My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 418KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches
  59. * G21 - Set input units to millimeters
  60. * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  69. * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Fan on.
  119. * M107 - Fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, or PCA9632)
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  175. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  176. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  177. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  178. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  179. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  180. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  181. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  182. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  183. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  184. * M400 - Finish all moves.
  185. * M401 - Lower Z probe. (Requires a probe)
  186. * M402 - Raise Z probe. (Requires a probe)
  187. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  188. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  190. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M410 - Quickstop. Abort all planned moves.
  192. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  193. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  194. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  195. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  196. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  197. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  198. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  199. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  200. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  201. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  202. * M666 - Set delta endstop adjustment. (Requires DELTA)
  203. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  204. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  205. * M860 - Report the position of position encoder modules.
  206. * M861 - Report the status of position encoder modules.
  207. * M862 - Perform an axis continuity test for position encoder modules.
  208. * M863 - Perform steps-per-mm calibration for position encoder modules.
  209. * M864 - Change position encoder module I2C address.
  210. * M865 - Check position encoder module firmware version.
  211. * M866 - Report or reset position encoder module error count.
  212. * M867 - Enable/disable or toggle error correction for position encoder modules.
  213. * M868 - Report or set position encoder module error correction threshold.
  214. * M869 - Report position encoder module error.
  215. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  216. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  217. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  218. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  219. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  220. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  221. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  222. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  223. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  224. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  225. *
  226. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  227. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  228. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  229. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  230. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  231. *
  232. * ************ Custom codes - This can change to suit future G-code regulations
  233. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  234. * M999 - Restart after being stopped by error
  235. *
  236. * "T" Codes
  237. *
  238. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  239. *
  240. */
  241. #include "Marlin.h"
  242. #include "ultralcd.h"
  243. #include "planner.h"
  244. #include "stepper.h"
  245. #include "endstops.h"
  246. #include "temperature.h"
  247. #include "cardreader.h"
  248. #include "configuration_store.h"
  249. #include "language.h"
  250. #include "pins_arduino.h"
  251. #include "math.h"
  252. #include "nozzle.h"
  253. #include "duration_t.h"
  254. #include "types.h"
  255. #include "gcode.h"
  256. #if HAS_ABL
  257. #include "vector_3.h"
  258. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  259. #include "qr_solve.h"
  260. #endif
  261. #elif ENABLED(MESH_BED_LEVELING)
  262. #include "mesh_bed_leveling.h"
  263. #endif
  264. #if ENABLED(BEZIER_CURVE_SUPPORT)
  265. #include "planner_bezier.h"
  266. #endif
  267. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  268. #include "buzzer.h"
  269. #endif
  270. #if ENABLED(USE_WATCHDOG)
  271. #include "watchdog.h"
  272. #endif
  273. #if ENABLED(BLINKM)
  274. #include "blinkm.h"
  275. #include "Wire.h"
  276. #endif
  277. #if ENABLED(PCA9632)
  278. #include "pca9632.h"
  279. #endif
  280. #if HAS_SERVOS
  281. #include "servo.h"
  282. #endif
  283. #if HAS_DIGIPOTSS
  284. #include <SPI.h>
  285. #endif
  286. #if ENABLED(DAC_STEPPER_CURRENT)
  287. #include "stepper_dac.h"
  288. #endif
  289. #if ENABLED(EXPERIMENTAL_I2CBUS)
  290. #include "twibus.h"
  291. #endif
  292. #if ENABLED(I2C_POSITION_ENCODERS)
  293. #include "I2CPositionEncoder.h"
  294. #endif
  295. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  296. #include "endstop_interrupts.h"
  297. #endif
  298. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  299. void gcode_M100();
  300. void M100_dump_routine(const char * const title, const char *start, const char *end);
  301. #endif
  302. #if ENABLED(SDSUPPORT)
  303. CardReader card;
  304. #endif
  305. #if ENABLED(EXPERIMENTAL_I2CBUS)
  306. TWIBus i2c;
  307. #endif
  308. #if ENABLED(G38_PROBE_TARGET)
  309. bool G38_move = false,
  310. G38_endstop_hit = false;
  311. #endif
  312. #if ENABLED(AUTO_BED_LEVELING_UBL)
  313. #include "ubl.h"
  314. extern bool defer_return_to_status;
  315. unified_bed_leveling ubl;
  316. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  317. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  318. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  319. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  320. || isnan(ubl.z_values[0][0]))
  321. #endif
  322. bool Running = true;
  323. uint8_t marlin_debug_flags = DEBUG_NONE;
  324. /**
  325. * Cartesian Current Position
  326. * Used to track the logical position as moves are queued.
  327. * Used by 'line_to_current_position' to do a move after changing it.
  328. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  329. */
  330. float current_position[XYZE] = { 0.0 };
  331. /**
  332. * Cartesian Destination
  333. * A temporary position, usually applied to 'current_position'.
  334. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  335. * 'line_to_destination' sets 'current_position' to 'destination'.
  336. */
  337. float destination[XYZE] = { 0.0 };
  338. /**
  339. * axis_homed
  340. * Flags that each linear axis was homed.
  341. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  342. *
  343. * axis_known_position
  344. * Flags that the position is known in each linear axis. Set when homed.
  345. * Cleared whenever a stepper powers off, potentially losing its position.
  346. */
  347. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  348. /**
  349. * GCode line number handling. Hosts may opt to include line numbers when
  350. * sending commands to Marlin, and lines will be checked for sequentiality.
  351. * M110 N<int> sets the current line number.
  352. */
  353. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  354. /**
  355. * GCode Command Queue
  356. * A simple ring buffer of BUFSIZE command strings.
  357. *
  358. * Commands are copied into this buffer by the command injectors
  359. * (immediate, serial, sd card) and they are processed sequentially by
  360. * the main loop. The process_next_command function parses the next
  361. * command and hands off execution to individual handler functions.
  362. */
  363. uint8_t commands_in_queue = 0; // Count of commands in the queue
  364. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  365. cmd_queue_index_w = 0; // Ring buffer write position
  366. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  367. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  368. #else // This can be collapsed back to the way it was soon.
  369. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  370. #endif
  371. /**
  372. * Next Injected Command pointer. NULL if no commands are being injected.
  373. * Used by Marlin internally to ensure that commands initiated from within
  374. * are enqueued ahead of any pending serial or sd card commands.
  375. */
  376. static const char *injected_commands_P = NULL;
  377. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  378. TempUnit input_temp_units = TEMPUNIT_C;
  379. #endif
  380. /**
  381. * Feed rates are often configured with mm/m
  382. * but the planner and stepper like mm/s units.
  383. */
  384. static const float homing_feedrate_mm_s[] PROGMEM = {
  385. #if ENABLED(DELTA)
  386. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  387. #else
  388. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  389. #endif
  390. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  391. };
  392. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  393. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  394. static float saved_feedrate_mm_s;
  395. int16_t feedrate_percentage = 100, saved_feedrate_percentage,
  396. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  397. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  398. volumetric_enabled =
  399. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  400. true
  401. #else
  402. false
  403. #endif
  404. ;
  405. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  406. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  407. #if HAS_WORKSPACE_OFFSET
  408. #if HAS_POSITION_SHIFT
  409. // The distance that XYZ has been offset by G92. Reset by G28.
  410. float position_shift[XYZ] = { 0 };
  411. #endif
  412. #if HAS_HOME_OFFSET
  413. // This offset is added to the configured home position.
  414. // Set by M206, M428, or menu item. Saved to EEPROM.
  415. float home_offset[XYZ] = { 0 };
  416. #endif
  417. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  418. // The above two are combined to save on computes
  419. float workspace_offset[XYZ] = { 0 };
  420. #endif
  421. #endif
  422. // Software Endstops are based on the configured limits.
  423. #if HAS_SOFTWARE_ENDSTOPS
  424. bool soft_endstops_enabled = true;
  425. #endif
  426. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  427. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  428. #if FAN_COUNT > 0
  429. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  430. #if ENABLED(PROBING_FANS_OFF)
  431. bool fans_paused = false;
  432. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  433. #endif
  434. #endif
  435. // The active extruder (tool). Set with T<extruder> command.
  436. uint8_t active_extruder = 0;
  437. // Relative Mode. Enable with G91, disable with G90.
  438. static bool relative_mode = false;
  439. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  440. volatile bool wait_for_heatup = true;
  441. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  442. #if HAS_RESUME_CONTINUE
  443. volatile bool wait_for_user = false;
  444. #endif
  445. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  446. // Number of characters read in the current line of serial input
  447. static int serial_count = 0;
  448. // Inactivity shutdown
  449. millis_t previous_cmd_ms = 0;
  450. static millis_t max_inactive_time = 0;
  451. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  452. // Print Job Timer
  453. #if ENABLED(PRINTCOUNTER)
  454. PrintCounter print_job_timer = PrintCounter();
  455. #else
  456. Stopwatch print_job_timer = Stopwatch();
  457. #endif
  458. // Buzzer - I2C on the LCD or a BEEPER_PIN
  459. #if ENABLED(LCD_USE_I2C_BUZZER)
  460. #define BUZZ(d,f) lcd_buzz(d, f)
  461. #elif PIN_EXISTS(BEEPER)
  462. Buzzer buzzer;
  463. #define BUZZ(d,f) buzzer.tone(d, f)
  464. #else
  465. #define BUZZ(d,f) NOOP
  466. #endif
  467. static uint8_t target_extruder;
  468. #if HAS_BED_PROBE
  469. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  470. #endif
  471. #if HAS_ABL
  472. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  473. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  474. #elif defined(XY_PROBE_SPEED)
  475. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  476. #else
  477. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  478. #endif
  479. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  480. #if ENABLED(DELTA)
  481. #define ADJUST_DELTA(V) \
  482. if (planner.abl_enabled) { \
  483. const float zadj = bilinear_z_offset(V); \
  484. delta[A_AXIS] += zadj; \
  485. delta[B_AXIS] += zadj; \
  486. delta[C_AXIS] += zadj; \
  487. }
  488. #else
  489. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  490. #endif
  491. #elif IS_KINEMATIC
  492. #define ADJUST_DELTA(V) NOOP
  493. #endif
  494. #if ENABLED(Z_DUAL_ENDSTOPS)
  495. float z_endstop_adj =
  496. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  497. Z_DUAL_ENDSTOPS_ADJUSTMENT
  498. #else
  499. 0
  500. #endif
  501. ;
  502. #endif
  503. // Extruder offsets
  504. #if HOTENDS > 1
  505. float hotend_offset[XYZ][HOTENDS];
  506. #endif
  507. #if HAS_Z_SERVO_ENDSTOP
  508. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  509. #endif
  510. #if ENABLED(BARICUDA)
  511. int baricuda_valve_pressure = 0;
  512. int baricuda_e_to_p_pressure = 0;
  513. #endif
  514. #if ENABLED(FWRETRACT)
  515. bool autoretract_enabled = false;
  516. bool retracted[EXTRUDERS] = { false };
  517. bool retracted_swap[EXTRUDERS] = { false };
  518. float retract_length = RETRACT_LENGTH;
  519. float retract_length_swap = RETRACT_LENGTH_SWAP;
  520. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  521. float retract_zlift = RETRACT_ZLIFT;
  522. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  523. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  524. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  525. #endif // FWRETRACT
  526. #if HAS_POWER_SWITCH
  527. bool powersupply_on =
  528. #if ENABLED(PS_DEFAULT_OFF)
  529. false
  530. #else
  531. true
  532. #endif
  533. ;
  534. #endif
  535. #if ENABLED(DELTA)
  536. float delta[ABC],
  537. endstop_adj[ABC] = { 0 };
  538. // These values are loaded or reset at boot time when setup() calls
  539. // settings.load(), which calls recalc_delta_settings().
  540. float delta_radius,
  541. delta_tower_angle_trim[2],
  542. delta_tower[ABC][2],
  543. delta_diagonal_rod,
  544. delta_calibration_radius,
  545. delta_diagonal_rod_2_tower[ABC],
  546. delta_segments_per_second,
  547. delta_clip_start_height = Z_MAX_POS;
  548. float delta_safe_distance_from_top();
  549. #endif
  550. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  551. int bilinear_grid_spacing[2], bilinear_start[2];
  552. float bilinear_grid_factor[2],
  553. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  554. #endif
  555. #if IS_SCARA
  556. // Float constants for SCARA calculations
  557. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  558. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  559. L2_2 = sq(float(L2));
  560. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  561. delta[ABC];
  562. #endif
  563. float cartes[XYZ] = { 0 };
  564. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  565. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  566. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  567. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  568. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  569. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  570. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  571. #endif
  572. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  573. static bool filament_ran_out = false;
  574. #endif
  575. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  576. AdvancedPauseMenuResponse advanced_pause_menu_response;
  577. #endif
  578. #if ENABLED(MIXING_EXTRUDER)
  579. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  580. #if MIXING_VIRTUAL_TOOLS > 1
  581. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  582. #endif
  583. #endif
  584. static bool send_ok[BUFSIZE];
  585. #if HAS_SERVOS
  586. Servo servo[NUM_SERVOS];
  587. #define MOVE_SERVO(I, P) servo[I].move(P)
  588. #if HAS_Z_SERVO_ENDSTOP
  589. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  590. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  591. #endif
  592. #endif
  593. #ifdef CHDK
  594. millis_t chdkHigh = 0;
  595. bool chdkActive = false;
  596. #endif
  597. #ifdef AUTOMATIC_CURRENT_CONTROL
  598. bool auto_current_control = 0;
  599. #endif
  600. #if ENABLED(PID_EXTRUSION_SCALING)
  601. int lpq_len = 20;
  602. #endif
  603. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  604. MarlinBusyState busy_state = NOT_BUSY;
  605. static millis_t next_busy_signal_ms = 0;
  606. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  607. #else
  608. #define host_keepalive() NOOP
  609. #endif
  610. #if ENABLED(I2C_POSITION_ENCODERS)
  611. I2CPositionEncodersMgr I2CPEM;
  612. uint8_t blockBufferIndexRef = 0;
  613. millis_t lastUpdateMillis;
  614. #endif
  615. #if ENABLED(CNC_WORKSPACE_PLANES)
  616. static WorkspacePlane workspace_plane = PLANE_XY;
  617. #endif
  618. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  619. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  620. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  621. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  622. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  623. typedef void __void_##CONFIG##__
  624. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  625. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  626. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  627. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  628. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  629. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  630. /**
  631. * ***************************************************************************
  632. * ******************************** FUNCTIONS ********************************
  633. * ***************************************************************************
  634. */
  635. void stop();
  636. void get_available_commands();
  637. void process_next_command();
  638. void prepare_move_to_destination();
  639. void get_cartesian_from_steppers();
  640. void set_current_from_steppers_for_axis(const AxisEnum axis);
  641. #if ENABLED(ARC_SUPPORT)
  642. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  643. #endif
  644. #if ENABLED(BEZIER_CURVE_SUPPORT)
  645. void plan_cubic_move(const float offset[4]);
  646. #endif
  647. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  648. void report_current_position();
  649. void report_current_position_detail();
  650. #if ENABLED(DEBUG_LEVELING_FEATURE)
  651. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  652. serialprintPGM(prefix);
  653. SERIAL_CHAR('(');
  654. SERIAL_ECHO(x);
  655. SERIAL_ECHOPAIR(", ", y);
  656. SERIAL_ECHOPAIR(", ", z);
  657. SERIAL_CHAR(')');
  658. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  659. }
  660. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  661. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  662. }
  663. #if HAS_ABL
  664. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  665. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  666. }
  667. #endif
  668. #define DEBUG_POS(SUFFIX,VAR) do { \
  669. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  670. #endif
  671. /**
  672. * sync_plan_position
  673. *
  674. * Set the planner/stepper positions directly from current_position with
  675. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  676. */
  677. void sync_plan_position() {
  678. #if ENABLED(DEBUG_LEVELING_FEATURE)
  679. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  680. #endif
  681. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  682. }
  683. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  684. #if IS_KINEMATIC
  685. inline void sync_plan_position_kinematic() {
  686. #if ENABLED(DEBUG_LEVELING_FEATURE)
  687. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  688. #endif
  689. planner.set_position_mm_kinematic(current_position);
  690. }
  691. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  692. #else
  693. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  694. #endif
  695. #if ENABLED(SDSUPPORT)
  696. #include "SdFatUtil.h"
  697. int freeMemory() { return SdFatUtil::FreeRam(); }
  698. #else
  699. extern "C" {
  700. extern char __bss_end;
  701. extern char __heap_start;
  702. extern void* __brkval;
  703. int freeMemory() {
  704. int free_memory;
  705. if ((int)__brkval == 0)
  706. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  707. else
  708. free_memory = ((int)&free_memory) - ((int)__brkval);
  709. return free_memory;
  710. }
  711. }
  712. #endif // !SDSUPPORT
  713. #if ENABLED(DIGIPOT_I2C)
  714. extern void digipot_i2c_set_current(uint8_t channel, float current);
  715. extern void digipot_i2c_init();
  716. #endif
  717. /**
  718. * Inject the next "immediate" command, when possible, onto the front of the queue.
  719. * Return true if any immediate commands remain to inject.
  720. */
  721. static bool drain_injected_commands_P() {
  722. if (injected_commands_P != NULL) {
  723. size_t i = 0;
  724. char c, cmd[30];
  725. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  726. cmd[sizeof(cmd) - 1] = '\0';
  727. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  728. cmd[i] = '\0';
  729. if (enqueue_and_echo_command(cmd)) // success?
  730. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  731. }
  732. return (injected_commands_P != NULL); // return whether any more remain
  733. }
  734. /**
  735. * Record one or many commands to run from program memory.
  736. * Aborts the current queue, if any.
  737. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  738. */
  739. void enqueue_and_echo_commands_P(const char * const pgcode) {
  740. injected_commands_P = pgcode;
  741. drain_injected_commands_P(); // first command executed asap (when possible)
  742. }
  743. /**
  744. * Clear the Marlin command queue
  745. */
  746. void clear_command_queue() {
  747. cmd_queue_index_r = cmd_queue_index_w;
  748. commands_in_queue = 0;
  749. }
  750. /**
  751. * Once a new command is in the ring buffer, call this to commit it
  752. */
  753. inline void _commit_command(bool say_ok) {
  754. send_ok[cmd_queue_index_w] = say_ok;
  755. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  756. commands_in_queue++;
  757. }
  758. /**
  759. * Copy a command from RAM into the main command buffer.
  760. * Return true if the command was successfully added.
  761. * Return false for a full buffer, or if the 'command' is a comment.
  762. */
  763. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  764. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  765. strcpy(command_queue[cmd_queue_index_w], cmd);
  766. _commit_command(say_ok);
  767. return true;
  768. }
  769. /**
  770. * Enqueue with Serial Echo
  771. */
  772. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  773. if (_enqueuecommand(cmd, say_ok)) {
  774. SERIAL_ECHO_START();
  775. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  776. SERIAL_CHAR('"');
  777. SERIAL_EOL();
  778. return true;
  779. }
  780. return false;
  781. }
  782. void setup_killpin() {
  783. #if HAS_KILL
  784. SET_INPUT_PULLUP(KILL_PIN);
  785. #endif
  786. }
  787. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  788. void setup_filrunoutpin() {
  789. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  790. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  791. #else
  792. SET_INPUT(FIL_RUNOUT_PIN);
  793. #endif
  794. }
  795. #endif
  796. void setup_powerhold() {
  797. #if HAS_SUICIDE
  798. OUT_WRITE(SUICIDE_PIN, HIGH);
  799. #endif
  800. #if HAS_POWER_SWITCH
  801. #if ENABLED(PS_DEFAULT_OFF)
  802. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  803. #else
  804. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  805. #endif
  806. #endif
  807. }
  808. void suicide() {
  809. #if HAS_SUICIDE
  810. OUT_WRITE(SUICIDE_PIN, LOW);
  811. #endif
  812. }
  813. void servo_init() {
  814. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  815. servo[0].attach(SERVO0_PIN);
  816. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  817. #endif
  818. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  819. servo[1].attach(SERVO1_PIN);
  820. servo[1].detach();
  821. #endif
  822. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  823. servo[2].attach(SERVO2_PIN);
  824. servo[2].detach();
  825. #endif
  826. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  827. servo[3].attach(SERVO3_PIN);
  828. servo[3].detach();
  829. #endif
  830. #if HAS_Z_SERVO_ENDSTOP
  831. /**
  832. * Set position of Z Servo Endstop
  833. *
  834. * The servo might be deployed and positioned too low to stow
  835. * when starting up the machine or rebooting the board.
  836. * There's no way to know where the nozzle is positioned until
  837. * homing has been done - no homing with z-probe without init!
  838. *
  839. */
  840. STOW_Z_SERVO();
  841. #endif
  842. }
  843. /**
  844. * Stepper Reset (RigidBoard, et.al.)
  845. */
  846. #if HAS_STEPPER_RESET
  847. void disableStepperDrivers() {
  848. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  849. }
  850. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  851. #endif
  852. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  853. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  854. i2c.receive(bytes);
  855. }
  856. void i2c_on_request() { // just send dummy data for now
  857. i2c.reply("Hello World!\n");
  858. }
  859. #endif
  860. #if HAS_COLOR_LEDS
  861. void set_led_color(
  862. const uint8_t r, const uint8_t g, const uint8_t b
  863. #if ENABLED(RGBW_LED)
  864. , const uint8_t w=0
  865. #endif
  866. ) {
  867. #if ENABLED(BLINKM)
  868. // This variant uses i2c to send the RGB components to the device.
  869. SendColors(r, g, b);
  870. #endif
  871. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  872. // This variant uses 3 separate pins for the RGB components.
  873. // If the pins can do PWM then their intensity will be set.
  874. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  875. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  876. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  877. analogWrite(RGB_LED_R_PIN, r);
  878. analogWrite(RGB_LED_G_PIN, g);
  879. analogWrite(RGB_LED_B_PIN, b);
  880. #if ENABLED(RGBW_LED)
  881. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  882. analogWrite(RGB_LED_W_PIN, w);
  883. #endif
  884. #endif
  885. #if ENABLED(PCA9632)
  886. // Update I2C LED driver
  887. PCA9632_SetColor(r, g, b);
  888. #endif
  889. }
  890. #endif // HAS_COLOR_LEDS
  891. void gcode_line_error(const char* err, bool doFlush = true) {
  892. SERIAL_ERROR_START();
  893. serialprintPGM(err);
  894. SERIAL_ERRORLN(gcode_LastN);
  895. //Serial.println(gcode_N);
  896. if (doFlush) FlushSerialRequestResend();
  897. serial_count = 0;
  898. }
  899. /**
  900. * Get all commands waiting on the serial port and queue them.
  901. * Exit when the buffer is full or when no more characters are
  902. * left on the serial port.
  903. */
  904. inline void get_serial_commands() {
  905. static char serial_line_buffer[MAX_CMD_SIZE];
  906. static bool serial_comment_mode = false;
  907. // If the command buffer is empty for too long,
  908. // send "wait" to indicate Marlin is still waiting.
  909. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  910. static millis_t last_command_time = 0;
  911. const millis_t ms = millis();
  912. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  913. SERIAL_ECHOLNPGM(MSG_WAIT);
  914. last_command_time = ms;
  915. }
  916. #endif
  917. /**
  918. * Loop while serial characters are incoming and the queue is not full
  919. */
  920. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  921. char serial_char = MYSERIAL.read();
  922. /**
  923. * If the character ends the line
  924. */
  925. if (serial_char == '\n' || serial_char == '\r') {
  926. serial_comment_mode = false; // end of line == end of comment
  927. if (!serial_count) continue; // skip empty lines
  928. serial_line_buffer[serial_count] = 0; // terminate string
  929. serial_count = 0; //reset buffer
  930. char* command = serial_line_buffer;
  931. while (*command == ' ') command++; // skip any leading spaces
  932. char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
  933. *apos = strchr(command, '*');
  934. if (npos) {
  935. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  936. if (M110) {
  937. char* n2pos = strchr(command + 4, 'N');
  938. if (n2pos) npos = n2pos;
  939. }
  940. gcode_N = strtol(npos + 1, NULL, 10);
  941. if (gcode_N != gcode_LastN + 1 && !M110) {
  942. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  943. return;
  944. }
  945. if (apos) {
  946. byte checksum = 0, count = 0;
  947. while (command[count] != '*') checksum ^= command[count++];
  948. if (strtol(apos + 1, NULL, 10) != checksum) {
  949. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  950. return;
  951. }
  952. // if no errors, continue parsing
  953. }
  954. else {
  955. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  956. return;
  957. }
  958. gcode_LastN = gcode_N;
  959. // if no errors, continue parsing
  960. }
  961. else if (apos) { // No '*' without 'N'
  962. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  963. return;
  964. }
  965. // Movement commands alert when stopped
  966. if (IsStopped()) {
  967. char* gpos = strchr(command, 'G');
  968. if (gpos) {
  969. const int codenum = strtol(gpos + 1, NULL, 10);
  970. switch (codenum) {
  971. case 0:
  972. case 1:
  973. case 2:
  974. case 3:
  975. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  976. LCD_MESSAGEPGM(MSG_STOPPED);
  977. break;
  978. }
  979. }
  980. }
  981. #if DISABLED(EMERGENCY_PARSER)
  982. // If command was e-stop process now
  983. if (strcmp(command, "M108") == 0) {
  984. wait_for_heatup = false;
  985. #if ENABLED(ULTIPANEL)
  986. wait_for_user = false;
  987. #endif
  988. }
  989. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  990. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  991. #endif
  992. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  993. last_command_time = ms;
  994. #endif
  995. // Add the command to the queue
  996. _enqueuecommand(serial_line_buffer, true);
  997. }
  998. else if (serial_count >= MAX_CMD_SIZE - 1) {
  999. // Keep fetching, but ignore normal characters beyond the max length
  1000. // The command will be injected when EOL is reached
  1001. }
  1002. else if (serial_char == '\\') { // Handle escapes
  1003. if (MYSERIAL.available() > 0) {
  1004. // if we have one more character, copy it over
  1005. serial_char = MYSERIAL.read();
  1006. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1007. }
  1008. // otherwise do nothing
  1009. }
  1010. else { // it's not a newline, carriage return or escape char
  1011. if (serial_char == ';') serial_comment_mode = true;
  1012. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1013. }
  1014. } // queue has space, serial has data
  1015. }
  1016. #if ENABLED(SDSUPPORT)
  1017. /**
  1018. * Get commands from the SD Card until the command buffer is full
  1019. * or until the end of the file is reached. The special character '#'
  1020. * can also interrupt buffering.
  1021. */
  1022. inline void get_sdcard_commands() {
  1023. static bool stop_buffering = false,
  1024. sd_comment_mode = false;
  1025. if (!card.sdprinting) return;
  1026. /**
  1027. * '#' stops reading from SD to the buffer prematurely, so procedural
  1028. * macro calls are possible. If it occurs, stop_buffering is triggered
  1029. * and the buffer is run dry; this character _can_ occur in serial com
  1030. * due to checksums, however, no checksums are used in SD printing.
  1031. */
  1032. if (commands_in_queue == 0) stop_buffering = false;
  1033. uint16_t sd_count = 0;
  1034. bool card_eof = card.eof();
  1035. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1036. const int16_t n = card.get();
  1037. char sd_char = (char)n;
  1038. card_eof = card.eof();
  1039. if (card_eof || n == -1
  1040. || sd_char == '\n' || sd_char == '\r'
  1041. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1042. ) {
  1043. if (card_eof) {
  1044. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1045. card.printingHasFinished();
  1046. #if ENABLED(PRINTER_EVENT_LEDS)
  1047. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1048. set_led_color(0, 255, 0); // Green
  1049. #if HAS_RESUME_CONTINUE
  1050. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1051. #else
  1052. safe_delay(1000);
  1053. #endif
  1054. set_led_color(0, 0, 0); // OFF
  1055. #endif
  1056. card.checkautostart(true);
  1057. }
  1058. else if (n == -1) {
  1059. SERIAL_ERROR_START();
  1060. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1061. }
  1062. if (sd_char == '#') stop_buffering = true;
  1063. sd_comment_mode = false; // for new command
  1064. if (!sd_count) continue; // skip empty lines (and comment lines)
  1065. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1066. sd_count = 0; // clear sd line buffer
  1067. _commit_command(false);
  1068. }
  1069. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1070. /**
  1071. * Keep fetching, but ignore normal characters beyond the max length
  1072. * The command will be injected when EOL is reached
  1073. */
  1074. }
  1075. else {
  1076. if (sd_char == ';') sd_comment_mode = true;
  1077. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1078. }
  1079. }
  1080. }
  1081. #endif // SDSUPPORT
  1082. /**
  1083. * Add to the circular command queue the next command from:
  1084. * - The command-injection queue (injected_commands_P)
  1085. * - The active serial input (usually USB)
  1086. * - The SD card file being actively printed
  1087. */
  1088. void get_available_commands() {
  1089. // if any immediate commands remain, don't get other commands yet
  1090. if (drain_injected_commands_P()) return;
  1091. get_serial_commands();
  1092. #if ENABLED(SDSUPPORT)
  1093. get_sdcard_commands();
  1094. #endif
  1095. }
  1096. /**
  1097. * Set target_extruder from the T parameter or the active_extruder
  1098. *
  1099. * Returns TRUE if the target is invalid
  1100. */
  1101. bool get_target_extruder_from_command(const uint16_t code) {
  1102. if (parser.seenval('T')) {
  1103. const int8_t e = parser.value_byte();
  1104. if (e >= EXTRUDERS) {
  1105. SERIAL_ECHO_START();
  1106. SERIAL_CHAR('M');
  1107. SERIAL_ECHO(code);
  1108. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1109. return true;
  1110. }
  1111. target_extruder = e;
  1112. }
  1113. else
  1114. target_extruder = active_extruder;
  1115. return false;
  1116. }
  1117. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1118. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1119. #endif
  1120. #if ENABLED(DUAL_X_CARRIAGE)
  1121. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1122. static float x_home_pos(const int extruder) {
  1123. if (extruder == 0)
  1124. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1125. else
  1126. /**
  1127. * In dual carriage mode the extruder offset provides an override of the
  1128. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1129. * This allows soft recalibration of the second extruder home position
  1130. * without firmware reflash (through the M218 command).
  1131. */
  1132. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1133. }
  1134. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1135. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1136. static bool active_extruder_parked = false; // used in mode 1 & 2
  1137. static float raised_parked_position[XYZE]; // used in mode 1
  1138. static millis_t delayed_move_time = 0; // used in mode 1
  1139. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1140. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1141. #endif // DUAL_X_CARRIAGE
  1142. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1143. /**
  1144. * Software endstops can be used to monitor the open end of
  1145. * an axis that has a hardware endstop on the other end. Or
  1146. * they can prevent axes from moving past endstops and grinding.
  1147. *
  1148. * To keep doing their job as the coordinate system changes,
  1149. * the software endstop positions must be refreshed to remain
  1150. * at the same positions relative to the machine.
  1151. */
  1152. void update_software_endstops(const AxisEnum axis) {
  1153. const float offs = 0.0
  1154. #if HAS_HOME_OFFSET
  1155. + home_offset[axis]
  1156. #endif
  1157. #if HAS_POSITION_SHIFT
  1158. + position_shift[axis]
  1159. #endif
  1160. ;
  1161. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1162. workspace_offset[axis] = offs;
  1163. #endif
  1164. #if ENABLED(DUAL_X_CARRIAGE)
  1165. if (axis == X_AXIS) {
  1166. // In Dual X mode hotend_offset[X] is T1's home position
  1167. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1168. if (active_extruder != 0) {
  1169. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1170. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1171. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1172. }
  1173. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1174. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1175. // but not so far to the right that T1 would move past the end
  1176. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1177. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1178. }
  1179. else {
  1180. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1181. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1182. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1183. }
  1184. }
  1185. #else
  1186. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1187. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1188. #endif
  1189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1190. if (DEBUGGING(LEVELING)) {
  1191. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1192. #if HAS_HOME_OFFSET
  1193. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1194. #endif
  1195. #if HAS_POSITION_SHIFT
  1196. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1197. #endif
  1198. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1199. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1200. }
  1201. #endif
  1202. #if ENABLED(DELTA)
  1203. if (axis == Z_AXIS)
  1204. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1205. #endif
  1206. }
  1207. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1208. #if HAS_M206_COMMAND
  1209. /**
  1210. * Change the home offset for an axis, update the current
  1211. * position and the software endstops to retain the same
  1212. * relative distance to the new home.
  1213. *
  1214. * Since this changes the current_position, code should
  1215. * call sync_plan_position soon after this.
  1216. */
  1217. static void set_home_offset(const AxisEnum axis, const float v) {
  1218. current_position[axis] += v - home_offset[axis];
  1219. home_offset[axis] = v;
  1220. update_software_endstops(axis);
  1221. }
  1222. #endif // HAS_M206_COMMAND
  1223. /**
  1224. * Set an axis' current position to its home position (after homing).
  1225. *
  1226. * For Core and Cartesian robots this applies one-to-one when an
  1227. * individual axis has been homed.
  1228. *
  1229. * DELTA should wait until all homing is done before setting the XYZ
  1230. * current_position to home, because homing is a single operation.
  1231. * In the case where the axis positions are already known and previously
  1232. * homed, DELTA could home to X or Y individually by moving either one
  1233. * to the center. However, homing Z always homes XY and Z.
  1234. *
  1235. * SCARA should wait until all XY homing is done before setting the XY
  1236. * current_position to home, because neither X nor Y is at home until
  1237. * both are at home. Z can however be homed individually.
  1238. *
  1239. * Callers must sync the planner position after calling this!
  1240. */
  1241. static void set_axis_is_at_home(const AxisEnum axis) {
  1242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1243. if (DEBUGGING(LEVELING)) {
  1244. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1245. SERIAL_CHAR(')');
  1246. SERIAL_EOL();
  1247. }
  1248. #endif
  1249. axis_known_position[axis] = axis_homed[axis] = true;
  1250. #if HAS_POSITION_SHIFT
  1251. position_shift[axis] = 0;
  1252. update_software_endstops(axis);
  1253. #endif
  1254. #if ENABLED(DUAL_X_CARRIAGE)
  1255. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1256. current_position[X_AXIS] = x_home_pos(active_extruder);
  1257. return;
  1258. }
  1259. #endif
  1260. #if ENABLED(MORGAN_SCARA)
  1261. /**
  1262. * Morgan SCARA homes XY at the same time
  1263. */
  1264. if (axis == X_AXIS || axis == Y_AXIS) {
  1265. float homeposition[XYZ];
  1266. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1267. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1268. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1269. /**
  1270. * Get Home position SCARA arm angles using inverse kinematics,
  1271. * and calculate homing offset using forward kinematics
  1272. */
  1273. inverse_kinematics(homeposition);
  1274. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1275. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1276. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1277. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1278. /**
  1279. * SCARA home positions are based on configuration since the actual
  1280. * limits are determined by the inverse kinematic transform.
  1281. */
  1282. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1283. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1284. }
  1285. else
  1286. #endif
  1287. {
  1288. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1289. }
  1290. /**
  1291. * Z Probe Z Homing? Account for the probe's Z offset.
  1292. */
  1293. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1294. if (axis == Z_AXIS) {
  1295. #if HOMING_Z_WITH_PROBE
  1296. current_position[Z_AXIS] -= zprobe_zoffset;
  1297. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1298. if (DEBUGGING(LEVELING)) {
  1299. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1300. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1301. }
  1302. #endif
  1303. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1305. #endif
  1306. }
  1307. #endif
  1308. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1309. if (DEBUGGING(LEVELING)) {
  1310. #if HAS_HOME_OFFSET
  1311. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1312. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1313. #endif
  1314. DEBUG_POS("", current_position);
  1315. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1316. SERIAL_CHAR(')');
  1317. SERIAL_EOL();
  1318. }
  1319. #endif
  1320. #if ENABLED(I2C_POSITION_ENCODERS)
  1321. I2CPEM.homed(axis);
  1322. #endif
  1323. }
  1324. /**
  1325. * Some planner shorthand inline functions
  1326. */
  1327. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1328. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1329. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1330. if (hbd < 1) {
  1331. hbd = 10;
  1332. SERIAL_ECHO_START();
  1333. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1334. }
  1335. return homing_feedrate(axis) / hbd;
  1336. }
  1337. /**
  1338. * Move the planner to the current position from wherever it last moved
  1339. * (or from wherever it has been told it is located).
  1340. */
  1341. inline void line_to_current_position() {
  1342. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1343. }
  1344. /**
  1345. * Move the planner to the position stored in the destination array, which is
  1346. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1347. */
  1348. inline void line_to_destination(const float fr_mm_s) {
  1349. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1350. }
  1351. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1352. inline void set_current_to_destination() { COPY(current_position, destination); }
  1353. inline void set_destination_to_current() { COPY(destination, current_position); }
  1354. #if IS_KINEMATIC
  1355. /**
  1356. * Calculate delta, start a line, and set current_position to destination
  1357. */
  1358. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1359. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1360. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1361. #endif
  1362. refresh_cmd_timeout();
  1363. #if UBL_DELTA
  1364. // ubl segmented line will do z-only moves in single segment
  1365. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1366. #else
  1367. if ( current_position[X_AXIS] == destination[X_AXIS]
  1368. && current_position[Y_AXIS] == destination[Y_AXIS]
  1369. && current_position[Z_AXIS] == destination[Z_AXIS]
  1370. && current_position[E_AXIS] == destination[E_AXIS]
  1371. ) return;
  1372. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1373. #endif
  1374. set_current_to_destination();
  1375. }
  1376. #endif // IS_KINEMATIC
  1377. /**
  1378. * Plan a move to (X, Y, Z) and set the current_position
  1379. * The final current_position may not be the one that was requested
  1380. */
  1381. void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
  1382. const float old_feedrate_mm_s = feedrate_mm_s;
  1383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1384. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
  1385. #endif
  1386. #if ENABLED(DELTA)
  1387. if (!position_is_reachable_xy(lx, ly)) return;
  1388. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1389. set_destination_to_current(); // sync destination at the start
  1390. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1391. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1392. #endif
  1393. // when in the danger zone
  1394. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1395. if (lz > delta_clip_start_height) { // staying in the danger zone
  1396. destination[X_AXIS] = lx; // move directly (uninterpolated)
  1397. destination[Y_AXIS] = ly;
  1398. destination[Z_AXIS] = lz;
  1399. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1400. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1401. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1402. #endif
  1403. return;
  1404. }
  1405. else {
  1406. destination[Z_AXIS] = delta_clip_start_height;
  1407. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1409. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1410. #endif
  1411. }
  1412. }
  1413. if (lz > current_position[Z_AXIS]) { // raising?
  1414. destination[Z_AXIS] = lz;
  1415. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1417. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1418. #endif
  1419. }
  1420. destination[X_AXIS] = lx;
  1421. destination[Y_AXIS] = ly;
  1422. prepare_move_to_destination(); // set_current_to_destination
  1423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1424. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1425. #endif
  1426. if (lz < current_position[Z_AXIS]) { // lowering?
  1427. destination[Z_AXIS] = lz;
  1428. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1430. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1431. #endif
  1432. }
  1433. #elif IS_SCARA
  1434. if (!position_is_reachable_xy(lx, ly)) return;
  1435. set_destination_to_current();
  1436. // If Z needs to raise, do it before moving XY
  1437. if (destination[Z_AXIS] < lz) {
  1438. destination[Z_AXIS] = lz;
  1439. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1440. }
  1441. destination[X_AXIS] = lx;
  1442. destination[Y_AXIS] = ly;
  1443. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1444. // If Z needs to lower, do it after moving XY
  1445. if (destination[Z_AXIS] > lz) {
  1446. destination[Z_AXIS] = lz;
  1447. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1448. }
  1449. #else
  1450. // If Z needs to raise, do it before moving XY
  1451. if (current_position[Z_AXIS] < lz) {
  1452. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1453. current_position[Z_AXIS] = lz;
  1454. line_to_current_position();
  1455. }
  1456. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1457. current_position[X_AXIS] = lx;
  1458. current_position[Y_AXIS] = ly;
  1459. line_to_current_position();
  1460. // If Z needs to lower, do it after moving XY
  1461. if (current_position[Z_AXIS] > lz) {
  1462. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1463. current_position[Z_AXIS] = lz;
  1464. line_to_current_position();
  1465. }
  1466. #endif
  1467. stepper.synchronize();
  1468. feedrate_mm_s = old_feedrate_mm_s;
  1469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1470. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1471. #endif
  1472. }
  1473. void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
  1474. do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1475. }
  1476. void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
  1477. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
  1478. }
  1479. void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
  1480. do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
  1481. }
  1482. //
  1483. // Prepare to do endstop or probe moves
  1484. // with custom feedrates.
  1485. //
  1486. // - Save current feedrates
  1487. // - Reset the rate multiplier
  1488. // - Reset the command timeout
  1489. // - Enable the endstops (for endstop moves)
  1490. //
  1491. static void setup_for_endstop_or_probe_move() {
  1492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1493. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1494. #endif
  1495. saved_feedrate_mm_s = feedrate_mm_s;
  1496. saved_feedrate_percentage = feedrate_percentage;
  1497. feedrate_percentage = 100;
  1498. refresh_cmd_timeout();
  1499. }
  1500. static void clean_up_after_endstop_or_probe_move() {
  1501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1502. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1503. #endif
  1504. feedrate_mm_s = saved_feedrate_mm_s;
  1505. feedrate_percentage = saved_feedrate_percentage;
  1506. refresh_cmd_timeout();
  1507. }
  1508. #if HAS_BED_PROBE
  1509. /**
  1510. * Raise Z to a minimum height to make room for a probe to move
  1511. */
  1512. inline void do_probe_raise(const float z_raise) {
  1513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1514. if (DEBUGGING(LEVELING)) {
  1515. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1516. SERIAL_CHAR(')');
  1517. SERIAL_EOL();
  1518. }
  1519. #endif
  1520. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1521. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1522. #if ENABLED(DELTA)
  1523. z_dest -= home_offset[Z_AXIS]; // Account for delta height adjustment
  1524. #endif
  1525. if (z_dest > current_position[Z_AXIS])
  1526. do_blocking_move_to_z(z_dest);
  1527. }
  1528. #endif // HAS_BED_PROBE
  1529. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1530. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1531. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1532. const bool xx = x && !axis_known_position[X_AXIS],
  1533. yy = y && !axis_known_position[Y_AXIS],
  1534. zz = z && !axis_known_position[Z_AXIS];
  1535. #else
  1536. const bool xx = x && !axis_homed[X_AXIS],
  1537. yy = y && !axis_homed[Y_AXIS],
  1538. zz = z && !axis_homed[Z_AXIS];
  1539. #endif
  1540. if (xx || yy || zz) {
  1541. SERIAL_ECHO_START();
  1542. SERIAL_ECHOPGM(MSG_HOME " ");
  1543. if (xx) SERIAL_ECHOPGM(MSG_X);
  1544. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1545. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1546. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1547. #if ENABLED(ULTRA_LCD)
  1548. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1549. #endif
  1550. return true;
  1551. }
  1552. return false;
  1553. }
  1554. #endif
  1555. #if ENABLED(Z_PROBE_SLED)
  1556. #ifndef SLED_DOCKING_OFFSET
  1557. #define SLED_DOCKING_OFFSET 0
  1558. #endif
  1559. /**
  1560. * Method to dock/undock a sled designed by Charles Bell.
