My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 37KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::extruder_advance_k = LIN_ADVANCE_K,
  83. Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[E_STEPPERS],
  85. Stepper::current_adv_steps[E_STEPPERS];
  86. #else
  87. long Stepper::e_steps[E_STEPPERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. #if ENABLED(MIXING_EXTRUDER)
  98. long Stepper::counter_M[MIXING_STEPPERS];
  99. #endif
  100. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  101. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  102. unsigned short Stepper::OCR1A_nominal;
  103. volatile long Stepper::endstops_trigsteps[XYZ];
  104. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  105. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  106. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  107. #elif ENABLED(DUAL_X_CARRIAGE)
  108. #define X_APPLY_DIR(v,ALWAYS) \
  109. if (extruder_duplication_enabled || ALWAYS) { \
  110. X_DIR_WRITE(v); \
  111. X2_DIR_WRITE(v); \
  112. } \
  113. else { \
  114. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  115. }
  116. #define X_APPLY_STEP(v,ALWAYS) \
  117. if (extruder_duplication_enabled || ALWAYS) { \
  118. X_STEP_WRITE(v); \
  119. X2_STEP_WRITE(v); \
  120. } \
  121. else { \
  122. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  123. }
  124. #else
  125. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  126. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  127. #endif
  128. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  129. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  130. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  131. #else
  132. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  133. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  134. #endif
  135. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  136. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  137. #if ENABLED(Z_DUAL_ENDSTOPS)
  138. #define Z_APPLY_STEP(v,Q) \
  139. if (performing_homing) { \
  140. if (Z_HOME_DIR > 0) {\
  141. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  142. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  143. } \
  144. else { \
  145. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  146. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  147. } \
  148. } \
  149. else { \
  150. Z_STEP_WRITE(v); \
  151. Z2_STEP_WRITE(v); \
  152. }
  153. #else
  154. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  155. #endif
  156. #else
  157. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  158. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  159. #endif
  160. #if DISABLED(MIXING_EXTRUDER)
  161. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  162. #endif
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. /**
  222. * __________________________
  223. * /| |\ _________________ ^
  224. * / | | \ /| |\ |
  225. * / | | \ / | | \ s
  226. * / | | | | | \ p
  227. * / | | | | | \ e
  228. * +-----+------------------------+---+--+---------------+----+ e
  229. * | BLOCK 1 | BLOCK 2 | d
  230. *
  231. * time ----->
  232. *
  233. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  234. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  235. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  236. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  237. */
  238. void Stepper::wake_up() {
  239. // TCNT1 = 0;
  240. ENABLE_STEPPER_DRIVER_INTERRUPT();
  241. }
  242. /**
  243. * Set the stepper direction of each axis
  244. *
  245. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  246. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  247. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  248. */
  249. void Stepper::set_directions() {
  250. #define SET_STEP_DIR(AXIS) \
  251. if (motor_direction(AXIS ##_AXIS)) { \
  252. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  253. count_direction[AXIS ##_AXIS] = -1; \
  254. } \
  255. else { \
  256. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  257. count_direction[AXIS ##_AXIS] = 1; \
  258. }
  259. #if HAS_X_DIR
  260. SET_STEP_DIR(X); // A
  261. #endif
  262. #if HAS_Y_DIR
  263. SET_STEP_DIR(Y); // B
  264. #endif
  265. #if HAS_Z_DIR
  266. SET_STEP_DIR(Z); // C
  267. #endif
  268. #if DISABLED(ADVANCE)
  269. if (motor_direction(E_AXIS)) {
  270. REV_E_DIR();
  271. count_direction[E_AXIS] = -1;
  272. }
  273. else {
  274. NORM_E_DIR();
  275. count_direction[E_AXIS] = 1;
  276. }
  277. #endif //!ADVANCE
  278. }
  279. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  280. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  281. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  282. void Stepper::isr() {
  283. if (cleaning_buffer_counter) {
  284. current_block = NULL;
  285. planner.discard_current_block();
  286. #ifdef SD_FINISHED_RELEASECOMMAND
  287. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  288. #endif
  289. cleaning_buffer_counter--;
  290. OCR1A = 200;
  291. return;
  292. }
  293. // If there is no current block, attempt to pop one from the buffer
  294. if (!current_block) {
  295. // Anything in the buffer?
