My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

settings.cpp 115KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V83"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "../lcd/marlinui.h"
  48. #include "../libs/vector_3.h" // for matrix_3x3
  49. #include "../gcode/gcode.h"
  50. #include "../MarlinCore.h"
  51. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  52. #include "../HAL/shared/eeprom_api.h"
  53. #endif
  54. #include "probe.h"
  55. #if HAS_LEVELING
  56. #include "../feature/bedlevel/bedlevel.h"
  57. #endif
  58. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  59. #include "../feature/z_stepper_align.h"
  60. #endif
  61. #if ENABLED(EXTENSIBLE_UI)
  62. #include "../lcd/extui/ui_api.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_SERVOS && HAS_SERVO_ANGLES
  68. #define EEPROM_NUM_SERVOS NUM_SERVOS
  69. #else
  70. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  71. #endif
  72. #include "../feature/fwretract.h"
  73. #if ENABLED(POWER_LOSS_RECOVERY)
  74. #include "../feature/powerloss.h"
  75. #endif
  76. #if HAS_POWER_MONITOR
  77. #include "../feature/power_monitor.h"
  78. #endif
  79. #include "../feature/pause.h"
  80. #if ENABLED(BACKLASH_COMPENSATION)
  81. #include "../feature/backlash.h"
  82. #endif
  83. #if HAS_FILAMENT_SENSOR
  84. #include "../feature/runout.h"
  85. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  86. #define FIL_RUNOUT_ENABLED_DEFAULT true
  87. #endif
  88. #endif
  89. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  90. extern float other_extruder_advance_K[EXTRUDERS];
  91. #endif
  92. #if HAS_MULTI_EXTRUDER
  93. #include "tool_change.h"
  94. void M217_report(const bool eeprom);
  95. #endif
  96. #if ENABLED(BLTOUCH)
  97. #include "../feature/bltouch.h"
  98. #endif
  99. #if HAS_TRINAMIC_CONFIG
  100. #include "stepper/indirection.h"
  101. #include "../feature/tmc_util.h"
  102. #endif
  103. #if ENABLED(PROBE_TEMP_COMPENSATION)
  104. #include "../feature/probe_temp_comp.h"
  105. #endif
  106. #include "../feature/controllerfan.h"
  107. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  108. void M710_report(const bool forReplay);
  109. #endif
  110. #if ENABLED(CASE_LIGHT_ENABLE)
  111. #include "../feature/caselight.h"
  112. #endif
  113. #if ENABLED(PASSWORD_FEATURE)
  114. #include "../feature/password/password.h"
  115. #endif
  116. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  117. #include "../lcd/tft_io/touch_calibration.h"
  118. #endif
  119. #if HAS_ETHERNET
  120. #include "../feature/ethernet.h"
  121. #endif
  122. #if ENABLED(SOUND_MENU_ITEM)
  123. #include "../libs/buzzer.h"
  124. #endif
  125. #pragma pack(push, 1) // No padding between variables
  126. #if HAS_ETHERNET
  127. void ETH0_report();
  128. void MAC_report();
  129. void M552_report();
  130. void M553_report();
  131. void M554_report();
  132. #endif
  133. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  134. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  135. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  136. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  137. // Limit an index to an array size
  138. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  139. // Defaults for reset / fill in on load
  140. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  141. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  142. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  143. /**
  144. * Current EEPROM Layout
  145. *
  146. * Keep this data structure up to date so
  147. * EEPROM size is known at compile time!
  148. */
  149. typedef struct SettingsDataStruct {
  150. char version[4]; // Vnn\0
  151. uint16_t crc; // Data Checksum
  152. //
  153. // DISTINCT_E_FACTORS
  154. //
  155. uint8_t esteppers; // XYZE_N - XYZ
  156. planner_settings_t planner_settings;
  157. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  158. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  159. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  160. #if HAS_HOTEND_OFFSET
  161. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  162. #endif
  163. //
  164. // FILAMENT_RUNOUT_SENSOR
  165. //
  166. bool runout_sensor_enabled; // M412 S
  167. float runout_distance_mm; // M412 D
  168. //
  169. // ENABLE_LEVELING_FADE_HEIGHT
  170. //
  171. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  172. //
  173. // MESH_BED_LEVELING
  174. //
  175. float mbl_z_offset; // mbl.z_offset
  176. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  177. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  178. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  179. //
  180. // HAS_BED_PROBE
  181. //
  182. xyz_pos_t probe_offset;
  183. //
  184. // ABL_PLANAR
  185. //
  186. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  187. //
  188. // AUTO_BED_LEVELING_BILINEAR
  189. //
  190. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  191. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  192. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  193. bed_mesh_t z_values; // G29
  194. #else
  195. float z_values[3][3];
  196. #endif
  197. //
  198. // AUTO_BED_LEVELING_UBL
  199. //
  200. bool planner_leveling_active; // M420 S planner.leveling_active
  201. int8_t ubl_storage_slot; // ubl.storage_slot
  202. //
  203. // SERVO_ANGLES
  204. //
  205. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  206. //
  207. // Temperature first layer compensation values
  208. //
  209. #if ENABLED(PROBE_TEMP_COMPENSATION)
  210. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  211. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  212. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  213. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  214. #endif
  215. ;
  216. #endif
  217. //
  218. // BLTOUCH
  219. //
  220. bool bltouch_last_written_mode;
  221. //
  222. // DELTA / [XYZ]_DUAL_ENDSTOPS
  223. //
  224. #if ENABLED(DELTA)
  225. float delta_height; // M666 H
  226. abc_float_t delta_endstop_adj; // M666 X Y Z
  227. float delta_radius, // M665 R
  228. delta_diagonal_rod, // M665 L
  229. delta_segments_per_second; // M665 S
  230. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  231. delta_diagonal_rod_trim; // M665 A B C
  232. #elif HAS_EXTRA_ENDSTOPS
  233. float x2_endstop_adj, // M666 X
  234. y2_endstop_adj, // M666 Y
  235. z2_endstop_adj, // M666 (S2) Z
  236. z3_endstop_adj, // M666 (S3) Z
  237. z4_endstop_adj; // M666 (S4) Z
  238. #endif
  239. //
  240. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  241. //
  242. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  243. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  244. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  245. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  246. #endif
  247. #endif
  248. //
  249. // Material Presets
  250. //
  251. #if PREHEAT_COUNT
  252. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  253. #endif
  254. //
  255. // PIDTEMP
  256. //
  257. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  258. int16_t lpq_len; // M301 L
  259. //
  260. // PIDTEMPBED
  261. //
  262. PID_t bedPID; // M304 PID / M303 E-1 U
  263. //
  264. // PIDTEMPCHAMBER
  265. //
  266. PID_t chamberPID; // M309 PID / M303 E-2 U
  267. //
  268. // User-defined Thermistors
  269. //
  270. #if HAS_USER_THERMISTORS
  271. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  272. #endif
  273. //
  274. // Power monitor
  275. //
  276. uint8_t power_monitor_flags; // M430 I V W
  277. //
  278. // HAS_LCD_CONTRAST
  279. //
  280. int16_t lcd_contrast; // M250 C
  281. //
  282. // Controller fan settings
  283. //
  284. controllerFan_settings_t controllerFan_settings; // M710
  285. //
  286. // POWER_LOSS_RECOVERY
  287. //
  288. bool recovery_enabled; // M413 S
  289. //
  290. // FWRETRACT
  291. //
  292. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  293. bool autoretract_enabled; // M209 S
  294. //
  295. // !NO_VOLUMETRIC
  296. //
  297. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  298. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  299. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  300. //
  301. // HAS_TRINAMIC_CONFIG
  302. //
  303. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  304. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  305. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  306. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  307. //
  308. // LIN_ADVANCE
  309. //
  310. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  311. //
  312. // HAS_MOTOR_CURRENT_PWM
  313. //
  314. #ifndef MOTOR_CURRENT_COUNT
  315. #define MOTOR_CURRENT_COUNT 3
  316. #endif
  317. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E
  318. //
  319. // CNC_COORDINATE_SYSTEMS
  320. //
  321. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  322. //
  323. // SKEW_CORRECTION
  324. //
  325. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  326. //
  327. // ADVANCED_PAUSE_FEATURE
  328. //
  329. #if EXTRUDERS
  330. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  331. #endif
  332. //
  333. // Tool-change settings
  334. //
  335. #if HAS_MULTI_EXTRUDER
  336. toolchange_settings_t toolchange_settings; // M217 S P R
  337. #endif
  338. //
  339. // BACKLASH_COMPENSATION
  340. //
  341. xyz_float_t backlash_distance_mm; // M425 X Y Z
  342. uint8_t backlash_correction; // M425 F
  343. float backlash_smoothing_mm; // M425 S
  344. //
  345. // EXTENSIBLE_UI
  346. //
  347. #if ENABLED(EXTENSIBLE_UI)
  348. // This is a significant hardware change; don't reserve space when not present
  349. uint8_t extui_data[ExtUI::eeprom_data_size];
  350. #endif
  351. //
  352. // CASELIGHT_USES_BRIGHTNESS
  353. //
  354. #if CASELIGHT_USES_BRIGHTNESS
  355. uint8_t caselight_brightness; // M355 P
  356. #endif
  357. //
  358. // PASSWORD_FEATURE
  359. //
  360. #if ENABLED(PASSWORD_FEATURE)
  361. bool password_is_set;
  362. uint32_t password_value;
  363. #endif
  364. //
  365. // TOUCH_SCREEN_CALIBRATION
  366. //
  367. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  368. touch_calibration_t touch_calibration_data;
  369. #endif
  370. // Ethernet settings
  371. #if HAS_ETHERNET
  372. bool ethernet_hardware_enabled; // M552 S
  373. uint32_t ethernet_ip, // M552 P
  374. ethernet_dns,
  375. ethernet_gateway, // M553 P
  376. ethernet_subnet; // M554 P
  377. #endif
  378. //
  379. // Buzzer enable/disable
  380. //
  381. #if ENABLED(SOUND_MENU_ITEM)
  382. bool buzzer_enabled;
  383. #endif
  384. #if HAS_MULTI_LANGUAGE
  385. uint8_t ui_language; // M414 S
  386. #endif
  387. } SettingsData;
  388. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  389. MarlinSettings settings;
  390. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  391. /**
  392. * Post-process after Retrieve or Reset
  393. */
  394. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  395. float new_z_fade_height;
  396. #endif
  397. void MarlinSettings::postprocess() {
  398. xyze_pos_t oldpos = current_position;
  399. // steps per s2 needs to be updated to agree with units per s2
  400. planner.reset_acceleration_rates();
  401. // Make sure delta kinematics are updated before refreshing the
  402. // planner position so the stepper counts will be set correctly.
  403. TERN_(DELTA, recalc_delta_settings());
  404. TERN_(PIDTEMP, thermalManager.updatePID());
  405. #if DISABLED(NO_VOLUMETRICS)
  406. planner.calculate_volumetric_multipliers();
  407. #elif EXTRUDERS
  408. for (uint8_t i = COUNT(planner.e_factor); i--;)
  409. planner.refresh_e_factor(i);
  410. #endif
  411. // Software endstops depend on home_offset
  412. LOOP_XYZ(i) {
  413. update_workspace_offset((AxisEnum)i);
  414. update_software_endstops((AxisEnum)i);
  415. }
  416. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  417. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  418. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  419. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  420. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  421. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
  422. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  423. // and init stepper.count[], planner.position[] with current_position
  424. planner.refresh_positioning();
  425. // Various factors can change the current position
  426. if (oldpos != current_position)
  427. report_current_position();
  428. }
  429. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  430. #include "printcounter.h"
  431. static_assert(
  432. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  433. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  434. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  435. );
  436. #endif
  437. #if ENABLED(SD_FIRMWARE_UPDATE)
  438. #if ENABLED(EEPROM_SETTINGS)
  439. static_assert(
  440. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  441. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  442. );
  443. #endif
  444. bool MarlinSettings::sd_update_status() {
  445. uint8_t val;
  446. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  447. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  448. }
  449. bool MarlinSettings::set_sd_update_status(const bool enable) {
  450. if (enable != sd_update_status())
  451. persistentStore.write_data(
  452. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  453. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  454. );
  455. return true;
  456. }
  457. #endif // SD_FIRMWARE_UPDATE
  458. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  459. static_assert(EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  460. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data.");
  461. #endif
  462. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  463. #include "../core/debug_out.h"
  464. #if ENABLED(EEPROM_SETTINGS)
  465. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  466. int eeprom_index = EEPROM_OFFSET
  467. #define EEPROM_FINISH() persistentStore.access_finish()
  468. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  469. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  470. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  471. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  472. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  473. #if ENABLED(DEBUG_EEPROM_READWRITE)
  474. #define _FIELD_TEST(FIELD) \
  475. EEPROM_ASSERT( \
  476. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  477. "Field " STRINGIFY(FIELD) " mismatch." \
  478. )
  479. #else
  480. #define _FIELD_TEST(FIELD) NOOP
  481. #endif
  482. const char version[4] = EEPROM_VERSION;
  483. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  484. bool MarlinSettings::size_error(const uint16_t size) {
  485. if (size != datasize()) {
  486. DEBUG_ERROR_MSG("EEPROM datasize error.");
  487. return true;
  488. }
  489. return false;
  490. }
  491. /**
  492. * M500 - Store Configuration
  493. */
  494. bool MarlinSettings::save() {
  495. float dummyf = 0;
  496. char ver[4] = "ERR";
  497. uint16_t working_crc = 0;
  498. EEPROM_START();
  499. eeprom_error = false;
  500. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  501. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  502. EEPROM_SKIP(working_crc); // Skip the checksum slot
  503. working_crc = 0; // clear before first "real data"
  504. _FIELD_TEST(esteppers);
  505. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  506. EEPROM_WRITE(esteppers);
  507. //
  508. // Planner Motion
  509. //
  510. {
  511. EEPROM_WRITE(planner.settings);
  512. #if HAS_CLASSIC_JERK
  513. EEPROM_WRITE(planner.max_jerk);
  514. #if HAS_LINEAR_E_JERK
  515. dummyf = float(DEFAULT_EJERK);
  516. EEPROM_WRITE(dummyf);
  517. #endif
  518. #else
  519. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  520. EEPROM_WRITE(planner_max_jerk);
  521. #endif
  522. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  523. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  524. }
  525. //
  526. // Home Offset
  527. //
  528. {
  529. _FIELD_TEST(home_offset);
  530. #if HAS_SCARA_OFFSET
  531. EEPROM_WRITE(scara_home_offset);
  532. #else
  533. #if !HAS_HOME_OFFSET
  534. const xyz_pos_t home_offset{0};
  535. #endif
  536. EEPROM_WRITE(home_offset);
  537. #endif
  538. }
  539. //
  540. // Hotend Offsets, if any
  541. //
  542. {
  543. #if HAS_HOTEND_OFFSET
  544. // Skip hotend 0 which must be 0
  545. LOOP_S_L_N(e, 1, HOTENDS)
  546. EEPROM_WRITE(hotend_offset[e]);
  547. #endif
  548. }
  549. //
  550. // Filament Runout Sensor
  551. //
  552. {
  553. #if HAS_FILAMENT_SENSOR
  554. const bool &runout_sensor_enabled = runout.enabled;
  555. #else
  556. constexpr int8_t runout_sensor_enabled = -1;
  557. #endif
  558. _FIELD_TEST(runout_sensor_enabled);
  559. EEPROM_WRITE(runout_sensor_enabled);
  560. #if HAS_FILAMENT_RUNOUT_DISTANCE
  561. const float &runout_distance_mm = runout.runout_distance();
  562. #else
  563. constexpr float runout_distance_mm = 0;
  564. #endif
  565. EEPROM_WRITE(runout_distance_mm);
  566. }
  567. //
  568. // Global Leveling
  569. //
  570. {
  571. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, (DEFAULT_LEVELING_FADE_HEIGHT));
  572. EEPROM_WRITE(zfh);
  573. }
  574. //
  575. // Mesh Bed Leveling
  576. //
  577. {
  578. #if ENABLED(MESH_BED_LEVELING)
  579. static_assert(
  580. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  581. "MBL Z array is the wrong size."