  1561. *
  1562. * stow[in] If false, move to MAX_X and engage the solenoid
  1563. * If true, move to MAX_X and release the solenoid
  1564. */
  1565. static void dock_sled(bool stow) {
  1566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1567. if (DEBUGGING(LEVELING)) {
  1568. SERIAL_ECHOPAIR("dock_sled(", stow);
  1569. SERIAL_CHAR(')');
  1570. SERIAL_EOL();
  1571. }
  1572. #endif
  1573. // Dock sled a bit closer to ensure proper capturing
  1574. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1575. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1576. WRITE(SOL1_PIN, !stow); // switch solenoid
  1577. #endif
  1578. }
  1579. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1580. FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
  1581. do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
  1582. }
  1583. void run_deploy_moves_script() {
  1584. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1585. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1586. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1589. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1590. #endif
  1591. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1592. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1593. #endif
  1594. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1595. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1596. #endif
  1597. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1598. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1599. #endif
  1600. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1603. #endif
  1604. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1605. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1606. #endif
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1609. #endif
  1610. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1611. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1612. #endif
  1613. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1614. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1615. #endif
  1616. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1617. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1618. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1625. #endif
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1628. #endif
  1629. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1630. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1631. #endif
  1632. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1633. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1634. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1635. #endif
  1636. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1637. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1638. #endif
  1639. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1640. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1641. #endif
  1642. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1643. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1644. #endif
  1645. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1646. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1647. #endif
  1648. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1649. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1650. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1653. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1656. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1659. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1660. #endif
  1661. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1662. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1663. #endif
  1664. }
  1665. void run_stow_moves_script() {
  1666. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1668. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1671. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1674. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1675. #endif
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1677. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1678. #endif
  1679. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1680. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1681. #endif
  1682. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1683. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1684. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1687. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1690. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1693. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1694. #endif
  1695. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1696. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1697. #endif
  1698. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1700. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1701. #endif
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1703. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1704. #endif
  1705. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1706. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1707. #endif
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1709. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1710. #endif
  1711. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1712. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1713. #endif
  1714. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1716. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1719. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1720. #endif
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1722. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1723. #endif
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1725. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1726. #endif
  1727. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1728. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1729. #endif
  1730. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1731. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1732. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1733. #endif
  1734. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1735. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1736. #endif
  1737. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1738. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1739. #endif
  1740. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1741. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1742. #endif
  1743. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1744. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1745. #endif
  1746. }
  1747. #endif
  1748. #if ENABLED(PROBING_FANS_OFF)
  1749. void fans_pause(const bool p) {
  1750. if (p != fans_paused) {
  1751. fans_paused = p;
  1752. if (p)
  1753. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1754. paused_fanSpeeds[x] = fanSpeeds[x];
  1755. fanSpeeds[x] = 0;
  1756. }
  1757. else
  1758. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1759. fanSpeeds[x] = paused_fanSpeeds[x];
  1760. }
  1761. }
  1762. #endif // PROBING_FANS_OFF
  1763. #if HAS_BED_PROBE
  1764. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1765. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1766. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1767. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1768. #else
  1769. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1770. #endif
  1771. #endif
  1772. #if QUIET_PROBING
  1773. void probing_pause(const bool p) {
  1774. #if ENABLED(PROBING_HEATERS_OFF)
  1775. thermalManager.pause(p);
  1776. #endif
  1777. #if ENABLED(PROBING_FANS_OFF)
  1778. fans_pause(p);
  1779. #endif
  1780. if (p) safe_delay(25);
  1781. }
  1782. #endif // QUIET_PROBING
  1783. #if ENABLED(BLTOUCH)
  1784. void bltouch_command(int angle) {
  1785. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1786. safe_delay(BLTOUCH_DELAY);
  1787. }
  1788. void set_bltouch_deployed(const bool deploy) {
  1789. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1790. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1791. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1792. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1793. safe_delay(1500); // Wait for internal self-test to complete.
  1794. // (Measured completion time was 0.65 seconds
  1795. // after reset, deploy, and stow sequence)
  1796. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1797. SERIAL_ERROR_START();
  1798. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1799. stop(); // punt!
  1800. }
  1801. }
  1802. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) {
  1805. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1806. SERIAL_CHAR(')');
  1807. SERIAL_EOL();
  1808. }
  1809. #endif
  1810. }
  1811. #endif // BLTOUCH
  1812. // returns false for ok and true for failure
  1813. bool set_probe_deployed(bool deploy) {
  1814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1815. if (DEBUGGING(LEVELING)) {
  1816. DEBUG_POS("set_probe_deployed", current_position);
  1817. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1818. }
  1819. #endif
  1820. if (endstops.z_probe_enabled == deploy) return false;
  1821. // Make room for probe
  1822. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1823. // When deploying make sure BLTOUCH is not already triggered
  1824. #if ENABLED(BLTOUCH)
  1825. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1826. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1827. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1828. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1829. safe_delay(1500); // wait for internal self test to complete
  1830. // measured completion time was 0.65 seconds
  1831. // after reset, deploy & stow sequence
  1832. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1833. SERIAL_ERROR_START();
  1834. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1835. stop(); // punt!
  1836. return true;
  1837. }
  1838. }
  1839. #elif ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1840. #if ENABLED(Z_PROBE_SLED)
  1841. #define _AUE_ARGS true, false, false
  1842. #else
  1843. #define _AUE_ARGS
  1844. #endif
  1845. if (axis_unhomed_error(_AUE_ARGS)) {
  1846. SERIAL_ERROR_START();
  1847. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1848. stop();
  1849. return true;
  1850. }
  1851. #endif
  1852. const float oldXpos = current_position[X_AXIS],
  1853. oldYpos = current_position[Y_AXIS];
  1854. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1855. // If endstop is already false, the Z probe is deployed
  1856. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1857. // Would a goto be less ugly?
  1858. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1859. // for a triggered when stowed manual probe.
  1860. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1861. // otherwise an Allen-Key probe can't be stowed.
  1862. #endif
  1863. #if ENABLED(SOLENOID_PROBE)
  1864. #if HAS_SOLENOID_1
  1865. WRITE(SOL1_PIN, deploy);
  1866. #endif
  1867. #elif ENABLED(Z_PROBE_SLED)
  1868. dock_sled(!deploy);
  1869. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1870. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1871. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1872. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1873. #endif
  1874. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1875. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1876. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1877. if (IsRunning()) {
  1878. SERIAL_ERROR_START();
  1879. SERIAL_ERRORLNPGM("Z-Probe failed");
  1880. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1881. }
  1882. stop();
  1883. return true;
  1884. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1885. #endif
  1886. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1887. endstops.enable_z_probe(deploy);
  1888. return false;
  1889. }
  1890. static void do_probe_move(float z, float fr_mm_m) {
  1891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1892. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1893. #endif
  1894. // Deploy BLTouch at the start of any probe
  1895. #if ENABLED(BLTOUCH)
  1896. set_bltouch_deployed(true);
  1897. #endif
  1898. #if QUIET_PROBING
  1899. probing_pause(true);
  1900. #endif
  1901. // Move down until probe triggered
  1902. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1903. #if QUIET_PROBING
  1904. probing_pause(false);
  1905. #endif
  1906. // Retract BLTouch immediately after a probe
  1907. #if ENABLED(BLTOUCH)
  1908. set_bltouch_deployed(false);
  1909. #endif
  1910. // Clear endstop flags
  1911. endstops.hit_on_purpose();
  1912. // Get Z where the steppers were interrupted
  1913. set_current_from_steppers_for_axis(Z_AXIS);
  1914. // Tell the planner where we actually are
  1915. SYNC_PLAN_POSITION_KINEMATIC();
  1916. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1917. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1918. #endif
  1919. }
  1920. // Do a single Z probe and return with current_position[Z_AXIS]
  1921. // at the height where the probe triggered.
  1922. static float run_z_probe() {
  1923. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1924. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1925. #endif
  1926. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1927. refresh_cmd_timeout();
  1928. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1929. // Do a first probe at the fast speed
  1930. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1932. float first_probe_z = current_position[Z_AXIS];
  1933. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1934. #endif
  1935. // move up by the bump distance
  1936. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1937. #else
  1938. // If the nozzle is above the travel height then
  1939. // move down quickly before doing the slow probe
  1940. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1941. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1942. #if ENABLED(DELTA)
  1943. z -= home_offset[Z_AXIS]; // Account for delta height adjustment
  1944. #endif
  1945. if (z < current_position[Z_AXIS])
  1946. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1947. #endif
  1948. // move down slowly to find bed
  1949. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1951. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1952. #endif
  1953. // Debug: compare probe heights
  1954. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1955. if (DEBUGGING(LEVELING)) {
  1956. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1957. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1958. }
  1959. #endif
  1960. return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
  1961. #if ENABLED(DELTA)
  1962. + home_offset[Z_AXIS] // Account for delta height adjustment
  1963. #endif
  1964. ;
  1965. }
  1966. /**
  1967. * - Move to the given XY
  1968. * - Deploy the probe, if not already deployed
  1969. * - Probe the bed, get the Z position
  1970. * - Depending on the 'stow' flag
  1971. * - Stow the probe, or
  1972. * - Raise to the BETWEEN height
  1973. * - Return the probed Z position
  1974. */
  1975. float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  1976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1977. if (DEBUGGING(LEVELING)) {
  1978. SERIAL_ECHOPAIR(">>> probe_pt(", lx);
  1979. SERIAL_ECHOPAIR(", ", ly);
  1980. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1981. SERIAL_ECHOLNPGM("stow)");
  1982. DEBUG_POS("", current_position);
  1983. }
  1984. #endif
  1985. const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  1986. if (printable)
  1987. if (!position_is_reachable_by_probe_xy(lx, ly)) return NAN;
  1988. else
  1989. if (!position_is_reachable_xy(nx, ny)) return NAN;
  1990. const float old_feedrate_mm_s = feedrate_mm_s;
  1991. #if ENABLED(DELTA)
  1992. if (current_position[Z_AXIS] > delta_clip_start_height)
  1993. do_blocking_move_to_z(delta_clip_start_height);
  1994. #endif
  1995. // Ensure a minimum height before moving the probe
  1996. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1997. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1998. // Move the probe to the given XY
  1999. do_blocking_move_to_xy(nx, ny);
  2000. if (DEPLOY_PROBE()) return NAN;
  2001. const float measured_z = run_z_probe();
  2002. if (!stow)
  2003. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2004. else
  2005. if (STOW_PROBE()) return NAN;
  2006. if (verbose_level > 2) {
  2007. SERIAL_PROTOCOLPGM("Bed X: ");
  2008. SERIAL_PROTOCOL_F(lx, 3);
  2009. SERIAL_PROTOCOLPGM(" Y: ");
  2010. SERIAL_PROTOCOL_F(ly, 3);
  2011. SERIAL_PROTOCOLPGM(" Z: ");
  2012. SERIAL_PROTOCOL_F(measured_z, 3);
  2013. SERIAL_EOL();
  2014. }
  2015. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2016. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2017. #endif
  2018. feedrate_mm_s = old_feedrate_mm_s;
  2019. return measured_z;
  2020. }
  2021. #endif // HAS_BED_PROBE
  2022. #if HAS_LEVELING
  2023. bool leveling_is_valid() {
  2024. return
  2025. #if ENABLED(MESH_BED_LEVELING)
  2026. mbl.has_mesh()
  2027. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2028. !!bilinear_grid_spacing[X_AXIS]
  2029. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2030. true
  2031. #else // 3POINT, LINEAR
  2032. true
  2033. #endif
  2034. ;
  2035. }
  2036. bool leveling_is_active() {
  2037. return
  2038. #if ENABLED(MESH_BED_LEVELING)
  2039. mbl.active()
  2040. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2041. ubl.state.active
  2042. #else
  2043. planner.abl_enabled
  2044. #endif
  2045. ;
  2046. }
  2047. /**
  2048. * Turn bed leveling on or off, fixing the current
  2049. * position as-needed.
  2050. *
  2051. * Disable: Current position = physical position
  2052. * Enable: Current position = "unleveled" physical position
  2053. */
  2054. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2055. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2056. const bool can_change = (!enable || leveling_is_valid());
  2057. #else
  2058. constexpr bool can_change = true;
  2059. #endif
  2060. if (can_change && enable != leveling_is_active()) {
  2061. #if ENABLED(MESH_BED_LEVELING)
  2062. if (!enable)
  2063. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2064. const bool enabling = enable && leveling_is_valid();
  2065. mbl.set_active(enabling);
  2066. if (enabling) planner.unapply_leveling(current_position);
  2067. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2068. #if PLANNER_LEVELING
  2069. if (ubl.state.active) { // leveling from on to off
  2070. // change unleveled current_position to physical current_position without moving steppers.
  2071. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2072. ubl.state.active = false; // disable only AFTER calling apply_leveling
  2073. }
  2074. else { // leveling from off to on
  2075. ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2076. // change physical current_position to unleveled current_position without moving steppers.
  2077. planner.unapply_leveling(current_position);
  2078. }
  2079. #else
  2080. ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move.
  2081. #endif
  2082. #else // ABL
  2083. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2084. // Force bilinear_z_offset to re-calculate next time
  2085. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2086. (void)bilinear_z_offset(reset);
  2087. #endif
  2088. // Enable or disable leveling compensation in the planner
  2089. planner.abl_enabled = enable;
  2090. if (!enable)
  2091. // When disabling just get the current position from the steppers.
  2092. // This will yield the smallest error when first converted back to steps.
  2093. set_current_from_steppers_for_axis(
  2094. #if ABL_PLANAR
  2095. ALL_AXES
  2096. #else
  2097. Z_AXIS
  2098. #endif
  2099. );
  2100. else
  2101. // When enabling, remove compensation from the current position,
  2102. // so compensation will give the right stepper counts.
  2103. planner.unapply_leveling(current_position);
  2104. #endif // ABL
  2105. }
  2106. }
  2107. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2108. void set_z_fade_height(const float zfh) {
  2109. const bool level_active = leveling_is_active();
  2110. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2111. if (level_active)
  2112. set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2113. planner.z_fade_height = zfh;
  2114. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2115. if (level_active)
  2116. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2117. #else
  2118. planner.z_fade_height = zfh;
  2119. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2120. if (level_active) {
  2121. set_current_from_steppers_for_axis(
  2122. #if ABL_PLANAR
  2123. ALL_AXES
  2124. #else
  2125. Z_AXIS
  2126. #endif
  2127. );
  2128. }
  2129. #endif
  2130. }
  2131. #endif // LEVELING_FADE_HEIGHT
  2132. /**
  2133. * Reset calibration results to zero.
  2134. */
  2135. void reset_bed_level() {
  2136. set_bed_leveling_enabled(false);
  2137. #if ENABLED(MESH_BED_LEVELING)
  2138. if (leveling_is_valid()) {
  2139. mbl.reset();
  2140. mbl.set_has_mesh(false);
  2141. }
  2142. #else
  2143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2144. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2145. #endif
  2146. #if ABL_PLANAR
  2147. planner.bed_level_matrix.set_to_identity();
  2148. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2149. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2150. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2151. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2152. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2153. z_values[x][y] = NAN;
  2154. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2155. ubl.reset();
  2156. #endif
  2157. #endif
  2158. }
  2159. #endif // HAS_LEVELING
  2160. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2161. /**
  2162. * Enable to produce output in JSON format suitable
  2163. * for SCAD or JavaScript mesh visualizers.
  2164. *
  2165. * Visualize meshes in OpenSCAD using the included script.
  2166. *
  2167. * buildroot/shared/scripts/MarlinMesh.scad
  2168. */
  2169. //#define SCAD_MESH_OUTPUT
  2170. /**
  2171. * Print calibration results for plotting or manual frame adjustment.
  2172. */
  2173. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2174. #ifndef SCAD_MESH_OUTPUT
  2175. for (uint8_t x = 0; x < sx; x++) {
  2176. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2177. SERIAL_PROTOCOLCHAR(' ');
  2178. SERIAL_PROTOCOL((int)x);
  2179. }
  2180. SERIAL_EOL();
  2181. #endif
  2182. #ifdef SCAD_MESH_OUTPUT
  2183. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2184. #endif
  2185. for (uint8_t y = 0; y < sy; y++) {
  2186. #ifdef SCAD_MESH_OUTPUT
  2187. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2188. #else
  2189. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2190. SERIAL_PROTOCOL((int)y);
  2191. #endif
  2192. for (uint8_t x = 0; x < sx; x++) {
  2193. SERIAL_PROTOCOLCHAR(' ');
  2194. const float offset = fn(x, y);
  2195. if (!isnan(offset)) {
  2196. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2197. SERIAL_PROTOCOL_F(offset, precision);
  2198. }
  2199. else {
  2200. #ifdef SCAD_MESH_OUTPUT
  2201. for (uint8_t i = 3; i < precision + 3; i++)
  2202. SERIAL_PROTOCOLCHAR(' ');
  2203. SERIAL_PROTOCOLPGM("NAN");
  2204. #else
  2205. for (uint8_t i = 0; i < precision + 3; i++)
  2206. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2207. #endif
  2208. }
  2209. #ifdef SCAD_MESH_OUTPUT
  2210. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2211. #endif
  2212. }
  2213. #ifdef SCAD_MESH_OUTPUT
  2214. SERIAL_PROTOCOLCHAR(' ');
  2215. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2216. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2217. #endif
  2218. SERIAL_EOL();
  2219. }
  2220. #ifdef SCAD_MESH_OUTPUT
  2221. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2222. #endif
  2223. SERIAL_EOL();
  2224. }
  2225. #endif
  2226. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2227. /**
  2228. * Extrapolate a single point from its neighbors
  2229. */
  2230. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2232. if (DEBUGGING(LEVELING)) {
  2233. SERIAL_ECHOPGM("Extrapolate [");
  2234. if (x < 10) SERIAL_CHAR(' ');
  2235. SERIAL_ECHO((int)x);
  2236. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2237. SERIAL_CHAR(' ');
  2238. if (y < 10) SERIAL_CHAR(' ');
  2239. SERIAL_ECHO((int)y);
  2240. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2241. SERIAL_CHAR(']');
  2242. }
  2243. #endif
  2244. if (!isnan(z_values[x][y])) {
  2245. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2246. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2247. #endif
  2248. return; // Don't overwrite good values.
  2249. }
  2250. SERIAL_EOL();
  2251. // Get X neighbors, Y neighbors, and XY neighbors
  2252. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2253. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2254. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2255. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2256. // Treat far unprobed points as zero, near as equal to far
  2257. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2258. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2259. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2260. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2261. // Take the average instead of the median
  2262. z_values[x][y] = (a + b + c) / 3.0;
  2263. // Median is robust (ignores outliers).
  2264. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2265. // : ((c < b) ? b : (a < c) ? a : c);
  2266. }
  2267. //Enable this if your SCARA uses 180° of total area
  2268. //#define EXTRAPOLATE_FROM_EDGE
  2269. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2270. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2271. #define HALF_IN_X
  2272. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2273. #define HALF_IN_Y
  2274. #endif
  2275. #endif
  2276. /**
  2277. * Fill in the unprobed points (corners of circular print surface)
  2278. * using linear extrapolation, away from the center.
  2279. */
  2280. static void extrapolate_unprobed_bed_level() {
  2281. #ifdef HALF_IN_X
  2282. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2283. #else
  2284. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2285. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2286. xlen = ctrx1;
  2287. #endif
  2288. #ifdef HALF_IN_Y
  2289. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2290. #else
  2291. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2292. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2293. ylen = ctry1;
  2294. #endif
  2295. for (uint8_t xo = 0; xo <= xlen; xo++)
  2296. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2297. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2298. #ifndef HALF_IN_X
  2299. const uint8_t x1 = ctrx1 - xo;
  2300. #endif
  2301. #ifndef HALF_IN_Y
  2302. const uint8_t y1 = ctry1 - yo;
  2303. #ifndef HALF_IN_X
  2304. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2305. #endif
  2306. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2307. #endif
  2308. #ifndef HALF_IN_X
  2309. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2310. #endif
  2311. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2312. }
  2313. }
  2314. static void print_bilinear_leveling_grid() {
  2315. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2316. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2317. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2318. );
  2319. }
  2320. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2321. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2322. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2323. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2324. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2325. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2326. int bilinear_grid_spacing_virt[2] = { 0 };
  2327. float bilinear_grid_factor_virt[2] = { 0 };
  2328. static void bed_level_virt_print() {
  2329. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2330. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2331. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2332. );
  2333. }
  2334. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2335. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2336. uint8_t ep = 0, ip = 1;
  2337. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2338. if (x) {
  2339. ep = GRID_MAX_POINTS_X - 1;
  2340. ip = GRID_MAX_POINTS_X - 2;
  2341. }
  2342. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2343. return LINEAR_EXTRAPOLATION(
  2344. z_values[ep][y - 1],
  2345. z_values[ip][y - 1]
  2346. );
  2347. else
  2348. return LINEAR_EXTRAPOLATION(
  2349. bed_level_virt_coord(ep + 1, y),
  2350. bed_level_virt_coord(ip + 1, y)
  2351. );
  2352. }
  2353. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2354. if (y) {
  2355. ep = GRID_MAX_POINTS_Y - 1;
  2356. ip = GRID_MAX_POINTS_Y - 2;
  2357. }
  2358. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2359. return LINEAR_EXTRAPOLATION(
  2360. z_values[x - 1][ep],
  2361. z_values[x - 1][ip]
  2362. );
  2363. else
  2364. return LINEAR_EXTRAPOLATION(
  2365. bed_level_virt_coord(x, ep + 1),
  2366. bed_level_virt_coord(x, ip + 1)
  2367. );
  2368. }
  2369. return z_values[x - 1][y - 1];
  2370. }
  2371. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2372. return (
  2373. p[i-1] * -t * sq(1 - t)
  2374. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2375. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2376. - p[i+2] * sq(t) * (1 - t)
  2377. ) * 0.5;
  2378. }
  2379. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2380. float row[4], column[4];
  2381. for (uint8_t i = 0; i < 4; i++) {
  2382. for (uint8_t j = 0; j < 4; j++) {
  2383. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2384. }
  2385. row[i] = bed_level_virt_cmr(column, 1, ty);
  2386. }
  2387. return bed_level_virt_cmr(row, 1, tx);
  2388. }
  2389. void bed_level_virt_interpolate() {
  2390. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2391. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2392. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2393. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2394. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2395. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2396. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2397. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2398. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2399. continue;
  2400. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2401. bed_level_virt_2cmr(
  2402. x + 1,
  2403. y + 1,
  2404. (float)tx / (BILINEAR_SUBDIVISIONS),
  2405. (float)ty / (BILINEAR_SUBDIVISIONS)
  2406. );
  2407. }
  2408. }
  2409. #endif // ABL_BILINEAR_SUBDIVISION
  2410. // Refresh after other values have been updated
  2411. void refresh_bed_level() {
  2412. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2413. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2414. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2415. bed_level_virt_interpolate();
  2416. #endif
  2417. }
  2418. #endif // AUTO_BED_LEVELING_BILINEAR
  2419. /**
  2420. * Home an individual linear axis
  2421. */
  2422. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2424. if (DEBUGGING(LEVELING)) {
  2425. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2426. SERIAL_ECHOPAIR(", ", distance);
  2427. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2428. SERIAL_CHAR(')');
  2429. SERIAL_EOL();
  2430. }
  2431. #endif
  2432. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2433. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2434. if (deploy_bltouch) set_bltouch_deployed(true);
  2435. #endif
  2436. #if QUIET_PROBING
  2437. if (axis == Z_AXIS) probing_pause(true);
  2438. #endif
  2439. // Tell the planner we're at Z=0
  2440. current_position[axis] = 0;
  2441. #if IS_SCARA
  2442. SYNC_PLAN_POSITION_KINEMATIC();
  2443. current_position[axis] = distance;
  2444. inverse_kinematics(current_position);
  2445. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2446. #else
  2447. sync_plan_position();
  2448. current_position[axis] = distance;
  2449. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2450. #endif
  2451. stepper.synchronize();
  2452. #if QUIET_PROBING
  2453. if (axis == Z_AXIS) probing_pause(false);
  2454. #endif
  2455. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2456. if (deploy_bltouch) set_bltouch_deployed(false);
  2457. #endif
  2458. endstops.hit_on_purpose();
  2459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2460. if (DEBUGGING(LEVELING)) {
  2461. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2462. SERIAL_CHAR(')');
  2463. SERIAL_EOL();
  2464. }
  2465. #endif
  2466. }
  2467. /**
  2468. * TMC2130 specific sensorless homing using stallGuard2.
  2469. * stallGuard2 only works when in spreadCycle mode.
  2470. * spreadCycle and stealthChop are mutually exclusive.
  2471. */
  2472. #if ENABLED(SENSORLESS_HOMING)
  2473. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2474. #if ENABLED(STEALTHCHOP)
  2475. if (enable) {
  2476. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2477. st.stealthChop(0);
  2478. }
  2479. else {
  2480. st.coolstep_min_speed(0);
  2481. st.stealthChop(1);
  2482. }
  2483. #endif
  2484. st.diag1_stall(enable ? 1 : 0);
  2485. }
  2486. #endif
  2487. /**
  2488. * Home an individual "raw axis" to its endstop.
  2489. * This applies to XYZ on Cartesian and Core robots, and
  2490. * to the individual ABC steppers on DELTA and SCARA.
  2491. *
  2492. * At the end of the procedure the axis is marked as
  2493. * homed and the current position of that axis is updated.
  2494. * Kinematic robots should wait till all axes are homed
  2495. * before updating the current position.
  2496. */
  2497. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2498. static void homeaxis(const AxisEnum axis) {
  2499. #if IS_SCARA
  2500. // Only Z homing (with probe) is permitted
  2501. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2502. #else
  2503. #define CAN_HOME(A) \
  2504. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2505. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2506. #endif
  2507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2508. if (DEBUGGING(LEVELING)) {
  2509. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2510. SERIAL_CHAR(')');
  2511. SERIAL_EOL();
  2512. }
  2513. #endif
  2514. const int axis_home_dir =
  2515. #if ENABLED(DUAL_X_CARRIAGE)
  2516. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2517. #endif
  2518. home_dir(axis);
  2519. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2520. #if HOMING_Z_WITH_PROBE
  2521. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2522. #endif
  2523. // Set a flag for Z motor locking
  2524. #if ENABLED(Z_DUAL_ENDSTOPS)
  2525. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2526. #endif
  2527. // Disable stealthChop if used. Enable diag1 pin on driver.
  2528. #if ENABLED(SENSORLESS_HOMING)
  2529. #if ENABLED(X_IS_TMC2130)
  2530. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2531. #endif
  2532. #if ENABLED(Y_IS_TMC2130)
  2533. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2534. #endif
  2535. #endif
  2536. // Fast move towards endstop until triggered
  2537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2538. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2539. #endif
  2540. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2541. // When homing Z with probe respect probe clearance
  2542. const float bump = axis_home_dir * (
  2543. #if HOMING_Z_WITH_PROBE
  2544. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2545. #endif
  2546. home_bump_mm(axis)
  2547. );
  2548. // If a second homing move is configured...
  2549. if (bump) {
  2550. // Move away from the endstop by the axis HOME_BUMP_MM
  2551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2552. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2553. #endif
  2554. do_homing_move(axis, -bump);
  2555. // Slow move towards endstop until triggered
  2556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2557. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2558. #endif
  2559. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2560. }
  2561. #if ENABLED(Z_DUAL_ENDSTOPS)
  2562. if (axis == Z_AXIS) {
  2563. float adj = FABS(z_endstop_adj);
  2564. bool lockZ1;
  2565. if (axis_home_dir > 0) {
  2566. adj = -adj;
  2567. lockZ1 = (z_endstop_adj > 0);
  2568. }
  2569. else
  2570. lockZ1 = (z_endstop_adj < 0);
  2571. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2572. // Move to the adjusted endstop height
  2573. do_homing_move(axis, adj);
  2574. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2575. stepper.set_homing_flag(false);
  2576. } // Z_AXIS
  2577. #endif
  2578. #if IS_SCARA
  2579. set_axis_is_at_home(axis);
  2580. SYNC_PLAN_POSITION_KINEMATIC();
  2581. #elif ENABLED(DELTA)
  2582. // Delta has already moved all three towers up in G28
  2583. // so here it re-homes each tower in turn.
  2584. // Delta homing treats the axes as normal linear axes.
  2585. // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
  2586. if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2587. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2588. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2589. #endif
  2590. do_homing_move(axis, endstop_adj[axis] - 0.1);
  2591. }
  2592. #else
  2593. // For cartesian/core machines,
  2594. // set the axis to its home position
  2595. set_axis_is_at_home(axis);
  2596. sync_plan_position();
  2597. destination[axis] = current_position[axis];
  2598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2599. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2600. #endif
  2601. #endif
  2602. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2603. #if ENABLED(SENSORLESS_HOMING)
  2604. #if ENABLED(X_IS_TMC2130)
  2605. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2606. #endif
  2607. #if ENABLED(Y_IS_TMC2130)
  2608. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2609. #endif
  2610. #endif
  2611. // Put away the Z probe
  2612. #if HOMING_Z_WITH_PROBE
  2613. if (axis == Z_AXIS && STOW_PROBE()) return;
  2614. #endif
  2615. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2616. if (DEBUGGING(LEVELING)) {
  2617. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2618. SERIAL_CHAR(')');
  2619. SERIAL_EOL();
  2620. }
  2621. #endif
  2622. } // homeaxis()
  2623. #if ENABLED(FWRETRACT)
  2624. void retract(const bool retracting, const bool swapping = false) {
  2625. static float hop_height;
  2626. if (retracting == retracted[active_extruder]) return;
  2627. const float old_feedrate_mm_s = feedrate_mm_s;
  2628. set_destination_to_current();
  2629. if (retracting) {
  2630. feedrate_mm_s = retract_feedrate_mm_s;
  2631. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2632. sync_plan_position_e();
  2633. prepare_move_to_destination();
  2634. if (retract_zlift > 0.01) {
  2635. hop_height = current_position[Z_AXIS];
  2636. // Pretend current position is lower
  2637. current_position[Z_AXIS] -= retract_zlift;
  2638. SYNC_PLAN_POSITION_KINEMATIC();
  2639. // Raise up to the old current_position
  2640. prepare_move_to_destination();
  2641. }
  2642. }
  2643. else {
  2644. // If the height hasn't been lowered, undo the Z hop
  2645. if (retract_zlift > 0.01 && hop_height <= current_position[Z_AXIS]) {
  2646. // Pretend current position is higher. Z will lower on the next move
  2647. current_position[Z_AXIS] += retract_zlift;
  2648. SYNC_PLAN_POSITION_KINEMATIC();
  2649. // Lower Z
  2650. prepare_move_to_destination();
  2651. }
  2652. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2653. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2654. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2655. sync_plan_position_e();
  2656. // Recover E
  2657. prepare_move_to_destination();
  2658. }
  2659. feedrate_mm_s = old_feedrate_mm_s;
  2660. retracted[active_extruder] = retracting;
  2661. } // retract()
  2662. #endif // FWRETRACT
  2663. #if ENABLED(MIXING_EXTRUDER)
  2664. void normalize_mix() {
  2665. float mix_total = 0.0;
  2666. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2667. // Scale all values if they don't add up to ~1.0
  2668. if (!NEAR(mix_total, 1.0)) {
  2669. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2670. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2671. }
  2672. }
  2673. #if ENABLED(DIRECT_MIXING_IN_G1)
  2674. // Get mixing parameters from the GCode
  2675. // The total "must" be 1.0 (but it will be normalized)
  2676. // If no mix factors are given, the old mix is preserved
  2677. void gcode_get_mix() {
  2678. const char* mixing_codes = "ABCDHI";
  2679. byte mix_bits = 0;
  2680. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2681. if (parser.seenval(mixing_codes[i])) {
  2682. SBI(mix_bits, i);
  2683. float v = parser.value_float();
  2684. NOLESS(v, 0.0);
  2685. mixing_factor[i] = RECIPROCAL(v);
  2686. }
  2687. }
  2688. // If any mixing factors were included, clear the rest
  2689. // If none were included, preserve the last mix
  2690. if (mix_bits) {
  2691. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2692. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2693. normalize_mix();
  2694. }
  2695. }
  2696. #endif
  2697. #endif
  2698. /**
  2699. * ***************************************************************************
  2700. * ***************************** G-CODE HANDLING *****************************
  2701. * ***************************************************************************
  2702. */
  2703. /**
  2704. * Set XYZE destination and feedrate from the current GCode command
  2705. *
  2706. * - Set destination from included axis codes
  2707. * - Set to current for missing axis codes
  2708. * - Set the feedrate, if included
  2709. */
  2710. void gcode_get_destination() {
  2711. LOOP_XYZE(i) {
  2712. if (parser.seen(axis_codes[i]))
  2713. destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2714. else
  2715. destination[i] = current_position[i];
  2716. }
  2717. if (parser.linearval('F') > 0.0)
  2718. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2719. #if ENABLED(PRINTCOUNTER)
  2720. if (!DEBUGGING(DRYRUN))
  2721. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2722. #endif
  2723. // Get ABCDHI mixing factors
  2724. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2725. gcode_get_mix();
  2726. #endif
  2727. }
  2728. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2729. /**
  2730. * Output a "busy" message at regular intervals
  2731. * while the machine is not accepting commands.
  2732. */
  2733. void host_keepalive() {
  2734. const millis_t ms = millis();
  2735. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2736. if (PENDING(ms, next_busy_signal_ms)) return;
  2737. switch (busy_state) {
  2738. case IN_HANDLER:
  2739. case IN_PROCESS:
  2740. SERIAL_ECHO_START();
  2741. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2742. break;
  2743. case PAUSED_FOR_USER:
  2744. SERIAL_ECHO_START();
  2745. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2746. break;
  2747. case PAUSED_FOR_INPUT:
  2748. SERIAL_ECHO_START();
  2749. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2750. break;
  2751. default:
  2752. break;
  2753. }
  2754. }
  2755. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2756. }
  2757. #endif // HOST_KEEPALIVE_FEATURE
  2758. /**************************************************
  2759. ***************** GCode Handlers *****************
  2760. **************************************************/
  2761. /**
  2762. * G0, G1: Coordinated movement of X Y Z E axes
  2763. */
  2764. inline void gcode_G0_G1(
  2765. #if IS_SCARA
  2766. bool fast_move=false
  2767. #endif
  2768. ) {
  2769. if (IsRunning()) {
  2770. gcode_get_destination(); // For X Y Z E F
  2771. #if ENABLED(FWRETRACT)
  2772. if (autoretract_enabled && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z')) && parser.seen('E')) {
  2773. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2774. // Is this move an attempt to retract or recover?
  2775. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2776. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2777. sync_plan_position_e(); // AND from the planner
  2778. retract(!retracted[active_extruder]);
  2779. return;
  2780. }
  2781. }
  2782. #endif // FWRETRACT
  2783. #if IS_SCARA
  2784. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2785. #else
  2786. prepare_move_to_destination();
  2787. #endif
  2788. }
  2789. }
  2790. /**
  2791. * G2: Clockwise Arc
  2792. * G3: Counterclockwise Arc
  2793. *
  2794. * This command has two forms: IJ-form and R-form.
  2795. *
  2796. * - I specifies an X offset. J specifies a Y offset.
  2797. * At least one of the IJ parameters is required.
  2798. * X and Y can be omitted to do a complete circle.
  2799. * The given XY is not error-checked. The arc ends
  2800. * based on the angle of the destination.
  2801. * Mixing I or J with R will throw an error.
  2802. *
  2803. * - R specifies the radius. X or Y is required.
  2804. * Omitting both X and Y will throw an error.
  2805. * X or Y must differ from the current XY.
  2806. * Mixing R with I or J will throw an error.
  2807. *
  2808. * - P specifies the number of full circles to do
  2809. * before the specified arc move.
  2810. *
  2811. * Examples:
  2812. *
  2813. * G2 I10 ; CW circle centered at X+10
  2814. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2815. */
  2816. #if ENABLED(ARC_SUPPORT)
  2817. inline void gcode_G2_G3(bool clockwise) {
  2818. if (IsRunning()) {
  2819. #if ENABLED(SF_ARC_FIX)
  2820. const bool relative_mode_backup = relative_mode;
  2821. relative_mode = true;
  2822. #endif
  2823. gcode_get_destination();
  2824. #if ENABLED(SF_ARC_FIX)
  2825. relative_mode = relative_mode_backup;
  2826. #endif
  2827. float arc_offset[2] = { 0.0, 0.0 };
  2828. if (parser.seenval('R')) {
  2829. const float r = parser.value_linear_units(),
  2830. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  2831. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  2832. if (r && (p2 != p1 || q2 != q1)) {
  2833. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2834. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  2835. d = HYPOT(dx, dy), // Linear distance between the points
  2836. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2837. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  2838. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2839. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2840. arc_offset[0] = cx - p1;
  2841. arc_offset[1] = cy - q1;
  2842. }
  2843. }
  2844. else {
  2845. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  2846. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  2847. }
  2848. if (arc_offset[0] || arc_offset[1]) {
  2849. #if ENABLED(ARC_P_CIRCLES)
  2850. // P indicates number of circles to do
  2851. int8_t circles_to_do = parser.byteval('P');
  2852. if (!WITHIN(circles_to_do, 0, 100)) {
  2853. SERIAL_ERROR_START();
  2854. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2855. }
  2856. while (circles_to_do--)
  2857. plan_arc(current_position, arc_offset, clockwise);
  2858. #endif
  2859. // Send the arc to the planner
  2860. plan_arc(destination, arc_offset, clockwise);
  2861. refresh_cmd_timeout();
  2862. }
  2863. else {
  2864. // Bad arguments
  2865. SERIAL_ERROR_START();
  2866. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2867. }
  2868. }
  2869. }
  2870. #endif // ARC_SUPPORT
  2871. /**
  2872. * G4: Dwell S<seconds> or P<milliseconds>
  2873. */
  2874. inline void gcode_G4() {
  2875. millis_t dwell_ms = 0;
  2876. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  2877. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  2878. stepper.synchronize();
  2879. refresh_cmd_timeout();
  2880. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2881. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2882. while (PENDING(millis(), dwell_ms)) idle();
  2883. }
  2884. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2885. /**
  2886. * Parameters interpreted according to:
  2887. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2888. * However I, J omission is not supported at this point; all
  2889. * parameters can be omitted and default to zero.
  2890. */
  2891. /**
  2892. * G5: Cubic B-spline
  2893. */
  2894. inline void gcode_G5() {
  2895. if (IsRunning()) {
  2896. gcode_get_destination();
  2897. const float offset[] = {
  2898. parser.linearval('I'),
  2899. parser.linearval('J'),
  2900. parser.linearval('P'),
  2901. parser.linearval('Q')
  2902. };
  2903. plan_cubic_move(offset);
  2904. }
  2905. }
  2906. #endif // BEZIER_CURVE_SUPPORT
  2907. #if ENABLED(FWRETRACT)
  2908. /**
  2909. * G10 - Retract filament according to settings of M207
  2910. * G11 - Recover filament according to settings of M208
  2911. */
  2912. inline void gcode_G10_G11(bool doRetract=false) {
  2913. #if EXTRUDERS > 1
  2914. if (doRetract)
  2915. retracted_swap[active_extruder] = parser.boolval('S'); // checks for swap retract argument
  2916. #endif
  2917. retract(doRetract
  2918. #if EXTRUDERS > 1
  2919. , retracted_swap[active_extruder]
  2920. #endif
  2921. );
  2922. }
  2923. #endif // FWRETRACT
  2924. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2925. /**
  2926. * G12: Clean the nozzle
  2927. */
  2928. inline void gcode_G12() {
  2929. // Don't allow nozzle cleaning without homing first
  2930. if (axis_unhomed_error()) return;
  2931. const uint8_t pattern = parser.ushortval('P', 0),
  2932. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  2933. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  2934. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  2935. Nozzle::clean(pattern, strokes, radius, objects);
  2936. }
  2937. #endif
  2938. #if ENABLED(CNC_WORKSPACE_PLANES)
  2939. void report_workspace_plane() {
  2940. SERIAL_ECHO_START();
  2941. SERIAL_ECHOPGM("Workspace Plane ");
  2942. serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
  2943. }
  2944. /**
  2945. * G17: Select Plane XY
  2946. * G18: Select Plane ZX
  2947. * G19: Select Plane YZ
  2948. */
  2949. inline void gcode_G17() { workspace_plane = PLANE_XY; }
  2950. inline void gcode_G18() { workspace_plane = PLANE_ZX; }
  2951. inline void gcode_G19() { workspace_plane = PLANE_YZ; }
  2952. #endif // CNC_WORKSPACE_PLANES
  2953. #if ENABLED(INCH_MODE_SUPPORT)
  2954. /**
  2955. * G20: Set input mode to inches
  2956. */
  2957. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  2958. /**
  2959. * G21: Set input mode to millimeters
  2960. */
  2961. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  2962. #endif
  2963. #if ENABLED(NOZZLE_PARK_FEATURE)
  2964. /**
  2965. * G27: Park the nozzle
  2966. */
  2967. inline void gcode_G27() {
  2968. // Don't allow nozzle parking without homing first
  2969. if (axis_unhomed_error()) return;
  2970. Nozzle::park(parser.ushortval('P'));
  2971. }
  2972. #endif // NOZZLE_PARK_FEATURE
  2973. #if ENABLED(QUICK_HOME)
  2974. static void quick_home_xy() {
  2975. // Pretend the current position is 0,0
  2976. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2977. sync_plan_position();
  2978. const int x_axis_home_dir =
  2979. #if ENABLED(DUAL_X_CARRIAGE)
  2980. x_home_dir(active_extruder)
  2981. #else
  2982. home_dir(X_AXIS)
  2983. #endif
  2984. ;
  2985. const float mlx = max_length(X_AXIS),
  2986. mly = max_length(Y_AXIS),
  2987. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2988. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  2989. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2990. endstops.hit_on_purpose(); // clear endstop hit flags
  2991. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2992. }
  2993. #endif // QUICK_HOME
  2994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2995. void log_machine_info() {
  2996. SERIAL_ECHOPGM("Machine Type: ");
  2997. #if ENABLED(DELTA)
  2998. SERIAL_ECHOLNPGM("Delta");
  2999. #elif IS_SCARA
  3000. SERIAL_ECHOLNPGM("SCARA");
  3001. #elif IS_CORE
  3002. SERIAL_ECHOLNPGM("Core");
  3003. #else
  3004. SERIAL_ECHOLNPGM("Cartesian");
  3005. #endif
  3006. SERIAL_ECHOPGM("Probe: ");
  3007. #if ENABLED(PROBE_MANUALLY)
  3008. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3009. #elif ENABLED(FIX_MOUNTED_PROBE)
  3010. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3011. #elif ENABLED(BLTOUCH)
  3012. SERIAL_ECHOLNPGM("BLTOUCH");
  3013. #elif HAS_Z_SERVO_ENDSTOP
  3014. SERIAL_ECHOLNPGM("SERVO PROBE");
  3015. #elif ENABLED(Z_PROBE_SLED)
  3016. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3017. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3018. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3019. #else
  3020. SERIAL_ECHOLNPGM("NONE");
  3021. #endif
  3022. #if HAS_BED_PROBE
  3023. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3024. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3025. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3026. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3027. SERIAL_ECHOPGM(" (Right");
  3028. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3029. SERIAL_ECHOPGM(" (Left");
  3030. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3031. SERIAL_ECHOPGM(" (Middle");
  3032. #else
  3033. SERIAL_ECHOPGM(" (Aligned With");
  3034. #endif
  3035. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3036. SERIAL_ECHOPGM("-Back");
  3037. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3038. SERIAL_ECHOPGM("-Front");
  3039. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3040. SERIAL_ECHOPGM("-Center");
  3041. #endif
  3042. if (zprobe_zoffset < 0)
  3043. SERIAL_ECHOPGM(" & Below");
  3044. else if (zprobe_zoffset > 0)
  3045. SERIAL_ECHOPGM(" & Above");
  3046. else
  3047. SERIAL_ECHOPGM(" & Same Z as");
  3048. SERIAL_ECHOLNPGM(" Nozzle)");
  3049. #endif
  3050. #if HAS_ABL
  3051. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3052. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3053. SERIAL_ECHOPGM("LINEAR");
  3054. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3055. SERIAL_ECHOPGM("BILINEAR");
  3056. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3057. SERIAL_ECHOPGM("3POINT");
  3058. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3059. SERIAL_ECHOPGM("UBL");
  3060. #endif
  3061. if (leveling_is_active()) {
  3062. SERIAL_ECHOLNPGM(" (enabled)");
  3063. #if ABL_PLANAR
  3064. const float diff[XYZ] = {
  3065. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3066. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3067. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3068. };
  3069. SERIAL_ECHOPGM("ABL Adjustment X");
  3070. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3071. SERIAL_ECHO(diff[X_AXIS]);
  3072. SERIAL_ECHOPGM(" Y");
  3073. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3074. SERIAL_ECHO(diff[Y_AXIS]);
  3075. SERIAL_ECHOPGM(" Z");
  3076. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3077. SERIAL_ECHO(diff[Z_AXIS]);
  3078. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3079. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3080. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3081. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3082. #endif
  3083. }
  3084. else
  3085. SERIAL_ECHOLNPGM(" (disabled)");
  3086. SERIAL_EOL();
  3087. #elif ENABLED(MESH_BED_LEVELING)
  3088. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3089. if (leveling_is_active()) {
  3090. float lz = current_position[Z_AXIS];
  3091. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3092. SERIAL_ECHOLNPGM(" (enabled)");
  3093. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3094. }
  3095. else
  3096. SERIAL_ECHOPGM(" (disabled)");
  3097. SERIAL_EOL();
  3098. #endif // MESH_BED_LEVELING
  3099. }
  3100. #endif // DEBUG_LEVELING_FEATURE
  3101. #if ENABLED(DELTA)
  3102. /**
  3103. * A delta can only safely home all axes at the same time
  3104. * This is like quick_home_xy() but for 3 towers.