  296. current_block = planner.get_current_block();
  297. if (current_block) {
  298. current_block->busy = true;
  299. trapezoid_generator_reset();
  300. // Initialize Bresenham counters to 1/2 the ceiling
  301. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  302. #if ENABLED(MIXING_EXTRUDER)
  303. MIXING_STEPPERS_LOOP(i)
  304. counter_M[i] = -(current_block->mix_event_count[i] >> 1);
  305. #endif
  306. step_events_completed = 0;
  307. #if ENABLED(Z_LATE_ENABLE)
  308. if (current_block->steps[Z_AXIS] > 0) {
  309. enable_z();
  310. OCR1A = 2000; //1ms wait
  311. return;
  312. }
  313. #endif
  314. // #if ENABLED(ADVANCE)
  315. // e_steps[TOOL_E_INDEX] = 0;
  316. // #endif
  317. }
  318. else {
  319. OCR1A = 2000; // 1kHz.
  320. }
  321. }
  322. if (current_block) {
  323. // Update endstops state, if enabled
  324. if (endstops.enabled
  325. #if HAS_BED_PROBE
  326. || endstops.z_probe_enabled
  327. #endif
  328. ) endstops.update();
  329. // Take multiple steps per interrupt (For high speed moves)
  330. for (int8_t i = 0; i < step_loops; i++) {
  331. #ifndef USBCON
  332. customizedSerial.checkRx(); // Check for serial chars.
  333. #endif
  334. #if ENABLED(LIN_ADVANCE)
  335. counter_E += current_block->steps[E_AXIS];
  336. if (counter_E > 0) {
  337. counter_E -= current_block->step_event_count;
  338. #if DISABLED(MIXING_EXTRUDER)
  339. // Don't step E here for mixing extruder
  340. count_position[E_AXIS] += count_direction[E_AXIS];
  341. e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1;
  342. #endif
  343. }
  344. #if ENABLED(MIXING_EXTRUDER)
  345. // Step mixing steppers proportionally
  346. long dir = motor_direction(E_AXIS) ? -1 : 1;
  347. MIXING_STEPPERS_LOOP(j) {
  348. counter_m[j] += current_block->steps[E_AXIS];
  349. if (counter_m[j] > 0) {
  350. counter_m[j] -= current_block->mix_event_count[j];
  351. e_steps[j] += dir;
  352. }
  353. }
  354. #endif
  355. if (current_block->use_advance_lead) {
  356. int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
  357. #if ENABLED(MIXING_EXTRUDER)
  358. // Mixing extruders apply advance lead proportionally
  359. MIXING_STEPPERS_LOOP(j) {
  360. int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  361. e_steps[j] += steps;
  362. current_adv_steps[j] += steps;
  363. }
  364. #else
  365. // For most extruders, advance the single E stepper
  366. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  367. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  368. #endif
  369. }
  370. #elif ENABLED(ADVANCE)
  371. // Always count the unified E axis
  372. counter_E += current_block->steps[E_AXIS];
  373. if (counter_E > 0) {
  374. counter_E -= current_block->step_event_count;
  375. #if DISABLED(MIXING_EXTRUDER)
  376. // Don't step E here for mixing extruder
  377. e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1;
  378. #endif
  379. }
  380. #if ENABLED(MIXING_EXTRUDER)
  381. // Step mixing steppers proportionally
  382. long dir = motor_direction(E_AXIS) ? -1 : 1;
  383. MIXING_STEPPERS_LOOP(j) {
  384. counter_m[j] += current_block->steps[E_AXIS];
  385. if (counter_m[j] > 0) {
  386. counter_m[j] -= current_block->mix_event_count[j];
  387. e_steps[j] += dir;
  388. }
  389. }
  390. #endif // MIXING_EXTRUDER
  391. #endif // ADVANCE or LIN_ADVANCE
  392. #define _COUNTER(AXIS) counter_## AXIS
  393. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  394. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  395. #define STEP_ADD(AXIS) \
  396. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  397. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  398. #if HAS_X_STEP
  399. STEP_ADD(X);
  400. #endif
  401. #if HAS_Y_STEP
  402. STEP_ADD(Y);
  403. #endif
  404. #if HAS_Z_STEP
  405. STEP_ADD(Z);
  406. #endif
