My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 119KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores parameters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from EEPROM)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M665 - set delta configurations
  149. // M666 - set delta endstop adjustment
  150. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  151. // M907 - Set digital trimpot motor current using axis codes.
  152. // M908 - Control digital trimpot directly.
  153. // M350 - Set microstepping mode.
  154. // M351 - Toggle MS1 MS2 pins directly.
  155. // M928 - Start SD logging (M928 filename.g) - ended by M29
  156. // M999 - Restart after being stopped by error
  157. //Stepper Movement Variables
  158. //===========================================================================
  159. //=============================imported variables============================
  160. //===========================================================================
  161. //===========================================================================
  162. //=============================public variables=============================
  163. //===========================================================================
  164. #ifdef SDSUPPORT
  165. CardReader card;
  166. #endif
  167. float homing_feedrate[] = HOMING_FEEDRATE;
  168. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  169. int feedmultiply=100; //100->1 200->2
  170. int saved_feedmultiply;
  171. int extrudemultiply=100; //100->1 200->2
  172. float volumetric_multiplier[EXTRUDERS] = {1.0
  173. #if EXTRUDERS > 1
  174. , 1.0
  175. #if EXTRUDERS > 2
  176. , 1.0
  177. #endif
  178. #endif
  179. };
  180. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  181. float add_homeing[3]={0,0,0};
  182. #ifdef DELTA
  183. float endstop_adj[3]={0,0,0};
  184. #endif
  185. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  186. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  187. bool axis_known_position[3] = {false, false, false};
  188. float zprobe_zoffset;
  189. // Extruder offset
  190. #if EXTRUDERS > 1
  191. #ifndef DUAL_X_CARRIAGE
  192. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  193. #else
  194. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  195. #endif
  196. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  197. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  198. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  199. #endif
  200. };
  201. #endif
  202. uint8_t active_extruder = 0;
  203. int fanSpeed=0;
  204. #ifdef SERVO_ENDSTOPS
  205. int servo_endstops[] = SERVO_ENDSTOPS;
  206. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  207. #endif
  208. #ifdef BARICUDA
  209. int ValvePressure=0;
  210. int EtoPPressure=0;
  211. #endif
  212. #ifdef FWRETRACT
  213. bool autoretract_enabled=false;
  214. bool retracted=false;
  215. float retract_length = RETRACT_LENGTH;
  216. float retract_feedrate = RETRACT_FEEDRATE;
  217. float retract_zlift = RETRACT_ZLIFT;
  218. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  219. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  220. #endif
  221. #ifdef ULTIPANEL
  222. #ifdef PS_DEFAULT_OFF
  223. bool powersupply = false;
  224. #else
  225. bool powersupply = true;
  226. #endif
  227. #endif
  228. #ifdef DELTA
  229. float delta[3] = {0.0, 0.0, 0.0};
  230. #define SIN_60 0.8660254037844386
  231. #define COS_60 0.5
  232. // these are the default values, can be overriden with M665
  233. float delta_radius= DELTA_RADIUS;
  234. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  235. float delta_tower1_y= -COS_60*delta_radius;
  236. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  237. float delta_tower2_y= -COS_60*delta_radius;
  238. float delta_tower3_x= 0.0; // back middle tower
  239. float delta_tower3_y= delta_radius;
  240. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  241. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  242. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  243. #endif
  244. //===========================================================================
  245. //=============================Private Variables=============================
  246. //===========================================================================
  247. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  248. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  249. static float offset[3] = {0.0, 0.0, 0.0};
  250. static bool home_all_axis = true;
  251. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  252. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  253. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  254. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  255. static bool fromsd[BUFSIZE];
  256. static int bufindr = 0;
  257. static int bufindw = 0;
  258. static int buflen = 0;
  259. //static int i = 0;
  260. static char serial_char;
  261. static int serial_count = 0;
  262. static boolean comment_mode = false;
  263. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. static unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. unsigned long starttime=0;
  272. unsigned long stoptime=0;
  273. static uint8_t tmp_extruder;
  274. bool Stopped=false;
  275. #if NUM_SERVOS > 0
  276. Servo servos[NUM_SERVOS];
  277. #endif
  278. bool CooldownNoWait = true;
  279. bool target_direction;
  280. //===========================================================================
  281. //=============================Routines======================================
  282. //===========================================================================
  283. void get_arc_coordinates();
  284. bool setTargetedHotend(int code);
  285. void serial_echopair_P(const char *s_P, float v)
  286. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  287. void serial_echopair_P(const char *s_P, double v)
  288. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  289. void serial_echopair_P(const char *s_P, unsigned long v)
  290. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  291. extern "C"{
  292. extern unsigned int __bss_end;
  293. extern unsigned int __heap_start;
  294. extern void *__brkval;
  295. int freeMemory() {
  296. int free_memory;
  297. if((int)__brkval == 0)
  298. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  299. else
  300. free_memory = ((int)&free_memory) - ((int)__brkval);
  301. return free_memory;
  302. }
  303. }
  304. //adds an command to the main command buffer
  305. //thats really done in a non-safe way.
  306. //needs overworking someday
  307. void enquecommand(const char *cmd)
  308. {
  309. if(buflen < BUFSIZE)
  310. {
  311. //this is dangerous if a mixing of serial and this happens
  312. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  313. SERIAL_ECHO_START;
  314. SERIAL_ECHOPGM("enqueing \"");
  315. SERIAL_ECHO(cmdbuffer[bufindw]);
  316. SERIAL_ECHOLNPGM("\"");
  317. bufindw= (bufindw + 1)%BUFSIZE;
  318. buflen += 1;
  319. }
  320. }
  321. void enquecommand_P(const char *cmd)
  322. {
  323. if(buflen < BUFSIZE)
  324. {
  325. //this is dangerous if a mixing of serial and this happens
  326. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  327. SERIAL_ECHO_START;
  328. SERIAL_ECHOPGM("enqueing \"");
  329. SERIAL_ECHO(cmdbuffer[bufindw]);
  330. SERIAL_ECHOLNPGM("\"");
  331. bufindw= (bufindw + 1)%BUFSIZE;
  332. buflen += 1;
  333. }
  334. }
  335. void setup_killpin()
  336. {
  337. #if defined(KILL_PIN) && KILL_PIN > -1
  338. pinMode(KILL_PIN,INPUT);
  339. WRITE(KILL_PIN,HIGH);
  340. #endif
  341. }
  342. void setup_photpin()
  343. {
  344. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  345. SET_OUTPUT(PHOTOGRAPH_PIN);
  346. WRITE(PHOTOGRAPH_PIN, LOW);
  347. #endif
  348. }
  349. void setup_powerhold()
  350. {
  351. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  352. SET_OUTPUT(SUICIDE_PIN);
  353. WRITE(SUICIDE_PIN, HIGH);
  354. #endif
  355. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  356. SET_OUTPUT(PS_ON_PIN);
  357. #if defined(PS_DEFAULT_OFF)
  358. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  359. #else
  360. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  361. #endif
  362. #endif
  363. }
  364. void suicide()
  365. {
  366. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  367. SET_OUTPUT(SUICIDE_PIN);
  368. WRITE(SUICIDE_PIN, LOW);
  369. #endif
  370. }
  371. void servo_init()
  372. {
  373. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  374. servos[0].attach(SERVO0_PIN);
  375. #endif
  376. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  377. servos[1].attach(SERVO1_PIN);
  378. #endif
  379. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  380. servos[2].attach(SERVO2_PIN);
  381. #endif
  382. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  383. servos[3].attach(SERVO3_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 5)
  386. #error "TODO: enter initalisation code for more servos"
  387. #endif
  388. // Set position of Servo Endstops that are defined
  389. #ifdef SERVO_ENDSTOPS
  390. for(int8_t i = 0; i < 3; i++)
  391. {
  392. if(servo_endstops[i] > -1) {
  393. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  394. }
  395. }
  396. #endif
  397. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  398. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  399. servos[servo_endstops[Z_AXIS]].detach();
  400. #endif
  401. }
  402. void setup()
  403. {
  404. setup_killpin();
  405. setup_powerhold();
  406. MYSERIAL.begin(BAUDRATE);
  407. SERIAL_PROTOCOLLNPGM("start");
  408. SERIAL_ECHO_START;
  409. // Check startup - does nothing if bootloader sets MCUSR to 0
  410. byte mcu = MCUSR;
  411. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  412. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  413. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  414. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  415. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  416. MCUSR=0;
  417. SERIAL_ECHOPGM(MSG_MARLIN);
  418. SERIAL_ECHOLNPGM(VERSION_STRING);
  419. #ifdef STRING_VERSION_CONFIG_H
  420. #ifdef STRING_CONFIG_H_AUTHOR
  421. SERIAL_ECHO_START;
  422. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  423. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  424. SERIAL_ECHOPGM(MSG_AUTHOR);
  425. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  426. SERIAL_ECHOPGM("Compiled: ");
  427. SERIAL_ECHOLNPGM(__DATE__);
  428. #endif
  429. #endif
  430. SERIAL_ECHO_START;
  431. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  432. SERIAL_ECHO(freeMemory());
  433. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  434. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  435. for(int8_t i = 0; i < BUFSIZE; i++)
  436. {
  437. fromsd[i] = false;
  438. }
  439. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  440. Config_RetrieveSettings();
  441. tp_init(); // Initialize temperature loop
  442. plan_init(); // Initialize planner;
  443. watchdog_init();
  444. st_init(); // Initialize stepper, this enables interrupts!
