My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 209KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #ifdef MESH_BED_LEVELING
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "watchdog.h"
  45. #include "configuration_store.h"
  46. #include "language.h"
  47. #include "pins_arduino.h"
  48. #include "math.h"
  49. #include "buzzer.h"
  50. #ifdef BLINKM
  51. #include "blinkm.h"
  52. #include "Wire.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "servo.h"
  56. #endif
  57. #if HAS_DIGIPOTSS
  58. #include <SPI.h>
  59. #endif
  60. /**
  61. * Look here for descriptions of G-codes:
  62. * - http://linuxcnc.org/handbook/gcode/g-code.html
  63. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  64. *
  65. * Help us document these G-codes online:
  66. * - http://www.marlinfirmware.org/index.php/G-Code
  67. * - http://reprap.org/wiki/G-code
  68. *
  69. * -----------------
  70. * Implemented Codes
  71. * -----------------
  72. *
  73. * "G" Codes
  74. *
  75. * G0 -> G1
  76. * G1 - Coordinated Movement X Y Z E
  77. * G2 - CW ARC
  78. * G3 - CCW ARC
  79. * G4 - Dwell S<seconds> or P<milliseconds>
  80. * G10 - retract filament according to settings of M207
  81. * G11 - retract recover filament according to settings of M208
  82. * G28 - Home one or more axes
  83. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. * G30 - Single Z Probe, probes bed at current XY location.
  85. * G31 - Dock sled (Z_PROBE_SLED only)
  86. * G32 - Undock sled (Z_PROBE_SLED only)
  87. * G90 - Use Absolute Coordinates
  88. * G91 - Use Relative Coordinates
  89. * G92 - Set current position to coordinates given
  90. *
  91. * "M" Codes
  92. *
  93. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. * M1 - Same as M0
  95. * M17 - Enable/Power all stepper motors
  96. * M18 - Disable all stepper motors; same as M84
  97. * M20 - List SD card
  98. * M21 - Init SD card
  99. * M22 - Release SD card
  100. * M23 - Select SD file (M23 filename.g)
  101. * M24 - Start/resume SD print
  102. * M25 - Pause SD print
  103. * M26 - Set SD position in bytes (M26 S12345)
  104. * M27 - Report SD print status
  105. * M28 - Start SD write (M28 filename.g)
  106. * M29 - Stop SD write
  107. * M30 - Delete file from SD (M30 filename.g)
  108. * M31 - Output time since last M109 or SD card start to serial
  109. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. * M33 - Get the longname version of a path
  114. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  116. * M80 - Turn on Power Supply
  117. * M81 - Turn off Power Supply
  118. * M82 - Set E codes absolute (default)
  119. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  120. * M84 - Disable steppers until next move,
  121. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  122. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  123. * M92 - Set axis_steps_per_unit - same syntax as G92
  124. * M104 - Set extruder target temp
  125. * M105 - Read current temp
  126. * M106 - Fan on
  127. * M107 - Fan off
  128. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  129. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  130. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  131. * M110 - Set the current line number
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  209. * M928 - Start SD logging (M928 filename.g) - ended by M29
  210. * M999 - Restart after being stopped by error
  211. *
  212. * "T" Codes
  213. *
  214. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  215. *
  216. */
  217. #ifdef M99_FREE_MEMORY_WATCHER
  218. void m99_code();
  219. #endif
  220. #ifdef SDSUPPORT
  221. CardReader card;
  222. #endif
  223. bool Running = true;
  224. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  225. static float feedrate = 1500.0, saved_feedrate;
  226. float current_position[NUM_AXIS] = { 0.0 };
  227. static float destination[NUM_AXIS] = { 0.0 };
  228. bool axis_known_position[3] = { false };
  229. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  230. static char *current_command, *current_command_args;
  231. static int cmd_queue_index_r = 0;
  232. static int cmd_queue_index_w = 0;
  233. static int commands_in_queue = 0;
  234. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  235. const float homing_feedrate[] = HOMING_FEEDRATE;
  236. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  237. int feedrate_multiplier = 100; //100->1 200->2
  238. int saved_feedrate_multiplier;
  239. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  240. bool volumetric_enabled = false;
  241. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  242. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  243. float home_offset[3] = { 0 };
  244. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  245. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  246. uint8_t active_extruder = 0;
  247. int fanSpeed = 0;
  248. bool cancel_heatup = false;
  249. const char errormagic[] PROGMEM = "Error:";
  250. const char echomagic[] PROGMEM = "echo:";
  251. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  252. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  253. static char serial_char;
  254. static int serial_count = 0;
  255. static boolean comment_mode = false;
  256. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  257. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  258. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  259. // Inactivity shutdown
  260. millis_t previous_cmd_ms = 0;
  261. static millis_t max_inactive_time = 0;
  262. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  263. millis_t print_job_start_ms = 0; ///< Print job start time
  264. millis_t print_job_stop_ms = 0; ///< Print job stop time
  265. static uint8_t target_extruder;
  266. bool no_wait_for_cooling = true;
  267. bool target_direction;
  268. #ifdef ENABLE_AUTO_BED_LEVELING
  269. int xy_travel_speed = XY_TRAVEL_SPEED;
  270. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  271. #endif
  272. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  273. float z_endstop_adj = 0;
  274. #endif
  275. // Extruder offsets
  276. #if EXTRUDERS > 1
  277. #ifndef EXTRUDER_OFFSET_X
  278. #define EXTRUDER_OFFSET_X { 0 }
  279. #endif
  280. #ifndef EXTRUDER_OFFSET_Y
  281. #define EXTRUDER_OFFSET_Y { 0 }
  282. #endif
  283. float extruder_offset[][EXTRUDERS] = {
  284. EXTRUDER_OFFSET_X,
  285. EXTRUDER_OFFSET_Y
  286. #ifdef DUAL_X_CARRIAGE
  287. , { 0 } // supports offsets in XYZ plane
  288. #endif
  289. };
  290. #endif
  291. #ifdef SERVO_ENDSTOPS
  292. const int servo_endstops[] = SERVO_ENDSTOPS;
  293. const int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  294. #endif
  295. #ifdef BARICUDA
  296. int ValvePressure = 0;
  297. int EtoPPressure = 0;
  298. #endif
  299. #ifdef FWRETRACT
  300. bool autoretract_enabled = false;
  301. bool retracted[EXTRUDERS] = { false };
  302. bool retracted_swap[EXTRUDERS] = { false };
  303. float retract_length = RETRACT_LENGTH;
  304. float retract_length_swap = RETRACT_LENGTH_SWAP;
  305. float retract_feedrate = RETRACT_FEEDRATE;
  306. float retract_zlift = RETRACT_ZLIFT;
  307. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  308. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  309. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  310. #endif // FWRETRACT
  311. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  312. bool powersupply =
  313. #ifdef PS_DEFAULT_OFF
  314. false
  315. #else
  316. true
  317. #endif
  318. ;
  319. #endif
  320. #ifdef DELTA
  321. float delta[3] = { 0 };
  322. #define SIN_60 0.8660254037844386
  323. #define COS_60 0.5
  324. float endstop_adj[3] = { 0 };
  325. // these are the default values, can be overriden with M665
  326. float delta_radius = DELTA_RADIUS;
  327. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  328. float delta_tower1_y = -COS_60 * delta_radius;
  329. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  330. float delta_tower2_y = -COS_60 * delta_radius;
  331. float delta_tower3_x = 0; // back middle tower
  332. float delta_tower3_y = delta_radius;
  333. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  334. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  335. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  336. #ifdef ENABLE_AUTO_BED_LEVELING
  337. int delta_grid_spacing[2] = { 0, 0 };
  338. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  339. #endif
  340. #else
  341. static bool home_all_axis = true;
  342. #endif
  343. #ifdef SCARA
  344. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  345. static float delta[3] = { 0 };
  346. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  347. #endif
  348. #ifdef FILAMENT_SENSOR
  349. //Variables for Filament Sensor input
  350. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  351. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  352. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  353. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  354. int delay_index1 = 0; //index into ring buffer
  355. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  356. float delay_dist = 0; //delay distance counter
  357. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  358. #endif
  359. #ifdef FILAMENT_RUNOUT_SENSOR
  360. static bool filrunoutEnqueued = false;
  361. #endif
  362. #ifdef SDSUPPORT
  363. static bool fromsd[BUFSIZE];
  364. #endif
  365. #if NUM_SERVOS > 0
  366. Servo servo[NUM_SERVOS];
  367. #endif
  368. #ifdef CHDK
  369. unsigned long chdkHigh = 0;
  370. boolean chdkActive = false;
  371. #endif
  372. //===========================================================================
  373. //================================ Functions ================================
  374. //===========================================================================
  375. void process_next_command();
  376. void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
  377. bool setTargetedHotend(int code);
  378. void serial_echopair_P(const char *s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  379. void serial_echopair_P(const char *s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  380. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  381. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  383. #ifdef PREVENT_DANGEROUS_EXTRUDE
  384. float extrude_min_temp = EXTRUDE_MINTEMP;
  385. #endif
  386. #ifdef SDSUPPORT
  387. #include "SdFatUtil.h"
  388. int freeMemory() { return SdFatUtil::FreeRam(); }
  389. #else
  390. extern "C" {
  391. extern unsigned int __bss_end;
  392. extern unsigned int __heap_start;
  393. extern void *__brkval;
  394. int freeMemory() {
  395. int free_memory;
  396. if ((int)__brkval == 0)
  397. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  398. else
  399. free_memory = ((int)&free_memory) - ((int)__brkval);
  400. return free_memory;
  401. }
  402. }
  403. #endif //!SDSUPPORT
  404. /**
  405. * Inject the next command from the command queue, when possible
  406. * Return false only if no command was pending
  407. */
  408. static bool drain_queued_commands_P() {
  409. if (!queued_commands_P) return false;
  410. // Get the next 30 chars from the sequence of gcodes to run
  411. char cmd[30];
  412. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  413. cmd[sizeof(cmd) - 1] = '\0';
  414. // Look for the end of line, or the end of sequence
  415. size_t i = 0;
  416. char c;
  417. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  418. cmd[i] = '\0';
  419. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  420. if (c)
  421. queued_commands_P += i + 1; // move to next command
  422. else
  423. queued_commands_P = NULL; // will have no more commands in the sequence
  424. }
  425. return true;
  426. }
  427. /**
  428. * Record one or many commands to run from program memory.
  429. * Aborts the current queue, if any.
  430. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  431. */
  432. void enqueuecommands_P(const char* pgcode) {
  433. queued_commands_P = pgcode;
  434. drain_queued_commands_P(); // first command executed asap (when possible)
  435. }
  436. /**
  437. * Copy a command directly into the main command buffer, from RAM.
  438. *
  439. * This is done in a non-safe way and needs a rework someday.
  440. * Returns false if it doesn't add any command
  441. */
  442. bool enqueuecommand(const char *cmd) {
  443. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  444. // This is dangerous if a mixing of serial and this happens
  445. char *command = command_queue[cmd_queue_index_w];
  446. strcpy(command, cmd);
  447. SERIAL_ECHO_START;
  448. SERIAL_ECHOPGM(MSG_Enqueueing);
  449. SERIAL_ECHO(command);
  450. SERIAL_ECHOLNPGM("\"");
  451. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  452. commands_in_queue++;
  453. return true;
  454. }
  455. void setup_killpin() {
  456. #if HAS_KILL
  457. SET_INPUT(KILL_PIN);
  458. WRITE(KILL_PIN, HIGH);
  459. #endif
  460. }
  461. void setup_filrunoutpin() {
  462. #if HAS_FILRUNOUT
  463. pinMode(FILRUNOUT_PIN, INPUT);
  464. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  465. WRITE(FILRUNOUT_PIN, HIGH);
  466. #endif
  467. #endif
  468. }
  469. // Set home pin
  470. void setup_homepin(void) {
  471. #if HAS_HOME
  472. SET_INPUT(HOME_PIN);
  473. WRITE(HOME_PIN, HIGH);
  474. #endif
  475. }
  476. void setup_photpin() {
  477. #if HAS_PHOTOGRAPH
  478. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  479. #endif
  480. }
  481. void setup_powerhold() {
  482. #if HAS_SUICIDE
  483. OUT_WRITE(SUICIDE_PIN, HIGH);
  484. #endif
  485. #if HAS_POWER_SWITCH
  486. #ifdef PS_DEFAULT_OFF
  487. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  488. #else
  489. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  490. #endif
  491. #endif
  492. }
  493. void suicide() {
  494. #if HAS_SUICIDE
  495. OUT_WRITE(SUICIDE_PIN, LOW);
  496. #endif
  497. }
  498. void servo_init() {
  499. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  500. servo[0].attach(SERVO0_PIN);
  501. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  502. #endif
  503. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  504. servo[1].attach(SERVO1_PIN);
  505. servo[1].detach();
  506. #endif
  507. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  508. servo[2].attach(SERVO2_PIN);
  509. servo[2].detach();
  510. #endif
  511. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  512. servo[3].attach(SERVO3_PIN);
  513. servo[3].detach();
  514. #endif
  515. // Set position of Servo Endstops that are defined
  516. #ifdef SERVO_ENDSTOPS
  517. for (int i = 0; i < 3; i++)
  518. if (servo_endstops[i] >= 0)
  519. servo[servo_endstops[i]].move(servo_endstop_angles[i * 2 + 1]);
  520. #endif
  521. }
  522. /**
  523. * Stepper Reset (RigidBoard, et.al.)
  524. */
  525. #if HAS_STEPPER_RESET
  526. void disableStepperDrivers() {
  527. pinMode(STEPPER_RESET_PIN, OUTPUT);
  528. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  529. }
  530. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  531. #endif
  532. /**
  533. * Marlin entry-point: Set up before the program loop
  534. * - Set up the kill pin, filament runout, power hold
  535. * - Start the serial port
  536. * - Print startup messages and diagnostics
  537. * - Get EEPROM or default settings
  538. * - Initialize managers for:
  539. * • temperature
  540. * • planner
  541. * • watchdog
  542. * • stepper
  543. * • photo pin
  544. * • servos
  545. * • LCD controller
  546. * • Digipot I2C
  547. * • Z probe sled
  548. * • status LEDs
  549. */
  550. void setup() {
  551. setup_killpin();
  552. setup_filrunoutpin();
  553. setup_powerhold();
  554. #if HAS_STEPPER_RESET
  555. disableStepperDrivers();
  556. #endif
  557. MYSERIAL.begin(BAUDRATE);
  558. SERIAL_PROTOCOLLNPGM("start");
  559. SERIAL_ECHO_START;
  560. // Check startup - does nothing if bootloader sets MCUSR to 0
  561. byte mcu = MCUSR;
  562. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  563. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  564. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  565. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  566. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  567. MCUSR = 0;
  568. SERIAL_ECHOPGM(MSG_MARLIN);
  569. SERIAL_ECHOLNPGM(" " BUILD_VERSION);
  570. #ifdef STRING_DISTRIBUTION_DATE
  571. #ifdef STRING_CONFIG_H_AUTHOR
  572. SERIAL_ECHO_START;
  573. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  574. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  575. SERIAL_ECHOPGM(MSG_AUTHOR);
  576. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  577. SERIAL_ECHOPGM("Compiled: ");
  578. SERIAL_ECHOLNPGM(__DATE__);
  579. #endif // STRING_CONFIG_H_AUTHOR
  580. #endif // STRING_DISTRIBUTION_DATE
  581. SERIAL_ECHO_START;
  582. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  583. SERIAL_ECHO(freeMemory());
  584. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  585. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  586. #ifdef SDSUPPORT
  587. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  588. #endif
  589. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  590. Config_RetrieveSettings();
  591. lcd_init();
  592. _delay_ms(1000); // wait 1sec to display the splash screen
  593. tp_init(); // Initialize temperature loop
  594. plan_init(); // Initialize planner;
  595. watchdog_init();
  596. st_init(); // Initialize stepper, this enables interrupts!
  597. setup_photpin();
  598. servo_init();
  599. #if HAS_CONTROLLERFAN
  600. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  601. #endif
  602. #if HAS_STEPPER_RESET
  603. enableStepperDrivers();
  604. #endif
  605. #ifdef DIGIPOT_I2C
  606. digipot_i2c_init();
  607. #endif
  608. #ifdef Z_PROBE_SLED
  609. pinMode(SLED_PIN, OUTPUT);
  610. digitalWrite(SLED_PIN, LOW); // turn it off
  611. #endif // Z_PROBE_SLED
  612. setup_homepin();
  613. #ifdef STAT_LED_RED
  614. pinMode(STAT_LED_RED, OUTPUT);
  615. digitalWrite(STAT_LED_RED, LOW); // turn it off
  616. #endif
  617. #ifdef STAT_LED_BLUE
  618. pinMode(STAT_LED_BLUE, OUTPUT);
  619. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  620. #endif
  621. }
  622. /**
  623. * The main Marlin program loop
  624. *
  625. * - Save or log commands to SD
  626. * - Process available commands (if not saving)
  627. * - Call heater manager
  628. * - Call inactivity manager
  629. * - Call endstop manager
  630. * - Call LCD update
  631. */
  632. void loop() {
  633. if (commands_in_queue < BUFSIZE - 1) get_command();
  634. #ifdef SDSUPPORT
  635. card.checkautostart(false);
  636. #endif
  637. if (commands_in_queue) {
  638. #ifdef SDSUPPORT
  639. if (card.saving) {
  640. char *command = command_queue[cmd_queue_index_r];
  641. if (strstr_P(command, PSTR("M29"))) {
  642. // M29 closes the file
  643. card.closefile();
  644. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  645. }
  646. else {
  647. // Write the string from the read buffer to SD
  648. card.write_command(command);
  649. if (card.logging)
  650. process_next_command(); // The card is saving because it's logging
  651. else
  652. SERIAL_PROTOCOLLNPGM(MSG_OK);
  653. }
  654. }
  655. else
  656. process_next_command();
  657. #else
  658. process_next_command();
  659. #endif // SDSUPPORT
  660. commands_in_queue--;
  661. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  662. }
  663. checkHitEndstops();
  664. idle();
  665. }
  666. void gcode_line_error(const char *err, bool doFlush=true) {
  667. SERIAL_ERROR_START;
  668. serialprintPGM(err);
  669. SERIAL_ERRORLN(gcode_LastN);
  670. //Serial.println(gcode_N);
  671. if (doFlush) FlushSerialRequestResend();
  672. serial_count = 0;
  673. }
  674. /**
  675. * Add to the circular command queue the next command from:
  676. * - The command-injection queue (queued_commands_P)
  677. * - The active serial input (usually USB)
  678. * - The SD card file being actively printed
  679. */
  680. void get_command() {
  681. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  682. #ifdef NO_TIMEOUTS
  683. static millis_t last_command_time = 0;
  684. millis_t ms = millis();
  685. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  686. SERIAL_ECHOLNPGM(MSG_WAIT);
  687. last_command_time = ms;
  688. }
  689. #endif
  690. //
  691. // Loop while serial characters are incoming and the queue is not full
  692. //
  693. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  694. #ifdef NO_TIMEOUTS
  695. last_command_time = ms;
  696. #endif
  697. serial_char = MYSERIAL.read();
  698. //
  699. // If the character ends the line, or the line is full...