  582. );
  583. #else
  584. dummyf = 0;
  585. #endif
  586. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  587. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  588. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  589. EEPROM_WRITE(mesh_num_x);
  590. EEPROM_WRITE(mesh_num_y);
  591. #if ENABLED(MESH_BED_LEVELING)
  592. EEPROM_WRITE(mbl.z_values);
  593. #else
  594. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  595. #endif
  596. }
  597. //
  598. // Probe XYZ Offsets
  599. //
  600. {
  601. _FIELD_TEST(probe_offset);
  602. #if HAS_BED_PROBE
  603. const xyz_pos_t &zpo = probe.offset;
  604. #else
  605. constexpr xyz_pos_t zpo{0};
  606. #endif
  607. EEPROM_WRITE(zpo);
  608. }
  609. //
  610. // Planar Bed Leveling matrix
  611. //
  612. {
  613. #if ABL_PLANAR
  614. EEPROM_WRITE(planner.bed_level_matrix);
  615. #else
  616. dummyf = 0;
  617. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  618. #endif
  619. }
  620. //
  621. // Bilinear Auto Bed Leveling
  622. //
  623. {
  624. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  625. static_assert(
  626. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  627. "Bilinear Z array is the wrong size."
  628. );
  629. #else
  630. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  631. #endif
  632. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  633. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  634. EEPROM_WRITE(grid_max_x);
  635. EEPROM_WRITE(grid_max_y);
  636. EEPROM_WRITE(bilinear_grid_spacing);
  637. EEPROM_WRITE(bilinear_start);
  638. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  639. EEPROM_WRITE(z_values); // 9-256 floats
  640. #else
  641. dummyf = 0;
  642. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  643. #endif
  644. }
  645. //
  646. // Unified Bed Leveling
  647. //
  648. {
  649. _FIELD_TEST(planner_leveling_active);
  650. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  651. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  652. EEPROM_WRITE(ubl_active);
  653. EEPROM_WRITE(storage_slot);
  654. }
  655. //
  656. // Servo Angles
  657. //
  658. {
  659. _FIELD_TEST(servo_angles);
  660. #if !HAS_SERVO_ANGLES
  661. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  662. #endif
  663. EEPROM_WRITE(servo_angles);
  664. }
  665. //
  666. // Thermal first layer compensation values
  667. //
  668. #if ENABLED(PROBE_TEMP_COMPENSATION)
  669. EEPROM_WRITE(temp_comp.z_offsets_probe);
  670. EEPROM_WRITE(temp_comp.z_offsets_bed);
  671. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  672. EEPROM_WRITE(temp_comp.z_offsets_ext);
  673. #endif
  674. #else
  675. // No placeholder data for this feature
  676. #endif
  677. //
  678. // BLTOUCH
  679. //
  680. {
  681. _FIELD_TEST(bltouch_last_written_mode);
  682. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  683. EEPROM_WRITE(bltouch_last_written_mode);
  684. }
  685. //
  686. // DELTA Geometry or Dual Endstops offsets
  687. //
  688. {
  689. #if ENABLED(DELTA)
  690. _FIELD_TEST(delta_height);
  691. EEPROM_WRITE(delta_height); // 1 float
  692. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  693. EEPROM_WRITE(delta_radius); // 1 float
  694. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  695. EEPROM_WRITE(delta_segments_per_second); // 1 float
  696. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  697. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  698. #elif HAS_EXTRA_ENDSTOPS
  699. _FIELD_TEST(x2_endstop_adj);
  700. // Write dual endstops in X, Y, Z order. Unused = 0.0
  701. dummyf = 0;
  702. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  703. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  704. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  705. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  706. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  707. #else
  708. EEPROM_WRITE(dummyf);
  709. #endif
  710. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  711. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  712. #else
  713. EEPROM_WRITE(dummyf);
  714. #endif
  715. #endif
  716. }
  717. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  718. EEPROM_WRITE(z_stepper_align.xy);
  719. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  720. EEPROM_WRITE(z_stepper_align.stepper_xy);
  721. #endif
  722. #endif
  723. //
  724. // LCD Preheat settings
  725. //
  726. #if PREHEAT_COUNT
  727. _FIELD_TEST(ui_material_preset);
  728. EEPROM_WRITE(ui.material_preset);
  729. #endif
  730. //
  731. // PIDTEMP
  732. //
  733. {
  734. _FIELD_TEST(hotendPID);
  735. HOTEND_LOOP() {
  736. PIDCF_t pidcf = {
  737. #if DISABLED(PIDTEMP)
  738. NAN, NAN, NAN,
  739. NAN, NAN
  740. #else
  741. PID_PARAM(Kp, e),
  742. unscalePID_i(PID_PARAM(Ki, e)),
  743. unscalePID_d(PID_PARAM(Kd, e)),
  744. PID_PARAM(Kc, e),
  745. PID_PARAM(Kf, e)
  746. #endif
  747. };
  748. EEPROM_WRITE(pidcf);
  749. }
  750. _FIELD_TEST(lpq_len);
  751. #if DISABLED(PID_EXTRUSION_SCALING)
  752. const int16_t lpq_len = 20;
  753. #endif
  754. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  755. }
  756. //
  757. // PIDTEMPBED
  758. //
  759. {
  760. _FIELD_TEST(bedPID);
  761. const PID_t bed_pid = {
  762. #if DISABLED(PIDTEMPBED)
  763. NAN, NAN, NAN
  764. #else
  765. // Store the unscaled PID values
  766. thermalManager.temp_bed.pid.Kp,
  767. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  768. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  769. #endif
  770. };
  771. EEPROM_WRITE(bed_pid);
  772. }
  773. //
  774. // PIDTEMPCHAMBER
  775. //
  776. {
  777. _FIELD_TEST(chamberPID);
  778. const PID_t chamber_pid = {
  779. #if DISABLED(PIDTEMPCHAMBER)
  780. NAN, NAN, NAN
  781. #else
  782. // Store the unscaled PID values
  783. thermalManager.temp_chamber.pid.Kp,
  784. unscalePID_i(thermalManager.temp_chamber.pid.Ki),
  785. unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  786. #endif
  787. };
  788. EEPROM_WRITE(chamber_pid);
  789. }
  790. //
  791. // User-defined Thermistors
  792. //
  793. #if HAS_USER_THERMISTORS
  794. {
  795. _FIELD_TEST(user_thermistor);
  796. EEPROM_WRITE(thermalManager.user_thermistor);
  797. }
  798. #endif
  799. //
  800. // Power monitor
  801. //
  802. {
  803. #if HAS_POWER_MONITOR
  804. const uint8_t &power_monitor_flags = power_monitor.flags;
  805. #else
  806. constexpr uint8_t power_monitor_flags = 0x00;
  807. #endif
  808. _FIELD_TEST(power_monitor_flags);
  809. EEPROM_WRITE(power_monitor_flags);
  810. }
  811. //
  812. // LCD Contrast
  813. //
  814. {
  815. _FIELD_TEST(lcd_contrast);
  816. const int16_t lcd_contrast =
  817. #if HAS_LCD_CONTRAST
  818. ui.contrast
  819. #else
  820. 127
  821. #endif
  822. ;
  823. EEPROM_WRITE(lcd_contrast);
  824. }
  825. //
  826. // Controller Fan
  827. //
  828. {
  829. _FIELD_TEST(controllerFan_settings);
  830. #if ENABLED(USE_CONTROLLER_FAN)
  831. const controllerFan_settings_t &cfs = controllerFan.settings;
  832. #else
  833. controllerFan_settings_t cfs = controllerFan_defaults;
  834. #endif
  835. EEPROM_WRITE(cfs);
  836. }
  837. //
  838. // Power-Loss Recovery
  839. //
  840. {
  841. _FIELD_TEST(recovery_enabled);
  842. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  843. EEPROM_WRITE(recovery_enabled);
  844. }
  845. //
  846. // Firmware Retraction
  847. //
  848. {
  849. _FIELD_TEST(fwretract_settings);
  850. #if DISABLED(FWRETRACT)
  851. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  852. #endif
  853. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  854. #if DISABLED(FWRETRACT_AUTORETRACT)
  855. const bool autoretract_enabled = false;
  856. #endif
  857. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  858. }
  859. //
  860. // Volumetric & Filament Size
  861. //
  862. {
  863. _FIELD_TEST(parser_volumetric_enabled);
  864. #if DISABLED(NO_VOLUMETRICS)
  865. EEPROM_WRITE(parser.volumetric_enabled);
  866. EEPROM_WRITE(planner.filament_size);
  867. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  868. EEPROM_WRITE(planner.volumetric_extruder_limit);
  869. #else
  870. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  871. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  872. #endif
  873. #else
  874. const bool volumetric_enabled = false;
  875. EEPROM_WRITE(volumetric_enabled);
  876. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  877. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  878. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  879. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  880. #endif
  881. }
  882. //
  883. // TMC Configuration
  884. //
  885. {
  886. _FIELD_TEST(tmc_stepper_current);
  887. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  888. #if HAS_TRINAMIC_CONFIG
  889. #if AXIS_IS_TMC(X)
  890. tmc_stepper_current.X = stepperX.getMilliamps();
  891. #endif
  892. #if AXIS_IS_TMC(Y)
  893. tmc_stepper_current.Y = stepperY.getMilliamps();
  894. #endif
  895. #if AXIS_IS_TMC(Z)
  896. tmc_stepper_current.Z = stepperZ.getMilliamps();
  897. #endif
  898. #if AXIS_IS_TMC(X2)
  899. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  900. #endif
  901. #if AXIS_IS_TMC(Y2)
  902. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  903. #endif
  904. #if AXIS_IS_TMC(Z2)
  905. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  906. #endif
  907. #if AXIS_IS_TMC(Z3)
  908. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  909. #endif
  910. #if AXIS_IS_TMC(Z4)
  911. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  912. #endif
  913. #if AXIS_IS_TMC(E0)
  914. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  915. #endif
  916. #if AXIS_IS_TMC(E1)
  917. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  918. #endif
  919. #if AXIS_IS_TMC(E2)
  920. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  921. #endif
  922. #if AXIS_IS_TMC(E3)
  923. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  924. #endif
  925. #if AXIS_IS_TMC(E4)
  926. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  927. #endif
  928. #if AXIS_IS_TMC(E5)
  929. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  930. #endif
  931. #if AXIS_IS_TMC(E6)
  932. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  933. #endif
  934. #if AXIS_IS_TMC(E7)
  935. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  936. #endif
  937. #endif
  938. EEPROM_WRITE(tmc_stepper_current);
  939. }
  940. //
  941. // TMC Hybrid Threshold, and placeholder values
  942. //
  943. {
  944. _FIELD_TEST(tmc_hybrid_threshold);
  945. #if ENABLED(HYBRID_THRESHOLD)
  946. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  947. #if AXIS_HAS_STEALTHCHOP(X)
  948. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  949. #endif
  950. #if AXIS_HAS_STEALTHCHOP(Y)
  951. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  952. #endif
  953. #if AXIS_HAS_STEALTHCHOP(Z)
  954. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  955. #endif
  956. #if AXIS_HAS_STEALTHCHOP(X2)
  957. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  958. #endif
  959. #if AXIS_HAS_STEALTHCHOP(Y2)
  960. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  961. #endif
  962. #if AXIS_HAS_STEALTHCHOP(Z2)
  963. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  964. #endif
  965. #if AXIS_HAS_STEALTHCHOP(Z3)
  966. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  967. #endif
  968. #if AXIS_HAS_STEALTHCHOP(Z4)
  969. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  970. #endif
  971. #if AXIS_HAS_STEALTHCHOP(E0)
  972. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  973. #endif
  974. #if AXIS_HAS_STEALTHCHOP(E1)
  975. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  976. #endif
  977. #if AXIS_HAS_STEALTHCHOP(E2)
  978. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  979. #endif
  980. #if AXIS_HAS_STEALTHCHOP(E3)
  981. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  982. #endif
  983. #if AXIS_HAS_STEALTHCHOP(E4)
  984. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  985. #endif
  986. #if AXIS_HAS_STEALTHCHOP(E5)
  987. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  988. #endif
  989. #if AXIS_HAS_STEALTHCHOP(E6)
  990. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  991. #endif
  992. #if AXIS_HAS_STEALTHCHOP(E7)