  445. setup_photpin();
  446. servo_init();
  447. lcd_init();
  448. _delay_ms(1000); // wait 1sec to display the splash screen
  449. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  450. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  451. #endif
  452. #ifdef DIGIPOT_I2C
  453. digipot_i2c_init();
  454. #endif
  455. }
  456. void loop()
  457. {
  458. if(buflen < (BUFSIZE-1))
  459. get_command();
  460. #ifdef SDSUPPORT
  461. card.checkautostart(false);
  462. #endif
  463. if(buflen)
  464. {
  465. #ifdef SDSUPPORT
  466. if(card.saving)
  467. {
  468. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  469. {
  470. card.write_command(cmdbuffer[bufindr]);
  471. if(card.logging)
  472. {
  473. process_commands();
  474. }
  475. else
  476. {
  477. SERIAL_PROTOCOLLNPGM(MSG_OK);
  478. }
  479. }
  480. else
  481. {
  482. card.closefile();
  483. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  484. }
  485. }
  486. else
  487. {
  488. process_commands();
  489. }
  490. #else
  491. process_commands();
  492. #endif //SDSUPPORT
  493. buflen = (buflen-1);
  494. bufindr = (bufindr + 1)%BUFSIZE;
  495. }
  496. //check heater every n milliseconds
  497. manage_heater();
  498. manage_inactivity();
  499. checkHitEndstops();
  500. lcd_update();
  501. }
  502. void get_command()
  503. {
  504. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  505. serial_char = MYSERIAL.read();
  506. if(serial_char == '\n' ||
  507. serial_char == '\r' ||
  508. (serial_char == ':' && comment_mode == false) ||
  509. serial_count >= (MAX_CMD_SIZE - 1) )
  510. {
  511. if(!serial_count) { //if empty line
  512. comment_mode = false; //for new command
  513. return;
  514. }
  515. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  516. if(!comment_mode){
  517. comment_mode = false; //for new command
  518. fromsd[bufindw] = false;
  519. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  520. {
  521. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  522. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  523. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  524. SERIAL_ERROR_START;
  525. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  526. SERIAL_ERRORLN(gcode_LastN);
  527. //Serial.println(gcode_N);
  528. FlushSerialRequestResend();
  529. serial_count = 0;
  530. return;
  531. }
  532. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  533. {
  534. byte checksum = 0;
  535. byte count = 0;
  536. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  537. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  538. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  539. SERIAL_ERROR_START;
  540. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  541. SERIAL_ERRORLN(gcode_LastN);
  542. FlushSerialRequestResend();
  543. serial_count = 0;
  544. return;
  545. }
  546. //if no errors, continue parsing
  547. }
  548. else
  549. {
  550. SERIAL_ERROR_START;
  551. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  552. SERIAL_ERRORLN(gcode_LastN);
  553. FlushSerialRequestResend();
  554. serial_count = 0;
  555. return;
  556. }
  557. gcode_LastN = gcode_N;
  558. //if no errors, continue parsing
  559. }
  560. else // if we don't receive 'N' but still see '*'
  561. {
  562. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  563. {
  564. SERIAL_ERROR_START;
  565. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  566. SERIAL_ERRORLN(gcode_LastN);
  567. serial_count = 0;
  568. return;
  569. }
  570. }
  571. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  572. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  573. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  574. case 0:
  575. case 1:
  576. case 2:
  577. case 3:
  578. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  579. #ifdef SDSUPPORT
  580. if(card.saving)
  581. break;
  582. #endif //SDSUPPORT
  583. SERIAL_PROTOCOLLNPGM(MSG_OK);
  584. }
  585. else {
  586. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  587. LCD_MESSAGEPGM(MSG_STOPPED);
  588. }
  589. break;
  590. default:
  591. break;
  592. }
  593. }
  594. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  595. {
  596. kill();
  597. }
  598. bufindw = (bufindw + 1)%BUFSIZE;
  599. buflen += 1;
  600. }
  601. serial_count = 0; //clear buffer
  602. }
  603. else
  604. {
  605. if(serial_char == ';') comment_mode = true;
  606. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  607. }
  608. }
  609. #ifdef SDSUPPORT
  610. if(!card.sdprinting || serial_count!=0){
  611. return;
  612. }
  613. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  614. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  615. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  616. static bool stop_buffering=false;
  617. if(buflen==0) stop_buffering=false;
  618. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  619. int16_t n=card.get();
  620. serial_char = (char)n;
  621. if(serial_char == '\n' ||
  622. serial_char == '\r' ||
  623. (serial_char == '#' && comment_mode == false) ||
  624. (serial_char == ':' && comment_mode == false) ||
  625. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  626. {
  627. if(card.eof()){
  628. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  629. stoptime=millis();
  630. char time[30];
  631. unsigned long t=(stoptime-starttime)/1000;
  632. int hours, minutes;
  633. minutes=(t/60)%60;
  634. hours=t/60/60;
  635. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  636. SERIAL_ECHO_START;
  637. SERIAL_ECHOLN(time);
  638. lcd_setstatus(time);
  639. card.printingHasFinished();
  640. card.checkautostart(true);
  641. }
  642. if(serial_char=='#')
  643. stop_buffering=true;
  644. if(!serial_count)
  645. {
  646. comment_mode = false; //for new command
  647. return; //if empty line
  648. }
  649. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  650. // if(!comment_mode){
  651. fromsd[bufindw] = true;
  652. buflen += 1;
  653. bufindw = (bufindw + 1)%BUFSIZE;
  654. // }
  655. comment_mode = false; //for new command
  656. serial_count = 0; //clear buffer
  657. }
  658. else
  659. {
  660. if(serial_char == ';') comment_mode = true;
  661. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  662. }
  663. }
  664. #endif //SDSUPPORT
  665. }
  666. float code_value()
  667. {
  668. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  669. }
  670. long code_value_long()
  671. {
  672. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  673. }
  674. bool code_seen(char code)
  675. {
  676. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  677. return (strchr_pointer != NULL); //Return True if a character was found
  678. }
  679. #define DEFINE_PGM_READ_ANY(type, reader) \
  680. static inline type pgm_read_any(const type *p) \
  681. { return pgm_read_##reader##_near(p); }
  682. DEFINE_PGM_READ_ANY(float, float);
  683. DEFINE_PGM_READ_ANY(signed char, byte);
  684. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  685. static const PROGMEM type array##_P[3] = \
  686. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  687. static inline type array(int axis) \
  688. { return pgm_read_any(&array##_P[axis]); }
  689. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  690. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  691. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  692. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  693. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  694. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  695. #ifdef DUAL_X_CARRIAGE
  696. #if EXTRUDERS == 1 || defined(COREXY) \
  697. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  698. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  699. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  700. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  701. #endif
  702. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  703. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  704. #endif
  705. #define DXC_FULL_CONTROL_MODE 0
  706. #define DXC_AUTO_PARK_MODE 1
  707. #define DXC_DUPLICATION_MODE 2
  708. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  709. static float x_home_pos(int extruder) {
  710. if (extruder == 0)
  711. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  712. else
  713. // In dual carriage mode the extruder offset provides an override of the
  714. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  715. // This allow soft recalibration of the second extruder offset position without firmware reflash
  716. // (through the M218 command).
  717. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  718. }
  719. static int x_home_dir(int extruder) {
  720. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  721. }
  722. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  723. static bool active_extruder_parked = false; // used in mode 1 & 2
  724. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  725. static unsigned long delayed_move_time = 0; // used in mode 1
  726. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  727. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  728. bool extruder_duplication_enabled = false; // used in mode 2
  729. #endif //DUAL_X_CARRIAGE
  730. static void axis_is_at_home(int axis) {
  731. #ifdef DUAL_X_CARRIAGE
  732. if (axis == X_AXIS) {
  733. if (active_extruder != 0) {
  734. current_position[X_AXIS] = x_home_pos(active_extruder);
  735. min_pos[X_AXIS] = X2_MIN_POS;
  736. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  737. return;
  738. }
  739. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  740. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  741. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  742. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  743. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  744. return;
  745. }
  746. }
  747. #endif
  748. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  749. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  750. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  751. }
  752. #ifdef ENABLE_AUTO_BED_LEVELING
  753. #ifdef AUTO_BED_LEVELING_GRID
  754. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  755. {
  756. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  757. planeNormal.debug("planeNormal");
  758. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  759. //bedLevel.debug("bedLevel");
  760. //plan_bed_level_matrix.debug("bed level before");
  761. //vector_3 uncorrected_position = plan_get_position_mm();
  762. //uncorrected_position.debug("position before");
  763. vector_3 corrected_position = plan_get_position();
  764. // corrected_position.debug("position after");
  765. current_position[X_AXIS] = corrected_position.x;
  766. current_position[Y_AXIS] = corrected_position.y;
  767. current_position[Z_AXIS] = corrected_position.z;
  768. // but the bed at 0 so we don't go below it.
  769. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  771. }
  772. #else // not AUTO_BED_LEVELING_GRID
  773. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  774. plan_bed_level_matrix.set_to_identity();
  775. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  776. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  777. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  778. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  779. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  780. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  781. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  782. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  783. vector_3 corrected_position = plan_get_position();
  784. current_position[X_AXIS] = corrected_position.x;
  785. current_position[Y_AXIS] = corrected_position.y;
  786. current_position[Z_AXIS] = corrected_position.z;
  787. // put the bed at 0 so we don't go below it.
  788. current_position[Z_AXIS] = zprobe_zoffset;
  789. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  790. }
  791. #endif // AUTO_BED_LEVELING_GRID
  792. static void run_z_probe() {
  793. plan_bed_level_matrix.set_to_identity();
  794. feedrate = homing_feedrate[Z_AXIS];
  795. // move down until you find the bed
  796. float zPosition = -10;
  797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  798. st_synchronize();
  799. // we have to let the planner know where we are right now as it is not where we said to go.
  800. zPosition = st_get_position_mm(Z_AXIS);
  801. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  802. // move up the retract distance
  803. zPosition += home_retract_mm(Z_AXIS);
  804. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  805. st_synchronize();
  806. // move back down slowly to find bed
  807. feedrate = homing_feedrate[Z_AXIS]/4;
  808. zPosition -= home_retract_mm(Z_AXIS) * 2;
  809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  810. st_synchronize();
  811. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  812. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  813. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  814. }
  815. static void do_blocking_move_to(float x, float y, float z) {
  816. float oldFeedRate = feedrate;
  817. feedrate = XY_TRAVEL_SPEED;
  818. current_position[X_AXIS] = x;
  819. current_position[Y_AXIS] = y;
  820. current_position[Z_AXIS] = z;
  821. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  822. st_synchronize();
  823. feedrate = oldFeedRate;
  824. }
  825. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  826. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  827. }
  828. static void setup_for_endstop_move() {
  829. saved_feedrate = feedrate;
  830. saved_feedmultiply = feedmultiply;
  831. feedmultiply = 100;
  832. previous_millis_cmd = millis();
  833. enable_endstops(true);
  834. }
  835. static void clean_up_after_endstop_move() {
  836. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  837. enable_endstops(false);
  838. #endif
  839. feedrate = saved_feedrate;
  840. feedmultiply = saved_feedmultiply;
  841. previous_millis_cmd = millis();
  842. }
  843. static void engage_z_probe() {
  844. // Engage Z Servo endstop if enabled
  845. #ifdef SERVO_ENDSTOPS
  846. if (servo_endstops[Z_AXIS] > -1) {
  847. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  848. servos[servo_endstops[Z_AXIS]].attach(0);
  849. #endif
  850. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  851. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  852. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  853. servos[servo_endstops[Z_AXIS]].detach();
  854. #endif
  855. }
  856. #endif
  857. }
  858. static void retract_z_probe() {
  859. // Retract Z Servo endstop if enabled
  860. #ifdef SERVO_ENDSTOPS
  861. if (servo_endstops[Z_AXIS] > -1) {
  862. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  863. servos[servo_endstops[Z_AXIS]].attach(0);
  864. #endif
  865. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  866. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  867. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  868. servos[servo_endstops[Z_AXIS]].detach();
  869. #endif
  870. }
  871. #endif
  872. }
  873. /// Probe bed height at position (x,y), returns the measured z value
  874. static float probe_pt(float x, float y, float z_before) {
  875. // move to right place
  876. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  877. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  878. engage_z_probe(); // Engage Z Servo endstop if available
  879. run_z_probe();
  880. float measured_z = current_position[Z_AXIS];
  881. retract_z_probe();
  882. SERIAL_PROTOCOLPGM(MSG_BED);
  883. SERIAL_PROTOCOLPGM(" x: ");
  884. SERIAL_PROTOCOL(x);
  885. SERIAL_PROTOCOLPGM(" y: ");
  886. SERIAL_PROTOCOL(y);
  887. SERIAL_PROTOCOLPGM(" z: ");
  888. SERIAL_PROTOCOL(measured_z);
  889. SERIAL_PROTOCOLPGM("\n");
  890. return measured_z;
  891. }
  892. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  893. static void homeaxis(int axis) {
  894. #define HOMEAXIS_DO(LETTER) \
  895. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  896. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  897. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  898. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  899. 0) {
  900. int axis_home_dir = home_dir(axis);
  901. #ifdef DUAL_X_CARRIAGE
  902. if (axis == X_AXIS)
  903. axis_home_dir = x_home_dir(active_extruder);
  904. #endif
  905. current_position[axis] = 0;
  906. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  907. // Engage Servo endstop if enabled