  700. //
  701. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  702. // end of line == end of comment
  703. comment_mode = false;
  704. if (!serial_count) return; // empty lines just exit
  705. char *command = command_queue[cmd_queue_index_w];
  706. command[serial_count] = 0; // terminate string
  707. // this item in the queue is not from sd
  708. #ifdef SDSUPPORT
  709. fromsd[cmd_queue_index_w] = false;
  710. #endif
  711. char *npos = strchr(command, 'N');
  712. char *apos = strchr(command, '*');
  713. if (npos) {
  714. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  715. if (M110) {
  716. char *n2pos = strchr(command + 4, 'N');
  717. if (n2pos) npos = n2pos;
  718. }
  719. gcode_N = strtol(npos + 1, NULL, 10);
  720. if (gcode_N != gcode_LastN + 1 && !M110) {
  721. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  722. return;
  723. }
  724. if (apos) {
  725. byte checksum = 0, count = 0;
  726. while (command[count] != '*') checksum ^= command[count++];
  727. if (strtol(apos + 1, NULL, 10) != checksum) {
  728. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  729. return;
  730. }
  731. // if no errors, continue parsing
  732. }
  733. else if (npos == command) {
  734. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  735. return;
  736. }
  737. gcode_LastN = gcode_N;
  738. // if no errors, continue parsing
  739. }
  740. else if (apos) { // No '*' without 'N'
  741. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  742. return;
  743. }
  744. // Movement commands alert when stopped
  745. if (IsStopped()) {
  746. char *gpos = strchr(command, 'G');
  747. if (gpos) {
  748. int codenum = strtol(gpos + 1, NULL, 10);
  749. switch (codenum) {
  750. case 0:
  751. case 1:
  752. case 2:
  753. case 3:
  754. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  755. LCD_MESSAGEPGM(MSG_STOPPED);
  756. break;
  757. }
  758. }
  759. }
  760. // If command was e-stop process now
  761. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  762. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  763. commands_in_queue += 1;
  764. serial_count = 0; //clear buffer
  765. }
  766. else if (serial_char == '\\') { // Handle escapes
  767. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  768. // if we have one more character, copy it over
  769. serial_char = MYSERIAL.read();
  770. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  771. }
  772. // otherwise do nothing
  773. }
  774. else { // its not a newline, carriage return or escape char
  775. if (serial_char == ';') comment_mode = true;
  776. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  777. }
  778. }
  779. #ifdef SDSUPPORT
  780. if (!card.sdprinting || serial_count) return;
  781. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  782. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  783. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  784. static bool stop_buffering = false;
  785. if (commands_in_queue == 0) stop_buffering = false;
  786. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  787. int16_t n = card.get();
  788. serial_char = (char)n;
  789. if (serial_char == '\n' || serial_char == '\r' ||
  790. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  791. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  792. ) {
  793. if (card.eof()) {
  794. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  795. print_job_stop_ms = millis();
  796. char time[30];
  797. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  798. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  799. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  800. SERIAL_ECHO_START;
  801. SERIAL_ECHOLN(time);
  802. lcd_setstatus(time, true);
  803. card.printingHasFinished();
  804. card.checkautostart(true);
  805. }
  806. if (serial_char == '#') stop_buffering = true;
  807. if (!serial_count) {
  808. comment_mode = false; //for new command
  809. return; //if empty line
  810. }
  811. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  812. // if (!comment_mode) {
  813. fromsd[cmd_queue_index_w] = true;
  814. commands_in_queue += 1;
  815. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  816. // }
  817. comment_mode = false; //for new command
  818. serial_count = 0; //clear buffer
  819. }
  820. else {
  821. if (serial_char == ';') comment_mode = true;
  822. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  823. }
  824. }
  825. #endif // SDSUPPORT
  826. }
  827. bool code_has_value() {
  828. int i = 1;
  829. char c = seen_pointer[i];
  830. if (c == '-' || c == '+') c = seen_pointer[++i];
  831. if (c == '.') c = seen_pointer[++i];
  832. return (c >= '0' && c <= '9');
  833. }
  834. float code_value() {
  835. float ret;
  836. char *e = strchr(seen_pointer, 'E');
  837. if (e) {
  838. *e = 0;
  839. ret = strtod(seen_pointer+1, NULL);
  840. *e = 'E';
  841. }
  842. else
  843. ret = strtod(seen_pointer+1, NULL);
  844. return ret;
  845. }
  846. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  847. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  848. bool code_seen(char code) {
  849. seen_pointer = strchr(current_command_args, code);
  850. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  851. }
  852. #define DEFINE_PGM_READ_ANY(type, reader) \
  853. static inline type pgm_read_any(const type *p) \
  854. { return pgm_read_##reader##_near(p); }
  855. DEFINE_PGM_READ_ANY(float, float);
  856. DEFINE_PGM_READ_ANY(signed char, byte);
  857. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  858. static const PROGMEM type array##_P[3] = \
  859. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  860. static inline type array(int axis) \
  861. { return pgm_read_any(&array##_P[axis]); }
  862. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  863. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  864. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  865. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  866. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  867. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  868. #ifdef DUAL_X_CARRIAGE
  869. #define DXC_FULL_CONTROL_MODE 0
  870. #define DXC_AUTO_PARK_MODE 1
  871. #define DXC_DUPLICATION_MODE 2
  872. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  873. static float x_home_pos(int extruder) {
  874. if (extruder == 0)
  875. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  876. else
  877. // In dual carriage mode the extruder offset provides an override of the
  878. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  879. // This allow soft recalibration of the second extruder offset position without firmware reflash
  880. // (through the M218 command).
  881. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  882. }
  883. static int x_home_dir(int extruder) {
  884. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  885. }
  886. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  887. static bool active_extruder_parked = false; // used in mode 1 & 2
  888. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  889. static millis_t delayed_move_time = 0; // used in mode 1
  890. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  891. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  892. bool extruder_duplication_enabled = false; // used in mode 2
  893. #endif //DUAL_X_CARRIAGE
  894. static void set_axis_is_at_home(AxisEnum axis) {
  895. #ifdef DUAL_X_CARRIAGE
  896. if (axis == X_AXIS) {
  897. if (active_extruder != 0) {
  898. current_position[X_AXIS] = x_home_pos(active_extruder);
  899. min_pos[X_AXIS] = X2_MIN_POS;
  900. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  901. return;
  902. }
  903. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  904. float xoff = home_offset[X_AXIS];
  905. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  906. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  907. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  908. return;
  909. }
  910. }
  911. #endif
  912. #ifdef SCARA
  913. if (axis == X_AXIS || axis == Y_AXIS) {
  914. float homeposition[3];
  915. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  916. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  917. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  918. // Works out real Homeposition angles using inverse kinematics,
  919. // and calculates homing offset using forward kinematics
  920. calculate_delta(homeposition);
  921. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  922. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  923. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  924. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  925. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  926. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  927. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  928. calculate_SCARA_forward_Transform(delta);
  929. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  930. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  931. current_position[axis] = delta[axis];
  932. // SCARA home positions are based on configuration since the actual limits are determined by the
  933. // inverse kinematic transform.
  934. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  935. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  936. }
  937. else
  938. #endif
  939. {
  940. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  941. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  942. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  943. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  944. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  945. #endif
  946. }
  947. }
  948. /**
  949. * Some planner shorthand inline functions
  950. */
  951. inline void set_homing_bump_feedrate(AxisEnum axis) {
  952. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  953. int hbd = homing_bump_divisor[axis];
  954. if (hbd < 1) {
  955. hbd = 10;
  956. SERIAL_ECHO_START;
  957. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  958. }
  959. feedrate = homing_feedrate[axis] / hbd;
  960. }
  961. inline void line_to_current_position() {
  962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  963. }
  964. inline void line_to_z(float zPosition) {
  965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  966. }
  967. inline void line_to_destination(float mm_m) {
  968. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  969. }
  970. inline void line_to_destination() {
  971. line_to_destination(feedrate);
  972. }
  973. inline void sync_plan_position() {
  974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  975. }
  976. #if defined(DELTA) || defined(SCARA)
  977. inline void sync_plan_position_delta() {
  978. calculate_delta(current_position);
  979. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  980. }
  981. #endif
  982. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  983. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  984. static void setup_for_endstop_move() {
  985. saved_feedrate = feedrate;
  986. saved_feedrate_multiplier = feedrate_multiplier;
  987. feedrate_multiplier = 100;
  988. refresh_cmd_timeout();
  989. enable_endstops(true);
  990. }
  991. #ifdef ENABLE_AUTO_BED_LEVELING
  992. #ifdef DELTA
  993. /**
  994. * Calculate delta, start a line, and set current_position to destination
  995. */
  996. void prepare_move_raw() {
  997. refresh_cmd_timeout();
  998. calculate_delta(destination);
  999. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  1000. set_current_to_destination();
  1001. }
  1002. #endif
  1003. #ifdef AUTO_BED_LEVELING_GRID
  1004. #ifndef DELTA
  1005. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  1006. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1007. planeNormal.debug("planeNormal");
  1008. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1009. //bedLevel.debug("bedLevel");
  1010. //plan_bed_level_matrix.debug("bed level before");
  1011. //vector_3 uncorrected_position = plan_get_position_mm();
  1012. //uncorrected_position.debug("position before");
  1013. vector_3 corrected_position = plan_get_position();
  1014. //corrected_position.debug("position after");
  1015. current_position[X_AXIS] = corrected_position.x;
  1016. current_position[Y_AXIS] = corrected_position.y;
  1017. current_position[Z_AXIS] = corrected_position.z;
  1018. sync_plan_position();
  1019. }
  1020. #endif // !DELTA
  1021. #else // !AUTO_BED_LEVELING_GRID
  1022. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1023. plan_bed_level_matrix.set_to_identity();
  1024. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1025. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1026. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1027. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1028. if (planeNormal.z < 0) {
  1029. planeNormal.x = -planeNormal.x;
  1030. planeNormal.y = -planeNormal.y;
  1031. planeNormal.z = -planeNormal.z;
  1032. }
  1033. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1034. vector_3 corrected_position = plan_get_position();
  1035. current_position[X_AXIS] = corrected_position.x;
  1036. current_position[Y_AXIS] = corrected_position.y;
  1037. current_position[Z_AXIS] = corrected_position.z;
  1038. sync_plan_position();
  1039. }
  1040. #endif // !AUTO_BED_LEVELING_GRID
  1041. static void run_z_probe() {
  1042. #ifdef DELTA
  1043. float start_z = current_position[Z_AXIS];
  1044. long start_steps = st_get_position(Z_AXIS);
  1045. // move down slowly until you find the bed
  1046. feedrate = homing_feedrate[Z_AXIS] / 4;
  1047. destination[Z_AXIS] = -10;
  1048. prepare_move_raw(); // this will also set_current_to_destination
  1049. st_synchronize();
  1050. endstops_hit_on_purpose(); // clear endstop hit flags
  1051. // we have to let the planner know where we are right now as it is not where we said to go.
  1052. long stop_steps = st_get_position(Z_AXIS);
  1053. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1054. current_position[Z_AXIS] = mm;
  1055. sync_plan_position_delta();
  1056. #else // !DELTA
  1057. plan_bed_level_matrix.set_to_identity();
  1058. feedrate = homing_feedrate[Z_AXIS];
  1059. // Move down until the probe (or endstop?) is triggered
  1060. float zPosition = -(Z_MAX_LENGTH + 10);
  1061. line_to_z(zPosition);
  1062. st_synchronize();
  1063. // Tell the planner where we ended up - Get this from the stepper handler
  1064. zPosition = st_get_position_mm(Z_AXIS);
  1065. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1066. // move up the retract distance
  1067. zPosition += home_bump_mm(Z_AXIS);
  1068. line_to_z(zPosition);
  1069. st_synchronize();
  1070. endstops_hit_on_purpose(); // clear endstop hit flags
  1071. // move back down slowly to find bed
  1072. set_homing_bump_feedrate(Z_AXIS);
  1073. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1074. line_to_z(zPosition);
  1075. st_synchronize();
  1076. endstops_hit_on_purpose(); // clear endstop hit flags
  1077. // Get the current stepper position after bumping an endstop
  1078. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1079. sync_plan_position();
  1080. #endif // !DELTA
  1081. }
  1082. /**
  1083. * Plan a move to (X, Y, Z) and set the current_position
  1084. * The final current_position may not be the one that was requested
  1085. */
  1086. static void do_blocking_move_to(float x, float y, float z) {
  1087. float oldFeedRate = feedrate;
  1088. #ifdef DELTA
  1089. feedrate = XY_TRAVEL_SPEED;
  1090. destination[X_AXIS] = x;
  1091. destination[Y_AXIS] = y;
  1092. destination[Z_AXIS] = z;
  1093. prepare_move_raw(); // this will also set_current_to_destination
  1094. st_synchronize();
  1095. #else
  1096. feedrate = homing_feedrate[Z_AXIS];
  1097. current_position[Z_AXIS] = z;
  1098. line_to_current_position();
  1099. st_synchronize();
  1100. feedrate = xy_travel_speed;
  1101. current_position[X_AXIS] = x;
  1102. current_position[Y_AXIS] = y;
  1103. line_to_current_position();
  1104. st_synchronize();
  1105. #endif
  1106. feedrate = oldFeedRate;
  1107. }
  1108. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1109. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1110. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1111. static void clean_up_after_endstop_move() {
  1112. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1113. enable_endstops(false);
  1114. #endif
  1115. feedrate = saved_feedrate;
  1116. feedrate_multiplier = saved_feedrate_multiplier;
  1117. refresh_cmd_timeout();
  1118. }
  1119. static void deploy_z_probe() {
  1120. #ifdef SERVO_ENDSTOPS
  1121. // Engage Z Servo endstop if enabled
  1122. if (servo_endstops[Z_AXIS] >= 0) servo[servo_endstops[Z_AXIS]].move(servo_endstop_angles[Z_AXIS * 2]);
  1123. #elif defined(Z_PROBE_ALLEN_KEY)
  1124. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1125. // If endstop is already false, the probe is deployed
  1126. #ifdef Z_PROBE_ENDSTOP
  1127. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1128. if (z_probe_endstop)
  1129. #else
  1130. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1131. if (z_min_endstop)
  1132. #endif
  1133. {
  1134. // Move to the start position to initiate deployment
  1135. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1136. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1137. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1138. prepare_move_raw(); // this will also set_current_to_destination
  1139. // Move to engage deployment
  1140. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1141. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1142. }
  1143. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1144. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1145. }
  1146. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1147. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1148. }
  1149. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1150. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1151. }
  1152. prepare_move_raw();
  1153. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1154. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1155. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1156. }
  1157. // Move to trigger deployment
  1158. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1159. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1160. }
  1161. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1162. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1163. }
  1164. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1165. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1166. }
  1167. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1168. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1169. }
  1170. prepare_move_raw();
  1171. #endif
  1172. }
  1173. // Partially Home X,Y for safety
  1174. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1175. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1176. prepare_move_raw(); // this will also set_current_to_destination
  1177. st_synchronize();
  1178. #ifdef Z_PROBE_ENDSTOP
  1179. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1180. if (z_probe_endstop)
  1181. #else
  1182. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1183. if (z_min_endstop)
  1184. #endif
  1185. {
  1186. if (IsRunning()) {
  1187. SERIAL_ERROR_START;
  1188. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1189. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1190. }
  1191. Stop();
  1192. }
  1193. #endif // Z_PROBE_ALLEN_KEY
  1194. }
  1195. static void stow_z_probe(bool doRaise=true) {
  1196. #ifdef SERVO_ENDSTOPS
  1197. // Retract Z Servo endstop if enabled
  1198. if (servo_endstops[Z_AXIS] >= 0) {
  1199. #if Z_RAISE_AFTER_PROBING > 0
  1200. if (doRaise) {
  1201. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1202. st_synchronize();
  1203. }
  1204. #endif
  1205. // Change the Z servo angle
  1206. servo[servo_endstops[Z_AXIS]].move(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1207. }
  1208. #elif defined(Z_PROBE_ALLEN_KEY)
  1209. // Move up for safety
  1210. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1211. #if Z_RAISE_AFTER_PROBING > 0
  1212. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1213. prepare_move_raw(); // this will also set_current_to_destination
  1214. #endif
  1215. // Move to the start position to initiate retraction
  1216. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1217. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1218. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1219. prepare_move_raw();
  1220. // Move the nozzle down to push the probe into retracted position
  1221. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1222. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1223. }
  1224. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1225. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1226. }
  1227. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1228. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1229. }
  1230. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1231. prepare_move_raw();
  1232. // Move up for safety
  1233. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1234. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1235. }
  1236. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1237. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1238. }
  1239. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1240. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1241. }
  1242. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1243. prepare_move_raw();
  1244. // Home XY for safety
  1245. feedrate = homing_feedrate[X_AXIS]/2;
  1246. destination[X_AXIS] = 0;
  1247. destination[Y_AXIS] = 0;
  1248. prepare_move_raw(); // this will also set_current_to_destination
  1249. st_synchronize();
  1250. #ifdef Z_PROBE_ENDSTOP
  1251. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1252. if (!z_probe_endstop)
  1253. #else
  1254. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1255. if (!z_min_endstop)
  1256. #endif
  1257. {
  1258. if (IsRunning()) {
  1259. SERIAL_ERROR_START;
  1260. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1261. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1262. }
  1263. Stop();
  1264. }
  1265. #endif // Z_PROBE_ALLEN_KEY
  1266. }
  1267. enum ProbeAction {
  1268. ProbeStay = 0,
  1269. ProbeDeploy = BIT(0),
  1270. ProbeStow = BIT(1),
  1271. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1272. };
  1273. // Probe bed height at position (x,y), returns the measured z value
  1274. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1275. // Move Z up to the z_before height, then move the probe to the given XY
  1276. do_blocking_move_to_z(z_before); // this also updates current_position
  1277. do_blocking_move_to_xy(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER); // this also updates current_position
  1278. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1279. if (probe_action & ProbeDeploy) deploy_z_probe();
  1280. #endif
  1281. run_z_probe();
  1282. float measured_z = current_position[Z_AXIS];
  1283. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1284. if (probe_action & ProbeStow) stow_z_probe();
  1285. #endif
  1286. if (verbose_level > 2) {
  1287. SERIAL_PROTOCOLPGM("Bed X: ");
  1288. SERIAL_PROTOCOL_F(x, 3);
  1289. SERIAL_PROTOCOLPGM(" Y: ");
  1290. SERIAL_PROTOCOL_F(y, 3);
  1291. SERIAL_PROTOCOLPGM(" Z: ");
  1292. SERIAL_PROTOCOL_F(measured_z, 3);
  1293. SERIAL_EOL;
  1294. }
  1295. return measured_z;
  1296. }
  1297. #ifdef DELTA
  1298. /**
  1299. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1300. */
  1301. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1302. if (bed_level[x][y] != 0.0) {
  1303. return; // Don't overwrite good values.
  1304. }
  1305. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1306. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1307. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1308. float median = c; // Median is robust (ignores outliers).
  1309. if (a < b) {
  1310. if (b < c) median = b;
  1311. if (c < a) median = a;
  1312. } else { // b <= a
  1313. if (c < b) median = b;
  1314. if (a < c) median = a;
  1315. }
  1316. bed_level[x][y] = median;
  1317. }
  1318. // Fill in the unprobed points (corners of circular print surface)
  1319. // using linear extrapolation, away from the center.
  1320. static void extrapolate_unprobed_bed_level() {
  1321. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1322. for (int y = 0; y <= half; y++) {
  1323. for (int x = 0; x <= half; x++) {
  1324. if (x + y < 3) continue;
  1325. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1326. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1327. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1328. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1329. }
  1330. }
  1331. }
  1332. // Print calibration results for plotting or manual frame adjustment.