  993. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  994. #endif
  995. #else
  996. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  997. .X = 100, .Y = 100, .Z = 3,
  998. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  999. .E0 = 30, .E1 = 30, .E2 = 30,
  1000. .E3 = 30, .E4 = 30, .E5 = 30
  1001. };
  1002. #endif
  1003. EEPROM_WRITE(tmc_hybrid_threshold);
  1004. }
  1005. //
  1006. // TMC StallGuard threshold
  1007. //
  1008. {
  1009. tmc_sgt_t tmc_sgt{0};
  1010. #if USE_SENSORLESS
  1011. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  1012. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  1013. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  1014. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1015. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  1016. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1017. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1018. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1019. #endif
  1020. EEPROM_WRITE(tmc_sgt);
  1021. }
  1022. //
  1023. // TMC stepping mode
  1024. //
  1025. {
  1026. _FIELD_TEST(tmc_stealth_enabled);
  1027. tmc_stealth_enabled_t tmc_stealth_enabled = { false };
  1028. #if AXIS_HAS_STEALTHCHOP(X)
  1029. tmc_stealth_enabled.X = stepperX.get_stored_stealthChop();
  1030. #endif
  1031. #if AXIS_HAS_STEALTHCHOP(Y)
  1032. tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop();
  1033. #endif
  1034. #if AXIS_HAS_STEALTHCHOP(Z)
  1035. tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop();
  1036. #endif
  1037. #if AXIS_HAS_STEALTHCHOP(X2)
  1038. tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop();
  1039. #endif
  1040. #if AXIS_HAS_STEALTHCHOP(Y2)
  1041. tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop();
  1042. #endif
  1043. #if AXIS_HAS_STEALTHCHOP(Z2)
  1044. tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop();
  1045. #endif
  1046. #if AXIS_HAS_STEALTHCHOP(Z3)
  1047. tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop();
  1048. #endif
  1049. #if AXIS_HAS_STEALTHCHOP(Z4)
  1050. tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop();
  1051. #endif
  1052. #if AXIS_HAS_STEALTHCHOP(E0)
  1053. tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop();
  1054. #endif
  1055. #if AXIS_HAS_STEALTHCHOP(E1)
  1056. tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop();
  1057. #endif
  1058. #if AXIS_HAS_STEALTHCHOP(E2)
  1059. tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop();
  1060. #endif
  1061. #if AXIS_HAS_STEALTHCHOP(E3)
  1062. tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop();
  1063. #endif
  1064. #if AXIS_HAS_STEALTHCHOP(E4)
  1065. tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop();
  1066. #endif
  1067. #if AXIS_HAS_STEALTHCHOP(E5)
  1068. tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop();
  1069. #endif
  1070. #if AXIS_HAS_STEALTHCHOP(E6)
  1071. tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop();
  1072. #endif
  1073. #if AXIS_HAS_STEALTHCHOP(E7)
  1074. tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop();
  1075. #endif
  1076. EEPROM_WRITE(tmc_stealth_enabled);
  1077. }
  1078. //
  1079. // Linear Advance
  1080. //
  1081. {
  1082. _FIELD_TEST(planner_extruder_advance_K);
  1083. #if ENABLED(LIN_ADVANCE)
  1084. EEPROM_WRITE(planner.extruder_advance_K);
  1085. #else
  1086. dummyf = 0;
  1087. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1088. #endif
  1089. }
  1090. //
  1091. // Motor Current PWM
  1092. //
  1093. {
  1094. _FIELD_TEST(motor_current_setting);
  1095. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1096. EEPROM_WRITE(stepper.motor_current_setting);
  1097. #else
  1098. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1099. EEPROM_WRITE(no_current);
  1100. #endif
  1101. }
  1102. //
  1103. // CNC Coordinate Systems
  1104. //
  1105. _FIELD_TEST(coordinate_system);
  1106. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1107. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1108. #endif
  1109. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1110. //
  1111. // Skew correction factors
  1112. //
  1113. _FIELD_TEST(planner_skew_factor);
  1114. EEPROM_WRITE(planner.skew_factor);
  1115. //
  1116. // Advanced Pause filament load & unload lengths
  1117. //
  1118. #if EXTRUDERS
  1119. {
  1120. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1121. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1122. #endif
  1123. _FIELD_TEST(fc_settings);
  1124. EEPROM_WRITE(fc_settings);
  1125. }
  1126. #endif
  1127. //
  1128. // Multiple Extruders
  1129. //
  1130. #if HAS_MULTI_EXTRUDER
  1131. _FIELD_TEST(toolchange_settings);
  1132. EEPROM_WRITE(toolchange_settings);
  1133. #endif
  1134. //
  1135. // Backlash Compensation
  1136. //
  1137. {
  1138. #if ENABLED(BACKLASH_GCODE)
  1139. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1140. const uint8_t &backlash_correction = backlash.correction;
  1141. #else
  1142. const xyz_float_t backlash_distance_mm{0};
  1143. const uint8_t backlash_correction = 0;
  1144. #endif
  1145. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1146. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1147. #else
  1148. const float backlash_smoothing_mm = 3;
  1149. #endif
  1150. _FIELD_TEST(backlash_distance_mm);
  1151. EEPROM_WRITE(backlash_distance_mm);
  1152. EEPROM_WRITE(backlash_correction);
  1153. EEPROM_WRITE(backlash_smoothing_mm);
  1154. }
  1155. //
  1156. // Extensible UI User Data
  1157. //
  1158. #if ENABLED(EXTENSIBLE_UI)
  1159. {
  1160. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1161. ExtUI::onStoreSettings(extui_data);
  1162. _FIELD_TEST(extui_data);
  1163. EEPROM_WRITE(extui_data);
  1164. }
  1165. #endif
  1166. //
  1167. // Case Light Brightness
  1168. //
  1169. #if CASELIGHT_USES_BRIGHTNESS
  1170. EEPROM_WRITE(caselight.brightness);
  1171. #endif
  1172. //
  1173. // Password feature
  1174. //
  1175. #if ENABLED(PASSWORD_FEATURE)
  1176. EEPROM_WRITE(password.is_set);
  1177. EEPROM_WRITE(password.value);
  1178. #endif
  1179. //
  1180. // TOUCH_SCREEN_CALIBRATION
  1181. //
  1182. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1183. EEPROM_WRITE(touch_calibration.calibration);
  1184. #endif
  1185. //
  1186. // Ethernet network info
  1187. //
  1188. #if HAS_ETHERNET
  1189. {
  1190. _FIELD_TEST(ethernet_hardware_enabled);
  1191. const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
  1192. const uint32_t ethernet_ip = ethernet.ip,
  1193. ethernet_dns = ethernet.myDns,
  1194. ethernet_gateway = ethernet.gateway,
  1195. ethernet_subnet = ethernet.subnet;
  1196. EEPROM_WRITE(ethernet_hardware_enabled);
  1197. EEPROM_WRITE(ethernet_ip);
  1198. EEPROM_WRITE(ethernet_dns);
  1199. EEPROM_WRITE(ethernet_gateway);
  1200. EEPROM_WRITE(ethernet_subnet);
  1201. }
  1202. #endif
  1203. //
  1204. // Buzzer enable/disable
  1205. //
  1206. #if ENABLED(SOUND_MENU_ITEM)
  1207. EEPROM_WRITE(ui.buzzer_enabled);
  1208. #endif
  1209. //
  1210. // Selected LCD language
  1211. //
  1212. #if HAS_MULTI_LANGUAGE
  1213. EEPROM_WRITE(ui.language);
  1214. #endif
  1215. //
  1216. // Report final CRC and Data Size
  1217. //
  1218. if (!eeprom_error) {
  1219. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1220. final_crc = working_crc;
  1221. // Write the EEPROM header
  1222. eeprom_index = EEPROM_OFFSET;
  1223. EEPROM_WRITE(version);
  1224. EEPROM_WRITE(final_crc);
  1225. // Report storage size
  1226. DEBUG_ECHO_START();
  1227. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1228. eeprom_error |= size_error(eeprom_size);
  1229. }
  1230. EEPROM_FINISH();
  1231. //
  1232. // UBL Mesh
  1233. //
  1234. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1235. if (ubl.storage_slot >= 0)
  1236. store_mesh(ubl.storage_slot);
  1237. #endif
  1238. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1239. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1240. return !eeprom_error;
  1241. }
  1242. /**
  1243. * M501 - Retrieve Configuration
  1244. */
  1245. bool MarlinSettings::_load() {
  1246. uint16_t working_crc = 0;
  1247. EEPROM_START();
  1248. char stored_ver[4];
  1249. EEPROM_READ_ALWAYS(stored_ver);
  1250. uint16_t stored_crc;
  1251. EEPROM_READ_ALWAYS(stored_crc);
  1252. // Version has to match or defaults are used
  1253. if (strncmp(version, stored_ver, 3) != 0) {
  1254. if (stored_ver[3] != '\0') {
  1255. stored_ver[0] = '?';
  1256. stored_ver[1] = '\0';
  1257. }
  1258. DEBUG_ECHO_START();
  1259. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1260. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_version());
  1261. eeprom_error = true;
  1262. }
  1263. else {
  1264. float dummyf = 0;
  1265. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1266. _FIELD_TEST(esteppers);
  1267. // Number of esteppers may change
  1268. uint8_t esteppers;
  1269. EEPROM_READ_ALWAYS(esteppers);
  1270. //
  1271. // Planner Motion
  1272. //
  1273. {
  1274. // Get only the number of E stepper parameters previously stored
  1275. // Any steppers added later are set to their defaults
  1276. uint32_t tmp1[XYZ + esteppers];
  1277. float tmp2[XYZ + esteppers];
  1278. feedRate_t tmp3[XYZ + esteppers];
  1279. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1280. EEPROM_READ(planner.settings.min_segment_time_us);
  1281. EEPROM_READ(tmp2); // axis_steps_per_mm
  1282. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1283. if (!validating) LOOP_XYZE_N(i) {
  1284. const bool in = (i < esteppers + XYZ);
  1285. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1286. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1287. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1288. }
  1289. EEPROM_READ(planner.settings.acceleration);
  1290. EEPROM_READ(planner.settings.retract_acceleration);
  1291. EEPROM_READ(planner.settings.travel_acceleration);
  1292. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1293. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1294. #if HAS_CLASSIC_JERK
  1295. EEPROM_READ(planner.max_jerk);
  1296. #if HAS_LINEAR_E_JERK
  1297. EEPROM_READ(dummyf);
  1298. #endif
  1299. #else
  1300. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1301. #endif
  1302. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1303. }
  1304. //
  1305. // Home Offset (M206 / M665)
  1306. //
  1307. {
  1308. _FIELD_TEST(home_offset);
  1309. #if HAS_SCARA_OFFSET
  1310. EEPROM_READ(scara_home_offset);
  1311. #else
  1312. #if !HAS_HOME_OFFSET
  1313. xyz_pos_t home_offset;
  1314. #endif
  1315. EEPROM_READ(home_offset);
  1316. #endif
  1317. }
  1318. //
  1319. // Hotend Offsets, if any
  1320. //
  1321. {
  1322. #if HAS_HOTEND_OFFSET
  1323. // Skip hotend 0 which must be 0
  1324. LOOP_S_L_N(e, 1, HOTENDS)
  1325. EEPROM_READ(hotend_offset[e]);
  1326. #endif
  1327. }
  1328. //
  1329. // Filament Runout Sensor
  1330. //
  1331. {
  1332. int8_t runout_sensor_enabled;
  1333. _FIELD_TEST(runout_sensor_enabled);
  1334. EEPROM_READ(runout_sensor_enabled);
  1335. #if HAS_FILAMENT_SENSOR
  1336. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1337. #endif
  1338. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1339. float runout_distance_mm;
  1340. EEPROM_READ(runout_distance_mm);
  1341. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1342. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1343. #endif
  1344. }
  1345. //
  1346. // Global Leveling
  1347. //
  1348. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1349. //
  1350. // Mesh (Manual) Bed Leveling
  1351. //
  1352. {
  1353. uint8_t mesh_num_x, mesh_num_y;
  1354. EEPROM_READ(dummyf);
  1355. EEPROM_READ_ALWAYS(mesh_num_x);
  1356. EEPROM_READ_ALWAYS(mesh_num_y);
  1357. #if ENABLED(MESH_BED_LEVELING)
  1358. if (!validating) mbl.z_offset = dummyf;
  1359. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1360. // EEPROM data fits the current mesh
  1361. EEPROM_READ(mbl.z_values);
  1362. }
  1363. else {
  1364. // EEPROM data is stale
  1365. if (!validating) mbl.reset();
  1366. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1367. }
  1368. #else
  1369. // MBL is disabled - skip the stored data
  1370. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1371. #endif // MESH_BED_LEVELING
  1372. }
  1373. //
  1374. // Probe Z Offset