  908. #ifdef SERVO_ENDSTOPS
  909. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  910. if (axis==Z_AXIS) {
  911. engage_z_probe();
  912. }
  913. else
  914. #endif
  915. if (servo_endstops[axis] > -1) {
  916. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  917. }
  918. #endif
  919. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  920. feedrate = homing_feedrate[axis];
  921. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  922. st_synchronize();
  923. current_position[axis] = 0;
  924. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  925. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  926. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  927. st_synchronize();
  928. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  929. #ifdef DELTA
  930. feedrate = homing_feedrate[axis]/10;
  931. #else
  932. feedrate = homing_feedrate[axis]/2 ;
  933. #endif
  934. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  935. st_synchronize();
  936. #ifdef DELTA
  937. // retrace by the amount specified in endstop_adj
  938. if (endstop_adj[axis] * axis_home_dir < 0) {
  939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  940. destination[axis] = endstop_adj[axis];
  941. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  942. st_synchronize();
  943. }
  944. #endif
  945. axis_is_at_home(axis);
  946. destination[axis] = current_position[axis];
  947. feedrate = 0.0;
  948. endstops_hit_on_purpose();
  949. axis_known_position[axis] = true;
  950. // Retract Servo endstop if enabled
  951. #ifdef SERVO_ENDSTOPS
  952. if (servo_endstops[axis] > -1) {
  953. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  954. }
  955. #endif
  956. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  957. if (axis==Z_AXIS) retract_z_probe();
  958. #endif
  959. }
  960. }
  961. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  962. void refresh_cmd_timeout(void)
  963. {
  964. previous_millis_cmd = millis();
  965. }
  966. #ifdef FWRETRACT
  967. void retract(bool retracting) {
  968. if(retracting && !retracted) {
  969. destination[X_AXIS]=current_position[X_AXIS];
  970. destination[Y_AXIS]=current_position[Y_AXIS];
  971. destination[Z_AXIS]=current_position[Z_AXIS];
  972. destination[E_AXIS]=current_position[E_AXIS];
  973. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  974. plan_set_e_position(current_position[E_AXIS]);
  975. float oldFeedrate = feedrate;
  976. feedrate=retract_feedrate;
  977. retracted=true;
  978. prepare_move();
  979. current_position[Z_AXIS]-=retract_zlift;
  980. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  981. prepare_move();
  982. feedrate = oldFeedrate;
  983. } else if(!retracting && retracted) {
  984. destination[X_AXIS]=current_position[X_AXIS];
  985. destination[Y_AXIS]=current_position[Y_AXIS];
  986. destination[Z_AXIS]=current_position[Z_AXIS];
  987. destination[E_AXIS]=current_position[E_AXIS];
  988. current_position[Z_AXIS]+=retract_zlift;
  989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  990. //prepare_move();
  991. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  992. plan_set_e_position(current_position[E_AXIS]);
  993. float oldFeedrate = feedrate;
  994. feedrate=retract_recover_feedrate;
  995. retracted=false;
  996. prepare_move();
  997. feedrate = oldFeedrate;
  998. }
  999. } //retract
  1000. #endif //FWRETRACT
  1001. void process_commands()
  1002. {
  1003. unsigned long codenum; //throw away variable
  1004. char *starpos = NULL;
  1005. #ifdef ENABLE_AUTO_BED_LEVELING
  1006. float x_tmp, y_tmp, z_tmp, real_z;
  1007. #endif
  1008. if(code_seen('G'))
  1009. {
  1010. switch((int)code_value())
  1011. {
  1012. case 0: // G0 -> G1
  1013. case 1: // G1
  1014. if(Stopped == false) {
  1015. get_coordinates(); // For X Y Z E F
  1016. #ifdef FWRETRACT
  1017. if(autoretract_enabled)
  1018. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1019. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1020. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1021. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1022. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1023. retract(!retracted);
  1024. return;
  1025. }
  1026. }
  1027. #endif //FWRETRACT
  1028. prepare_move();
  1029. //ClearToSend();
  1030. return;
  1031. }
  1032. //break;
  1033. case 2: // G2 - CW ARC
  1034. if(Stopped == false) {
  1035. get_arc_coordinates();
  1036. prepare_arc_move(true);
  1037. return;
  1038. }
  1039. case 3: // G3 - CCW ARC
  1040. if(Stopped == false) {
  1041. get_arc_coordinates();
  1042. prepare_arc_move(false);
  1043. return;
  1044. }
  1045. case 4: // G4 dwell
  1046. LCD_MESSAGEPGM(MSG_DWELL);
  1047. codenum = 0;
  1048. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1049. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1050. st_synchronize();
  1051. codenum += millis(); // keep track of when we started waiting
  1052. previous_millis_cmd = millis();
  1053. while(millis() < codenum ){
  1054. manage_heater();
  1055. manage_inactivity();
  1056. lcd_update();
  1057. }
  1058. break;
  1059. #ifdef FWRETRACT
  1060. case 10: // G10 retract
  1061. retract(true);
  1062. break;
  1063. case 11: // G11 retract_recover
  1064. retract(false);
  1065. break;
  1066. #endif //FWRETRACT
  1067. case 28: //G28 Home all Axis one at a time
  1068. #ifdef ENABLE_AUTO_BED_LEVELING
  1069. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1070. #endif //ENABLE_AUTO_BED_LEVELING
  1071. saved_feedrate = feedrate;
  1072. saved_feedmultiply = feedmultiply;
  1073. feedmultiply = 100;
  1074. previous_millis_cmd = millis();
  1075. enable_endstops(true);
  1076. for(int8_t i=0; i < NUM_AXIS; i++) {
  1077. destination[i] = current_position[i];
  1078. }
  1079. feedrate = 0.0;
  1080. #ifdef DELTA
  1081. // A delta can only safely home all axis at the same time
  1082. // all axis have to home at the same time
  1083. // Move all carriages up together until the first endstop is hit.
  1084. current_position[X_AXIS] = 0;
  1085. current_position[Y_AXIS] = 0;
  1086. current_position[Z_AXIS] = 0;
  1087. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1088. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1089. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1090. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1091. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1092. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1093. st_synchronize();
  1094. endstops_hit_on_purpose();
  1095. current_position[X_AXIS] = destination[X_AXIS];
  1096. current_position[Y_AXIS] = destination[Y_AXIS];
  1097. current_position[Z_AXIS] = destination[Z_AXIS];
  1098. // take care of back off and rehome now we are all at the top
  1099. HOMEAXIS(X);
  1100. HOMEAXIS(Y);
  1101. HOMEAXIS(Z);
  1102. calculate_delta(current_position);
  1103. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1104. #else // NOT DELTA
  1105. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1106. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1107. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1108. HOMEAXIS(Z);
  1109. }
  1110. #endif
  1111. #ifdef QUICK_HOME
  1112. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1113. {
  1114. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1115. #ifndef DUAL_X_CARRIAGE
  1116. int x_axis_home_dir = home_dir(X_AXIS);
  1117. #else
  1118. int x_axis_home_dir = x_home_dir(active_extruder);
  1119. extruder_duplication_enabled = false;
  1120. #endif
  1121. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1122. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1123. feedrate = homing_feedrate[X_AXIS];
  1124. if(homing_feedrate[Y_AXIS]<feedrate)
  1125. feedrate =homing_feedrate[Y_AXIS];
  1126. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1127. st_synchronize();
  1128. axis_is_at_home(X_AXIS);
  1129. axis_is_at_home(Y_AXIS);
  1130. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1131. destination[X_AXIS] = current_position[X_AXIS];
  1132. destination[Y_AXIS] = current_position[Y_AXIS];
  1133. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1134. feedrate = 0.0;
  1135. st_synchronize();
  1136. endstops_hit_on_purpose();
  1137. current_position[X_AXIS] = destination[X_AXIS];
  1138. current_position[Y_AXIS] = destination[Y_AXIS];
  1139. current_position[Z_AXIS] = destination[Z_AXIS];
  1140. }
  1141. #endif
  1142. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1143. {
  1144. #ifdef DUAL_X_CARRIAGE
  1145. int tmp_extruder = active_extruder;
  1146. extruder_duplication_enabled = false;
  1147. active_extruder = !active_extruder;
  1148. HOMEAXIS(X);
  1149. inactive_extruder_x_pos = current_position[X_AXIS];
  1150. active_extruder = tmp_extruder;
  1151. HOMEAXIS(X);
  1152. // reset state used by the different modes
  1153. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1154. delayed_move_time = 0;
  1155. active_extruder_parked = true;
  1156. #else
  1157. HOMEAXIS(X);
  1158. #endif
  1159. }
  1160. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1161. HOMEAXIS(Y);
  1162. }
  1163. if(code_seen(axis_codes[X_AXIS]))
  1164. {
  1165. if(code_value_long() != 0) {
  1166. current_position[X_AXIS]=code_value()+add_homeing[0];
  1167. }
  1168. }
  1169. if(code_seen(axis_codes[Y_AXIS])) {
  1170. if(code_value_long() != 0) {
  1171. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1172. }
  1173. }
  1174. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1175. #ifndef Z_SAFE_HOMING
  1176. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1177. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1178. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1179. feedrate = max_feedrate[Z_AXIS];
  1180. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1181. st_synchronize();
  1182. #endif
  1183. HOMEAXIS(Z);
  1184. }
  1185. #else // Z Safe mode activated.
  1186. if(home_all_axis) {
  1187. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1188. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1189. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1190. feedrate = XY_TRAVEL_SPEED;
  1191. current_position[Z_AXIS] = 0;
  1192. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1193. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1194. st_synchronize();
  1195. current_position[X_AXIS] = destination[X_AXIS];
  1196. current_position[Y_AXIS] = destination[Y_AXIS];
  1197. HOMEAXIS(Z);
  1198. }
  1199. // Let's see if X and Y are homed and probe is inside bed area.
  1200. if(code_seen(axis_codes[Z_AXIS])) {
  1201. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1202. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1203. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1204. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1205. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1206. current_position[Z_AXIS] = 0;
  1207. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1208. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1209. feedrate = max_feedrate[Z_AXIS];
  1210. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1211. st_synchronize();
  1212. HOMEAXIS(Z);
  1213. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1214. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1215. SERIAL_ECHO_START;
  1216. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1217. } else {
  1218. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1219. SERIAL_ECHO_START;
  1220. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1221. }
  1222. }
  1223. #endif
  1224. #endif
  1225. if(code_seen(axis_codes[Z_AXIS])) {
  1226. if(code_value_long() != 0) {
  1227. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1228. }
  1229. }
  1230. #ifdef ENABLE_AUTO_BED_LEVELING
  1231. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1232. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1233. }
  1234. #endif
  1235. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1236. #endif // else DELTA
  1237. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1238. enable_endstops(false);
  1239. #endif
  1240. feedrate = saved_feedrate;
  1241. feedmultiply = saved_feedmultiply;
  1242. previous_millis_cmd = millis();
  1243. endstops_hit_on_purpose();
  1244. break;
  1245. #ifdef ENABLE_AUTO_BED_LEVELING
  1246. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1247. {
  1248. #if Z_MIN_PIN == -1
  1249. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1250. #endif
  1251. // Prevent user from running a G29 without first homing in X and Y
  1252. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1253. {
  1254. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1255. SERIAL_ECHO_START;
  1256. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1257. break; // abort G29, since we don't know where we are
  1258. }
  1259. st_synchronize();
  1260. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1261. //vector_3 corrected_position = plan_get_position_mm();
  1262. //corrected_position.debug("position before G29");
  1263. plan_bed_level_matrix.set_to_identity();
  1264. vector_3 uncorrected_position = plan_get_position();
  1265. //uncorrected_position.debug("position durring G29");
  1266. current_position[X_AXIS] = uncorrected_position.x;
  1267. current_position[Y_AXIS] = uncorrected_position.y;
  1268. current_position[Z_AXIS] = uncorrected_position.z;
  1269. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1270. setup_for_endstop_move();
  1271. feedrate = homing_feedrate[Z_AXIS];
  1272. #ifdef AUTO_BED_LEVELING_GRID
  1273. // probe at the points of a lattice grid
  1274. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1275. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1276. // solve the plane equation ax + by + d = z
  1277. // A is the matrix with rows [x y 1] for all the probed points
  1278. // B is the vector of the Z positions
  1279. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1280. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1281. // "A" matrix of the linear system of equations
  1282. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1283. // "B" vector of Z points
  1284. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1285. int probePointCounter = 0;
  1286. bool zig = true;
  1287. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1288. {
  1289. int xProbe, xInc;
  1290. if (zig)
  1291. {
  1292. xProbe = LEFT_PROBE_BED_POSITION;
  1293. //xEnd = RIGHT_PROBE_BED_POSITION;
  1294. xInc = xGridSpacing;
  1295. zig = false;
  1296. } else // zag
  1297. {
  1298. xProbe = RIGHT_PROBE_BED_POSITION;
  1299. //xEnd = LEFT_PROBE_BED_POSITION;
  1300. xInc = -xGridSpacing;
  1301. zig = true;
  1302. }
  1303. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1304. {
  1305. float z_before;
  1306. if (probePointCounter == 0)
  1307. {
  1308. // raise before probing
  1309. z_before = Z_RAISE_BEFORE_PROBING;
  1310. } else
  1311. {
  1312. // raise extruder
  1313. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1314. }
  1315. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1316. eqnBVector[probePointCounter] = measured_z;
  1317. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1318. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1319. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1320. probePointCounter++;
  1321. xProbe += xInc;
  1322. }
  1323. }
  1324. clean_up_after_endstop_move();
  1325. // solve lsq problem
  1326. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1327. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1328. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1329. SERIAL_PROTOCOLPGM(" b: ");
  1330. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1331. SERIAL_PROTOCOLPGM(" d: ");
  1332. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1333. set_bed_level_equation_lsq(plane_equation_coefficients);
  1334. free(plane_equation_coefficients);
  1335. #else // AUTO_BED_LEVELING_GRID not defined
  1336. // Probe at 3 arbitrary points
  1337. // probe 1
  1338. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1339. // probe 2
  1340. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1341. // probe 3
  1342. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1343. clean_up_after_endstop_move();
  1344. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1345. #endif // AUTO_BED_LEVELING_GRID
  1346. st_synchronize();
  1347. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1348. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1349. // When the bed is uneven, this height must be corrected.