  3105. */
  3106. inline void home_delta() {
  3107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3108. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3109. #endif
  3110. // Init the current position of all carriages to 0,0,0
  3111. ZERO(current_position);
  3112. sync_plan_position();
  3113. // Move all carriages together linearly until an endstop is hit.
  3114. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3115. feedrate_mm_s = homing_feedrate(X_AXIS);
  3116. line_to_current_position();
  3117. stepper.synchronize();
  3118. endstops.hit_on_purpose(); // clear endstop hit flags
  3119. // At least one carriage has reached the top.
  3120. // Now re-home each carriage separately.
  3121. HOMEAXIS(A);
  3122. HOMEAXIS(B);
  3123. HOMEAXIS(C);
  3124. // Set all carriages to their home positions
  3125. // Do this here all at once for Delta, because
  3126. // XYZ isn't ABC. Applying this per-tower would
  3127. // give the impression that they are the same.
  3128. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3129. SYNC_PLAN_POSITION_KINEMATIC();
  3130. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3131. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3132. #endif
  3133. }
  3134. #endif // DELTA
  3135. #if ENABLED(Z_SAFE_HOMING)
  3136. inline void home_z_safely() {
  3137. // Disallow Z homing if X or Y are unknown
  3138. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3139. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3140. SERIAL_ECHO_START();
  3141. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3142. return;
  3143. }
  3144. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3145. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3146. #endif
  3147. SYNC_PLAN_POSITION_KINEMATIC();
  3148. /**
  3149. * Move the Z probe (or just the nozzle) to the safe homing point
  3150. */
  3151. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3152. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3153. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3154. #if HOMING_Z_WITH_PROBE
  3155. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3156. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3157. #endif
  3158. if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
  3159. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3160. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3161. #endif
  3162. // This causes the carriage on Dual X to unpark
  3163. #if ENABLED(DUAL_X_CARRIAGE)
  3164. active_extruder_parked = false;
  3165. #endif
  3166. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3167. HOMEAXIS(Z);
  3168. }
  3169. else {
  3170. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3171. SERIAL_ECHO_START();
  3172. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3173. }
  3174. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3175. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3176. #endif
  3177. }
  3178. #endif // Z_SAFE_HOMING
  3179. #if ENABLED(PROBE_MANUALLY)
  3180. bool g29_in_progress = false;
  3181. #else
  3182. constexpr bool g29_in_progress = false;
  3183. #endif
  3184. /**
  3185. * G28: Home all axes according to settings
  3186. *
  3187. * Parameters
  3188. *
  3189. * None Home to all axes with no parameters.
  3190. * With QUICK_HOME enabled XY will home together, then Z.
  3191. *
  3192. * Cartesian parameters
  3193. *
  3194. * X Home to the X endstop
  3195. * Y Home to the Y endstop
  3196. * Z Home to the Z endstop
  3197. *
  3198. */
  3199. inline void gcode_G28(const bool always_home_all) {
  3200. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3201. if (DEBUGGING(LEVELING)) {
  3202. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3203. log_machine_info();
  3204. }
  3205. #endif
  3206. // Wait for planner moves to finish!
  3207. stepper.synchronize();
  3208. // Cancel the active G29 session
  3209. #if ENABLED(PROBE_MANUALLY)
  3210. g29_in_progress = false;
  3211. #endif
  3212. // Disable the leveling matrix before homing
  3213. #if HAS_LEVELING
  3214. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3215. const bool ubl_state_at_entry = leveling_is_active();
  3216. #endif
  3217. set_bed_leveling_enabled(false);
  3218. #endif
  3219. #if ENABLED(CNC_WORKSPACE_PLANES)
  3220. workspace_plane = PLANE_XY;
  3221. #endif
  3222. // Always home with tool 0 active
  3223. #if HOTENDS > 1
  3224. const uint8_t old_tool_index = active_extruder;
  3225. tool_change(0, 0, true);
  3226. #endif
  3227. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3228. extruder_duplication_enabled = false;
  3229. #endif
  3230. setup_for_endstop_or_probe_move();
  3231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3232. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3233. #endif
  3234. endstops.enable(true); // Enable endstops for next homing move
  3235. #if ENABLED(DELTA)
  3236. home_delta();
  3237. UNUSED(always_home_all);
  3238. #else // NOT DELTA
  3239. const bool homeX = always_home_all || parser.seen('X'),
  3240. homeY = always_home_all || parser.seen('Y'),
  3241. homeZ = always_home_all || parser.seen('Z'),
  3242. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3243. set_destination_to_current();
  3244. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3245. if (home_all || homeZ) {
  3246. HOMEAXIS(Z);
  3247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3248. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3249. #endif
  3250. }
  3251. #else
  3252. if (home_all || homeX || homeY) {
  3253. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3254. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3255. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3256. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3257. if (DEBUGGING(LEVELING))
  3258. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3259. #endif
  3260. do_blocking_move_to_z(destination[Z_AXIS]);
  3261. }
  3262. }
  3263. #endif
  3264. #if ENABLED(QUICK_HOME)
  3265. if (home_all || (homeX && homeY)) quick_home_xy();
  3266. #endif
  3267. #if ENABLED(HOME_Y_BEFORE_X)
  3268. // Home Y
  3269. if (home_all || homeY) {
  3270. HOMEAXIS(Y);
  3271. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3272. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3273. #endif
  3274. }
  3275. #endif
  3276. // Home X
  3277. if (home_all || homeX) {
  3278. #if ENABLED(DUAL_X_CARRIAGE)
  3279. // Always home the 2nd (right) extruder first
  3280. active_extruder = 1;
  3281. HOMEAXIS(X);
  3282. // Remember this extruder's position for later tool change
  3283. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3284. // Home the 1st (left) extruder
  3285. active_extruder = 0;
  3286. HOMEAXIS(X);
  3287. // Consider the active extruder to be parked
  3288. COPY(raised_parked_position, current_position);
  3289. delayed_move_time = 0;
  3290. active_extruder_parked = true;
  3291. #else
  3292. HOMEAXIS(X);
  3293. #endif
  3294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3295. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3296. #endif
  3297. }
  3298. #if DISABLED(HOME_Y_BEFORE_X)
  3299. // Home Y
  3300. if (home_all || homeY) {
  3301. HOMEAXIS(Y);
  3302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3303. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3304. #endif
  3305. }
  3306. #endif
  3307. // Home Z last if homing towards the bed
  3308. #if Z_HOME_DIR < 0
  3309. if (home_all || homeZ) {
  3310. #if ENABLED(Z_SAFE_HOMING)
  3311. home_z_safely();
  3312. #else
  3313. HOMEAXIS(Z);
  3314. #endif
  3315. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3316. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3317. #endif
  3318. } // home_all || homeZ
  3319. #endif // Z_HOME_DIR < 0
  3320. SYNC_PLAN_POSITION_KINEMATIC();
  3321. #endif // !DELTA (gcode_G28)
  3322. endstops.not_homing();
  3323. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3324. // move to a height where we can use the full xy-area
  3325. do_blocking_move_to_z(delta_clip_start_height);
  3326. #endif
  3327. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3328. set_bed_leveling_enabled(ubl_state_at_entry);
  3329. #endif
  3330. clean_up_after_endstop_or_probe_move();
  3331. // Restore the active tool after homing
  3332. #if HOTENDS > 1
  3333. tool_change(old_tool_index, 0, true);
  3334. #endif
  3335. lcd_refresh();
  3336. report_current_position();
  3337. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3338. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3339. #endif
  3340. } // G28
  3341. void home_all_axes() { gcode_G28(true); }
  3342. #if HAS_PROBING_PROCEDURE
  3343. void out_of_range_error(const char* p_edge) {
  3344. SERIAL_PROTOCOLPGM("?Probe ");
  3345. serialprintPGM(p_edge);
  3346. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3347. }
  3348. #endif
  3349. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3350. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3351. extern bool lcd_wait_for_move;
  3352. #endif
  3353. inline void _manual_goto_xy(const float &x, const float &y) {
  3354. const float old_feedrate_mm_s = feedrate_mm_s;
  3355. #if MANUAL_PROBE_HEIGHT > 0
  3356. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3357. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3358. line_to_current_position();
  3359. #endif
  3360. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3361. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3362. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3363. line_to_current_position();
  3364. #if MANUAL_PROBE_HEIGHT > 0
  3365. feedrate_mm_s = homing_feedrate(Z_AXIS);
  3366. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS); // just slightly over the bed
  3367. line_to_current_position();
  3368. #endif
  3369. feedrate_mm_s = old_feedrate_mm_s;
  3370. stepper.synchronize();
  3371. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3372. lcd_wait_for_move = false;
  3373. #endif
  3374. }
  3375. #endif
  3376. #if ENABLED(MESH_BED_LEVELING)
  3377. // Save 130 bytes with non-duplication of PSTR
  3378. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3379. void mbl_mesh_report() {
  3380. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3381. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3382. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3383. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3384. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3385. );
  3386. }
  3387. void mesh_probing_done() {
  3388. mbl.set_has_mesh(true);
  3389. home_all_axes();
  3390. set_bed_leveling_enabled(true);
  3391. #if ENABLED(MESH_G28_REST_ORIGIN)
  3392. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3393. set_destination_to_current();
  3394. line_to_destination(homing_feedrate(Z_AXIS));
  3395. stepper.synchronize();
  3396. #endif
  3397. }
  3398. /**
  3399. * G29: Mesh-based Z probe, probes a grid and produces a
  3400. * mesh to compensate for variable bed height
  3401. *
  3402. * Parameters With MESH_BED_LEVELING:
  3403. *
  3404. * S0 Produce a mesh report
  3405. * S1 Start probing mesh points
  3406. * S2 Probe the next mesh point
  3407. * S3 Xn Yn Zn.nn Manually modify a single point
  3408. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3409. * S5 Reset and disable mesh
  3410. *
  3411. * The S0 report the points as below
  3412. *
  3413. * +----> X-axis 1-n
  3414. * |
  3415. * |
  3416. * v Y-axis 1-n
  3417. *
  3418. */
  3419. inline void gcode_G29() {
  3420. static int mbl_probe_index = -1;
  3421. #if HAS_SOFTWARE_ENDSTOPS
  3422. static bool enable_soft_endstops;
  3423. #endif
  3424. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3425. if (!WITHIN(state, 0, 5)) {
  3426. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3427. return;
  3428. }
  3429. int8_t px, py;
  3430. switch (state) {
  3431. case MeshReport:
  3432. if (leveling_is_valid()) {
  3433. SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF);
  3434. mbl_mesh_report();
  3435. }
  3436. else
  3437. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3438. break;
  3439. case MeshStart:
  3440. mbl.reset();
  3441. mbl_probe_index = 0;
  3442. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3443. break;
  3444. case MeshNext:
  3445. if (mbl_probe_index < 0) {
  3446. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3447. return;
  3448. }
  3449. // For each G29 S2...
  3450. if (mbl_probe_index == 0) {
  3451. #if HAS_SOFTWARE_ENDSTOPS
  3452. // For the initial G29 S2 save software endstop state
  3453. enable_soft_endstops = soft_endstops_enabled;
  3454. #endif
  3455. }
  3456. else {
  3457. // For G29 S2 after adjusting Z.
  3458. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3459. #if HAS_SOFTWARE_ENDSTOPS
  3460. soft_endstops_enabled = enable_soft_endstops;
  3461. #endif
  3462. }
  3463. // If there's another point to sample, move there with optional lift.
  3464. if (mbl_probe_index < GRID_MAX_POINTS) {
  3465. mbl.zigzag(mbl_probe_index, px, py);
  3466. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3467. #if HAS_SOFTWARE_ENDSTOPS
  3468. // Disable software endstops to allow manual adjustment
  3469. // If G29 is not completed, they will not be re-enabled
  3470. soft_endstops_enabled = false;
  3471. #endif
  3472. mbl_probe_index++;
  3473. }
  3474. else {
  3475. // One last "return to the bed" (as originally coded) at completion
  3476. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3477. line_to_current_position();
  3478. stepper.synchronize();
  3479. // After recording the last point, activate home and activate
  3480. mbl_probe_index = -1;
  3481. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3482. BUZZ(100, 659);
  3483. BUZZ(100, 698);
  3484. mesh_probing_done();
  3485. }
  3486. break;
  3487. case MeshSet:
  3488. if (parser.seenval('X')) {
  3489. px = parser.value_int() - 1;
  3490. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3491. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3492. return;
  3493. }
  3494. }
  3495. else {
  3496. SERIAL_CHAR('X'); echo_not_entered();
  3497. return;
  3498. }
  3499. if (parser.seenval('Y')) {
  3500. py = parser.value_int() - 1;
  3501. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3502. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3503. return;
  3504. }
  3505. }
  3506. else {
  3507. SERIAL_CHAR('Y'); echo_not_entered();
  3508. return;
  3509. }
  3510. if (parser.seenval('Z')) {
  3511. mbl.z_values[px][py] = parser.value_linear_units();
  3512. }
  3513. else {
  3514. SERIAL_CHAR('Z'); echo_not_entered();
  3515. return;
  3516. }
  3517. break;
  3518. case MeshSetZOffset:
  3519. if (parser.seenval('Z')) {
  3520. mbl.z_offset = parser.value_linear_units();
  3521. }
  3522. else {
  3523. SERIAL_CHAR('Z'); echo_not_entered();
  3524. return;
  3525. }
  3526. break;
  3527. case MeshReset:
  3528. reset_bed_level();
  3529. break;
  3530. } // switch(state)
  3531. report_current_position();
  3532. }
  3533. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3534. #if ABL_GRID
  3535. #if ENABLED(PROBE_Y_FIRST)
  3536. #define PR_OUTER_VAR xCount
  3537. #define PR_OUTER_END abl_grid_points_x
  3538. #define PR_INNER_VAR yCount
  3539. #define PR_INNER_END abl_grid_points_y
  3540. #else
  3541. #define PR_OUTER_VAR yCount
  3542. #define PR_OUTER_END abl_grid_points_y
  3543. #define PR_INNER_VAR xCount
  3544. #define PR_INNER_END abl_grid_points_x
  3545. #endif
  3546. #endif
  3547. /**
  3548. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3549. * Will fail if the printer has not been homed with G28.
  3550. *
  3551. * Enhanced G29 Auto Bed Leveling Probe Routine
  3552. *
  3553. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3554. * or alter the bed level data. Useful to check the topology
  3555. * after a first run of G29.
  3556. *
  3557. * J Jettison current bed leveling data
  3558. *
  3559. * V Set the verbose level (0-4). Example: "G29 V3"
  3560. *
  3561. * Parameters With LINEAR leveling only:
  3562. *
  3563. * P Set the size of the grid that will be probed (P x P points).
  3564. * Example: "G29 P4"
  3565. *
  3566. * X Set the X size of the grid that will be probed (X x Y points).
  3567. * Example: "G29 X7 Y5"
  3568. *
  3569. * Y Set the Y size of the grid that will be probed (X x Y points).
  3570. *
  3571. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3572. * This is useful for manual bed leveling and finding flaws in the bed (to
  3573. * assist with part placement).
  3574. * Not supported by non-linear delta printer bed leveling.
  3575. *
  3576. * Parameters With LINEAR and BILINEAR leveling only:
  3577. *
  3578. * S Set the XY travel speed between probe points (in units/min)
  3579. *
  3580. * F Set the Front limit of the probing grid
  3581. * B Set the Back limit of the probing grid
  3582. * L Set the Left limit of the probing grid
  3583. * R Set the Right limit of the probing grid
  3584. *
  3585. * Parameters with DEBUG_LEVELING_FEATURE only:
  3586. *
  3587. * C Make a totally fake grid with no actual probing.
  3588. * For use in testing when no probing is possible.
  3589. *
  3590. * Parameters with BILINEAR leveling only:
  3591. *
  3592. * Z Supply an additional Z probe offset
  3593. *
  3594. * Extra parameters with PROBE_MANUALLY:
  3595. *
  3596. * To do manual probing simply repeat G29 until the procedure is complete.
  3597. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3598. *
  3599. * Q Query leveling and G29 state
  3600. *
  3601. * A Abort current leveling procedure
  3602. *
  3603. * Extra parameters with BILINEAR only:
  3604. *
  3605. * W Write a mesh point. (If G29 is idle.)
  3606. * I X index for mesh point
  3607. * J Y index for mesh point
  3608. * X X for mesh point, overrides I
  3609. * Y Y for mesh point, overrides J
  3610. * Z Z for mesh point. Otherwise, raw current Z.
  3611. *
  3612. * Without PROBE_MANUALLY:
  3613. *
  3614. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3615. * Include "E" to engage/disengage the Z probe for each sample.
  3616. * There's no extra effect if you have a fixed Z probe.
  3617. *
  3618. */
  3619. inline void gcode_G29() {
  3620. // G29 Q is also available if debugging
  3621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3622. const bool query = parser.seen('Q');
  3623. const uint8_t old_debug_flags = marlin_debug_flags;
  3624. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3625. if (DEBUGGING(LEVELING)) {
  3626. DEBUG_POS(">>> gcode_G29", current_position);
  3627. log_machine_info();
  3628. }
  3629. marlin_debug_flags = old_debug_flags;
  3630. #if DISABLED(PROBE_MANUALLY)
  3631. if (query) return;
  3632. #endif
  3633. #endif
  3634. #if ENABLED(PROBE_MANUALLY)
  3635. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3636. #endif
  3637. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3638. const bool faux = parser.boolval('C');
  3639. #elif ENABLED(PROBE_MANUALLY)
  3640. const bool faux = no_action;
  3641. #else
  3642. bool constexpr faux = false;
  3643. #endif
  3644. // Don't allow auto-leveling without homing first
  3645. if (axis_unhomed_error()) return;
  3646. // Define local vars 'static' for manual probing, 'auto' otherwise
  3647. #if ENABLED(PROBE_MANUALLY)
  3648. #define ABL_VAR static
  3649. #else
  3650. #define ABL_VAR
  3651. #endif
  3652. ABL_VAR int verbose_level;
  3653. ABL_VAR float xProbe, yProbe, measured_z;
  3654. ABL_VAR bool dryrun, abl_should_enable;
  3655. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3656. ABL_VAR int abl_probe_index;
  3657. #endif
  3658. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3659. ABL_VAR bool enable_soft_endstops = true;
  3660. #endif
  3661. #if ABL_GRID
  3662. #if ENABLED(PROBE_MANUALLY)
  3663. ABL_VAR uint8_t PR_OUTER_VAR;
  3664. ABL_VAR int8_t PR_INNER_VAR;
  3665. #endif
  3666. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3667. ABL_VAR float xGridSpacing, yGridSpacing;
  3668. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3669. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3670. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3671. ABL_VAR bool do_topography_map;
  3672. #else // Bilinear
  3673. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3674. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3675. #endif
  3676. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3677. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3678. ABL_VAR int abl2;
  3679. #else // Bilinear
  3680. int constexpr abl2 = GRID_MAX_POINTS;
  3681. #endif
  3682. #endif
  3683. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3684. ABL_VAR float zoffset;
  3685. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3686. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3687. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3688. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3689. mean;
  3690. #endif
  3691. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3692. int constexpr abl2 = 3;
  3693. // Probe at 3 arbitrary points
  3694. ABL_VAR vector_3 points[3] = {
  3695. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3696. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3697. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3698. };
  3699. #endif // AUTO_BED_LEVELING_3POINT
  3700. /**
  3701. * On the initial G29 fetch command parameters.
  3702. */
  3703. if (!g29_in_progress) {
  3704. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3705. abl_probe_index = -1;
  3706. #endif
  3707. abl_should_enable = leveling_is_active();
  3708. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3709. if (parser.seen('W')) {
  3710. if (!leveling_is_valid()) {
  3711. SERIAL_ERROR_START();
  3712. SERIAL_ERRORLNPGM("No bilinear grid");
  3713. return;
  3714. }
  3715. const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
  3716. if (!WITHIN(z, -10, 10)) {
  3717. SERIAL_ERROR_START();
  3718. SERIAL_ERRORLNPGM("Bad Z value");
  3719. return;
  3720. }
  3721. const float x = parser.floatval('X', NAN),
  3722. y = parser.floatval('Y', NAN);
  3723. int8_t i = parser.byteval('I', -1),
  3724. j = parser.byteval('J', -1);
  3725. if (!isnan(x) && !isnan(y)) {
  3726. // Get nearest i / j from x / y
  3727. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3728. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3729. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3730. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3731. }
  3732. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3733. set_bed_leveling_enabled(false);
  3734. z_values[i][j] = z;
  3735. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3736. bed_level_virt_interpolate();
  3737. #endif
  3738. set_bed_leveling_enabled(abl_should_enable);
  3739. }
  3740. return;
  3741. } // parser.seen('W')
  3742. #endif
  3743. #if HAS_LEVELING
  3744. // Jettison bed leveling data
  3745. if (parser.seen('J')) {
  3746. reset_bed_level();
  3747. return;
  3748. }
  3749. #endif
  3750. verbose_level = parser.intval('V');
  3751. if (!WITHIN(verbose_level, 0, 4)) {
  3752. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  3753. return;
  3754. }
  3755. dryrun = parser.boolval('D')
  3756. #if ENABLED(PROBE_MANUALLY)
  3757. || no_action
  3758. #endif
  3759. ;
  3760. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3761. do_topography_map = verbose_level > 2 || parser.boolval('T');
  3762. // X and Y specify points in each direction, overriding the default
  3763. // These values may be saved with the completed mesh
  3764. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  3765. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  3766. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  3767. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3768. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3769. return;
  3770. }
  3771. abl2 = abl_grid_points_x * abl_grid_points_y;
  3772. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3773. zoffset = parser.linearval('Z');
  3774. #endif
  3775. #if ABL_GRID
  3776. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  3777. left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
  3778. right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
  3779. front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
  3780. back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
  3781. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3782. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3783. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3784. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3785. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3786. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3787. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3788. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3789. if (left_out || right_out || front_out || back_out) {
  3790. if (left_out) {
  3791. out_of_range_error(PSTR("(L)eft"));
  3792. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3793. }
  3794. if (right_out) {
  3795. out_of_range_error(PSTR("(R)ight"));
  3796. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3797. }
  3798. if (front_out) {
  3799. out_of_range_error(PSTR("(F)ront"));
  3800. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3801. }
  3802. if (back_out) {
  3803. out_of_range_error(PSTR("(B)ack"));
  3804. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3805. }
  3806. return;
  3807. }
  3808. // probe at the points of a lattice grid
  3809. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3810. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3811. #endif // ABL_GRID
  3812. if (verbose_level > 0) {
  3813. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3814. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3815. }
  3816. stepper.synchronize();
  3817. // Disable auto bed leveling during G29
  3818. planner.abl_enabled = false;
  3819. if (!dryrun) {
  3820. // Re-orient the current position without leveling
  3821. // based on where the steppers are positioned.
  3822. set_current_from_steppers_for_axis(ALL_AXES);
  3823. // Sync the planner to where the steppers stopped
  3824. SYNC_PLAN_POSITION_KINEMATIC();
  3825. }
  3826. if (!faux) setup_for_endstop_or_probe_move();
  3827. //xProbe = yProbe = measured_z = 0;
  3828. #if HAS_BED_PROBE
  3829. // Deploy the probe. Probe will raise if needed.
  3830. if (DEPLOY_PROBE()) {
  3831. planner.abl_enabled = abl_should_enable;
  3832. return;
  3833. }
  3834. #endif
  3835. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3836. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3837. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3838. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3839. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3840. ) {
  3841. if (dryrun) {
  3842. // Before reset bed level, re-enable to correct the position
  3843. planner.abl_enabled = abl_should_enable;
  3844. }
  3845. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3846. reset_bed_level();
  3847. // Initialize a grid with the given dimensions
  3848. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3849. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3850. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3851. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3852. // Can't re-enable (on error) until the new grid is written
  3853. abl_should_enable = false;
  3854. }
  3855. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3856. mean = 0.0;
  3857. #endif // AUTO_BED_LEVELING_LINEAR
  3858. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3860. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3861. #endif
  3862. // Probe at 3 arbitrary points
  3863. points[0].z = points[1].z = points[2].z = 0;
  3864. #endif // AUTO_BED_LEVELING_3POINT
  3865. } // !g29_in_progress
  3866. #if ENABLED(PROBE_MANUALLY)
  3867. // For manual probing, get the next index to probe now.
  3868. // On the first probe this will be incremented to 0.
  3869. if (!no_action) {
  3870. ++abl_probe_index;
  3871. g29_in_progress = true;
  3872. }
  3873. // Abort current G29 procedure, go back to idle state
  3874. if (seenA && g29_in_progress) {
  3875. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3876. #if HAS_SOFTWARE_ENDSTOPS
  3877. soft_endstops_enabled = enable_soft_endstops;
  3878. #endif
  3879. planner.abl_enabled = abl_should_enable;
  3880. g29_in_progress = false;
  3881. #if ENABLED(LCD_BED_LEVELING)
  3882. lcd_wait_for_move = false;
  3883. #endif
  3884. }
  3885. // Query G29 status
  3886. if (verbose_level || seenQ) {
  3887. SERIAL_PROTOCOLPGM("Manual G29 ");
  3888. if (g29_in_progress) {
  3889. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  3890. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3891. }
  3892. else
  3893. SERIAL_PROTOCOLLNPGM("idle");
  3894. }
  3895. if (no_action) return;
  3896. if (abl_probe_index == 0) {
  3897. // For the initial G29 save software endstop state
  3898. #if HAS_SOFTWARE_ENDSTOPS
  3899. enable_soft_endstops = soft_endstops_enabled;
  3900. #endif
  3901. }
  3902. else {
  3903. // For G29 after adjusting Z.
  3904. // Save the previous Z before going to the next point
  3905. measured_z = current_position[Z_AXIS];
  3906. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3907. mean += measured_z;
  3908. eqnBVector[abl_probe_index] = measured_z;
  3909. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3910. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3911. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3912. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3913. z_values[xCount][yCount] = measured_z + zoffset;
  3914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3915. if (DEBUGGING(LEVELING)) {
  3916. SERIAL_PROTOCOLPAIR("Save X", xCount);
  3917. SERIAL_PROTOCOLPAIR(" Y", yCount);
  3918. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  3919. }
  3920. #endif
  3921. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3922. points[abl_probe_index].z = measured_z;
  3923. #endif
  3924. }
  3925. //
  3926. // If there's another point to sample, move there with optional lift.
  3927. //
  3928. #if ABL_GRID
  3929. // Skip any unreachable points
  3930. while (abl_probe_index < abl2) {
  3931. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3932. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3933. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3934. // Probe in reverse order for every other row/column
  3935. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  3936. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3937. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  3938. yBase = yCount * yGridSpacing + front_probe_bed_position;
  3939. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  3940. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  3941. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3942. indexIntoAB[xCount][yCount] = abl_probe_index;
  3943. #endif
  3944. // Keep looping till a reachable point is found
  3945. if (position_is_reachable_xy(xProbe, yProbe)) break;
  3946. ++abl_probe_index;
  3947. }
  3948. // Is there a next point to move to?
  3949. if (abl_probe_index < abl2) {
  3950. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3951. #if HAS_SOFTWARE_ENDSTOPS
  3952. // Disable software endstops to allow manual adjustment
  3953. // If G29 is not completed, they will not be re-enabled
  3954. soft_endstops_enabled = false;
  3955. #endif
  3956. return;
  3957. }
  3958. else {
  3959. // Leveling done! Fall through to G29 finishing code below
  3960. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3961. // Re-enable software endstops, if needed
  3962. #if HAS_SOFTWARE_ENDSTOPS
  3963. soft_endstops_enabled = enable_soft_endstops;
  3964. #endif
  3965. }
  3966. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3967. // Probe at 3 arbitrary points
  3968. if (abl_probe_index < 3) {
  3969. xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
  3970. yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
  3971. #if HAS_SOFTWARE_ENDSTOPS
  3972. // Disable software endstops to allow manual adjustment
  3973. // If G29 is not completed, they will not be re-enabled
  3974. soft_endstops_enabled = false;
  3975. #endif
  3976. return;
  3977. }
  3978. else {
  3979. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3980. // Re-enable software endstops, if needed
  3981. #if HAS_SOFTWARE_ENDSTOPS
  3982. soft_endstops_enabled = enable_soft_endstops;
  3983. #endif
  3984. if (!dryrun) {
  3985. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3986. if (planeNormal.z < 0) {
  3987. planeNormal.x *= -1;
  3988. planeNormal.y *= -1;
  3989. planeNormal.z *= -1;
  3990. }
  3991. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3992. // Can't re-enable (on error) until the new grid is written
  3993. abl_should_enable = false;
  3994. }
  3995. }
  3996. #endif // AUTO_BED_LEVELING_3POINT
  3997. #else // !PROBE_MANUALLY
  3998. const bool stow_probe_after_each = parser.boolval('E');
  3999. #if ABL_GRID
  4000. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4001. // Outer loop is Y with PROBE_Y_FIRST disabled
  4002. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  4003. int8_t inStart, inStop, inInc;
  4004. if (zig) { // away from origin
  4005. inStart = 0;
  4006. inStop = PR_INNER_END;
  4007. inInc = 1;
  4008. }
  4009. else { // towards origin
  4010. inStart = PR_INNER_END - 1;
  4011. inStop = -1;
  4012. inInc = -1;
  4013. }
  4014. zig ^= true; // zag
  4015. // Inner loop is Y with PROBE_Y_FIRST enabled
  4016. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4017. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4018. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4019. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4020. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4021. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4022. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4023. #endif
  4024. #if IS_KINEMATIC
  4025. // Avoid probing outside the round or hexagonal area
  4026. if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
  4027. #endif
  4028. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4029. if (isnan(measured_z)) {
  4030. planner.abl_enabled = abl_should_enable;
  4031. return;
  4032. }
  4033. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4034. mean += measured_z;
  4035. eqnBVector[abl_probe_index] = measured_z;
  4036. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4037. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4038. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4039. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4040. z_values[xCount][yCount] = measured_z + zoffset;
  4041. #endif
  4042. abl_should_enable = false;
  4043. idle();
  4044. } // inner
  4045. } // outer
  4046. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4047. // Probe at 3 arbitrary points
  4048. for (uint8_t i = 0; i < 3; ++i) {
  4049. // Retain the last probe position
  4050. xProbe = LOGICAL_X_POSITION(points[i].x);
  4051. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4052. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4053. if (isnan(measured_z)) {
  4054. planner.abl_enabled = abl_should_enable;
  4055. return;
  4056. }
  4057. points[i].z = measured_z;
  4058. }
  4059. if (!dryrun) {
  4060. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4061. if (planeNormal.z < 0) {
  4062. planeNormal.x *= -1;
  4063. planeNormal.y *= -1;
  4064. planeNormal.z *= -1;
  4065. }
  4066. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4067. // Can't re-enable (on error) until the new grid is written
  4068. abl_should_enable = false;
  4069. }
  4070. #endif // AUTO_BED_LEVELING_3POINT
  4071. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4072. if (STOW_PROBE()) {
  4073. planner.abl_enabled = abl_should_enable;
  4074. return;
  4075. }
  4076. #endif // !PROBE_MANUALLY
  4077. //
  4078. // G29 Finishing Code
  4079. //
  4080. // Unless this is a dry run, auto bed leveling will
  4081. // definitely be enabled after this point.
  4082. //
  4083. // If code above wants to continue leveling, it should
  4084. // return or loop before this point.
  4085. //
  4086. // Restore state after probing
  4087. if (!faux) clean_up_after_endstop_or_probe_move();
  4088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4089. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4090. #endif
  4091. #if ENABLED(PROBE_MANUALLY)
  4092. g29_in_progress = false;
  4093. #if ENABLED(LCD_BED_LEVELING)
  4094. lcd_wait_for_move = false;
  4095. #endif
  4096. #endif
  4097. // Calculate leveling, print reports, correct the position
  4098. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4099. if (!dryrun) extrapolate_unprobed_bed_level();
  4100. print_bilinear_leveling_grid();
  4101. refresh_bed_level();
  4102. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4103. bed_level_virt_print();
  4104. #endif
  4105. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4106. // For LINEAR leveling calculate matrix, print reports, correct the position
  4107. /**
  4108. * solve the plane equation ax + by + d = z
  4109. * A is the matrix with rows [x y 1] for all the probed points
  4110. * B is the vector of the Z positions
  4111. * the normal vector to the plane is formed by the coefficients of the
  4112. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4113. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4114. */
  4115. float plane_equation_coefficients[3];
  4116. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4117. mean /= abl2;
  4118. if (verbose_level) {
  4119. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4120. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4121. SERIAL_PROTOCOLPGM(" b: ");
  4122. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4123. SERIAL_PROTOCOLPGM(" d: ");
  4124. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4125. SERIAL_EOL();
  4126. if (verbose_level > 2) {
  4127. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4128. SERIAL_PROTOCOL_F(mean, 8);
  4129. SERIAL_EOL();
  4130. }
  4131. }
  4132. // Create the matrix but don't correct the position yet
  4133. if (!dryrun) {
  4134. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4135. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4136. );
  4137. }
  4138. // Show the Topography map if enabled
  4139. if (do_topography_map) {
  4140. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4141. " +--- BACK --+\n"
  4142. " | |\n"
  4143. " L | (+) | R\n"
  4144. " E | | I\n"
  4145. " F | (-) N (+) | G\n"
  4146. " T | | H\n"
  4147. " | (-) | T\n"
  4148. " | |\n"
  4149. " O-- FRONT --+\n"
  4150. " (0,0)");
  4151. float min_diff = 999;
  4152. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4153. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4154. int ind = indexIntoAB[xx][yy];
  4155. float diff = eqnBVector[ind] - mean,
  4156. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4157. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4158. z_tmp = 0;
  4159. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4160. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4161. if (diff >= 0.0)
  4162. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4163. else
  4164. SERIAL_PROTOCOLCHAR(' ');
  4165. SERIAL_PROTOCOL_F(diff, 5);
  4166. } // xx
  4167. SERIAL_EOL();
  4168. } // yy
  4169. SERIAL_EOL();
  4170. if (verbose_level > 3) {
  4171. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4172. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4173. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4174. int ind = indexIntoAB[xx][yy];
  4175. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4176. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4177. z_tmp = 0;
  4178. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4179. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4180. if (diff >= 0.0)
  4181. SERIAL_PROTOCOLPGM(" +");
  4182. // Include + for column alignment
  4183. else
  4184. SERIAL_PROTOCOLCHAR(' ');
  4185. SERIAL_PROTOCOL_F(diff, 5);
  4186. } // xx
  4187. SERIAL_EOL();
  4188. } // yy
  4189. SERIAL_EOL();
  4190. }
  4191. } //do_topography_map
  4192. #endif // AUTO_BED_LEVELING_LINEAR
  4193. #if ABL_PLANAR
  4194. // For LINEAR and 3POINT leveling correct the current position
  4195. if (verbose_level > 0)
  4196. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4197. if (!dryrun) {
  4198. //
  4199. // Correct the current XYZ position based on the tilted plane.
  4200. //
  4201. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4202. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4203. #endif
  4204. float converted[XYZ];
  4205. COPY(converted, current_position);
  4206. planner.abl_enabled = true;
  4207. planner.unapply_leveling(converted); // use conversion machinery
  4208. planner.abl_enabled = false;
  4209. // Use the last measured distance to the bed, if possible
  4210. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4211. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4212. ) {
  4213. const float simple_z = current_position[Z_AXIS] - measured_z;
  4214. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4215. if (DEBUGGING(LEVELING)) {
  4216. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4217. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4218. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4219. }
  4220. #endif
  4221. converted[Z_AXIS] = simple_z;
  4222. }
  4223. // The rotated XY and corrected Z are now current_position
  4224. COPY(current_position, converted);
  4225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4226. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4227. #endif
  4228. }
  4229. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4230. if (!dryrun) {
  4231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4232. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4233. #endif
  4234. // Unapply the offset because it is going to be immediately applied
  4235. // and cause compensation movement in Z
  4236. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4237. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4238. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4239. #endif
  4240. }
  4241. #endif // ABL_PLANAR
  4242. #ifdef Z_PROBE_END_SCRIPT
  4243. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4244. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4245. #endif
  4246. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4247. stepper.synchronize();
  4248. #endif
  4249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4250. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4251. #endif
  4252. report_current_position();
  4253. KEEPALIVE_STATE(IN_HANDLER);
  4254. // Auto Bed Leveling is complete! Enable if possible.
  4255. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4256. if (planner.abl_enabled)
  4257. SYNC_PLAN_POSITION_KINEMATIC();
  4258. }
  4259. #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
  4260. #if HAS_BED_PROBE
  4261. /**
  4262. * G30: Do a single Z probe at the current XY
  4263. *
  4264. * Parameters:
  4265. *
  4266. * X Probe X position (default current X)
  4267. * Y Probe Y position (default current Y)
  4268. * S0 Leave the probe deployed
  4269. */
  4270. inline void gcode_G30() {
  4271. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4272. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4273. if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
  4274. // Disable leveling so the planner won't mess with us
  4275. #if HAS_LEVELING
  4276. set_bed_leveling_enabled(false);
  4277. #endif
  4278. setup_for_endstop_or_probe_move();
  4279. const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
  4280. if (!isnan(measured_z)) {
  4281. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4282. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4283. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4284. }
  4285. clean_up_after_endstop_or_probe_move();
  4286. report_current_position();
  4287. }
  4288. #if ENABLED(Z_PROBE_SLED)
  4289. /**
  4290. * G31: Deploy the Z probe
  4291. */
  4292. inline void gcode_G31() { DEPLOY_PROBE(); }
  4293. /**
  4294. * G32: Stow the Z probe
  4295. */
  4296. inline void gcode_G32() { STOW_PROBE(); }
  4297. #endif // Z_PROBE_SLED
  4298. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4299. /**
  4300. * G33 - Delta '1-4-7-point' Auto-Calibration
  4301. * Calibrate height, endstops, delta radius, and tower angles.
  4302. *
  4303. * Parameters:
  4304. *
  4305. * Pn Number of probe points:
  4306. *
  4307. * P1 Probe center and set height only.
  4308. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4309. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4310. * P4-P7 Probe all positions at different locations and average them.