  1333. static void print_bed_level() {
  1334. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1335. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1336. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1337. SERIAL_PROTOCOLCHAR(' ');
  1338. }
  1339. SERIAL_EOL;
  1340. }
  1341. }
  1342. // Reset calibration results to zero.
  1343. void reset_bed_level() {
  1344. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1345. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1346. bed_level[x][y] = 0.0;
  1347. }
  1348. }
  1349. }
  1350. #endif // DELTA
  1351. #endif // ENABLE_AUTO_BED_LEVELING
  1352. #ifdef Z_PROBE_SLED
  1353. #ifndef SLED_DOCKING_OFFSET
  1354. #define SLED_DOCKING_OFFSET 0
  1355. #endif
  1356. /**
  1357. * Method to dock/undock a sled designed by Charles Bell.
  1358. *
  1359. * dock[in] If true, move to MAX_X and engage the electromagnet
  1360. * offset[in] The additional distance to move to adjust docking location
  1361. */
  1362. static void dock_sled(bool dock, int offset=0) {
  1363. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1364. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1365. SERIAL_ECHO_START;
  1366. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1367. return;
  1368. }
  1369. float oldXpos = current_position[X_AXIS]; // save x position
  1370. if (dock) {
  1371. #if Z_RAISE_AFTER_PROBING > 0
  1372. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // raise Z
  1373. #endif
  1374. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1375. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1376. } else {
  1377. float z_loc = current_position[Z_AXIS];
  1378. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1379. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1380. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1381. }
  1382. do_blocking_move_to_x(oldXpos); // return to position before docking
  1383. }
  1384. #endif // Z_PROBE_SLED
  1385. /**
  1386. * Home an individual axis
  1387. */
  1388. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1389. static void homeaxis(AxisEnum axis) {
  1390. #define HOMEAXIS_DO(LETTER) \
  1391. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1392. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1393. int axis_home_dir =
  1394. #ifdef DUAL_X_CARRIAGE
  1395. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1396. #endif
  1397. home_dir(axis);
  1398. // Set the axis position as setup for the move
  1399. current_position[axis] = 0;
  1400. sync_plan_position();
  1401. #ifdef Z_PROBE_SLED
  1402. // Get Probe
  1403. if (axis == Z_AXIS) {
  1404. if (axis_home_dir < 0) dock_sled(false);
  1405. }
  1406. #endif
  1407. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1408. // Deploy a probe if there is one, and homing towards the bed
  1409. if (axis == Z_AXIS) {
  1410. if (axis_home_dir < 0) deploy_z_probe();
  1411. }
  1412. #endif
  1413. #ifdef SERVO_ENDSTOPS
  1414. if (axis != Z_AXIS) {
  1415. // Engage Servo endstop if enabled
  1416. if (servo_endstops[axis] >= 0)
  1417. servo[servo_endstops[axis]].move(servo_endstop_angles[axis * 2]);
  1418. }
  1419. #endif
  1420. // Set a flag for Z motor locking
  1421. #ifdef Z_DUAL_ENDSTOPS
  1422. if (axis == Z_AXIS) In_Homing_Process(true);
  1423. #endif
  1424. // Move towards the endstop until an endstop is triggered
  1425. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1426. feedrate = homing_feedrate[axis];
  1427. line_to_destination();
  1428. st_synchronize();
  1429. // Set the axis position as setup for the move
  1430. current_position[axis] = 0;
  1431. sync_plan_position();
  1432. enable_endstops(false); // Disable endstops while moving away
  1433. // Move away from the endstop by the axis HOME_BUMP_MM
  1434. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1435. line_to_destination();
  1436. st_synchronize();
  1437. enable_endstops(true); // Enable endstops for next homing move
  1438. // Slow down the feedrate for the next move
  1439. set_homing_bump_feedrate(axis);
  1440. // Move slowly towards the endstop until triggered
  1441. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1442. line_to_destination();
  1443. st_synchronize();
  1444. #ifdef Z_DUAL_ENDSTOPS
  1445. if (axis == Z_AXIS) {
  1446. float adj = fabs(z_endstop_adj);
  1447. bool lockZ1;
  1448. if (axis_home_dir > 0) {
  1449. adj = -adj;
  1450. lockZ1 = (z_endstop_adj > 0);
  1451. }
  1452. else
  1453. lockZ1 = (z_endstop_adj < 0);
  1454. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1455. sync_plan_position();
  1456. // Move to the adjusted endstop height
  1457. feedrate = homing_feedrate[axis];
  1458. destination[Z_AXIS] = adj;
  1459. line_to_destination();
  1460. st_synchronize();
  1461. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1462. In_Homing_Process(false);
  1463. } // Z_AXIS
  1464. #endif
  1465. #ifdef DELTA
  1466. // retrace by the amount specified in endstop_adj
  1467. if (endstop_adj[axis] * axis_home_dir < 0) {
  1468. enable_endstops(false); // Disable endstops while moving away
  1469. sync_plan_position();
  1470. destination[axis] = endstop_adj[axis];
  1471. line_to_destination();
  1472. st_synchronize();
  1473. enable_endstops(true); // Enable endstops for next homing move
  1474. }
  1475. #endif
  1476. // Set the axis position to its home position (plus home offsets)
  1477. set_axis_is_at_home(axis);
  1478. sync_plan_position();
  1479. destination[axis] = current_position[axis];
  1480. feedrate = 0.0;
  1481. endstops_hit_on_purpose(); // clear endstop hit flags
  1482. axis_known_position[axis] = true;
  1483. #ifdef Z_PROBE_SLED
  1484. // bring probe back
  1485. if (axis == Z_AXIS) {
  1486. if (axis_home_dir < 0) dock_sled(true);
  1487. }
  1488. #endif
  1489. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1490. // Deploy a probe if there is one, and homing towards the bed
  1491. if (axis == Z_AXIS) {
  1492. if (axis_home_dir < 0) stow_z_probe();
  1493. }
  1494. else
  1495. #endif
  1496. {
  1497. #ifdef SERVO_ENDSTOPS
  1498. // Retract Servo endstop if enabled
  1499. if (servo_endstops[axis] >= 0)
  1500. servo[servo_endstops[axis]].move(servo_endstop_angles[axis * 2 + 1]);
  1501. #endif
  1502. }
  1503. }
  1504. }
  1505. #ifdef FWRETRACT
  1506. void retract(bool retracting, bool swapping=false) {
  1507. if (retracting == retracted[active_extruder]) return;
  1508. float oldFeedrate = feedrate;
  1509. set_destination_to_current();
  1510. if (retracting) {
  1511. feedrate = retract_feedrate * 60;
  1512. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1513. plan_set_e_position(current_position[E_AXIS]);
  1514. prepare_move();
  1515. if (retract_zlift > 0.01) {
  1516. current_position[Z_AXIS] -= retract_zlift;
  1517. #ifdef DELTA
  1518. sync_plan_position_delta();
  1519. #else
  1520. sync_plan_position();
  1521. #endif
  1522. prepare_move();
  1523. }
  1524. }
  1525. else {
  1526. if (retract_zlift > 0.01) {
  1527. current_position[Z_AXIS] += retract_zlift;
  1528. #ifdef DELTA
  1529. sync_plan_position_delta();
  1530. #else
  1531. sync_plan_position();
  1532. #endif
  1533. //prepare_move();
  1534. }
  1535. feedrate = retract_recover_feedrate * 60;
  1536. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1537. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1538. plan_set_e_position(current_position[E_AXIS]);
  1539. prepare_move();
  1540. }
  1541. feedrate = oldFeedrate;
  1542. retracted[active_extruder] = retracting;
  1543. } // retract()
  1544. #endif // FWRETRACT
  1545. /**
  1546. *
  1547. * G-Code Handler functions
  1548. *
  1549. */
  1550. /**
  1551. * Set XYZE destination and feedrate from the current GCode command
  1552. *
  1553. * - Set destination from included axis codes
  1554. * - Set to current for missing axis codes
  1555. * - Set the feedrate, if included
  1556. */
  1557. void gcode_get_destination() {
  1558. for (int i = 0; i < NUM_AXIS; i++) {
  1559. if (code_seen(axis_codes[i]))
  1560. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1561. else
  1562. destination[i] = current_position[i];
  1563. }
  1564. if (code_seen('F')) {
  1565. float next_feedrate = code_value();
  1566. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1567. }
  1568. }
  1569. void unknown_command_error() {
  1570. SERIAL_ECHO_START;
  1571. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1572. SERIAL_ECHO(current_command);
  1573. SERIAL_ECHOPGM("\"\n");
  1574. }
  1575. /**
  1576. * G0, G1: Coordinated movement of X Y Z E axes
  1577. */
  1578. inline void gcode_G0_G1() {
  1579. if (IsRunning()) {
  1580. gcode_get_destination(); // For X Y Z E F
  1581. #ifdef FWRETRACT
  1582. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1583. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1584. // Is this move an attempt to retract or recover?
  1585. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1586. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1587. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1588. retract(!retracted[active_extruder]);
  1589. return;
  1590. }
  1591. }
  1592. #endif //FWRETRACT
  1593. prepare_move();
  1594. }
  1595. }
  1596. /**
  1597. * G2: Clockwise Arc
  1598. * G3: Counterclockwise Arc
  1599. */
  1600. inline void gcode_G2_G3(bool clockwise) {
  1601. if (IsRunning()) {
  1602. #ifdef SF_ARC_FIX
  1603. bool relative_mode_backup = relative_mode;
  1604. relative_mode = true;
  1605. #endif
  1606. gcode_get_destination();
  1607. #ifdef SF_ARC_FIX
  1608. relative_mode = relative_mode_backup;
  1609. #endif
  1610. // Center of arc as offset from current_position
  1611. float arc_offset[2] = {
  1612. code_seen('I') ? code_value() : 0,
  1613. code_seen('J') ? code_value() : 0
  1614. };
  1615. // Send an arc to the planner
  1616. plan_arc(destination, arc_offset, clockwise);
  1617. refresh_cmd_timeout();
  1618. }
  1619. }
  1620. /**
  1621. * G4: Dwell S<seconds> or P<milliseconds>
  1622. */
  1623. inline void gcode_G4() {
  1624. millis_t codenum = 0;
  1625. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1626. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1627. st_synchronize();
  1628. refresh_cmd_timeout();
  1629. codenum += previous_cmd_ms; // keep track of when we started waiting
  1630. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1631. while (millis() < codenum) idle();
  1632. }
  1633. #ifdef FWRETRACT
  1634. /**
  1635. * G10 - Retract filament according to settings of M207
  1636. * G11 - Recover filament according to settings of M208
  1637. */
  1638. inline void gcode_G10_G11(bool doRetract=false) {
  1639. #if EXTRUDERS > 1
  1640. if (doRetract) {
  1641. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1642. }
  1643. #endif
  1644. retract(doRetract
  1645. #if EXTRUDERS > 1
  1646. , retracted_swap[active_extruder]
  1647. #endif
  1648. );
  1649. }
  1650. #endif //FWRETRACT
  1651. /**
  1652. * G28: Home all axes according to settings
  1653. *
  1654. * Parameters
  1655. *
  1656. * None Home to all axes with no parameters.
  1657. * With QUICK_HOME enabled XY will home together, then Z.
  1658. *
  1659. * Cartesian parameters
  1660. *
  1661. * X Home to the X endstop
  1662. * Y Home to the Y endstop
  1663. * Z Home to the Z endstop
  1664. *
  1665. */
  1666. inline void gcode_G28() {
  1667. // Wait for planner moves to finish!
  1668. st_synchronize();
  1669. // For auto bed leveling, clear the level matrix
  1670. #ifdef ENABLE_AUTO_BED_LEVELING
  1671. plan_bed_level_matrix.set_to_identity();
  1672. #ifdef DELTA
  1673. reset_bed_level();
  1674. #endif
  1675. #endif
  1676. // For manual bed leveling deactivate the matrix temporarily
  1677. #ifdef MESH_BED_LEVELING
  1678. uint8_t mbl_was_active = mbl.active;
  1679. mbl.active = 0;
  1680. #endif
  1681. setup_for_endstop_move();
  1682. set_destination_to_current();
  1683. feedrate = 0.0;
  1684. #ifdef DELTA
  1685. // A delta can only safely home all axis at the same time
  1686. // all axis have to home at the same time
  1687. // Pretend the current position is 0,0,0
  1688. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1689. sync_plan_position();
  1690. // Move all carriages up together until the first endstop is hit.
  1691. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1692. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1693. line_to_destination();
  1694. st_synchronize();
  1695. endstops_hit_on_purpose(); // clear endstop hit flags
  1696. // Destination reached
  1697. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1698. // take care of back off and rehome now we are all at the top
  1699. HOMEAXIS(X);
  1700. HOMEAXIS(Y);
  1701. HOMEAXIS(Z);
  1702. sync_plan_position_delta();
  1703. #else // NOT DELTA
  1704. bool homeX = code_seen(axis_codes[X_AXIS]),
  1705. homeY = code_seen(axis_codes[Y_AXIS]),
  1706. homeZ = code_seen(axis_codes[Z_AXIS]);
  1707. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1708. if (home_all_axis || homeZ) {
  1709. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1710. HOMEAXIS(Z);
  1711. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1712. // Raise Z before homing any other axes
  1713. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1714. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1715. feedrate = max_feedrate[Z_AXIS] * 60;
  1716. line_to_destination();
  1717. st_synchronize();
  1718. #endif
  1719. } // home_all_axis || homeZ
  1720. #ifdef QUICK_HOME
  1721. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1722. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1723. #ifdef DUAL_X_CARRIAGE
  1724. int x_axis_home_dir = x_home_dir(active_extruder);
  1725. extruder_duplication_enabled = false;
  1726. #else
  1727. int x_axis_home_dir = home_dir(X_AXIS);
  1728. #endif
  1729. sync_plan_position();
  1730. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1731. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1732. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1733. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1734. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1735. line_to_destination();
  1736. st_synchronize();
  1737. set_axis_is_at_home(X_AXIS);
  1738. set_axis_is_at_home(Y_AXIS);
  1739. sync_plan_position();
  1740. destination[X_AXIS] = current_position[X_AXIS];
  1741. destination[Y_AXIS] = current_position[Y_AXIS];
  1742. line_to_destination();
  1743. feedrate = 0.0;
  1744. st_synchronize();
  1745. endstops_hit_on_purpose(); // clear endstop hit flags
  1746. current_position[X_AXIS] = destination[X_AXIS];
  1747. current_position[Y_AXIS] = destination[Y_AXIS];
  1748. #ifndef SCARA
  1749. current_position[Z_AXIS] = destination[Z_AXIS];
  1750. #endif
  1751. }
  1752. #endif // QUICK_HOME
  1753. #ifdef HOME_Y_BEFORE_X
  1754. // Home Y
  1755. if (home_all_axis || homeY) HOMEAXIS(Y);
  1756. #endif
  1757. // Home X
  1758. if (home_all_axis || homeX) {
  1759. #ifdef DUAL_X_CARRIAGE
  1760. int tmp_extruder = active_extruder;
  1761. extruder_duplication_enabled = false;
  1762. active_extruder = !active_extruder;
  1763. HOMEAXIS(X);
  1764. inactive_extruder_x_pos = current_position[X_AXIS];
  1765. active_extruder = tmp_extruder;
  1766. HOMEAXIS(X);
  1767. // reset state used by the different modes
  1768. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1769. delayed_move_time = 0;
  1770. active_extruder_parked = true;
  1771. #else
  1772. HOMEAXIS(X);
  1773. #endif
  1774. }
  1775. #ifndef HOME_Y_BEFORE_X
  1776. // Home Y
  1777. if (home_all_axis || homeY) HOMEAXIS(Y);
  1778. #endif
  1779. // Home Z last if homing towards the bed
  1780. #if Z_HOME_DIR < 0
  1781. if (home_all_axis || homeZ) {
  1782. #ifdef Z_SAFE_HOMING
  1783. if (home_all_axis) {
  1784. current_position[Z_AXIS] = 0;
  1785. sync_plan_position();
  1786. //
  1787. // Set the probe (or just the nozzle) destination to the safe homing point
  1788. //
  1789. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1790. // then this may not work as expected.
  1791. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1792. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1793. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1794. feedrate = XY_TRAVEL_SPEED;
  1795. // This could potentially move X, Y, Z all together
  1796. line_to_destination();
  1797. st_synchronize();
  1798. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1799. current_position[X_AXIS] = destination[X_AXIS];
  1800. current_position[Y_AXIS] = destination[Y_AXIS];
  1801. // Home the Z axis
  1802. HOMEAXIS(Z);
  1803. }
  1804. else if (homeZ) { // Don't need to Home Z twice
  1805. // Let's see if X and Y are homed
  1806. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1807. // Make sure the probe is within the physical limits
  1808. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1809. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1810. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1811. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1812. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1813. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1814. // Set the plan current position to X, Y, 0
  1815. current_position[Z_AXIS] = 0;
  1816. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1817. // Set Z destination away from bed and raise the axis
  1818. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1819. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1820. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1821. line_to_destination();
  1822. st_synchronize();
  1823. // Home the Z axis
  1824. HOMEAXIS(Z);
  1825. }
  1826. else {
  1827. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1828. SERIAL_ECHO_START;
  1829. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1830. }
  1831. }
  1832. else {
  1833. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1834. SERIAL_ECHO_START;
  1835. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1836. }
  1837. } // !home_all_axes && homeZ
  1838. #else // !Z_SAFE_HOMING
  1839. HOMEAXIS(Z);
  1840. #endif // !Z_SAFE_HOMING
  1841. } // home_all_axis || homeZ
  1842. #endif // Z_HOME_DIR < 0
  1843. sync_plan_position();
  1844. #endif // else DELTA
  1845. #ifdef SCARA
  1846. sync_plan_position_delta();
  1847. #endif
  1848. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1849. enable_endstops(false);
  1850. #endif
  1851. // For manual leveling move back to 0,0
  1852. #ifdef MESH_BED_LEVELING
  1853. if (mbl_was_active) {
  1854. current_position[X_AXIS] = mbl.get_x(0);
  1855. current_position[Y_AXIS] = mbl.get_y(0);
  1856. set_destination_to_current();
  1857. feedrate = homing_feedrate[X_AXIS];
  1858. line_to_destination();
  1859. st_synchronize();
  1860. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1861. sync_plan_position();
  1862. mbl.active = 1;
  1863. }
  1864. #endif
  1865. feedrate = saved_feedrate;
  1866. feedrate_multiplier = saved_feedrate_multiplier;
  1867. refresh_cmd_timeout();
  1868. endstops_hit_on_purpose(); // clear endstop hit flags
  1869. }
  1870. #ifdef MESH_BED_LEVELING
  1871. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1872. /**
  1873. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1874. * mesh to compensate for variable bed height
  1875. *
  1876. * Parameters With MESH_BED_LEVELING:
  1877. *
  1878. * S0 Produce a mesh report
  1879. * S1 Start probing mesh points
  1880. * S2 Probe the next mesh point
  1881. * S3 Xn Yn Zn.nn Manually modify a single point
  1882. *
  1883. * The S0 report the points as below
  1884. *
  1885. * +----> X-axis
  1886. * |
  1887. * |
  1888. * v Y-axis
  1889. *
  1890. */
  1891. inline void gcode_G29() {
  1892. static int probe_point = -1;
  1893. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  1894. if (state < 0 || state > 3) {
  1895. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1896. return;
  1897. }
  1898. int ix, iy;
  1899. float z;
  1900. switch(state) {
  1901. case MeshReport:
  1902. if (mbl.active) {
  1903. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1904. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1905. SERIAL_PROTOCOLCHAR(',');
  1906. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1907. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1908. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1909. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1910. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1911. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1912. SERIAL_PROTOCOLPGM(" ");
  1913. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1914. }
  1915. SERIAL_EOL;
  1916. }
  1917. }
  1918. else
  1919. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1920. break;
  1921. case MeshStart:
  1922. mbl.reset();
  1923. probe_point = 0;
  1924. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1925. break;
  1926. case MeshNext:
  1927. if (probe_point < 0) {
  1928. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1929. return;
  1930. }
  1931. if (probe_point == 0) {
  1932. // Set Z to a positive value before recording the first Z.