  1350. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1351. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1352. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1353. z_tmp = current_position[Z_AXIS];
  1354. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1355. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1357. }
  1358. break;
  1359. case 30: // G30 Single Z Probe
  1360. {
  1361. engage_z_probe(); // Engage Z Servo endstop if available
  1362. st_synchronize();
  1363. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1364. setup_for_endstop_move();
  1365. feedrate = homing_feedrate[Z_AXIS];
  1366. run_z_probe();
  1367. SERIAL_PROTOCOLPGM(MSG_BED);
  1368. SERIAL_PROTOCOLPGM(" X: ");
  1369. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1370. SERIAL_PROTOCOLPGM(" Y: ");
  1371. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1372. SERIAL_PROTOCOLPGM(" Z: ");
  1373. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1374. SERIAL_PROTOCOLPGM("\n");
  1375. clean_up_after_endstop_move();
  1376. retract_z_probe(); // Retract Z Servo endstop if available
  1377. }
  1378. break;
  1379. #endif // ENABLE_AUTO_BED_LEVELING
  1380. case 90: // G90
  1381. relative_mode = false;
  1382. break;
  1383. case 91: // G91
  1384. relative_mode = true;
  1385. break;
  1386. case 92: // G92
  1387. if(!code_seen(axis_codes[E_AXIS]))
  1388. st_synchronize();
  1389. for(int8_t i=0; i < NUM_AXIS; i++) {
  1390. if(code_seen(axis_codes[i])) {
  1391. if(i == E_AXIS) {
  1392. current_position[i] = code_value();
  1393. plan_set_e_position(current_position[E_AXIS]);
  1394. }
  1395. else {
  1396. current_position[i] = code_value()+add_homeing[i];
  1397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1398. }
  1399. }
  1400. }
  1401. break;
  1402. }
  1403. }
  1404. else if(code_seen('M'))
  1405. {
  1406. switch( (int)code_value() )
  1407. {
  1408. #ifdef ULTIPANEL
  1409. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1410. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1411. {
  1412. LCD_MESSAGEPGM(MSG_USERWAIT);
  1413. codenum = 0;
  1414. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1415. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1416. st_synchronize();
  1417. previous_millis_cmd = millis();
  1418. if (codenum > 0){
  1419. codenum += millis(); // keep track of when we started waiting
  1420. while(millis() < codenum && !lcd_clicked()){
  1421. manage_heater();
  1422. manage_inactivity();
  1423. lcd_update();
  1424. }
  1425. }else{
  1426. while(!lcd_clicked()){
  1427. manage_heater();
  1428. manage_inactivity();
  1429. lcd_update();
  1430. }
  1431. }
  1432. LCD_MESSAGEPGM(MSG_RESUMING);
  1433. }
  1434. break;
  1435. #endif
  1436. case 17:
  1437. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1438. enable_x();
  1439. enable_y();
  1440. enable_z();
  1441. enable_e0();
  1442. enable_e1();
  1443. enable_e2();
  1444. break;
  1445. #ifdef SDSUPPORT
  1446. case 20: // M20 - list SD card
  1447. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1448. card.ls();
  1449. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1450. break;
  1451. case 21: // M21 - init SD card
  1452. card.initsd();
  1453. break;
  1454. case 22: //M22 - release SD card
  1455. card.release();
  1456. break;
  1457. case 23: //M23 - Select file
  1458. starpos = (strchr(strchr_pointer + 4,'*'));
  1459. if(starpos!=NULL)
  1460. *(starpos-1)='\0';
  1461. card.openFile(strchr_pointer + 4,true);
  1462. break;
  1463. case 24: //M24 - Start SD print
  1464. card.startFileprint();
  1465. starttime=millis();
  1466. break;
  1467. case 25: //M25 - Pause SD print
  1468. card.pauseSDPrint();
  1469. break;
  1470. case 26: //M26 - Set SD index
  1471. if(card.cardOK && code_seen('S')) {
  1472. card.setIndex(code_value_long());
  1473. }
  1474. break;
  1475. case 27: //M27 - Get SD status
  1476. card.getStatus();
  1477. break;
  1478. case 28: //M28 - Start SD write
  1479. starpos = (strchr(strchr_pointer + 4,'*'));
  1480. if(starpos != NULL){
  1481. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1482. strchr_pointer = strchr(npos,' ') + 1;
  1483. *(starpos-1) = '\0';
  1484. }
  1485. card.openFile(strchr_pointer+4,false);
  1486. break;
  1487. case 29: //M29 - Stop SD write
  1488. //processed in write to file routine above
  1489. //card,saving = false;
  1490. break;
  1491. case 30: //M30 <filename> Delete File
  1492. if (card.cardOK){
  1493. card.closefile();
  1494. starpos = (strchr(strchr_pointer + 4,'*'));
  1495. if(starpos != NULL){
  1496. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1497. strchr_pointer = strchr(npos,' ') + 1;
  1498. *(starpos-1) = '\0';
  1499. }
  1500. card.removeFile(strchr_pointer + 4);
  1501. }
  1502. break;
  1503. case 32: //M32 - Select file and start SD print
  1504. {
  1505. if(card.sdprinting) {
  1506. st_synchronize();
  1507. }
  1508. starpos = (strchr(strchr_pointer + 4,'*'));
  1509. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1510. if(namestartpos==NULL)
  1511. {
  1512. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1513. }
  1514. else
  1515. namestartpos++; //to skip the '!'
  1516. if(starpos!=NULL)
  1517. *(starpos-1)='\0';
  1518. bool call_procedure=(code_seen('P'));
  1519. if(strchr_pointer>namestartpos)
  1520. call_procedure=false; //false alert, 'P' found within filename
  1521. if( card.cardOK )
  1522. {
  1523. card.openFile(namestartpos,true,!call_procedure);
  1524. if(code_seen('S'))
  1525. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1526. card.setIndex(code_value_long());
  1527. card.startFileprint();
  1528. if(!call_procedure)
  1529. starttime=millis(); //procedure calls count as normal print time.
  1530. }
  1531. } break;
  1532. case 928: //M928 - Start SD write
  1533. starpos = (strchr(strchr_pointer + 5,'*'));
  1534. if(starpos != NULL){
  1535. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1536. strchr_pointer = strchr(npos,' ') + 1;
  1537. *(starpos-1) = '\0';
  1538. }
  1539. card.openLogFile(strchr_pointer+5);
  1540. break;
  1541. #endif //SDSUPPORT
  1542. case 31: //M31 take time since the start of the SD print or an M109 command
  1543. {
  1544. stoptime=millis();
  1545. char time[30];
  1546. unsigned long t=(stoptime-starttime)/1000;
  1547. int sec,min;
  1548. min=t/60;
  1549. sec=t%60;
  1550. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1551. SERIAL_ECHO_START;
  1552. SERIAL_ECHOLN(time);
  1553. lcd_setstatus(time);
  1554. autotempShutdown();
  1555. }
  1556. break;
  1557. case 42: //M42 -Change pin status via gcode
  1558. if (code_seen('S'))
  1559. {
  1560. int pin_status = code_value();
  1561. int pin_number = LED_PIN;
  1562. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1563. pin_number = code_value();
  1564. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1565. {
  1566. if (sensitive_pins[i] == pin_number)
  1567. {
  1568. pin_number = -1;
  1569. break;
  1570. }
  1571. }
  1572. #if defined(FAN_PIN) && FAN_PIN > -1
  1573. if (pin_number == FAN_PIN)
  1574. fanSpeed = pin_status;
  1575. #endif
  1576. if (pin_number > -1)
  1577. {
  1578. pinMode(pin_number, OUTPUT);
  1579. digitalWrite(pin_number, pin_status);
  1580. analogWrite(pin_number, pin_status);
  1581. }
  1582. }
  1583. break;
  1584. case 104: // M104
  1585. if(setTargetedHotend(104)){
  1586. break;
  1587. }
  1588. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1589. #ifdef DUAL_X_CARRIAGE
  1590. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1591. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1592. #endif
  1593. setWatch();
  1594. break;
  1595. case 112: // M112 -Emergency Stop
  1596. kill();
  1597. break;
  1598. case 140: // M140 set bed temp
  1599. if (code_seen('S')) setTargetBed(code_value());
  1600. break;
  1601. case 105 : // M105
  1602. if(setTargetedHotend(105)){
  1603. break;
  1604. }
  1605. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1606. SERIAL_PROTOCOLPGM("ok T:");
  1607. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1608. SERIAL_PROTOCOLPGM(" /");
  1609. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1610. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1611. SERIAL_PROTOCOLPGM(" B:");
  1612. SERIAL_PROTOCOL_F(degBed(),1);
  1613. SERIAL_PROTOCOLPGM(" /");
  1614. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1615. #endif //TEMP_BED_PIN
  1616. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1617. SERIAL_PROTOCOLPGM(" T");
  1618. SERIAL_PROTOCOL(cur_extruder);
  1619. SERIAL_PROTOCOLPGM(":");
  1620. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1621. SERIAL_PROTOCOLPGM(" /");
  1622. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1623. }
  1624. #else
  1625. SERIAL_ERROR_START;
  1626. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1627. #endif
  1628. SERIAL_PROTOCOLPGM(" @:");
  1629. #ifdef EXTRUDER_WATTS
  1630. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1631. SERIAL_PROTOCOLPGM("W");
  1632. #else
  1633. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1634. #endif
  1635. SERIAL_PROTOCOLPGM(" B@:");
  1636. #ifdef BED_WATTS
  1637. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1638. SERIAL_PROTOCOLPGM("W");
  1639. #else
  1640. SERIAL_PROTOCOL(getHeaterPower(-1));
  1641. #endif
  1642. #ifdef SHOW_TEMP_ADC_VALUES
  1643. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1644. SERIAL_PROTOCOLPGM(" ADC B:");
  1645. SERIAL_PROTOCOL_F(degBed(),1);
  1646. SERIAL_PROTOCOLPGM("C->");
  1647. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1648. #endif
  1649. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1650. SERIAL_PROTOCOLPGM(" T");
  1651. SERIAL_PROTOCOL(cur_extruder);
  1652. SERIAL_PROTOCOLPGM(":");
  1653. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1654. SERIAL_PROTOCOLPGM("C->");
  1655. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1656. }
  1657. #endif
  1658. SERIAL_PROTOCOLLN("");
  1659. return;
  1660. break;
  1661. case 109:
  1662. {// M109 - Wait for extruder heater to reach target.