  4311. *
  4312. * T0 Don't calibrate tower angle corrections
  4313. *
  4314. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4315. *
  4316. * Fn Force to run at least n iterations and takes the best result
  4317. *
  4318. * Vn Verbose level:
  4319. *
  4320. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4321. * V1 Report settings
  4322. * V2 Report settings and probe results
  4323. *
  4324. * E Engage the probe for each point
  4325. */
  4326. void print_signed_float(const char * const prefix, const float &f) {
  4327. SERIAL_PROTOCOLPGM(" ");
  4328. serialprintPGM(prefix);
  4329. SERIAL_PROTOCOLCHAR(':');
  4330. if (f >= 0) SERIAL_CHAR('+');
  4331. SERIAL_PROTOCOL_F(f, 2);
  4332. }
  4333. inline void gcode_G33() {
  4334. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4335. if (!WITHIN(probe_points, 1, 7)) {
  4336. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1 to 7).");
  4337. return;
  4338. }
  4339. const int8_t verbose_level = parser.byteval('V', 1);
  4340. if (!WITHIN(verbose_level, 0, 2)) {
  4341. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4342. return;
  4343. }
  4344. const float calibration_precision = parser.floatval('C');
  4345. if (calibration_precision < 0) {
  4346. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
  4347. return;
  4348. }
  4349. const int8_t force_iterations = parser.intval('F', 1);
  4350. if (!WITHIN(force_iterations, 1, 30)) {
  4351. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (1-30).");
  4352. return;
  4353. }
  4354. const bool towers_set = parser.boolval('T', true),
  4355. stow_after_each = parser.boolval('E'),
  4356. _1p_calibration = probe_points == 1,
  4357. _4p_calibration = probe_points == 2,
  4358. _4p_towers_points = _4p_calibration && towers_set,
  4359. _4p_opposite_points = _4p_calibration && !towers_set,
  4360. _7p_calibration = probe_points >= 3,
  4361. _7p_half_circle = probe_points == 3,
  4362. _7p_double_circle = probe_points == 5,
  4363. _7p_triple_circle = probe_points == 6,
  4364. _7p_quadruple_circle = probe_points == 7,
  4365. _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
  4366. _7p_intermed_points = _7p_calibration && !_7p_half_circle;
  4367. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4368. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4369. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4370. int8_t iterations = 0;
  4371. float test_precision,
  4372. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4373. zero_std_dev_old = zero_std_dev,
  4374. zero_std_dev_min = zero_std_dev,
  4375. e_old[XYZ] = {
  4376. endstop_adj[A_AXIS],
  4377. endstop_adj[B_AXIS],
  4378. endstop_adj[C_AXIS]
  4379. },
  4380. dr_old = delta_radius,
  4381. zh_old = home_offset[Z_AXIS],
  4382. alpha_old = delta_tower_angle_trim[A_AXIS],
  4383. beta_old = delta_tower_angle_trim[B_AXIS];
  4384. if (!_1p_calibration) { // test if the outer radius is reachable
  4385. const float circles = (_7p_quadruple_circle ? 1.5 :
  4386. _7p_triple_circle ? 1.0 :
  4387. _7p_double_circle ? 0.5 : 0),
  4388. r = (1 + circles * 0.1) * delta_calibration_radius;
  4389. for (uint8_t axis = 1; axis < 13; ++axis) {
  4390. const float a = RADIANS(180 + 30 * axis);
  4391. if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
  4392. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4393. return;
  4394. }
  4395. }
  4396. }
  4397. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4398. stepper.synchronize();
  4399. #if HAS_LEVELING
  4400. reset_bed_level(); // After calibration bed-level data is no longer valid
  4401. #endif
  4402. #if HOTENDS > 1
  4403. const uint8_t old_tool_index = active_extruder;
  4404. tool_change(0, 0, true);
  4405. #endif
  4406. setup_for_endstop_or_probe_move();
  4407. DEPLOY_PROBE();
  4408. endstops.enable(true);
  4409. home_delta();
  4410. endstops.not_homing();
  4411. // print settings
  4412. SERIAL_PROTOCOLPGM("Checking... AC");
  4413. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4414. SERIAL_EOL();
  4415. LCD_MESSAGEPGM("Checking... AC"); // TODO: Make translatable string
  4416. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4417. if (!_1p_calibration) {
  4418. print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
  4419. print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
  4420. print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
  4421. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4422. }
  4423. SERIAL_EOL();
  4424. if (_7p_calibration && towers_set) {
  4425. SERIAL_PROTOCOLPGM(".Tower angle : ");
  4426. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4427. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4428. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4429. SERIAL_EOL();
  4430. }
  4431. home_offset[Z_AXIS] -= probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
  4432. do {
  4433. float z_at_pt[13] = { 0.0 };
  4434. test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
  4435. iterations++;
  4436. // Probe the points
  4437. if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
  4438. z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
  4439. }
  4440. if (_7p_calibration) { // probe extra center points
  4441. for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
  4442. const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
  4443. z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
  4444. }
  4445. z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
  4446. }
  4447. if (!_1p_calibration) { // probe the radius
  4448. bool zig_zag = true;
  4449. const uint8_t start = _4p_opposite_points ? 3 : 1,
  4450. step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
  4451. for (uint8_t axis = start; axis < 13; axis += step) {
  4452. const float zigadd = (zig_zag ? 0.5 : 0.0),
  4453. offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
  4454. _7p_triple_circle ? zigadd + 0.5 :
  4455. _7p_double_circle ? zigadd : 0;
  4456. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4457. const float a = RADIANS(180 + 30 * axis),
  4458. r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
  4459. z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
  4460. }
  4461. zig_zag = !zig_zag;
  4462. z_at_pt[axis] /= (2 * offset_circles + 1);
  4463. }
  4464. }
  4465. if (_7p_intermed_points) // average intermediates to tower and opposites
  4466. for (uint8_t axis = 1; axis < 13; axis += 2)
  4467. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4468. float S1 = z_at_pt[0],
  4469. S2 = sq(z_at_pt[0]);
  4470. int16_t N = 1;
  4471. if (!_1p_calibration) // std dev from zero plane
  4472. for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
  4473. S1 += z_at_pt[axis];
  4474. S2 += sq(z_at_pt[axis]);
  4475. N++;
  4476. }
  4477. zero_std_dev_old = zero_std_dev;
  4478. NOMORE(zero_std_dev_min, zero_std_dev);
  4479. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4480. // Solve matrices
  4481. if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
  4482. if (zero_std_dev < zero_std_dev_min) {
  4483. COPY(e_old, endstop_adj);
  4484. dr_old = delta_radius;
  4485. zh_old = home_offset[Z_AXIS];
  4486. alpha_old = delta_tower_angle_trim[A_AXIS];
  4487. beta_old = delta_tower_angle_trim[B_AXIS];
  4488. }
  4489. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
  4490. const float r_diff = delta_radius - delta_calibration_radius,
  4491. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4492. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4493. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4494. #define ZP(N,I) ((N) * z_at_pt[I])
  4495. #define Z1000(I) ZP(1.00, I)
  4496. #define Z1050(I) ZP(h_factor, I)
  4497. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4498. #define Z0350(I) ZP(h_factor / 3.00, I)
  4499. #define Z0175(I) ZP(h_factor / 6.00, I)
  4500. #define Z2250(I) ZP(r_factor, I)
  4501. #define Z0750(I) ZP(r_factor / 3.00, I)
  4502. #define Z0375(I) ZP(r_factor / 6.00, I)
  4503. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4504. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4505. switch (probe_points) {
  4506. case 1:
  4507. test_precision = 0.00;
  4508. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4509. break;
  4510. case 2:
  4511. if (towers_set) {
  4512. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4513. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4514. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4515. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4516. }
  4517. else {
  4518. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4519. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4520. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4521. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4522. }
  4523. break;
  4524. default:
  4525. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4526. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4527. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4528. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4529. if (towers_set) {
  4530. t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4531. t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
  4532. }
  4533. break;
  4534. }
  4535. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4536. delta_radius += r_delta;
  4537. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4538. delta_tower_angle_trim[B_AXIS] += t_beta;
  4539. // adjust delta_height and endstops by the max amount
  4540. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4541. home_offset[Z_AXIS] -= z_temp;
  4542. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4543. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4544. }
  4545. else if (zero_std_dev >= test_precision) { // step one back
  4546. COPY(endstop_adj, e_old);
  4547. delta_radius = dr_old;
  4548. home_offset[Z_AXIS] = zh_old;
  4549. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4550. delta_tower_angle_trim[B_AXIS] = beta_old;
  4551. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4552. }
  4553. // print report
  4554. if (verbose_level != 1) {
  4555. SERIAL_PROTOCOLPGM(". ");
  4556. print_signed_float(PSTR("c"), z_at_pt[0]);
  4557. if (_4p_towers_points || _7p_calibration) {
  4558. print_signed_float(PSTR(" x"), z_at_pt[1]);
  4559. print_signed_float(PSTR(" y"), z_at_pt[5]);
  4560. print_signed_float(PSTR(" z"), z_at_pt[9]);
  4561. }
  4562. if (!_4p_opposite_points) SERIAL_EOL();
  4563. if ((_4p_opposite_points) || _7p_calibration) {
  4564. if (_7p_calibration) {
  4565. SERIAL_CHAR('.');
  4566. SERIAL_PROTOCOL_SP(13);
  4567. }
  4568. print_signed_float(PSTR(" yz"), z_at_pt[7]);
  4569. print_signed_float(PSTR("zx"), z_at_pt[11]);
  4570. print_signed_float(PSTR("xy"), z_at_pt[3]);
  4571. SERIAL_EOL();
  4572. }
  4573. }
  4574. if (test_precision != 0.0) { // !forced end
  4575. if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
  4576. SERIAL_PROTOCOLPGM("Calibration OK");
  4577. SERIAL_PROTOCOL_SP(36);
  4578. if (zero_std_dev >= test_precision)
  4579. SERIAL_PROTOCOLPGM("rolling back.");
  4580. else {
  4581. SERIAL_PROTOCOLPGM("std dev:");
  4582. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4583. }
  4584. SERIAL_EOL();
  4585. LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
  4586. }
  4587. else { // !end iterations
  4588. char mess[15] = "No convergence";
  4589. if (iterations < 31)
  4590. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4591. SERIAL_PROTOCOL(mess);
  4592. SERIAL_PROTOCOL_SP(36);
  4593. SERIAL_PROTOCOLPGM("std dev:");
  4594. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4595. SERIAL_EOL();
  4596. lcd_setstatus(mess);
  4597. }
  4598. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4599. if (!_1p_calibration) {
  4600. print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
  4601. print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
  4602. print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
  4603. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4604. }
  4605. SERIAL_EOL();
  4606. if (_7p_calibration && towers_set) {
  4607. SERIAL_PROTOCOLPGM(".Tower angle : ");
  4608. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4609. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4610. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4611. SERIAL_EOL();
  4612. }
  4613. if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations)
  4614. serialprintPGM(save_message);
  4615. SERIAL_EOL();
  4616. }
  4617. else { // forced end
  4618. if (verbose_level == 0) {
  4619. SERIAL_PROTOCOLPGM("End DRY-RUN");
  4620. SERIAL_PROTOCOL_SP(39);
  4621. SERIAL_PROTOCOLPGM("std dev:");
  4622. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4623. SERIAL_EOL();
  4624. }
  4625. else {
  4626. SERIAL_PROTOCOLLNPGM("Calibration OK");
  4627. LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
  4628. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4629. SERIAL_EOL();
  4630. serialprintPGM(save_message);
  4631. SERIAL_EOL();
  4632. }
  4633. }
  4634. endstops.enable(true);
  4635. home_delta();
  4636. endstops.not_homing();
  4637. }
  4638. while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations);
  4639. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4640. do_blocking_move_to_z(delta_clip_start_height);
  4641. #endif
  4642. STOW_PROBE();
  4643. clean_up_after_endstop_or_probe_move();
  4644. #if HOTENDS > 1
  4645. tool_change(old_tool_index, 0, true);
  4646. #endif
  4647. }
  4648. #endif // DELTA_AUTO_CALIBRATION
  4649. #endif // HAS_BED_PROBE
  4650. #if ENABLED(G38_PROBE_TARGET)
  4651. static bool G38_run_probe() {
  4652. bool G38_pass_fail = false;
  4653. // Get direction of move and retract
  4654. float retract_mm[XYZ];
  4655. LOOP_XYZ(i) {
  4656. float dist = destination[i] - current_position[i];
  4657. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4658. }
  4659. stepper.synchronize(); // wait until the machine is idle
  4660. // Move until destination reached or target hit
  4661. endstops.enable(true);
  4662. G38_move = true;
  4663. G38_endstop_hit = false;
  4664. prepare_move_to_destination();
  4665. stepper.synchronize();
  4666. G38_move = false;
  4667. endstops.hit_on_purpose();
  4668. set_current_from_steppers_for_axis(ALL_AXES);
  4669. SYNC_PLAN_POSITION_KINEMATIC();
  4670. if (G38_endstop_hit) {
  4671. G38_pass_fail = true;
  4672. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4673. // Move away by the retract distance
  4674. set_destination_to_current();
  4675. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4676. endstops.enable(false);
  4677. prepare_move_to_destination();
  4678. stepper.synchronize();
  4679. feedrate_mm_s /= 4;
  4680. // Bump the target more slowly
  4681. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4682. endstops.enable(true);
  4683. G38_move = true;
  4684. prepare_move_to_destination();
  4685. stepper.synchronize();
  4686. G38_move = false;
  4687. set_current_from_steppers_for_axis(ALL_AXES);
  4688. SYNC_PLAN_POSITION_KINEMATIC();
  4689. #endif
  4690. }
  4691. endstops.hit_on_purpose();
  4692. endstops.not_homing();
  4693. return G38_pass_fail;
  4694. }
  4695. /**
  4696. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4697. * G38.3 - probe toward workpiece, stop on contact
  4698. *
  4699. * Like G28 except uses Z min probe for all axes
  4700. */
  4701. inline void gcode_G38(bool is_38_2) {
  4702. // Get X Y Z E F
  4703. gcode_get_destination();
  4704. setup_for_endstop_or_probe_move();
  4705. // If any axis has enough movement, do the move
  4706. LOOP_XYZ(i)
  4707. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4708. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate(i);
  4709. // If G38.2 fails throw an error
  4710. if (!G38_run_probe() && is_38_2) {
  4711. SERIAL_ERROR_START();
  4712. SERIAL_ERRORLNPGM("Failed to reach target");
  4713. }
  4714. break;
  4715. }
  4716. clean_up_after_endstop_or_probe_move();
  4717. }
  4718. #endif // G38_PROBE_TARGET
  4719. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  4720. /**
  4721. * G42: Move X & Y axes to mesh coordinates (I & J)
  4722. */
  4723. inline void gcode_G42() {
  4724. if (IsRunning()) {
  4725. const bool hasI = parser.seenval('I');
  4726. const int8_t ix = hasI ? parser.value_int() : 0;
  4727. const bool hasJ = parser.seenval('J');
  4728. const int8_t iy = hasJ ? parser.value_int() : 0;
  4729. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  4730. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  4731. return;
  4732. }
  4733. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4734. #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
  4735. #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
  4736. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  4737. #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  4738. #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
  4739. #elif ENABLED(MESH_BED_LEVELING)
  4740. #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  4741. #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
  4742. #endif
  4743. set_destination_to_current();
  4744. if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
  4745. if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
  4746. if (parser.boolval('P')) {
  4747. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  4748. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  4749. }
  4750. const float fval = parser.linearval('F');
  4751. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  4752. // SCARA kinematic has "safe" XY raw moves
  4753. #if IS_SCARA
  4754. prepare_uninterpolated_move_to_destination();
  4755. #else
  4756. prepare_move_to_destination();
  4757. #endif
  4758. }
  4759. }
  4760. #endif // AUTO_BED_LEVELING_UBL
  4761. /**
  4762. * G92: Set current position to given X Y Z E
  4763. */
  4764. inline void gcode_G92() {
  4765. bool didXYZ = false,
  4766. didE = parser.seenval('E');
  4767. if (!didE) stepper.synchronize();
  4768. LOOP_XYZE(i) {
  4769. if (parser.seenval(axis_codes[i])) {
  4770. #if IS_SCARA
  4771. current_position[i] = parser.value_axis_units((AxisEnum)i);
  4772. if (i != E_AXIS) didXYZ = true;
  4773. #else
  4774. #if HAS_POSITION_SHIFT
  4775. const float p = current_position[i];
  4776. #endif
  4777. const float v = parser.value_axis_units((AxisEnum)i);
  4778. current_position[i] = v;
  4779. if (i != E_AXIS) {
  4780. didXYZ = true;
  4781. #if HAS_POSITION_SHIFT
  4782. position_shift[i] += v - p; // Offset the coordinate space
  4783. update_software_endstops((AxisEnum)i);
  4784. #if ENABLED(I2C_POSITION_ENCODERS)
  4785. I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
  4786. #endif
  4787. #endif
  4788. }
  4789. #endif
  4790. }
  4791. }
  4792. if (didXYZ)
  4793. SYNC_PLAN_POSITION_KINEMATIC();
  4794. else if (didE)
  4795. sync_plan_position_e();
  4796. report_current_position();
  4797. }
  4798. #if HAS_RESUME_CONTINUE
  4799. /**
  4800. * M0: Unconditional stop - Wait for user button press on LCD
  4801. * M1: Conditional stop - Wait for user button press on LCD
  4802. */
  4803. inline void gcode_M0_M1() {
  4804. const char * const args = parser.string_arg;
  4805. millis_t ms = 0;
  4806. bool hasP = false, hasS = false;
  4807. if (parser.seenval('P')) {
  4808. ms = parser.value_millis(); // milliseconds to wait
  4809. hasP = ms > 0;
  4810. }
  4811. if (parser.seenval('S')) {
  4812. ms = parser.value_millis_from_seconds(); // seconds to wait
  4813. hasS = ms > 0;
  4814. }
  4815. #if ENABLED(ULTIPANEL)
  4816. if (!hasP && !hasS && args && *args)
  4817. lcd_setstatus(args, true);
  4818. else {
  4819. LCD_MESSAGEPGM(MSG_USERWAIT);
  4820. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4821. dontExpireStatus();
  4822. #endif
  4823. }
  4824. #else
  4825. if (!hasP && !hasS && args && *args) {
  4826. SERIAL_ECHO_START();
  4827. SERIAL_ECHOLN(args);
  4828. }
  4829. #endif
  4830. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4831. wait_for_user = true;
  4832. stepper.synchronize();
  4833. refresh_cmd_timeout();
  4834. if (ms > 0) {
  4835. ms += previous_cmd_ms; // wait until this time for a click
  4836. while (PENDING(millis(), ms) && wait_for_user) idle();
  4837. }
  4838. else {
  4839. #if ENABLED(ULTIPANEL)
  4840. if (lcd_detected()) {
  4841. while (wait_for_user) idle();
  4842. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4843. }
  4844. #else
  4845. while (wait_for_user) idle();
  4846. #endif
  4847. }
  4848. wait_for_user = false;
  4849. KEEPALIVE_STATE(IN_HANDLER);
  4850. }
  4851. #endif // HAS_RESUME_CONTINUE
  4852. #if ENABLED(SPINDLE_LASER_ENABLE)
  4853. /**
  4854. * M3: Spindle Clockwise
  4855. * M4: Spindle Counter-clockwise
  4856. *
  4857. * S0 turns off spindle.
  4858. *
  4859. * If no speed PWM output is defined then M3/M4 just turns it on.
  4860. *
  4861. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  4862. * Hardware PWM is required. ISRs are too slow.
  4863. *
  4864. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  4865. * No other settings give a PWM signal that goes from 0 to 5 volts.
  4866. *
  4867. * The system automatically sets WGM to Mode 1, so no special
  4868. * initialization is needed.
  4869. *
  4870. * WGM bits for timer 2 are automatically set by the system to
  4871. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  4872. * No special initialization is needed.
  4873. *
  4874. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  4875. * factors for timers 2, 3, 4, and 5 are acceptable.
  4876. *
  4877. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  4878. * the spindle/laser during power-up or when connecting to the host
  4879. * (usually goes through a reset which sets all I/O pins to tri-state)
  4880. *
  4881. * PWM duty cycle goes from 0 (off) to 255 (always on).
  4882. */
  4883. // Wait for spindle to come up to speed
  4884. inline void delay_for_power_up() {
  4885. refresh_cmd_timeout();
  4886. while (PENDING(millis(), SPINDLE_LASER_POWERUP_DELAY + previous_cmd_ms)) idle();
  4887. }
  4888. // Wait for spindle to stop turning
  4889. inline void delay_for_power_down() {
  4890. refresh_cmd_timeout();
  4891. while (PENDING(millis(), SPINDLE_LASER_POWERDOWN_DELAY + previous_cmd_ms + 1)) idle();
  4892. }
  4893. /**
  4894. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  4895. *
  4896. * it accepts inputs of 0-255
  4897. */
  4898. inline void ocr_val_mode() {
  4899. uint8_t spindle_laser_power = parser.value_byte();
  4900. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  4901. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  4902. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  4903. }
  4904. inline void gcode_M3_M4(bool is_M3) {
  4905. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  4906. #if SPINDLE_DIR_CHANGE
  4907. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  4908. if (SPINDLE_STOP_ON_DIR_CHANGE \
  4909. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  4910. && READ(SPINDLE_DIR_PIN) != rotation_dir
  4911. ) {
  4912. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  4913. delay_for_power_down();
  4914. }
  4915. digitalWrite(SPINDLE_DIR_PIN, rotation_dir);
  4916. #endif
  4917. /**
  4918. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  4919. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  4920. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  4921. */
  4922. #if ENABLED(SPINDLE_LASER_PWM)
  4923. if (parser.seen('O')) ocr_val_mode();
  4924. else {
  4925. const float spindle_laser_power = parser.floatval('S');
  4926. if (spindle_laser_power == 0) {
  4927. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  4928. delay_for_power_down();
  4929. }
  4930. else {
  4931. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  4932. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  4933. if (spindle_laser_power <= SPEED_POWER_MIN)
  4934. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  4935. if (spindle_laser_power >= SPEED_POWER_MAX)
  4936. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  4937. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  4938. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  4939. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  4940. delay_for_power_up();
  4941. }
  4942. }
  4943. #else
  4944. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  4945. delay_for_power_up();
  4946. #endif
  4947. }
  4948. /**
  4949. * M5 turn off spindle
  4950. */
  4951. inline void gcode_M5() {
  4952. stepper.synchronize();
  4953. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  4954. delay_for_power_down();
  4955. }
  4956. #endif // SPINDLE_LASER_ENABLE
  4957. /**
  4958. * M17: Enable power on all stepper motors
  4959. */
  4960. inline void gcode_M17() {
  4961. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4962. enable_all_steppers();
  4963. }
  4964. #if IS_KINEMATIC
  4965. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4966. #else
  4967. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4968. #endif
  4969. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  4970. static float resume_position[XYZE];
  4971. static bool move_away_flag = false;
  4972. #if ENABLED(SDSUPPORT)
  4973. static bool sd_print_paused = false;
  4974. #endif
  4975. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  4976. static millis_t next_buzz = 0;
  4977. static int8_t runout_beep = 0;
  4978. if (init) next_buzz = runout_beep = 0;
  4979. const millis_t ms = millis();
  4980. if (ELAPSED(ms, next_buzz)) {
  4981. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  4982. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  4983. BUZZ(300, 2000);
  4984. runout_beep++;
  4985. }
  4986. }
  4987. }
  4988. static void ensure_safe_temperature() {
  4989. bool heaters_heating = true;
  4990. wait_for_heatup = true; // M108 will clear this
  4991. while (wait_for_heatup && heaters_heating) {
  4992. idle();
  4993. heaters_heating = false;
  4994. HOTEND_LOOP() {
  4995. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  4996. heaters_heating = true;
  4997. #if ENABLED(ULTIPANEL)
  4998. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  4999. #endif
  5000. break;
  5001. }
  5002. }
  5003. }
  5004. }
  5005. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5006. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5007. ) {
  5008. if (move_away_flag) return false; // already paused
  5009. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5010. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5011. if (!thermalManager.allow_cold_extrude &&
  5012. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5013. SERIAL_ERROR_START();
  5014. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5015. return false;
  5016. }
  5017. #endif
  5018. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5019. }
  5020. // Indicate that the printer is paused
  5021. move_away_flag = true;
  5022. // Pause the print job and timer
  5023. #if ENABLED(SDSUPPORT)
  5024. if (card.sdprinting) {
  5025. card.pauseSDPrint();
  5026. sd_print_paused = true;
  5027. }
  5028. #endif
  5029. print_job_timer.pause();
  5030. // Show initial message and wait for synchronize steppers
  5031. if (show_lcd) {
  5032. #if ENABLED(ULTIPANEL)
  5033. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5034. #endif
  5035. }
  5036. stepper.synchronize();
  5037. // Save current position
  5038. COPY(resume_position, current_position);
  5039. set_destination_to_current();
  5040. if (retract) {
  5041. // Initial retract before move to filament change position
  5042. destination[E_AXIS] += retract;
  5043. RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
  5044. }
  5045. // Lift Z axis
  5046. if (z_lift > 0) {
  5047. destination[Z_AXIS] += z_lift;
  5048. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5049. RUNPLAN(PAUSE_PARK_Z_FEEDRATE);
  5050. }
  5051. // Move XY axes to filament exchange position
  5052. destination[X_AXIS] = x_pos;
  5053. destination[Y_AXIS] = y_pos;
  5054. clamp_to_software_endstops(destination);
  5055. RUNPLAN(PAUSE_PARK_XY_FEEDRATE);
  5056. stepper.synchronize();
  5057. if (unload_length != 0) {
  5058. if (show_lcd) {
  5059. #if ENABLED(ULTIPANEL)
  5060. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5061. idle();
  5062. #endif
  5063. }
  5064. // Unload filament
  5065. destination[E_AXIS] += unload_length;
  5066. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5067. stepper.synchronize();
  5068. }
  5069. if (show_lcd) {
  5070. #if ENABLED(ULTIPANEL)
  5071. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5072. #endif
  5073. }
  5074. #if HAS_BUZZER
  5075. filament_change_beep(max_beep_count, true);
  5076. #endif
  5077. idle();
  5078. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5079. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5080. disable_e_steppers();
  5081. safe_delay(100);
  5082. #endif
  5083. // Start the heater idle timers
  5084. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5085. HOTEND_LOOP()
  5086. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5087. return true;
  5088. }
  5089. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5090. bool nozzle_timed_out = false;
  5091. // Wait for filament insert by user and press button
  5092. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5093. wait_for_user = true; // LCD click or M108 will clear this
  5094. while (wait_for_user) {
  5095. #if HAS_BUZZER
  5096. filament_change_beep(max_beep_count);
  5097. #endif
  5098. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5099. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5100. if (!nozzle_timed_out)
  5101. HOTEND_LOOP()
  5102. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5103. if (nozzle_timed_out) {
  5104. #if ENABLED(ULTIPANEL)
  5105. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5106. #endif
  5107. // Wait for LCD click or M108
  5108. while (wait_for_user) idle(true);
  5109. // Re-enable the heaters if they timed out
  5110. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5111. // Wait for the heaters to reach the target temperatures
  5112. ensure_safe_temperature();
  5113. #if ENABLED(ULTIPANEL)
  5114. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5115. #endif
  5116. // Start the heater idle timers
  5117. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5118. HOTEND_LOOP()
  5119. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5120. wait_for_user = true; /* Wait for user to load filament */
  5121. nozzle_timed_out = false;
  5122. #if HAS_BUZZER
  5123. filament_change_beep(max_beep_count, true);
  5124. #endif
  5125. }
  5126. idle(true);
  5127. }
  5128. KEEPALIVE_STATE(IN_HANDLER);
  5129. }
  5130. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5131. bool nozzle_timed_out = false;
  5132. if (!move_away_flag) return;
  5133. // Re-enable the heaters if they timed out
  5134. HOTEND_LOOP() {
  5135. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5136. thermalManager.reset_heater_idle_timer(e);
  5137. }
  5138. if (nozzle_timed_out) ensure_safe_temperature();
  5139. #if HAS_BUZZER
  5140. filament_change_beep(max_beep_count, true);
  5141. #endif
  5142. if (load_length != 0) {
  5143. #if ENABLED(ULTIPANEL)
  5144. // Show "insert filament"
  5145. if (nozzle_timed_out)
  5146. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5147. #endif
  5148. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5149. wait_for_user = true; // LCD click or M108 will clear this
  5150. while (wait_for_user && nozzle_timed_out) {
  5151. #if HAS_BUZZER
  5152. filament_change_beep(max_beep_count);
  5153. #endif
  5154. idle(true);
  5155. }
  5156. KEEPALIVE_STATE(IN_HANDLER);
  5157. #if ENABLED(ULTIPANEL)
  5158. // Show "load" message
  5159. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5160. #endif
  5161. // Load filament
  5162. destination[E_AXIS] += load_length;
  5163. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5164. stepper.synchronize();
  5165. }
  5166. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5167. float extrude_length = initial_extrude_length;
  5168. do {
  5169. if (extrude_length > 0) {
  5170. // "Wait for filament extrude"
  5171. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5172. // Extrude filament to get into hotend
  5173. destination[E_AXIS] += extrude_length;
  5174. RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5175. stepper.synchronize();
  5176. }
  5177. // Show "Extrude More" / "Resume" menu and wait for reply
  5178. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5179. wait_for_user = false;
  5180. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5181. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5182. KEEPALIVE_STATE(IN_HANDLER);
  5183. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5184. // Keep looping if "Extrude More" was selected
  5185. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5186. #endif
  5187. #if ENABLED(ULTIPANEL)
  5188. // "Wait for print to resume"
  5189. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5190. #endif
  5191. // Set extruder to saved position
  5192. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5193. planner.set_e_position_mm(current_position[E_AXIS]);
  5194. #if IS_KINEMATIC
  5195. // Move XYZ to starting position
  5196. planner.buffer_line_kinematic(resume_position, PAUSE_PARK_XY_FEEDRATE, active_extruder);
  5197. #else
  5198. // Move XY to starting position, then Z
  5199. destination[X_AXIS] = resume_position[X_AXIS];
  5200. destination[Y_AXIS] = resume_position[Y_AXIS];
  5201. RUNPLAN(PAUSE_PARK_XY_FEEDRATE);
  5202. destination[Z_AXIS] = resume_position[Z_AXIS];
  5203. RUNPLAN(PAUSE_PARK_Z_FEEDRATE);
  5204. #endif
  5205. stepper.synchronize();
  5206. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5207. filament_ran_out = false;
  5208. #endif
  5209. #if ENABLED(ULTIPANEL)
  5210. // Show status screen
  5211. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5212. #endif
  5213. #if ENABLED(SDSUPPORT)
  5214. if (sd_print_paused) {
  5215. card.startFileprint();
  5216. sd_print_paused = false;
  5217. }
  5218. #endif
  5219. move_away_flag = false;
  5220. }
  5221. #endif // ADVANCED_PAUSE_FEATURE
  5222. #if ENABLED(SDSUPPORT)
  5223. /**
  5224. * M20: List SD card to serial output
  5225. */
  5226. inline void gcode_M20() {
  5227. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5228. card.ls();
  5229. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5230. }
  5231. /**
  5232. * M21: Init SD Card
  5233. */
  5234. inline void gcode_M21() { card.initsd(); }
  5235. /**
  5236. * M22: Release SD Card
  5237. */
  5238. inline void gcode_M22() { card.release(); }
  5239. /**
  5240. * M23: Open a file
  5241. */
  5242. inline void gcode_M23() { card.openFile(parser.string_arg, true); }
  5243. /**
  5244. * M24: Start or Resume SD Print
  5245. */
  5246. inline void gcode_M24() {
  5247. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5248. resume_print();
  5249. #endif
  5250. card.startFileprint();
  5251. print_job_timer.start();
  5252. }
  5253. /**
  5254. * M25: Pause SD Print
  5255. */
  5256. inline void gcode_M25() {
  5257. card.pauseSDPrint();
  5258. print_job_timer.pause();
  5259. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5260. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5261. #endif
  5262. }
  5263. /**
  5264. * M26: Set SD Card file index
  5265. */
  5266. inline void gcode_M26() {
  5267. if (card.cardOK && parser.seenval('S'))
  5268. card.setIndex(parser.value_long());
  5269. }
  5270. /**
  5271. * M27: Get SD Card status
  5272. */
  5273. inline void gcode_M27() { card.getStatus(); }
  5274. /**
  5275. * M28: Start SD Write
  5276. */
  5277. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5278. /**
  5279. * M29: Stop SD Write
  5280. * Processed in write to file routine above
  5281. */
  5282. inline void gcode_M29() {
  5283. // card.saving = false;
  5284. }
  5285. /**
  5286. * M30 <filename>: Delete SD Card file
  5287. */
  5288. inline void gcode_M30() {
  5289. if (card.cardOK) {
  5290. card.closefile();
  5291. card.removeFile(parser.string_arg);
  5292. }
  5293. }
  5294. #endif // SDSUPPORT
  5295. /**
  5296. * M31: Get the time since the start of SD Print (or last M109)
  5297. */
  5298. inline void gcode_M31() {
  5299. char buffer[21];
  5300. duration_t elapsed = print_job_timer.duration();
  5301. elapsed.toString(buffer);
  5302. lcd_setstatus(buffer);
  5303. SERIAL_ECHO_START();
  5304. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5305. }
  5306. #if ENABLED(SDSUPPORT)
  5307. /**
  5308. * M32: Select file and start SD Print
  5309. */
  5310. inline void gcode_M32() {
  5311. if (card.sdprinting)
  5312. stepper.synchronize();
  5313. char* namestartpos = parser.string_arg;
  5314. const bool call_procedure = parser.boolval('P');
  5315. if (card.cardOK) {
  5316. card.openFile(namestartpos, true, call_procedure);
  5317. if (parser.seenval('S'))
  5318. card.setIndex(parser.value_long());
  5319. card.startFileprint();
  5320. // Procedure calls count as normal print time.
  5321. if (!call_procedure) print_job_timer.start();
  5322. }
  5323. }
  5324. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5325. /**
  5326. * M33: Get the long full path of a file or folder
  5327. *
  5328. * Parameters:
  5329. * <dospath> Case-insensitive DOS-style path to a file or folder
  5330. *
  5331. * Example:
  5332. * M33 miscel~1/armchair/armcha~1.gco
  5333. *
  5334. * Output:
  5335. * /Miscellaneous/Armchair/Armchair.gcode
  5336. */
  5337. inline void gcode_M33() {
  5338. card.printLongPath(parser.string_arg);
  5339. }
  5340. #endif
  5341. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5342. /**
  5343. * M34: Set SD Card Sorting Options
  5344. */
  5345. inline void gcode_M34() {
  5346. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5347. if (parser.seenval('F')) {
  5348. const int v = parser.value_long();
  5349. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5350. }
  5351. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5352. }
  5353. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5354. /**
  5355. * M928: Start SD Write
  5356. */
  5357. inline void gcode_M928() {
  5358. card.openLogFile(parser.string_arg);
  5359. }
  5360. #endif // SDSUPPORT
  5361. /**
  5362. * Sensitive pin test for M42, M226
  5363. */
  5364. static bool pin_is_protected(const int8_t pin) {
  5365. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5366. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5367. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5368. return false;
  5369. }
  5370. /**
  5371. * M42: Change pin status via GCode
  5372. *
  5373. * P<pin> Pin number (LED if omitted)
  5374. * S<byte> Pin status from 0 - 255
  5375. */
  5376. inline void gcode_M42() {
  5377. if (!parser.seenval('S')) return;
  5378. const byte pin_status = parser.value_byte();
  5379. const int pin_number = parser.intval('P', LED_PIN);
  5380. if (pin_number < 0) return;
  5381. if (pin_is_protected(pin_number)) {
  5382. SERIAL_ERROR_START();
  5383. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5384. return;
  5385. }
  5386. pinMode(pin_number, OUTPUT);
  5387. digitalWrite(pin_number, pin_status);
  5388. analogWrite(pin_number, pin_status);
  5389. #if FAN_COUNT > 0
  5390. switch (pin_number) {
  5391. #if HAS_FAN0
  5392. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5393. #endif
  5394. #if HAS_FAN1
  5395. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5396. #endif
  5397. #if HAS_FAN2
  5398. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5399. #endif
  5400. }
  5401. #endif
  5402. }
  5403. #if ENABLED(PINS_DEBUGGING)
  5404. #include "pinsDebug.h"
  5405. inline void toggle_pins() {
  5406. const bool I_flag = parser.boolval('I');
  5407. const int repeat = parser.intval('R', 1),
  5408. start = parser.intval('S'),
  5409. end = parser.intval('E', NUM_DIGITAL_PINS - 1),
  5410. wait = parser.intval('W', 500);
  5411. for (uint8_t pin = start; pin <= end; pin++) {
  5412. //report_pin_state_extended(pin, I_flag, false);
  5413. if (!I_flag && pin_is_protected(pin)) {
  5414. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5415. SERIAL_EOL();
  5416. }
  5417. else {
  5418. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5419. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5420. if (pin == 46) {
  5421. SET_OUTPUT(46);
  5422. for (int16_t j = 0; j < repeat; j++) {
  5423. WRITE(46, 0); safe_delay(wait);
  5424. WRITE(46, 1); safe_delay(wait);
  5425. WRITE(46, 0); safe_delay(wait);
  5426. }
  5427. }
  5428. else if (pin == 47) {
  5429. SET_OUTPUT(47);
  5430. for (int16_t j = 0; j < repeat; j++) {
  5431. WRITE(47, 0); safe_delay(wait);
  5432. WRITE(47, 1); safe_delay(wait);
  5433. WRITE(47, 0); safe_delay(wait);
  5434. }
  5435. }
  5436. else
  5437. #endif
  5438. {
  5439. pinMode(pin, OUTPUT);
  5440. for (int16_t j = 0; j < repeat; j++) {
  5441. digitalWrite(pin, 0); safe_delay(wait);
  5442. digitalWrite(pin, 1); safe_delay(wait);
  5443. digitalWrite(pin, 0); safe_delay(wait);
  5444. }
  5445. }
  5446. }
  5447. SERIAL_EOL();
  5448. }
  5449. SERIAL_ECHOLNPGM("Done.");
  5450. } // toggle_pins
  5451. inline void servo_probe_test() {
  5452. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5453. SERIAL_ERROR_START();
  5454. SERIAL_ERRORLNPGM("SERVO not setup");
  5455. #elif !HAS_Z_SERVO_ENDSTOP
  5456. SERIAL_ERROR_START();
  5457. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5458. #else
  5459. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5460. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5461. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5462. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5463. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5464. bool probe_inverting;
  5465. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5466. #define PROBE_TEST_PIN Z_MIN_PIN
  5467. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5468. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5469. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5470. #if Z_MIN_ENDSTOP_INVERTING
  5471. SERIAL_PROTOCOLLNPGM("true");
  5472. #else
  5473. SERIAL_PROTOCOLLNPGM("false");
  5474. #endif
  5475. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5476. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5477. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5478. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5479. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5480. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5481. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5482. SERIAL_PROTOCOLLNPGM("true");
  5483. #else
  5484. SERIAL_PROTOCOLLNPGM("false");
  5485. #endif
  5486. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5487. #endif
  5488. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5489. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  5490. bool deploy_state, stow_state;
  5491. for (uint8_t i = 0; i < 4; i++) {
  5492. servo[probe_index].move(z_servo_angle[0]); //deploy
  5493. safe_delay(500);
  5494. deploy_state = digitalRead(PROBE_TEST_PIN);
  5495. servo[probe_index].move(z_servo_angle[1]); //stow
  5496. safe_delay(500);
  5497. stow_state = digitalRead(PROBE_TEST_PIN);
  5498. }
  5499. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5500. refresh_cmd_timeout();
  5501. if (deploy_state != stow_state) {
  5502. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5503. if (deploy_state) {
  5504. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5505. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5506. }
  5507. else {
  5508. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5509. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5510. }
  5511. #if ENABLED(BLTOUCH)
  5512. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5513. #endif
  5514. }
  5515. else { // measure active signal length
  5516. servo[probe_index].move(z_servo_angle[0]); // deploy
  5517. safe_delay(500);
  5518. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5519. uint16_t probe_counter = 0;
  5520. // Allow 30 seconds max for operator to trigger probe
  5521. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5522. safe_delay(2);
  5523. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5524. refresh_cmd_timeout();
  5525. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  5526. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  5527. safe_delay(2);
  5528. if (probe_counter == 50)
  5529. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5530. else if (probe_counter >= 2)
  5531. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5532. else
  5533. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5534. servo[probe_index].move(z_servo_angle[1]); //stow
  5535. } // pulse detected
  5536. } // for loop waiting for trigger
  5537. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5538. } // measure active signal length
  5539. #endif
  5540. } // servo_probe_test
  5541. /**
  5542. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5543. *
  5544. * M43 - report name and state of pin(s)
  5545. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5546. * I Flag to ignore Marlin's pin protection.
  5547. *
  5548. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5549. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5550. * I Flag to ignore Marlin's pin protection.
  5551. *
  5552. * M43 E<bool> - Enable / disable background endstop monitoring
  5553. * - Machine continues to operate
  5554. * - Reports changes to endstops
  5555. * - Toggles LED_PIN when an endstop changes
  5556. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5557. *
  5558. * M43 T - Toggle pin(s) and report which pin is being toggled
  5559. * S<pin> - Start Pin number. If not given, will default to 0
  5560. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5561. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5562. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5563. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5564. *
  5565. * M43 S - Servo probe test
  5566. * P<index> - Probe index (optional - defaults to 0
  5567. */
  5568. inline void gcode_M43() {
  5569. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  5570. toggle_pins();
  5571. return;
  5572. }
  5573. // Enable or disable endstop monitoring
  5574. if (parser.seen('E')) {
  5575. endstop_monitor_flag = parser.value_bool();
  5576. SERIAL_PROTOCOLPGM("endstop monitor ");
  5577. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5578. SERIAL_PROTOCOLLNPGM("abled");
  5579. return;
  5580. }
  5581. if (parser.seen('S')) {
  5582. servo_probe_test();
  5583. return;
  5584. }
  5585. // Get the range of pins to test or watch
  5586. const uint8_t first_pin = parser.byteval('P'),
  5587. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5588. if (first_pin > last_pin) return;
  5589. const bool ignore_protection = parser.boolval('I');
  5590. // Watch until click, M108, or reset
  5591. if (parser.boolval('W')) {
  5592. SERIAL_PROTOCOLLNPGM("Watching pins");
  5593. byte pin_state[last_pin - first_pin + 1];
  5594. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5595. if (pin_is_protected(pin) && !ignore_protection) continue;
  5596. pinMode(pin, INPUT_PULLUP);
  5597. delay(1);
  5598. /*
  5599. if (IS_ANALOG(pin))
  5600. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5601. else
  5602. //*/
  5603. pin_state[pin - first_pin] = digitalRead(pin);
  5604. }
  5605. #if HAS_RESUME_CONTINUE
  5606. wait_for_user = true;
  5607. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5608. #endif
  5609. for (;;) {
  5610. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5611. if (pin_is_protected(pin) && !ignore_protection) continue;
  5612. const byte val =
  5613. /*
  5614. IS_ANALOG(pin)
  5615. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5616. :
  5617. //*/
  5618. digitalRead(pin);
  5619. if (val != pin_state[pin - first_pin]) {
  5620. report_pin_state_extended(pin, ignore_protection, false);
  5621. pin_state[pin - first_pin] = val;
  5622. }
  5623. }
  5624. #if HAS_RESUME_CONTINUE
  5625. if (!wait_for_user) {
  5626. KEEPALIVE_STATE(IN_HANDLER);
  5627. break;
  5628. }
  5629. #endif
  5630. safe_delay(200);
  5631. }
  5632. return;
  5633. }
  5634. // Report current state of selected pin(s)
  5635. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5636. report_pin_state_extended(pin, ignore_protection, true);
  5637. }
  5638. #endif // PINS_DEBUGGING
  5639. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5640. /**
  5641. * M48: Z probe repeatability measurement function.
  5642. *
  5643. * Usage:
  5644. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5645. * P = Number of sampled points (4-50, default 10)
  5646. * X = Sample X position
  5647. * Y = Sample Y position
  5648. * V = Verbose level (0-4, default=1)
  5649. * E = Engage Z probe for each reading
  5650. * L = Number of legs of movement before probe
  5651. * S = Schizoid (Or Star if you prefer)
  5652. *
  5653. * This function assumes the bed has been homed. Specifically, that a G28 command
  5654. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5655. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5656. * regenerated.
  5657. */
  5658. inline void gcode_M48() {
  5659. if (axis_unhomed_error()) return;
  5660. const int8_t verbose_level = parser.byteval('V', 1);
  5661. if (!WITHIN(verbose_level, 0, 4)) {
  5662. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  5663. return;
  5664. }
  5665. if (verbose_level > 0)
  5666. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5667. const int8_t n_samples = parser.byteval('P', 10);
  5668. if (!WITHIN(n_samples, 4, 50)) {
  5669. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5670. return;
  5671. }
  5672. const bool stow_probe_after_each = parser.boolval('E');
  5673. float X_current = current_position[X_AXIS],
  5674. Y_current = current_position[Y_AXIS];
  5675. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  5676. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5677. #if DISABLED(DELTA)
  5678. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5679. out_of_range_error(PSTR("X"));
  5680. return;
  5681. }
  5682. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5683. out_of_range_error(PSTR("Y"));
  5684. return;
  5685. }
  5686. #else
  5687. if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
  5688. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5689. return;
  5690. }
  5691. #endif
  5692. bool seen_L = parser.seen('L');
  5693. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  5694. if (n_legs > 15) {
  5695. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5696. return;
  5697. }
  5698. if (n_legs == 1) n_legs = 2;
  5699. const bool schizoid_flag = parser.boolval('S');
  5700. if (schizoid_flag && !seen_L) n_legs = 7;
  5701. /**
  5702. * Now get everything to the specified probe point So we can safely do a
  5703. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5704. * we don't want to use that as a starting point for each probe.