  1375. //
  1376. {
  1377. _FIELD_TEST(probe_offset);
  1378. #if HAS_BED_PROBE
  1379. const xyz_pos_t &zpo = probe.offset;
  1380. #else
  1381. xyz_pos_t zpo;
  1382. #endif
  1383. EEPROM_READ(zpo);
  1384. }
  1385. //
  1386. // Planar Bed Leveling matrix
  1387. //
  1388. {
  1389. #if ABL_PLANAR
  1390. EEPROM_READ(planner.bed_level_matrix);
  1391. #else
  1392. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1393. #endif
  1394. }
  1395. //
  1396. // Bilinear Auto Bed Leveling
  1397. //
  1398. {
  1399. uint8_t grid_max_x, grid_max_y;
  1400. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1401. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1402. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1403. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1404. if (!validating) set_bed_leveling_enabled(false);
  1405. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1406. EEPROM_READ(bilinear_start); // 2 ints
  1407. EEPROM_READ(z_values); // 9 to 256 floats
  1408. }
  1409. else // EEPROM data is stale
  1410. #endif // AUTO_BED_LEVELING_BILINEAR
  1411. {
  1412. // Skip past disabled (or stale) Bilinear Grid data
  1413. xy_pos_t bgs, bs;
  1414. EEPROM_READ(bgs);
  1415. EEPROM_READ(bs);
  1416. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1417. }
  1418. }
  1419. //
  1420. // Unified Bed Leveling active state
  1421. //
  1422. {
  1423. _FIELD_TEST(planner_leveling_active);
  1424. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1425. const bool &planner_leveling_active = planner.leveling_active;
  1426. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1427. #else
  1428. bool planner_leveling_active;
  1429. int8_t ubl_storage_slot;
  1430. #endif
  1431. EEPROM_READ(planner_leveling_active);
  1432. EEPROM_READ(ubl_storage_slot);
  1433. }
  1434. //
  1435. // SERVO_ANGLES
  1436. //
  1437. {
  1438. _FIELD_TEST(servo_angles);
  1439. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1440. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1441. #else
  1442. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1443. #endif
  1444. EEPROM_READ(servo_angles_arr);
  1445. }
  1446. //
  1447. // Thermal first layer compensation values
  1448. //
  1449. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1450. EEPROM_READ(temp_comp.z_offsets_probe);
  1451. EEPROM_READ(temp_comp.z_offsets_bed);
  1452. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1453. EEPROM_READ(temp_comp.z_offsets_ext);
  1454. #endif
  1455. temp_comp.reset_index();
  1456. #else
  1457. // No placeholder data for this feature
  1458. #endif
  1459. //
  1460. // BLTOUCH
  1461. //
  1462. {
  1463. _FIELD_TEST(bltouch_last_written_mode);
  1464. #if ENABLED(BLTOUCH)
  1465. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1466. #else
  1467. bool bltouch_last_written_mode;
  1468. #endif
  1469. EEPROM_READ(bltouch_last_written_mode);
  1470. }
  1471. //
  1472. // DELTA Geometry or Dual Endstops offsets
  1473. //
  1474. {
  1475. #if ENABLED(DELTA)
  1476. _FIELD_TEST(delta_height);
  1477. EEPROM_READ(delta_height); // 1 float
  1478. EEPROM_READ(delta_endstop_adj); // 3 floats
  1479. EEPROM_READ(delta_radius); // 1 float
  1480. EEPROM_READ(delta_diagonal_rod); // 1 float
  1481. EEPROM_READ(delta_segments_per_second); // 1 float
  1482. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1483. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1484. #elif HAS_EXTRA_ENDSTOPS
  1485. _FIELD_TEST(x2_endstop_adj);
  1486. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1487. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1488. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1489. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1490. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1491. #else
  1492. EEPROM_READ(dummyf);
  1493. #endif
  1494. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1495. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1496. #else
  1497. EEPROM_READ(dummyf);
  1498. #endif
  1499. #endif
  1500. }
  1501. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1502. EEPROM_READ(z_stepper_align.xy);
  1503. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1504. EEPROM_READ(z_stepper_align.stepper_xy);
  1505. #endif
  1506. #endif
  1507. //
  1508. // LCD Preheat settings
  1509. //
  1510. #if PREHEAT_COUNT
  1511. _FIELD_TEST(ui_material_preset);
  1512. EEPROM_READ(ui.material_preset);
  1513. #endif
  1514. //
  1515. // Hotend PID
  1516. //
  1517. {
  1518. HOTEND_LOOP() {
  1519. PIDCF_t pidcf;
  1520. EEPROM_READ(pidcf);
  1521. #if ENABLED(PIDTEMP)
  1522. if (!validating && !isnan(pidcf.Kp)) {
  1523. // Scale PID values since EEPROM values are unscaled
  1524. PID_PARAM(Kp, e) = pidcf.Kp;
  1525. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1526. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1527. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1528. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1529. }
  1530. #endif
  1531. }
  1532. }
  1533. //
  1534. // PID Extrusion Scaling
  1535. //
  1536. {
  1537. _FIELD_TEST(lpq_len);
  1538. #if ENABLED(PID_EXTRUSION_SCALING)
  1539. const int16_t &lpq_len = thermalManager.lpq_len;
  1540. #else
  1541. int16_t lpq_len;
  1542. #endif
  1543. EEPROM_READ(lpq_len);
  1544. }
  1545. //
  1546. // Heated Bed PID
  1547. //
  1548. {
  1549. PID_t pid;
  1550. EEPROM_READ(pid);
  1551. #if ENABLED(PIDTEMPBED)
  1552. if (!validating && !isnan(pid.Kp)) {
  1553. // Scale PID values since EEPROM values are unscaled
  1554. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1555. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1556. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1557. }
  1558. #endif
  1559. }
  1560. //
  1561. // Heated Chamber PID
  1562. //
  1563. {
  1564. PID_t pid;
  1565. EEPROM_READ(pid);
  1566. #if ENABLED(PIDTEMPCHAMBER)
  1567. if (!validating && !isnan(pid.Kp)) {
  1568. // Scale PID values since EEPROM values are unscaled
  1569. thermalManager.temp_chamber.pid.Kp = pid.Kp;
  1570. thermalManager.temp_chamber.pid.Ki = scalePID_i(pid.Ki);
  1571. thermalManager.temp_chamber.pid.Kd = scalePID_d(pid.Kd);
  1572. }
  1573. #endif
  1574. }
  1575. //
  1576. // User-defined Thermistors
  1577. //
  1578. #if HAS_USER_THERMISTORS
  1579. {
  1580. _FIELD_TEST(user_thermistor);
  1581. EEPROM_READ(thermalManager.user_thermistor);
  1582. }
  1583. #endif
  1584. //
  1585. // Power monitor
  1586. //
  1587. {
  1588. #if HAS_POWER_MONITOR
  1589. uint8_t &power_monitor_flags = power_monitor.flags;
  1590. #else
  1591. uint8_t power_monitor_flags;
  1592. #endif
  1593. _FIELD_TEST(power_monitor_flags);
  1594. EEPROM_READ(power_monitor_flags);
  1595. }
  1596. //
  1597. // LCD Contrast
  1598. //
  1599. {
  1600. _FIELD_TEST(lcd_contrast);
  1601. int16_t lcd_contrast;
  1602. EEPROM_READ(lcd_contrast);
  1603. if (!validating) {
  1604. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1605. }
  1606. }
  1607. //
  1608. // Controller Fan
  1609. //
  1610. {
  1611. _FIELD_TEST(controllerFan_settings);
  1612. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1613. const controllerFan_settings_t &cfs = controllerFan.settings;
  1614. #else
  1615. controllerFan_settings_t cfs = { 0 };
  1616. #endif
  1617. EEPROM_READ(cfs);
  1618. }
  1619. //
  1620. // Power-Loss Recovery
  1621. //
  1622. {
  1623. _FIELD_TEST(recovery_enabled);
  1624. #if ENABLED(POWER_LOSS_RECOVERY)
  1625. const bool &recovery_enabled = recovery.enabled;
  1626. #else
  1627. bool recovery_enabled;
  1628. #endif
  1629. EEPROM_READ(recovery_enabled);
  1630. }
  1631. //
  1632. // Firmware Retraction
  1633. //
  1634. {
  1635. _FIELD_TEST(fwretract_settings);
  1636. #if ENABLED(FWRETRACT)
  1637. EEPROM_READ(fwretract.settings);
  1638. #else
  1639. fwretract_settings_t fwretract_settings;
  1640. EEPROM_READ(fwretract_settings);
  1641. #endif
  1642. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1643. EEPROM_READ(fwretract.autoretract_enabled);
  1644. #else
  1645. bool autoretract_enabled;
  1646. EEPROM_READ(autoretract_enabled);
  1647. #endif
  1648. }
  1649. //
  1650. // Volumetric & Filament Size
  1651. //
  1652. {
  1653. struct {
  1654. bool volumetric_enabled;
  1655. float filament_size[EXTRUDERS];
  1656. float volumetric_extruder_limit[EXTRUDERS];
  1657. } storage;
  1658. _FIELD_TEST(parser_volumetric_enabled);
  1659. EEPROM_READ(storage);
  1660. #if DISABLED(NO_VOLUMETRICS)
  1661. if (!validating) {
  1662. parser.volumetric_enabled = storage.volumetric_enabled;
  1663. COPY(planner.filament_size, storage.filament_size);
  1664. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1665. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1666. #endif
  1667. }
  1668. #endif
  1669. }
  1670. //
  1671. // TMC Stepper Settings
  1672. //
  1673. if (!validating) reset_stepper_drivers();
  1674. // TMC Stepper Current
  1675. {
  1676. _FIELD_TEST(tmc_stepper_current);
  1677. tmc_stepper_current_t currents;
  1678. EEPROM_READ(currents);
  1679. #if HAS_TRINAMIC_CONFIG
  1680. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1681. if (!validating) {
  1682. #if AXIS_IS_TMC(X)
  1683. SET_CURR(X);
  1684. #endif
  1685. #if AXIS_IS_TMC(Y)
  1686. SET_CURR(Y);
  1687. #endif
  1688. #if AXIS_IS_TMC(Z)
  1689. SET_CURR(Z);
  1690. #endif
  1691. #if AXIS_IS_TMC(X2)
  1692. SET_CURR(X2);
  1693. #endif
  1694. #if AXIS_IS_TMC(Y2)
  1695. SET_CURR(Y2);
  1696. #endif
  1697. #if AXIS_IS_TMC(Z2)
  1698. SET_CURR(Z2);
  1699. #endif
  1700. #if AXIS_IS_TMC(Z3)
  1701. SET_CURR(Z3);
  1702. #endif
  1703. #if AXIS_IS_TMC(Z4)
  1704. SET_CURR(Z4);
  1705. #endif
  1706. #if AXIS_IS_TMC(E0)
  1707. SET_CURR(E0);
  1708. #endif
  1709. #if AXIS_IS_TMC(E1)
  1710. SET_CURR(E1);
  1711. #endif
  1712. #if AXIS_IS_TMC(E2)
  1713. SET_CURR(E2);
  1714. #endif
  1715. #if AXIS_IS_TMC(E3)
  1716. SET_CURR(E3);
  1717. #endif
  1718. #if AXIS_IS_TMC(E4)
  1719. SET_CURR(E4);
  1720. #endif
  1721. #if AXIS_IS_TMC(E5)
  1722. SET_CURR(E5);
  1723. #endif
  1724. #if AXIS_IS_TMC(E6)
  1725. SET_CURR(E6);
  1726. #endif
  1727. #if AXIS_IS_TMC(E7)
  1728. SET_CURR(E7);
  1729. #endif
  1730. }
  1731. #endif
  1732. }
  1733. // TMC Hybrid Threshold
  1734. {
  1735. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1736. _FIELD_TEST(tmc_hybrid_threshold);
  1737. EEPROM_READ(tmc_hybrid_threshold);
  1738. #if ENABLED(HYBRID_THRESHOLD)
  1739. if (!validating) {
  1740. #if AXIS_HAS_STEALTHCHOP(X)
  1741. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1742. #endif
  1743. #if AXIS_HAS_STEALTHCHOP(Y)
  1744. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1745. #endif
  1746. #if AXIS_HAS_STEALTHCHOP(Z)
  1747. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1748. #endif
  1749. #if AXIS_HAS_STEALTHCHOP(X2)
  1750. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1751. #endif
  1752. #if AXIS_HAS_STEALTHCHOP(Y2)
  1753. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1754. #endif
  1755. #if AXIS_HAS_STEALTHCHOP(Z2)
  1756. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1757. #endif
  1758. #if AXIS_HAS_STEALTHCHOP(Z3)
  1759. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1760. #endif
  1761. #if AXIS_HAS_STEALTHCHOP(Z4)
  1762. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1763. #endif
  1764. #if AXIS_HAS_STEALTHCHOP(E0)
  1765. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1766. #endif
  1767. #if AXIS_HAS_STEALTHCHOP(E1)
  1768. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1769. #endif
  1770. #if AXIS_HAS_STEALTHCHOP(E2)
  1771. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1772. #endif
  1773. #if AXIS_HAS_STEALTHCHOP(E3)
  1774. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1775. #endif
  1776. #if AXIS_HAS_STEALTHCHOP(E4)
  1777. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1778. #endif
  1779. #if AXIS_HAS_STEALTHCHOP(E5)
  1780. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1781. #endif
  1782. #if AXIS_HAS_STEALTHCHOP(E6)
  1783. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1784. #endif
  1785. #if AXIS_HAS_STEALTHCHOP(E7)
  1786. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1787. #endif
  1788. }
  1789. #endif
  1790. }
  1791. //
  1792. // TMC StallGuard threshold.