  1663. if(setTargetedHotend(109)){
  1664. break;
  1665. }
  1666. LCD_MESSAGEPGM(MSG_HEATING);
  1667. #ifdef AUTOTEMP
  1668. autotemp_enabled=false;
  1669. #endif
  1670. if (code_seen('S')) {
  1671. setTargetHotend(code_value(), tmp_extruder);
  1672. #ifdef DUAL_X_CARRIAGE
  1673. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1674. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1675. #endif
  1676. CooldownNoWait = true;
  1677. } else if (code_seen('R')) {
  1678. setTargetHotend(code_value(), tmp_extruder);
  1679. #ifdef DUAL_X_CARRIAGE
  1680. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1681. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1682. #endif
  1683. CooldownNoWait = false;
  1684. }
  1685. #ifdef AUTOTEMP
  1686. if (code_seen('S')) autotemp_min=code_value();
  1687. if (code_seen('B')) autotemp_max=code_value();
  1688. if (code_seen('F'))
  1689. {
  1690. autotemp_factor=code_value();
  1691. autotemp_enabled=true;
  1692. }
  1693. #endif
  1694. setWatch();
  1695. codenum = millis();
  1696. /* See if we are heating up or cooling down */
  1697. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1698. #ifdef TEMP_RESIDENCY_TIME
  1699. long residencyStart;
  1700. residencyStart = -1;
  1701. /* continue to loop until we have reached the target temp
  1702. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1703. while((residencyStart == -1) ||
  1704. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1705. #else
  1706. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1707. #endif //TEMP_RESIDENCY_TIME
  1708. if( (millis() - codenum) > 1000UL )
  1709. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1710. SERIAL_PROTOCOLPGM("T:");
  1711. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1712. SERIAL_PROTOCOLPGM(" E:");
  1713. SERIAL_PROTOCOL((int)tmp_extruder);
  1714. #ifdef TEMP_RESIDENCY_TIME
  1715. SERIAL_PROTOCOLPGM(" W:");
  1716. if(residencyStart > -1)
  1717. {
  1718. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1719. SERIAL_PROTOCOLLN( codenum );
  1720. }
  1721. else
  1722. {
  1723. SERIAL_PROTOCOLLN( "?" );
  1724. }
  1725. #else
  1726. SERIAL_PROTOCOLLN("");
  1727. #endif
  1728. codenum = millis();
  1729. }
  1730. manage_heater();
  1731. manage_inactivity();
  1732. lcd_update();
  1733. #ifdef TEMP_RESIDENCY_TIME
  1734. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1735. or when current temp falls outside the hysteresis after target temp was reached */
  1736. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1737. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1738. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1739. {
  1740. residencyStart = millis();
  1741. }
  1742. #endif //TEMP_RESIDENCY_TIME
  1743. }
  1744. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1745. starttime=millis();
  1746. previous_millis_cmd = millis();
  1747. }
  1748. break;
  1749. case 190: // M190 - Wait for bed heater to reach target.
  1750. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1751. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1752. if (code_seen('S')) {
  1753. setTargetBed(code_value());
  1754. CooldownNoWait = true;
  1755. } else if (code_seen('R')) {
  1756. setTargetBed(code_value());
  1757. CooldownNoWait = false;
  1758. }
  1759. codenum = millis();
  1760. target_direction = isHeatingBed(); // true if heating, false if cooling
  1761. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1762. {
  1763. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1764. {
  1765. float tt=degHotend(active_extruder);
  1766. SERIAL_PROTOCOLPGM("T:");
  1767. SERIAL_PROTOCOL(tt);
  1768. SERIAL_PROTOCOLPGM(" E:");
  1769. SERIAL_PROTOCOL((int)active_extruder);
  1770. SERIAL_PROTOCOLPGM(" B:");
  1771. SERIAL_PROTOCOL_F(degBed(),1);
  1772. SERIAL_PROTOCOLLN("");
  1773. codenum = millis();
  1774. }
  1775. manage_heater();
  1776. manage_inactivity();
  1777. lcd_update();
  1778. }
  1779. LCD_MESSAGEPGM(MSG_BED_DONE);
  1780. previous_millis_cmd = millis();
  1781. #endif
  1782. break;
  1783. #if defined(FAN_PIN) && FAN_PIN > -1
  1784. case 106: //M106 Fan On
  1785. if (code_seen('S')){
  1786. fanSpeed=constrain(code_value(),0,255);
  1787. }
  1788. else {
  1789. fanSpeed=255;
  1790. }
  1791. break;
  1792. case 107: //M107 Fan Off
  1793. fanSpeed = 0;
  1794. break;
  1795. #endif //FAN_PIN
  1796. #ifdef BARICUDA
  1797. // PWM for HEATER_1_PIN
  1798. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1799. case 126: //M126 valve open
  1800. if (code_seen('S')){
  1801. ValvePressure=constrain(code_value(),0,255);
  1802. }
  1803. else {
  1804. ValvePressure=255;
  1805. }
  1806. break;
  1807. case 127: //M127 valve closed
  1808. ValvePressure = 0;
  1809. break;
  1810. #endif //HEATER_1_PIN
  1811. // PWM for HEATER_2_PIN
  1812. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1813. case 128: //M128 valve open
  1814. if (code_seen('S')){
  1815. EtoPPressure=constrain(code_value(),0,255);
  1816. }
  1817. else {
  1818. EtoPPressure=255;
  1819. }
  1820. break;
  1821. case 129: //M129 valve closed
  1822. EtoPPressure = 0;
  1823. break;
  1824. #endif //HEATER_2_PIN
  1825. #endif
  1826. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1827. case 80: // M80 - Turn on Power Supply
  1828. SET_OUTPUT(PS_ON_PIN); //GND
  1829. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1830. // If you have a switch on suicide pin, this is useful
  1831. // if you want to start another print with suicide feature after
  1832. // a print without suicide...
  1833. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1834. SET_OUTPUT(SUICIDE_PIN);
  1835. WRITE(SUICIDE_PIN, HIGH);
  1836. #endif
  1837. #ifdef ULTIPANEL
  1838. powersupply = true;
  1839. LCD_MESSAGEPGM(WELCOME_MSG);
  1840. lcd_update();
  1841. #endif
  1842. break;
  1843. #endif
  1844. case 81: // M81 - Turn off Power Supply
  1845. disable_heater();
  1846. st_synchronize();
  1847. disable_e0();
  1848. disable_e1();
  1849. disable_e2();
  1850. finishAndDisableSteppers();
  1851. fanSpeed = 0;
  1852. delay(1000); // Wait a little before to switch off
  1853. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1854. st_synchronize();
  1855. suicide();
  1856. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1857. SET_OUTPUT(PS_ON_PIN);
  1858. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1859. #endif
  1860. #ifdef ULTIPANEL
  1861. powersupply = false;
  1862. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1863. lcd_update();
  1864. #endif
  1865. break;
  1866. case 82:
  1867. axis_relative_modes[3] = false;
  1868. break;
  1869. case 83:
  1870. axis_relative_modes[3] = true;
  1871. break;
  1872. case 18: //compatibility
  1873. case 84: // M84
  1874. if(code_seen('S')){
  1875. stepper_inactive_time = code_value() * 1000;
  1876. }
  1877. else
  1878. {
  1879. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1880. if(all_axis)
  1881. {
  1882. st_synchronize();
  1883. disable_e0();
  1884. disable_e1();
  1885. disable_e2();
  1886. finishAndDisableSteppers();
  1887. }
  1888. else
  1889. {
  1890. st_synchronize();
  1891. if(code_seen('X')) disable_x();
  1892. if(code_seen('Y')) disable_y();
  1893. if(code_seen('Z')) disable_z();
  1894. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1895. if(code_seen('E')) {
  1896. disable_e0();
  1897. disable_e1();
  1898. disable_e2();
  1899. }
  1900. #endif
  1901. }
  1902. }
  1903. break;
  1904. case 85: // M85
  1905. code_seen('S');
  1906. max_inactive_time = code_value() * 1000;
  1907. break;
  1908. case 92: // M92
  1909. for(int8_t i=0; i < NUM_AXIS; i++)
  1910. {
  1911. if(code_seen(axis_codes[i]))
  1912. {
  1913. if(i == 3) { // E
  1914. float value = code_value();
  1915. if(value < 20.0) {
  1916. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1917. max_e_jerk *= factor;
  1918. max_feedrate[i] *= factor;
  1919. axis_steps_per_sqr_second[i] *= factor;
  1920. }
  1921. axis_steps_per_unit[i] = value;
  1922. }
  1923. else {
  1924. axis_steps_per_unit[i] = code_value();
  1925. }
  1926. }
  1927. }
  1928. break;
  1929. case 115: // M115
  1930. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1931. break;
  1932. case 117: // M117 display message
  1933. starpos = (strchr(strchr_pointer + 5,'*'));
  1934. if(starpos!=NULL)
  1935. *(starpos-1)='\0';
  1936. lcd_setstatus(strchr_pointer + 5);
  1937. break;
  1938. case 114: // M114
  1939. SERIAL_PROTOCOLPGM("X:");
  1940. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1941. SERIAL_PROTOCOLPGM(" Y:");
  1942. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1943. SERIAL_PROTOCOLPGM(" Z:");
  1944. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1945. SERIAL_PROTOCOLPGM(" E:");
  1946. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1947. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1948. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1949. SERIAL_PROTOCOLPGM(" Y:");
  1950. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1951. SERIAL_PROTOCOLPGM(" Z:");
  1952. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1953. SERIAL_PROTOCOLLN("");
  1954. break;
  1955. case 120: // M120
  1956. enable_endstops(false) ;
  1957. break;
  1958. case 121: // M121
  1959. enable_endstops(true) ;
  1960. break;
  1961. case 119: // M119
  1962. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1963. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1964. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1965. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1966. #endif
  1967. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1968. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1969. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1970. #endif
  1971. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1972. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1973. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1974. #endif
  1975. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1976. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1977. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1978. #endif
  1979. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1980. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1981. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1982. #endif
  1983. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1984. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1985. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1986. #endif
  1987. break;
  1988. //TODO: update for all axis, use for loop
  1989. #ifdef BLINKM
  1990. case 150: // M150
  1991. {
  1992. byte red;
  1993. byte grn;
  1994. byte blu;
  1995. if(code_seen('R')) red = code_value();
  1996. if(code_seen('U')) grn = code_value();
  1997. if(code_seen('B')) blu = code_value();
  1998. SendColors(red,grn,blu);
  1999. }
  2000. break;
  2001. #endif //BLINKM
  2002. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2003. {
  2004. float area = .0;
  2005. float radius = .0;
  2006. if(code_seen('D')) {
  2007. radius = (float)code_value() * .5;
  2008. if(radius == 0) {
  2009. area = 1;
  2010. } else {
  2011. area = M_PI * pow(radius, 2);
  2012. }
  2013. } else {
  2014. //reserved for setting filament diameter via UFID or filament measuring device
  2015. break;
  2016. }
  2017. tmp_extruder = active_extruder;
  2018. if(code_seen('T')) {
  2019. tmp_extruder = code_value();
  2020. if(tmp_extruder >= EXTRUDERS) {
  2021. SERIAL_ECHO_START;
  2022. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2023. }
  2024. SERIAL_ECHOLN(tmp_extruder);
  2025. break;
  2026. }
  2027. volumetric_multiplier[tmp_extruder] = 1 / area;
  2028. }
  2029. break;
  2030. case 201: // M201
  2031. for(int8_t i=0; i < NUM_AXIS; i++)
  2032. {
  2033. if(code_seen(axis_codes[i]))
  2034. {