  407. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  408. #if ENABLED(MIXING_EXTRUDER)
  409. // Keep updating the single E axis
  410. counter_E += current_block->steps[E_AXIS];
  411. // Tick the counters used for this mix
  412. MIXING_STEPPERS_LOOP(j) {
  413. // Step mixing steppers (proportionally)
  414. counter_M[j] += current_block->steps[E_AXIS];
  415. // Step when the counter goes over zero
  416. if (counter_M[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  417. }
  418. #else // !MIXING_EXTRUDER
  419. STEP_ADD(E);
  420. #endif
  421. #endif // !ADVANCE && !LIN_ADVANCE
  422. #define STEP_IF_COUNTER(AXIS) \
  423. if (_COUNTER(AXIS) > 0) { \
  424. _COUNTER(AXIS) -= current_block->step_event_count; \
  425. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  426. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  427. }
  428. #if HAS_X_STEP
  429. STEP_IF_COUNTER(X);
  430. #endif
  431. #if HAS_Y_STEP
  432. STEP_IF_COUNTER(Y);
  433. #endif
  434. #if HAS_Z_STEP
  435. STEP_IF_COUNTER(Z);
  436. #endif
  437. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  438. #if ENABLED(MIXING_EXTRUDER)
  439. // Always step the single E axis
  440. if (counter_E > 0) {
  441. counter_E -= current_block->step_event_count;
  442. count_position[E_AXIS] += count_direction[E_AXIS];
  443. }
  444. MIXING_STEPPERS_LOOP(j) {
  445. if (counter_M[j] > 0) {
  446. counter_M[j] -= current_block->mix_event_count[j];
  447. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  448. }
  449. }
  450. #else // !MIXING_EXTRUDER
  451. STEP_IF_COUNTER(E);
  452. #endif
  453. #endif // !ADVANCE && !LIN_ADVANCE
  454. step_events_completed++;
  455. if (step_events_completed >= current_block->step_event_count) break;
  456. }
  457. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  458. // If we have esteps to execute, fire the next ISR "now"
  459. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  460. #endif
  461. // Calculate new timer value
  462. unsigned short timer, step_rate;
  463. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  464. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  465. acc_step_rate += current_block->initial_rate;
  466. // upper limit
  467. NOMORE(acc_step_rate, current_block->nominal_rate);
  468. // step_rate to timer interval
  469. timer = calc_timer(acc_step_rate);
  470. OCR1A = timer;
  471. acceleration_time += timer;
  472. #if ENABLED(LIN_ADVANCE)
  473. if (current_block->use_advance_lead)
  474. current_estep_rate[TOOL_E_INDEX] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  475. if (current_block->use_advance_lead) {
  476. #if ENABLED(MIXING_EXTRUDER)
  477. MIXING_STEPPERS_LOOP(j)
  478. current_estep_rate[j] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  479. #else
  480. current_estep_rate[TOOL_E_INDEX] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  481. #endif
  482. }
  483. #elif ENABLED(ADVANCE)
  484. advance += advance_rate * step_loops;
  485. //NOLESS(advance, current_block->advance);
  486. long advance_whole = advance >> 8,
  487. advance_factor = advance_whole - old_advance;
  488. // Do E steps + advance steps
  489. #if ENABLED(MIXING_EXTRUDER)
  490. // ...for mixing steppers proportionally
  491. MIXING_STEPPERS_LOOP(j)
  492. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  493. #else
  494. // ...for the active extruder
  495. e_steps[TOOL_E_INDEX] += advance_factor;
  496. #endif
  497. old_advance = advance_whole;
  498. #endif // ADVANCE or LIN_ADVANCE
  499. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  500. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  501. #endif
  502. }
  503. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  504. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  505. if (step_rate <= acc_step_rate) { // Still decelerating?