  1933. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1934. sync_plan_position();
  1935. }
  1936. else {
  1937. // For others, save the Z of the previous point, then raise Z again.
  1938. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1939. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1940. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1941. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1942. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1944. st_synchronize();
  1945. }
  1946. // Is there another point to sample? Move there.
  1947. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1948. ix = probe_point % MESH_NUM_X_POINTS;
  1949. iy = probe_point / MESH_NUM_X_POINTS;
  1950. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1951. current_position[X_AXIS] = mbl.get_x(ix);
  1952. current_position[Y_AXIS] = mbl.get_y(iy);
  1953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1954. st_synchronize();
  1955. probe_point++;
  1956. }
  1957. else {
  1958. // After recording the last point, activate the mbl and home
  1959. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1960. probe_point = -1;
  1961. mbl.active = 1;
  1962. enqueuecommands_P(PSTR("G28"));
  1963. }
  1964. break;
  1965. case MeshSet:
  1966. if (code_seen('X')) {
  1967. ix = code_value_long()-1;
  1968. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1969. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1970. return;
  1971. }
  1972. } else {
  1973. SERIAL_PROTOCOLPGM("X not entered.\n");
  1974. return;
  1975. }
  1976. if (code_seen('Y')) {
  1977. iy = code_value_long()-1;
  1978. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1979. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1980. return;
  1981. }
  1982. } else {
  1983. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1984. return;
  1985. }
  1986. if (code_seen('Z')) {
  1987. z = code_value();
  1988. } else {
  1989. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1990. return;
  1991. }
  1992. mbl.z_values[iy][ix] = z;
  1993. } // switch(state)
  1994. }
  1995. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1996. void out_of_range_error(const char *p_edge) {
  1997. SERIAL_PROTOCOLPGM("?Probe ");
  1998. serialprintPGM(p_edge);
  1999. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2000. }
  2001. /**
  2002. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2003. * Will fail if the printer has not been homed with G28.
  2004. *
  2005. * Enhanced G29 Auto Bed Leveling Probe Routine
  2006. *
  2007. * Parameters With AUTO_BED_LEVELING_GRID:
  2008. *
  2009. * P Set the size of the grid that will be probed (P x P points).
  2010. * Not supported by non-linear delta printer bed leveling.
  2011. * Example: "G29 P4"
  2012. *
  2013. * S Set the XY travel speed between probe points (in mm/min)
  2014. *
  2015. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2016. * or clean the rotation Matrix. Useful to check the topology
  2017. * after a first run of G29.
  2018. *
  2019. * V Set the verbose level (0-4). Example: "G29 V3"
  2020. *
  2021. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2022. * This is useful for manual bed leveling and finding flaws in the bed (to
  2023. * assist with part placement).
  2024. * Not supported by non-linear delta printer bed leveling.
  2025. *
  2026. * F Set the Front limit of the probing grid
  2027. * B Set the Back limit of the probing grid
  2028. * L Set the Left limit of the probing grid
  2029. * R Set the Right limit of the probing grid
  2030. *
  2031. * Global Parameters:
  2032. *
  2033. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2034. * Include "E" to engage/disengage the probe for each sample.
  2035. * There's no extra effect if you have a fixed probe.
  2036. * Usage: "G29 E" or "G29 e"
  2037. *
  2038. */
  2039. inline void gcode_G29() {
  2040. // Don't allow auto-leveling without homing first
  2041. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2042. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2043. SERIAL_ECHO_START;
  2044. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2045. return;
  2046. }
  2047. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2048. if (verbose_level < 0 || verbose_level > 4) {
  2049. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2050. return;
  2051. }
  2052. bool dryrun = code_seen('D'),
  2053. deploy_probe_for_each_reading = code_seen('E');
  2054. #ifdef AUTO_BED_LEVELING_GRID
  2055. #ifndef DELTA
  2056. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2057. #endif
  2058. if (verbose_level > 0) {
  2059. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2060. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2061. }
  2062. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2063. #ifndef DELTA
  2064. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2065. if (auto_bed_leveling_grid_points < 2) {
  2066. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2067. return;
  2068. }
  2069. #endif
  2070. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2071. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2072. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2073. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2074. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2075. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2076. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2077. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2078. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2079. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2080. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2081. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2082. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2083. if (left_out || right_out || front_out || back_out) {
  2084. if (left_out) {
  2085. out_of_range_error(PSTR("(L)eft"));
  2086. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2087. }
  2088. if (right_out) {
  2089. out_of_range_error(PSTR("(R)ight"));
  2090. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2091. }
  2092. if (front_out) {
  2093. out_of_range_error(PSTR("(F)ront"));
  2094. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2095. }
  2096. if (back_out) {
  2097. out_of_range_error(PSTR("(B)ack"));
  2098. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2099. }
  2100. return;
  2101. }
  2102. #endif // AUTO_BED_LEVELING_GRID
  2103. #ifdef Z_PROBE_SLED
  2104. dock_sled(false); // engage (un-dock) the probe
  2105. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2106. deploy_z_probe();
  2107. #endif
  2108. st_synchronize();
  2109. if (!dryrun) {
  2110. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2111. plan_bed_level_matrix.set_to_identity();
  2112. #ifdef DELTA
  2113. reset_bed_level();
  2114. #else //!DELTA
  2115. //vector_3 corrected_position = plan_get_position_mm();
  2116. //corrected_position.debug("position before G29");
  2117. vector_3 uncorrected_position = plan_get_position();
  2118. //uncorrected_position.debug("position during G29");
  2119. current_position[X_AXIS] = uncorrected_position.x;
  2120. current_position[Y_AXIS] = uncorrected_position.y;
  2121. current_position[Z_AXIS] = uncorrected_position.z;
  2122. sync_plan_position();
  2123. #endif // !DELTA
  2124. }
  2125. setup_for_endstop_move();
  2126. feedrate = homing_feedrate[Z_AXIS];
  2127. #ifdef AUTO_BED_LEVELING_GRID
  2128. // probe at the points of a lattice grid
  2129. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2130. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2131. #ifdef DELTA
  2132. delta_grid_spacing[0] = xGridSpacing;
  2133. delta_grid_spacing[1] = yGridSpacing;
  2134. float z_offset = zprobe_zoffset;
  2135. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2136. #else // !DELTA
  2137. // solve the plane equation ax + by + d = z
  2138. // A is the matrix with rows [x y 1] for all the probed points
  2139. // B is the vector of the Z positions
  2140. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2141. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2142. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2143. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2144. eqnBVector[abl2], // "B" vector of Z points
  2145. mean = 0.0;
  2146. #endif // !DELTA
  2147. int probePointCounter = 0;
  2148. bool zig = true;
  2149. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2150. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2151. int xStart, xStop, xInc;
  2152. if (zig) {
  2153. xStart = 0;
  2154. xStop = auto_bed_leveling_grid_points;
  2155. xInc = 1;
  2156. }
  2157. else {
  2158. xStart = auto_bed_leveling_grid_points - 1;
  2159. xStop = -1;
  2160. xInc = -1;
  2161. }
  2162. #ifndef DELTA
  2163. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2164. // This gets the probe points in more readable order.
  2165. if (!do_topography_map) zig = !zig;
  2166. #else
  2167. zig = !zig;
  2168. #endif
  2169. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2170. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2171. // raise extruder
  2172. float measured_z,
  2173. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2174. #ifdef DELTA
  2175. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2176. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2177. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2178. #endif //DELTA
  2179. ProbeAction act;
  2180. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2181. act = ProbeDeployAndStow;
  2182. else if (yCount == 0 && xCount == xStart)
  2183. act = ProbeDeploy;
  2184. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2185. act = ProbeStow;
  2186. else
  2187. act = ProbeStay;
  2188. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2189. #ifndef DELTA
  2190. mean += measured_z;
  2191. eqnBVector[probePointCounter] = measured_z;
  2192. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2193. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2194. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2195. #else
  2196. bed_level[xCount][yCount] = measured_z + z_offset;
  2197. #endif
  2198. probePointCounter++;
  2199. idle();
  2200. } //xProbe
  2201. } //yProbe
  2202. clean_up_after_endstop_move();
  2203. #ifdef DELTA
  2204. if (!dryrun) extrapolate_unprobed_bed_level();
  2205. print_bed_level();
  2206. #else // !DELTA
  2207. // solve lsq problem
  2208. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2209. mean /= abl2;
  2210. if (verbose_level) {
  2211. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2212. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2213. SERIAL_PROTOCOLPGM(" b: ");
  2214. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2215. SERIAL_PROTOCOLPGM(" d: ");
  2216. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2217. SERIAL_EOL;
  2218. if (verbose_level > 2) {
  2219. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2220. SERIAL_PROTOCOL_F(mean, 8);
  2221. SERIAL_EOL;
  2222. }
  2223. }
  2224. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2225. free(plane_equation_coefficients);
  2226. // Show the Topography map if enabled
  2227. if (do_topography_map) {
  2228. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2229. SERIAL_PROTOCOLPGM("+-----------+\n");
  2230. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2231. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2232. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2233. SERIAL_PROTOCOLPGM("+-----------+\n");
  2234. float min_diff = 999;
  2235. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2236. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2237. int ind = yy * auto_bed_leveling_grid_points + xx;
  2238. float diff = eqnBVector[ind] - mean;
  2239. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2240. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2241. z_tmp = 0;
  2242. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2243. if (eqnBVector[ind] - z_tmp < min_diff)
  2244. min_diff = eqnBVector[ind] - z_tmp;
  2245. if (diff >= 0.0)
  2246. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2247. else
  2248. SERIAL_PROTOCOLCHAR(' ');
  2249. SERIAL_PROTOCOL_F(diff, 5);
  2250. } // xx
  2251. SERIAL_EOL;
  2252. } // yy
  2253. SERIAL_EOL;
  2254. if (verbose_level > 3) {
  2255. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2256. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2257. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2258. int ind = yy * auto_bed_leveling_grid_points + xx;
  2259. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2260. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2261. z_tmp = 0;
  2262. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2263. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2264. if (diff >= 0.0)
  2265. SERIAL_PROTOCOLPGM(" +");
  2266. // Include + for column alignment
  2267. else
  2268. SERIAL_PROTOCOLCHAR(' ');
  2269. SERIAL_PROTOCOL_F(diff, 5);
  2270. } // xx
  2271. SERIAL_EOL;
  2272. } // yy
  2273. SERIAL_EOL;
  2274. }
  2275. } //do_topography_map
  2276. #endif //!DELTA
  2277. #else // !AUTO_BED_LEVELING_GRID
  2278. // Actions for each probe
  2279. ProbeAction p1, p2, p3;
  2280. if (deploy_probe_for_each_reading)
  2281. p1 = p2 = p3 = ProbeDeployAndStow;
  2282. else
  2283. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2284. // Probe at 3 arbitrary points
  2285. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2286. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2287. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2288. clean_up_after_endstop_move();
  2289. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2290. #endif // !AUTO_BED_LEVELING_GRID
  2291. #ifndef DELTA
  2292. if (verbose_level > 0)
  2293. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2294. if (!dryrun) {
  2295. // Correct the Z height difference from z-probe position and hotend tip position.
  2296. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2297. // When the bed is uneven, this height must be corrected.
  2298. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2299. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2300. z_tmp = current_position[Z_AXIS],
  2301. real_z = st_get_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2302. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2303. // Get the current Z position and send it to the planner.
  2304. //
  2305. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2306. //
  2307. // >> zprobe_zoffset : Z distance from nozzle to probe (set by default, M851, EEPROM, or Menu)
  2308. //
  2309. // >> Z_RAISE_AFTER_PROBING : The distance the probe will have lifted after the last probe
  2310. //
  2311. // >> Should home_offset[Z_AXIS] be included?
  2312. //
  2313. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2314. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2315. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2316. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2317. // added here, it could be seen as a compensating factor for the Z probe.
  2318. //
  2319. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2320. #if ENABLED(SERVO_ENDSTOPS) || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2321. + Z_RAISE_AFTER_PROBING
  2322. #endif
  2323. ;
  2324. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The probe determines Z=0, not "Z home"
  2325. sync_plan_position();
  2326. }
  2327. #endif // !DELTA
  2328. #ifdef Z_PROBE_SLED
  2329. dock_sled(true); // dock the probe
  2330. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2331. stow_z_probe();
  2332. #endif
  2333. #ifdef Z_PROBE_END_SCRIPT
  2334. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2335. st_synchronize();
  2336. #endif
  2337. }
  2338. #ifndef Z_PROBE_SLED
  2339. inline void gcode_G30() {
  2340. deploy_z_probe(); // Engage Z Servo endstop if available
  2341. st_synchronize();
  2342. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2343. setup_for_endstop_move();
  2344. feedrate = homing_feedrate[Z_AXIS];
  2345. run_z_probe();
  2346. SERIAL_PROTOCOLPGM("Bed X: ");
  2347. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2348. SERIAL_PROTOCOLPGM(" Y: ");
  2349. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2350. SERIAL_PROTOCOLPGM(" Z: ");
  2351. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2352. SERIAL_EOL;
  2353. clean_up_after_endstop_move();
  2354. stow_z_probe(); // Retract Z Servo endstop if available
  2355. }
  2356. #endif //!Z_PROBE_SLED
  2357. #endif //ENABLE_AUTO_BED_LEVELING
  2358. /**
  2359. * G92: Set current position to given X Y Z E
  2360. */
  2361. inline void gcode_G92() {
  2362. if (!code_seen(axis_codes[E_AXIS]))
  2363. st_synchronize();
  2364. bool didXYZ = false;
  2365. for (int i = 0; i < NUM_AXIS; i++) {
  2366. if (code_seen(axis_codes[i])) {
  2367. float v = current_position[i] = code_value();
  2368. if (i == E_AXIS)
  2369. plan_set_e_position(v);
  2370. else
  2371. didXYZ = true;
  2372. }
  2373. }
  2374. if (didXYZ) {
  2375. #if defined(DELTA) || defined(SCARA)
  2376. sync_plan_position_delta();
  2377. #else
  2378. sync_plan_position();
  2379. #endif
  2380. }
  2381. }
  2382. #ifdef ULTIPANEL
  2383. /**
  2384. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2385. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2386. */
  2387. inline void gcode_M0_M1() {
  2388. char *args = current_command_args;
  2389. millis_t codenum = 0;
  2390. bool hasP = false, hasS = false;
  2391. if (code_seen('P')) {
  2392. codenum = code_value_short(); // milliseconds to wait
  2393. hasP = codenum > 0;
  2394. }
  2395. if (code_seen('S')) {
  2396. codenum = code_value() * 1000; // seconds to wait
  2397. hasS = codenum > 0;
  2398. }
  2399. if (!hasP && !hasS && *args != '\0')
  2400. lcd_setstatus(args, true);
  2401. else {
  2402. LCD_MESSAGEPGM(MSG_USERWAIT);
  2403. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2404. dontExpireStatus();
  2405. #endif
  2406. }
  2407. lcd_ignore_click();
  2408. st_synchronize();
  2409. refresh_cmd_timeout();
  2410. if (codenum > 0) {
  2411. codenum += previous_cmd_ms; // wait until this time for a click
  2412. while (millis() < codenum && !lcd_clicked()) idle();
  2413. lcd_ignore_click(false);
  2414. }
  2415. else {
  2416. if (!lcd_detected()) return;
  2417. while (!lcd_clicked()) idle();
  2418. }
  2419. if (IS_SD_PRINTING)
  2420. LCD_MESSAGEPGM(MSG_RESUMING);
  2421. else
  2422. LCD_MESSAGEPGM(WELCOME_MSG);
  2423. }
  2424. #endif // ULTIPANEL
  2425. /**
  2426. * M17: Enable power on all stepper motors
  2427. */
  2428. inline void gcode_M17() {
  2429. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2430. enable_all_steppers();
  2431. }
  2432. #ifdef SDSUPPORT
  2433. /**
  2434. * M20: List SD card to serial output
  2435. */
  2436. inline void gcode_M20() {
  2437. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2438. card.ls();
  2439. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2440. }
  2441. /**
  2442. * M21: Init SD Card
  2443. */
  2444. inline void gcode_M21() {
  2445. card.initsd();
  2446. }
  2447. /**
  2448. * M22: Release SD Card
  2449. */
  2450. inline void gcode_M22() {
  2451. card.release();
  2452. }
  2453. /**
  2454. * M23: Select a file
  2455. */
  2456. inline void gcode_M23() {
  2457. card.openFile(current_command_args, true);
  2458. }
  2459. /**
  2460. * M24: Start SD Print
  2461. */
  2462. inline void gcode_M24() {
  2463. card.startFileprint();
  2464. print_job_start_ms = millis();
  2465. }
  2466. /**
  2467. * M25: Pause SD Print
  2468. */
  2469. inline void gcode_M25() {
  2470. card.pauseSDPrint();
  2471. }
  2472. /**
  2473. * M26: Set SD Card file index
  2474. */
  2475. inline void gcode_M26() {
  2476. if (card.cardOK && code_seen('S'))
  2477. card.setIndex(code_value_short());
  2478. }
  2479. /**
  2480. * M27: Get SD Card status
  2481. */
  2482. inline void gcode_M27() {
  2483. card.getStatus();
  2484. }
  2485. /**
  2486. * M28: Start SD Write
  2487. */
  2488. inline void gcode_M28() {
  2489. card.openFile(current_command_args, false);
  2490. }
  2491. /**
  2492. * M29: Stop SD Write
  2493. * Processed in write to file routine above
  2494. */
  2495. inline void gcode_M29() {
  2496. // card.saving = false;
  2497. }
  2498. /**
  2499. * M30 <filename>: Delete SD Card file
  2500. */
  2501. inline void gcode_M30() {
  2502. if (card.cardOK) {
  2503. card.closefile();
  2504. card.removeFile(current_command_args);
  2505. }
  2506. }
  2507. #endif
  2508. /**
  2509. * M31: Get the time since the start of SD Print (or last M109)
  2510. */
  2511. inline void gcode_M31() {
  2512. print_job_stop_ms = millis();
  2513. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2514. int min = t / 60, sec = t % 60;
  2515. char time[30];
  2516. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2517. SERIAL_ECHO_START;
  2518. SERIAL_ECHOLN(time);
  2519. lcd_setstatus(time);
  2520. autotempShutdown();
  2521. }
  2522. #ifdef SDSUPPORT
  2523. /**
  2524. * M32: Select file and start SD Print
  2525. */
  2526. inline void gcode_M32() {
  2527. if (card.sdprinting)
  2528. st_synchronize();
  2529. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2530. if (!namestartpos)
  2531. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2532. else
  2533. namestartpos++; //to skip the '!'