  5705. */
  5706. if (verbose_level > 2)
  5707. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5708. // Disable bed level correction in M48 because we want the raw data when we probe
  5709. #if HAS_LEVELING
  5710. const bool was_enabled = leveling_is_active();
  5711. set_bed_leveling_enabled(false);
  5712. #endif
  5713. setup_for_endstop_or_probe_move();
  5714. // Move to the first point, deploy, and probe
  5715. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5716. if (isnan(t)) return;
  5717. randomSeed(millis());
  5718. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5719. for (uint8_t n = 0; n < n_samples; n++) {
  5720. if (n_legs) {
  5721. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5722. float angle = random(0.0, 360.0),
  5723. radius = random(
  5724. #if ENABLED(DELTA)
  5725. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5726. #else
  5727. 5, X_MAX_LENGTH / 8
  5728. #endif
  5729. );
  5730. if (verbose_level > 3) {
  5731. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5732. SERIAL_ECHOPAIR(" angle: ", angle);
  5733. SERIAL_ECHOPGM(" Direction: ");
  5734. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5735. SERIAL_ECHOLNPGM("Clockwise");
  5736. }
  5737. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5738. double delta_angle;
  5739. if (schizoid_flag)
  5740. // The points of a 5 point star are 72 degrees apart. We need to
  5741. // skip a point and go to the next one on the star.
  5742. delta_angle = dir * 2.0 * 72.0;
  5743. else
  5744. // If we do this line, we are just trying to move further
  5745. // around the circle.
  5746. delta_angle = dir * (float) random(25, 45);
  5747. angle += delta_angle;
  5748. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5749. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5750. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5751. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5752. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5753. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5754. #if DISABLED(DELTA)
  5755. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5756. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5757. #else
  5758. // If we have gone out too far, we can do a simple fix and scale the numbers
  5759. // back in closer to the origin.
  5760. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
  5761. X_current *= 0.8;
  5762. Y_current *= 0.8;
  5763. if (verbose_level > 3) {
  5764. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5765. SERIAL_ECHOLNPAIR(", ", Y_current);
  5766. }
  5767. }
  5768. #endif
  5769. if (verbose_level > 3) {
  5770. SERIAL_PROTOCOLPGM("Going to:");
  5771. SERIAL_ECHOPAIR(" X", X_current);
  5772. SERIAL_ECHOPAIR(" Y", Y_current);
  5773. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5774. }
  5775. do_blocking_move_to_xy(X_current, Y_current);
  5776. } // n_legs loop
  5777. } // n_legs
  5778. // Probe a single point
  5779. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5780. /**
  5781. * Get the current mean for the data points we have so far
  5782. */
  5783. double sum = 0.0;
  5784. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5785. mean = sum / (n + 1);
  5786. NOMORE(min, sample_set[n]);
  5787. NOLESS(max, sample_set[n]);
  5788. /**
  5789. * Now, use that mean to calculate the standard deviation for the
  5790. * data points we have so far
  5791. */
  5792. sum = 0.0;
  5793. for (uint8_t j = 0; j <= n; j++)
  5794. sum += sq(sample_set[j] - mean);
  5795. sigma = SQRT(sum / (n + 1));
  5796. if (verbose_level > 0) {
  5797. if (verbose_level > 1) {
  5798. SERIAL_PROTOCOL(n + 1);
  5799. SERIAL_PROTOCOLPGM(" of ");
  5800. SERIAL_PROTOCOL((int)n_samples);
  5801. SERIAL_PROTOCOLPGM(": z: ");
  5802. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5803. if (verbose_level > 2) {
  5804. SERIAL_PROTOCOLPGM(" mean: ");
  5805. SERIAL_PROTOCOL_F(mean, 4);
  5806. SERIAL_PROTOCOLPGM(" sigma: ");
  5807. SERIAL_PROTOCOL_F(sigma, 6);
  5808. SERIAL_PROTOCOLPGM(" min: ");
  5809. SERIAL_PROTOCOL_F(min, 3);
  5810. SERIAL_PROTOCOLPGM(" max: ");
  5811. SERIAL_PROTOCOL_F(max, 3);
  5812. SERIAL_PROTOCOLPGM(" range: ");
  5813. SERIAL_PROTOCOL_F(max-min, 3);
  5814. }
  5815. SERIAL_EOL();
  5816. }
  5817. }
  5818. } // End of probe loop
  5819. if (STOW_PROBE()) return;
  5820. SERIAL_PROTOCOLPGM("Finished!");
  5821. SERIAL_EOL();
  5822. if (verbose_level > 0) {
  5823. SERIAL_PROTOCOLPGM("Mean: ");
  5824. SERIAL_PROTOCOL_F(mean, 6);
  5825. SERIAL_PROTOCOLPGM(" Min: ");
  5826. SERIAL_PROTOCOL_F(min, 3);
  5827. SERIAL_PROTOCOLPGM(" Max: ");
  5828. SERIAL_PROTOCOL_F(max, 3);
  5829. SERIAL_PROTOCOLPGM(" Range: ");
  5830. SERIAL_PROTOCOL_F(max-min, 3);
  5831. SERIAL_EOL();
  5832. }
  5833. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5834. SERIAL_PROTOCOL_F(sigma, 6);
  5835. SERIAL_EOL();
  5836. SERIAL_EOL();
  5837. clean_up_after_endstop_or_probe_move();
  5838. // Re-enable bed level correction if it had been on
  5839. #if HAS_LEVELING
  5840. set_bed_leveling_enabled(was_enabled);
  5841. #endif
  5842. report_current_position();
  5843. }
  5844. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5845. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  5846. inline void gcode_M49() {
  5847. ubl.g26_debug_flag ^= true;
  5848. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5849. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5850. }
  5851. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  5852. /**
  5853. * M75: Start print timer
  5854. */
  5855. inline void gcode_M75() { print_job_timer.start(); }
  5856. /**
  5857. * M76: Pause print timer
  5858. */
  5859. inline void gcode_M76() { print_job_timer.pause(); }
  5860. /**
  5861. * M77: Stop print timer
  5862. */
  5863. inline void gcode_M77() { print_job_timer.stop(); }
  5864. #if ENABLED(PRINTCOUNTER)
  5865. /**
  5866. * M78: Show print statistics
  5867. */
  5868. inline void gcode_M78() {
  5869. // "M78 S78" will reset the statistics
  5870. if (parser.intval('S') == 78)
  5871. print_job_timer.initStats();
  5872. else
  5873. print_job_timer.showStats();
  5874. }
  5875. #endif
  5876. /**
  5877. * M104: Set hot end temperature
  5878. */
  5879. inline void gcode_M104() {
  5880. if (get_target_extruder_from_command(104)) return;
  5881. if (DEBUGGING(DRYRUN)) return;
  5882. #if ENABLED(SINGLENOZZLE)
  5883. if (target_extruder != active_extruder) return;
  5884. #endif
  5885. if (parser.seenval('S')) {
  5886. const int16_t temp = parser.value_celsius();
  5887. thermalManager.setTargetHotend(temp, target_extruder);
  5888. #if ENABLED(DUAL_X_CARRIAGE)
  5889. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5890. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  5891. #endif
  5892. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5893. /**
  5894. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5895. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5896. * standby mode, for instance in a dual extruder setup, without affecting
  5897. * the running print timer.
  5898. */
  5899. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  5900. print_job_timer.stop();
  5901. LCD_MESSAGEPGM(WELCOME_MSG);
  5902. }
  5903. #endif
  5904. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  5905. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5906. }
  5907. #if ENABLED(AUTOTEMP)
  5908. planner.autotemp_M104_M109();
  5909. #endif
  5910. }
  5911. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5912. void print_heater_state(const float &c, const float &t,
  5913. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5914. const float r,
  5915. #endif
  5916. const int8_t e=-2
  5917. ) {
  5918. SERIAL_PROTOCOLCHAR(' ');
  5919. SERIAL_PROTOCOLCHAR(
  5920. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  5921. e == -1 ? 'B' : 'T'
  5922. #elif HAS_TEMP_HOTEND
  5923. 'T'
  5924. #else
  5925. 'B'
  5926. #endif
  5927. );
  5928. #if HOTENDS > 1
  5929. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  5930. #endif
  5931. SERIAL_PROTOCOLCHAR(':');
  5932. SERIAL_PROTOCOL(c);
  5933. SERIAL_PROTOCOLPAIR(" /" , t);
  5934. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5935. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  5936. SERIAL_PROTOCOLCHAR(')');
  5937. #endif
  5938. }
  5939. void print_heaterstates() {
  5940. #if HAS_TEMP_HOTEND
  5941. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  5942. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5943. , thermalManager.rawHotendTemp(target_extruder)
  5944. #endif
  5945. );
  5946. #endif
  5947. #if HAS_TEMP_BED
  5948. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  5949. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5950. thermalManager.rawBedTemp(),
  5951. #endif
  5952. -1 // BED
  5953. );
  5954. #endif
  5955. #if HOTENDS > 1
  5956. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  5957. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5958. thermalManager.rawHotendTemp(e),
  5959. #endif
  5960. e
  5961. );
  5962. #endif
  5963. SERIAL_PROTOCOLPGM(" @:");
  5964. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5965. #if HAS_TEMP_BED
  5966. SERIAL_PROTOCOLPGM(" B@:");
  5967. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5968. #endif
  5969. #if HOTENDS > 1
  5970. HOTEND_LOOP() {
  5971. SERIAL_PROTOCOLPAIR(" @", e);
  5972. SERIAL_PROTOCOLCHAR(':');
  5973. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5974. }
  5975. #endif
  5976. }
  5977. #endif
  5978. /**
  5979. * M105: Read hot end and bed temperature
  5980. */
  5981. inline void gcode_M105() {
  5982. if (get_target_extruder_from_command(105)) return;
  5983. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5984. SERIAL_PROTOCOLPGM(MSG_OK);
  5985. print_heaterstates();
  5986. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5987. SERIAL_ERROR_START();
  5988. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5989. #endif
  5990. SERIAL_EOL();
  5991. }
  5992. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5993. static uint8_t auto_report_temp_interval;
  5994. static millis_t next_temp_report_ms;
  5995. /**
  5996. * M155: Set temperature auto-report interval. M155 S<seconds>
  5997. */
  5998. inline void gcode_M155() {
  5999. if (parser.seenval('S')) {
  6000. auto_report_temp_interval = parser.value_byte();
  6001. NOMORE(auto_report_temp_interval, 60);
  6002. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6003. }
  6004. }
  6005. inline void auto_report_temperatures() {
  6006. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6007. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6008. print_heaterstates();
  6009. SERIAL_EOL();
  6010. }
  6011. }
  6012. #endif // AUTO_REPORT_TEMPERATURES
  6013. #if FAN_COUNT > 0
  6014. /**
  6015. * M106: Set Fan Speed
  6016. *
  6017. * S<int> Speed between 0-255
  6018. * P<index> Fan index, if more than one fan
  6019. */
  6020. inline void gcode_M106() {
  6021. uint16_t s = parser.ushortval('S', 255);
  6022. NOMORE(s, 255);
  6023. const uint8_t p = parser.byteval('P', 0);
  6024. if (p < FAN_COUNT) fanSpeeds[p] = s;
  6025. }
  6026. /**
  6027. * M107: Fan Off
  6028. */
  6029. inline void gcode_M107() {
  6030. const uint16_t p = parser.ushortval('P');
  6031. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6032. }
  6033. #endif // FAN_COUNT > 0
  6034. #if DISABLED(EMERGENCY_PARSER)
  6035. /**
  6036. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6037. */
  6038. inline void gcode_M108() { wait_for_heatup = false; }
  6039. /**
  6040. * M112: Emergency Stop
  6041. */
  6042. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6043. /**
  6044. * M410: Quickstop - Abort all planned moves
  6045. *
  6046. * This will stop the carriages mid-move, so most likely they
  6047. * will be out of sync with the stepper position after this.
  6048. */
  6049. inline void gcode_M410() { quickstop_stepper(); }
  6050. #endif
  6051. /**
  6052. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6053. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6054. */
  6055. #ifndef MIN_COOLING_SLOPE_DEG
  6056. #define MIN_COOLING_SLOPE_DEG 1.50
  6057. #endif
  6058. #ifndef MIN_COOLING_SLOPE_TIME
  6059. #define MIN_COOLING_SLOPE_TIME 60
  6060. #endif
  6061. inline void gcode_M109() {
  6062. if (get_target_extruder_from_command(109)) return;
  6063. if (DEBUGGING(DRYRUN)) return;
  6064. #if ENABLED(SINGLENOZZLE)
  6065. if (target_extruder != active_extruder) return;
  6066. #endif
  6067. const bool no_wait_for_cooling = parser.seenval('S');
  6068. if (no_wait_for_cooling || parser.seenval('R')) {
  6069. const int16_t temp = parser.value_celsius();
  6070. thermalManager.setTargetHotend(temp, target_extruder);
  6071. #if ENABLED(DUAL_X_CARRIAGE)
  6072. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6073. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6074. #endif
  6075. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6076. /**
  6077. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6078. * standby mode, (e.g., in a dual extruder setup) without affecting
  6079. * the running print timer.
  6080. */
  6081. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6082. print_job_timer.stop();
  6083. LCD_MESSAGEPGM(WELCOME_MSG);
  6084. }
  6085. else
  6086. print_job_timer.start();
  6087. #endif
  6088. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6089. }
  6090. else return;
  6091. #if ENABLED(AUTOTEMP)
  6092. planner.autotemp_M104_M109();
  6093. #endif
  6094. #if TEMP_RESIDENCY_TIME > 0
  6095. millis_t residency_start_ms = 0;
  6096. // Loop until the temperature has stabilized
  6097. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6098. #else
  6099. // Loop until the temperature is very close target
  6100. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6101. #endif
  6102. float target_temp = -1.0, old_temp = 9999.0;
  6103. bool wants_to_cool = false;
  6104. wait_for_heatup = true;
  6105. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6106. KEEPALIVE_STATE(NOT_BUSY);
  6107. #if ENABLED(PRINTER_EVENT_LEDS)
  6108. const float start_temp = thermalManager.degHotend(target_extruder);
  6109. uint8_t old_blue = 0;
  6110. #endif
  6111. do {
  6112. // Target temperature might be changed during the loop
  6113. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6114. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6115. target_temp = thermalManager.degTargetHotend(target_extruder);
  6116. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6117. if (no_wait_for_cooling && wants_to_cool) break;
  6118. }
  6119. now = millis();
  6120. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6121. next_temp_ms = now + 1000UL;
  6122. print_heaterstates();
  6123. #if TEMP_RESIDENCY_TIME > 0
  6124. SERIAL_PROTOCOLPGM(" W:");
  6125. if (residency_start_ms)
  6126. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6127. else
  6128. SERIAL_PROTOCOLCHAR('?');
  6129. #endif
  6130. SERIAL_EOL();
  6131. }
  6132. idle();
  6133. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6134. const float temp = thermalManager.degHotend(target_extruder);
  6135. #if ENABLED(PRINTER_EVENT_LEDS)
  6136. // Gradually change LED strip from violet to red as nozzle heats up
  6137. if (!wants_to_cool) {
  6138. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6139. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  6140. }
  6141. #endif
  6142. #if TEMP_RESIDENCY_TIME > 0
  6143. const float temp_diff = FABS(target_temp - temp);
  6144. if (!residency_start_ms) {
  6145. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6146. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6147. }
  6148. else if (temp_diff > TEMP_HYSTERESIS) {
  6149. // Restart the timer whenever the temperature falls outside the hysteresis.
  6150. residency_start_ms = now;
  6151. }
  6152. #endif
  6153. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6154. if (wants_to_cool) {
  6155. // break after MIN_COOLING_SLOPE_TIME seconds
  6156. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6157. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6158. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6159. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6160. old_temp = temp;
  6161. }
  6162. }
  6163. } while (wait_for_heatup && TEMP_CONDITIONS);
  6164. if (wait_for_heatup) {
  6165. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6166. #if ENABLED(PRINTER_EVENT_LEDS)
  6167. #if ENABLED(RGBW_LED)
  6168. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  6169. #else
  6170. set_led_color(255, 255, 255); // Set LEDs All On
  6171. #endif
  6172. #endif
  6173. }
  6174. KEEPALIVE_STATE(IN_HANDLER);
  6175. }
  6176. #if HAS_TEMP_BED
  6177. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6178. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6179. #endif
  6180. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6181. #define MIN_COOLING_SLOPE_TIME_BED 60
  6182. #endif
  6183. /**
  6184. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6185. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6186. */
  6187. inline void gcode_M190() {
  6188. if (DEBUGGING(DRYRUN)) return;
  6189. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6190. const bool no_wait_for_cooling = parser.seenval('S');
  6191. if (no_wait_for_cooling || parser.seenval('R')) {
  6192. thermalManager.setTargetBed(parser.value_celsius());
  6193. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6194. if (parser.value_celsius() > BED_MINTEMP)
  6195. print_job_timer.start();
  6196. #endif
  6197. }
  6198. else return;
  6199. #if TEMP_BED_RESIDENCY_TIME > 0
  6200. millis_t residency_start_ms = 0;
  6201. // Loop until the temperature has stabilized
  6202. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6203. #else
  6204. // Loop until the temperature is very close target
  6205. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6206. #endif
  6207. float target_temp = -1.0, old_temp = 9999.0;
  6208. bool wants_to_cool = false;
  6209. wait_for_heatup = true;
  6210. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6211. KEEPALIVE_STATE(NOT_BUSY);
  6212. target_extruder = active_extruder; // for print_heaterstates
  6213. #if ENABLED(PRINTER_EVENT_LEDS)
  6214. const float start_temp = thermalManager.degBed();
  6215. uint8_t old_red = 255;
  6216. #endif
  6217. do {
  6218. // Target temperature might be changed during the loop
  6219. if (target_temp != thermalManager.degTargetBed()) {
  6220. wants_to_cool = thermalManager.isCoolingBed();
  6221. target_temp = thermalManager.degTargetBed();
  6222. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6223. if (no_wait_for_cooling && wants_to_cool) break;
  6224. }
  6225. now = millis();
  6226. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6227. next_temp_ms = now + 1000UL;
  6228. print_heaterstates();
  6229. #if TEMP_BED_RESIDENCY_TIME > 0
  6230. SERIAL_PROTOCOLPGM(" W:");
  6231. if (residency_start_ms)
  6232. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6233. else
  6234. SERIAL_PROTOCOLCHAR('?');
  6235. #endif
  6236. SERIAL_EOL();
  6237. }
  6238. idle();
  6239. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6240. const float temp = thermalManager.degBed();
  6241. #if ENABLED(PRINTER_EVENT_LEDS)
  6242. // Gradually change LED strip from blue to violet as bed heats up
  6243. if (!wants_to_cool) {
  6244. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6245. if (red != old_red) set_led_color((old_red = red), 0, 255);
  6246. }
  6247. #endif
  6248. #if TEMP_BED_RESIDENCY_TIME > 0
  6249. const float temp_diff = FABS(target_temp - temp);
  6250. if (!residency_start_ms) {
  6251. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6252. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6253. }
  6254. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6255. // Restart the timer whenever the temperature falls outside the hysteresis.
  6256. residency_start_ms = now;
  6257. }
  6258. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6259. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6260. if (wants_to_cool) {
  6261. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6262. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6263. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6264. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6265. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6266. old_temp = temp;
  6267. }
  6268. }
  6269. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6270. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6271. KEEPALIVE_STATE(IN_HANDLER);
  6272. }
  6273. #endif // HAS_TEMP_BED
  6274. /**
  6275. * M110: Set Current Line Number
  6276. */
  6277. inline void gcode_M110() {
  6278. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6279. }
  6280. /**
  6281. * M111: Set the debug level
  6282. */
  6283. inline void gcode_M111() {
  6284. marlin_debug_flags = parser.byteval('S', (uint8_t)DEBUG_NONE);
  6285. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  6286. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  6287. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  6288. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  6289. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  6290. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6291. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  6292. #endif
  6293. const static char* const debug_strings[] PROGMEM = {
  6294. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6296. , str_debug_32
  6297. #endif
  6298. };
  6299. SERIAL_ECHO_START();
  6300. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6301. if (marlin_debug_flags) {
  6302. uint8_t comma = 0;
  6303. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6304. if (TEST(marlin_debug_flags, i)) {
  6305. if (comma++) SERIAL_CHAR(',');
  6306. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6307. }
  6308. }
  6309. }
  6310. else {
  6311. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6312. }
  6313. SERIAL_EOL();
  6314. }
  6315. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6316. /**
  6317. * M113: Get or set Host Keepalive interval (0 to disable)
  6318. *
  6319. * S<seconds> Optional. Set the keepalive interval.
  6320. */
  6321. inline void gcode_M113() {
  6322. if (parser.seenval('S')) {
  6323. host_keepalive_interval = parser.value_byte();
  6324. NOMORE(host_keepalive_interval, 60);
  6325. }
  6326. else {
  6327. SERIAL_ECHO_START();
  6328. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6329. }
  6330. }
  6331. #endif
  6332. #if ENABLED(BARICUDA)
  6333. #if HAS_HEATER_1
  6334. /**
  6335. * M126: Heater 1 valve open
  6336. */
  6337. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6338. /**
  6339. * M127: Heater 1 valve close
  6340. */
  6341. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6342. #endif
  6343. #if HAS_HEATER_2
  6344. /**
  6345. * M128: Heater 2 valve open
  6346. */
  6347. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6348. /**
  6349. * M129: Heater 2 valve close
  6350. */
  6351. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6352. #endif
  6353. #endif // BARICUDA
  6354. /**
  6355. * M140: Set bed temperature
  6356. */
  6357. inline void gcode_M140() {
  6358. if (DEBUGGING(DRYRUN)) return;
  6359. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6360. }
  6361. #if ENABLED(ULTIPANEL)
  6362. /**
  6363. * M145: Set the heatup state for a material in the LCD menu
  6364. *
  6365. * S<material> (0=PLA, 1=ABS)
  6366. * H<hotend temp>
  6367. * B<bed temp>
  6368. * F<fan speed>
  6369. */
  6370. inline void gcode_M145() {
  6371. const uint8_t material = (uint8_t)parser.intval('S');
  6372. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6373. SERIAL_ERROR_START();
  6374. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6375. }
  6376. else {
  6377. int v;
  6378. if (parser.seenval('H')) {
  6379. v = parser.value_int();
  6380. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6381. }
  6382. if (parser.seenval('F')) {
  6383. v = parser.value_int();
  6384. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6385. }
  6386. #if TEMP_SENSOR_BED != 0
  6387. if (parser.seenval('B')) {
  6388. v = parser.value_int();
  6389. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  6390. }
  6391. #endif
  6392. }
  6393. }
  6394. #endif // ULTIPANEL
  6395. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6396. /**
  6397. * M149: Set temperature units
  6398. */
  6399. inline void gcode_M149() {
  6400. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  6401. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  6402. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  6403. }
  6404. #endif
  6405. #if HAS_POWER_SWITCH
  6406. /**
  6407. * M80 : Turn on the Power Supply
  6408. * M80 S : Report the current state and exit
  6409. */
  6410. inline void gcode_M80() {
  6411. // S: Report the current power supply state and exit
  6412. if (parser.seen('S')) {
  6413. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  6414. return;
  6415. }
  6416. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  6417. /**
  6418. * If you have a switch on suicide pin, this is useful
  6419. * if you want to start another print with suicide feature after
  6420. * a print without suicide...
  6421. */
  6422. #if HAS_SUICIDE
  6423. OUT_WRITE(SUICIDE_PIN, HIGH);
  6424. #endif
  6425. #if ENABLED(HAVE_TMC2130)
  6426. delay(100);
  6427. tmc2130_init(); // Settings only stick when the driver has power
  6428. #endif
  6429. powersupply_on = true;
  6430. #if ENABLED(ULTIPANEL)
  6431. LCD_MESSAGEPGM(WELCOME_MSG);
  6432. #endif
  6433. }
  6434. #endif // HAS_POWER_SWITCH
  6435. /**
  6436. * M81: Turn off Power, including Power Supply, if there is one.
  6437. *
  6438. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  6439. */
  6440. inline void gcode_M81() {
  6441. thermalManager.disable_all_heaters();
  6442. stepper.finish_and_disable();
  6443. #if FAN_COUNT > 0
  6444. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  6445. #if ENABLED(PROBING_FANS_OFF)
  6446. fans_paused = false;
  6447. ZERO(paused_fanSpeeds);
  6448. #endif
  6449. #endif
  6450. safe_delay(1000); // Wait 1 second before switching off
  6451. #if HAS_SUICIDE
  6452. stepper.synchronize();
  6453. suicide();
  6454. #elif HAS_POWER_SWITCH
  6455. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  6456. powersupply_on = false;
  6457. #endif
  6458. #if ENABLED(ULTIPANEL)
  6459. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6460. #endif
  6461. }
  6462. /**
  6463. * M82: Set E codes absolute (default)
  6464. */
  6465. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6466. /**
  6467. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6468. */
  6469. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6470. /**
  6471. * M18, M84: Disable stepper motors
  6472. */
  6473. inline void gcode_M18_M84() {
  6474. if (parser.seenval('S')) {
  6475. stepper_inactive_time = parser.value_millis_from_seconds();
  6476. }
  6477. else {
  6478. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  6479. if (all_axis) {
  6480. stepper.finish_and_disable();
  6481. }
  6482. else {
  6483. stepper.synchronize();
  6484. if (parser.seen('X')) disable_X();
  6485. if (parser.seen('Y')) disable_Y();
  6486. if (parser.seen('Z')) disable_Z();
  6487. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  6488. if (parser.seen('E')) disable_e_steppers();
  6489. #endif
  6490. }
  6491. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  6492. ubl_lcd_map_control = defer_return_to_status = false;
  6493. #endif
  6494. }
  6495. }
  6496. /**
  6497. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6498. */
  6499. inline void gcode_M85() {
  6500. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  6501. }
  6502. /**
  6503. * Multi-stepper support for M92, M201, M203
  6504. */
  6505. #if ENABLED(DISTINCT_E_FACTORS)
  6506. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6507. #define TARGET_EXTRUDER target_extruder
  6508. #else
  6509. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6510. #define TARGET_EXTRUDER 0
  6511. #endif
  6512. /**
  6513. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6514. * (Follows the same syntax as G92)
  6515. *
  6516. * With multiple extruders use T to specify which one.
  6517. */
  6518. inline void gcode_M92() {
  6519. GET_TARGET_EXTRUDER(92);
  6520. LOOP_XYZE(i) {
  6521. if (parser.seen(axis_codes[i])) {
  6522. if (i == E_AXIS) {
  6523. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  6524. if (value < 20.0) {
  6525. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6526. planner.max_jerk[E_AXIS] *= factor;
  6527. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6528. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6529. }
  6530. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6531. }
  6532. else {
  6533. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  6534. }
  6535. }
  6536. }
  6537. planner.refresh_positioning();
  6538. }
  6539. /**
  6540. * Output the current position to serial
  6541. */
  6542. void report_current_position() {
  6543. SERIAL_PROTOCOLPGM("X:");
  6544. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6545. SERIAL_PROTOCOLPGM(" Y:");
  6546. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6547. SERIAL_PROTOCOLPGM(" Z:");
  6548. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6549. SERIAL_PROTOCOLPGM(" E:");
  6550. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6551. stepper.report_positions();
  6552. #if IS_SCARA
  6553. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6554. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6555. SERIAL_EOL();
  6556. #endif
  6557. }
  6558. #ifdef M114_DETAIL
  6559. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  6560. char str[12];
  6561. for (uint8_t i = 0; i < n; i++) {
  6562. SERIAL_CHAR(' ');
  6563. SERIAL_CHAR(axis_codes[i]);
  6564. SERIAL_CHAR(':');
  6565. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  6566. }
  6567. SERIAL_EOL();
  6568. }
  6569. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  6570. void report_current_position_detail() {
  6571. stepper.synchronize();
  6572. SERIAL_PROTOCOLPGM("\nLogical:");
  6573. report_xyze(current_position);
  6574. SERIAL_PROTOCOLPGM("Raw: ");
  6575. const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
  6576. report_xyz(raw);
  6577. SERIAL_PROTOCOLPGM("Leveled:");
  6578. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  6579. planner.apply_leveling(leveled);
  6580. report_xyz(leveled);
  6581. SERIAL_PROTOCOLPGM("UnLevel:");
  6582. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  6583. planner.unapply_leveling(unleveled);
  6584. report_xyz(unleveled);
  6585. #if IS_KINEMATIC
  6586. #if IS_SCARA
  6587. SERIAL_PROTOCOLPGM("ScaraK: ");
  6588. #else
  6589. SERIAL_PROTOCOLPGM("DeltaK: ");
  6590. #endif
  6591. inverse_kinematics(leveled); // writes delta[]
  6592. report_xyz(delta);
  6593. #endif
  6594. SERIAL_PROTOCOLPGM("Stepper:");
  6595. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  6596. report_xyze(step_count, 4, 0);
  6597. #if IS_SCARA
  6598. const float deg[XYZ] = {
  6599. stepper.get_axis_position_degrees(A_AXIS),
  6600. stepper.get_axis_position_degrees(B_AXIS)
  6601. };
  6602. SERIAL_PROTOCOLPGM("Degrees:");
  6603. report_xyze(deg, 2);
  6604. #endif
  6605. SERIAL_PROTOCOLPGM("FromStp:");
  6606. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  6607. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  6608. report_xyze(from_steppers);
  6609. const float diff[XYZE] = {
  6610. from_steppers[X_AXIS] - leveled[X_AXIS],
  6611. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  6612. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  6613. from_steppers[E_AXIS] - current_position[E_AXIS]
  6614. };
  6615. SERIAL_PROTOCOLPGM("Differ: ");
  6616. report_xyze(diff);
  6617. }
  6618. #endif // M114_DETAIL
  6619. /**
  6620. * M114: Report current position to host
  6621. */
  6622. inline void gcode_M114() {
  6623. #ifdef M114_DETAIL
  6624. if (parser.seen('D')) {
  6625. report_current_position_detail();
  6626. return;
  6627. }
  6628. #endif
  6629. stepper.synchronize();
  6630. report_current_position();
  6631. }
  6632. /**
  6633. * M115: Capabilities string
  6634. */
  6635. inline void gcode_M115() {
  6636. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6637. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6638. // EEPROM (M500, M501)
  6639. #if ENABLED(EEPROM_SETTINGS)
  6640. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6641. #else
  6642. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6643. #endif
  6644. // AUTOREPORT_TEMP (M155)
  6645. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6646. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6647. #else
  6648. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6649. #endif
  6650. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6651. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6652. // Print Job timer M75, M76, M77
  6653. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  6654. // AUTOLEVEL (G29)
  6655. #if HAS_ABL
  6656. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6657. #else
  6658. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6659. #endif
  6660. // Z_PROBE (G30)
  6661. #if HAS_BED_PROBE
  6662. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6663. #else
  6664. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6665. #endif
  6666. // MESH_REPORT (M420 V)
  6667. #if HAS_LEVELING
  6668. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6669. #else
  6670. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6671. #endif
  6672. // SOFTWARE_POWER (M80, M81)
  6673. #if HAS_POWER_SWITCH
  6674. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6675. #else
  6676. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6677. #endif
  6678. // CASE LIGHTS (M355)
  6679. #if HAS_CASE_LIGHT
  6680. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6681. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  6682. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  6683. }
  6684. else
  6685. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6686. #else
  6687. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6688. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  6689. #endif
  6690. // EMERGENCY_PARSER (M108, M112, M410)
  6691. #if ENABLED(EMERGENCY_PARSER)
  6692. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6693. #else
  6694. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6695. #endif
  6696. #endif // EXTENDED_CAPABILITIES_REPORT
  6697. }
  6698. /**
  6699. * M117: Set LCD Status Message
  6700. */
  6701. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  6702. /**
  6703. * M118: Display a message in the host console.
  6704. *
  6705. * A Append '// ' for an action command, as in OctoPrint
  6706. * E Have the host 'echo:' the text
  6707. */
  6708. inline void gcode_M118() {
  6709. if (parser.boolval('E')) SERIAL_ECHO_START();
  6710. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  6711. SERIAL_ECHOLN(parser.string_arg);
  6712. }
  6713. /**
  6714. * M119: Output endstop states to serial output
  6715. */
  6716. inline void gcode_M119() { endstops.M119(); }
  6717. /**
  6718. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6719. */
  6720. inline void gcode_M120() { endstops.enable_globally(true); }
  6721. /**
  6722. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6723. */
  6724. inline void gcode_M121() { endstops.enable_globally(false); }
  6725. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6726. /**
  6727. * M125: Store current position and move to filament change position.
  6728. * Called on pause (by M25) to prevent material leaking onto the
  6729. * object. On resume (M24) the head will be moved back and the
  6730. * print will resume.
  6731. *
  6732. * If Marlin is compiled without SD Card support, M125 can be
  6733. * used directly to pause the print and move to park position,
  6734. * resuming with a button click or M108.
  6735. *
  6736. * L = override retract length
  6737. * X = override X
  6738. * Y = override Y
  6739. * Z = override Z raise
  6740. */
  6741. inline void gcode_M125() {
  6742. // Initial retract before move to filament change position
  6743. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  6744. #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
  6745. - (PAUSE_PARK_RETRACT_LENGTH)
  6746. #endif
  6747. ;
  6748. // Lift Z axis
  6749. const float z_lift = parser.linearval('Z')
  6750. #if PAUSE_PARK_Z_ADD > 0
  6751. + PAUSE_PARK_Z_ADD
  6752. #endif
  6753. ;
  6754. // Move XY axes to filament change position or given position
  6755. const float x_pos = parser.linearval('X')
  6756. #ifdef PAUSE_PARK_X_POS
  6757. + PAUSE_PARK_X_POS
  6758. #endif
  6759. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6760. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  6761. #endif
  6762. ;
  6763. const float y_pos = parser.linearval('Y')
  6764. #ifdef PAUSE_PARK_Y_POS
  6765. + PAUSE_PARK_Y_POS
  6766. #endif
  6767. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6768. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  6769. #endif
  6770. ;
  6771. const bool job_running = print_job_timer.isRunning();
  6772. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  6773. #if DISABLED(SDSUPPORT)
  6774. // Wait for lcd click or M108
  6775. wait_for_filament_reload();
  6776. // Return to print position and continue
  6777. resume_print();
  6778. if (job_running) print_job_timer.start();
  6779. #endif
  6780. }
  6781. }
  6782. #endif // PARK_HEAD_ON_PAUSE
  6783. #if HAS_COLOR_LEDS
  6784. /**
  6785. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6786. *
  6787. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6788. *
  6789. * Examples:
  6790. *
  6791. * M150 R255 ; Turn LED red
  6792. * M150 R255 U127 ; Turn LED orange (PWM only)
  6793. * M150 ; Turn LED off
  6794. * M150 R U B ; Turn LED white
  6795. * M150 W ; Turn LED white using a white LED
  6796. *
  6797. */
  6798. inline void gcode_M150() {
  6799. set_led_color(
  6800. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  6801. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  6802. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  6803. #if ENABLED(RGBW_LED)
  6804. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  6805. #endif
  6806. );
  6807. }
  6808. #endif // HAS_COLOR_LEDS
  6809. /**
  6810. * M200: Set filament diameter and set E axis units to cubic units
  6811. *
  6812. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6813. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6814. */
  6815. inline void gcode_M200() {
  6816. if (get_target_extruder_from_command(200)) return;
  6817. if (parser.seen('D')) {
  6818. // setting any extruder filament size disables volumetric on the assumption that
  6819. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6820. // for all extruders
  6821. volumetric_enabled = (parser.value_linear_units() != 0.0);
  6822. if (volumetric_enabled) {
  6823. filament_size[target_extruder] = parser.value_linear_units();
  6824. // make sure all extruders have some sane value for the filament size
  6825. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6826. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6827. }
  6828. }
  6829. calculate_volumetric_multipliers();
  6830. }
  6831. /**
  6832. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6833. *
  6834. * With multiple extruders use T to specify which one.
  6835. */
  6836. inline void gcode_M201() {
  6837. GET_TARGET_EXTRUDER(201);
  6838. LOOP_XYZE(i) {
  6839. if (parser.seen(axis_codes[i])) {
  6840. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6841. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  6842. }
  6843. }
  6844. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6845. planner.reset_acceleration_rates();
  6846. }
  6847. #if 0 // Not used for Sprinter/grbl gen6
  6848. inline void gcode_M202() {
  6849. LOOP_XYZE(i) {
  6850. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6851. }
  6852. }
  6853. #endif
  6854. /**
  6855. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6856. *
  6857. * With multiple extruders use T to specify which one.
  6858. */
  6859. inline void gcode_M203() {
  6860. GET_TARGET_EXTRUDER(203);
  6861. LOOP_XYZE(i)
  6862. if (parser.seen(axis_codes[i])) {
  6863. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6864. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  6865. }
  6866. }
  6867. /**
  6868. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6869. *
  6870. * P = Printing moves
  6871. * R = Retract only (no X, Y, Z) moves
  6872. * T = Travel (non printing) moves
  6873. *
  6874. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6875. */
  6876. inline void gcode_M204() {
  6877. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6878. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  6879. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6880. }
  6881. if (parser.seen('P')) {
  6882. planner.acceleration = parser.value_linear_units();
  6883. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6884. }
  6885. if (parser.seen('R')) {
  6886. planner.retract_acceleration = parser.value_linear_units();
  6887. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6888. }
  6889. if (parser.seen('T')) {
  6890. planner.travel_acceleration = parser.value_linear_units();
  6891. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6892. }
  6893. }
  6894. /**
  6895. * M205: Set Advanced Settings
  6896. *
  6897. * S = Min Feed Rate (units/s)
  6898. * T = Min Travel Feed Rate (units/s)
  6899. * B = Min Segment Time (µs)
  6900. * X = Max X Jerk (units/sec^2)
  6901. * Y = Max Y Jerk (units/sec^2)
  6902. * Z = Max Z Jerk (units/sec^2)
  6903. * E = Max E Jerk (units/sec^2)
  6904. */
  6905. inline void gcode_M205() {
  6906. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  6907. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  6908. if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
  6909. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  6910. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  6911. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  6912. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  6913. }
  6914. #if HAS_M206_COMMAND
  6915. /**
  6916. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6917. *
  6918. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  6919. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  6920. * *** In the next 1.2 release, it will simply be disabled by default.
  6921. */
  6922. inline void gcode_M206() {
  6923. LOOP_XYZ(i)
  6924. if (parser.seen(axis_codes[i]))
  6925. set_home_offset((AxisEnum)i, parser.value_linear_units());
  6926. #if ENABLED(MORGAN_SCARA)
  6927. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
  6928. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
  6929. #endif
  6930. SYNC_PLAN_POSITION_KINEMATIC();
  6931. report_current_position();
  6932. }
  6933. #endif // HAS_M206_COMMAND
  6934. #if ENABLED(DELTA)
  6935. /**
  6936. * M665: Set delta configurations
  6937. *
  6938. * H = delta height
  6939. * L = diagonal rod
  6940. * R = delta radius
  6941. * S = segments per second
  6942. * B = delta calibration radius
  6943. * X = Alpha (Tower 1) angle trim
  6944. * Y = Beta (Tower 2) angle trim
  6945. * Z = Rotate A and B by this angle
  6946. */
  6947. inline void gcode_M665() {
  6948. if (parser.seen('H')) {
  6949. home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
  6950. update_software_endstops(Z_AXIS);
  6951. }
  6952. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  6953. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  6954. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  6955. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  6956. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  6957. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  6958. if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
  6959. delta_tower_angle_trim[A_AXIS] -= parser.value_float();
  6960. delta_tower_angle_trim[B_AXIS] -= parser.value_float();
  6961. }
  6962. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6963. }
  6964. /**
  6965. * M666: Set delta endstop adjustment
  6966. */
  6967. inline void gcode_M666() {
  6968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6969. if (DEBUGGING(LEVELING)) {
  6970. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6971. }
  6972. #endif
  6973. LOOP_XYZ(i) {
  6974. if (parser.seen(axis_codes[i])) {
  6975. endstop_adj[i] = parser.value_linear_units();
  6976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6977. if (DEBUGGING(LEVELING)) {
  6978. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6979. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6980. }
  6981. #endif
  6982. }
  6983. }
  6984. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6985. if (DEBUGGING(LEVELING)) {
  6986. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6987. }
  6988. #endif
  6989. // normalize endstops so all are <=0; set the residue to delta height
  6990. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  6991. home_offset[Z_AXIS] -= z_temp;
  6992. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  6993. }
  6994. #elif IS_SCARA
  6995. /**
  6996. * M665: Set SCARA settings
  6997. *
  6998. * Parameters:
  6999. *
  7000. * S[segments-per-second] - Segments-per-second
  7001. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7002. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7003. *
  7004. * A, P, and X are all aliases for the shoulder angle
  7005. * B, T, and Y are all aliases for the elbow angle
  7006. */
  7007. inline void gcode_M665() {
  7008. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7009. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7010. const uint8_t sumAPX = hasA + hasP + hasX;
  7011. if (sumAPX == 1)
  7012. home_offset[A_AXIS] = parser.value_float();
  7013. else if (sumAPX > 1) {
  7014. SERIAL_ERROR_START();
  7015. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7016. return;
  7017. }
  7018. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7019. const uint8_t sumBTY = hasB + hasT + hasY;
  7020. if (sumBTY == 1)
  7021. home_offset[B_AXIS] = parser.value_float();
  7022. else if (sumBTY > 1) {
  7023. SERIAL_ERROR_START();
  7024. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7025. return;
  7026. }
  7027. }
  7028. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  7029. /**
  7030. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7031. */
  7032. inline void gcode_M666() {
  7033. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7034. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  7035. }
  7036. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7037. #if ENABLED(FWRETRACT)
  7038. /**
  7039. * M207: Set firmware retraction values
  7040. *
  7041. * S[+units] retract_length
  7042. * W[+units] retract_length_swap (multi-extruder)
  7043. * F[units/min] retract_feedrate_mm_s
  7044. * Z[units] retract_zlift
  7045. */
  7046. inline void gcode_M207() {
  7047. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7048. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7049. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7050. #if EXTRUDERS > 1
  7051. if (parser.seen('W')) retract_length_swap = parser.value_axis_units(E_AXIS);
  7052. #endif
  7053. }
  7054. /**
  7055. * M208: Set firmware un-retraction values
  7056. *
  7057. * S[+units] retract_recover_length (in addition to M207 S*)
  7058. * W[+units] retract_recover_length_swap (multi-extruder)
  7059. * F[units/min] retract_recover_feedrate_mm_s
  7060. */
  7061. inline void gcode_M208() {
  7062. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7063. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7064. #if EXTRUDERS > 1
  7065. if (parser.seen('W')) retract_recover_length_swap = parser.value_axis_units(E_AXIS);
  7066. #endif
  7067. }
  7068. /**
  7069. * M209: Enable automatic retract (M209 S1)
  7070. * For slicers that don't support G10/11, reversed extrude-only
  7071. * moves will be classified as retraction.