  506. step_rate = acc_step_rate - step_rate;
  507. NOLESS(step_rate, current_block->final_rate);
  508. }
  509. else
  510. step_rate = current_block->final_rate;
  511. // step_rate to timer interval
  512. timer = calc_timer(step_rate);
  513. OCR1A = timer;
  514. deceleration_time += timer;
  515. #if ENABLED(LIN_ADVANCE)
  516. if (current_block->use_advance_lead) {
  517. #if ENABLED(MIXING_EXTRUDER)
  518. MIXING_STEPPERS_LOOP(j)
  519. current_estep_rate[j] = ((unsigned long)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  520. #else
  521. current_estep_rate[TOOL_E_INDEX] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8;
  522. #endif
  523. }
  524. #elif ENABLED(ADVANCE)
  525. advance -= advance_rate * step_loops;
  526. NOLESS(advance, final_advance);
  527. // Do E steps + advance steps
  528. long advance_whole = advance >> 8,
  529. advance_factor = advance_whole - old_advance;
  530. #if ENABLED(MIXING_EXTRUDER)
  531. MIXING_STEPPERS_LOOP(j)
  532. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  533. #else
  534. e_steps[TOOL_E_INDEX] += advance_factor;
  535. #endif
  536. old_advance = advance_whole;
  537. #endif // ADVANCE or LIN_ADVANCE
  538. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  539. eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  540. #endif
  541. }
  542. else {
  543. #if ENABLED(LIN_ADVANCE)
  544. if (current_block->use_advance_lead)
  545. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  546. eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  547. #endif
  548. OCR1A = OCR1A_nominal;
  549. // ensure we're running at the correct step rate, even if we just came off an acceleration
  550. step_loops = step_loops_nominal;
  551. }
  552. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  553. // If current block is finished, reset pointer
  554. if (step_events_completed >= current_block->step_event_count) {
  555. current_block = NULL;
  556. planner.discard_current_block();
  557. }
  558. }
  559. }
  560. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  561. // Timer interrupt for E. e_steps is set in the main routine;
  562. // Timer 0 is shared with millies
  563. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  564. void Stepper::advance_isr() {
  565. old_OCR0A += eISR_Rate;
  566. OCR0A = old_OCR0A;
  567. #define STEP_E_ONCE(INDEX) \
  568. if (e_steps[INDEX] != 0) { \
  569. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  570. if (e_steps[INDEX] < 0) { \
  571. E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
  572. e_steps[INDEX]++; \
  573. } \
  574. else { \
  575. E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
  576. e_steps[INDEX]--; \
  577. } \
  578. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  579. }
  580. // Step all E steppers that have steps
  581. for (uint8_t i = 0; i < step_loops; i++) {
  582. STEP_E_ONCE(0);
  583. #if E_STEPPERS > 1
  584. STEP_E_ONCE(1);
  585. #if E_STEPPERS > 2
  586. STEP_E_ONCE(2);
  587. #if E_STEPPERS > 3
  588. STEP_E_ONCE(3);
  589. #endif
  590. #endif
  591. #endif
  592. }
  593. }
  594. #endif // ADVANCE or LIN_ADVANCE
  595. void Stepper::init() {
  596. digipot_init(); //Initialize Digipot Motor Current
  597. microstep_init(); //Initialize Microstepping Pins
  598. // initialise TMC Steppers
  599. #if ENABLED(HAVE_TMCDRIVER)
  600. tmc_init();
  601. #endif
  602. // initialise L6470 Steppers
  603. #if ENABLED(HAVE_L6470DRIVER)
  604. L6470_init();
  605. #endif
  606. // Initialize Dir Pins
  607. #if HAS_X_DIR
  608. X_DIR_INIT;
  609. #endif
  610. #if HAS_X2_DIR
  611. X2_DIR_INIT;
  612. #endif
  613. #if HAS_Y_DIR
  614. Y_DIR_INIT;
  615. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  616. Y2_DIR_INIT;
  617. #endif
  618. #endif
  619. #if HAS_Z_DIR
  620. Z_DIR_INIT;
  621. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  622. Z2_DIR_INIT;
  623. #endif
  624. #endif
  625. #if HAS_E0_DIR
  626. E0_DIR_INIT;
  627. #endif
  628. #if HAS_E1_DIR
  629. E1_DIR_INIT;
  630. #endif
  631. #if HAS_E2_DIR
  632. E2_DIR_INIT;
  633. #endif
  634. #if HAS_E3_DIR
  635. E3_DIR_INIT;
  636. #endif
  637. //Initialize Enable Pins - steppers default to disabled.