  2534. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2535. if (card.cardOK) {
  2536. card.openFile(namestartpos, true, !call_procedure);
  2537. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2538. card.setIndex(code_value_short());
  2539. card.startFileprint();
  2540. if (!call_procedure)
  2541. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2542. }
  2543. }
  2544. #ifdef LONG_FILENAME_HOST_SUPPORT
  2545. /**
  2546. * M33: Get the long full path of a file or folder
  2547. *
  2548. * Parameters:
  2549. * <dospath> Case-insensitive DOS-style path to a file or folder
  2550. *
  2551. * Example:
  2552. * M33 miscel~1/armchair/armcha~1.gco
  2553. *
  2554. * Output:
  2555. * /Miscellaneous/Armchair/Armchair.gcode
  2556. */
  2557. inline void gcode_M33() {
  2558. card.printLongPath(current_command_args);
  2559. }
  2560. #endif
  2561. /**
  2562. * M928: Start SD Write
  2563. */
  2564. inline void gcode_M928() {
  2565. card.openLogFile(current_command_args);
  2566. }
  2567. #endif // SDSUPPORT
  2568. /**
  2569. * M42: Change pin status via GCode
  2570. */
  2571. inline void gcode_M42() {
  2572. if (code_seen('S')) {
  2573. int pin_status = code_value_short(),
  2574. pin_number = LED_PIN;
  2575. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2576. pin_number = code_value_short();
  2577. for (int8_t i = 0; i < COUNT(sensitive_pins); i++) {
  2578. if (sensitive_pins[i] == pin_number) {
  2579. pin_number = -1;
  2580. break;
  2581. }
  2582. }
  2583. #if HAS_FAN
  2584. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2585. #endif
  2586. if (pin_number > -1) {
  2587. pinMode(pin_number, OUTPUT);
  2588. digitalWrite(pin_number, pin_status);
  2589. analogWrite(pin_number, pin_status);
  2590. }
  2591. } // code_seen('S')
  2592. }
  2593. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2594. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2595. #ifdef Z_PROBE_ENDSTOP
  2596. #if !HAS_Z_PROBE
  2597. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2598. #endif
  2599. #elif !HAS_Z_MIN
  2600. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2601. #endif
  2602. /**
  2603. * M48: Z-Probe repeatability measurement function.
  2604. *
  2605. * Usage:
  2606. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2607. * P = Number of sampled points (4-50, default 10)
  2608. * X = Sample X position
  2609. * Y = Sample Y position
  2610. * V = Verbose level (0-4, default=1)
  2611. * E = Engage probe for each reading
  2612. * L = Number of legs of movement before probe
  2613. *
  2614. * This function assumes the bed has been homed. Specifically, that a G28 command
  2615. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2616. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2617. * regenerated.
  2618. */
  2619. inline void gcode_M48() {
  2620. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2621. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2622. if (code_seen('V')) {
  2623. verbose_level = code_value_short();
  2624. if (verbose_level < 0 || verbose_level > 4 ) {
  2625. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2626. return;
  2627. }
  2628. }
  2629. if (verbose_level > 0)
  2630. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2631. if (code_seen('P')) {
  2632. n_samples = code_value_short();
  2633. if (n_samples < 4 || n_samples > 50) {
  2634. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2635. return;
  2636. }
  2637. }
  2638. double X_current = st_get_position_mm(X_AXIS),
  2639. Y_current = st_get_position_mm(Y_AXIS),
  2640. Z_current = st_get_position_mm(Z_AXIS),
  2641. E_current = st_get_position_mm(E_AXIS),
  2642. X_probe_location = X_current, Y_probe_location = Y_current,
  2643. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2644. bool deploy_probe_for_each_reading = code_seen('E');
  2645. if (code_seen('X')) {
  2646. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2647. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2648. out_of_range_error(PSTR("X"));
  2649. return;
  2650. }
  2651. }
  2652. if (code_seen('Y')) {
  2653. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2654. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2655. out_of_range_error(PSTR("Y"));
  2656. return;
  2657. }
  2658. }
  2659. if (code_seen('L')) {
  2660. n_legs = code_value_short();
  2661. if (n_legs == 1) n_legs = 2;
  2662. if (n_legs < 0 || n_legs > 15) {
  2663. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2664. return;
  2665. }
  2666. }
  2667. //
  2668. // Do all the preliminary setup work. First raise the probe.
  2669. //
  2670. st_synchronize();
  2671. plan_bed_level_matrix.set_to_identity();
  2672. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2673. st_synchronize();
  2674. //
  2675. // Now get everything to the specified probe point So we can safely do a probe to
  2676. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2677. // use that as a starting point for each probe.
  2678. //
  2679. if (verbose_level > 2)
  2680. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2681. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2682. E_current,
  2683. homing_feedrate[X_AXIS]/60,
  2684. active_extruder);
  2685. st_synchronize();
  2686. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2687. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2688. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2689. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2690. //
  2691. // OK, do the initial probe to get us close to the bed.
  2692. // Then retrace the right amount and use that in subsequent probes
  2693. //
  2694. deploy_z_probe();
  2695. setup_for_endstop_move();
  2696. run_z_probe();
  2697. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2698. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2699. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2700. E_current,
  2701. homing_feedrate[X_AXIS]/60,
  2702. active_extruder);
  2703. st_synchronize();
  2704. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2705. if (deploy_probe_for_each_reading) stow_z_probe();
  2706. for (uint8_t n=0; n < n_samples; n++) {
  2707. // Make sure we are at the probe location
  2708. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2709. if (n_legs) {
  2710. millis_t ms = millis();
  2711. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2712. theta = RADIANS(ms % 360L);
  2713. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2714. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2715. //SERIAL_ECHOPAIR(" theta: ",theta);
  2716. //SERIAL_ECHOPAIR(" direction: ",dir);
  2717. //SERIAL_EOL;
  2718. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2719. ms = millis();
  2720. theta += RADIANS(dir * (ms % 20L));
  2721. radius += (ms % 10L) - 5L;
  2722. if (radius < 0.0) radius = -radius;
  2723. X_current = X_probe_location + cos(theta) * radius;
  2724. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2725. Y_current = Y_probe_location + sin(theta) * radius;
  2726. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2727. if (verbose_level > 3) {
  2728. SERIAL_ECHOPAIR("x: ", X_current);
  2729. SERIAL_ECHOPAIR("y: ", Y_current);
  2730. SERIAL_EOL;
  2731. }
  2732. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2733. } // n_legs loop
  2734. // Go back to the probe location
  2735. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2736. } // n_legs
  2737. if (deploy_probe_for_each_reading) {
  2738. deploy_z_probe();
  2739. delay(1000);
  2740. }
  2741. setup_for_endstop_move();
  2742. run_z_probe();
  2743. sample_set[n] = current_position[Z_AXIS];
  2744. //
  2745. // Get the current mean for the data points we have so far
  2746. //
  2747. sum = 0.0;
  2748. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2749. mean = sum / (n + 1);
  2750. //
  2751. // Now, use that mean to calculate the standard deviation for the
  2752. // data points we have so far
  2753. //
  2754. sum = 0.0;
  2755. for (uint8_t j = 0; j <= n; j++) {
  2756. float ss = sample_set[j] - mean;
  2757. sum += ss * ss;
  2758. }
  2759. sigma = sqrt(sum / (n + 1));
  2760. if (verbose_level > 1) {
  2761. SERIAL_PROTOCOL(n+1);
  2762. SERIAL_PROTOCOLPGM(" of ");
  2763. SERIAL_PROTOCOL((int)n_samples);
  2764. SERIAL_PROTOCOLPGM(" z: ");
  2765. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2766. if (verbose_level > 2) {
  2767. SERIAL_PROTOCOLPGM(" mean: ");
  2768. SERIAL_PROTOCOL_F(mean,6);
  2769. SERIAL_PROTOCOLPGM(" sigma: ");
  2770. SERIAL_PROTOCOL_F(sigma,6);
  2771. }
  2772. }
  2773. if (verbose_level > 0) SERIAL_EOL;
  2774. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2775. st_synchronize();
  2776. // Stow between
  2777. if (deploy_probe_for_each_reading) {
  2778. stow_z_probe();
  2779. delay(1000);
  2780. }
  2781. }
  2782. // Stow after
  2783. if (!deploy_probe_for_each_reading) {
  2784. stow_z_probe();
  2785. delay(1000);
  2786. }
  2787. clean_up_after_endstop_move();
  2788. if (verbose_level > 0) {
  2789. SERIAL_PROTOCOLPGM("Mean: ");
  2790. SERIAL_PROTOCOL_F(mean, 6);
  2791. SERIAL_EOL;
  2792. }
  2793. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2794. SERIAL_PROTOCOL_F(sigma, 6);
  2795. SERIAL_EOL; SERIAL_EOL;
  2796. }
  2797. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2798. /**
  2799. * M104: Set hot end temperature
  2800. */
  2801. inline void gcode_M104() {
  2802. if (setTargetedHotend(104)) return;
  2803. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2804. if (code_seen('S')) {
  2805. float temp = code_value();
  2806. setTargetHotend(temp, target_extruder);
  2807. #ifdef DUAL_X_CARRIAGE
  2808. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2809. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2810. #endif
  2811. }
  2812. }
  2813. /**
  2814. * M105: Read hot end and bed temperature
  2815. */
  2816. inline void gcode_M105() {
  2817. if (setTargetedHotend(105)) return;
  2818. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2819. SERIAL_PROTOCOLPGM(MSG_OK);
  2820. #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
  2821. SERIAL_PROTOCOLPGM(" T:");
  2822. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2823. SERIAL_PROTOCOLPGM(" /");
  2824. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2825. #endif
  2826. #if HAS_TEMP_BED
  2827. SERIAL_PROTOCOLPGM(" B:");
  2828. SERIAL_PROTOCOL_F(degBed(), 1);
  2829. SERIAL_PROTOCOLPGM(" /");
  2830. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2831. #endif
  2832. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2833. SERIAL_PROTOCOLPGM(" T");
  2834. SERIAL_PROTOCOL(e);
  2835. SERIAL_PROTOCOLCHAR(':');
  2836. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2837. SERIAL_PROTOCOLPGM(" /");
  2838. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2839. }
  2840. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2841. SERIAL_ERROR_START;
  2842. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2843. #endif
  2844. SERIAL_PROTOCOLPGM(" @:");
  2845. #ifdef EXTRUDER_WATTS
  2846. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2847. SERIAL_PROTOCOLCHAR('W');
  2848. #else
  2849. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2850. #endif
  2851. SERIAL_PROTOCOLPGM(" B@:");
  2852. #ifdef BED_WATTS
  2853. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2854. SERIAL_PROTOCOLCHAR('W');
  2855. #else
  2856. SERIAL_PROTOCOL(getHeaterPower(-1));
  2857. #endif
  2858. #ifdef SHOW_TEMP_ADC_VALUES
  2859. #if HAS_TEMP_BED
  2860. SERIAL_PROTOCOLPGM(" ADC B:");
  2861. SERIAL_PROTOCOL_F(degBed(),1);
  2862. SERIAL_PROTOCOLPGM("C->");
  2863. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2864. #endif
  2865. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2866. SERIAL_PROTOCOLPGM(" T");
  2867. SERIAL_PROTOCOL(cur_extruder);
  2868. SERIAL_PROTOCOLCHAR(':');
  2869. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2870. SERIAL_PROTOCOLPGM("C->");
  2871. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2872. }
  2873. #endif
  2874. SERIAL_EOL;
  2875. }
  2876. #if HAS_FAN
  2877. /**
  2878. * M106: Set Fan Speed
  2879. */
  2880. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2881. /**
  2882. * M107: Fan Off
  2883. */
  2884. inline void gcode_M107() { fanSpeed = 0; }
  2885. #endif // HAS_FAN
  2886. /**
  2887. * M109: Wait for extruder(s) to reach temperature
  2888. */
  2889. inline void gcode_M109() {
  2890. if (setTargetedHotend(109)) return;
  2891. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2892. LCD_MESSAGEPGM(MSG_HEATING);
  2893. no_wait_for_cooling = code_seen('S');
  2894. if (no_wait_for_cooling || code_seen('R')) {
  2895. float temp = code_value();
  2896. setTargetHotend(temp, target_extruder);
  2897. #ifdef DUAL_X_CARRIAGE
  2898. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2899. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2900. #endif
  2901. }
  2902. #ifdef AUTOTEMP
  2903. autotemp_enabled = code_seen('F');
  2904. if (autotemp_enabled) autotemp_factor = code_value();
  2905. if (code_seen('S')) autotemp_min = code_value();
  2906. if (code_seen('B')) autotemp_max = code_value();
  2907. #endif
  2908. millis_t temp_ms = millis();
  2909. /* See if we are heating up or cooling down */
  2910. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2911. cancel_heatup = false;
  2912. #ifdef TEMP_RESIDENCY_TIME
  2913. long residency_start_ms = -1;
  2914. /* continue to loop until we have reached the target temp
  2915. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2916. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2917. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2918. #else
  2919. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2920. #endif //TEMP_RESIDENCY_TIME
  2921. { // while loop
  2922. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2923. SERIAL_PROTOCOLPGM("T:");
  2924. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2925. SERIAL_PROTOCOLPGM(" E:");
  2926. SERIAL_PROTOCOL((int)target_extruder);
  2927. #ifdef TEMP_RESIDENCY_TIME
  2928. SERIAL_PROTOCOLPGM(" W:");
  2929. if (residency_start_ms > -1) {
  2930. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2931. SERIAL_PROTOCOLLN(temp_ms);
  2932. }
  2933. else {
  2934. SERIAL_PROTOCOLLNPGM("?");
  2935. }
  2936. #else
  2937. SERIAL_EOL;
  2938. #endif
  2939. temp_ms = millis();
  2940. }
  2941. idle();
  2942. #ifdef TEMP_RESIDENCY_TIME
  2943. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2944. // or when current temp falls outside the hysteresis after target temp was reached
  2945. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2946. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2947. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2948. {
  2949. residency_start_ms = millis();
  2950. }
  2951. #endif //TEMP_RESIDENCY_TIME
  2952. }
  2953. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2954. refresh_cmd_timeout();
  2955. print_job_start_ms = previous_cmd_ms;
  2956. }
  2957. #if HAS_TEMP_BED
  2958. /**
  2959. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2960. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2961. */
  2962. inline void gcode_M190() {
  2963. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2964. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2965. no_wait_for_cooling = code_seen('S');
  2966. if (no_wait_for_cooling || code_seen('R'))
  2967. setTargetBed(code_value());
  2968. millis_t temp_ms = millis();
  2969. cancel_heatup = false;
  2970. target_direction = isHeatingBed(); // true if heating, false if cooling
  2971. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2972. millis_t ms = millis();
  2973. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2974. temp_ms = ms;
  2975. float tt = degHotend(active_extruder);
  2976. SERIAL_PROTOCOLPGM("T:");
  2977. SERIAL_PROTOCOL(tt);
  2978. SERIAL_PROTOCOLPGM(" E:");
  2979. SERIAL_PROTOCOL((int)active_extruder);
  2980. SERIAL_PROTOCOLPGM(" B:");
  2981. SERIAL_PROTOCOL_F(degBed(), 1);
  2982. SERIAL_EOL;
  2983. }
  2984. idle();
  2985. }
  2986. LCD_MESSAGEPGM(MSG_BED_DONE);
  2987. refresh_cmd_timeout();
  2988. }
  2989. #endif // HAS_TEMP_BED
  2990. /**
  2991. * M111: Set the debug level
  2992. */
  2993. inline void gcode_M111() {
  2994. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  2995. if (marlin_debug_flags & DEBUG_ECHO) {
  2996. SERIAL_ECHO_START;
  2997. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  2998. }
  2999. // FOR MOMENT NOT ACTIVE
  3000. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3001. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3002. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3003. SERIAL_ECHO_START;
  3004. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3005. disable_all_heaters();
  3006. }
  3007. }
  3008. /**
  3009. * M112: Emergency Stop
  3010. */
  3011. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3012. #ifdef BARICUDA
  3013. #if HAS_HEATER_1
  3014. /**
  3015. * M126: Heater 1 valve open
  3016. */
  3017. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3018. /**
  3019. * M127: Heater 1 valve close
  3020. */
  3021. inline void gcode_M127() { ValvePressure = 0; }
  3022. #endif
  3023. #if HAS_HEATER_2
  3024. /**
  3025. * M128: Heater 2 valve open
  3026. */
  3027. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3028. /**
  3029. * M129: Heater 2 valve close
  3030. */
  3031. inline void gcode_M129() { EtoPPressure = 0; }
  3032. #endif
  3033. #endif //BARICUDA
  3034. /**
  3035. * M140: Set bed temperature
  3036. */
  3037. inline void gcode_M140() {
  3038. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3039. if (code_seen('S')) setTargetBed(code_value());
  3040. }
  3041. #ifdef ULTIPANEL
  3042. /**
  3043. * M145: Set the heatup state for a material in the LCD menu
  3044. * S<material> (0=PLA, 1=ABS)
  3045. * H<hotend temp>
  3046. * B<bed temp>
  3047. * F<fan speed>
  3048. */
  3049. inline void gcode_M145() {
  3050. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3051. if (material < 0 || material > 1) {
  3052. SERIAL_ERROR_START;
  3053. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3054. }
  3055. else {
  3056. int v;
  3057. switch (material) {
  3058. case 0:
  3059. if (code_seen('H')) {
  3060. v = code_value_short();
  3061. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3062. }
  3063. if (code_seen('F')) {
  3064. v = code_value_short();
  3065. plaPreheatFanSpeed = constrain(v, 0, 255);
  3066. }
  3067. #if TEMP_SENSOR_BED != 0
  3068. if (code_seen('B')) {
  3069. v = code_value_short();
  3070. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3071. }
  3072. #endif
  3073. break;
  3074. case 1:
  3075. if (code_seen('H')) {
  3076. v = code_value_short();
  3077. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3078. }
  3079. if (code_seen('F')) {
  3080. v = code_value_short();
  3081. absPreheatFanSpeed = constrain(v, 0, 255);
  3082. }
  3083. #if TEMP_SENSOR_BED != 0
  3084. if (code_seen('B')) {
  3085. v = code_value_short();
  3086. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3087. }
  3088. #endif
  3089. break;
  3090. }
  3091. }
  3092. }
  3093. #endif
  3094. #if HAS_POWER_SWITCH
  3095. /**
  3096. * M80: Turn on Power Supply
  3097. */
  3098. inline void gcode_M80() {
  3099. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3100. // If you have a switch on suicide pin, this is useful
  3101. // if you want to start another print with suicide feature after
  3102. // a print without suicide...
  3103. #if HAS_SUICIDE
  3104. OUT_WRITE(SUICIDE_PIN, HIGH);
  3105. #endif
  3106. #ifdef ULTIPANEL
  3107. powersupply = true;
  3108. LCD_MESSAGEPGM(WELCOME_MSG);
  3109. lcd_update();
  3110. #endif
  3111. }
  3112. #endif // HAS_POWER_SWITCH
  3113. /**
  3114. * M81: Turn off Power, including Power Supply, if there is one.