  1793. //
  1794. {
  1795. tmc_sgt_t tmc_sgt;
  1796. _FIELD_TEST(tmc_sgt);
  1797. EEPROM_READ(tmc_sgt);
  1798. #if USE_SENSORLESS
  1799. if (!validating) {
  1800. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1801. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1802. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1803. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1804. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1805. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1806. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1807. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1808. }
  1809. #endif
  1810. }
  1811. // TMC stepping mode
  1812. {
  1813. _FIELD_TEST(tmc_stealth_enabled);
  1814. tmc_stealth_enabled_t tmc_stealth_enabled;
  1815. EEPROM_READ(tmc_stealth_enabled);
  1816. #if HAS_TRINAMIC_CONFIG
  1817. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1818. if (!validating) {
  1819. #if AXIS_HAS_STEALTHCHOP(X)
  1820. SET_STEPPING_MODE(X);
  1821. #endif
  1822. #if AXIS_HAS_STEALTHCHOP(Y)
  1823. SET_STEPPING_MODE(Y);
  1824. #endif
  1825. #if AXIS_HAS_STEALTHCHOP(Z)
  1826. SET_STEPPING_MODE(Z);
  1827. #endif
  1828. #if AXIS_HAS_STEALTHCHOP(X2)
  1829. SET_STEPPING_MODE(X2);
  1830. #endif
  1831. #if AXIS_HAS_STEALTHCHOP(Y2)
  1832. SET_STEPPING_MODE(Y2);
  1833. #endif
  1834. #if AXIS_HAS_STEALTHCHOP(Z2)
  1835. SET_STEPPING_MODE(Z2);
  1836. #endif
  1837. #if AXIS_HAS_STEALTHCHOP(Z3)
  1838. SET_STEPPING_MODE(Z3);
  1839. #endif
  1840. #if AXIS_HAS_STEALTHCHOP(Z4)
  1841. SET_STEPPING_MODE(Z4);
  1842. #endif
  1843. #if AXIS_HAS_STEALTHCHOP(E0)
  1844. SET_STEPPING_MODE(E0);
  1845. #endif
  1846. #if AXIS_HAS_STEALTHCHOP(E1)
  1847. SET_STEPPING_MODE(E1);
  1848. #endif
  1849. #if AXIS_HAS_STEALTHCHOP(E2)
  1850. SET_STEPPING_MODE(E2);
  1851. #endif
  1852. #if AXIS_HAS_STEALTHCHOP(E3)
  1853. SET_STEPPING_MODE(E3);
  1854. #endif
  1855. #if AXIS_HAS_STEALTHCHOP(E4)
  1856. SET_STEPPING_MODE(E4);
  1857. #endif
  1858. #if AXIS_HAS_STEALTHCHOP(E5)
  1859. SET_STEPPING_MODE(E5);
  1860. #endif
  1861. #if AXIS_HAS_STEALTHCHOP(E6)
  1862. SET_STEPPING_MODE(E6);
  1863. #endif
  1864. #if AXIS_HAS_STEALTHCHOP(E7)
  1865. SET_STEPPING_MODE(E7);
  1866. #endif
  1867. }
  1868. #endif
  1869. }
  1870. //
  1871. // Linear Advance
  1872. //
  1873. {
  1874. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1875. _FIELD_TEST(planner_extruder_advance_K);
  1876. EEPROM_READ(extruder_advance_K);
  1877. #if ENABLED(LIN_ADVANCE)
  1878. if (!validating)
  1879. COPY(planner.extruder_advance_K, extruder_advance_K);
  1880. #endif
  1881. }
  1882. //
  1883. // Motor Current PWM
  1884. //
  1885. {
  1886. _FIELD_TEST(motor_current_setting);
  1887. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  1888. #if HAS_MOTOR_CURRENT_SPI
  1889. = DIGIPOT_MOTOR_CURRENT
  1890. #endif
  1891. ;
  1892. DEBUG_ECHOLNPGM("DIGIPOTS Loading");
  1893. EEPROM_READ(motor_current_setting);
  1894. DEBUG_ECHOLNPGM("DIGIPOTS Loaded");
  1895. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1896. if (!validating)
  1897. COPY(stepper.motor_current_setting, motor_current_setting);
  1898. #endif
  1899. }
  1900. //
  1901. // CNC Coordinate System
  1902. //
  1903. {
  1904. _FIELD_TEST(coordinate_system);
  1905. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1906. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1907. EEPROM_READ(gcode.coordinate_system);
  1908. #else
  1909. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1910. EEPROM_READ(coordinate_system);
  1911. #endif
  1912. }
  1913. //
  1914. // Skew correction factors
  1915. //
  1916. {
  1917. skew_factor_t skew_factor;
  1918. _FIELD_TEST(planner_skew_factor);
  1919. EEPROM_READ(skew_factor);
  1920. #if ENABLED(SKEW_CORRECTION_GCODE)
  1921. if (!validating) {
  1922. planner.skew_factor.xy = skew_factor.xy;
  1923. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1924. planner.skew_factor.xz = skew_factor.xz;
  1925. planner.skew_factor.yz = skew_factor.yz;
  1926. #endif
  1927. }
  1928. #endif
  1929. }
  1930. //
  1931. // Advanced Pause filament load & unload lengths
  1932. //
  1933. #if EXTRUDERS
  1934. {
  1935. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1936. fil_change_settings_t fc_settings[EXTRUDERS];
  1937. #endif
  1938. _FIELD_TEST(fc_settings);
  1939. EEPROM_READ(fc_settings);
  1940. }
  1941. #endif
  1942. //
  1943. // Tool-change settings
  1944. //
  1945. #if HAS_MULTI_EXTRUDER
  1946. _FIELD_TEST(toolchange_settings);
  1947. EEPROM_READ(toolchange_settings);
  1948. #endif
  1949. //
  1950. // Backlash Compensation
  1951. //
  1952. {
  1953. #if ENABLED(BACKLASH_GCODE)
  1954. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1955. const uint8_t &backlash_correction = backlash.correction;
  1956. #else
  1957. float backlash_distance_mm[XYZ];
  1958. uint8_t backlash_correction;
  1959. #endif
  1960. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1961. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1962. #else
  1963. float backlash_smoothing_mm;
  1964. #endif
  1965. _FIELD_TEST(backlash_distance_mm);
  1966. EEPROM_READ(backlash_distance_mm);
  1967. EEPROM_READ(backlash_correction);
  1968. EEPROM_READ(backlash_smoothing_mm);
  1969. }
  1970. //
  1971. // Extensible UI User Data
  1972. //
  1973. #if ENABLED(EXTENSIBLE_UI)
  1974. // This is a significant hardware change; don't reserve EEPROM space when not present
  1975. {
  1976. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1977. _FIELD_TEST(extui_data);
  1978. EEPROM_READ(extui_data);
  1979. if (!validating) ExtUI::onLoadSettings(extui_data);
  1980. }
  1981. #endif
  1982. //
  1983. // Case Light Brightness
  1984. //
  1985. #if CASELIGHT_USES_BRIGHTNESS
  1986. _FIELD_TEST(caselight_brightness);
  1987. EEPROM_READ(caselight.brightness);
  1988. #endif
  1989. //
  1990. // Password feature
  1991. //
  1992. #if ENABLED(PASSWORD_FEATURE)
  1993. _FIELD_TEST(password_is_set);
  1994. EEPROM_READ(password.is_set);
  1995. EEPROM_READ(password.value);
  1996. #endif
  1997. //
  1998. // TOUCH_SCREEN_CALIBRATION
  1999. //
  2000. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  2001. _FIELD_TEST(touch_calibration_data);
  2002. EEPROM_READ(touch_calibration.calibration);
  2003. #endif
  2004. //
  2005. // Ethernet network info
  2006. //
  2007. #if HAS_ETHERNET
  2008. _FIELD_TEST(ethernet_hardware_enabled);
  2009. uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
  2010. EEPROM_READ(ethernet.hardware_enabled);
  2011. EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
  2012. EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
  2013. EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
  2014. EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
  2015. #endif
  2016. //
  2017. // Buzzer enable/disable
  2018. //
  2019. #if ENABLED(SOUND_MENU_ITEM)
  2020. _FIELD_TEST(buzzer_enabled);
  2021. EEPROM_READ(ui.buzzer_enabled);
  2022. #endif
  2023. //
  2024. // Selected LCD language
  2025. //
  2026. #if HAS_MULTI_LANGUAGE
  2027. {
  2028. uint8_t ui_language;
  2029. EEPROM_READ(ui_language);
  2030. if (ui_language >= NUM_LANGUAGES) ui_language = 0;
  2031. ui.set_language(ui_language);
  2032. }
  2033. #endif
  2034. //
  2035. // Validate Final Size and CRC
  2036. //
  2037. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  2038. if (eeprom_error) {
  2039. DEBUG_ECHO_START();
  2040. DEBUG_ECHOLNPAIR("Index: ", eeprom_index - (EEPROM_OFFSET), " Size: ", datasize());
  2041. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_index());
  2042. }
  2043. else if (working_crc != stored_crc) {
  2044. eeprom_error = true;
  2045. DEBUG_ERROR_START();
  2046. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  2047. IF_DISABLED(EEPROM_AUTO_INIT, ui.eeprom_alert_crc());
  2048. }
  2049. else if (!validating) {
  2050. DEBUG_ECHO_START();
  2051. DEBUG_ECHO(version);
  2052. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  2053. }
  2054. if (!validating && !eeprom_error) postprocess();
  2055. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2056. if (!validating) {
  2057. ubl.report_state();
  2058. if (!ubl.sanity_check()) {
  2059. SERIAL_EOL();
  2060. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2061. ubl.echo_name();
  2062. DEBUG_ECHOLNPGM(" initialized.\n");
  2063. #endif
  2064. }
  2065. else {
  2066. eeprom_error = true;
  2067. #if BOTH(EEPROM_CHITCHAT, DEBUG_LEVELING_FEATURE)
  2068. DEBUG_ECHOPGM("?Can't enable ");
  2069. ubl.echo_name();
  2070. DEBUG_ECHOLNPGM(".");
  2071. #endif
  2072. ubl.reset();
  2073. }
  2074. if (ubl.storage_slot >= 0) {
  2075. load_mesh(ubl.storage_slot);
  2076. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  2077. }
  2078. else {
  2079. ubl.reset();
  2080. DEBUG_ECHOLNPGM("UBL reset");
  2081. }
  2082. }
  2083. #endif
  2084. }
  2085. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2086. // Report the EEPROM settings
  2087. if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
  2088. #endif
  2089. EEPROM_FINISH();
  2090. return !eeprom_error;
  2091. }
  2092. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2093. extern bool restoreEEPROM();
  2094. #endif
  2095. bool MarlinSettings::validate() {
  2096. validating = true;
  2097. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2098. bool success = _load();
  2099. if (!success && restoreEEPROM()) {
  2100. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2101. success = _load();
  2102. }
  2103. #else
  2104. const bool success = _load();
  2105. #endif
  2106. validating = false;
  2107. return success;
  2108. }
  2109. bool MarlinSettings::load() {
  2110. if (validate()) {
  2111. const bool success = _load();
  2112. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2113. return success;
  2114. }
  2115. reset();
  2116. #if ENABLED(EEPROM_AUTO_INIT)
  2117. (void)save();
  2118. SERIAL_ECHO_MSG("EEPROM Initialized");
  2119. #endif
  2120. return false;
  2121. }
  2122. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2123. inline void ubl_invalid_slot(const int s) {
  2124. #if BOTH(EEPROM_CHITCHAT, DEBUG_OUT)
  2125. DEBUG_ECHOLNPGM("?Invalid slot.");
  2126. DEBUG_ECHO(s);
  2127. DEBUG_ECHOLNPGM(" mesh slots available.");
  2128. #else
  2129. UNUSED(s);
  2130. #endif
  2131. }
  2132. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2133. // is a placeholder for the size of the MAT; the MAT will always
  2134. // live at the very end of the eeprom
  2135. uint16_t MarlinSettings::meshes_start_index() {
  2136. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2137. // or down a little bit without disrupting the mesh data
  2138. }
  2139. #define MESH_STORE_SIZE sizeof(TERN(OPTIMIZED_MESH_STORAGE, mesh_store_t, ubl.z_values))
  2140. uint16_t MarlinSettings::calc_num_meshes() {
  2141. return (meshes_end - meshes_start_index()) / MESH_STORE_SIZE;
  2142. }
  2143. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2144. return meshes_end - (slot + 1) * MESH_STORE_SIZE;
  2145. }
  2146. void MarlinSettings::store_mesh(const int8_t slot) {
  2147. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2148. const int16_t a = calc_num_meshes();
  2149. if (!WITHIN(slot, 0, a - 1)) {
  2150. ubl_invalid_slot(a);
  2151. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2152. DEBUG_EOL();
  2153. return;
  2154. }
  2155. int pos = mesh_slot_offset(slot);
  2156. uint16_t crc = 0;
  2157. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2158. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2159. ubl.set_store_from_mesh(ubl.z_values, z_mesh_store);
  2160. uint8_t * const src = (uint8_t*)&z_mesh_store;
  2161. #else
  2162. uint8_t * const src = (uint8_t*)&ubl.z_values;
  2163. #endif
  2164. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2165. persistentStore.access_start();
  2166. const bool status = persistentStore.write_data(pos, src, MESH_STORE_SIZE, &crc);
  2167. persistentStore.access_finish();
  2168. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2169. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2170. #else
  2171. // Other mesh types
  2172. #endif
  2173. }
  2174. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2175. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2176. const int16_t a = settings.calc_num_meshes();
  2177. if (!WITHIN(slot, 0, a - 1)) {
  2178. ubl_invalid_slot(a);
  2179. return;
  2180. }
  2181. int pos = mesh_slot_offset(slot);
  2182. uint16_t crc = 0;
  2183. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2184. int16_t z_mesh_store[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2185. uint8_t * const dest = (uint8_t*)&z_mesh_store;
  2186. #else
  2187. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2188. #endif
  2189. persistentStore.access_start();
  2190. const uint16_t status = persistentStore.read_data(pos, dest, MESH_STORE_SIZE, &crc);
  2191. persistentStore.access_finish();
  2192. #if ENABLED(OPTIMIZED_MESH_STORAGE)
  2193. if (into) {
  2194. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  2195. ubl.set_mesh_from_store(z_mesh_store, z_values);
  2196. memcpy(into, z_values, sizeof(z_values));
  2197. }
  2198. else
  2199. ubl.set_mesh_from_store(z_mesh_store, ubl.z_values);
  2200. #endif
  2201. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2202. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2203. EEPROM_FINISH();
  2204. #else
  2205. // Other mesh types
  2206. #endif
  2207. }
  2208. //void MarlinSettings::delete_mesh() { return; }
  2209. //void MarlinSettings::defrag_meshes() { return; }
  2210. #endif // AUTO_BED_LEVELING_UBL
  2211. #else // !EEPROM_SETTINGS
  2212. bool MarlinSettings::save() {
  2213. DEBUG_ERROR_MSG("EEPROM disabled");
  2214. return false;
  2215. }
  2216. #endif // !EEPROM_SETTINGS
  2217. /**
  2218. * M502 - Reset Configuration
  2219. */
  2220. void MarlinSettings::reset() {