  638. #if HAS_X_ENABLE
  639. X_ENABLE_INIT;
  640. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  641. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  642. X2_ENABLE_INIT;
  643. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  644. #endif
  645. #endif
  646. #if HAS_Y_ENABLE
  647. Y_ENABLE_INIT;
  648. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  649. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  650. Y2_ENABLE_INIT;
  651. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  652. #endif
  653. #endif
  654. #if HAS_Z_ENABLE
  655. Z_ENABLE_INIT;
  656. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  657. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  658. Z2_ENABLE_INIT;
  659. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  660. #endif
  661. #endif
  662. #if HAS_E0_ENABLE
  663. E0_ENABLE_INIT;
  664. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  665. #endif
  666. #if HAS_E1_ENABLE
  667. E1_ENABLE_INIT;
  668. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  669. #endif
  670. #if HAS_E2_ENABLE
  671. E2_ENABLE_INIT;
  672. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  673. #endif
  674. #if HAS_E3_ENABLE
  675. E3_ENABLE_INIT;
  676. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  677. #endif
  678. //
  679. // Init endstops and pullups here
  680. //
  681. endstops.init();
  682. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  683. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  684. #define _DISABLE(axis) disable_## axis()
  685. #define AXIS_INIT(axis, AXIS, PIN) \
  686. _STEP_INIT(AXIS); \
  687. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  688. _DISABLE(axis)
  689. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  690. // Initialize Step Pins
  691. #if HAS_X_STEP
  692. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  693. X2_STEP_INIT;
  694. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  695. #endif
  696. AXIS_INIT(x, X, X);
  697. #endif
  698. #if HAS_Y_STEP
  699. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  700. Y2_STEP_INIT;
  701. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  702. #endif
  703. AXIS_INIT(y, Y, Y);
  704. #endif
  705. #if HAS_Z_STEP
  706. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  707. Z2_STEP_INIT;
  708. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  709. #endif
  710. AXIS_INIT(z, Z, Z);
  711. #endif
  712. #if HAS_E0_STEP
  713. E_AXIS_INIT(0);
  714. #endif
  715. #if HAS_E1_STEP
  716. E_AXIS_INIT(1);
  717. #endif
  718. #if HAS_E2_STEP
  719. E_AXIS_INIT(2);
  720. #endif
  721. #if HAS_E3_STEP
  722. E_AXIS_INIT(3);
  723. #endif
  724. // waveform generation = 0100 = CTC
  725. CBI(TCCR1B, WGM13);
  726. SBI(TCCR1B, WGM12);
  727. CBI(TCCR1A, WGM11);
  728. CBI(TCCR1A, WGM10);
  729. // output mode = 00 (disconnected)
  730. TCCR1A &= ~(3 << COM1A0);
  731. TCCR1A &= ~(3 << COM1B0);
  732. // Set the timer pre-scaler
  733. // Generally we use a divider of 8, resulting in a 2MHz timer
  734. // frequency on a 16MHz MCU. If you are going to change this, be
  735. // sure to regenerate speed_lookuptable.h with
  736. // create_speed_lookuptable.py
  737. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  738. OCR1A = 0x4000;
  739. TCNT1 = 0;
  740. ENABLE_STEPPER_DRIVER_INTERRUPT();
  741. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  742. for (int i = 0; i < E_STEPPERS; i++) {
  743. e_steps[i] = 0;
  744. #if ENABLED(LIN_ADVANCE)
  745. current_adv_steps[i] = 0;
  746. #endif
  747. }
  748. #if defined(TCCR0A) && defined(WGM01)
  749. CBI(TCCR0A, WGM01);
  750. CBI(TCCR0A, WGM00);
  751. #endif
  752. SBI(TIMSK0, OCIE0A);
  753. #endif // ADVANCE or LIN_ADVANCE
  754. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  755. sei();
  756. set_directions(); // Init directions to last_direction_bits = 0
  757. }
  758. /**
  759. * Block until all buffered steps are executed
  760. */
  761. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  762. /**
  763. * Set the stepper positions directly in steps
  764. *
  765. * The input is based on the typical per-axis XYZ steps.