  2035. max_acceleration_units_per_sq_second[i] = code_value();
  2036. }
  2037. }
  2038. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2039. reset_acceleration_rates();
  2040. break;
  2041. #if 0 // Not used for Sprinter/grbl gen6
  2042. case 202: // M202
  2043. for(int8_t i=0; i < NUM_AXIS; i++) {
  2044. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2045. }
  2046. break;
  2047. #endif
  2048. case 203: // M203 max feedrate mm/sec
  2049. for(int8_t i=0; i < NUM_AXIS; i++) {
  2050. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2051. }
  2052. break;
  2053. case 204: // M204 acclereration S normal moves T filmanent only moves
  2054. {
  2055. if(code_seen('S')) acceleration = code_value() ;
  2056. if(code_seen('T')) retract_acceleration = code_value() ;
  2057. }
  2058. break;
  2059. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2060. {
  2061. if(code_seen('S')) minimumfeedrate = code_value();
  2062. if(code_seen('T')) mintravelfeedrate = code_value();
  2063. if(code_seen('B')) minsegmenttime = code_value() ;
  2064. if(code_seen('X')) max_xy_jerk = code_value() ;
  2065. if(code_seen('Z')) max_z_jerk = code_value() ;
  2066. if(code_seen('E')) max_e_jerk = code_value() ;
  2067. }
  2068. break;
  2069. case 206: // M206 additional homeing offset
  2070. for(int8_t i=0; i < 3; i++)
  2071. {
  2072. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2073. }
  2074. break;
  2075. #ifdef DELTA
  2076. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2077. if(code_seen('L')) {
  2078. delta_diagonal_rod= code_value();
  2079. }
  2080. if(code_seen('R')) {
  2081. delta_radius= code_value();
  2082. }
  2083. if(code_seen('S')) {
  2084. delta_segments_per_second= code_value();
  2085. }
  2086. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2087. break;
  2088. case 666: // M666 set delta endstop adjustemnt
  2089. for(int8_t i=0; i < 3; i++)
  2090. {
  2091. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2092. }
  2093. break;
  2094. #endif
  2095. #ifdef FWRETRACT
  2096. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2097. {
  2098. if(code_seen('S'))
  2099. {
  2100. retract_length = code_value() ;
  2101. }
  2102. if(code_seen('F'))
  2103. {
  2104. retract_feedrate = code_value() ;
  2105. }
  2106. if(code_seen('Z'))
  2107. {
  2108. retract_zlift = code_value() ;
  2109. }
  2110. }break;
  2111. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2112. {
  2113. if(code_seen('S'))
  2114. {
  2115. retract_recover_length = code_value() ;
  2116. }
  2117. if(code_seen('F'))
  2118. {
  2119. retract_recover_feedrate = code_value() ;
  2120. }
  2121. }break;
  2122. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2123. {
  2124. if(code_seen('S'))
  2125. {
  2126. int t= code_value() ;
  2127. switch(t)
  2128. {
  2129. case 0: autoretract_enabled=false;retracted=false;break;
  2130. case 1: autoretract_enabled=true;retracted=false;break;
  2131. default:
  2132. SERIAL_ECHO_START;
  2133. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2134. SERIAL_ECHO(cmdbuffer[bufindr]);
  2135. SERIAL_ECHOLNPGM("\"");
  2136. }
  2137. }
  2138. }break;
  2139. #endif // FWRETRACT
  2140. #if EXTRUDERS > 1
  2141. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2142. {
  2143. if(setTargetedHotend(218)){
  2144. break;
  2145. }
  2146. if(code_seen('X'))
  2147. {
  2148. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2149. }
  2150. if(code_seen('Y'))
  2151. {
  2152. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2153. }
  2154. #ifdef DUAL_X_CARRIAGE
  2155. if(code_seen('Z'))
  2156. {
  2157. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2158. }
  2159. #endif
  2160. SERIAL_ECHO_START;
  2161. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2162. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2163. {
  2164. SERIAL_ECHO(" ");
  2165. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2166. SERIAL_ECHO(",");
  2167. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2168. #ifdef DUAL_X_CARRIAGE
  2169. SERIAL_ECHO(",");
  2170. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2171. #endif
  2172. }
  2173. SERIAL_ECHOLN("");
  2174. }break;
  2175. #endif
  2176. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2177. {
  2178. if(code_seen('S'))
  2179. {
  2180. feedmultiply = code_value() ;
  2181. }
  2182. }
  2183. break;
  2184. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2185. {
  2186. if(code_seen('S'))
  2187. {
  2188. extrudemultiply = code_value() ;
  2189. }
  2190. }
  2191. break;
  2192. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2193. {
  2194. if(code_seen('P')){
  2195. int pin_number = code_value(); // pin number
  2196. int pin_state = -1; // required pin state - default is inverted
  2197. if(code_seen('S')) pin_state = code_value(); // required pin state
  2198. if(pin_state >= -1 && pin_state <= 1){
  2199. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2200. {
  2201. if (sensitive_pins[i] == pin_number)
  2202. {
  2203. pin_number = -1;
  2204. break;
  2205. }
  2206. }
  2207. if (pin_number > -1)
  2208. {
  2209. st_synchronize();
  2210. pinMode(pin_number, INPUT);
  2211. int target;
  2212. switch(pin_state){
  2213. case 1:
  2214. target = HIGH;
  2215. break;
  2216. case 0:
  2217. target = LOW;
  2218. break;
  2219. case -1:
  2220. target = !digitalRead(pin_number);
  2221. break;
  2222. }
  2223. while(digitalRead(pin_number) != target){
  2224. manage_heater();
  2225. manage_inactivity();
  2226. lcd_update();
  2227. }
  2228. }
  2229. }
  2230. }
  2231. }
  2232. break;
  2233. #if NUM_SERVOS > 0
  2234. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2235. {
  2236. int servo_index = -1;
  2237. int servo_position = 0;
  2238. if (code_seen('P'))
  2239. servo_index = code_value();
  2240. if (code_seen('S')) {
  2241. servo_position = code_value();
  2242. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2243. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2244. servos[servo_index].attach(0);
  2245. #endif
  2246. servos[servo_index].write(servo_position);
  2247. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2248. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2249. servos[servo_index].detach();
  2250. #endif
  2251. }
  2252. else {
  2253. SERIAL_ECHO_START;
  2254. SERIAL_ECHO("Servo ");
  2255. SERIAL_ECHO(servo_index);
  2256. SERIAL_ECHOLN(" out of range");
  2257. }
  2258. }
  2259. else if (servo_index >= 0) {
  2260. SERIAL_PROTOCOL(MSG_OK);
  2261. SERIAL_PROTOCOL(" Servo ");
  2262. SERIAL_PROTOCOL(servo_index);
  2263. SERIAL_PROTOCOL(": ");
  2264. SERIAL_PROTOCOL(servos[servo_index].read());
  2265. SERIAL_PROTOCOLLN("");
  2266. }
  2267. }
  2268. break;
  2269. #endif // NUM_SERVOS > 0
  2270. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2271. case 300: // M300
  2272. {
  2273. int beepS = code_seen('S') ? code_value() : 110;
  2274. int beepP = code_seen('P') ? code_value() : 1000;
  2275. if (beepS > 0)
  2276. {
  2277. #if BEEPER > 0
  2278. tone(BEEPER, beepS);
  2279. delay(beepP);
  2280. noTone(BEEPER);
  2281. #elif defined(ULTRALCD)
  2282. lcd_buzz(beepS, beepP);
  2283. #elif defined(LCD_USE_I2C_BUZZER)
  2284. lcd_buzz(beepP, beepS);
  2285. #endif
  2286. }
  2287. else
  2288. {
  2289. delay(beepP);
  2290. }
  2291. }
  2292. break;
  2293. #endif // M300
  2294. #ifdef PIDTEMP
  2295. case 301: // M301
  2296. {
  2297. if(code_seen('P')) Kp = code_value();
  2298. if(code_seen('I')) Ki = scalePID_i(code_value());
  2299. if(code_seen('D')) Kd = scalePID_d(code_value());
  2300. #ifdef PID_ADD_EXTRUSION_RATE
  2301. if(code_seen('C')) Kc = code_value();
  2302. #endif
  2303. updatePID();
  2304. SERIAL_PROTOCOL(MSG_OK);
  2305. SERIAL_PROTOCOL(" p:");
  2306. SERIAL_PROTOCOL(Kp);
  2307. SERIAL_PROTOCOL(" i:");
  2308. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2309. SERIAL_PROTOCOL(" d:");
  2310. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2311. #ifdef PID_ADD_EXTRUSION_RATE
  2312. SERIAL_PROTOCOL(" c:");
  2313. //Kc does not have scaling applied above, or in resetting defaults
  2314. SERIAL_PROTOCOL(Kc);
  2315. #endif
  2316. SERIAL_PROTOCOLLN("");
  2317. }
  2318. break;
  2319. #endif //PIDTEMP
  2320. #ifdef PIDTEMPBED
  2321. case 304: // M304
  2322. {
  2323. if(code_seen('P')) bedKp = code_value();
  2324. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2325. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2326. updatePID();
  2327. SERIAL_PROTOCOL(MSG_OK);
  2328. SERIAL_PROTOCOL(" p:");
  2329. SERIAL_PROTOCOL(bedKp);
  2330. SERIAL_PROTOCOL(" i:");
  2331. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2332. SERIAL_PROTOCOL(" d:");
  2333. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2334. SERIAL_PROTOCOLLN("");
  2335. }
  2336. break;
  2337. #endif //PIDTEMP
  2338. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2339. {
  2340. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2341. const uint8_t NUM_PULSES=16;
  2342. const float PULSE_LENGTH=0.01524;
  2343. for(int i=0; i < NUM_PULSES; i++) {
  2344. WRITE(PHOTOGRAPH_PIN, HIGH);
  2345. _delay_ms(PULSE_LENGTH);
  2346. WRITE(PHOTOGRAPH_PIN, LOW);
  2347. _delay_ms(PULSE_LENGTH);
  2348. }
  2349. delay(7.33);
  2350. for(int i=0; i < NUM_PULSES; i++) {
  2351. WRITE(PHOTOGRAPH_PIN, HIGH);
  2352. _delay_ms(PULSE_LENGTH);
  2353. WRITE(PHOTOGRAPH_PIN, LOW);
  2354. _delay_ms(PULSE_LENGTH);
  2355. }
  2356. #endif
  2357. }
  2358. break;
  2359. #ifdef DOGLCD
  2360. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2361. {
  2362. if (code_seen('C')) {
  2363. lcd_setcontrast( ((int)code_value())&63 );
  2364. }
  2365. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2366. SERIAL_PROTOCOL(lcd_contrast);
  2367. SERIAL_PROTOCOLLN("");
  2368. }
  2369. break;
  2370. #endif
  2371. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2372. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2373. {
  2374. float temp = .0;
  2375. if (code_seen('S')) temp=code_value();
  2376. set_extrude_min_temp(temp);
  2377. }
  2378. break;
  2379. #endif
  2380. case 303: // M303 PID autotune
  2381. {
  2382. float temp = 150.0;
  2383. int e=0;
  2384. int c=5;
  2385. if (code_seen('E')) e=code_value();
  2386. if (e<0)
  2387. temp=70;
  2388. if (code_seen('S')) temp=code_value();
  2389. if (code_seen('C')) c=code_value();
  2390. PID_autotune(temp, e, c);
  2391. }
  2392. break;
  2393. case 400: // M400 finish all moves
  2394. {
  2395. st_synchronize();
  2396. }
  2397. break;
  2398. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2399. case 401:
  2400. {
  2401. engage_z_probe(); // Engage Z Servo endstop if available
  2402. }
  2403. break;
  2404. case 402:
  2405. {
  2406. retract_z_probe(); // Retract Z Servo endstop if enabled
  2407. }
  2408. break;
  2409. #endif
  2410. case 500: // M500 Store settings in EEPROM
  2411. {
  2412. Config_StoreSettings();
  2413. }
  2414. break;
  2415. case 501: // M501 Read settings from EEPROM
  2416. {
  2417. Config_RetrieveSettings();
  2418. }
  2419. break;
  2420. case 502: // M502 Revert to default settings
  2421. {
  2422. Config_ResetDefault();
  2423. }
  2424. break;
  2425. case 503: // M503 print settings currently in memory
  2426. {
  2427. Config_PrintSettings();
  2428. }
  2429. break;
  2430. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2431. case 540:
  2432. {
  2433. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2434. }
  2435. break;
  2436. #endif
  2437. #ifdef FILAMENTCHANGEENABLE
  2438. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2439. {
  2440. float target[4];
  2441. float lastpos[4];
  2442. target[X_AXIS]=current_position[X_AXIS];
  2443. target[Y_AXIS]=current_position[Y_AXIS];
  2444. target[Z_AXIS]=current_position[Z_AXIS];
  2445. target[E_AXIS]=current_position[E_AXIS];