  2221. LOOP_XYZE_N(i) {
  2222. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2223. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2224. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2225. }
  2226. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2227. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2228. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2229. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2230. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2231. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2232. #if HAS_CLASSIC_JERK
  2233. #ifndef DEFAULT_XJERK
  2234. #define DEFAULT_XJERK 0
  2235. #endif
  2236. #ifndef DEFAULT_YJERK
  2237. #define DEFAULT_YJERK 0
  2238. #endif
  2239. #ifndef DEFAULT_ZJERK
  2240. #define DEFAULT_ZJERK 0
  2241. #endif
  2242. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2243. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2244. #endif
  2245. #if HAS_JUNCTION_DEVIATION
  2246. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2247. #endif
  2248. #if HAS_SCARA_OFFSET
  2249. scara_home_offset.reset();
  2250. #elif HAS_HOME_OFFSET
  2251. home_offset.reset();
  2252. #endif
  2253. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2254. //
  2255. // Filament Runout Sensor
  2256. //
  2257. #if HAS_FILAMENT_SENSOR
  2258. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2259. runout.reset();
  2260. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2261. #endif
  2262. //
  2263. // Tool-change Settings
  2264. //
  2265. #if HAS_MULTI_EXTRUDER
  2266. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2267. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2268. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2269. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2270. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2271. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2272. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2273. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2274. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2275. #endif
  2276. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2277. enable_first_prime = false;
  2278. #endif
  2279. #if ENABLED(TOOLCHANGE_PARK)
  2280. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2281. toolchange_settings.enable_park = true;
  2282. toolchange_settings.change_point = tpxy;
  2283. #endif
  2284. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2285. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2286. migration = migration_defaults;
  2287. #endif
  2288. #endif
  2289. #if ENABLED(BACKLASH_GCODE)
  2290. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2291. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2292. backlash.distance_mm = tmp;
  2293. #ifdef BACKLASH_SMOOTHING_MM
  2294. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2295. #endif
  2296. #endif
  2297. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2298. //
  2299. // Case Light Brightness
  2300. //
  2301. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2302. //
  2303. // TOUCH_SCREEN_CALIBRATION
  2304. //
  2305. TERN_(TOUCH_SCREEN_CALIBRATION, touch_calibration.calibration_reset());
  2306. //
  2307. // Buzzer enable/disable
  2308. //
  2309. TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true);
  2310. //
  2311. // Magnetic Parking Extruder
  2312. //
  2313. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2314. //
  2315. // Global Leveling
  2316. //
  2317. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = (DEFAULT_LEVELING_FADE_HEIGHT));
  2318. TERN_(HAS_LEVELING, reset_bed_level());
  2319. #if HAS_BED_PROBE
  2320. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2321. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2322. #if HAS_PROBE_XY_OFFSET
  2323. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2324. #else
  2325. probe.offset.set(0, 0, dpo[Z_AXIS]);
  2326. #endif
  2327. #endif
  2328. //
  2329. // Z Stepper Auto-alignment points
  2330. //
  2331. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2332. //
  2333. // Servo Angles
  2334. //
  2335. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2336. //
  2337. // BLTOUCH
  2338. //
  2339. //#if ENABLED(BLTOUCH)
  2340. // bltouch.last_written_mode;
  2341. //#endif
  2342. //
  2343. // Endstop Adjustments
  2344. //
  2345. #if ENABLED(DELTA)
  2346. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2347. delta_height = DELTA_HEIGHT;
  2348. delta_endstop_adj = adj;
  2349. delta_radius = DELTA_RADIUS;
  2350. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2351. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2352. delta_tower_angle_trim = dta;
  2353. delta_diagonal_rod_trim = ddr;
  2354. #endif
  2355. #if ENABLED(X_DUAL_ENDSTOPS)
  2356. #ifndef X2_ENDSTOP_ADJUSTMENT
  2357. #define X2_ENDSTOP_ADJUSTMENT 0
  2358. #endif
  2359. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2360. #endif
  2361. #if ENABLED(Y_DUAL_ENDSTOPS)
  2362. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2363. #define Y2_ENDSTOP_ADJUSTMENT 0
  2364. #endif
  2365. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2366. #endif
  2367. #if ENABLED(Z_MULTI_ENDSTOPS)
  2368. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2369. #define Z2_ENDSTOP_ADJUSTMENT 0
  2370. #endif
  2371. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2372. #if NUM_Z_STEPPER_DRIVERS >= 3
  2373. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2374. #define Z3_ENDSTOP_ADJUSTMENT 0
  2375. #endif
  2376. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2377. #endif
  2378. #if NUM_Z_STEPPER_DRIVERS >= 4
  2379. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2380. #define Z4_ENDSTOP_ADJUSTMENT 0
  2381. #endif
  2382. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2383. #endif
  2384. #endif
  2385. //
  2386. // Preheat parameters
  2387. //
  2388. #if PREHEAT_COUNT
  2389. #if HAS_HOTEND
  2390. constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
  2391. #endif
  2392. #if HAS_HEATED_BED
  2393. constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
  2394. #endif
  2395. #if HAS_FAN
  2396. constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
  2397. #endif
  2398. LOOP_L_N(i, PREHEAT_COUNT) {
  2399. #if HAS_HOTEND
  2400. ui.material_preset[i].hotend_temp = hpre[i];
  2401. #endif
  2402. #if HAS_HEATED_BED
  2403. ui.material_preset[i].bed_temp = bpre[i];
  2404. #endif
  2405. #if HAS_FAN
  2406. ui.material_preset[i].fan_speed = fpre[i];
  2407. #endif
  2408. }
  2409. #endif
  2410. //
  2411. // Hotend PID
  2412. //
  2413. #if ENABLED(PIDTEMP)
  2414. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2415. constexpr float defKp[] =
  2416. #ifdef DEFAULT_Kp_LIST
  2417. DEFAULT_Kp_LIST
  2418. #else
  2419. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2420. #endif
  2421. , defKi[] =
  2422. #ifdef DEFAULT_Ki_LIST
  2423. DEFAULT_Ki_LIST
  2424. #else
  2425. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2426. #endif
  2427. , defKd[] =
  2428. #ifdef DEFAULT_Kd_LIST
  2429. DEFAULT_Kd_LIST
  2430. #else
  2431. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2432. #endif
  2433. ;
  2434. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2435. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2436. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2437. #if ENABLED(PID_EXTRUSION_SCALING)
  2438. constexpr float defKc[] =
  2439. #ifdef DEFAULT_Kc_LIST
  2440. DEFAULT_Kc_LIST
  2441. #else
  2442. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2443. #endif
  2444. ;
  2445. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2446. #endif
  2447. #if ENABLED(PID_FAN_SCALING)
  2448. constexpr float defKf[] =
  2449. #ifdef DEFAULT_Kf_LIST
  2450. DEFAULT_Kf_LIST
  2451. #else
  2452. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2453. #endif
  2454. ;
  2455. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2456. #endif
  2457. #define PID_DEFAULT(N,E) def##N[E]
  2458. #else
  2459. #define PID_DEFAULT(N,E) DEFAULT_##N
  2460. #endif
  2461. HOTEND_LOOP() {
  2462. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2463. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2464. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2465. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2466. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2467. }
  2468. #endif
  2469. //
  2470. // PID Extrusion Scaling
  2471. //
  2472. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2473. //
  2474. // Heated Bed PID
  2475. //
  2476. #if ENABLED(PIDTEMPBED)
  2477. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2478. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2479. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2480. #endif
  2481. //
  2482. // Heated Chamber PID
  2483. //
  2484. #if ENABLED(PIDTEMPCHAMBER)
  2485. thermalManager.temp_chamber.pid.Kp = DEFAULT_chamberKp;
  2486. thermalManager.temp_chamber.pid.Ki = scalePID_i(DEFAULT_chamberKi);
  2487. thermalManager.temp_chamber.pid.Kd = scalePID_d(DEFAULT_chamberKd);
  2488. #endif
  2489. //
  2490. // User-Defined Thermistors
  2491. //
  2492. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2493. //
  2494. // Power Monitor
  2495. //
  2496. TERN_(POWER_MONITOR, power_monitor.reset());
  2497. //
  2498. // LCD Contrast
  2499. //
  2500. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2501. //
  2502. // Controller Fan
  2503. //
  2504. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2505. //
  2506. // Power-Loss Recovery
  2507. //
  2508. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2509. //
  2510. // Firmware Retraction
  2511. //
  2512. TERN_(FWRETRACT, fwretract.reset());
  2513. //
  2514. // Volumetric & Filament Size
  2515. //
  2516. #if DISABLED(NO_VOLUMETRICS)
  2517. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2518. LOOP_L_N(q, COUNT(planner.filament_size))
  2519. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2520. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2521. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2522. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2523. #endif
  2524. #endif
  2525. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2526. reset_stepper_drivers();
  2527. //
  2528. // Linear Advance
  2529. //
  2530. #if ENABLED(LIN_ADVANCE)
  2531. LOOP_L_N(i, EXTRUDERS) {
  2532. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2533. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2534. }
  2535. #endif
  2536. //
  2537. // Motor Current PWM
  2538. //
  2539. #if HAS_MOTOR_CURRENT_PWM
  2540. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2541. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2542. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2543. #endif
  2544. //
  2545. // DIGIPOTS
  2546. //
  2547. #if HAS_MOTOR_CURRENT_SPI
  2548. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2549. DEBUG_ECHOLNPGM("Writing Digipot");
  2550. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2551. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2552. DEBUG_ECHOLNPGM("Digipot Written");
  2553. #endif
  2554. //
  2555. // CNC Coordinate System
  2556. //
  2557. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2558. //
  2559. // Skew Correction
  2560. //
  2561. #if ENABLED(SKEW_CORRECTION_GCODE)
  2562. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2563. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2564. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2565. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2566. #endif
  2567. #endif
  2568. //
  2569. // Advanced Pause filament load & unload lengths
  2570. //
  2571. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2572. LOOP_L_N(e, EXTRUDERS) {
  2573. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2574. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2575. }
  2576. #endif
  2577. #if ENABLED(PASSWORD_FEATURE)
  2578. #ifdef PASSWORD_DEFAULT_VALUE
  2579. password.is_set = true;
  2580. password.value = PASSWORD_DEFAULT_VALUE;
  2581. #else
  2582. password.is_set = false;
  2583. #endif
  2584. #endif
  2585. postprocess();
  2586. DEBUG_ECHO_START();
  2587. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2588. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2589. }
  2590. #if DISABLED(DISABLE_M503)
  2591. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2592. if (!repl) {
  2593. SERIAL_ECHO_START();
  2594. SERIAL_ECHOPGM("; ");
  2595. serialprintPGM(pstr);
  2596. if (eol) SERIAL_EOL();
  2597. }
  2598. }
  2599. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2600. #define CONFIG_ECHO_MSG(V...) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPAIR(V); }while(0)
  2601. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2602. #if HAS_TRINAMIC_CONFIG
  2603. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2604. #if HAS_STEALTHCHOP
  2605. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2606. CONFIG_ECHO_START();
  2607. SERIAL_ECHOPGM(" M569 S1");
  2608. if (etc) {
  2609. SERIAL_CHAR(' ');
  2610. serialprintPGM(etc);
  2611. }
  2612. if (newLine) SERIAL_EOL();
  2613. }
  2614. #endif
  2615. #if ENABLED(HYBRID_THRESHOLD)
  2616. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2617. #endif
  2618. #if USE_SENSORLESS
  2619. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2620. #endif
  2621. #endif
  2622. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2623. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2624. #endif
  2625. inline void say_units(const bool colon) {
  2626. serialprintPGM(
  2627. #if ENABLED(INCH_MODE_SUPPORT)
  2628. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2629. #endif
  2630. PSTR(" (mm)")
  2631. );
  2632. if (colon) SERIAL_ECHOLNPGM(":");
  2633. }
  2634. void report_M92(const bool echo=true, const int8_t e=-1);
  2635. /**
  2636. * M503 - Report current settings in RAM