  766. * For CORE machines XYZ needs to be translated to ABC.
  767. *
  768. * This allows get_axis_position_mm to correctly
  769. * derive the current XYZ position later on.
  770. */
  771. void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
  772. CRITICAL_SECTION_START;
  773. #if ENABLED(COREXY)
  774. // corexy positioning
  775. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  776. count_position[A_AXIS] = x + y;
  777. count_position[B_AXIS] = x - y;
  778. count_position[Z_AXIS] = z;
  779. #elif ENABLED(COREXZ)
  780. // corexz planning
  781. count_position[A_AXIS] = x + z;
  782. count_position[Y_AXIS] = y;
  783. count_position[C_AXIS] = x - z;
  784. #elif ENABLED(COREYZ)
  785. // coreyz planning
  786. count_position[X_AXIS] = x;
  787. count_position[B_AXIS] = y + z;
  788. count_position[C_AXIS] = y - z;
  789. #else
  790. // default non-h-bot planning
  791. count_position[X_AXIS] = x;
  792. count_position[Y_AXIS] = y;
  793. count_position[Z_AXIS] = z;
  794. #endif
  795. count_position[E_AXIS] = e;
  796. CRITICAL_SECTION_END;
  797. }
  798. void Stepper::set_e_position(const long& e) {
  799. CRITICAL_SECTION_START;
  800. count_position[E_AXIS] = e;
  801. CRITICAL_SECTION_END;
  802. }
  803. /**
  804. * Get a stepper's position in steps.
  805. */
  806. long Stepper::position(AxisEnum axis) {
  807. CRITICAL_SECTION_START;
  808. long count_pos = count_position[axis];
  809. CRITICAL_SECTION_END;
  810. return count_pos;
  811. }
  812. /**
  813. * Get an axis position according to stepper position(s)
  814. * For CORE machines apply translation from ABC to XYZ.
  815. */
  816. float Stepper::get_axis_position_mm(AxisEnum axis) {
  817. float axis_steps;
  818. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  819. // Requesting one of the "core" axes?