  7072. */
  7073. inline void gcode_M209() {
  7074. if (parser.seen('S')) {
  7075. autoretract_enabled = parser.value_bool();
  7076. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7077. }
  7078. }
  7079. #endif // FWRETRACT
  7080. /**
  7081. * M211: Enable, Disable, and/or Report software endstops
  7082. *
  7083. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7084. */
  7085. inline void gcode_M211() {
  7086. SERIAL_ECHO_START();
  7087. #if HAS_SOFTWARE_ENDSTOPS
  7088. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7089. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7090. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7091. #else
  7092. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7093. SERIAL_ECHOPGM(MSG_OFF);
  7094. #endif
  7095. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7096. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7097. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7098. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7099. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7100. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7101. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7102. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7103. }
  7104. #if HOTENDS > 1
  7105. /**
  7106. * M218 - set hotend offset (in linear units)
  7107. *
  7108. * T<tool>
  7109. * X<xoffset>
  7110. * Y<yoffset>
  7111. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7112. */
  7113. inline void gcode_M218() {
  7114. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7115. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7116. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7117. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  7118. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7119. #endif
  7120. SERIAL_ECHO_START();
  7121. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7122. HOTEND_LOOP() {
  7123. SERIAL_CHAR(' ');
  7124. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7125. SERIAL_CHAR(',');
  7126. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7127. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  7128. SERIAL_CHAR(',');
  7129. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7130. #endif
  7131. }
  7132. SERIAL_EOL();
  7133. }
  7134. #endif // HOTENDS > 1
  7135. /**
  7136. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7137. */
  7138. inline void gcode_M220() {
  7139. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7140. }
  7141. /**
  7142. * M221: Set extrusion percentage (M221 T0 S95)
  7143. */
  7144. inline void gcode_M221() {
  7145. if (get_target_extruder_from_command(221)) return;
  7146. if (parser.seenval('S'))
  7147. flow_percentage[target_extruder] = parser.value_int();
  7148. }
  7149. /**
  7150. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7151. */
  7152. inline void gcode_M226() {
  7153. if (parser.seen('P')) {
  7154. const int pin_number = parser.value_int(),
  7155. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7156. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7157. int target = LOW;
  7158. stepper.synchronize();
  7159. pinMode(pin_number, INPUT);
  7160. switch (pin_state) {
  7161. case 1:
  7162. target = HIGH;
  7163. break;
  7164. case 0:
  7165. target = LOW;
  7166. break;
  7167. case -1:
  7168. target = !digitalRead(pin_number);
  7169. break;
  7170. }
  7171. while (digitalRead(pin_number) != target) idle();
  7172. } // pin_state -1 0 1 && pin_number > -1
  7173. } // parser.seen('P')
  7174. }
  7175. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7176. /**
  7177. * M260: Send data to a I2C slave device
  7178. *
  7179. * This is a PoC, the formating and arguments for the GCODE will
  7180. * change to be more compatible, the current proposal is:
  7181. *
  7182. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7183. *
  7184. * M260 B<byte-1 value in base 10>
  7185. * M260 B<byte-2 value in base 10>
  7186. * M260 B<byte-3 value in base 10>
  7187. *
  7188. * M260 S1 ; Send the buffered data and reset the buffer
  7189. * M260 R1 ; Reset the buffer without sending data
  7190. *
  7191. */
  7192. inline void gcode_M260() {
  7193. // Set the target address
  7194. if (parser.seen('A')) i2c.address(parser.value_byte());
  7195. // Add a new byte to the buffer
  7196. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7197. // Flush the buffer to the bus
  7198. if (parser.seen('S')) i2c.send();
  7199. // Reset and rewind the buffer
  7200. else if (parser.seen('R')) i2c.reset();
  7201. }
  7202. /**
  7203. * M261: Request X bytes from I2C slave device
  7204. *
  7205. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7206. */
  7207. inline void gcode_M261() {
  7208. if (parser.seen('A')) i2c.address(parser.value_byte());
  7209. uint8_t bytes = parser.byteval('B', 1);
  7210. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7211. i2c.relay(bytes);
  7212. }
  7213. else {
  7214. SERIAL_ERROR_START();
  7215. SERIAL_ERRORLN("Bad i2c request");
  7216. }
  7217. }
  7218. #endif // EXPERIMENTAL_I2CBUS
  7219. #if HAS_SERVOS
  7220. /**
  7221. * M280: Get or set servo position. P<index> [S<angle>]
  7222. */
  7223. inline void gcode_M280() {
  7224. if (!parser.seen('P')) return;
  7225. const int servo_index = parser.value_int();
  7226. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7227. if (parser.seen('S'))
  7228. MOVE_SERVO(servo_index, parser.value_int());
  7229. else {
  7230. SERIAL_ECHO_START();
  7231. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7232. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7233. }
  7234. }
  7235. else {
  7236. SERIAL_ERROR_START();
  7237. SERIAL_ECHOPAIR("Servo ", servo_index);
  7238. SERIAL_ECHOLNPGM(" out of range");
  7239. }
  7240. }
  7241. #endif // HAS_SERVOS
  7242. #if HAS_BUZZER
  7243. /**
  7244. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7245. */
  7246. inline void gcode_M300() {
  7247. uint16_t const frequency = parser.ushortval('S', 260);
  7248. uint16_t duration = parser.ushortval('P', 1000);
  7249. // Limits the tone duration to 0-5 seconds.
  7250. NOMORE(duration, 5000);
  7251. BUZZ(duration, frequency);
  7252. }
  7253. #endif // HAS_BUZZER
  7254. #if ENABLED(PIDTEMP)
  7255. /**
  7256. * M301: Set PID parameters P I D (and optionally C, L)
  7257. *
  7258. * P[float] Kp term
  7259. * I[float] Ki term (unscaled)
  7260. * D[float] Kd term (unscaled)
  7261. *
  7262. * With PID_EXTRUSION_SCALING:
  7263. *
  7264. * C[float] Kc term
  7265. * L[float] LPQ length
  7266. */
  7267. inline void gcode_M301() {
  7268. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7269. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7270. const uint8_t e = parser.byteval('E'); // extruder being updated
  7271. if (e < HOTENDS) { // catch bad input value
  7272. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7273. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7274. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7275. #if ENABLED(PID_EXTRUSION_SCALING)
  7276. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7277. if (parser.seen('L')) lpq_len = parser.value_float();
  7278. NOMORE(lpq_len, LPQ_MAX_LEN);
  7279. #endif
  7280. thermalManager.updatePID();
  7281. SERIAL_ECHO_START();
  7282. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7283. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7284. #endif // PID_PARAMS_PER_HOTEND
  7285. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7286. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7287. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7288. #if ENABLED(PID_EXTRUSION_SCALING)
  7289. //Kc does not have scaling applied above, or in resetting defaults
  7290. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7291. #endif
  7292. SERIAL_EOL();
  7293. }
  7294. else {
  7295. SERIAL_ERROR_START();
  7296. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7297. }
  7298. }
  7299. #endif // PIDTEMP
  7300. #if ENABLED(PIDTEMPBED)
  7301. inline void gcode_M304() {
  7302. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7303. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7304. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7305. thermalManager.updatePID();
  7306. SERIAL_ECHO_START();
  7307. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7308. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7309. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7310. }
  7311. #endif // PIDTEMPBED
  7312. #if defined(CHDK) || HAS_PHOTOGRAPH
  7313. /**
  7314. * M240: Trigger a camera by emulating a Canon RC-1
  7315. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7316. */
  7317. inline void gcode_M240() {
  7318. #ifdef CHDK
  7319. OUT_WRITE(CHDK, HIGH);
  7320. chdkHigh = millis();
  7321. chdkActive = true;
  7322. #elif HAS_PHOTOGRAPH
  7323. const uint8_t NUM_PULSES = 16;
  7324. const float PULSE_LENGTH = 0.01524;
  7325. for (int i = 0; i < NUM_PULSES; i++) {
  7326. WRITE(PHOTOGRAPH_PIN, HIGH);
  7327. _delay_ms(PULSE_LENGTH);
  7328. WRITE(PHOTOGRAPH_PIN, LOW);
  7329. _delay_ms(PULSE_LENGTH);
  7330. }
  7331. delay(7.33);
  7332. for (int i = 0; i < NUM_PULSES; i++) {
  7333. WRITE(PHOTOGRAPH_PIN, HIGH);
  7334. _delay_ms(PULSE_LENGTH);
  7335. WRITE(PHOTOGRAPH_PIN, LOW);
  7336. _delay_ms(PULSE_LENGTH);
  7337. }
  7338. #endif // !CHDK && HAS_PHOTOGRAPH
  7339. }
  7340. #endif // CHDK || PHOTOGRAPH_PIN
  7341. #if HAS_LCD_CONTRAST
  7342. /**
  7343. * M250: Read and optionally set the LCD contrast
  7344. */
  7345. inline void gcode_M250() {
  7346. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  7347. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  7348. SERIAL_PROTOCOL(lcd_contrast);
  7349. SERIAL_EOL();
  7350. }
  7351. #endif // HAS_LCD_CONTRAST
  7352. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7353. /**
  7354. * M302: Allow cold extrudes, or set the minimum extrude temperature
  7355. *
  7356. * S<temperature> sets the minimum extrude temperature
  7357. * P<bool> enables (1) or disables (0) cold extrusion
  7358. *
  7359. * Examples:
  7360. *
  7361. * M302 ; report current cold extrusion state
  7362. * M302 P0 ; enable cold extrusion checking
  7363. * M302 P1 ; disables cold extrusion checking
  7364. * M302 S0 ; always allow extrusion (disables checking)
  7365. * M302 S170 ; only allow extrusion above 170
  7366. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  7367. */
  7368. inline void gcode_M302() {
  7369. const bool seen_S = parser.seen('S');
  7370. if (seen_S) {
  7371. thermalManager.extrude_min_temp = parser.value_celsius();
  7372. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  7373. }
  7374. if (parser.seen('P'))
  7375. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  7376. else if (!seen_S) {
  7377. // Report current state
  7378. SERIAL_ECHO_START();
  7379. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  7380. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  7381. SERIAL_ECHOLNPGM("C)");
  7382. }
  7383. }
  7384. #endif // PREVENT_COLD_EXTRUSION
  7385. /**
  7386. * M303: PID relay autotune
  7387. *
  7388. * S<temperature> sets the target temperature. (default 150C)
  7389. * E<extruder> (-1 for the bed) (default 0)
  7390. * C<cycles>
  7391. * U<bool> with a non-zero value will apply the result to current settings
  7392. */
  7393. inline void gcode_M303() {
  7394. #if HAS_PID_HEATING
  7395. const int e = parser.intval('E'), c = parser.intval('C', 5);
  7396. const bool u = parser.boolval('U');
  7397. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  7398. if (WITHIN(e, 0, HOTENDS - 1))
  7399. target_extruder = e;
  7400. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  7401. thermalManager.PID_autotune(temp, e, c, u);
  7402. KEEPALIVE_STATE(IN_HANDLER);
  7403. #else
  7404. SERIAL_ERROR_START();
  7405. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  7406. #endif
  7407. }
  7408. #if ENABLED(MORGAN_SCARA)
  7409. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  7410. if (IsRunning()) {
  7411. forward_kinematics_SCARA(delta_a, delta_b);
  7412. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  7413. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  7414. destination[Z_AXIS] = current_position[Z_AXIS];
  7415. prepare_move_to_destination();
  7416. return true;
  7417. }
  7418. return false;
  7419. }
  7420. /**
  7421. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  7422. */
  7423. inline bool gcode_M360() {
  7424. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  7425. return SCARA_move_to_cal(0, 120);
  7426. }
  7427. /**
  7428. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  7429. */
  7430. inline bool gcode_M361() {
  7431. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  7432. return SCARA_move_to_cal(90, 130);
  7433. }
  7434. /**
  7435. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  7436. */
  7437. inline bool gcode_M362() {
  7438. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  7439. return SCARA_move_to_cal(60, 180);
  7440. }
  7441. /**
  7442. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  7443. */
  7444. inline bool gcode_M363() {
  7445. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  7446. return SCARA_move_to_cal(50, 90);
  7447. }
  7448. /**
  7449. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  7450. */
  7451. inline bool gcode_M364() {
  7452. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  7453. return SCARA_move_to_cal(45, 135);
  7454. }
  7455. #endif // SCARA
  7456. #if ENABLED(EXT_SOLENOID)
  7457. void enable_solenoid(const uint8_t num) {
  7458. switch (num) {
  7459. case 0:
  7460. OUT_WRITE(SOL0_PIN, HIGH);
  7461. break;
  7462. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7463. case 1:
  7464. OUT_WRITE(SOL1_PIN, HIGH);
  7465. break;
  7466. #endif
  7467. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7468. case 2:
  7469. OUT_WRITE(SOL2_PIN, HIGH);
  7470. break;
  7471. #endif
  7472. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7473. case 3:
  7474. OUT_WRITE(SOL3_PIN, HIGH);
  7475. break;
  7476. #endif
  7477. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7478. case 4:
  7479. OUT_WRITE(SOL4_PIN, HIGH);
  7480. break;
  7481. #endif
  7482. default:
  7483. SERIAL_ECHO_START();
  7484. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  7485. break;
  7486. }
  7487. }
  7488. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  7489. void disable_all_solenoids() {
  7490. OUT_WRITE(SOL0_PIN, LOW);
  7491. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  7492. OUT_WRITE(SOL1_PIN, LOW);
  7493. #endif
  7494. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  7495. OUT_WRITE(SOL2_PIN, LOW);
  7496. #endif
  7497. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  7498. OUT_WRITE(SOL3_PIN, LOW);
  7499. #endif
  7500. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  7501. OUT_WRITE(SOL4_PIN, LOW);
  7502. #endif
  7503. }
  7504. /**
  7505. * M380: Enable solenoid on the active extruder
  7506. */
  7507. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  7508. /**
  7509. * M381: Disable all solenoids
  7510. */
  7511. inline void gcode_M381() { disable_all_solenoids(); }
  7512. #endif // EXT_SOLENOID
  7513. /**
  7514. * M400: Finish all moves
  7515. */
  7516. inline void gcode_M400() { stepper.synchronize(); }
  7517. #if HAS_BED_PROBE
  7518. /**
  7519. * M401: Engage Z Servo endstop if available
  7520. */
  7521. inline void gcode_M401() { DEPLOY_PROBE(); }
  7522. /**
  7523. * M402: Retract Z Servo endstop if enabled
  7524. */
  7525. inline void gcode_M402() { STOW_PROBE(); }
  7526. #endif // HAS_BED_PROBE
  7527. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  7528. /**
  7529. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  7530. */
  7531. inline void gcode_M404() {
  7532. if (parser.seen('W')) {
  7533. filament_width_nominal = parser.value_linear_units();
  7534. }
  7535. else {
  7536. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  7537. SERIAL_PROTOCOLLN(filament_width_nominal);
  7538. }
  7539. }
  7540. /**
  7541. * M405: Turn on filament sensor for control
  7542. */
  7543. inline void gcode_M405() {
  7544. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  7545. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  7546. if (parser.seen('D')) {
  7547. meas_delay_cm = parser.value_byte();
  7548. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  7549. }
  7550. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  7551. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  7552. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  7553. measurement_delay[i] = temp_ratio;
  7554. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  7555. }
  7556. filament_sensor = true;
  7557. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7558. //SERIAL_PROTOCOL(filament_width_meas);
  7559. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7560. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7561. }
  7562. /**
  7563. * M406: Turn off filament sensor for control
  7564. */
  7565. inline void gcode_M406() { filament_sensor = false; }
  7566. /**
  7567. * M407: Get measured filament diameter on serial output
  7568. */
  7569. inline void gcode_M407() {
  7570. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7571. SERIAL_PROTOCOLLN(filament_width_meas);
  7572. }
  7573. #endif // FILAMENT_WIDTH_SENSOR
  7574. void quickstop_stepper() {
  7575. stepper.quick_stop();
  7576. stepper.synchronize();
  7577. set_current_from_steppers_for_axis(ALL_AXES);
  7578. SYNC_PLAN_POSITION_KINEMATIC();
  7579. }
  7580. #if HAS_LEVELING
  7581. /**
  7582. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7583. *
  7584. * S[bool] Turns leveling on or off
  7585. * Z[height] Sets the Z fade height (0 or none to disable)
  7586. * V[bool] Verbose - Print the leveling grid
  7587. *
  7588. * With AUTO_BED_LEVELING_UBL only:
  7589. *
  7590. * L[index] Load UBL mesh from index (0 is default)
  7591. */
  7592. inline void gcode_M420() {
  7593. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7594. // L to load a mesh from the EEPROM
  7595. if (parser.seen('L')) {
  7596. #if ENABLED(EEPROM_SETTINGS)
  7597. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
  7598. const int16_t a = settings.calc_num_meshes();
  7599. if (!a) {
  7600. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7601. return;
  7602. }
  7603. if (!WITHIN(storage_slot, 0, a - 1)) {
  7604. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  7605. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  7606. return;
  7607. }
  7608. settings.load_mesh(storage_slot);
  7609. ubl.state.storage_slot = storage_slot;
  7610. #else
  7611. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  7612. return;
  7613. #endif
  7614. }
  7615. // L to load a mesh from the EEPROM
  7616. if (parser.seen('L') || parser.seen('V')) {
  7617. ubl.display_map(0); // Currently only supports one map type
  7618. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7619. SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
  7620. }
  7621. #endif // AUTO_BED_LEVELING_UBL
  7622. // V to print the matrix or mesh
  7623. if (parser.seen('V')) {
  7624. #if ABL_PLANAR
  7625. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  7626. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7627. if (leveling_is_valid()) {
  7628. print_bilinear_leveling_grid();
  7629. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7630. bed_level_virt_print();
  7631. #endif
  7632. }
  7633. #elif ENABLED(MESH_BED_LEVELING)
  7634. if (leveling_is_valid()) {
  7635. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7636. mbl_mesh_report();
  7637. }
  7638. #endif
  7639. }
  7640. const bool to_enable = parser.boolval('S');
  7641. if (parser.seen('S'))
  7642. set_bed_leveling_enabled(to_enable);
  7643. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7644. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  7645. #endif
  7646. const bool new_status = leveling_is_active();
  7647. if (to_enable && !new_status) {
  7648. SERIAL_ERROR_START();
  7649. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7650. }
  7651. SERIAL_ECHO_START();
  7652. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7653. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7654. SERIAL_ECHO_START();
  7655. SERIAL_ECHOPGM("Fade Height ");
  7656. if (planner.z_fade_height > 0.0)
  7657. SERIAL_ECHOLN(planner.z_fade_height);
  7658. else
  7659. SERIAL_ECHOLNPGM(MSG_OFF);
  7660. #endif
  7661. }
  7662. #endif
  7663. #if ENABLED(MESH_BED_LEVELING)
  7664. /**
  7665. * M421: Set a single Mesh Bed Leveling Z coordinate
  7666. *
  7667. * Usage:
  7668. * M421 X<linear> Y<linear> Z<linear>
  7669. * M421 X<linear> Y<linear> Q<offset>
  7670. * M421 I<xindex> J<yindex> Z<linear>
  7671. * M421 I<xindex> J<yindex> Q<offset>
  7672. */
  7673. inline void gcode_M421() {
  7674. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  7675. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
  7676. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  7677. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
  7678. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  7679. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  7680. SERIAL_ERROR_START();
  7681. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7682. }
  7683. else if (ix < 0 || iy < 0) {
  7684. SERIAL_ERROR_START();
  7685. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7686. }
  7687. else
  7688. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  7689. }
  7690. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7691. /**
  7692. * M421: Set a single Mesh Bed Leveling Z coordinate
  7693. *
  7694. * Usage:
  7695. * M421 I<xindex> J<yindex> Z<linear>
  7696. * M421 I<xindex> J<yindex> Q<offset>
  7697. */
  7698. inline void gcode_M421() {
  7699. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7700. const bool hasI = ix >= 0,
  7701. hasJ = iy >= 0,
  7702. hasZ = parser.seen('Z'),
  7703. hasQ = !hasZ && parser.seen('Q');
  7704. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  7705. SERIAL_ERROR_START();
  7706. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7707. }
  7708. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7709. SERIAL_ERROR_START();
  7710. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7711. }
  7712. else {
  7713. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  7714. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7715. bed_level_virt_interpolate();
  7716. #endif
  7717. }
  7718. }
  7719. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7720. /**
  7721. * M421: Set a single Mesh Bed Leveling Z coordinate
  7722. *
  7723. * Usage:
  7724. * M421 I<xindex> J<yindex> Z<linear>
  7725. * M421 I<xindex> J<yindex> Q<offset>
  7726. * M421 C Z<linear>
  7727. * M421 C Q<offset>
  7728. */
  7729. inline void gcode_M421() {
  7730. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  7731. const bool hasI = ix >= 0,
  7732. hasJ = iy >= 0,
  7733. hasC = parser.seen('C'),
  7734. hasZ = parser.seen('Z'),
  7735. hasQ = !hasZ && parser.seen('Q');
  7736. if (hasC) {
  7737. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
  7738. ix = location.x_index;
  7739. iy = location.y_index;
  7740. }
  7741. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  7742. SERIAL_ERROR_START();
  7743. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7744. }
  7745. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  7746. SERIAL_ERROR_START();
  7747. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7748. }
  7749. else
  7750. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  7751. }
  7752. #endif // AUTO_BED_LEVELING_UBL
  7753. #if HAS_M206_COMMAND
  7754. /**
  7755. * M428: Set home_offset based on the distance between the
  7756. * current_position and the nearest "reference point."
  7757. * If an axis is past center its endstop position
  7758. * is the reference-point. Otherwise it uses 0. This allows
  7759. * the Z offset to be set near the bed when using a max endstop.
  7760. *
  7761. * M428 can't be used more than 2cm away from 0 or an endstop.
  7762. *
  7763. * Use M206 to set these values directly.
  7764. */
  7765. inline void gcode_M428() {
  7766. bool err = false;
  7767. LOOP_XYZ(i) {
  7768. if (axis_homed[i]) {
  7769. const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7770. diff = base - RAW_POSITION(current_position[i], i);
  7771. if (WITHIN(diff, -20, 20)) {
  7772. set_home_offset((AxisEnum)i, diff);
  7773. }
  7774. else {
  7775. SERIAL_ERROR_START();
  7776. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7777. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7778. BUZZ(200, 40);
  7779. err = true;
  7780. break;
  7781. }
  7782. }
  7783. }
  7784. if (!err) {
  7785. SYNC_PLAN_POSITION_KINEMATIC();
  7786. report_current_position();
  7787. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7788. BUZZ(100, 659);
  7789. BUZZ(100, 698);
  7790. }
  7791. }
  7792. #endif // HAS_M206_COMMAND
  7793. /**
  7794. * M500: Store settings in EEPROM
  7795. */
  7796. inline void gcode_M500() {
  7797. (void)settings.save();
  7798. }
  7799. /**
  7800. * M501: Read settings from EEPROM
  7801. */
  7802. inline void gcode_M501() {
  7803. (void)settings.load();
  7804. }
  7805. /**
  7806. * M502: Revert to default settings
  7807. */
  7808. inline void gcode_M502() {
  7809. (void)settings.reset();
  7810. }
  7811. #if DISABLED(DISABLE_M503)
  7812. /**
  7813. * M503: print settings currently in memory
  7814. */
  7815. inline void gcode_M503() {
  7816. (void)settings.report(!parser.boolval('S', true));
  7817. }
  7818. #endif
  7819. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7820. /**
  7821. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7822. */
  7823. inline void gcode_M540() {
  7824. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  7825. }
  7826. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7827. #if HAS_BED_PROBE
  7828. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7829. static float last_zoffset = NAN;
  7830. if (!isnan(last_zoffset)) {
  7831. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  7832. const float diff = zprobe_zoffset - last_zoffset;
  7833. #endif
  7834. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7835. // Correct bilinear grid for new probe offset
  7836. if (diff) {
  7837. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7838. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7839. z_values[x][y] -= diff;
  7840. }
  7841. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7842. bed_level_virt_interpolate();
  7843. #endif
  7844. #endif
  7845. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7846. if (!no_babystep && leveling_is_active())
  7847. thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7848. #else
  7849. UNUSED(no_babystep);
  7850. #endif
  7851. #if ENABLED(DELTA) // correct the delta_height
  7852. home_offset[Z_AXIS] -= diff;
  7853. #endif
  7854. }
  7855. last_zoffset = zprobe_zoffset;
  7856. }
  7857. inline void gcode_M851() {
  7858. SERIAL_ECHO_START();
  7859. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7860. if (parser.seen('Z')) {
  7861. const float value = parser.value_linear_units();
  7862. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7863. zprobe_zoffset = value;
  7864. refresh_zprobe_zoffset();
  7865. SERIAL_ECHO(zprobe_zoffset);
  7866. }
  7867. else
  7868. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7869. }
  7870. else
  7871. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7872. SERIAL_EOL();
  7873. }
  7874. #endif // HAS_BED_PROBE
  7875. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  7876. /**
  7877. * M600: Pause for filament change
  7878. *
  7879. * E[distance] - Retract the filament this far (negative value)
  7880. * Z[distance] - Move the Z axis by this distance
  7881. * X[position] - Move to this X position, with Y
  7882. * Y[position] - Move to this Y position, with X
  7883. * U[distance] - Retract distance for removal (negative value) (manual reload)
  7884. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  7885. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  7886. *
  7887. * Default values are used for omitted arguments.
  7888. *
  7889. */
  7890. inline void gcode_M600() {
  7891. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  7892. // Don't allow filament change without homing first
  7893. if (axis_unhomed_error()) home_all_axes();
  7894. #endif
  7895. // Initial retract before move to filament change position
  7896. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  7897. #if defined(PAUSE_PARK_RETRACT_LENGTH) && PAUSE_PARK_RETRACT_LENGTH > 0
  7898. - (PAUSE_PARK_RETRACT_LENGTH)
  7899. #endif
  7900. ;
  7901. // Lift Z axis
  7902. const float z_lift = parser.linearval('Z', 0
  7903. #if defined(PAUSE_PARK_Z_ADD) && PAUSE_PARK_Z_ADD > 0
  7904. + PAUSE_PARK_Z_ADD
  7905. #endif
  7906. );
  7907. // Move XY axes to filament exchange position
  7908. const float x_pos = parser.linearval('X', 0
  7909. #ifdef PAUSE_PARK_X_POS
  7910. + PAUSE_PARK_X_POS
  7911. #endif
  7912. );
  7913. const float y_pos = parser.linearval('Y', 0
  7914. #ifdef PAUSE_PARK_Y_POS
  7915. + PAUSE_PARK_Y_POS
  7916. #endif
  7917. );
  7918. // Unload filament
  7919. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  7920. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7921. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7922. #endif
  7923. ;
  7924. // Load filament
  7925. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7926. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  7927. + FILAMENT_CHANGE_LOAD_LENGTH
  7928. #endif
  7929. ;
  7930. const int beep_count = parser.intval('B',
  7931. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  7932. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  7933. #else
  7934. -1
  7935. #endif
  7936. );
  7937. const bool job_running = print_job_timer.isRunning();
  7938. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  7939. wait_for_filament_reload(beep_count);
  7940. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  7941. }
  7942. // Resume the print job timer if it was running
  7943. if (job_running) print_job_timer.start();
  7944. }
  7945. #endif // ADVANCED_PAUSE_FEATURE
  7946. #if ENABLED(MK2_MULTIPLEXER)
  7947. inline void select_multiplexed_stepper(const uint8_t e) {
  7948. stepper.synchronize();
  7949. disable_e_steppers();
  7950. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  7951. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  7952. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  7953. safe_delay(100);
  7954. }
  7955. /**
  7956. * M702: Unload all extruders
  7957. */
  7958. inline void gcode_M702() {
  7959. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  7960. select_multiplexed_stepper(e);
  7961. // TODO: standard unload filament function
  7962. // MK2 firmware behavior:
  7963. // - Make sure temperature is high enough
  7964. // - Raise Z to at least 15 to make room
  7965. // - Extrude 1cm of filament in 1 second
  7966. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  7967. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  7968. // - Restore E max feedrate to 50
  7969. }
  7970. // Go back to the last active extruder
  7971. select_multiplexed_stepper(active_extruder);
  7972. disable_e_steppers();
  7973. }
  7974. #endif // MK2_MULTIPLEXER
  7975. #if ENABLED(DUAL_X_CARRIAGE)
  7976. /**
  7977. * M605: Set dual x-carriage movement mode
  7978. *
  7979. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7980. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7981. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7982. * units x-offset and an optional differential hotend temperature of
  7983. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7984. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7985. *
  7986. * Note: the X axis should be homed after changing dual x-carriage mode.
  7987. */
  7988. inline void gcode_M605() {
  7989. stepper.synchronize();
  7990. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  7991. switch (dual_x_carriage_mode) {
  7992. case DXC_FULL_CONTROL_MODE:
  7993. case DXC_AUTO_PARK_MODE:
  7994. break;
  7995. case DXC_DUPLICATION_MODE:
  7996. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7997. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  7998. SERIAL_ECHO_START();
  7999. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8000. SERIAL_CHAR(' ');
  8001. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8002. SERIAL_CHAR(',');
  8003. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8004. SERIAL_CHAR(' ');
  8005. SERIAL_ECHO(duplicate_extruder_x_offset);
  8006. SERIAL_CHAR(',');
  8007. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8008. break;
  8009. default:
  8010. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8011. break;
  8012. }
  8013. active_extruder_parked = false;
  8014. extruder_duplication_enabled = false;
  8015. delayed_move_time = 0;
  8016. }
  8017. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8018. inline void gcode_M605() {
  8019. stepper.synchronize();
  8020. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8021. SERIAL_ECHO_START();
  8022. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8023. }
  8024. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8025. #if ENABLED(LIN_ADVANCE)
  8026. /**
  8027. * M900: Set and/or Get advance K factor and WH/D ratio
  8028. *
  8029. * K<factor> Set advance K factor
  8030. * R<ratio> Set ratio directly (overrides WH/D)
  8031. * W<width> H<height> D<diam> Set ratio from WH/D
  8032. */
  8033. inline void gcode_M900() {
  8034. stepper.synchronize();
  8035. const float newK = parser.floatval('K', -1);
  8036. if (newK >= 0) planner.extruder_advance_k = newK;
  8037. float newR = parser.floatval('R', -1);
  8038. if (newR < 0) {
  8039. const float newD = parser.floatval('D', -1),
  8040. newW = parser.floatval('W', -1),
  8041. newH = parser.floatval('H', -1);
  8042. if (newD >= 0 && newW >= 0 && newH >= 0)
  8043. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8044. }
  8045. if (newR >= 0) planner.advance_ed_ratio = newR;
  8046. SERIAL_ECHO_START();
  8047. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8048. SERIAL_ECHOPGM(" E/D=");
  8049. const float ratio = planner.advance_ed_ratio;
  8050. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8051. SERIAL_EOL();
  8052. }
  8053. #endif // LIN_ADVANCE
  8054. #if ENABLED(HAVE_TMC2130)
  8055. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8056. SERIAL_CHAR(name);
  8057. SERIAL_ECHOPGM(" axis driver current: ");
  8058. SERIAL_ECHOLN(st.getCurrent());
  8059. }
  8060. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8061. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8062. tmc2130_get_current(st, name);
  8063. }
  8064. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8065. SERIAL_CHAR(name);
  8066. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8067. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8068. SERIAL_EOL();
  8069. }
  8070. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8071. st.clear_otpw();
  8072. SERIAL_CHAR(name);
  8073. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8074. }
  8075. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8076. SERIAL_CHAR(name);
  8077. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8078. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8079. }
  8080. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8081. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8082. tmc2130_get_pwmthrs(st, name, spmm);
  8083. }
  8084. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8085. SERIAL_CHAR(name);
  8086. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8087. SERIAL_ECHOLN(st.sgt());
  8088. }
  8089. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8090. st.sgt(sgt_val);
  8091. tmc2130_get_sgt(st, name);
  8092. }
  8093. /**
  8094. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8095. * Report driver currents when no axis specified
  8096. *
  8097. * S1: Enable automatic current control
  8098. * S0: Disable
  8099. */
  8100. inline void gcode_M906() {
  8101. uint16_t values[XYZE];
  8102. LOOP_XYZE(i)
  8103. values[i] = parser.intval(axis_codes[i]);
  8104. #if ENABLED(X_IS_TMC2130)
  8105. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8106. else tmc2130_get_current(stepperX, 'X');
  8107. #endif
  8108. #if ENABLED(Y_IS_TMC2130)
  8109. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8110. else tmc2130_get_current(stepperY, 'Y');
  8111. #endif
  8112. #if ENABLED(Z_IS_TMC2130)
  8113. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8114. else tmc2130_get_current(stepperZ, 'Z');
  8115. #endif
  8116. #if ENABLED(E0_IS_TMC2130)
  8117. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8118. else tmc2130_get_current(stepperE0, 'E');
  8119. #endif
  8120. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8121. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8122. #endif
  8123. }
  8124. /**
  8125. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8126. * The flag is held by the library and persist until manually cleared by M912
  8127. */
  8128. inline void gcode_M911() {
  8129. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8130. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8131. #if ENABLED(X_IS_TMC2130)
  8132. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8133. #endif
  8134. #if ENABLED(Y_IS_TMC2130)
  8135. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8136. #endif
  8137. #if ENABLED(Z_IS_TMC2130)
  8138. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8139. #endif
  8140. #if ENABLED(E0_IS_TMC2130)
  8141. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8142. #endif
  8143. }
  8144. /**
  8145. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8146. */
  8147. inline void gcode_M912() {
  8148. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8149. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8150. #if ENABLED(X_IS_TMC2130)
  8151. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8152. #endif
  8153. #if ENABLED(Y_IS_TMC2130)
  8154. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8155. #endif
  8156. #if ENABLED(Z_IS_TMC2130)
  8157. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8158. #endif
  8159. #if ENABLED(E0_IS_TMC2130)
  8160. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8161. #endif
  8162. }
  8163. /**
  8164. * M913: Set HYBRID_THRESHOLD speed.
  8165. */
  8166. #if ENABLED(HYBRID_THRESHOLD)
  8167. inline void gcode_M913() {
  8168. uint16_t values[XYZE];
  8169. LOOP_XYZE(i)
  8170. values[i] = parser.intval(axis_codes[i]);
  8171. #if ENABLED(X_IS_TMC2130)
  8172. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8173. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8174. #endif
  8175. #if ENABLED(Y_IS_TMC2130)
  8176. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8177. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8178. #endif
  8179. #if ENABLED(Z_IS_TMC2130)
  8180. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8181. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8182. #endif
  8183. #if ENABLED(E0_IS_TMC2130)
  8184. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8185. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8186. #endif
  8187. }
  8188. #endif // HYBRID_THRESHOLD
  8189. /**
  8190. * M914: Set SENSORLESS_HOMING sensitivity.
  8191. */
  8192. #if ENABLED(SENSORLESS_HOMING)
  8193. inline void gcode_M914() {
  8194. #if ENABLED(X_IS_TMC2130)
  8195. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8196. else tmc2130_get_sgt(stepperX, 'X');
  8197. #endif
  8198. #if ENABLED(Y_IS_TMC2130)
  8199. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8200. else tmc2130_get_sgt(stepperY, 'Y');
  8201. #endif
  8202. }
  8203. #endif // SENSORLESS_HOMING
  8204. #endif // HAVE_TMC2130
  8205. /**
  8206. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8207. */
  8208. inline void gcode_M907() {
  8209. #if HAS_DIGIPOTSS
  8210. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8211. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8212. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8213. #elif HAS_MOTOR_CURRENT_PWM
  8214. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8215. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8216. #endif
  8217. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8218. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8219. #endif
  8220. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8221. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8222. #endif
  8223. #endif
  8224. #if ENABLED(DIGIPOT_I2C)
  8225. // this one uses actual amps in floating point
  8226. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8227. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8228. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8229. #endif
  8230. #if ENABLED(DAC_STEPPER_CURRENT)
  8231. if (parser.seen('S')) {
  8232. const float dac_percent = parser.value_float();
  8233. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8234. }
  8235. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8236. #endif
  8237. }
  8238. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8239. /**
  8240. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8241. */
  8242. inline void gcode_M908() {
  8243. #if HAS_DIGIPOTSS
  8244. stepper.digitalPotWrite(
  8245. parser.intval('P'),
  8246. parser.intval('S')
  8247. );
  8248. #endif
  8249. #ifdef DAC_STEPPER_CURRENT
  8250. dac_current_raw(
  8251. parser.byteval('P', -1),
  8252. parser.ushortval('S', 0)
  8253. );
  8254. #endif
  8255. }
  8256. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8257. inline void gcode_M909() { dac_print_values(); }
  8258. inline void gcode_M910() { dac_commit_eeprom(); }
  8259. #endif
  8260. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8261. #if HAS_MICROSTEPS
  8262. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8263. inline void gcode_M350() {
  8264. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8265. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8266. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8267. stepper.microstep_readings();
  8268. }
  8269. /**
  8270. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8271. * S# determines MS1 or MS2, X# sets the pin high/low.
  8272. */
  8273. inline void gcode_M351() {
  8274. if (parser.seenval('S')) switch (parser.value_byte()) {
  8275. case 1:
  8276. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8277. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8278. break;
  8279. case 2:
  8280. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8281. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8282. break;
  8283. }
  8284. stepper.microstep_readings();
  8285. }
  8286. #endif // HAS_MICROSTEPS
  8287. #if HAS_CASE_LIGHT
  8288. #ifndef INVERT_CASE_LIGHT
  8289. #define INVERT_CASE_LIGHT false
  8290. #endif
  8291. int case_light_brightness; // LCD routine wants INT
  8292. bool case_light_on;
  8293. void update_case_light() {
  8294. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8295. uint8_t case_light_bright = (uint8_t)case_light_brightness;
  8296. if (case_light_on) {
  8297. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  8298. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness );
  8299. }
  8300. else digitalWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH );
  8301. }
  8302. else digitalWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8303. }
  8304. #endif // HAS_CASE_LIGHT
  8305. /**
  8306. * M355: Turn case light on/off and set brightness
  8307. *
  8308. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8309. *
  8310. * S<bool> Set case light on/off
  8311. *
  8312. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8313. *
  8314. * M355 P200 S0 turns off the light & sets the brightness level
  8315. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8316. */
  8317. inline void gcode_M355() {
  8318. #if HAS_CASE_LIGHT
  8319. uint8_t args = 0;
  8320. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8321. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8322. if (args) update_case_light();
  8323. // always report case light status
  8324. SERIAL_ECHO_START();
  8325. if (!case_light_on) {
  8326. SERIAL_ECHOLN("Case light: off");
  8327. }
  8328. else {
  8329. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8330. else SERIAL_ECHOLNPAIR("Case light: ", case_light_brightness);
  8331. }
  8332. #else
  8333. SERIAL_ERROR_START();
  8334. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8335. #endif // HAS_CASE_LIGHT
  8336. }
  8337. #if ENABLED(MIXING_EXTRUDER)
  8338. /**
  8339. * M163: Set a single mix factor for a mixing extruder
  8340. * This is called "weight" by some systems.
  8341. *
  8342. * S[index] The channel index to set
  8343. * P[float] The mix value
  8344. *
  8345. */
  8346. inline void gcode_M163() {
  8347. const int mix_index = parser.intval('S');
  8348. if (mix_index < MIXING_STEPPERS) {
  8349. float mix_value = parser.floatval('P');
  8350. NOLESS(mix_value, 0.0);
  8351. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8352. }
  8353. }
  8354. #if MIXING_VIRTUAL_TOOLS > 1
  8355. /**
  8356. * M164: Store the current mix factors as a virtual tool.
  8357. *
  8358. * S[index] The virtual tool to store
  8359. *
  8360. */
  8361. inline void gcode_M164() {
  8362. const int tool_index = parser.intval('S');
  8363. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  8364. normalize_mix();
  8365. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8366. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  8367. }
  8368. }
  8369. #endif
  8370. #if ENABLED(DIRECT_MIXING_IN_G1)
  8371. /**
  8372. * M165: Set multiple mix factors for a mixing extruder.
  8373. * Factors that are left out will be set to 0.
  8374. * All factors together must add up to 1.0.
  8375. *
  8376. * A[factor] Mix factor for extruder stepper 1
  8377. * B[factor] Mix factor for extruder stepper 2
  8378. * C[factor] Mix factor for extruder stepper 3
  8379. * D[factor] Mix factor for extruder stepper 4
  8380. * H[factor] Mix factor for extruder stepper 5
  8381. * I[factor] Mix factor for extruder stepper 6
  8382. *
  8383. */
  8384. inline void gcode_M165() { gcode_get_mix(); }
  8385. #endif
  8386. #endif // MIXING_EXTRUDER
  8387. /**
  8388. * M999: Restart after being stopped
  8389. *
  8390. * Default behaviour is to flush the serial buffer and request
  8391. * a resend to the host starting on the last N line received.
  8392. *
  8393. * Sending "M999 S1" will resume printing without flushing the
  8394. * existing command buffer.
  8395. *
  8396. */
  8397. inline void gcode_M999() {
  8398. Running = true;
  8399. lcd_reset_alert_level();
  8400. if (parser.boolval('S')) return;
  8401. // gcode_LastN = Stopped_gcode_LastN;
  8402. FlushSerialRequestResend();
  8403. }
  8404. #if ENABLED(SWITCHING_EXTRUDER)
  8405. #if EXTRUDERS > 3
  8406. #define REQ_ANGLES 4
  8407. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  8408. #else
  8409. #define REQ_ANGLES 2
  8410. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  8411. #endif
  8412. inline void move_extruder_servo(const uint8_t e) {
  8413. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  8414. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  8415. stepper.synchronize();
  8416. #if EXTRUDERS & 1
  8417. if (e < EXTRUDERS - 1)
  8418. #endif
  8419. {
  8420. MOVE_SERVO(_SERVO_NR, angles[e]);
  8421. safe_delay(500);
  8422. }
  8423. }
  8424. #endif // SWITCHING_EXTRUDER
  8425. #if ENABLED(SWITCHING_NOZZLE)
  8426. inline void move_nozzle_servo(const uint8_t e) {
  8427. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  8428. stepper.synchronize();
  8429. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  8430. safe_delay(500);
  8431. }
  8432. #endif
  8433. inline void invalid_extruder_error(const uint8_t e) {
  8434. SERIAL_ECHO_START();
  8435. SERIAL_CHAR('T');
  8436. SERIAL_ECHO_F(e, DEC);
  8437. SERIAL_CHAR(' ');
  8438. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  8439. }
  8440. /**
  8441. * Perform a tool-change, which may result in moving the
  8442. * previous tool out of the way and the new tool into place.
  8443. */
  8444. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  8445. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8446. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  8447. return invalid_extruder_error(tmp_extruder);
  8448. // T0-Tnnn: Switch virtual tool by changing the mix
  8449. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  8450. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  8451. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8452. if (tmp_extruder >= EXTRUDERS)
  8453. return invalid_extruder_error(tmp_extruder);
  8454. #if HOTENDS > 1
  8455. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  8456. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  8457. if (tmp_extruder != active_extruder) {
  8458. if (!no_move && axis_unhomed_error()) {
  8459. SERIAL_ECHOLNPGM("No move on toolchange");
  8460. no_move = true;
  8461. }
  8462. // Save current position to destination, for use later
  8463. set_destination_to_current();
  8464. #if ENABLED(DUAL_X_CARRIAGE)
  8465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8466. if (DEBUGGING(LEVELING)) {
  8467. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  8468. switch (dual_x_carriage_mode) {
  8469. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  8470. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  8471. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  8472. }
  8473. }
  8474. #endif
  8475. const float xhome = x_home_pos(active_extruder);
  8476. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  8477. && IsRunning()
  8478. && (delayed_move_time || current_position[X_AXIS] != xhome)
  8479. ) {
  8480. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  8481. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8482. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  8483. #endif
  8484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8485. if (DEBUGGING(LEVELING)) {
  8486. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  8487. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  8488. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  8489. }
  8490. #endif
  8491. // Park old head: 1) raise 2) move to park position 3) lower
  8492. for (uint8_t i = 0; i < 3; i++)
  8493. planner.buffer_line(
  8494. i == 0 ? current_position[X_AXIS] : xhome,
  8495. current_position[Y_AXIS],
  8496. i == 2 ? current_position[Z_AXIS] : raised_z,
  8497. current_position[E_AXIS],
  8498. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  8499. active_extruder
  8500. );
  8501. stepper.synchronize();
  8502. }
  8503. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  8504. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  8505. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  8506. // Activate the new extruder
  8507. active_extruder = tmp_extruder;
  8508. // This function resets the max/min values - the current position may be overwritten below.