  3115. *
  3116. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3117. */
  3118. inline void gcode_M81() {
  3119. disable_all_heaters();
  3120. finishAndDisableSteppers();
  3121. fanSpeed = 0;
  3122. delay(1000); // Wait 1 second before switching off
  3123. #if HAS_SUICIDE
  3124. st_synchronize();
  3125. suicide();
  3126. #elif HAS_POWER_SWITCH
  3127. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3128. #endif
  3129. #ifdef ULTIPANEL
  3130. #if HAS_POWER_SWITCH
  3131. powersupply = false;
  3132. #endif
  3133. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3134. lcd_update();
  3135. #endif
  3136. }
  3137. /**
  3138. * M82: Set E codes absolute (default)
  3139. */
  3140. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3141. /**
  3142. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3143. */
  3144. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3145. /**
  3146. * M18, M84: Disable all stepper motors
  3147. */
  3148. inline void gcode_M18_M84() {
  3149. if (code_seen('S')) {
  3150. stepper_inactive_time = code_value() * 1000;
  3151. }
  3152. else {
  3153. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3154. if (all_axis) {
  3155. finishAndDisableSteppers();
  3156. }
  3157. else {
  3158. st_synchronize();
  3159. if (code_seen('X')) disable_x();
  3160. if (code_seen('Y')) disable_y();
  3161. if (code_seen('Z')) disable_z();
  3162. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3163. if (code_seen('E')) {
  3164. disable_e0();
  3165. disable_e1();
  3166. disable_e2();
  3167. disable_e3();
  3168. }
  3169. #endif
  3170. }
  3171. }
  3172. }
  3173. /**
  3174. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3175. */
  3176. inline void gcode_M85() {
  3177. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3178. }
  3179. /**
  3180. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3181. * (Follows the same syntax as G92)
  3182. */
  3183. inline void gcode_M92() {
  3184. for(int8_t i=0; i < NUM_AXIS; i++) {
  3185. if (code_seen(axis_codes[i])) {
  3186. if (i == E_AXIS) {
  3187. float value = code_value();
  3188. if (value < 20.0) {
  3189. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3190. max_e_jerk *= factor;
  3191. max_feedrate[i] *= factor;
  3192. axis_steps_per_sqr_second[i] *= factor;
  3193. }
  3194. axis_steps_per_unit[i] = value;
  3195. }
  3196. else {
  3197. axis_steps_per_unit[i] = code_value();
  3198. }
  3199. }
  3200. }
  3201. }
  3202. /**
  3203. * M114: Output current position to serial port
  3204. */
  3205. inline void gcode_M114() {
  3206. SERIAL_PROTOCOLPGM("X:");
  3207. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3208. SERIAL_PROTOCOLPGM(" Y:");
  3209. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3210. SERIAL_PROTOCOLPGM(" Z:");
  3211. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3212. SERIAL_PROTOCOLPGM(" E:");
  3213. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3214. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3215. SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
  3216. SERIAL_PROTOCOLPGM(" Y:");
  3217. SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
  3218. SERIAL_PROTOCOLPGM(" Z:");
  3219. SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
  3220. SERIAL_EOL;
  3221. #ifdef SCARA
  3222. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3223. SERIAL_PROTOCOL(delta[X_AXIS]);
  3224. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3225. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3226. SERIAL_EOL;
  3227. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3228. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3229. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3230. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3231. SERIAL_EOL;
  3232. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3233. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3234. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3235. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3236. SERIAL_EOL; SERIAL_EOL;
  3237. #endif
  3238. }
  3239. /**
  3240. * M115: Capabilities string
  3241. */
  3242. inline void gcode_M115() {
  3243. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3244. }
  3245. /**
  3246. * M117: Set LCD Status Message
  3247. */
  3248. inline void gcode_M117() {
  3249. lcd_setstatus(current_command_args);
  3250. }
  3251. /**
  3252. * M119: Output endstop states to serial output
  3253. */
  3254. inline void gcode_M119() {
  3255. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3256. #if HAS_X_MIN
  3257. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3258. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3259. #endif
  3260. #if HAS_X_MAX
  3261. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3262. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3263. #endif
  3264. #if HAS_Y_MIN
  3265. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3266. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3267. #endif
  3268. #if HAS_Y_MAX
  3269. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3270. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3271. #endif
  3272. #if HAS_Z_MIN
  3273. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3274. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3275. #endif
  3276. #if HAS_Z_MAX
  3277. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3278. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3279. #endif
  3280. #if HAS_Z2_MAX
  3281. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3282. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3283. #endif
  3284. #if HAS_Z_PROBE
  3285. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3286. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3287. #endif
  3288. }
  3289. /**
  3290. * M120: Enable endstops
  3291. */
  3292. inline void gcode_M120() { enable_endstops(true); }
  3293. /**
  3294. * M121: Disable endstops
  3295. */
  3296. inline void gcode_M121() { enable_endstops(false); }
  3297. #ifdef BLINKM
  3298. /**
  3299. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3300. */
  3301. inline void gcode_M150() {
  3302. SendColors(
  3303. code_seen('R') ? (byte)code_value_short() : 0,
  3304. code_seen('U') ? (byte)code_value_short() : 0,
  3305. code_seen('B') ? (byte)code_value_short() : 0
  3306. );
  3307. }
  3308. #endif // BLINKM
  3309. /**
  3310. * M200: Set filament diameter and set E axis units to cubic millimeters
  3311. *
  3312. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3313. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3314. */
  3315. inline void gcode_M200() {
  3316. if (setTargetedHotend(200)) return;
  3317. if (code_seen('D')) {
  3318. float diameter = code_value();
  3319. // setting any extruder filament size disables volumetric on the assumption that
  3320. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3321. // for all extruders
  3322. volumetric_enabled = (diameter != 0.0);
  3323. if (volumetric_enabled) {
  3324. filament_size[target_extruder] = diameter;
  3325. // make sure all extruders have some sane value for the filament size
  3326. for (int i=0; i<EXTRUDERS; i++)
  3327. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3328. }
  3329. }
  3330. else {
  3331. //reserved for setting filament diameter via UFID or filament measuring device
  3332. return;
  3333. }
  3334. calculate_volumetric_multipliers();
  3335. }
  3336. /**
  3337. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3338. */
  3339. inline void gcode_M201() {
  3340. for (int8_t i=0; i < NUM_AXIS; i++) {
  3341. if (code_seen(axis_codes[i])) {
  3342. max_acceleration_units_per_sq_second[i] = code_value();
  3343. }
  3344. }
  3345. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3346. reset_acceleration_rates();
  3347. }
  3348. #if 0 // Not used for Sprinter/grbl gen6
  3349. inline void gcode_M202() {
  3350. for(int8_t i=0; i < NUM_AXIS; i++) {
  3351. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3352. }
  3353. }
  3354. #endif
  3355. /**
  3356. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3357. */
  3358. inline void gcode_M203() {
  3359. for (int8_t i=0; i < NUM_AXIS; i++) {
  3360. if (code_seen(axis_codes[i])) {
  3361. max_feedrate[i] = code_value();
  3362. }
  3363. }
  3364. }
  3365. /**
  3366. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3367. *
  3368. * P = Printing moves
  3369. * R = Retract only (no X, Y, Z) moves
  3370. * T = Travel (non printing) moves
  3371. *
  3372. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3373. */
  3374. inline void gcode_M204() {
  3375. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3376. travel_acceleration = acceleration = code_value();
  3377. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3378. SERIAL_EOL;
  3379. }
  3380. if (code_seen('P')) {
  3381. acceleration = code_value();
  3382. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3383. SERIAL_EOL;
  3384. }
  3385. if (code_seen('R')) {
  3386. retract_acceleration = code_value();
  3387. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3388. SERIAL_EOL;
  3389. }
  3390. if (code_seen('T')) {
  3391. travel_acceleration = code_value();
  3392. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3393. SERIAL_EOL;
  3394. }
  3395. }
  3396. /**
  3397. * M205: Set Advanced Settings
  3398. *
  3399. * S = Min Feed Rate (mm/s)
  3400. * T = Min Travel Feed Rate (mm/s)
  3401. * B = Min Segment Time (µs)
  3402. * X = Max XY Jerk (mm/s/s)
  3403. * Z = Max Z Jerk (mm/s/s)
  3404. * E = Max E Jerk (mm/s/s)
  3405. */
  3406. inline void gcode_M205() {
  3407. if (code_seen('S')) minimumfeedrate = code_value();
  3408. if (code_seen('T')) mintravelfeedrate = code_value();
  3409. if (code_seen('B')) minsegmenttime = code_value();
  3410. if (code_seen('X')) max_xy_jerk = code_value();
  3411. if (code_seen('Z')) max_z_jerk = code_value();
  3412. if (code_seen('E')) max_e_jerk = code_value();
  3413. }
  3414. /**
  3415. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3416. */
  3417. inline void gcode_M206() {
  3418. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3419. if (code_seen(axis_codes[i])) {
  3420. home_offset[i] = code_value();
  3421. }
  3422. }
  3423. #ifdef SCARA
  3424. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3425. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3426. #endif
  3427. }
  3428. #ifdef DELTA
  3429. /**
  3430. * M665: Set delta configurations
  3431. *
  3432. * L = diagonal rod
  3433. * R = delta radius
  3434. * S = segments per second
  3435. */
  3436. inline void gcode_M665() {
  3437. if (code_seen('L')) delta_diagonal_rod = code_value();
  3438. if (code_seen('R')) delta_radius = code_value();
  3439. if (code_seen('S')) delta_segments_per_second = code_value();
  3440. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3441. }
  3442. /**
  3443. * M666: Set delta endstop adjustment
  3444. */
  3445. inline void gcode_M666() {
  3446. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3447. if (code_seen(axis_codes[i])) {
  3448. endstop_adj[i] = code_value();
  3449. }
  3450. }
  3451. }
  3452. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3453. /**
  3454. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3455. */
  3456. inline void gcode_M666() {
  3457. if (code_seen('Z')) z_endstop_adj = code_value();
  3458. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3459. SERIAL_EOL;
  3460. }
  3461. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3462. #ifdef FWRETRACT
  3463. /**
  3464. * M207: Set firmware retraction values
  3465. *
  3466. * S[+mm] retract_length
  3467. * W[+mm] retract_length_swap (multi-extruder)
  3468. * F[mm/min] retract_feedrate
  3469. * Z[mm] retract_zlift
  3470. */
  3471. inline void gcode_M207() {
  3472. if (code_seen('S')) retract_length = code_value();
  3473. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3474. if (code_seen('Z')) retract_zlift = code_value();
  3475. #if EXTRUDERS > 1
  3476. if (code_seen('W')) retract_length_swap = code_value();
  3477. #endif
  3478. }
  3479. /**
  3480. * M208: Set firmware un-retraction values
  3481. *
  3482. * S[+mm] retract_recover_length (in addition to M207 S*)
  3483. * W[+mm] retract_recover_length_swap (multi-extruder)
  3484. * F[mm/min] retract_recover_feedrate
  3485. */
  3486. inline void gcode_M208() {
  3487. if (code_seen('S')) retract_recover_length = code_value();
  3488. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3489. #if EXTRUDERS > 1
  3490. if (code_seen('W')) retract_recover_length_swap = code_value();
  3491. #endif
  3492. }
  3493. /**
  3494. * M209: Enable automatic retract (M209 S1)
  3495. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3496. */
  3497. inline void gcode_M209() {
  3498. if (code_seen('S')) {
  3499. int t = code_value_short();
  3500. switch(t) {
  3501. case 0:
  3502. autoretract_enabled = false;
  3503. break;
  3504. case 1:
  3505. autoretract_enabled = true;
  3506. break;
  3507. default:
  3508. unknown_command_error();
  3509. return;
  3510. }
  3511. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3512. }
  3513. }
  3514. #endif // FWRETRACT
  3515. #if EXTRUDERS > 1
  3516. /**
  3517. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3518. */
  3519. inline void gcode_M218() {
  3520. if (setTargetedHotend(218)) return;
  3521. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3522. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3523. #ifdef DUAL_X_CARRIAGE
  3524. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3525. #endif
  3526. SERIAL_ECHO_START;
  3527. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3528. for (int e = 0; e < EXTRUDERS; e++) {
  3529. SERIAL_CHAR(' ');
  3530. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3531. SERIAL_CHAR(',');
  3532. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3533. #ifdef DUAL_X_CARRIAGE
  3534. SERIAL_CHAR(',');
  3535. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3536. #endif
  3537. }
  3538. SERIAL_EOL;
  3539. }
  3540. #endif // EXTRUDERS > 1
  3541. /**
  3542. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3543. */
  3544. inline void gcode_M220() {
  3545. if (code_seen('S')) feedrate_multiplier = code_value();
  3546. }
  3547. /**
  3548. * M221: Set extrusion percentage (M221 T0 S95)
  3549. */
  3550. inline void gcode_M221() {
  3551. if (code_seen('S')) {
  3552. int sval = code_value();
  3553. if (code_seen('T')) {
  3554. if (setTargetedHotend(221)) return;
  3555. extruder_multiplier[target_extruder] = sval;
  3556. }
  3557. else {
  3558. extruder_multiplier[active_extruder] = sval;
  3559. }
  3560. }
  3561. }
  3562. /**
  3563. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3564. */
  3565. inline void gcode_M226() {
  3566. if (code_seen('P')) {
  3567. int pin_number = code_value();
  3568. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3569. if (pin_state >= -1 && pin_state <= 1) {
  3570. for (int8_t i = 0; i < COUNT(sensitive_pins); i++) {
  3571. if (sensitive_pins[i] == pin_number) {
  3572. pin_number = -1;
  3573. break;
  3574. }
  3575. }
  3576. if (pin_number > -1) {
  3577. int target = LOW;
  3578. st_synchronize();
  3579. pinMode(pin_number, INPUT);
  3580. switch(pin_state){
  3581. case 1:
  3582. target = HIGH;
  3583. break;
  3584. case 0:
  3585. target = LOW;
  3586. break;
  3587. case -1:
  3588. target = !digitalRead(pin_number);
  3589. break;
  3590. }
  3591. while (digitalRead(pin_number) != target) idle();
  3592. } // pin_number > -1
  3593. } // pin_state -1 0 1
  3594. } // code_seen('P')
  3595. }
  3596. #if NUM_SERVOS > 0
  3597. /**
  3598. * M280: Get or set servo position. P<index> S<angle>
  3599. */
  3600. inline void gcode_M280() {
  3601. int servo_index = code_seen('P') ? code_value_short() : -1;
  3602. int servo_position = 0;
  3603. if (code_seen('S')) {
  3604. servo_position = code_value_short();
  3605. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  3606. servo[servo_index].move(servo_position);
  3607. else {
  3608. SERIAL_ECHO_START;
  3609. SERIAL_ECHO("Servo ");
  3610. SERIAL_ECHO(servo_index);
  3611. SERIAL_ECHOLN(" out of range");
  3612. }
  3613. }
  3614. else if (servo_index >= 0) {
  3615. SERIAL_PROTOCOL(MSG_OK);
  3616. SERIAL_PROTOCOL(" Servo ");
  3617. SERIAL_PROTOCOL(servo_index);
  3618. SERIAL_PROTOCOL(": ");
  3619. SERIAL_PROTOCOL(servo[servo_index].read());
  3620. SERIAL_EOL;
  3621. }
  3622. }
  3623. #endif // NUM_SERVOS > 0
  3624. #if HAS_BUZZER
  3625. /**
  3626. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3627. */
  3628. inline void gcode_M300() {
  3629. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3630. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3631. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3632. buzz(beepP, beepS);
  3633. }
  3634. #endif // HAS_BUZZER
  3635. #ifdef PIDTEMP
  3636. /**
  3637. * M301: Set PID parameters P I D (and optionally C)
  3638. */
  3639. inline void gcode_M301() {
  3640. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3641. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3642. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3643. if (e < EXTRUDERS) { // catch bad input value
  3644. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3645. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3646. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3647. #ifdef PID_ADD_EXTRUSION_RATE
  3648. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3649. #endif
  3650. updatePID();
  3651. SERIAL_PROTOCOL(MSG_OK);
  3652. #ifdef PID_PARAMS_PER_EXTRUDER
  3653. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3654. SERIAL_PROTOCOL(e);
  3655. #endif // PID_PARAMS_PER_EXTRUDER
  3656. SERIAL_PROTOCOL(" p:");
  3657. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3658. SERIAL_PROTOCOL(" i:");
  3659. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3660. SERIAL_PROTOCOL(" d:");
  3661. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3662. #ifdef PID_ADD_EXTRUSION_RATE
  3663. SERIAL_PROTOCOL(" c:");
  3664. //Kc does not have scaling applied above, or in resetting defaults
  3665. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3666. #endif
  3667. SERIAL_EOL;
  3668. }
  3669. else {
  3670. SERIAL_ECHO_START;
  3671. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3672. }
  3673. }
  3674. #endif // PIDTEMP
  3675. #ifdef PIDTEMPBED
  3676. inline void gcode_M304() {
  3677. if (code_seen('P')) bedKp = code_value();
  3678. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3679. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3680. updatePID();
  3681. SERIAL_PROTOCOL(MSG_OK);
  3682. SERIAL_PROTOCOL(" p:");
  3683. SERIAL_PROTOCOL(bedKp);
  3684. SERIAL_PROTOCOL(" i:");
  3685. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3686. SERIAL_PROTOCOL(" d:");
  3687. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3688. SERIAL_EOL;
  3689. }
  3690. #endif // PIDTEMPBED
  3691. #if defined(CHDK) || HAS_PHOTOGRAPH
  3692. /**
  3693. * M240: Trigger a camera by emulating a Canon RC-1
  3694. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3695. */
  3696. inline void gcode_M240() {
  3697. #ifdef CHDK
  3698. OUT_WRITE(CHDK, HIGH);
  3699. chdkHigh = millis();
  3700. chdkActive = true;
  3701. #elif HAS_PHOTOGRAPH
  3702. const uint8_t NUM_PULSES = 16;
  3703. const float PULSE_LENGTH = 0.01524;
  3704. for (int i = 0; i < NUM_PULSES; i++) {
  3705. WRITE(PHOTOGRAPH_PIN, HIGH);
  3706. _delay_ms(PULSE_LENGTH);
  3707. WRITE(PHOTOGRAPH_PIN, LOW);
  3708. _delay_ms(PULSE_LENGTH);
  3709. }
  3710. delay(7.33);
  3711. for (int i = 0; i < NUM_PULSES; i++) {
  3712. WRITE(PHOTOGRAPH_PIN, HIGH);
  3713. _delay_ms(PULSE_LENGTH);
  3714. WRITE(PHOTOGRAPH_PIN, LOW);
  3715. _delay_ms(PULSE_LENGTH);
  3716. }
  3717. #endif // !CHDK && HAS_PHOTOGRAPH
  3718. }
  3719. #endif // CHDK || PHOTOGRAPH_PIN
  3720. #ifdef HAS_LCD_CONTRAST
  3721. /**
  3722. * M250: Read and optionally set the LCD contrast
  3723. */
  3724. inline void gcode_M250() {
  3725. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3726. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3727. SERIAL_PROTOCOL(lcd_contrast);
  3728. SERIAL_EOL;
  3729. }
  3730. #endif // HAS_LCD_CONTRAST
  3731. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3732. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3733. /**
  3734. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3735. */
  3736. inline void gcode_M302() {
  3737. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3738. }
  3739. #endif // PREVENT_DANGEROUS_EXTRUDE
  3740. /**
  3741. * M303: PID relay autotune
  3742. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3743. * E<extruder> (-1 for the bed)
  3744. * C<cycles>
  3745. */
  3746. inline void gcode_M303() {
  3747. int e = code_seen('E') ? code_value_short() : 0;
  3748. int c = code_seen('C') ? code_value_short() : 5;
  3749. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3750. PID_autotune(temp, e, c);
  3751. }
  3752. #ifdef SCARA
  3753. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3754. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3755. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3756. if (IsRunning()) {
  3757. //gcode_get_destination(); // For X Y Z E F
  3758. delta[X_AXIS] = delta_x;
  3759. delta[Y_AXIS] = delta_y;
  3760. calculate_SCARA_forward_Transform(delta);
  3761. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3762. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3763. prepare_move();
  3764. //ok_to_send();
  3765. return true;
  3766. }
  3767. return false;
  3768. }
  3769. /**
  3770. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3771. */
  3772. inline bool gcode_M360() {
  3773. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3774. return SCARA_move_to_cal(0, 120);
  3775. }
  3776. /**
  3777. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3778. */
  3779. inline bool gcode_M361() {
  3780. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3781. return SCARA_move_to_cal(90, 130);
  3782. }
  3783. /**
  3784. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3785. */
  3786. inline bool gcode_M362() {
  3787. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3788. return SCARA_move_to_cal(60, 180);
  3789. }
  3790. /**
  3791. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3792. */
  3793. inline bool gcode_M363() {
  3794. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3795. return SCARA_move_to_cal(50, 90);
  3796. }
  3797. /**
  3798. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3799. */
  3800. inline bool gcode_M364() {
  3801. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3802. return SCARA_move_to_cal(45, 135);
  3803. }
  3804. /**
  3805. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3806. */
  3807. inline void gcode_M365() {
  3808. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3809. if (code_seen(axis_codes[i])) {
  3810. axis_scaling[i] = code_value();
  3811. }
  3812. }
  3813. }
  3814. #endif // SCARA
  3815. #ifdef EXT_SOLENOID
  3816. void enable_solenoid(uint8_t num) {
  3817. switch(num) {
  3818. case 0:
  3819. OUT_WRITE(SOL0_PIN, HIGH);
  3820. break;
  3821. #if HAS_SOLENOID_1
  3822. case 1:
  3823. OUT_WRITE(SOL1_PIN, HIGH);
  3824. break;
  3825. #endif
  3826. #if HAS_SOLENOID_2
  3827. case 2:
  3828. OUT_WRITE(SOL2_PIN, HIGH);
  3829. break;
  3830. #endif
  3831. #if HAS_SOLENOID_3
  3832. case 3:
  3833. OUT_WRITE(SOL3_PIN, HIGH);
  3834. break;
  3835. #endif
  3836. default:
  3837. SERIAL_ECHO_START;
  3838. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3839. break;
  3840. }
  3841. }
  3842. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3843. void disable_all_solenoids() {
  3844. OUT_WRITE(SOL0_PIN, LOW);
  3845. OUT_WRITE(SOL1_PIN, LOW);
  3846. OUT_WRITE(SOL2_PIN, LOW);
  3847. OUT_WRITE(SOL3_PIN, LOW);
  3848. }
  3849. /**
  3850. * M380: Enable solenoid on the active extruder
  3851. */
  3852. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3853. /**
  3854. * M381: Disable all solenoids
  3855. */
  3856. inline void gcode_M381() { disable_all_solenoids(); }
  3857. #endif // EXT_SOLENOID
  3858. /**
  3859. * M400: Finish all moves
  3860. */
  3861. inline void gcode_M400() { st_synchronize(); }
  3862. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3863. #ifdef SERVO_ENDSTOPS
  3864. void raise_z_for_servo() {
  3865. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3866. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3867. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  3868. }
  3869. #endif
  3870. /**
  3871. * M401: Engage Z Servo endstop if available
  3872. */
  3873. inline void gcode_M401() {
  3874. #ifdef SERVO_ENDSTOPS
  3875. raise_z_for_servo();
  3876. #endif
  3877. deploy_z_probe();
  3878. }
  3879. /**
  3880. * M402: Retract Z Servo endstop if enabled
  3881. */
  3882. inline void gcode_M402() {
  3883. #ifdef SERVO_ENDSTOPS
  3884. raise_z_for_servo();
  3885. #endif
  3886. stow_z_probe(false);
  3887. }
  3888. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3889. #ifdef FILAMENT_SENSOR
  3890. /**
  3891. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3892. */
  3893. inline void gcode_M404() {
  3894. #if HAS_FILWIDTH
  3895. if (code_seen('W')) {
  3896. filament_width_nominal = code_value();
  3897. }
  3898. else {
  3899. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3900. SERIAL_PROTOCOLLN(filament_width_nominal);
  3901. }
  3902. #endif
  3903. }
  3904. /**
  3905. * M405: Turn on filament sensor for control
  3906. */
  3907. inline void gcode_M405() {
  3908. if (code_seen('D')) meas_delay_cm = code_value();
  3909. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3910. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3911. int temp_ratio = widthFil_to_size_ratio();
  3912. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3913. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3914. delay_index1 = delay_index2 = 0;
  3915. }
  3916. filament_sensor = true;
  3917. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3918. //SERIAL_PROTOCOL(filament_width_meas);
  3919. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3920. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  3921. }
  3922. /**
  3923. * M406: Turn off filament sensor for control
  3924. */
  3925. inline void gcode_M406() { filament_sensor = false; }
  3926. /**
  3927. * M407: Get measured filament diameter on serial output
  3928. */
  3929. inline void gcode_M407() {
  3930. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3931. SERIAL_PROTOCOLLN(filament_width_meas);
  3932. }
  3933. #endif // FILAMENT_SENSOR
  3934. /**
  3935. * M410: Quickstop - Abort all planned moves
  3936. *
  3937. * This will stop the carriages mid-move, so most likely they
  3938. * will be out of sync with the stepper position after this.