  2637. *
  2638. * Unless specifically disabled, M503 is available even without EEPROM
  2639. */
  2640. void MarlinSettings::report(const bool forReplay) {
  2641. /**
  2642. * Announce current units, in case inches are being displayed
  2643. */
  2644. CONFIG_ECHO_START();
  2645. #if ENABLED(INCH_MODE_SUPPORT)
  2646. SERIAL_ECHOPGM(" G2");
  2647. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2648. SERIAL_ECHOPGM(" ;");
  2649. say_units(false);
  2650. #else
  2651. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2652. say_units(false);
  2653. #endif
  2654. SERIAL_EOL();
  2655. #if HAS_LCD_MENU
  2656. // Temperature units - for Ultipanel temperature options
  2657. CONFIG_ECHO_START();
  2658. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2659. SERIAL_ECHOPGM(" M149 ");
  2660. SERIAL_CHAR(parser.temp_units_code());
  2661. SERIAL_ECHOPGM(" ; Units in ");
  2662. serialprintPGM(parser.temp_units_name());
  2663. #else
  2664. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2665. #endif
  2666. #endif
  2667. SERIAL_EOL();
  2668. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2669. /**
  2670. * Volumetric extrusion M200
  2671. */
  2672. if (!forReplay) {
  2673. config_heading(forReplay, PSTR("Filament settings:"), false);
  2674. if (parser.volumetric_enabled)
  2675. SERIAL_EOL();
  2676. else
  2677. SERIAL_ECHOLNPGM(" Disabled");
  2678. }
  2679. #if EXTRUDERS == 1
  2680. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled
  2681. , " D", LINEAR_UNIT(planner.filament_size[0])
  2682. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2683. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2684. #endif
  2685. );
  2686. #else
  2687. LOOP_L_N(i, EXTRUDERS) {
  2688. CONFIG_ECHO_MSG(" M200 T", i
  2689. , " D", LINEAR_UNIT(planner.filament_size[i])
  2690. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2691. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2692. #endif
  2693. );
  2694. }
  2695. CONFIG_ECHO_MSG(" M200 S", parser.volumetric_enabled);
  2696. #endif
  2697. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2698. CONFIG_ECHO_HEADING("Steps per unit:");
  2699. report_M92(!forReplay);
  2700. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2701. CONFIG_ECHO_START();
  2702. SERIAL_ECHOLNPAIR_P(
  2703. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2704. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2705. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2706. #if DISABLED(DISTINCT_E_FACTORS)
  2707. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2708. #endif
  2709. );
  2710. #if ENABLED(DISTINCT_E_FACTORS)
  2711. LOOP_L_N(i, E_STEPPERS) {
  2712. CONFIG_ECHO_START();
  2713. SERIAL_ECHOLNPAIR_P(
  2714. PSTR(" M203 T"), i
  2715. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2716. );
  2717. }
  2718. #endif
  2719. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2720. CONFIG_ECHO_START();
  2721. SERIAL_ECHOLNPAIR_P(
  2722. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2723. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2724. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2725. #if DISABLED(DISTINCT_E_FACTORS)
  2726. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2727. #endif
  2728. );
  2729. #if ENABLED(DISTINCT_E_FACTORS)
  2730. LOOP_L_N(i, E_STEPPERS) {
  2731. CONFIG_ECHO_START();
  2732. SERIAL_ECHOLNPAIR_P(
  2733. PSTR(" M201 T"), i
  2734. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2735. );
  2736. }
  2737. #endif
  2738. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2739. CONFIG_ECHO_START();
  2740. SERIAL_ECHOLNPAIR_P(
  2741. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2742. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2743. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2744. );
  2745. CONFIG_ECHO_HEADING(
  2746. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2747. #if HAS_JUNCTION_DEVIATION
  2748. " J<junc_dev>"
  2749. #endif
  2750. #if HAS_CLASSIC_JERK
  2751. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2752. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2753. #endif
  2754. );
  2755. CONFIG_ECHO_START();
  2756. SERIAL_ECHOLNPAIR_P(
  2757. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2758. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2759. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2760. #if HAS_JUNCTION_DEVIATION
  2761. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2762. #endif
  2763. #if HAS_CLASSIC_JERK
  2764. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2765. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2766. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2767. #if HAS_CLASSIC_E_JERK
  2768. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2769. #endif
  2770. #endif
  2771. );
  2772. #if HAS_M206_COMMAND
  2773. CONFIG_ECHO_HEADING("Home offset:");
  2774. CONFIG_ECHO_START();
  2775. SERIAL_ECHOLNPAIR_P(
  2776. #if IS_CARTESIAN
  2777. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2778. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2779. , SP_Z_STR
  2780. #else
  2781. PSTR(" M206 Z")
  2782. #endif
  2783. , LINEAR_UNIT(home_offset.z)
  2784. );
  2785. #endif
  2786. #if HAS_HOTEND_OFFSET
  2787. CONFIG_ECHO_HEADING("Hotend offsets:");
  2788. CONFIG_ECHO_START();
  2789. LOOP_S_L_N(e, 1, HOTENDS) {
  2790. SERIAL_ECHOPAIR_P(
  2791. PSTR(" M218 T"), e,
  2792. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2793. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2794. );
  2795. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2796. }
  2797. #endif
  2798. /**
  2799. * Bed Leveling
  2800. */
  2801. #if HAS_LEVELING
  2802. #if ENABLED(MESH_BED_LEVELING)
  2803. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2804. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2805. config_heading(forReplay, NUL_STR, false);
  2806. if (!forReplay) {
  2807. ubl.echo_name();
  2808. SERIAL_CHAR(':');
  2809. SERIAL_EOL();
  2810. }
  2811. #elif HAS_ABL_OR_UBL
  2812. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2813. #endif
  2814. CONFIG_ECHO_START();
  2815. SERIAL_ECHOLNPAIR_P(
  2816. PSTR(" M420 S"), planner.leveling_active
  2817. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2818. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2819. #endif
  2820. );
  2821. #if ENABLED(MESH_BED_LEVELING)
  2822. if (leveling_is_valid()) {
  2823. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2824. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2825. CONFIG_ECHO_START();
  2826. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), px, PSTR(" J"), py);
  2827. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2828. }
  2829. }
  2830. CONFIG_ECHO_START();
  2831. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2832. }
  2833. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2834. if (!forReplay) {
  2835. SERIAL_EOL();
  2836. ubl.report_state();
  2837. SERIAL_EOL();
  2838. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2839. SERIAL_ECHOLN(ubl.storage_slot);
  2840. config_heading(false, PSTR("EEPROM can hold "), false);
  2841. SERIAL_ECHO(calc_num_meshes());
  2842. SERIAL_ECHOLNPGM(" meshes.\n");
  2843. }
  2844. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2845. // solution needs to be found.
  2846. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2847. if (leveling_is_valid()) {
  2848. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2849. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2850. CONFIG_ECHO_START();
  2851. SERIAL_ECHOPAIR(" G29 W I", px, " J", py);
  2852. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2853. }
  2854. }
  2855. }
  2856. #endif
  2857. #endif // HAS_LEVELING
  2858. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2859. CONFIG_ECHO_HEADING("Servo Angles:");
  2860. LOOP_L_N(i, NUM_SERVOS) {
  2861. switch (i) {
  2862. #if ENABLED(SWITCHING_EXTRUDER)
  2863. case SWITCHING_EXTRUDER_SERVO_NR:
  2864. #if EXTRUDERS > 3
  2865. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2866. #endif
  2867. #elif ENABLED(SWITCHING_NOZZLE)
  2868. case SWITCHING_NOZZLE_SERVO_NR:
  2869. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2870. case Z_PROBE_SERVO_NR:
  2871. #endif
  2872. CONFIG_ECHO_MSG(" M281 P", i, " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2873. default: break;
  2874. }
  2875. }
  2876. #endif // EDITABLE_SERVO_ANGLES
  2877. #if HAS_SCARA_OFFSET
  2878. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2879. CONFIG_ECHO_START();
  2880. SERIAL_ECHOLNPAIR_P(
  2881. PSTR(" M665 S"), delta_segments_per_second
  2882. , SP_P_STR, scara_home_offset.a
  2883. , SP_T_STR, scara_home_offset.b
  2884. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2885. );
  2886. #elif ENABLED(DELTA)
  2887. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2888. CONFIG_ECHO_START();
  2889. SERIAL_ECHOLNPAIR_P(
  2890. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2891. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2892. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2893. );
  2894. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2895. CONFIG_ECHO_START();
  2896. SERIAL_ECHOLNPAIR_P(
  2897. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2898. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2899. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2900. , PSTR(" S"), delta_segments_per_second
  2901. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2902. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2903. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2904. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2905. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2906. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2907. );
  2908. #elif HAS_EXTRA_ENDSTOPS
  2909. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2910. CONFIG_ECHO_START();
  2911. SERIAL_ECHOPGM(" M666");
  2912. #if ENABLED(X_DUAL_ENDSTOPS)
  2913. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2914. #endif
  2915. #if ENABLED(Y_DUAL_ENDSTOPS)
  2916. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2917. #endif
  2918. #if ENABLED(Z_MULTI_ENDSTOPS)
  2919. #if NUM_Z_STEPPER_DRIVERS >= 3
  2920. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2921. CONFIG_ECHO_START();
  2922. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2923. #if NUM_Z_STEPPER_DRIVERS >= 4
  2924. CONFIG_ECHO_START();
  2925. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2926. #endif
  2927. #else
  2928. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2929. #endif
  2930. #endif
  2931. #endif // [XYZ]_DUAL_ENDSTOPS
  2932. #if PREHEAT_COUNT
  2933. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2934. LOOP_L_N(i, PREHEAT_COUNT) {
  2935. CONFIG_ECHO_START();
  2936. SERIAL_ECHOLNPAIR_P(
  2937. PSTR(" M145 S"), i
  2938. #if HAS_HOTEND
  2939. , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
  2940. #endif
  2941. #if HAS_HEATED_BED
  2942. , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
  2943. #endif
  2944. #if HAS_FAN
  2945. , PSTR(" F"), ui.material_preset[i].fan_speed
  2946. #endif
  2947. );
  2948. }
  2949. #endif
  2950. #if HAS_PID_HEATING
  2951. CONFIG_ECHO_HEADING("PID settings:");
  2952. #if ENABLED(PIDTEMP)
  2953. HOTEND_LOOP() {
  2954. CONFIG_ECHO_START();
  2955. SERIAL_ECHOPAIR_P(
  2956. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2957. PSTR(" M301 E"), e,
  2958. SP_P_STR
  2959. #else
  2960. PSTR(" M301 P")
  2961. #endif
  2962. , PID_PARAM(Kp, e)
  2963. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2964. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2965. );
  2966. #if ENABLED(PID_EXTRUSION_SCALING)
  2967. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2968. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2969. #endif
  2970. #if ENABLED(PID_FAN_SCALING)
  2971. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2972. #endif
  2973. SERIAL_EOL();
  2974. }
  2975. #endif // PIDTEMP
  2976. #if ENABLED(PIDTEMPBED)
  2977. CONFIG_ECHO_MSG(
  2978. " M304 P", thermalManager.temp_bed.pid.Kp
  2979. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2980. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2981. );
  2982. #endif
  2983. #if ENABLED(PIDTEMPCHAMBER)
  2984. CONFIG_ECHO_START();
  2985. SERIAL_ECHOLNPAIR(
  2986. " M309 P", thermalManager.temp_chamber.pid.Kp
  2987. , " I", unscalePID_i(thermalManager.temp_chamber.pid.Ki)
  2988. , " D", unscalePID_d(thermalManager.temp_chamber.pid.Kd)
  2989. );
  2990. #endif
  2991. #endif // PIDTEMP || PIDTEMPBED || PIDTEMPCHAMBER
  2992. #if HAS_USER_THERMISTORS
  2993. CONFIG_ECHO_HEADING("User thermistors:");
  2994. LOOP_L_N(i, USER_THERMISTORS)
  2995. thermalManager.log_user_thermistor(i, true);
  2996. #endif
  2997. #if HAS_LCD_CONTRAST
  2998. CONFIG_ECHO_HEADING("LCD Contrast:");
  2999. CONFIG_ECHO_MSG(" M250 C", ui.contrast);
  3000. #endif
  3001. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  3002. #if ENABLED(POWER_LOSS_RECOVERY)
  3003. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  3004. CONFIG_ECHO_MSG(" M413 S", recovery.enabled);
  3005. #endif
  3006. #if ENABLED(FWRETRACT)
  3007. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  3008. CONFIG_ECHO_START();
  3009. SERIAL_ECHOLNPAIR_P(
  3010. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  3011. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  3012. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  3013. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  3014. );
  3015. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  3016. CONFIG_ECHO_MSG(
  3017. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  3018. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  3019. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  3020. );
  3021. #if ENABLED(FWRETRACT_AUTORETRACT)
  3022. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  3023. CONFIG_ECHO_MSG(" M209 S", fwretract.autoretract_enabled);