  2446. lastpos[X_AXIS]=current_position[X_AXIS];
  2447. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2448. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2449. lastpos[E_AXIS]=current_position[E_AXIS];
  2450. //retract by E
  2451. if(code_seen('E'))
  2452. {
  2453. target[E_AXIS]+= code_value();
  2454. }
  2455. else
  2456. {
  2457. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2458. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2459. #endif
  2460. }
  2461. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2462. //lift Z
  2463. if(code_seen('Z'))
  2464. {
  2465. target[Z_AXIS]+= code_value();
  2466. }
  2467. else
  2468. {
  2469. #ifdef FILAMENTCHANGE_ZADD
  2470. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2471. #endif
  2472. }
  2473. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2474. //move xy
  2475. if(code_seen('X'))
  2476. {
  2477. target[X_AXIS]+= code_value();
  2478. }
  2479. else
  2480. {
  2481. #ifdef FILAMENTCHANGE_XPOS
  2482. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2483. #endif
  2484. }
  2485. if(code_seen('Y'))
  2486. {
  2487. target[Y_AXIS]= code_value();
  2488. }
  2489. else
  2490. {
  2491. #ifdef FILAMENTCHANGE_YPOS
  2492. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2493. #endif
  2494. }
  2495. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2496. if(code_seen('L'))
  2497. {
  2498. target[E_AXIS]+= code_value();
  2499. }
  2500. else
  2501. {
  2502. #ifdef FILAMENTCHANGE_FINALRETRACT
  2503. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2504. #endif
  2505. }
  2506. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2507. //finish moves
  2508. st_synchronize();
  2509. //disable extruder steppers so filament can be removed
  2510. disable_e0();
  2511. disable_e1();
  2512. disable_e2();
  2513. delay(100);
  2514. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2515. uint8_t cnt=0;
  2516. while(!lcd_clicked()){
  2517. cnt++;
  2518. manage_heater();
  2519. manage_inactivity();
  2520. lcd_update();
  2521. if(cnt==0)
  2522. {
  2523. #if BEEPER > 0
  2524. SET_OUTPUT(BEEPER);
  2525. WRITE(BEEPER,HIGH);
  2526. delay(3);
  2527. WRITE(BEEPER,LOW);
  2528. delay(3);
  2529. #else
  2530. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2531. lcd_buzz(1000/6,100);
  2532. #else
  2533. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2534. #endif
  2535. #endif
  2536. }
  2537. }
  2538. //return to normal
  2539. if(code_seen('L'))
  2540. {
  2541. target[E_AXIS]+= -code_value();
  2542. }
  2543. else
  2544. {
  2545. #ifdef FILAMENTCHANGE_FINALRETRACT
  2546. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2547. #endif
  2548. }
  2549. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2550. plan_set_e_position(current_position[E_AXIS]);
  2551. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2552. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2553. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2554. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2555. }
  2556. break;
  2557. #endif //FILAMENTCHANGEENABLE
  2558. #ifdef DUAL_X_CARRIAGE
  2559. case 605: // Set dual x-carriage movement mode:
  2560. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2561. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2562. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2563. // millimeters x-offset and an optional differential hotend temperature of
  2564. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2565. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2566. //
  2567. // Note: the X axis should be homed after changing dual x-carriage mode.
  2568. {
  2569. st_synchronize();
  2570. if (code_seen('S'))
  2571. dual_x_carriage_mode = code_value();
  2572. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2573. {
  2574. if (code_seen('X'))
  2575. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2576. if (code_seen('R'))
  2577. duplicate_extruder_temp_offset = code_value();
  2578. SERIAL_ECHO_START;
  2579. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2580. SERIAL_ECHO(" ");
  2581. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2582. SERIAL_ECHO(",");
  2583. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2584. SERIAL_ECHO(" ");
  2585. SERIAL_ECHO(duplicate_extruder_x_offset);
  2586. SERIAL_ECHO(",");
  2587. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2588. }
  2589. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2590. {
  2591. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2592. }
  2593. active_extruder_parked = false;
  2594. extruder_duplication_enabled = false;
  2595. delayed_move_time = 0;
  2596. }
  2597. break;
  2598. #endif //DUAL_X_CARRIAGE
  2599. case 907: // M907 Set digital trimpot motor current using axis codes.
  2600. {
  2601. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2602. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2603. if(code_seen('B')) digipot_current(4,code_value());
  2604. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2605. #endif
  2606. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2607. if(code_seen('X')) digipot_current(0, code_value());
  2608. #endif
  2609. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2610. if(code_seen('Z')) digipot_current(1, code_value());
  2611. #endif
  2612. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2613. if(code_seen('E')) digipot_current(2, code_value());
  2614. #endif
  2615. #ifdef DIGIPOT_I2C
  2616. // this one uses actual amps in floating point
  2617. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2618. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2619. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2620. #endif
  2621. }
  2622. break;
  2623. case 908: // M908 Control digital trimpot directly.
  2624. {
  2625. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2626. uint8_t channel,current;
  2627. if(code_seen('P')) channel=code_value();
  2628. if(code_seen('S')) current=code_value();
  2629. digitalPotWrite(channel, current);
  2630. #endif
  2631. }
  2632. break;
  2633. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2634. {
  2635. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2636. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2637. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2638. if(code_seen('B')) microstep_mode(4,code_value());
  2639. microstep_readings();
  2640. #endif
  2641. }
  2642. break;
  2643. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2644. {
  2645. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2646. if(code_seen('S')) switch((int)code_value())
  2647. {
  2648. case 1:
  2649. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2650. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2651. break;
  2652. case 2:
  2653. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2654. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2655. break;
  2656. }
  2657. microstep_readings();
  2658. #endif
  2659. }
  2660. break;
  2661. case 999: // M999: Restart after being stopped
  2662. Stopped = false;
  2663. lcd_reset_alert_level();
  2664. gcode_LastN = Stopped_gcode_LastN;
  2665. FlushSerialRequestResend();
  2666. break;
  2667. }
  2668. }
  2669. else if(code_seen('T'))
  2670. {
  2671. tmp_extruder = code_value();
  2672. if(tmp_extruder >= EXTRUDERS) {
  2673. SERIAL_ECHO_START;
  2674. SERIAL_ECHO("T");
  2675. SERIAL_ECHO(tmp_extruder);
  2676. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2677. }
  2678. else {
  2679. boolean make_move = false;
  2680. if(code_seen('F')) {
  2681. make_move = true;
  2682. next_feedrate = code_value();
  2683. if(next_feedrate > 0.0) {
  2684. feedrate = next_feedrate;
  2685. }
  2686. }
  2687. #if EXTRUDERS > 1
  2688. if(tmp_extruder != active_extruder) {
  2689. // Save current position to return to after applying extruder offset
  2690. memcpy(destination, current_position, sizeof(destination));
  2691. #ifdef DUAL_X_CARRIAGE
  2692. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2693. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2694. {
  2695. // Park old head: 1) raise 2) move to park position 3) lower
  2696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2697. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2698. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2699. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2700. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2701. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2702. st_synchronize();
  2703. }
  2704. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2705. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2706. extruder_offset[Y_AXIS][active_extruder] +
  2707. extruder_offset[Y_AXIS][tmp_extruder];
  2708. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2709. extruder_offset[Z_AXIS][active_extruder] +
  2710. extruder_offset[Z_AXIS][tmp_extruder];
  2711. active_extruder = tmp_extruder;
  2712. // This function resets the max/min values - the current position may be overwritten below.
  2713. axis_is_at_home(X_AXIS);
  2714. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2715. {
  2716. current_position[X_AXIS] = inactive_extruder_x_pos;
  2717. inactive_extruder_x_pos = destination[X_AXIS];
  2718. }
  2719. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2720. {
  2721. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2722. if (active_extruder == 0 || active_extruder_parked)
  2723. current_position[X_AXIS] = inactive_extruder_x_pos;
  2724. else
  2725. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2726. inactive_extruder_x_pos = destination[X_AXIS];
  2727. extruder_duplication_enabled = false;
  2728. }
  2729. else
  2730. {
  2731. // record raised toolhead position for use by unpark
  2732. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2733. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2734. active_extruder_parked = true;
  2735. delayed_move_time = 0;
  2736. }
  2737. #else
  2738. // Offset extruder (only by XY)
  2739. int i;
  2740. for(i = 0; i < 2; i++) {
  2741. current_position[i] = current_position[i] -
  2742. extruder_offset[i][active_extruder] +
  2743. extruder_offset[i][tmp_extruder];
  2744. }
  2745. // Set the new active extruder and position
  2746. active_extruder = tmp_extruder;
  2747. #endif //else DUAL_X_CARRIAGE
  2748. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2749. // Move to the old position if 'F' was in the parameters
  2750. if(make_move && Stopped == false) {
  2751. prepare_move();
  2752. }
  2753. }
  2754. #endif
  2755. SERIAL_ECHO_START;
  2756. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2757. SERIAL_PROTOCOLLN((int)active_extruder);
  2758. }
  2759. }
  2760. else
  2761. {
  2762. SERIAL_ECHO_START;
  2763. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2764. SERIAL_ECHO(cmdbuffer[bufindr]);
  2765. SERIAL_ECHOLNPGM("\"");
  2766. }
  2767. ClearToSend();
  2768. }
  2769. void FlushSerialRequestResend()
  2770. {
  2771. //char cmdbuffer[bufindr][100]="Resend:";
  2772. MYSERIAL.flush();
  2773. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2774. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2775. ClearToSend();
  2776. }
  2777. void ClearToSend()
  2778. {
  2779. previous_millis_cmd = millis();
  2780. #ifdef SDSUPPORT
  2781. if(fromsd[bufindr])
  2782. return;
  2783. #endif //SDSUPPORT
  2784. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2785. }
  2786. void get_coordinates()
  2787. {
  2788. bool seen[4]={false,false,false,false};
  2789. for(int8_t i=0; i < NUM_AXIS; i++) {
  2790. if(code_seen(axis_codes[i]))
  2791. {
  2792. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2793. seen[i]=true;
  2794. }
  2795. else destination[i] = current_position[i]; //Are these else lines really needed?