  820. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  821. CRITICAL_SECTION_START;
  822. long pos1 = count_position[CORE_AXIS_1],
  823. pos2 = count_position[CORE_AXIS_2];
  824. CRITICAL_SECTION_END;
  825. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  826. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  827. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  828. }
  829. else
  830. axis_steps = position(axis);
  831. #else
  832. axis_steps = position(axis);
  833. #endif
  834. return axis_steps * planner.steps_to_mm[axis];
  835. }
  836. void Stepper::finish_and_disable() {
  837. synchronize();
  838. disable_all_steppers();
  839. }
  840. void Stepper::quick_stop() {
  841. cleaning_buffer_counter = 5000;
  842. DISABLE_STEPPER_DRIVER_INTERRUPT();
  843. while (planner.blocks_queued()) planner.discard_current_block();
  844. current_block = NULL;
  845. ENABLE_STEPPER_DRIVER_INTERRUPT();
  846. }
  847. void Stepper::endstop_triggered(AxisEnum axis) {
  848. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  849. float axis_pos = count_position[axis];
  850. if (axis == CORE_AXIS_1)
  851. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  852. else if (axis == CORE_AXIS_2)
  853. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  854. endstops_trigsteps[axis] = axis_pos;
  855. #else // !COREXY && !COREXZ && !COREYZ
  856. endstops_trigsteps[axis] = count_position[axis];
  857. #endif // !COREXY && !COREXZ && !COREYZ
  858. kill_current_block();
  859. }
  860. void Stepper::report_positions() {
  861. CRITICAL_SECTION_START;
  862. long xpos = count_position[X_AXIS],
  863. ypos = count_position[Y_AXIS],
  864. zpos = count_position[Z_AXIS];
  865. CRITICAL_SECTION_END;
  866. #if ENABLED(COREXY) || ENABLED(COREXZ)
  867. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  868. #else
  869. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  870. #endif
  871. SERIAL_PROTOCOL(xpos);
  872. #if ENABLED(COREXY) || ENABLED(COREYZ)
  873. SERIAL_PROTOCOLPGM(" B:");
  874. #else
  875. SERIAL_PROTOCOLPGM(" Y:");
  876. #endif
  877. SERIAL_PROTOCOL(ypos);
  878. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  879. SERIAL_PROTOCOLPGM(" C:");
  880. #else
  881. SERIAL_PROTOCOLPGM(" Z:");
  882. #endif
  883. SERIAL_PROTOCOL(zpos);
  884. SERIAL_EOL;
  885. }
  886. #if ENABLED(BABYSTEPPING)
  887. // MUST ONLY BE CALLED BY AN ISR,
  888. // No other ISR should ever interrupt this!
  889. void Stepper::babystep(const uint8_t axis, const bool direction) {
  890. #define _ENABLE(axis) enable_## axis()
  891. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  892. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  893. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  894. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  895. _ENABLE(axis); \
  896. uint8_t old_pin = _READ_DIR(AXIS); \
  897. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  898. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  899. delayMicroseconds(2); \
  900. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  901. _APPLY_DIR(AXIS, old_pin); \
  902. }
  903. switch (axis) {
  904. case X_AXIS:
  905. BABYSTEP_AXIS(x, X, false);
  906. break;
  907. case Y_AXIS:
  908. BABYSTEP_AXIS(y, Y, false);
  909. break;
  910. case Z_AXIS: {
  911. #if DISABLED(DELTA)
  912. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  913. #else // DELTA
  914. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  915. enable_x();
  916. enable_y();
  917. enable_z();
  918. uint8_t old_x_dir_pin = X_DIR_READ,
  919. old_y_dir_pin = Y_DIR_READ,
  920. old_z_dir_pin = Z_DIR_READ;
  921. //setup new step
  922. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  923. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  924. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  925. //perform step
  926. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  927. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  928. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  929. delayMicroseconds(2);
  930. X_STEP_WRITE(INVERT_X_STEP_PIN);
  931. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  932. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  933. //get old pin state back.