  3939. */
  3940. inline void gcode_M410() { quickStop(); }
  3941. #ifdef MESH_BED_LEVELING
  3942. /**
  3943. * M420: Enable/Disable Mesh Bed Leveling
  3944. */
  3945. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3946. /**
  3947. * M421: Set a single Mesh Bed Leveling Z coordinate
  3948. */
  3949. inline void gcode_M421() {
  3950. float x, y, z;
  3951. bool err = false, hasX, hasY, hasZ;
  3952. if ((hasX = code_seen('X'))) x = code_value();
  3953. if ((hasY = code_seen('Y'))) y = code_value();
  3954. if ((hasZ = code_seen('Z'))) z = code_value();
  3955. if (!hasX || !hasY || !hasZ) {
  3956. SERIAL_ERROR_START;
  3957. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3958. err = true;
  3959. }
  3960. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3961. SERIAL_ERROR_START;
  3962. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3963. err = true;
  3964. }
  3965. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3966. }
  3967. #endif
  3968. /**
  3969. * M428: Set home_offset based on the distance between the
  3970. * current_position and the nearest "reference point."
  3971. * If an axis is past center its endstop position
  3972. * is the reference-point. Otherwise it uses 0. This allows
  3973. * the Z offset to be set near the bed when using a max endstop.
  3974. *
  3975. * M428 can't be used more than 2cm away from 0 or an endstop.
  3976. *
  3977. * Use M206 to set these values directly.
  3978. */
  3979. inline void gcode_M428() {
  3980. bool err = false;
  3981. float new_offs[3], new_pos[3];
  3982. memcpy(new_pos, current_position, sizeof(new_pos));
  3983. memcpy(new_offs, home_offset, sizeof(new_offs));
  3984. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3985. if (axis_known_position[i]) {
  3986. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3987. diff = new_pos[i] - base;
  3988. if (diff > -20 && diff < 20) {
  3989. new_offs[i] -= diff;
  3990. new_pos[i] = base;
  3991. }
  3992. else {
  3993. SERIAL_ERROR_START;
  3994. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3995. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3996. #if HAS_BUZZER
  3997. enqueuecommands_P(PSTR("M300 S40 P200"));
  3998. #endif
  3999. err = true;
  4000. break;
  4001. }
  4002. }
  4003. }
  4004. if (!err) {
  4005. memcpy(current_position, new_pos, sizeof(new_pos));
  4006. memcpy(home_offset, new_offs, sizeof(new_offs));
  4007. sync_plan_position();
  4008. LCD_ALERTMESSAGEPGM("Offset applied.");
  4009. #if HAS_BUZZER
  4010. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4011. #endif
  4012. }
  4013. }
  4014. /**
  4015. * M500: Store settings in EEPROM
  4016. */
  4017. inline void gcode_M500() {
  4018. Config_StoreSettings();
  4019. }
  4020. /**
  4021. * M501: Read settings from EEPROM
  4022. */
  4023. inline void gcode_M501() {
  4024. Config_RetrieveSettings();
  4025. }
  4026. /**
  4027. * M502: Revert to default settings
  4028. */
  4029. inline void gcode_M502() {
  4030. Config_ResetDefault();
  4031. }
  4032. /**
  4033. * M503: print settings currently in memory
  4034. */
  4035. inline void gcode_M503() {
  4036. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4037. }
  4038. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4039. /**
  4040. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4041. */
  4042. inline void gcode_M540() {
  4043. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4044. }
  4045. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4046. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4047. inline void gcode_SET_Z_PROBE_OFFSET() {
  4048. float value;
  4049. if (code_seen('Z')) {
  4050. value = code_value();
  4051. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4052. zprobe_zoffset = value;
  4053. SERIAL_ECHO_START;
  4054. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4055. SERIAL_EOL;
  4056. }
  4057. else {
  4058. SERIAL_ECHO_START;
  4059. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4060. SERIAL_ECHOPGM(MSG_Z_MIN);
  4061. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4062. SERIAL_ECHOPGM(MSG_Z_MAX);
  4063. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4064. SERIAL_EOL;
  4065. }
  4066. }
  4067. else {
  4068. SERIAL_ECHO_START;
  4069. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4070. SERIAL_ECHO(zprobe_zoffset);
  4071. SERIAL_EOL;
  4072. }
  4073. }
  4074. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4075. #ifdef FILAMENTCHANGEENABLE
  4076. /**
  4077. * M600: Pause for filament change
  4078. *
  4079. * E[distance] - Retract the filament this far (negative value)
  4080. * Z[distance] - Move the Z axis by this distance
  4081. * X[position] - Move to this X position, with Y
  4082. * Y[position] - Move to this Y position, with X
  4083. * L[distance] - Retract distance for removal (manual reload)
  4084. *
  4085. * Default values are used for omitted arguments.
  4086. *
  4087. */
  4088. inline void gcode_M600() {
  4089. if (degHotend(active_extruder) < extrude_min_temp) {
  4090. SERIAL_ERROR_START;
  4091. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4092. return;
  4093. }
  4094. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4095. for (int i=0; i<NUM_AXIS; i++)
  4096. lastpos[i] = destination[i] = current_position[i];
  4097. #ifdef DELTA
  4098. #define RUNPLAN calculate_delta(destination); \
  4099. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4100. #else
  4101. #define RUNPLAN line_to_destination();
  4102. #endif
  4103. //retract by E
  4104. if (code_seen('E')) destination[E_AXIS] += code_value();
  4105. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4106. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4107. #endif
  4108. RUNPLAN;
  4109. //lift Z
  4110. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4111. #ifdef FILAMENTCHANGE_ZADD
  4112. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4113. #endif
  4114. RUNPLAN;
  4115. //move xy
  4116. if (code_seen('X')) destination[X_AXIS] = code_value();
  4117. #ifdef FILAMENTCHANGE_XPOS
  4118. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4119. #endif
  4120. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4121. #ifdef FILAMENTCHANGE_YPOS
  4122. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4123. #endif
  4124. RUNPLAN;
  4125. if (code_seen('L')) destination[E_AXIS] += code_value();
  4126. #ifdef FILAMENTCHANGE_FINALRETRACT
  4127. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4128. #endif
  4129. RUNPLAN;
  4130. //finish moves
  4131. st_synchronize();
  4132. //disable extruder steppers so filament can be removed
  4133. disable_e0();
  4134. disable_e1();
  4135. disable_e2();
  4136. disable_e3();
  4137. delay(100);
  4138. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4139. millis_t next_tick = 0;
  4140. while (!lcd_clicked()) {
  4141. #ifndef AUTO_FILAMENT_CHANGE
  4142. millis_t ms = millis();
  4143. if (ms >= next_tick) {
  4144. lcd_quick_feedback();
  4145. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4146. }
  4147. manage_heater();
  4148. manage_inactivity(true);
  4149. lcd_update();
  4150. #else
  4151. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4152. destination[E_AXIS] = current_position[E_AXIS];
  4153. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4154. st_synchronize();
  4155. #endif
  4156. } // while(!lcd_clicked)
  4157. lcd_quick_feedback(); // click sound feedback
  4158. #ifdef AUTO_FILAMENT_CHANGE
  4159. current_position[E_AXIS] = 0;
  4160. st_synchronize();
  4161. #endif
  4162. //return to normal
  4163. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4164. #ifdef FILAMENTCHANGE_FINALRETRACT
  4165. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4166. #endif
  4167. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4168. plan_set_e_position(current_position[E_AXIS]);
  4169. RUNPLAN; //should do nothing
  4170. lcd_reset_alert_level();
  4171. #ifdef DELTA
  4172. // Move XYZ to starting position, then E
  4173. calculate_delta(lastpos);
  4174. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4175. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4176. #else
  4177. // Move XY to starting position, then Z, then E
  4178. destination[X_AXIS] = lastpos[X_AXIS];
  4179. destination[Y_AXIS] = lastpos[Y_AXIS];
  4180. line_to_destination();
  4181. destination[Z_AXIS] = lastpos[Z_AXIS];
  4182. line_to_destination();
  4183. destination[E_AXIS] = lastpos[E_AXIS];
  4184. line_to_destination();
  4185. #endif
  4186. #ifdef FILAMENT_RUNOUT_SENSOR
  4187. filrunoutEnqueued = false;
  4188. #endif
  4189. }
  4190. #endif // FILAMENTCHANGEENABLE
  4191. #ifdef DUAL_X_CARRIAGE
  4192. /**
  4193. * M605: Set dual x-carriage movement mode
  4194. *
  4195. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4196. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4197. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4198. * millimeters x-offset and an optional differential hotend temperature of
  4199. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4200. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4201. *
  4202. * Note: the X axis should be homed after changing dual x-carriage mode.
  4203. */
  4204. inline void gcode_M605() {
  4205. st_synchronize();
  4206. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4207. switch(dual_x_carriage_mode) {
  4208. case DXC_DUPLICATION_MODE:
  4209. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4210. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4211. SERIAL_ECHO_START;
  4212. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4213. SERIAL_CHAR(' ');
  4214. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4215. SERIAL_CHAR(',');
  4216. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4217. SERIAL_CHAR(' ');
  4218. SERIAL_ECHO(duplicate_extruder_x_offset);
  4219. SERIAL_CHAR(',');
  4220. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4221. break;
  4222. case DXC_FULL_CONTROL_MODE:
  4223. case DXC_AUTO_PARK_MODE:
  4224. break;
  4225. default:
  4226. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4227. break;
  4228. }
  4229. active_extruder_parked = false;
  4230. extruder_duplication_enabled = false;
  4231. delayed_move_time = 0;
  4232. }
  4233. #endif // DUAL_X_CARRIAGE
  4234. /**
  4235. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4236. */
  4237. inline void gcode_M907() {
  4238. #if HAS_DIGIPOTSS
  4239. for (int i=0;i<NUM_AXIS;i++)
  4240. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4241. if (code_seen('B')) digipot_current(4, code_value());
  4242. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4243. #endif
  4244. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4245. if (code_seen('X')) digipot_current(0, code_value());
  4246. #endif
  4247. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4248. if (code_seen('Z')) digipot_current(1, code_value());
  4249. #endif
  4250. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4251. if (code_seen('E')) digipot_current(2, code_value());
  4252. #endif
  4253. #ifdef DIGIPOT_I2C
  4254. // this one uses actual amps in floating point
  4255. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4256. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4257. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4258. #endif
  4259. }
  4260. #if HAS_DIGIPOTSS
  4261. /**
  4262. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4263. */
  4264. inline void gcode_M908() {
  4265. digitalPotWrite(
  4266. code_seen('P') ? code_value() : 0,
  4267. code_seen('S') ? code_value() : 0
  4268. );
  4269. }
  4270. #endif // HAS_DIGIPOTSS
  4271. #if HAS_MICROSTEPS
  4272. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4273. inline void gcode_M350() {
  4274. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4275. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4276. if(code_seen('B')) microstep_mode(4,code_value());
  4277. microstep_readings();
  4278. }
  4279. /**
  4280. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4281. * S# determines MS1 or MS2, X# sets the pin high/low.
  4282. */
  4283. inline void gcode_M351() {
  4284. if (code_seen('S')) switch(code_value_short()) {
  4285. case 1:
  4286. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4287. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4288. break;
  4289. case 2:
  4290. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4291. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4292. break;
  4293. }
  4294. microstep_readings();
  4295. }
  4296. #endif // HAS_MICROSTEPS
  4297. /**
  4298. * M999: Restart after being stopped
  4299. */
  4300. inline void gcode_M999() {
  4301. Running = true;
  4302. lcd_reset_alert_level();
  4303. gcode_LastN = Stopped_gcode_LastN;
  4304. FlushSerialRequestResend();
  4305. }
  4306. /**
  4307. * T0-T3: Switch tool, usually switching extruders
  4308. *
  4309. * F[mm/min] Set the movement feedrate
  4310. */
  4311. inline void gcode_T(uint8_t tmp_extruder) {
  4312. if (tmp_extruder >= EXTRUDERS) {
  4313. SERIAL_ECHO_START;
  4314. SERIAL_CHAR('T');
  4315. SERIAL_PROTOCOL_F(tmp_extruder,DEC);
  4316. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4317. }
  4318. else {
  4319. target_extruder = tmp_extruder;
  4320. #if EXTRUDERS > 1
  4321. bool make_move = false;
  4322. #endif
  4323. if (code_seen('F')) {
  4324. #if EXTRUDERS > 1
  4325. make_move = true;
  4326. #endif
  4327. float next_feedrate = code_value();
  4328. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4329. }
  4330. #if EXTRUDERS > 1
  4331. if (tmp_extruder != active_extruder) {
  4332. // Save current position to return to after applying extruder offset
  4333. set_destination_to_current();
  4334. #ifdef DUAL_X_CARRIAGE
  4335. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4336. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4337. // Park old head: 1) raise 2) move to park position 3) lower
  4338. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4339. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4340. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4341. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4342. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4343. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4344. st_synchronize();
  4345. }
  4346. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4347. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4348. extruder_offset[Y_AXIS][active_extruder] +
  4349. extruder_offset[Y_AXIS][tmp_extruder];
  4350. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4351. extruder_offset[Z_AXIS][active_extruder] +
  4352. extruder_offset[Z_AXIS][tmp_extruder];
  4353. active_extruder = tmp_extruder;
  4354. // This function resets the max/min values - the current position may be overwritten below.