  2796. }
  2797. if(code_seen('F')) {
  2798. next_feedrate = code_value();
  2799. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2800. }
  2801. }
  2802. void get_arc_coordinates()
  2803. {
  2804. #ifdef SF_ARC_FIX
  2805. bool relative_mode_backup = relative_mode;
  2806. relative_mode = true;
  2807. #endif
  2808. get_coordinates();
  2809. #ifdef SF_ARC_FIX
  2810. relative_mode=relative_mode_backup;
  2811. #endif
  2812. if(code_seen('I')) {
  2813. offset[0] = code_value();
  2814. }
  2815. else {
  2816. offset[0] = 0.0;
  2817. }
  2818. if(code_seen('J')) {
  2819. offset[1] = code_value();
  2820. }
  2821. else {
  2822. offset[1] = 0.0;
  2823. }
  2824. }
  2825. void clamp_to_software_endstops(float target[3])
  2826. {
  2827. if (min_software_endstops) {
  2828. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2829. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2830. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2831. }
  2832. if (max_software_endstops) {
  2833. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2834. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2835. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2836. }
  2837. }
  2838. #ifdef DELTA
  2839. void recalc_delta_settings(float radius, float diagonal_rod)
  2840. {
  2841. delta_tower1_x= -SIN_60*radius; // front left tower
  2842. delta_tower1_y= -COS_60*radius;
  2843. delta_tower2_x= SIN_60*radius; // front right tower
  2844. delta_tower2_y= -COS_60*radius;
  2845. delta_tower3_x= 0.0; // back middle tower
  2846. delta_tower3_y= radius;
  2847. delta_diagonal_rod_2= sq(diagonal_rod);
  2848. }
  2849. void calculate_delta(float cartesian[3])
  2850. {
  2851. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  2852. - sq(delta_tower1_x-cartesian[X_AXIS])
  2853. - sq(delta_tower1_y-cartesian[Y_AXIS])
  2854. ) + cartesian[Z_AXIS];
  2855. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  2856. - sq(delta_tower2_x-cartesian[X_AXIS])
  2857. - sq(delta_tower2_y-cartesian[Y_AXIS])
  2858. ) + cartesian[Z_AXIS];
  2859. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  2860. - sq(delta_tower3_x-cartesian[X_AXIS])
  2861. - sq(delta_tower3_y-cartesian[Y_AXIS])
  2862. ) + cartesian[Z_AXIS];
  2863. /*
  2864. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2865. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2866. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2867. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2868. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2869. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2870. */
  2871. }
  2872. #endif
  2873. void prepare_move()
  2874. {
  2875. clamp_to_software_endstops(destination);
  2876. previous_millis_cmd = millis();
  2877. #ifdef DELTA
  2878. float difference[NUM_AXIS];
  2879. for (int8_t i=0; i < NUM_AXIS; i++) {
  2880. difference[i] = destination[i] - current_position[i];
  2881. }
  2882. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2883. sq(difference[Y_AXIS]) +
  2884. sq(difference[Z_AXIS]));
  2885. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2886. if (cartesian_mm < 0.000001) { return; }
  2887. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2888. int steps = max(1, int(delta_segments_per_second * seconds));
  2889. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2890. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2891. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2892. for (int s = 1; s <= steps; s++) {
  2893. float fraction = float(s) / float(steps);
  2894. for(int8_t i=0; i < NUM_AXIS; i++) {
  2895. destination[i] = current_position[i] + difference[i] * fraction;
  2896. }
  2897. calculate_delta(destination);
  2898. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2899. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2900. active_extruder);
  2901. }
  2902. #else
  2903. #ifdef DUAL_X_CARRIAGE
  2904. if (active_extruder_parked)
  2905. {
  2906. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2907. {
  2908. // move duplicate extruder into correct duplication position.
  2909. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2910. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2911. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2912. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2913. st_synchronize();
  2914. extruder_duplication_enabled = true;
  2915. active_extruder_parked = false;
  2916. }
  2917. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2918. {
  2919. if (current_position[E_AXIS] == destination[E_AXIS])
  2920. {
  2921. // this is a travel move - skit it but keep track of current position (so that it can later
  2922. // be used as start of first non-travel move)
  2923. if (delayed_move_time != 0xFFFFFFFFUL)
  2924. {
  2925. memcpy(current_position, destination, sizeof(current_position));
  2926. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2927. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2928. delayed_move_time = millis();
  2929. return;
  2930. }
  2931. }
  2932. delayed_move_time = 0;
  2933. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2934. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2935. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2936. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2938. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2939. active_extruder_parked = false;
  2940. }
  2941. }
  2942. #endif //DUAL_X_CARRIAGE
  2943. // Do not use feedmultiply for E or Z only moves
  2944. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2945. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2946. }
  2947. else {
  2948. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2949. }
  2950. #endif //else DELTA
  2951. for(int8_t i=0; i < NUM_AXIS; i++) {
  2952. current_position[i] = destination[i];
  2953. }
  2954. }
  2955. void prepare_arc_move(char isclockwise) {
  2956. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2957. // Trace the arc
  2958. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2959. // As far as the parser is concerned, the position is now == target. In reality the
  2960. // motion control system might still be processing the action and the real tool position
  2961. // in any intermediate location.
  2962. for(int8_t i=0; i < NUM_AXIS; i++) {
  2963. current_position[i] = destination[i];
  2964. }
  2965. previous_millis_cmd = millis();
  2966. }
  2967. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2968. #if defined(FAN_PIN)
  2969. #if CONTROLLERFAN_PIN == FAN_PIN
  2970. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2971. #endif
  2972. #endif
  2973. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2974. unsigned long lastMotorCheck = 0;
  2975. void controllerFan()
  2976. {
  2977. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2978. {
  2979. lastMotorCheck = millis();
  2980. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2981. #if EXTRUDERS > 2
  2982. || !READ(E2_ENABLE_PIN)
  2983. #endif
  2984. #if EXTRUDER > 1
  2985. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2986. || !READ(X2_ENABLE_PIN)
  2987. #endif
  2988. || !READ(E1_ENABLE_PIN)
  2989. #endif
  2990. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2991. {
  2992. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2993. }
  2994. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2995. {
  2996. digitalWrite(CONTROLLERFAN_PIN, 0);
  2997. analogWrite(CONTROLLERFAN_PIN, 0);
  2998. }
  2999. else
  3000. {
  3001. // allows digital or PWM fan output to be used (see M42 handling)
  3002. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3003. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3004. }
  3005. }
  3006. }
  3007. #endif
  3008. #ifdef TEMP_STAT_LEDS
  3009. static bool blue_led = false;
  3010. static bool red_led = false;
  3011. static uint32_t stat_update = 0;
  3012. void handle_status_leds(void) {
  3013. float max_temp = 0.0;
  3014. if(millis() > stat_update) {
  3015. stat_update += 500; // Update every 0.5s
  3016. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3017. max_temp = max(max_temp, degHotend(cur_extruder));
  3018. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3019. }
  3020. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3021. max_temp = max(max_temp, degTargetBed());
  3022. max_temp = max(max_temp, degBed());
  3023. #endif
  3024. if((max_temp > 55.0) && (red_led == false)) {
  3025. digitalWrite(STAT_LED_RED, 1);
  3026. digitalWrite(STAT_LED_BLUE, 0);
  3027. red_led = true;
  3028. blue_led = false;
  3029. }
  3030. if((max_temp < 54.0) && (blue_led == false)) {
  3031. digitalWrite(STAT_LED_RED, 0);
  3032. digitalWrite(STAT_LED_BLUE, 1);
  3033. red_led = false;
  3034. blue_led = true;
  3035. }
  3036. }
  3037. }
  3038. #endif
  3039. void manage_inactivity()
  3040. {
  3041. if(buflen < (BUFSIZE-1))
  3042. get_command();
  3043. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3044. if(max_inactive_time)
  3045. kill();
  3046. if(stepper_inactive_time) {
  3047. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3048. {
  3049. if(blocks_queued() == false) {
  3050. disable_x();
  3051. disable_y();
  3052. disable_z();
  3053. disable_e0();
  3054. disable_e1();
  3055. disable_e2();
  3056. }
  3057. }
  3058. }
  3059. #if defined(KILL_PIN) && KILL_PIN > -1
  3060. if( 0 == READ(KILL_PIN) )
  3061. kill();
  3062. #endif
  3063. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3064. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3065. #endif
  3066. #ifdef EXTRUDER_RUNOUT_PREVENT
  3067. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3068. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3069. {
  3070. bool oldstatus=READ(E0_ENABLE_PIN);
  3071. enable_e0();
  3072. float oldepos=current_position[E_AXIS];
  3073. float oldedes=destination[E_AXIS];
  3074. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3075. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3076. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3077. current_position[E_AXIS]=oldepos;
  3078. destination[E_AXIS]=oldedes;
  3079. plan_set_e_position(oldepos);
  3080. previous_millis_cmd=millis();
  3081. st_synchronize();
  3082. WRITE(E0_ENABLE_PIN,oldstatus);
  3083. }
  3084. #endif
  3085. #if defined(DUAL_X_CARRIAGE)
  3086. // handle delayed move timeout
  3087. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3088. {
  3089. // travel moves have been received so enact them
  3090. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3091. memcpy(destination,current_position,sizeof(destination));
  3092. prepare_move();
  3093. }
  3094. #endif
  3095. #ifdef TEMP_STAT_LEDS
  3096. handle_status_leds();
  3097. #endif
  3098. check_axes_activity();
  3099. }
  3100. void kill()
  3101. {
  3102. cli(); // Stop interrupts
  3103. disable_heater();
  3104. disable_x();
  3105. disable_y();
  3106. disable_z();
  3107. disable_e0();
  3108. disable_e1();
  3109. disable_e2();
  3110. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3111. pinMode(PS_ON_PIN,INPUT);
  3112. #endif
  3113. SERIAL_ERROR_START;
  3114. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3115. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3116. suicide();
  3117. while(1) { /* Intentionally left empty */ } // Wait for reset
  3118. }
  3119. void Stop()
  3120. {
  3121. disable_heater();
  3122. if(Stopped == false) {
  3123. Stopped = true;
  3124. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3125. SERIAL_ERROR_START;
  3126. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3127. LCD_MESSAGEPGM(MSG_STOPPED);
  3128. }
  3129. }
  3130. bool IsStopped() { return Stopped; };
  3131. #ifdef FAST_PWM_FAN
  3132. void setPwmFrequency(uint8_t pin, int val)
  3133. {
  3134. val &= 0x07;
  3135. switch(digitalPinToTimer(pin))
  3136. {
  3137. #if defined(TCCR0A)
  3138. case TIMER0A:
  3139. case TIMER0B:
  3140. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3141. // TCCR0B |= val;
  3142. break;
  3143. #endif
  3144. #if defined(TCCR1A)
  3145. case TIMER1A:
  3146. case TIMER1B:
  3147. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3148. // TCCR1B |= val;
  3149. break;
  3150. #endif
  3151. #if defined(TCCR2)
  3152. case TIMER2:
  3153. case TIMER2:
  3154. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3155. TCCR2 |= val;
  3156. break;
  3157. #endif
  3158. #if defined(TCCR2A)
  3159. case TIMER2A:
  3160. case TIMER2B:
  3161. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3162. TCCR2B |= val;
  3163. break;
  3164. #endif
  3165. #if defined(TCCR3A)
  3166. case TIMER3A:
  3167. case TIMER3B:
  3168. case TIMER3C:
  3169. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3170. TCCR3B |= val;
  3171. break;
  3172. #endif
  3173. #if defined(TCCR4A)
  3174. case TIMER4A:
  3175. case TIMER4B:
  3176. case TIMER4C:
  3177. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3178. TCCR4B |= val;
  3179. break;
  3180. #endif
  3181. #if defined(TCCR5A)
  3182. case TIMER5A:
  3183. case TIMER5B:
  3184. case TIMER5C:
  3185. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3186. TCCR5B |= val;
  3187. break;
  3188. #endif
  3189. }
  3190. }
  3191. #endif //FAST_PWM_FAN
  3192. bool setTargetedHotend(int code){
  3193. tmp_extruder = active_extruder;
  3194. if(code_seen('T')) {
  3195. tmp_extruder = code_value();
  3196. if(tmp_extruder >= EXTRUDERS) {
  3197. SERIAL_ECHO_START;
  3198. switch(code){
  3199. case 104:
  3200. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3201. break;
  3202. case 105:
  3203. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3204. break;
  3205. case 109:
  3206. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3207. break;
  3208. case 218:
  3209. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3210. break;
  3211. }
  3212. SERIAL_ECHOLN(tmp_extruder);
  3213. return true;
  3214. }
  3215. }
  3216. return false;
  3217. }