  3024. #endif
  3025. #endif // FWRETRACT
  3026. /**
  3027. * Probe Offset
  3028. */
  3029. #if HAS_BED_PROBE
  3030. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  3031. if (!forReplay) say_units(true);
  3032. CONFIG_ECHO_START();
  3033. SERIAL_ECHOLNPAIR_P(
  3034. #if HAS_PROBE_XY_OFFSET
  3035. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  3036. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  3037. SP_Z_STR
  3038. #else
  3039. PSTR(" M851 X0 Y0 Z")
  3040. #endif
  3041. , LINEAR_UNIT(probe.offset.z)
  3042. );
  3043. #endif
  3044. /**
  3045. * Bed Skew Correction
  3046. */
  3047. #if ENABLED(SKEW_CORRECTION_GCODE)
  3048. CONFIG_ECHO_HEADING("Skew Factor: ");
  3049. CONFIG_ECHO_START();
  3050. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  3051. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3052. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  3053. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  3054. #else
  3055. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3056. #endif
  3057. #endif
  3058. #if HAS_TRINAMIC_CONFIG
  3059. /**
  3060. * TMC stepper driver current
  3061. */
  3062. CONFIG_ECHO_HEADING("Stepper driver current:");
  3063. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  3064. say_M906(forReplay);
  3065. #if AXIS_IS_TMC(X)
  3066. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  3067. #endif
  3068. #if AXIS_IS_TMC(Y)
  3069. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  3070. #endif
  3071. #if AXIS_IS_TMC(Z)
  3072. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  3073. #endif
  3074. SERIAL_EOL();
  3075. #endif
  3076. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  3077. say_M906(forReplay);
  3078. SERIAL_ECHOPGM(" I1");
  3079. #if AXIS_IS_TMC(X2)
  3080. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  3081. #endif
  3082. #if AXIS_IS_TMC(Y2)
  3083. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  3084. #endif
  3085. #if AXIS_IS_TMC(Z2)
  3086. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  3087. #endif
  3088. SERIAL_EOL();
  3089. #endif
  3090. #if AXIS_IS_TMC(Z3)
  3091. say_M906(forReplay);
  3092. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  3093. #endif
  3094. #if AXIS_IS_TMC(Z4)
  3095. say_M906(forReplay);
  3096. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  3097. #endif
  3098. #if AXIS_IS_TMC(E0)
  3099. say_M906(forReplay);
  3100. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  3101. #endif
  3102. #if AXIS_IS_TMC(E1)
  3103. say_M906(forReplay);
  3104. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  3105. #endif
  3106. #if AXIS_IS_TMC(E2)
  3107. say_M906(forReplay);
  3108. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  3109. #endif
  3110. #if AXIS_IS_TMC(E3)
  3111. say_M906(forReplay);
  3112. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  3113. #endif
  3114. #if AXIS_IS_TMC(E4)
  3115. say_M906(forReplay);
  3116. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  3117. #endif
  3118. #if AXIS_IS_TMC(E5)
  3119. say_M906(forReplay);
  3120. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  3121. #endif
  3122. #if AXIS_IS_TMC(E6)
  3123. say_M906(forReplay);
  3124. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3125. #endif
  3126. #if AXIS_IS_TMC(E7)
  3127. say_M906(forReplay);
  3128. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3129. #endif
  3130. SERIAL_EOL();
  3131. /**
  3132. * TMC Hybrid Threshold
  3133. */
  3134. #if ENABLED(HYBRID_THRESHOLD)
  3135. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3136. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  3137. say_M913(forReplay);
  3138. #if AXIS_HAS_STEALTHCHOP(X)
  3139. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3140. #endif
  3141. #if AXIS_HAS_STEALTHCHOP(Y)
  3142. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3143. #endif
  3144. #if AXIS_HAS_STEALTHCHOP(Z)
  3145. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3146. #endif
  3147. SERIAL_EOL();
  3148. #endif
  3149. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  3150. say_M913(forReplay);
  3151. SERIAL_ECHOPGM(" I1");
  3152. #if AXIS_HAS_STEALTHCHOP(X2)
  3153. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3154. #endif
  3155. #if AXIS_HAS_STEALTHCHOP(Y2)
  3156. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3157. #endif
  3158. #if AXIS_HAS_STEALTHCHOP(Z2)
  3159. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3160. #endif
  3161. SERIAL_EOL();
  3162. #endif
  3163. #if AXIS_HAS_STEALTHCHOP(Z3)
  3164. say_M913(forReplay);
  3165. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3166. #endif
  3167. #if AXIS_HAS_STEALTHCHOP(Z4)
  3168. say_M913(forReplay);
  3169. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3170. #endif
  3171. #if AXIS_HAS_STEALTHCHOP(E0)
  3172. say_M913(forReplay);
  3173. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3174. #endif
  3175. #if AXIS_HAS_STEALTHCHOP(E1)
  3176. say_M913(forReplay);
  3177. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3178. #endif
  3179. #if AXIS_HAS_STEALTHCHOP(E2)
  3180. say_M913(forReplay);
  3181. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3182. #endif
  3183. #if AXIS_HAS_STEALTHCHOP(E3)
  3184. say_M913(forReplay);
  3185. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3186. #endif
  3187. #if AXIS_HAS_STEALTHCHOP(E4)
  3188. say_M913(forReplay);
  3189. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3190. #endif
  3191. #if AXIS_HAS_STEALTHCHOP(E5)
  3192. say_M913(forReplay);
  3193. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3194. #endif
  3195. #if AXIS_HAS_STEALTHCHOP(E6)
  3196. say_M913(forReplay);
  3197. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3198. #endif
  3199. #if AXIS_HAS_STEALTHCHOP(E7)
  3200. say_M913(forReplay);
  3201. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3202. #endif
  3203. SERIAL_EOL();
  3204. #endif // HYBRID_THRESHOLD
  3205. /**
  3206. * TMC Sensorless homing thresholds
  3207. */
  3208. #if USE_SENSORLESS
  3209. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3210. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3211. CONFIG_ECHO_START();
  3212. say_M914();
  3213. #if X_SENSORLESS
  3214. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3215. #endif
  3216. #if Y_SENSORLESS
  3217. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3218. #endif
  3219. #if Z_SENSORLESS
  3220. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3221. #endif
  3222. SERIAL_EOL();
  3223. #endif
  3224. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3225. CONFIG_ECHO_START();
  3226. say_M914();
  3227. SERIAL_ECHOPGM(" I1");
  3228. #if X2_SENSORLESS
  3229. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3230. #endif
  3231. #if Y2_SENSORLESS
  3232. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3233. #endif
  3234. #if Z2_SENSORLESS
  3235. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3236. #endif
  3237. SERIAL_EOL();
  3238. #endif
  3239. #if Z3_SENSORLESS
  3240. CONFIG_ECHO_START();
  3241. say_M914();
  3242. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3243. #endif
  3244. #if Z4_SENSORLESS
  3245. CONFIG_ECHO_START();
  3246. say_M914();
  3247. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3248. #endif
  3249. #endif // USE_SENSORLESS
  3250. /**
  3251. * TMC stepping mode
  3252. */
  3253. #if HAS_STEALTHCHOP
  3254. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3255. #if AXIS_HAS_STEALTHCHOP(X)
  3256. const bool chop_x = stepperX.get_stored_stealthChop();
  3257. #else
  3258. constexpr bool chop_x = false;
  3259. #endif
  3260. #if AXIS_HAS_STEALTHCHOP(Y)
  3261. const bool chop_y = stepperY.get_stored_stealthChop();
  3262. #else
  3263. constexpr bool chop_y = false;
  3264. #endif
  3265. #if AXIS_HAS_STEALTHCHOP(Z)
  3266. const bool chop_z = stepperZ.get_stored_stealthChop();
  3267. #else
  3268. constexpr bool chop_z = false;
  3269. #endif
  3270. if (chop_x || chop_y || chop_z) {
  3271. say_M569(forReplay);
  3272. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3273. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3274. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3275. SERIAL_EOL();
  3276. }
  3277. #if AXIS_HAS_STEALTHCHOP(X2)
  3278. const bool chop_x2 = stepperX2.get_stored_stealthChop();
  3279. #else
  3280. constexpr bool chop_x2 = false;
  3281. #endif
  3282. #if AXIS_HAS_STEALTHCHOP(Y2)
  3283. const bool chop_y2 = stepperY2.get_stored_stealthChop();
  3284. #else
  3285. constexpr bool chop_y2 = false;
  3286. #endif
  3287. #if AXIS_HAS_STEALTHCHOP(Z2)
  3288. const bool chop_z2 = stepperZ2.get_stored_stealthChop();
  3289. #else
  3290. constexpr bool chop_z2 = false;
  3291. #endif
  3292. if (chop_x2 || chop_y2 || chop_z2) {
  3293. say_M569(forReplay, PSTR("I1"));
  3294. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3295. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3296. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3297. SERIAL_EOL();
  3298. }
  3299. #if AXIS_HAS_STEALTHCHOP(Z3)
  3300. if (stepperZ3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3301. #endif
  3302. #if AXIS_HAS_STEALTHCHOP(Z4)
  3303. if (stepperZ4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3304. #endif
  3305. #if AXIS_HAS_STEALTHCHOP(E0)
  3306. if (stepperE0.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3307. #endif
  3308. #if AXIS_HAS_STEALTHCHOP(E1)
  3309. if (stepperE1.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3310. #endif
  3311. #if AXIS_HAS_STEALTHCHOP(E2)
  3312. if (stepperE2.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3313. #endif
  3314. #if AXIS_HAS_STEALTHCHOP(E3)
  3315. if (stepperE3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3316. #endif
  3317. #if AXIS_HAS_STEALTHCHOP(E4)
  3318. if (stepperE4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3319. #endif
  3320. #if AXIS_HAS_STEALTHCHOP(E5)
  3321. if (stepperE5.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3322. #endif
  3323. #if AXIS_HAS_STEALTHCHOP(E6)
  3324. if (stepperE6.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3325. #endif
  3326. #if AXIS_HAS_STEALTHCHOP(E7)
  3327. if (stepperE7.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3328. #endif
  3329. #endif // HAS_STEALTHCHOP
  3330. #endif // HAS_TRINAMIC_CONFIG
  3331. /**
  3332. * Linear Advance
  3333. */
  3334. #if ENABLED(LIN_ADVANCE)
  3335. CONFIG_ECHO_HEADING("Linear Advance:");
  3336. #if EXTRUDERS < 2
  3337. CONFIG_ECHO_MSG(" M900 K", planner.extruder_advance_K[0]);
  3338. #else
  3339. LOOP_L_N(i, EXTRUDERS)
  3340. CONFIG_ECHO_MSG(" M900 T", i, " K", planner.extruder_advance_K[i]);
  3341. #endif
  3342. #endif
  3343. #if EITHER(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM)
  3344. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3345. CONFIG_ECHO_START();
  3346. #if HAS_MOTOR_CURRENT_PWM
  3347. SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
  3348. PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
  3349. , SP_Z_STR, stepper.motor_current_setting[1] // Z
  3350. , SP_E_STR, stepper.motor_current_setting[2] // E
  3351. );
  3352. #elif HAS_MOTOR_CURRENT_SPI
  3353. SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
  3354. LOOP_XYZE(q) { // X Y Z E (map to X Y Z E0 by default)
  3355. SERIAL_CHAR(' ', axis_codes[q]);
  3356. SERIAL_ECHO(stepper.motor_current_setting[q]);
  3357. }
  3358. SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
  3359. SERIAL_ECHOLN(stepper.motor_current_setting[4]);
  3360. #endif
  3361. #elif ENABLED(HAS_MOTOR_CURRENT_I2C) // i2c-based has any number of values
  3362. // Values sent over i2c are not stored.
  3363. // Indexes map directly to drivers, not axes.
  3364. #elif ENABLED(HAS_MOTOR_CURRENT_DAC) // DAC-based has 4 values, for X Y Z E
  3365. // Values sent over i2c are not stored. Uses indirect mapping.
  3366. #endif
  3367. /**
  3368. * Advanced Pause filament load & unload lengths
  3369. */
  3370. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3371. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3372. #if EXTRUDERS == 1
  3373. say_M603(forReplay);
  3374. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3375. #else
  3376. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3377. REPEAT(EXTRUDERS, _ECHO_603)
  3378. #endif
  3379. #endif
  3380. #if HAS_MULTI_EXTRUDER
  3381. CONFIG_ECHO_HEADING("Tool-changing:");
  3382. CONFIG_ECHO_START();
  3383. M217_report(true);
  3384. #endif
  3385. #if ENABLED(BACKLASH_GCODE)
  3386. CONFIG_ECHO_HEADING("Backlash compensation:");
  3387. CONFIG_ECHO_START();
  3388. SERIAL_ECHOLNPAIR_P(
  3389. PSTR(" M425 F"), backlash.get_correction()
  3390. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3391. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3392. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3393. #ifdef BACKLASH_SMOOTHING_MM
  3394. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3395. #endif
  3396. );
  3397. #endif
  3398. #if HAS_FILAMENT_SENSOR
  3399. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3400. CONFIG_ECHO_MSG(
  3401. " M412 S", runout.enabled
  3402. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3403. , " D", LINEAR_UNIT(runout.runout_distance())
  3404. #endif
  3405. );
  3406. #endif
  3407. #if HAS_ETHERNET
  3408. CONFIG_ECHO_HEADING("Ethernet:");
  3409. if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
  3410. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
  3411. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
  3412. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
  3413. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
  3414. #endif
  3415. #if HAS_MULTI_LANGUAGE
  3416. CONFIG_ECHO_HEADING("UI Language:");
  3417. SERIAL_ECHO_MSG(" M414 S", ui.language);
  3418. #endif
  3419. }
  3420. #endif // !DISABLE_M503
  3421. #pragma pack(pop)