  8509. set_axis_is_at_home(X_AXIS);
  8510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8511. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  8512. #endif
  8513. // Only when auto-parking are carriages safe to move
  8514. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  8515. switch (dual_x_carriage_mode) {
  8516. case DXC_FULL_CONTROL_MODE:
  8517. // New current position is the position of the activated extruder
  8518. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8519. // Save the inactive extruder's position (from the old current_position)
  8520. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8521. break;
  8522. case DXC_AUTO_PARK_MODE:
  8523. // record raised toolhead position for use by unpark
  8524. COPY(raised_parked_position, current_position);
  8525. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  8526. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8527. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8528. #endif
  8529. active_extruder_parked = true;
  8530. delayed_move_time = 0;
  8531. break;
  8532. case DXC_DUPLICATION_MODE:
  8533. // If the new extruder is the left one, set it "parked"
  8534. // This triggers the second extruder to move into the duplication position
  8535. active_extruder_parked = (active_extruder == 0);
  8536. if (active_extruder_parked)
  8537. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8538. else
  8539. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8540. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8541. extruder_duplication_enabled = false;
  8542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8543. if (DEBUGGING(LEVELING)) {
  8544. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8545. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8546. }
  8547. #endif
  8548. break;
  8549. }
  8550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8551. if (DEBUGGING(LEVELING)) {
  8552. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8553. DEBUG_POS("New extruder (parked)", current_position);
  8554. }
  8555. #endif
  8556. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8557. #else // !DUAL_X_CARRIAGE
  8558. #if ENABLED(SWITCHING_NOZZLE)
  8559. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  8560. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8561. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8562. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8563. // Always raise by some amount (destination copied from current_position earlier)
  8564. current_position[Z_AXIS] += z_raise;
  8565. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8566. move_nozzle_servo(tmp_extruder);
  8567. #endif
  8568. /**
  8569. * Set current_position to the position of the new nozzle.
  8570. * Offsets are based on linear distance, so we need to get
  8571. * the resulting position in coordinate space.
  8572. *
  8573. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8574. * - With mesh leveling, update Z for the new position
  8575. * - Otherwise, just use the raw linear distance
  8576. *
  8577. * Software endstops are altered here too. Consider a case where:
  8578. * E0 at X=0 ... E1 at X=10
  8579. * When we switch to E1 now X=10, but E1 can't move left.
  8580. * To express this we apply the change in XY to the software endstops.
  8581. * E1 can move farther right than E0, so the right limit is extended.
  8582. *
  8583. * Note that we don't adjust the Z software endstops. Why not?
  8584. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8585. * because the bed is 1mm lower at the new position. As long as
  8586. * the first nozzle is out of the way, the carriage should be
  8587. * allowed to move 1mm lower. This technically "breaks" the
  8588. * Z software endstop. But this is technically correct (and
  8589. * there is no viable alternative).
  8590. */
  8591. #if ABL_PLANAR
  8592. // Offset extruder, make sure to apply the bed level rotation matrix
  8593. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8594. hotend_offset[Y_AXIS][tmp_extruder],
  8595. 0),
  8596. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8597. hotend_offset[Y_AXIS][active_extruder],
  8598. 0),
  8599. offset_vec = tmp_offset_vec - act_offset_vec;
  8600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8601. if (DEBUGGING(LEVELING)) {
  8602. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  8603. act_offset_vec.debug(PSTR("act_offset_vec"));
  8604. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  8605. }
  8606. #endif
  8607. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8609. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  8610. #endif
  8611. // Adjustments to the current position
  8612. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8613. current_position[Z_AXIS] += offset_vec.z;
  8614. #else // !ABL_PLANAR
  8615. const float xydiff[2] = {
  8616. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8617. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8618. };
  8619. #if ENABLED(MESH_BED_LEVELING)
  8620. if (leveling_is_active()) {
  8621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8622. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8623. #endif
  8624. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8625. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8626. z1 = current_position[Z_AXIS], z2 = z1;
  8627. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8628. planner.apply_leveling(x2, y2, z2);
  8629. current_position[Z_AXIS] += z2 - z1;
  8630. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8631. if (DEBUGGING(LEVELING))
  8632. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8633. #endif
  8634. }
  8635. #endif // MESH_BED_LEVELING
  8636. #endif // !HAS_ABL
  8637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8638. if (DEBUGGING(LEVELING)) {
  8639. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8640. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8641. SERIAL_ECHOLNPGM(" }");
  8642. }
  8643. #endif
  8644. // The newly-selected extruder XY is actually at...
  8645. current_position[X_AXIS] += xydiff[X_AXIS];
  8646. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8647. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8648. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8649. #if HAS_POSITION_SHIFT
  8650. position_shift[i] += xydiff[i];
  8651. #endif
  8652. update_software_endstops((AxisEnum)i);
  8653. }
  8654. #endif
  8655. // Set the new active extruder
  8656. active_extruder = tmp_extruder;
  8657. #endif // !DUAL_X_CARRIAGE
  8658. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8659. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8660. #endif
  8661. // Tell the planner the new "current position"
  8662. SYNC_PLAN_POSITION_KINEMATIC();
  8663. // Move to the "old position" (move the extruder into place)
  8664. if (!no_move && IsRunning()) {
  8665. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8666. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8667. #endif
  8668. prepare_move_to_destination();
  8669. }
  8670. #if ENABLED(SWITCHING_NOZZLE)
  8671. // Move back down, if needed. (Including when the new tool is higher.)
  8672. if (z_raise != z_diff) {
  8673. destination[Z_AXIS] += z_diff;
  8674. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8675. prepare_move_to_destination();
  8676. }
  8677. #endif
  8678. } // (tmp_extruder != active_extruder)
  8679. stepper.synchronize();
  8680. #if ENABLED(EXT_SOLENOID)
  8681. disable_all_solenoids();
  8682. enable_solenoid_on_active_extruder();
  8683. #endif // EXT_SOLENOID
  8684. feedrate_mm_s = old_feedrate_mm_s;
  8685. #else // HOTENDS <= 1
  8686. UNUSED(fr_mm_s);
  8687. UNUSED(no_move);
  8688. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  8689. stepper.synchronize();
  8690. move_extruder_servo(tmp_extruder);
  8691. #elif ENABLED(MK2_MULTIPLEXER)
  8692. if (tmp_extruder >= E_STEPPERS)
  8693. return invalid_extruder_error(tmp_extruder);
  8694. select_multiplexed_stepper(tmp_extruder);
  8695. #endif
  8696. #endif // HOTENDS <= 1
  8697. active_extruder = tmp_extruder;
  8698. SERIAL_ECHO_START();
  8699. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8700. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8701. }
  8702. /**
  8703. * T0-T3: Switch tool, usually switching extruders
  8704. *
  8705. * F[units/min] Set the movement feedrate
  8706. * S1 Don't move the tool in XY after change
  8707. */
  8708. inline void gcode_T(uint8_t tmp_extruder) {
  8709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8710. if (DEBUGGING(LEVELING)) {
  8711. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8712. SERIAL_CHAR(')');
  8713. SERIAL_EOL();
  8714. DEBUG_POS("BEFORE", current_position);
  8715. }
  8716. #endif
  8717. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8718. tool_change(tmp_extruder);
  8719. #elif HOTENDS > 1
  8720. tool_change(
  8721. tmp_extruder,
  8722. MMM_TO_MMS(parser.linearval('F')),
  8723. (tmp_extruder == active_extruder) || parser.boolval('S')
  8724. );
  8725. #endif
  8726. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8727. if (DEBUGGING(LEVELING)) {
  8728. DEBUG_POS("AFTER", current_position);
  8729. SERIAL_ECHOLNPGM("<<< gcode_T");
  8730. }
  8731. #endif
  8732. }
  8733. /**
  8734. * Process a single command and dispatch it to its handler
  8735. * This is called from the main loop()
  8736. */
  8737. void process_next_command() {
  8738. char * const current_command = command_queue[cmd_queue_index_r];
  8739. if (DEBUGGING(ECHO)) {
  8740. SERIAL_ECHO_START();
  8741. SERIAL_ECHOLN(current_command);
  8742. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8743. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8744. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  8745. #endif
  8746. }
  8747. KEEPALIVE_STATE(IN_HANDLER);
  8748. // Parse the next command in the queue
  8749. parser.parse(current_command);
  8750. // Handle a known G, M, or T
  8751. switch (parser.command_letter) {
  8752. case 'G': switch (parser.codenum) {
  8753. // G0, G1
  8754. case 0:
  8755. case 1:
  8756. #if IS_SCARA
  8757. gcode_G0_G1(parser.codenum == 0);
  8758. #else
  8759. gcode_G0_G1();
  8760. #endif
  8761. break;
  8762. // G2, G3
  8763. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8764. case 2: // G2 - CW ARC
  8765. case 3: // G3 - CCW ARC
  8766. gcode_G2_G3(parser.codenum == 2);
  8767. break;
  8768. #endif
  8769. // G4 Dwell
  8770. case 4:
  8771. gcode_G4();
  8772. break;
  8773. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8774. // G5
  8775. case 5: // G5 - Cubic B_spline
  8776. gcode_G5();
  8777. break;
  8778. #endif // BEZIER_CURVE_SUPPORT
  8779. #if ENABLED(FWRETRACT)
  8780. case 10: // G10: retract
  8781. case 11: // G11: retract_recover
  8782. gcode_G10_G11(parser.codenum == 10);
  8783. break;
  8784. #endif // FWRETRACT
  8785. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8786. case 12:
  8787. gcode_G12(); // G12: Nozzle Clean
  8788. break;
  8789. #endif // NOZZLE_CLEAN_FEATURE
  8790. #if ENABLED(CNC_WORKSPACE_PLANES)
  8791. case 17: // G17: Select Plane XY
  8792. gcode_G17();
  8793. break;
  8794. case 18: // G18: Select Plane ZX
  8795. gcode_G18();
  8796. break;
  8797. case 19: // G19: Select Plane YZ
  8798. gcode_G19();
  8799. break;
  8800. #endif // CNC_WORKSPACE_PLANES
  8801. #if ENABLED(INCH_MODE_SUPPORT)
  8802. case 20: //G20: Inch Mode
  8803. gcode_G20();
  8804. break;
  8805. case 21: //G21: MM Mode
  8806. gcode_G21();
  8807. break;
  8808. #endif // INCH_MODE_SUPPORT
  8809. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  8810. case 26: // G26: Mesh Validation Pattern generation
  8811. gcode_G26();
  8812. break;
  8813. #endif // AUTO_BED_LEVELING_UBL
  8814. #if ENABLED(NOZZLE_PARK_FEATURE)
  8815. case 27: // G27: Nozzle Park
  8816. gcode_G27();
  8817. break;
  8818. #endif // NOZZLE_PARK_FEATURE
  8819. case 28: // G28: Home all axes, one at a time
  8820. gcode_G28(false);
  8821. break;
  8822. #if HAS_LEVELING
  8823. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8824. // or provides access to the UBL System if enabled.
  8825. gcode_G29();
  8826. break;
  8827. #endif // HAS_LEVELING
  8828. #if HAS_BED_PROBE
  8829. case 30: // G30 Single Z probe
  8830. gcode_G30();
  8831. break;
  8832. #if ENABLED(Z_PROBE_SLED)
  8833. case 31: // G31: dock the sled
  8834. gcode_G31();
  8835. break;
  8836. case 32: // G32: undock the sled
  8837. gcode_G32();
  8838. break;
  8839. #endif // Z_PROBE_SLED
  8840. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8841. case 33: // G33: Delta Auto-Calibration
  8842. gcode_G33();
  8843. break;
  8844. #endif // DELTA_AUTO_CALIBRATION
  8845. #endif // HAS_BED_PROBE
  8846. #if ENABLED(G38_PROBE_TARGET)
  8847. case 38: // G38.2 & G38.3
  8848. if (subcode == 2 || subcode == 3)
  8849. gcode_G38(subcode == 2);
  8850. break;
  8851. #endif
  8852. case 90: // G90
  8853. relative_mode = false;
  8854. break;
  8855. case 91: // G91
  8856. relative_mode = true;
  8857. break;
  8858. case 92: // G92
  8859. gcode_G92();
  8860. break;
  8861. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
  8862. case 42:
  8863. gcode_G42();
  8864. break;
  8865. #endif
  8866. #if ENABLED(DEBUG_GCODE_PARSER)
  8867. case 800:
  8868. parser.debug(); // GCode Parser Test for G
  8869. break;
  8870. #endif
  8871. }
  8872. break;
  8873. case 'M': switch (parser.codenum) {
  8874. #if HAS_RESUME_CONTINUE
  8875. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8876. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8877. gcode_M0_M1();
  8878. break;
  8879. #endif // ULTIPANEL
  8880. #if ENABLED(SPINDLE_LASER_ENABLE)
  8881. case 3:
  8882. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  8883. break; // synchronizes with movement commands
  8884. case 4:
  8885. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  8886. break; // synchronizes with movement commands
  8887. case 5:
  8888. gcode_M5(); // M5 - turn spindle/laser off
  8889. break; // synchronizes with movement commands
  8890. #endif
  8891. case 17: // M17: Enable all stepper motors
  8892. gcode_M17();
  8893. break;
  8894. #if ENABLED(SDSUPPORT)
  8895. case 20: // M20: list SD card
  8896. gcode_M20(); break;
  8897. case 21: // M21: init SD card
  8898. gcode_M21(); break;
  8899. case 22: // M22: release SD card
  8900. gcode_M22(); break;
  8901. case 23: // M23: Select file
  8902. gcode_M23(); break;
  8903. case 24: // M24: Start SD print
  8904. gcode_M24(); break;
  8905. case 25: // M25: Pause SD print
  8906. gcode_M25(); break;
  8907. case 26: // M26: Set SD index
  8908. gcode_M26(); break;
  8909. case 27: // M27: Get SD status
  8910. gcode_M27(); break;
  8911. case 28: // M28: Start SD write
  8912. gcode_M28(); break;
  8913. case 29: // M29: Stop SD write
  8914. gcode_M29(); break;
  8915. case 30: // M30 <filename> Delete File
  8916. gcode_M30(); break;
  8917. case 32: // M32: Select file and start SD print
  8918. gcode_M32(); break;
  8919. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8920. case 33: // M33: Get the long full path to a file or folder
  8921. gcode_M33(); break;
  8922. #endif
  8923. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8924. case 34: //M34 - Set SD card sorting options
  8925. gcode_M34(); break;
  8926. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8927. case 928: // M928: Start SD write
  8928. gcode_M928(); break;
  8929. #endif // SDSUPPORT
  8930. case 31: // M31: Report time since the start of SD print or last M109
  8931. gcode_M31(); break;
  8932. case 42: // M42: Change pin state
  8933. gcode_M42(); break;
  8934. #if ENABLED(PINS_DEBUGGING)
  8935. case 43: // M43: Read pin state
  8936. gcode_M43(); break;
  8937. #endif
  8938. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8939. case 48: // M48: Z probe repeatability test
  8940. gcode_M48();
  8941. break;
  8942. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8943. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  8944. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8945. gcode_M49();
  8946. break;
  8947. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
  8948. case 75: // M75: Start print timer
  8949. gcode_M75(); break;
  8950. case 76: // M76: Pause print timer
  8951. gcode_M76(); break;
  8952. case 77: // M77: Stop print timer
  8953. gcode_M77(); break;
  8954. #if ENABLED(PRINTCOUNTER)
  8955. case 78: // M78: Show print statistics
  8956. gcode_M78(); break;
  8957. #endif
  8958. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8959. case 100: // M100: Free Memory Report
  8960. gcode_M100();
  8961. break;
  8962. #endif
  8963. case 104: // M104: Set hot end temperature
  8964. gcode_M104();
  8965. break;
  8966. case 110: // M110: Set Current Line Number
  8967. gcode_M110();
  8968. break;
  8969. case 111: // M111: Set debug level
  8970. gcode_M111();
  8971. break;
  8972. #if DISABLED(EMERGENCY_PARSER)
  8973. case 108: // M108: Cancel Waiting
  8974. gcode_M108();
  8975. break;
  8976. case 112: // M112: Emergency Stop
  8977. gcode_M112();
  8978. break;
  8979. case 410: // M410 quickstop - Abort all the planned moves.
  8980. gcode_M410();
  8981. break;
  8982. #endif
  8983. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8984. case 113: // M113: Set Host Keepalive interval
  8985. gcode_M113();
  8986. break;
  8987. #endif
  8988. case 140: // M140: Set bed temperature
  8989. gcode_M140();
  8990. break;
  8991. case 105: // M105: Report current temperature
  8992. gcode_M105();
  8993. KEEPALIVE_STATE(NOT_BUSY);
  8994. return; // "ok" already printed
  8995. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8996. case 155: // M155: Set temperature auto-report interval
  8997. gcode_M155();
  8998. break;
  8999. #endif
  9000. case 109: // M109: Wait for hotend temperature to reach target
  9001. gcode_M109();
  9002. break;
  9003. #if HAS_TEMP_BED
  9004. case 190: // M190: Wait for bed temperature to reach target
  9005. gcode_M190();
  9006. break;
  9007. #endif // HAS_TEMP_BED
  9008. #if FAN_COUNT > 0
  9009. case 106: // M106: Fan On
  9010. gcode_M106();
  9011. break;
  9012. case 107: // M107: Fan Off
  9013. gcode_M107();
  9014. break;
  9015. #endif // FAN_COUNT > 0
  9016. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9017. case 125: // M125: Store current position and move to filament change position
  9018. gcode_M125(); break;
  9019. #endif
  9020. #if ENABLED(BARICUDA)
  9021. // PWM for HEATER_1_PIN
  9022. #if HAS_HEATER_1
  9023. case 126: // M126: valve open
  9024. gcode_M126();
  9025. break;
  9026. case 127: // M127: valve closed
  9027. gcode_M127();
  9028. break;
  9029. #endif // HAS_HEATER_1
  9030. // PWM for HEATER_2_PIN
  9031. #if HAS_HEATER_2
  9032. case 128: // M128: valve open
  9033. gcode_M128();
  9034. break;
  9035. case 129: // M129: valve closed
  9036. gcode_M129();
  9037. break;
  9038. #endif // HAS_HEATER_2
  9039. #endif // BARICUDA
  9040. #if HAS_POWER_SWITCH
  9041. case 80: // M80: Turn on Power Supply
  9042. gcode_M80();
  9043. break;
  9044. #endif // HAS_POWER_SWITCH
  9045. case 81: // M81: Turn off Power, including Power Supply, if possible
  9046. gcode_M81();
  9047. break;
  9048. case 82: // M82: Set E axis normal mode (same as other axes)
  9049. gcode_M82();
  9050. break;
  9051. case 83: // M83: Set E axis relative mode
  9052. gcode_M83();
  9053. break;
  9054. case 18: // M18 => M84
  9055. case 84: // M84: Disable all steppers or set timeout
  9056. gcode_M18_M84();
  9057. break;
  9058. case 85: // M85: Set inactivity stepper shutdown timeout
  9059. gcode_M85();
  9060. break;
  9061. case 92: // M92: Set the steps-per-unit for one or more axes
  9062. gcode_M92();
  9063. break;
  9064. case 114: // M114: Report current position
  9065. gcode_M114();
  9066. break;
  9067. case 115: // M115: Report capabilities
  9068. gcode_M115();
  9069. break;
  9070. case 117: // M117: Set LCD message text, if possible
  9071. gcode_M117();
  9072. break;
  9073. case 118: // M118: Display a message in the host console
  9074. gcode_M118();
  9075. break;
  9076. case 119: // M119: Report endstop states
  9077. gcode_M119();
  9078. break;
  9079. case 120: // M120: Enable endstops
  9080. gcode_M120();
  9081. break;
  9082. case 121: // M121: Disable endstops
  9083. gcode_M121();
  9084. break;
  9085. #if ENABLED(ULTIPANEL)
  9086. case 145: // M145: Set material heatup parameters
  9087. gcode_M145();
  9088. break;
  9089. #endif
  9090. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9091. case 149: // M149: Set temperature units
  9092. gcode_M149();
  9093. break;
  9094. #endif
  9095. #if HAS_COLOR_LEDS
  9096. case 150: // M150: Set Status LED Color
  9097. gcode_M150();
  9098. break;
  9099. #endif // HAS_COLOR_LEDS
  9100. #if ENABLED(MIXING_EXTRUDER)
  9101. case 163: // M163: Set a component weight for mixing extruder
  9102. gcode_M163();
  9103. break;
  9104. #if MIXING_VIRTUAL_TOOLS > 1
  9105. case 164: // M164: Save current mix as a virtual extruder
  9106. gcode_M164();
  9107. break;
  9108. #endif
  9109. #if ENABLED(DIRECT_MIXING_IN_G1)
  9110. case 165: // M165: Set multiple mix weights
  9111. gcode_M165();
  9112. break;
  9113. #endif
  9114. #endif
  9115. case 200: // M200: Set filament diameter, E to cubic units
  9116. gcode_M200();
  9117. break;
  9118. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9119. gcode_M201();
  9120. break;
  9121. #if 0 // Not used for Sprinter/grbl gen6
  9122. case 202: // M202
  9123. gcode_M202();
  9124. break;
  9125. #endif
  9126. case 203: // M203: Set max feedrate (units/sec)
  9127. gcode_M203();
  9128. break;
  9129. case 204: // M204: Set acceleration
  9130. gcode_M204();
  9131. break;
  9132. case 205: //M205: Set advanced settings
  9133. gcode_M205();
  9134. break;
  9135. #if HAS_M206_COMMAND
  9136. case 206: // M206: Set home offsets
  9137. gcode_M206();
  9138. break;
  9139. #endif
  9140. #if ENABLED(DELTA)
  9141. case 665: // M665: Set delta configurations
  9142. gcode_M665();
  9143. break;
  9144. #endif
  9145. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  9146. case 666: // M666: Set delta or dual endstop adjustment
  9147. gcode_M666();
  9148. break;
  9149. #endif
  9150. #if ENABLED(FWRETRACT)
  9151. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9152. gcode_M207();
  9153. break;
  9154. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9155. gcode_M208();
  9156. break;
  9157. case 209: // M209: Turn Automatic Retract Detection on/off
  9158. gcode_M209();
  9159. break;
  9160. #endif // FWRETRACT
  9161. case 211: // M211: Enable, Disable, and/or Report software endstops
  9162. gcode_M211();
  9163. break;
  9164. #if HOTENDS > 1
  9165. case 218: // M218: Set a tool offset
  9166. gcode_M218();
  9167. break;
  9168. #endif
  9169. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9170. gcode_M220();
  9171. break;
  9172. case 221: // M221: Set Flow Percentage
  9173. gcode_M221();
  9174. break;
  9175. case 226: // M226: Wait until a pin reaches a state
  9176. gcode_M226();
  9177. break;
  9178. #if HAS_SERVOS
  9179. case 280: // M280: Set servo position absolute
  9180. gcode_M280();
  9181. break;
  9182. #endif // HAS_SERVOS
  9183. #if HAS_BUZZER
  9184. case 300: // M300: Play beep tone
  9185. gcode_M300();
  9186. break;
  9187. #endif // HAS_BUZZER
  9188. #if ENABLED(PIDTEMP)
  9189. case 301: // M301: Set hotend PID parameters
  9190. gcode_M301();
  9191. break;
  9192. #endif // PIDTEMP
  9193. #if ENABLED(PIDTEMPBED)
  9194. case 304: // M304: Set bed PID parameters
  9195. gcode_M304();
  9196. break;
  9197. #endif // PIDTEMPBED
  9198. #if defined(CHDK) || HAS_PHOTOGRAPH
  9199. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9200. gcode_M240();
  9201. break;
  9202. #endif // CHDK || PHOTOGRAPH_PIN
  9203. #if HAS_LCD_CONTRAST
  9204. case 250: // M250: Set LCD contrast
  9205. gcode_M250();
  9206. break;
  9207. #endif // HAS_LCD_CONTRAST
  9208. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9209. case 260: // M260: Send data to an i2c slave
  9210. gcode_M260();
  9211. break;
  9212. case 261: // M261: Request data from an i2c slave
  9213. gcode_M261();
  9214. break;
  9215. #endif // EXPERIMENTAL_I2CBUS
  9216. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9217. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9218. gcode_M302();
  9219. break;
  9220. #endif // PREVENT_COLD_EXTRUSION
  9221. case 303: // M303: PID autotune
  9222. gcode_M303();
  9223. break;
  9224. #if ENABLED(MORGAN_SCARA)
  9225. case 360: // M360: SCARA Theta pos1
  9226. if (gcode_M360()) return;
  9227. break;
  9228. case 361: // M361: SCARA Theta pos2
  9229. if (gcode_M361()) return;
  9230. break;
  9231. case 362: // M362: SCARA Psi pos1
  9232. if (gcode_M362()) return;
  9233. break;
  9234. case 363: // M363: SCARA Psi pos2
  9235. if (gcode_M363()) return;
  9236. break;
  9237. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  9238. if (gcode_M364()) return;
  9239. break;
  9240. #endif // SCARA
  9241. case 400: // M400: Finish all moves
  9242. gcode_M400();
  9243. break;
  9244. #if HAS_BED_PROBE
  9245. case 401: // M401: Deploy probe
  9246. gcode_M401();
  9247. break;
  9248. case 402: // M402: Stow probe
  9249. gcode_M402();
  9250. break;
  9251. #endif // HAS_BED_PROBE
  9252. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  9253. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  9254. gcode_M404();
  9255. break;
  9256. case 405: // M405: Turn on filament sensor for control
  9257. gcode_M405();
  9258. break;
  9259. case 406: // M406: Turn off filament sensor for control
  9260. gcode_M406();
  9261. break;
  9262. case 407: // M407: Display measured filament diameter
  9263. gcode_M407();
  9264. break;
  9265. #endif // FILAMENT_WIDTH_SENSOR
  9266. #if HAS_LEVELING
  9267. case 420: // M420: Enable/Disable Bed Leveling
  9268. gcode_M420();
  9269. break;
  9270. #endif
  9271. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9272. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  9273. gcode_M421();
  9274. break;
  9275. #endif
  9276. #if HAS_M206_COMMAND
  9277. case 428: // M428: Apply current_position to home_offset
  9278. gcode_M428();
  9279. break;
  9280. #endif
  9281. case 500: // M500: Store settings in EEPROM
  9282. gcode_M500();
  9283. break;
  9284. case 501: // M501: Read settings from EEPROM
  9285. gcode_M501();
  9286. break;
  9287. case 502: // M502: Revert to default settings
  9288. gcode_M502();
  9289. break;
  9290. #if DISABLED(DISABLE_M503)
  9291. case 503: // M503: print settings currently in memory
  9292. gcode_M503();
  9293. break;
  9294. #endif
  9295. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  9296. case 540: // M540: Set abort on endstop hit for SD printing
  9297. gcode_M540();
  9298. break;
  9299. #endif
  9300. #if HAS_BED_PROBE
  9301. case 851: // M851: Set Z Probe Z Offset
  9302. gcode_M851();
  9303. break;
  9304. #endif // HAS_BED_PROBE
  9305. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  9306. case 600: // M600: Pause for filament change
  9307. gcode_M600();
  9308. break;
  9309. #endif // ADVANCED_PAUSE_FEATURE
  9310. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  9311. case 605: // M605: Set Dual X Carriage movement mode
  9312. gcode_M605();
  9313. break;
  9314. #endif // DUAL_X_CARRIAGE
  9315. #if ENABLED(MK2_MULTIPLEXER)
  9316. case 702: // M702: Unload all extruders
  9317. gcode_M702();
  9318. break;
  9319. #endif
  9320. #if ENABLED(LIN_ADVANCE)
  9321. case 900: // M900: Set advance K factor.
  9322. gcode_M900();
  9323. break;
  9324. #endif
  9325. #if ENABLED(HAVE_TMC2130)
  9326. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  9327. gcode_M906();
  9328. break;
  9329. #endif
  9330. case 907: // M907: Set digital trimpot motor current using axis codes.
  9331. gcode_M907();
  9332. break;
  9333. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  9334. case 908: // M908: Control digital trimpot directly.
  9335. gcode_M908();
  9336. break;
  9337. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  9338. case 909: // M909: Print digipot/DAC current value
  9339. gcode_M909();
  9340. break;
  9341. case 910: // M910: Commit digipot/DAC value to external EEPROM
  9342. gcode_M910();
  9343. break;
  9344. #endif
  9345. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  9346. #if ENABLED(HAVE_TMC2130)
  9347. case 911: // M911: Report TMC2130 prewarn triggered flags
  9348. gcode_M911();
  9349. break;
  9350. case 912: // M911: Clear TMC2130 prewarn triggered flags
  9351. gcode_M912();
  9352. break;
  9353. #if ENABLED(HYBRID_THRESHOLD)
  9354. case 913: // M913: Set HYBRID_THRESHOLD speed.
  9355. gcode_M913();
  9356. break;
  9357. #endif
  9358. #if ENABLED(SENSORLESS_HOMING)
  9359. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  9360. gcode_M914();
  9361. break;
  9362. #endif
  9363. #endif
  9364. #if HAS_MICROSTEPS
  9365. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  9366. gcode_M350();
  9367. break;
  9368. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  9369. gcode_M351();
  9370. break;
  9371. #endif // HAS_MICROSTEPS
  9372. case 355: // M355 set case light brightness
  9373. gcode_M355();
  9374. break;
  9375. #if ENABLED(DEBUG_GCODE_PARSER)
  9376. case 800:
  9377. parser.debug(); // GCode Parser Test for M
  9378. break;
  9379. #endif
  9380. #if ENABLED(I2C_POSITION_ENCODERS)
  9381. case 860: // M860 Report encoder module position
  9382. gcode_M860();
  9383. break;
  9384. case 861: // M861 Report encoder module status
  9385. gcode_M861();
  9386. break;
  9387. case 862: // M862 Perform axis test
  9388. gcode_M862();
  9389. break;
  9390. case 863: // M863 Calibrate steps/mm
  9391. gcode_M863();
  9392. break;
  9393. case 864: // M864 Change module address
  9394. gcode_M864();
  9395. break;
  9396. case 865: // M865 Check module firmware version
  9397. gcode_M865();
  9398. break;
  9399. case 866: // M866 Report axis error count
  9400. gcode_M866();
  9401. break;
  9402. case 867: // M867 Toggle error correction
  9403. gcode_M867();
  9404. break;
  9405. case 868: // M868 Set error correction threshold
  9406. gcode_M868();
  9407. break;
  9408. case 869: // M869 Report axis error
  9409. gcode_M869();
  9410. break;
  9411. #endif // I2C_POSITION_ENCODERS
  9412. case 999: // M999: Restart after being Stopped
  9413. gcode_M999();
  9414. break;
  9415. }
  9416. break;
  9417. case 'T':
  9418. gcode_T(parser.codenum);
  9419. break;
  9420. default: parser.unknown_command_error();
  9421. }
  9422. KEEPALIVE_STATE(NOT_BUSY);
  9423. ok_to_send();
  9424. }
  9425. /**
  9426. * Send a "Resend: nnn" message to the host to
  9427. * indicate that a command needs to be re-sent.
  9428. */
  9429. void FlushSerialRequestResend() {
  9430. //char command_queue[cmd_queue_index_r][100]="Resend:";
  9431. MYSERIAL.flush();
  9432. SERIAL_PROTOCOLPGM(MSG_RESEND);
  9433. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  9434. ok_to_send();
  9435. }
  9436. /**
  9437. * Send an "ok" message to the host, indicating
  9438. * that a command was successfully processed.
  9439. *
  9440. * If ADVANCED_OK is enabled also include:
  9441. * N<int> Line number of the command, if any
  9442. * P<int> Planner space remaining
  9443. * B<int> Block queue space remaining
  9444. */
  9445. void ok_to_send() {
  9446. refresh_cmd_timeout();
  9447. if (!send_ok[cmd_queue_index_r]) return;
  9448. SERIAL_PROTOCOLPGM(MSG_OK);
  9449. #if ENABLED(ADVANCED_OK)
  9450. char* p = command_queue[cmd_queue_index_r];
  9451. if (*p == 'N') {
  9452. SERIAL_PROTOCOL(' ');
  9453. SERIAL_ECHO(*p++);
  9454. while (NUMERIC_SIGNED(*p))
  9455. SERIAL_ECHO(*p++);
  9456. }
  9457. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  9458. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  9459. #endif
  9460. SERIAL_EOL();
  9461. }
  9462. #if HAS_SOFTWARE_ENDSTOPS
  9463. /**
  9464. * Constrain the given coordinates to the software endstops.
  9465. */
  9466. // NOTE: This makes no sense for delta beds other than Z-axis.
  9467. // For delta the X/Y would need to be clamped at
  9468. // DELTA_PRINTABLE_RADIUS from center of bed, but delta
  9469. // now enforces is_position_reachable for X/Y regardless
  9470. // of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
  9471. // redundant here. Probably should #ifdef out the X/Y
  9472. // axis clamps here for delta and just leave the Z clamp.
  9473. void clamp_to_software_endstops(float target[XYZ]) {
  9474. if (!soft_endstops_enabled) return;
  9475. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  9476. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  9477. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  9478. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  9479. #endif
  9480. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9481. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  9482. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  9483. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9484. #endif
  9485. }
  9486. #endif
  9487. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9488. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  9489. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  9490. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  9491. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  9492. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  9493. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  9494. #else
  9495. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  9496. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  9497. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  9498. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  9499. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  9500. #endif
  9501. // Get the Z adjustment for non-linear bed leveling
  9502. float bilinear_z_offset(const float logical[XYZ]) {
  9503. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  9504. last_x = -999.999, last_y = -999.999;
  9505. // Whole units for the grid line indices. Constrained within bounds.
  9506. static int8_t gridx, gridy, nextx, nexty,
  9507. last_gridx = -99, last_gridy = -99;
  9508. // XY relative to the probed area
  9509. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  9510. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  9511. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  9512. // Keep using the last grid box
  9513. #define FAR_EDGE_OR_BOX 2
  9514. #else
  9515. // Just use the grid far edge
  9516. #define FAR_EDGE_OR_BOX 1
  9517. #endif
  9518. if (last_x != x) {
  9519. last_x = x;
  9520. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  9521. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  9522. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  9523. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9524. // Beyond the grid maintain height at grid edges
  9525. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  9526. #endif
  9527. gridx = gx;
  9528. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  9529. }
  9530. if (last_y != y || last_gridx != gridx) {
  9531. if (last_y != y) {
  9532. last_y = y;
  9533. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  9534. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  9535. ratio_y -= gy;
  9536. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  9537. // Beyond the grid maintain height at grid edges
  9538. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  9539. #endif
  9540. gridy = gy;
  9541. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  9542. }
  9543. if (last_gridx != gridx || last_gridy != gridy) {
  9544. last_gridx = gridx;
  9545. last_gridy = gridy;
  9546. // Z at the box corners
  9547. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  9548. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  9549. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  9550. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  9551. }
  9552. // Bilinear interpolate. Needed since y or gridx has changed.
  9553. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  9554. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  9555. D = R - L;
  9556. }
  9557. const float offset = L + ratio_x * D; // the offset almost always changes
  9558. /*
  9559. static float last_offset = 0;
  9560. if (FABS(last_offset - offset) > 0.2) {
  9561. SERIAL_ECHOPGM("Sudden Shift at ");
  9562. SERIAL_ECHOPAIR("x=", x);
  9563. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  9564. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  9565. SERIAL_ECHOPAIR(" y=", y);
  9566. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  9567. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  9568. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  9569. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  9570. SERIAL_ECHOPAIR(" z1=", z1);
  9571. SERIAL_ECHOPAIR(" z2=", z2);
  9572. SERIAL_ECHOPAIR(" z3=", z3);
  9573. SERIAL_ECHOLNPAIR(" z4=", z4);
  9574. SERIAL_ECHOPAIR(" L=", L);
  9575. SERIAL_ECHOPAIR(" R=", R);
  9576. SERIAL_ECHOLNPAIR(" offset=", offset);
  9577. }
  9578. last_offset = offset;
  9579. //*/
  9580. return offset;
  9581. }
  9582. #endif // AUTO_BED_LEVELING_BILINEAR
  9583. #if ENABLED(DELTA)
  9584. /**
  9585. * Recalculate factors used for delta kinematics whenever
  9586. * settings have been changed (e.g., by M665).
  9587. */
  9588. void recalc_delta_settings(float radius, float diagonal_rod) {
  9589. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  9590. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  9591. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  9592. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  9593. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  9594. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  9595. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  9596. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  9597. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  9598. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9599. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  9600. }
  9601. #if ENABLED(DELTA_FAST_SQRT)
  9602. /**
  9603. * Fast inverse sqrt from Quake III Arena
  9604. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  9605. */
  9606. float Q_rsqrt(float number) {
  9607. long i;
  9608. float x2, y;
  9609. const float threehalfs = 1.5f;
  9610. x2 = number * 0.5f;
  9611. y = number;
  9612. i = * ( long * ) &y; // evil floating point bit level hacking
  9613. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9614. y = * ( float * ) &i;
  9615. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9616. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9617. return y;
  9618. }
  9619. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9620. #else
  9621. #define _SQRT(n) SQRT(n)
  9622. #endif
  9623. /**
  9624. * Delta Inverse Kinematics
  9625. *
  9626. * Calculate the tower positions for a given logical
  9627. * position, storing the result in the delta[] array.
  9628. *
  9629. * This is an expensive calculation, requiring 3 square
  9630. * roots per segmented linear move, and strains the limits
  9631. * of a Mega2560 with a Graphical Display.
  9632. *
  9633. * Suggested optimizations include:
  9634. *
  9635. * - Disable the home_offset (M206) and/or position_shift (G92)
  9636. * features to remove up to 12 float additions.
  9637. *
  9638. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9639. * (see above)
  9640. */
  9641. // Macro to obtain the Z position of an individual tower
  9642. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9643. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9644. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9645. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9646. ) \
  9647. )
  9648. #define DELTA_RAW_IK() do { \
  9649. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9650. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9651. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9652. }while(0)
  9653. #define DELTA_LOGICAL_IK() do { \
  9654. const float raw[XYZ] = { \
  9655. RAW_X_POSITION(logical[X_AXIS]), \
  9656. RAW_Y_POSITION(logical[Y_AXIS]), \
  9657. RAW_Z_POSITION(logical[Z_AXIS]) \
  9658. }; \
  9659. DELTA_RAW_IK(); \
  9660. }while(0)
  9661. #define DELTA_DEBUG() do { \
  9662. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9663. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9664. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9665. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9666. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9667. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9668. }while(0)
  9669. void inverse_kinematics(const float logical[XYZ]) {
  9670. DELTA_LOGICAL_IK();
  9671. // DELTA_DEBUG();
  9672. }
  9673. /**
  9674. * Calculate the highest Z position where the
  9675. * effector has the full range of XY motion.
  9676. */
  9677. float delta_safe_distance_from_top() {
  9678. float cartesian[XYZ] = {
  9679. LOGICAL_X_POSITION(0),
  9680. LOGICAL_Y_POSITION(0),
  9681. LOGICAL_Z_POSITION(0)
  9682. };
  9683. inverse_kinematics(cartesian);
  9684. float distance = delta[A_AXIS];
  9685. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9686. inverse_kinematics(cartesian);
  9687. return FABS(distance - delta[A_AXIS]);
  9688. }
  9689. /**
  9690. * Delta Forward Kinematics
  9691. *
  9692. * See the Wikipedia article "Trilateration"
  9693. * https://en.wikipedia.org/wiki/Trilateration
  9694. *
  9695. * Establish a new coordinate system in the plane of the
  9696. * three carriage points. This system has its origin at
  9697. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9698. * plane with a Z component of zero.
  9699. * We will define unit vectors in this coordinate system
  9700. * in our original coordinate system. Then when we calculate
  9701. * the Xnew, Ynew and Znew values, we can translate back into
  9702. * the original system by moving along those unit vectors
  9703. * by the corresponding values.
  9704. *
  9705. * Variable names matched to Marlin, c-version, and avoid the
  9706. * use of any vector library.
  9707. *
  9708. * by Andreas Hardtung 2016-06-07
  9709. * based on a Java function from "Delta Robot Kinematics V3"
  9710. * by Steve Graves
  9711. *
  9712. * The result is stored in the cartes[] array.
  9713. */
  9714. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9715. // Create a vector in old coordinates along x axis of new coordinate
  9716. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9717. // Get the Magnitude of vector.
  9718. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9719. // Create unit vector by dividing by magnitude.
  9720. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9721. // Get the vector from the origin of the new system to the third point.
  9722. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9723. // Use the dot product to find the component of this vector on the X axis.
  9724. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9725. // Create a vector along the x axis that represents the x component of p13.
  9726. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9727. // Subtract the X component from the original vector leaving only Y. We use the
  9728. // variable that will be the unit vector after we scale it.
  9729. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9730. // The magnitude of Y component
  9731. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9732. // Convert to a unit vector
  9733. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9734. // The cross product of the unit x and y is the unit z
  9735. // float[] ez = vectorCrossProd(ex, ey);
  9736. float ez[3] = {
  9737. ex[1] * ey[2] - ex[2] * ey[1],
  9738. ex[2] * ey[0] - ex[0] * ey[2],
  9739. ex[0] * ey[1] - ex[1] * ey[0]
  9740. };
  9741. // We now have the d, i and j values defined in Wikipedia.
  9742. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9743. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9744. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9745. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9746. // Start from the origin of the old coordinates and add vectors in the
  9747. // old coords that represent the Xnew, Ynew and Znew to find the point
  9748. // in the old system.
  9749. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9750. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9751. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9752. }
  9753. void forward_kinematics_DELTA(float point[ABC]) {
  9754. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9755. }
  9756. #endif // DELTA
  9757. /**
  9758. * Get the stepper positions in the cartes[] array.
  9759. * Forward kinematics are applied for DELTA and SCARA.
  9760. *
  9761. * The result is in the current coordinate space with
  9762. * leveling applied. The coordinates need to be run through
  9763. * unapply_leveling to obtain the "ideal" coordinates
  9764. * suitable for current_position, etc.
  9765. */
  9766. void get_cartesian_from_steppers() {
  9767. #if ENABLED(DELTA)
  9768. forward_kinematics_DELTA(
  9769. stepper.get_axis_position_mm(A_AXIS),
  9770. stepper.get_axis_position_mm(B_AXIS),
  9771. stepper.get_axis_position_mm(C_AXIS)
  9772. );
  9773. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9774. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9775. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9776. #elif IS_SCARA
  9777. forward_kinematics_SCARA(
  9778. stepper.get_axis_position_degrees(A_AXIS),
  9779. stepper.get_axis_position_degrees(B_AXIS)
  9780. );
  9781. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9782. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9783. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9784. #else
  9785. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9786. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9787. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9788. #endif
  9789. }
  9790. /**
  9791. * Set the current_position for an axis based on
  9792. * the stepper positions, removing any leveling that
  9793. * may have been applied.