  934. X_DIR_WRITE(old_x_dir_pin);
  935. Y_DIR_WRITE(old_y_dir_pin);
  936. Z_DIR_WRITE(old_z_dir_pin);
  937. #endif
  938. } break;
  939. default: break;
  940. }
  941. }
  942. #endif //BABYSTEPPING
  943. /**
  944. * Software-controlled Stepper Motor Current
  945. */
  946. #if HAS_DIGIPOTSS
  947. // From Arduino DigitalPotControl example
  948. void Stepper::digitalPotWrite(int address, int value) {
  949. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  950. SPI.transfer(address); // send in the address and value via SPI:
  951. SPI.transfer(value);
  952. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  953. //delay(10);
  954. }
  955. #endif //HAS_DIGIPOTSS
  956. void Stepper::digipot_init() {
  957. #if HAS_DIGIPOTSS
  958. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  959. SPI.begin();
  960. pinMode(DIGIPOTSS_PIN, OUTPUT);
  961. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  962. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  963. digipot_current(i, digipot_motor_current[i]);
  964. }
  965. #endif
  966. #if HAS_MOTOR_CURRENT_PWM
  967. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  968. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  969. digipot_current(0, motor_current_setting[0]);
  970. #endif
  971. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  972. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  973. digipot_current(1, motor_current_setting[1]);
  974. #endif
  975. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  976. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  977. digipot_current(2, motor_current_setting[2]);
  978. #endif
  979. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  980. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  981. #endif
  982. }
  983. void Stepper::digipot_current(uint8_t driver, int current) {
  984. #if HAS_DIGIPOTSS
  985. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  986. digitalPotWrite(digipot_ch[driver], current);
  987. #elif HAS_MOTOR_CURRENT_PWM
  988. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  989. switch (driver) {
  990. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  991. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  992. #endif
  993. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  994. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  995. #endif
  996. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  997. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  998. #endif
  999. }
  1000. #else
  1001. UNUSED(driver);
  1002. UNUSED(current);
  1003. #endif
  1004. }
  1005. void Stepper::microstep_init() {
  1006. #if HAS_MICROSTEPS_E1
  1007. pinMode(E1_MS1_PIN, OUTPUT);
  1008. pinMode(E1_MS2_PIN, OUTPUT);
  1009. #endif
  1010. #if HAS_MICROSTEPS
  1011. pinMode(X_MS1_PIN, OUTPUT);
  1012. pinMode(X_MS2_PIN, OUTPUT);
  1013. pinMode(Y_MS1_PIN, OUTPUT);
  1014. pinMode(Y_MS2_PIN, OUTPUT);
  1015. pinMode(Z_MS1_PIN, OUTPUT);
  1016. pinMode(Z_MS2_PIN, OUTPUT);
  1017. pinMode(E0_MS1_PIN, OUTPUT);
  1018. pinMode(E0_MS2_PIN, OUTPUT);
  1019. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1020. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1021. microstep_mode(i, microstep_modes[i]);
  1022. #endif
  1023. }
  1024. /**
  1025. * Software-controlled Microstepping
  1026. */
  1027. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1028. if (ms1 >= 0) switch (driver) {
  1029. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1030. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1031. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1032. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1033. #if HAS_MICROSTEPS_E1
  1034. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1035. #endif
  1036. }
  1037. if (ms2 >= 0) switch (driver) {
  1038. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1039. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1040. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1041. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1042. #if PIN_EXISTS(E1_MS2)
  1043. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1044. #endif
  1045. }
  1046. }
  1047. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1048. switch (stepping_mode) {
  1049. case 1: microstep_ms(driver, MICROSTEP1); break;
  1050. case 2: microstep_ms(driver, MICROSTEP2); break;
  1051. case 4: microstep_ms(driver, MICROSTEP4); break;
  1052. case 8: microstep_ms(driver, MICROSTEP8); break;
  1053. case 16: microstep_ms(driver, MICROSTEP16); break;
  1054. }
  1055. }
  1056. void Stepper::microstep_readings() {
  1057. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1058. SERIAL_PROTOCOLPGM("X: ");
  1059. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1060. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1061. SERIAL_PROTOCOLPGM("Y: ");
  1062. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1063. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1064. SERIAL_PROTOCOLPGM("Z: ");
  1065. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1066. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1067. SERIAL_PROTOCOLPGM("E0: ");
  1068. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1069. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1070. #if HAS_MICROSTEPS_E1
  1071. SERIAL_PROTOCOLPGM("E1: ");
  1072. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1073. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1074. #endif
  1075. }
  1076. #if ENABLED(LIN_ADVANCE)
  1077. void Stepper::advance_M905(const float &k) {
  1078. if (k >= 0) extruder_advance_k = k;
  1079. SERIAL_ECHO_START;
  1080. SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
  1081. SERIAL_EOL;
  1082. }
  1083. #endif // LIN_ADVANCE