer_segment_raw(raw, feedrate);
  424. }
  425. ubl_buffer_segment_raw(rtarget, feedrate);
  426. return false; // moved but did not set_current_from_destination();
  427. }
  428. // Otherwise perform per-segment leveling
  429. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  430. const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
  431. #endif
  432. // increment to first segment destination
  433. LOOP_XYZE(i) raw[i] += diff[i];
  434. for(;;) { // for each mesh cell encountered during the move
  435. // Compute mesh cell invariants that remain constant for all segments within cell.
  436. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  437. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  438. // Inner loop will exit each time (because out of cell bounds) but will come back
  439. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  440. // for mesh inset area.
  441. int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
  442. cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
  443. cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
  444. cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
  445. const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
  446. y0 = mesh_index_to_ypos(cell_yi);
  447. float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
  448. z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
  449. z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
  450. z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  451. if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
  452. if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
  453. if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  454. if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
  455. float cx = raw[X_AXIS] - x0, // cell-relative x and y
  456. cy = raw[Y_AXIS] - y0;
  457. const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
  458. z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
  459. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
  460. const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
  461. z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  462. float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
  463. // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
  464. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  465. // and the z_cxym slope will change, both as a function of cx within the cell, and
  466. // each change by a constant for fixed segment lengths.
  467. const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
  468. z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
  469. for(;;) { // for all segments within this mesh cell
  470. if (--segments == 0) // if this is last segment, use rtarget for exact
  471. COPY(raw, rtarget);
  472. const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
  473. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  474. * fade_scaling_factor // apply fade factor to interpolated mesh height
  475. #endif
  476. ;
  477. const float z = raw[Z_AXIS];
  478. raw[Z_AXIS] += z_cxcy;
  479. ubl_buffer_segment_raw(raw, feedrate);
  480. raw[Z_AXIS] = z;
  481. if (segments == 0) // done with last segment
  482. return false; // did not set_current_from_destination()
  483. LOOP_XYZE(i) raw[i] += diff[i];
  484. cx += diff[X_AXIS];
  485. cy += diff[Y_AXIS];
  486. if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
  487. break;
  488. // Next segment still within same mesh cell, adjust the per-segment
  489. // slope and intercept to compute next z height.
  490. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  491. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  492. } // segment loop
  493. } // cell loop
  494. }
  495. #endif // UBL_SEGMENTED
  496. #endif // AUTO_BED_LEVELING_UBL