  9794. */
  9795. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9796. get_cartesian_from_steppers();
  9797. #if PLANNER_LEVELING
  9798. planner.unapply_leveling(cartes);
  9799. #endif
  9800. if (axis == ALL_AXES)
  9801. COPY(current_position, cartes);
  9802. else
  9803. current_position[axis] = cartes[axis];
  9804. }
  9805. #if ENABLED(MESH_BED_LEVELING)
  9806. /**
  9807. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9808. * splitting the move where it crosses mesh borders.
  9809. */
  9810. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9811. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9812. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9813. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9814. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9815. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9816. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9817. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9818. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9819. if (cx1 == cx2 && cy1 == cy2) {
  9820. // Start and end on same mesh square
  9821. line_to_destination(fr_mm_s);
  9822. set_current_to_destination();
  9823. return;
  9824. }
  9825. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9826. float normalized_dist, end[XYZE];
  9827. // Split at the left/front border of the right/top square
  9828. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9829. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9830. COPY(end, destination);
  9831. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9832. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9833. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9834. CBI(x_splits, gcx);
  9835. }
  9836. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9837. COPY(end, destination);
  9838. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9839. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9840. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9841. CBI(y_splits, gcy);
  9842. }
  9843. else {
  9844. // Already split on a border
  9845. line_to_destination(fr_mm_s);
  9846. set_current_to_destination();
  9847. return;
  9848. }
  9849. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9850. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9851. // Do the split and look for more borders
  9852. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9853. // Restore destination from stack
  9854. COPY(destination, end);
  9855. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9856. }
  9857. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9858. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9859. /**
  9860. * Prepare a bilinear-leveled linear move on Cartesian,
  9861. * splitting the move where it crosses grid borders.
  9862. */
  9863. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9864. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9865. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9866. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9867. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9868. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9869. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9870. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9871. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9872. if (cx1 == cx2 && cy1 == cy2) {
  9873. // Start and end on same mesh square
  9874. line_to_destination(fr_mm_s);
  9875. set_current_to_destination();
  9876. return;
  9877. }
  9878. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9879. float normalized_dist, end[XYZE];
  9880. // Split at the left/front border of the right/top square
  9881. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9882. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9883. COPY(end, destination);
  9884. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9885. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9886. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9887. CBI(x_splits, gcx);
  9888. }
  9889. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9890. COPY(end, destination);
  9891. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9892. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9893. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9894. CBI(y_splits, gcy);
  9895. }
  9896. else {
  9897. // Already split on a border
  9898. line_to_destination(fr_mm_s);
  9899. set_current_to_destination();
  9900. return;
  9901. }
  9902. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9903. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9904. // Do the split and look for more borders
  9905. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9906. // Restore destination from stack
  9907. COPY(destination, end);
  9908. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9909. }
  9910. #endif // AUTO_BED_LEVELING_BILINEAR
  9911. #if IS_KINEMATIC && !UBL_DELTA
  9912. /**
  9913. * Prepare a linear move in a DELTA or SCARA setup.
  9914. *
  9915. * This calls planner.buffer_line several times, adding
  9916. * small incremental moves for DELTA or SCARA.
  9917. */
  9918. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9919. // Get the top feedrate of the move in the XY plane
  9920. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9921. // If the move is only in Z/E don't split up the move
  9922. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9923. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9924. return false;
  9925. }
  9926. // Fail if attempting move outside printable radius
  9927. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
  9928. // Get the cartesian distances moved in XYZE
  9929. const float difference[XYZE] = {
  9930. ltarget[X_AXIS] - current_position[X_AXIS],
  9931. ltarget[Y_AXIS] - current_position[Y_AXIS],
  9932. ltarget[Z_AXIS] - current_position[Z_AXIS],
  9933. ltarget[E_AXIS] - current_position[E_AXIS]
  9934. };
  9935. // Get the linear distance in XYZ
  9936. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9937. // If the move is very short, check the E move distance
  9938. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  9939. // No E move either? Game over.
  9940. if (UNEAR_ZERO(cartesian_mm)) return true;
  9941. // Minimum number of seconds to move the given distance
  9942. const float seconds = cartesian_mm / _feedrate_mm_s;
  9943. // The number of segments-per-second times the duration
  9944. // gives the number of segments
  9945. uint16_t segments = delta_segments_per_second * seconds;
  9946. // For SCARA minimum segment size is 0.25mm
  9947. #if IS_SCARA
  9948. NOMORE(segments, cartesian_mm * 4);
  9949. #endif
  9950. // At least one segment is required
  9951. NOLESS(segments, 1);
  9952. // The approximate length of each segment
  9953. const float inv_segments = 1.0 / float(segments),
  9954. segment_distance[XYZE] = {
  9955. difference[X_AXIS] * inv_segments,
  9956. difference[Y_AXIS] * inv_segments,
  9957. difference[Z_AXIS] * inv_segments,
  9958. difference[E_AXIS] * inv_segments
  9959. };
  9960. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9961. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9962. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9963. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  9964. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9965. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9966. feed_factor = inv_segment_length * _feedrate_mm_s;
  9967. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9968. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9969. #endif
  9970. // Get the logical current position as starting point
  9971. float logical[XYZE];
  9972. COPY(logical, current_position);
  9973. // Drop one segment so the last move is to the exact target.
  9974. // If there's only 1 segment, loops will be skipped entirely.
  9975. --segments;
  9976. // Calculate and execute the segments
  9977. for (uint16_t s = segments + 1; --s;) {
  9978. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9979. #if ENABLED(DELTA)
  9980. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9981. #else
  9982. inverse_kinematics(logical);
  9983. #endif
  9984. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9985. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  9986. // For SCARA scale the feed rate from mm/s to degrees/s
  9987. // Use ratio between the length of the move and the larger angle change
  9988. const float adiff = abs(delta[A_AXIS] - oldA),
  9989. bdiff = abs(delta[B_AXIS] - oldB);
  9990. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9991. oldA = delta[A_AXIS];
  9992. oldB = delta[B_AXIS];
  9993. #else
  9994. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9995. #endif
  9996. }
  9997. // Since segment_distance is only approximate,
  9998. // the final move must be to the exact destination.
  9999. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10000. // For SCARA scale the feed rate from mm/s to degrees/s
  10001. // With segments > 1 length is 1 segment, otherwise total length
  10002. inverse_kinematics(ltarget);
  10003. ADJUST_DELTA(ltarget);
  10004. const float adiff = abs(delta[A_AXIS] - oldA),
  10005. bdiff = abs(delta[B_AXIS] - oldB);
  10006. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10007. #else
  10008. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  10009. #endif
  10010. return false;
  10011. }
  10012. #else // !IS_KINEMATIC || UBL_DELTA
  10013. /**
  10014. * Prepare a linear move in a Cartesian setup.
  10015. * If Mesh Bed Leveling is enabled, perform a mesh move.
  10016. *
  10017. * Returns true if the caller didn't update current_position.
  10018. */
  10019. inline bool prepare_move_to_destination_cartesian() {
  10020. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10021. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10022. if (ubl.state.active) { // direct use of ubl.state.active for speed
  10023. ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
  10024. return true;
  10025. }
  10026. else
  10027. line_to_destination(fr_scaled);
  10028. #else
  10029. // Do not use feedrate_percentage for E or Z only moves
  10030. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
  10031. line_to_destination();
  10032. else {
  10033. const float fr_scaled = MMS_SCALED(feedrate_mm_s);
  10034. #if ENABLED(MESH_BED_LEVELING)
  10035. if (mbl.active()) { // direct used of mbl.active() for speed
  10036. mesh_line_to_destination(fr_scaled);
  10037. return true;
  10038. }
  10039. else
  10040. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10041. if (planner.abl_enabled) { // direct use of abl_enabled for speed
  10042. bilinear_line_to_destination(fr_scaled);
  10043. return true;
  10044. }
  10045. else
  10046. #endif
  10047. line_to_destination(fr_scaled);
  10048. }
  10049. #endif
  10050. return false;
  10051. }
  10052. #endif // !IS_KINEMATIC || UBL_DELTA
  10053. #if ENABLED(DUAL_X_CARRIAGE)
  10054. /**
  10055. * Prepare a linear move in a dual X axis setup
  10056. */
  10057. inline bool prepare_move_to_destination_dualx() {
  10058. if (active_extruder_parked) {
  10059. switch (dual_x_carriage_mode) {
  10060. case DXC_FULL_CONTROL_MODE:
  10061. break;
  10062. case DXC_AUTO_PARK_MODE:
  10063. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10064. // This is a travel move (with no extrusion)
  10065. // Skip it, but keep track of the current position
  10066. // (so it can be used as the start of the next non-travel move)
  10067. if (delayed_move_time != 0xFFFFFFFFUL) {
  10068. set_current_to_destination();
  10069. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10070. delayed_move_time = millis();
  10071. return true;
  10072. }
  10073. }
  10074. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10075. for (uint8_t i = 0; i < 3; i++)
  10076. planner.buffer_line(
  10077. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10078. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10079. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10080. current_position[E_AXIS],
  10081. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10082. active_extruder
  10083. );
  10084. delayed_move_time = 0;
  10085. active_extruder_parked = false;
  10086. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10087. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10088. #endif
  10089. break;
  10090. case DXC_DUPLICATION_MODE:
  10091. if (active_extruder == 0) {
  10092. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10093. if (DEBUGGING(LEVELING)) {
  10094. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  10095. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10096. }
  10097. #endif
  10098. // move duplicate extruder into correct duplication position.
  10099. planner.set_position_mm(
  10100. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  10101. current_position[Y_AXIS],
  10102. current_position[Z_AXIS],
  10103. current_position[E_AXIS]
  10104. );
  10105. planner.buffer_line(
  10106. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10107. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10108. planner.max_feedrate_mm_s[X_AXIS], 1
  10109. );
  10110. SYNC_PLAN_POSITION_KINEMATIC();
  10111. stepper.synchronize();
  10112. extruder_duplication_enabled = true;
  10113. active_extruder_parked = false;
  10114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10115. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10116. #endif
  10117. }
  10118. else {
  10119. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10120. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10121. #endif
  10122. }
  10123. break;
  10124. }
  10125. }
  10126. return false;
  10127. }
  10128. #endif // DUAL_X_CARRIAGE
  10129. /**
  10130. * Prepare a single move and get ready for the next one
  10131. *
  10132. * This may result in several calls to planner.buffer_line to
  10133. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10134. */
  10135. void prepare_move_to_destination() {
  10136. clamp_to_software_endstops(destination);
  10137. refresh_cmd_timeout();
  10138. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10139. if (!DEBUGGING(DRYRUN)) {
  10140. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10141. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10142. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10143. SERIAL_ECHO_START();
  10144. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10145. }
  10146. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10147. if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
  10148. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10149. SERIAL_ECHO_START();
  10150. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10151. }
  10152. #endif
  10153. }
  10154. }
  10155. #endif
  10156. if (
  10157. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10158. ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
  10159. #elif IS_KINEMATIC
  10160. prepare_kinematic_move_to(destination)
  10161. #elif ENABLED(DUAL_X_CARRIAGE)
  10162. prepare_move_to_destination_dualx()
  10163. #else
  10164. prepare_move_to_destination_cartesian()
  10165. #endif
  10166. ) return;
  10167. set_current_to_destination();
  10168. }
  10169. #if ENABLED(ARC_SUPPORT)
  10170. #if N_ARC_CORRECTION < 1
  10171. #undef N_ARC_CORRECTION
  10172. #define N_ARC_CORRECTION 1
  10173. #endif
  10174. /**
  10175. * Plan an arc in 2 dimensions
  10176. *
  10177. * The arc is approximated by generating many small linear segments.
  10178. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10179. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10180. * larger segments will tend to be more efficient. Your slicer should have
  10181. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10182. */
  10183. void plan_arc(
  10184. float logical[XYZE], // Destination position
  10185. float *offset, // Center of rotation relative to current_position
  10186. uint8_t clockwise // Clockwise?
  10187. ) {
  10188. #if ENABLED(CNC_WORKSPACE_PLANES)
  10189. AxisEnum p_axis, q_axis, l_axis;
  10190. switch (workspace_plane) {
  10191. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10192. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10193. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10194. }
  10195. #else
  10196. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10197. #endif
  10198. // Radius vector from center to current location
  10199. float r_P = -offset[0], r_Q = -offset[1];
  10200. const float radius = HYPOT(r_P, r_Q),
  10201. center_P = current_position[p_axis] - r_P,
  10202. center_Q = current_position[q_axis] - r_Q,
  10203. rt_X = logical[p_axis] - center_P,
  10204. rt_Y = logical[q_axis] - center_Q,
  10205. linear_travel = logical[l_axis] - current_position[l_axis],
  10206. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  10207. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  10208. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  10209. if (angular_travel < 0) angular_travel += RADIANS(360);
  10210. if (clockwise) angular_travel -= RADIANS(360);
  10211. // Make a circle if the angular rotation is 0 and the target is current position
  10212. if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
  10213. angular_travel = RADIANS(360);
  10214. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  10215. if (mm_of_travel < 0.001) return;
  10216. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  10217. if (segments == 0) segments = 1;
  10218. /**
  10219. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  10220. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  10221. * r_T = [cos(phi) -sin(phi);
  10222. * sin(phi) cos(phi)] * r ;
  10223. *
  10224. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  10225. * defined from the circle center to the initial position. Each line segment is formed by successive
  10226. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  10227. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  10228. * all double numbers are single precision on the Arduino. (True double precision will not have
  10229. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  10230. * tool precision in some cases. Therefore, arc path correction is implemented.
  10231. *
  10232. * Small angle approximation may be used to reduce computation overhead further. This approximation
  10233. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  10234. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  10235. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  10236. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  10237. * issue for CNC machines with the single precision Arduino calculations.
  10238. *
  10239. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  10240. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  10241. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  10242. * This is important when there are successive arc motions.
  10243. */
  10244. // Vector rotation matrix values
  10245. float arc_target[XYZE];
  10246. const float theta_per_segment = angular_travel / segments,
  10247. linear_per_segment = linear_travel / segments,
  10248. extruder_per_segment = extruder_travel / segments,
  10249. sin_T = theta_per_segment,
  10250. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  10251. // Initialize the linear axis
  10252. arc_target[l_axis] = current_position[l_axis];
  10253. // Initialize the extruder axis
  10254. arc_target[E_AXIS] = current_position[E_AXIS];
  10255. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  10256. millis_t next_idle_ms = millis() + 200UL;
  10257. #if N_ARC_CORRECTION > 1
  10258. int8_t count = N_ARC_CORRECTION;
  10259. #endif
  10260. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  10261. thermalManager.manage_heater();
  10262. if (ELAPSED(millis(), next_idle_ms)) {
  10263. next_idle_ms = millis() + 200UL;
  10264. idle();
  10265. }
  10266. #if N_ARC_CORRECTION > 1
  10267. if (--count) {
  10268. // Apply vector rotation matrix to previous r_P / 1
  10269. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  10270. r_P = r_P * cos_T - r_Q * sin_T;
  10271. r_Q = r_new_Y;
  10272. }
  10273. else
  10274. #endif
  10275. {
  10276. #if N_ARC_CORRECTION > 1
  10277. count = N_ARC_CORRECTION;
  10278. #endif
  10279. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  10280. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  10281. // To reduce stuttering, the sin and cos could be computed at different times.
  10282. // For now, compute both at the same time.
  10283. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  10284. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  10285. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  10286. }
  10287. // Update arc_target location
  10288. arc_target[p_axis] = center_P + r_P;
  10289. arc_target[q_axis] = center_Q + r_Q;
  10290. arc_target[l_axis] += linear_per_segment;
  10291. arc_target[E_AXIS] += extruder_per_segment;
  10292. clamp_to_software_endstops(arc_target);
  10293. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  10294. }
  10295. // Ensure last segment arrives at target location.
  10296. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  10297. // As far as the parser is concerned, the position is now == target. In reality the
  10298. // motion control system might still be processing the action and the real tool position
  10299. // in any intermediate location.
  10300. set_current_to_destination();
  10301. }
  10302. #endif
  10303. #if ENABLED(BEZIER_CURVE_SUPPORT)
  10304. void plan_cubic_move(const float offset[4]) {
  10305. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  10306. // As far as the parser is concerned, the position is now == destination. In reality the
  10307. // motion control system might still be processing the action and the real tool position
  10308. // in any intermediate location.
  10309. set_current_to_destination();
  10310. }
  10311. #endif // BEZIER_CURVE_SUPPORT
  10312. #if ENABLED(USE_CONTROLLER_FAN)
  10313. void controllerFan() {
  10314. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  10315. nextMotorCheck = 0; // Last time the state was checked
  10316. const millis_t ms = millis();
  10317. if (ELAPSED(ms, nextMotorCheck)) {
  10318. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  10319. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  10320. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  10321. #if E_STEPPERS > 1
  10322. || E1_ENABLE_READ == E_ENABLE_ON
  10323. #if HAS_X2_ENABLE
  10324. || X2_ENABLE_READ == X_ENABLE_ON
  10325. #endif
  10326. #if E_STEPPERS > 2
  10327. || E2_ENABLE_READ == E_ENABLE_ON
  10328. #if E_STEPPERS > 3
  10329. || E3_ENABLE_READ == E_ENABLE_ON
  10330. #if E_STEPPERS > 4
  10331. || E4_ENABLE_READ == E_ENABLE_ON
  10332. #endif // E_STEPPERS > 4
  10333. #endif // E_STEPPERS > 3
  10334. #endif // E_STEPPERS > 2
  10335. #endif // E_STEPPERS > 1
  10336. ) {
  10337. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  10338. }
  10339. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  10340. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  10341. // allows digital or PWM fan output to be used (see M42 handling)
  10342. WRITE(CONTROLLER_FAN_PIN, speed);
  10343. analogWrite(CONTROLLER_FAN_PIN, speed);
  10344. }
  10345. }
  10346. #endif // USE_CONTROLLER_FAN
  10347. #if ENABLED(MORGAN_SCARA)
  10348. /**
  10349. * Morgan SCARA Forward Kinematics. Results in cartes[].
  10350. * Maths and first version by QHARLEY.
  10351. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10352. */
  10353. void forward_kinematics_SCARA(const float &a, const float &b) {
  10354. float a_sin = sin(RADIANS(a)) * L1,
  10355. a_cos = cos(RADIANS(a)) * L1,
  10356. b_sin = sin(RADIANS(b)) * L2,
  10357. b_cos = cos(RADIANS(b)) * L2;
  10358. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  10359. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  10360. /*
  10361. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  10362. SERIAL_ECHOPAIR(" b=", b);
  10363. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  10364. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  10365. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  10366. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  10367. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  10368. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  10369. //*/
  10370. }
  10371. /**
  10372. * Morgan SCARA Inverse Kinematics. Results in delta[].
  10373. *
  10374. * See http://forums.reprap.org/read.php?185,283327
  10375. *
  10376. * Maths and first version by QHARLEY.
  10377. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  10378. */
  10379. void inverse_kinematics(const float logical[XYZ]) {
  10380. static float C2, S2, SK1, SK2, THETA, PSI;
  10381. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  10382. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  10383. if (L1 == L2)
  10384. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  10385. else
  10386. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  10387. S2 = SQRT(1 - sq(C2));
  10388. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  10389. SK1 = L1 + L2 * C2;
  10390. // Rotated Arm2 gives the distance from Arm1 to Arm2
  10391. SK2 = L2 * S2;
  10392. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  10393. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  10394. // Angle of Arm2
  10395. PSI = ATAN2(S2, C2);
  10396. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  10397. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  10398. delta[C_AXIS] = logical[Z_AXIS];
  10399. /*
  10400. DEBUG_POS("SCARA IK", logical);
  10401. DEBUG_POS("SCARA IK", delta);
  10402. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  10403. SERIAL_ECHOPAIR(",", sy);
  10404. SERIAL_ECHOPAIR(" C2=", C2);
  10405. SERIAL_ECHOPAIR(" S2=", S2);
  10406. SERIAL_ECHOPAIR(" Theta=", THETA);
  10407. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  10408. //*/
  10409. }
  10410. #endif // MORGAN_SCARA
  10411. #if ENABLED(TEMP_STAT_LEDS)
  10412. static bool red_led = false;
  10413. static millis_t next_status_led_update_ms = 0;
  10414. void handle_status_leds(void) {
  10415. if (ELAPSED(millis(), next_status_led_update_ms)) {
  10416. next_status_led_update_ms += 500; // Update every 0.5s
  10417. float max_temp = 0.0;
  10418. #if HAS_TEMP_BED
  10419. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  10420. #endif
  10421. HOTEND_LOOP()
  10422. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  10423. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  10424. if (new_led != red_led) {
  10425. red_led = new_led;
  10426. #if PIN_EXISTS(STAT_LED_RED)
  10427. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  10428. #if PIN_EXISTS(STAT_LED_BLUE)
  10429. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  10430. #endif
  10431. #else
  10432. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  10433. #endif
  10434. }
  10435. }
  10436. }
  10437. #endif
  10438. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10439. void handle_filament_runout() {
  10440. if (!filament_ran_out) {
  10441. filament_ran_out = true;
  10442. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  10443. stepper.synchronize();
  10444. }
  10445. }
  10446. #endif // FILAMENT_RUNOUT_SENSOR
  10447. #if ENABLED(FAST_PWM_FAN)
  10448. void setPwmFrequency(uint8_t pin, int val) {
  10449. val &= 0x07;
  10450. switch (digitalPinToTimer(pin)) {
  10451. #ifdef TCCR0A
  10452. #if !AVR_AT90USB1286_FAMILY
  10453. case TIMER0A:
  10454. #endif
  10455. case TIMER0B:
  10456. //_SET_CS(0, val);
  10457. break;
  10458. #endif
  10459. #ifdef TCCR1A
  10460. case TIMER1A:
  10461. case TIMER1B:
  10462. //_SET_CS(1, val);
  10463. break;
  10464. #endif
  10465. #ifdef TCCR2
  10466. case TIMER2:
  10467. case TIMER2:
  10468. _SET_CS(2, val);
  10469. break;
  10470. #endif
  10471. #ifdef TCCR2A
  10472. case TIMER2A:
  10473. case TIMER2B:
  10474. _SET_CS(2, val);
  10475. break;
  10476. #endif
  10477. #ifdef TCCR3A
  10478. case TIMER3A:
  10479. case TIMER3B:
  10480. case TIMER3C:
  10481. _SET_CS(3, val);
  10482. break;
  10483. #endif
  10484. #ifdef TCCR4A
  10485. case TIMER4A:
  10486. case TIMER4B:
  10487. case TIMER4C:
  10488. _SET_CS(4, val);
  10489. break;
  10490. #endif
  10491. #ifdef TCCR5A
  10492. case TIMER5A:
  10493. case TIMER5B:
  10494. case TIMER5C:
  10495. _SET_CS(5, val);
  10496. break;
  10497. #endif
  10498. }
  10499. }
  10500. #endif // FAST_PWM_FAN
  10501. float calculate_volumetric_multiplier(float diameter) {
  10502. if (!volumetric_enabled || diameter == 0) return 1.0;
  10503. return 1.0 / (M_PI * sq(diameter * 0.5));
  10504. }
  10505. void calculate_volumetric_multipliers() {
  10506. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  10507. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  10508. }
  10509. void enable_all_steppers() {
  10510. enable_X();
  10511. enable_Y();
  10512. enable_Z();
  10513. enable_E0();
  10514. enable_E1();
  10515. enable_E2();
  10516. enable_E3();
  10517. enable_E4();
  10518. }
  10519. void disable_e_steppers() {
  10520. disable_E0();
  10521. disable_E1();
  10522. disable_E2();
  10523. disable_E3();
  10524. disable_E4();
  10525. }
  10526. void disable_all_steppers() {
  10527. disable_X();
  10528. disable_Y();
  10529. disable_Z();
  10530. disable_e_steppers();
  10531. }
  10532. #if ENABLED(HAVE_TMC2130)
  10533. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  10534. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  10535. const bool is_otpw = st.checkOT();
  10536. // Report if a warning was triggered
  10537. static bool previous_otpw = false;
  10538. if (is_otpw && !previous_otpw) {
  10539. char timestamp[10];
  10540. duration_t elapsed = print_job_timer.duration();
  10541. const bool has_days = (elapsed.value > 60*60*24L);
  10542. (void)elapsed.toDigital(timestamp, has_days);
  10543. SERIAL_ECHO(timestamp);
  10544. SERIAL_ECHOPGM(": ");
  10545. SERIAL_ECHO(axisID);
  10546. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  10547. }
  10548. previous_otpw = is_otpw;
  10549. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  10550. // Return if user has not enabled current control start with M906 S1.
  10551. if (!auto_current_control) return;
  10552. /**
  10553. * Decrease current if is_otpw is true.
  10554. * Bail out if driver is disabled.
  10555. * Increase current if OTPW has not been triggered yet.
  10556. */
  10557. uint16_t current = st.getCurrent();
  10558. if (is_otpw) {
  10559. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  10560. #if ENABLED(REPORT_CURRENT_CHANGE)
  10561. SERIAL_ECHO(axisID);
  10562. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  10563. #endif
  10564. }
  10565. else if (!st.isEnabled())
  10566. return;
  10567. else if (!is_otpw && !st.getOTPW()) {
  10568. current += CURRENT_STEP;
  10569. if (current <= AUTO_ADJUST_MAX) {
  10570. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  10571. #if ENABLED(REPORT_CURRENT_CHANGE)
  10572. SERIAL_ECHO(axisID);
  10573. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  10574. #endif
  10575. }
  10576. }
  10577. SERIAL_EOL();
  10578. #endif
  10579. }
  10580. void checkOverTemp() {
  10581. static millis_t next_cOT = 0;
  10582. if (ELAPSED(millis(), next_cOT)) {
  10583. next_cOT = millis() + 5000;
  10584. #if ENABLED(X_IS_TMC2130)
  10585. automatic_current_control(stepperX, "X");
  10586. #endif
  10587. #if ENABLED(Y_IS_TMC2130)
  10588. automatic_current_control(stepperY, "Y");
  10589. #endif
  10590. #if ENABLED(Z_IS_TMC2130)
  10591. automatic_current_control(stepperZ, "Z");
  10592. #endif
  10593. #if ENABLED(X2_IS_TMC2130)
  10594. automatic_current_control(stepperX2, "X2");
  10595. #endif
  10596. #if ENABLED(Y2_IS_TMC2130)
  10597. automatic_current_control(stepperY2, "Y2");
  10598. #endif
  10599. #if ENABLED(Z2_IS_TMC2130)
  10600. automatic_current_control(stepperZ2, "Z2");
  10601. #endif
  10602. #if ENABLED(E0_IS_TMC2130)
  10603. automatic_current_control(stepperE0, "E0");
  10604. #endif
  10605. #if ENABLED(E1_IS_TMC2130)
  10606. automatic_current_control(stepperE1, "E1");
  10607. #endif
  10608. #if ENABLED(E2_IS_TMC2130)
  10609. automatic_current_control(stepperE2, "E2");
  10610. #endif
  10611. #if ENABLED(E3_IS_TMC2130)
  10612. automatic_current_control(stepperE3, "E3");
  10613. #endif
  10614. #if ENABLED(E4_IS_TMC2130)
  10615. automatic_current_control(stepperE4, "E4");
  10616. #endif
  10617. #if ENABLED(E4_IS_TMC2130)
  10618. automatic_current_control(stepperE4);
  10619. #endif
  10620. }
  10621. }
  10622. #endif // HAVE_TMC2130
  10623. /**
  10624. * Manage several activities:
  10625. * - Check for Filament Runout
  10626. * - Keep the command buffer full
  10627. * - Check for maximum inactive time between commands
  10628. * - Check for maximum inactive time between stepper commands
  10629. * - Check if pin CHDK needs to go LOW
  10630. * - Check for KILL button held down
  10631. * - Check for HOME button held down
  10632. * - Check if cooling fan needs to be switched on
  10633. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  10634. */
  10635. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  10636. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10637. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  10638. handle_filament_runout();
  10639. #endif
  10640. if (commands_in_queue < BUFSIZE) get_available_commands();
  10641. const millis_t ms = millis();
  10642. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  10643. SERIAL_ERROR_START();
  10644. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  10645. kill(PSTR(MSG_KILLED));
  10646. }
  10647. // Prevent steppers timing-out in the middle of M600
  10648. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  10649. #define MOVE_AWAY_TEST !move_away_flag
  10650. #else
  10651. #define MOVE_AWAY_TEST true
  10652. #endif
  10653. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  10654. && !ignore_stepper_queue && !planner.blocks_queued()) {
  10655. #if ENABLED(DISABLE_INACTIVE_X)
  10656. disable_X();
  10657. #endif
  10658. #if ENABLED(DISABLE_INACTIVE_Y)
  10659. disable_Y();
  10660. #endif
  10661. #if ENABLED(DISABLE_INACTIVE_Z)
  10662. disable_Z();
  10663. #endif
  10664. #if ENABLED(DISABLE_INACTIVE_E)
  10665. disable_e_steppers();
  10666. #endif
  10667. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  10668. ubl_lcd_map_control = defer_return_to_status = false;
  10669. #endif
  10670. }
  10671. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10672. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10673. chdkActive = false;
  10674. WRITE(CHDK, LOW);
  10675. }
  10676. #endif
  10677. #if HAS_KILL
  10678. // Check if the kill button was pressed and wait just in case it was an accidental
  10679. // key kill key press
  10680. // -------------------------------------------------------------------------------
  10681. static int killCount = 0; // make the inactivity button a bit less responsive
  10682. const int KILL_DELAY = 750;
  10683. if (!READ(KILL_PIN))
  10684. killCount++;
  10685. else if (killCount > 0)
  10686. killCount--;
  10687. // Exceeded threshold and we can confirm that it was not accidental
  10688. // KILL the machine
  10689. // ----------------------------------------------------------------
  10690. if (killCount >= KILL_DELAY) {
  10691. SERIAL_ERROR_START();
  10692. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10693. kill(PSTR(MSG_KILLED));
  10694. }
  10695. #endif
  10696. #if HAS_HOME
  10697. // Check to see if we have to home, use poor man's debouncer
  10698. // ---------------------------------------------------------
  10699. static int homeDebounceCount = 0; // poor man's debouncing count
  10700. const int HOME_DEBOUNCE_DELAY = 2500;
  10701. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10702. if (!homeDebounceCount) {
  10703. enqueue_and_echo_commands_P(PSTR("G28"));
  10704. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10705. }
  10706. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10707. homeDebounceCount++;
  10708. else
  10709. homeDebounceCount = 0;
  10710. }
  10711. #endif
  10712. #if ENABLED(USE_CONTROLLER_FAN)
  10713. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10714. #endif
  10715. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10716. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10717. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10718. bool oldstatus;
  10719. #if ENABLED(SWITCHING_EXTRUDER)
  10720. oldstatus = E0_ENABLE_READ;
  10721. enable_E0();
  10722. #else // !SWITCHING_EXTRUDER
  10723. switch (active_extruder) {
  10724. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10725. #if E_STEPPERS > 1
  10726. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10727. #if E_STEPPERS > 2
  10728. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10729. #if E_STEPPERS > 3
  10730. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10731. #if E_STEPPERS > 4
  10732. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10733. #endif // E_STEPPERS > 4
  10734. #endif // E_STEPPERS > 3
  10735. #endif // E_STEPPERS > 2
  10736. #endif // E_STEPPERS > 1
  10737. }
  10738. #endif // !SWITCHING_EXTRUDER
  10739. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10740. const float olde = current_position[E_AXIS];
  10741. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10742. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10743. current_position[E_AXIS] = olde;
  10744. planner.set_e_position_mm(olde);
  10745. stepper.synchronize();
  10746. #if ENABLED(SWITCHING_EXTRUDER)
  10747. E0_ENABLE_WRITE(oldstatus);
  10748. #else
  10749. switch (active_extruder) {
  10750. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10751. #if E_STEPPERS > 1
  10752. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10753. #if E_STEPPERS > 2
  10754. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10755. #if E_STEPPERS > 3
  10756. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10757. #if E_STEPPERS > 4
  10758. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10759. #endif // E_STEPPERS > 4
  10760. #endif // E_STEPPERS > 3
  10761. #endif // E_STEPPERS > 2
  10762. #endif // E_STEPPERS > 1
  10763. }
  10764. #endif // !SWITCHING_EXTRUDER
  10765. }
  10766. #endif // EXTRUDER_RUNOUT_PREVENT
  10767. #if ENABLED(DUAL_X_CARRIAGE)
  10768. // handle delayed move timeout
  10769. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10770. // travel moves have been received so enact them
  10771. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10772. set_destination_to_current();
  10773. prepare_move_to_destination();
  10774. }
  10775. #endif
  10776. #if ENABLED(TEMP_STAT_LEDS)
  10777. handle_status_leds();
  10778. #endif
  10779. #if ENABLED(HAVE_TMC2130)
  10780. checkOverTemp();
  10781. #endif
  10782. planner.check_axes_activity();
  10783. }
  10784. /**
  10785. * Standard idle routine keeps the machine alive
  10786. */
  10787. void idle(
  10788. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10789. bool no_stepper_sleep/*=false*/
  10790. #endif
  10791. ) {
  10792. lcd_update();
  10793. host_keepalive();
  10794. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10795. auto_report_temperatures();
  10796. #endif
  10797. manage_inactivity(
  10798. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10799. no_stepper_sleep
  10800. #endif
  10801. );
  10802. thermalManager.manage_heater();
  10803. #if ENABLED(PRINTCOUNTER)
  10804. print_job_timer.tick();
  10805. #endif
  10806. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10807. buzzer.tick();
  10808. #endif
  10809. #if ENABLED(I2C_POSITION_ENCODERS)
  10810. if (planner.blocks_queued() &&
  10811. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  10812. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  10813. blockBufferIndexRef = planner.block_buffer_head;
  10814. I2CPEM.update();
  10815. lastUpdateMillis = millis();
  10816. }
  10817. #endif
  10818. }
  10819. /**
  10820. * Kill all activity and lock the machine.
  10821. * After this the machine will need to be reset.
  10822. */
  10823. void kill(const char* lcd_msg) {
  10824. SERIAL_ERROR_START();
  10825. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10826. thermalManager.disable_all_heaters();
  10827. disable_all_steppers();
  10828. #if ENABLED(ULTRA_LCD)
  10829. kill_screen(lcd_msg);
  10830. #else
  10831. UNUSED(lcd_msg);
  10832. #endif
  10833. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10834. cli(); // Stop interrupts
  10835. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10836. thermalManager.disable_all_heaters(); //turn off heaters again
  10837. #if defined(ACTION_ON_KILL)
  10838. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  10839. #endif
  10840. #if HAS_POWER_SWITCH
  10841. SET_INPUT(PS_ON_PIN);
  10842. #endif
  10843. suicide();
  10844. while (1) {
  10845. #if ENABLED(USE_WATCHDOG)
  10846. watchdog_reset();
  10847. #endif
  10848. } // Wait for reset
  10849. }
  10850. /**
  10851. * Turn off heaters and stop the print in progress
  10852. * After a stop the machine may be resumed with M999
  10853. */
  10854. void stop() {
  10855. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  10856. #if ENABLED(PROBING_FANS_OFF)
  10857. if (fans_paused) fans_pause(false); // put things back the way they were
  10858. #endif
  10859. if (IsRunning()) {
  10860. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10861. SERIAL_ERROR_START();
  10862. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10863. LCD_MESSAGEPGM(MSG_STOPPED);
  10864. safe_delay(350); // allow enough time for messages to get out before stopping
  10865. Running = false;
  10866. }
  10867. }
  10868. /**
  10869. * Marlin entry-point: Set up before the program loop
  10870. * - Set up the kill pin, filament runout, power hold
  10871. * - Start the serial port
  10872. * - Print startup messages and diagnostics
  10873. * - Get EEPROM or default settings
  10874. * - Initialize managers for:
  10875. * • temperature
  10876. * • planner
  10877. * • watchdog
  10878. * • stepper
  10879. * • photo pin
  10880. * • servos
  10881. * • LCD controller
  10882. * • Digipot I2C
  10883. * • Z probe sled
  10884. * • status LEDs
  10885. */
  10886. void setup() {
  10887. #ifdef DISABLE_JTAG
  10888. // Disable JTAG on AT90USB chips to free up pins for IO
  10889. MCUCR = 0x80;
  10890. MCUCR = 0x80;
  10891. #endif
  10892. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10893. setup_filrunoutpin();
  10894. #endif
  10895. setup_killpin();
  10896. setup_powerhold();
  10897. #if HAS_STEPPER_RESET
  10898. disableStepperDrivers();
  10899. #endif
  10900. MYSERIAL.begin(BAUDRATE);
  10901. SERIAL_PROTOCOLLNPGM("start");
  10902. SERIAL_ECHO_START();
  10903. // Check startup - does nothing if bootloader sets MCUSR to 0
  10904. byte mcu = MCUSR;
  10905. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10906. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10907. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10908. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10909. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10910. MCUSR = 0;
  10911. SERIAL_ECHOPGM(MSG_MARLIN);
  10912. SERIAL_CHAR(' ');
  10913. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10914. SERIAL_EOL();
  10915. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10916. SERIAL_ECHO_START();
  10917. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10918. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10919. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10920. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10921. #endif
  10922. SERIAL_ECHO_START();
  10923. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10924. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10925. // Send "ok" after commands by default
  10926. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10927. // Load data from EEPROM if available (or use defaults)
  10928. // This also updates variables in the planner, elsewhere
  10929. (void)settings.load();
  10930. #if HAS_M206_COMMAND
  10931. // Initialize current position based on home_offset
  10932. COPY(current_position, home_offset);
  10933. #else
  10934. ZERO(current_position);
  10935. #endif
  10936. // Vital to init stepper/planner equivalent for current_position
  10937. SYNC_PLAN_POSITION_KINEMATIC();
  10938. thermalManager.init(); // Initialize temperature loop
  10939. #if ENABLED(USE_WATCHDOG)
  10940. watchdog_init();
  10941. #endif
  10942. stepper.init(); // Initialize stepper, this enables interrupts!
  10943. servo_init();
  10944. #if HAS_PHOTOGRAPH
  10945. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10946. #endif
  10947. #if HAS_CASE_LIGHT
  10948. case_light_on = CASE_LIGHT_DEFAULT_ON;
  10949. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  10950. update_case_light();
  10951. #endif
  10952. #if ENABLED(SPINDLE_LASER_ENABLE)
  10953. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  10954. #if SPINDLE_DIR_CHANGE
  10955. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  10956. #endif
  10957. #if ENABLED(SPINDLE_LASER_PWM)
  10958. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  10959. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  10960. #endif
  10961. #endif
  10962. #if HAS_BED_PROBE
  10963. endstops.enable_z_probe(false);
  10964. #endif
  10965. #if ENABLED(USE_CONTROLLER_FAN)
  10966. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  10967. #endif
  10968. #if HAS_STEPPER_RESET
  10969. enableStepperDrivers();
  10970. #endif
  10971. #if ENABLED(DIGIPOT_I2C)
  10972. digipot_i2c_init();
  10973. #endif
  10974. #if ENABLED(DAC_STEPPER_CURRENT)
  10975. dac_init();
  10976. #endif
  10977. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10978. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10979. #endif
  10980. #if HAS_HOME
  10981. SET_INPUT_PULLUP(HOME_PIN);
  10982. #endif
  10983. #if PIN_EXISTS(STAT_LED_RED)
  10984. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10985. #endif
  10986. #if PIN_EXISTS(STAT_LED_BLUE)
  10987. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10988. #endif
  10989. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10990. SET_OUTPUT(RGB_LED_R_PIN);
  10991. SET_OUTPUT(RGB_LED_G_PIN);
  10992. SET_OUTPUT(RGB_LED_B_PIN);
  10993. #if ENABLED(RGBW_LED)
  10994. SET_OUTPUT(RGB_LED_W_PIN);
  10995. #endif
  10996. #endif
  10997. #if ENABLED(MK2_MULTIPLEXER)
  10998. SET_OUTPUT(E_MUX0_PIN);
  10999. SET_OUTPUT(E_MUX1_PIN);
  11000. SET_OUTPUT(E_MUX2_PIN);
  11001. #endif
  11002. lcd_init();
  11003. #ifndef CUSTOM_BOOTSCREEN_TIMEOUT
  11004. #define CUSTOM_BOOTSCREEN_TIMEOUT 2500
  11005. #endif
  11006. #if ENABLED(SHOW_BOOTSCREEN)
  11007. #if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
  11008. #if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
  11009. safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
  11010. lcd_bootscreen(); // Show Marlin boot screen
  11011. #endif
  11012. safe_delay(BOOTSCREEN_TIMEOUT); // Pause
  11013. #elif ENABLED(ULTRA_LCD)
  11014. lcd_bootscreen();
  11015. #if DISABLED(SDSUPPORT)
  11016. lcd_init();
  11017. #endif
  11018. #endif
  11019. #endif
  11020. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11021. // Initialize mixing to 100% color 1
  11022. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11023. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11024. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11025. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11026. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11027. #endif
  11028. #if ENABLED(BLTOUCH)
  11029. // Make sure any BLTouch error condition is cleared
  11030. bltouch_command(BLTOUCH_RESET);
  11031. set_bltouch_deployed(true);
  11032. set_bltouch_deployed(false);
  11033. #endif
  11034. #if ENABLED(I2C_POSITION_ENCODERS)
  11035. I2CPEM.init();
  11036. #endif
  11037. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11038. i2c.onReceive(i2c_on_receive);
  11039. i2c.onRequest(i2c_on_request);
  11040. #endif
  11041. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11042. setup_endstop_interrupts();
  11043. #endif
  11044. #if ENABLED(SWITCHING_EXTRUDER)
  11045. move_extruder_servo(0); // Initialize extruder servo
  11046. #endif
  11047. #if ENABLED(SWITCHING_NOZZLE)
  11048. move_nozzle_servo(0); // Initialize nozzle servo
  11049. #endif
  11050. }
  11051. /**
  11052. * The main Marlin program loop
  11053. *
  11054. * - Save or log commands to SD
  11055. * - Process available commands (if not saving)
  11056. * - Call heater manager
  11057. * - Call inactivity manager
  11058. * - Call endstop manager
  11059. * - Call LCD update
  11060. */
  11061. void loop() {
  11062. if (commands_in_queue < BUFSIZE) get_available_commands();
  11063. #if ENABLED(SDSUPPORT)
  11064. card.checkautostart(false);
  11065. #endif
  11066. if (commands_in_queue) {
  11067. #if ENABLED(SDSUPPORT)
  11068. if (card.saving) {
  11069. char* command = command_queue[cmd_queue_index_r];
  11070. if (strstr_P(command, PSTR("M29"))) {
  11071. // M29 closes the file
  11072. card.closefile();
  11073. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11074. ok_to_send();
  11075. }
  11076. else {
  11077. // Write the string from the read buffer to SD
  11078. card.write_command(command);
  11079. if (card.logging)
  11080. process_next_command(); // The card is saving because it's logging
  11081. else
  11082. ok_to_send();
  11083. }
  11084. }
  11085. else
  11086. process_next_command();
  11087. #else
  11088. process_next_command();
  11089. #endif // SDSUPPORT
  11090. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11091. if (commands_in_queue) {
  11092. --commands_in_queue;
  11093. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11094. }
  11095. }
  11096. endstops.report_state();
  11097. idle();
  11098. }