  4355. set_axis_is_at_home(X_AXIS);
  4356. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4357. current_position[X_AXIS] = inactive_extruder_x_pos;
  4358. inactive_extruder_x_pos = destination[X_AXIS];
  4359. }
  4360. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4361. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4362. if (active_extruder == 0 || active_extruder_parked)
  4363. current_position[X_AXIS] = inactive_extruder_x_pos;
  4364. else
  4365. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4366. inactive_extruder_x_pos = destination[X_AXIS];
  4367. extruder_duplication_enabled = false;
  4368. }
  4369. else {
  4370. // record raised toolhead position for use by unpark
  4371. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4372. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4373. active_extruder_parked = true;
  4374. delayed_move_time = 0;
  4375. }
  4376. #else // !DUAL_X_CARRIAGE
  4377. // Offset extruder (only by XY)
  4378. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4379. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4380. // Set the new active extruder and position
  4381. active_extruder = tmp_extruder;
  4382. #endif // !DUAL_X_CARRIAGE
  4383. #ifdef DELTA
  4384. sync_plan_position_delta();
  4385. #else
  4386. sync_plan_position();
  4387. #endif
  4388. // Move to the old position if 'F' was in the parameters
  4389. if (make_move && IsRunning()) prepare_move();
  4390. }
  4391. #ifdef EXT_SOLENOID
  4392. st_synchronize();
  4393. disable_all_solenoids();
  4394. enable_solenoid_on_active_extruder();
  4395. #endif // EXT_SOLENOID
  4396. #endif // EXTRUDERS > 1
  4397. SERIAL_ECHO_START;
  4398. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4399. SERIAL_PROTOCOLLN((int)active_extruder);
  4400. }
  4401. }
  4402. /**
  4403. * Process a single command and dispatch it to its handler
  4404. * This is called from the main loop()
  4405. */
  4406. void process_next_command() {
  4407. current_command = command_queue[cmd_queue_index_r];
  4408. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4409. SERIAL_ECHO_START;
  4410. SERIAL_ECHOLN(current_command);
  4411. }
  4412. // Sanitize the current command:
  4413. // - Skip leading spaces
  4414. // - Bypass N[0-9][0-9]*[ ]*
  4415. // - Overwrite * with nul to mark the end
  4416. while (*current_command == ' ') ++current_command;
  4417. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4418. current_command += 2; // skip N[-0-9]
  4419. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4420. while (*current_command == ' ') ++current_command; // skip [ ]*
  4421. }
  4422. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4423. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4424. // Get the command code, which must be G, M, or T
  4425. char command_code = *current_command;
  4426. // The code must have a numeric value
  4427. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4428. int codenum; // define ahead of goto
  4429. // Bail early if there's no code
  4430. if (!code_is_good) goto ExitUnknownCommand;
  4431. // Args pointer optimizes code_seen, especially those taking XYZEF
  4432. // This wastes a little cpu on commands that expect no arguments.
  4433. current_command_args = current_command;
  4434. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4435. while (*current_command_args == ' ') ++current_command_args;
  4436. // Interpret the code int
  4437. seen_pointer = current_command;
  4438. codenum = code_value_short();
  4439. // Handle a known G, M, or T
  4440. switch(command_code) {
  4441. case 'G': switch (codenum) {
  4442. // G0, G1
  4443. case 0:
  4444. case 1:
  4445. gcode_G0_G1();
  4446. break;
  4447. // G2, G3
  4448. #ifndef SCARA
  4449. case 2: // G2 - CW ARC
  4450. case 3: // G3 - CCW ARC
  4451. gcode_G2_G3(codenum == 2);
  4452. break;
  4453. #endif
  4454. // G4 Dwell
  4455. case 4:
  4456. gcode_G4();
  4457. break;
  4458. #ifdef FWRETRACT
  4459. case 10: // G10: retract
  4460. case 11: // G11: retract_recover
  4461. gcode_G10_G11(codenum == 10);
  4462. break;
  4463. #endif //FWRETRACT
  4464. case 28: // G28: Home all axes, one at a time
  4465. gcode_G28();
  4466. break;
  4467. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4468. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4469. gcode_G29();
  4470. break;
  4471. #endif
  4472. #ifdef ENABLE_AUTO_BED_LEVELING
  4473. #ifndef Z_PROBE_SLED
  4474. case 30: // G30 Single Z Probe
  4475. gcode_G30();
  4476. break;
  4477. #else // Z_PROBE_SLED
  4478. case 31: // G31: dock the sled
  4479. case 32: // G32: undock the sled
  4480. dock_sled(codenum == 31);
  4481. break;
  4482. #endif // Z_PROBE_SLED
  4483. #endif // ENABLE_AUTO_BED_LEVELING
  4484. case 90: // G90
  4485. relative_mode = false;
  4486. break;
  4487. case 91: // G91
  4488. relative_mode = true;
  4489. break;
  4490. case 92: // G92
  4491. gcode_G92();
  4492. break;
  4493. }
  4494. break;
  4495. case 'M': switch (codenum) {
  4496. #ifdef ULTIPANEL
  4497. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4498. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4499. gcode_M0_M1();
  4500. break;
  4501. #endif // ULTIPANEL
  4502. case 17:
  4503. gcode_M17();
  4504. break;
  4505. #ifdef SDSUPPORT
  4506. case 20: // M20 - list SD card
  4507. gcode_M20(); break;
  4508. case 21: // M21 - init SD card
  4509. gcode_M21(); break;
  4510. case 22: //M22 - release SD card
  4511. gcode_M22(); break;
  4512. case 23: //M23 - Select file
  4513. gcode_M23(); break;
  4514. case 24: //M24 - Start SD print
  4515. gcode_M24(); break;
  4516. case 25: //M25 - Pause SD print
  4517. gcode_M25(); break;
  4518. case 26: //M26 - Set SD index
  4519. gcode_M26(); break;
  4520. case 27: //M27 - Get SD status
  4521. gcode_M27(); break;
  4522. case 28: //M28 - Start SD write
  4523. gcode_M28(); break;
  4524. case 29: //M29 - Stop SD write
  4525. gcode_M29(); break;
  4526. case 30: //M30 <filename> Delete File
  4527. gcode_M30(); break;
  4528. case 32: //M32 - Select file and start SD print
  4529. gcode_M32(); break;
  4530. #ifdef LONG_FILENAME_HOST_SUPPORT
  4531. case 33: //M33 - Get the long full path to a file or folder
  4532. gcode_M33(); break;
  4533. #endif // LONG_FILENAME_HOST_SUPPORT
  4534. case 928: //M928 - Start SD write
  4535. gcode_M928(); break;
  4536. #endif //SDSUPPORT
  4537. case 31: //M31 take time since the start of the SD print or an M109 command
  4538. gcode_M31();
  4539. break;
  4540. case 42: //M42 -Change pin status via gcode
  4541. gcode_M42();
  4542. break;
  4543. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4544. case 48: // M48 Z-Probe repeatability
  4545. gcode_M48();
  4546. break;
  4547. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4548. #ifdef M99_FREE_MEMORY_WATCHER
  4549. case 99:
  4550. m99_code();
  4551. break;
  4552. #endif
  4553. case 104: // M104
  4554. gcode_M104();
  4555. break;
  4556. case 111: // M111: Set debug level
  4557. gcode_M111();
  4558. break;
  4559. case 112: // M112: Emergency Stop
  4560. gcode_M112();
  4561. break;
  4562. case 140: // M140: Set bed temp
  4563. gcode_M140();
  4564. break;
  4565. case 105: // M105: Read current temperature
  4566. gcode_M105();
  4567. return; // "ok" already printed
  4568. case 109: // M109: Wait for temperature
  4569. gcode_M109();
  4570. break;
  4571. #if HAS_TEMP_BED
  4572. case 190: // M190: Wait for bed heater to reach target
  4573. gcode_M190();
  4574. break;
  4575. #endif // HAS_TEMP_BED
  4576. #if HAS_FAN
  4577. case 106: // M106: Fan On
  4578. gcode_M106();
  4579. break;
  4580. case 107: // M107: Fan Off
  4581. gcode_M107();
  4582. break;
  4583. #endif // HAS_FAN
  4584. #ifdef BARICUDA
  4585. // PWM for HEATER_1_PIN
  4586. #if HAS_HEATER_1
  4587. case 126: // M126: valve open
  4588. gcode_M126();
  4589. break;
  4590. case 127: // M127: valve closed
  4591. gcode_M127();
  4592. break;
  4593. #endif // HAS_HEATER_1
  4594. // PWM for HEATER_2_PIN
  4595. #if HAS_HEATER_2
  4596. case 128: // M128: valve open
  4597. gcode_M128();
  4598. break;
  4599. case 129: // M129: valve closed
  4600. gcode_M129();
  4601. break;
  4602. #endif // HAS_HEATER_2
  4603. #endif // BARICUDA
  4604. #if HAS_POWER_SWITCH
  4605. case 80: // M80: Turn on Power Supply
  4606. gcode_M80();
  4607. break;
  4608. #endif // HAS_POWER_SWITCH
  4609. case 81: // M81: Turn off Power, including Power Supply, if possible
  4610. gcode_M81();
  4611. break;
  4612. case 82:
  4613. gcode_M82();
  4614. break;
  4615. case 83:
  4616. gcode_M83();
  4617. break;
  4618. case 18: // (for compatibility)
  4619. case 84: // M84
  4620. gcode_M18_M84();
  4621. break;
  4622. case 85: // M85
  4623. gcode_M85();
  4624. break;
  4625. case 92: // M92: Set the steps-per-unit for one or more axes
  4626. gcode_M92();
  4627. break;
  4628. case 115: // M115: Report capabilities
  4629. gcode_M115();
  4630. break;
  4631. case 117: // M117: Set LCD message text, if possible
  4632. gcode_M117();
  4633. break;
  4634. case 114: // M114: Report current position
  4635. gcode_M114();
  4636. break;
  4637. case 120: // M120: Enable endstops
  4638. gcode_M120();
  4639. break;
  4640. case 121: // M121: Disable endstops
  4641. gcode_M121();
  4642. break;
  4643. case 119: // M119: Report endstop states
  4644. gcode_M119();
  4645. break;
  4646. #ifdef ULTIPANEL
  4647. case 145: // M145: Set material heatup parameters
  4648. gcode_M145();
  4649. break;
  4650. #endif
  4651. #ifdef BLINKM
  4652. case 150: // M150
  4653. gcode_M150();
  4654. break;
  4655. #endif //BLINKM
  4656. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4657. gcode_M200();
  4658. break;
  4659. case 201: // M201
  4660. gcode_M201();
  4661. break;
  4662. #if 0 // Not used for Sprinter/grbl gen6
  4663. case 202: // M202
  4664. gcode_M202();
  4665. break;
  4666. #endif
  4667. case 203: // M203 max feedrate mm/sec
  4668. gcode_M203();
  4669. break;
  4670. case 204: // M204 acclereration S normal moves T filmanent only moves
  4671. gcode_M204();
  4672. break;
  4673. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4674. gcode_M205();
  4675. break;
  4676. case 206: // M206 additional homing offset
  4677. gcode_M206();
  4678. break;
  4679. #ifdef DELTA
  4680. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4681. gcode_M665();
  4682. break;
  4683. #endif
  4684. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4685. case 666: // M666 set delta / dual endstop adjustment
  4686. gcode_M666();
  4687. break;
  4688. #endif
  4689. #ifdef FWRETRACT
  4690. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4691. gcode_M207();
  4692. break;
  4693. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4694. gcode_M208();
  4695. break;
  4696. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4697. gcode_M209();
  4698. break;
  4699. #endif // FWRETRACT
  4700. #if EXTRUDERS > 1
  4701. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4702. gcode_M218();
  4703. break;
  4704. #endif
  4705. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4706. gcode_M220();
  4707. break;
  4708. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4709. gcode_M221();
  4710. break;
  4711. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4712. gcode_M226();
  4713. break;
  4714. #if NUM_SERVOS > 0
  4715. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4716. gcode_M280();
  4717. break;
  4718. #endif // NUM_SERVOS > 0
  4719. #if HAS_BUZZER
  4720. case 300: // M300 - Play beep tone
  4721. gcode_M300();
  4722. break;
  4723. #endif // HAS_BUZZER
  4724. #ifdef PIDTEMP
  4725. case 301: // M301
  4726. gcode_M301();
  4727. break;
  4728. #endif // PIDTEMP
  4729. #ifdef PIDTEMPBED
  4730. case 304: // M304
  4731. gcode_M304();
  4732. break;
  4733. #endif // PIDTEMPBED
  4734. #if defined(CHDK) || HAS_PHOTOGRAPH
  4735. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4736. gcode_M240();
  4737. break;
  4738. #endif // CHDK || PHOTOGRAPH_PIN
  4739. #ifdef HAS_LCD_CONTRAST
  4740. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4741. gcode_M250();
  4742. break;
  4743. #endif // HAS_LCD_CONTRAST
  4744. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4745. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4746. gcode_M302();
  4747. break;
  4748. #endif // PREVENT_DANGEROUS_EXTRUDE
  4749. case 303: // M303 PID autotune
  4750. gcode_M303();
  4751. break;
  4752. #ifdef SCARA
  4753. case 360: // M360 SCARA Theta pos1
  4754. if (gcode_M360()) return;
  4755. break;
  4756. case 361: // M361 SCARA Theta pos2
  4757. if (gcode_M361()) return;
  4758. break;
  4759. case 362: // M362 SCARA Psi pos1
  4760. if (gcode_M362()) return;
  4761. break;
  4762. case 363: // M363 SCARA Psi pos2
  4763. if (gcode_M363()) return;
  4764. break;
  4765. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4766. if (gcode_M364()) return;
  4767. break;
  4768. case 365: // M365 Set SCARA scaling for X Y Z
  4769. gcode_M365();
  4770. break;
  4771. #endif // SCARA
  4772. case 400: // M400 finish all moves
  4773. gcode_M400();
  4774. break;
  4775. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4776. case 401:
  4777. gcode_M401();
  4778. break;
  4779. case 402:
  4780. gcode_M402();
  4781. break;
  4782. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4783. #ifdef FILAMENT_SENSOR
  4784. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4785. gcode_M404();
  4786. break;
  4787. case 405: //M405 Turn on filament sensor for control
  4788. gcode_M405();
  4789. break;
  4790. case 406: //M406 Turn off filament sensor for control
  4791. gcode_M406();
  4792. break;
  4793. case 407: //M407 Display measured filament diameter
  4794. gcode_M407();
  4795. break;
  4796. #endif // FILAMENT_SENSOR
  4797. case 410: // M410 quickstop - Abort all the planned moves.
  4798. gcode_M410();
  4799. break;
  4800. #ifdef MESH_BED_LEVELING
  4801. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4802. gcode_M420();
  4803. break;
  4804. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4805. gcode_M421();
  4806. break;
  4807. #endif
  4808. case 428: // M428 Apply current_position to home_offset
  4809. gcode_M428();
  4810. break;
  4811. case 500: // M500 Store settings in EEPROM
  4812. gcode_M500();
  4813. break;
  4814. case 501: // M501 Read settings from EEPROM
  4815. gcode_M501();
  4816. break;
  4817. case 502: // M502 Revert to default settings
  4818. gcode_M502();
  4819. break;
  4820. case 503: // M503 print settings currently in memory
  4821. gcode_M503();
  4822. break;
  4823. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4824. case 540:
  4825. gcode_M540();
  4826. break;
  4827. #endif
  4828. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4829. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4830. gcode_SET_Z_PROBE_OFFSET();
  4831. break;
  4832. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4833. #ifdef FILAMENTCHANGEENABLE
  4834. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4835. gcode_M600();
  4836. break;
  4837. #endif // FILAMENTCHANGEENABLE
  4838. #ifdef DUAL_X_CARRIAGE
  4839. case 605:
  4840. gcode_M605();
  4841. break;
  4842. #endif // DUAL_X_CARRIAGE
  4843. case 907: // M907 Set digital trimpot motor current using axis codes.
  4844. gcode_M907();
  4845. break;
  4846. #if HAS_DIGIPOTSS
  4847. case 908: // M908 Control digital trimpot directly.
  4848. gcode_M908();
  4849. break;
  4850. #endif // HAS_DIGIPOTSS
  4851. #if HAS_MICROSTEPS
  4852. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4853. gcode_M350();
  4854. break;
  4855. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4856. gcode_M351();
  4857. break;
  4858. #endif // HAS_MICROSTEPS
  4859. case 999: // M999: Restart after being Stopped
  4860. gcode_M999();
  4861. break;
  4862. }
  4863. break;
  4864. case 'T':
  4865. gcode_T(codenum);
  4866. break;
  4867. default: code_is_good = false;
  4868. }
  4869. ExitUnknownCommand:
  4870. // Still unknown command? Throw an error
  4871. if (!code_is_good) unknown_command_error();
  4872. ok_to_send();
  4873. }
  4874. void FlushSerialRequestResend() {
  4875. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4876. MYSERIAL.flush();
  4877. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4878. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4879. ok_to_send();
  4880. }
  4881. void ok_to_send() {
  4882. refresh_cmd_timeout();
  4883. #ifdef SDSUPPORT
  4884. if (fromsd[cmd_queue_index_r]) return;
  4885. #endif
  4886. SERIAL_PROTOCOLPGM(MSG_OK);
  4887. #ifdef ADVANCED_OK
  4888. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4889. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4890. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4891. #endif
  4892. SERIAL_EOL;
  4893. }
  4894. void clamp_to_software_endstops(float target[3]) {
  4895. if (min_software_endstops) {
  4896. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4897. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4898. float negative_z_offset = 0;
  4899. #ifdef ENABLE_AUTO_BED_LEVELING
  4900. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  4901. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4902. #endif
  4903. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4904. }
  4905. if (max_software_endstops) {
  4906. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4907. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4908. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4909. }
  4910. }
  4911. #ifdef DELTA
  4912. void recalc_delta_settings(float radius, float diagonal_rod) {
  4913. delta_tower1_x = -SIN_60 * radius; // front left tower
  4914. delta_tower1_y = -COS_60 * radius;
  4915. delta_tower2_x = SIN_60 * radius; // front right tower
  4916. delta_tower2_y = -COS_60 * radius;
  4917. delta_tower3_x = 0.0; // back middle tower
  4918. delta_tower3_y = radius;
  4919. delta_diagonal_rod_2 = sq(diagonal_rod);
  4920. }
  4921. void calculate_delta(float cartesian[3]) {
  4922. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4923. - sq(delta_tower1_x-cartesian[X_AXIS])
  4924. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4925. ) + cartesian[Z_AXIS];
  4926. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4927. - sq(delta_tower2_x-cartesian[X_AXIS])
  4928. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4929. ) + cartesian[Z_AXIS];
  4930. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4931. - sq(delta_tower3_x-cartesian[X_AXIS])
  4932. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4933. ) + cartesian[Z_AXIS];
  4934. /*
  4935. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4936. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4937. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4938. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4939. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4940. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4941. */
  4942. }
  4943. #ifdef ENABLE_AUTO_BED_LEVELING
  4944. // Adjust print surface height by linear interpolation over the bed_level array.
  4945. void adjust_delta(float cartesian[3]) {
  4946. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4947. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4948. float h1 = 0.001 - half, h2 = half - 0.001,
  4949. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4950. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4951. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4952. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4953. z1 = bed_level[floor_x + half][floor_y + half],
  4954. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4955. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4956. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4957. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4958. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4959. offset = (1 - ratio_x) * left + ratio_x * right;
  4960. delta[X_AXIS] += offset;
  4961. delta[Y_AXIS] += offset;
  4962. delta[Z_AXIS] += offset;
  4963. /*
  4964. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4965. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4966. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4967. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4968. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4969. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4970. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4971. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4972. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4973. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4974. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4975. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4976. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4977. */
  4978. }
  4979. #endif // ENABLE_AUTO_BED_LEVELING
  4980. #endif // DELTA
  4981. #ifdef MESH_BED_LEVELING
  4982. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4983. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4984. {
  4985. if (!mbl.active) {
  4986. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4987. set_current_to_destination();
  4988. return;
  4989. }
  4990. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4991. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4992. int ix = mbl.select_x_index(x);
  4993. int iy = mbl.select_y_index(y);
  4994. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4995. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4996. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4997. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4998. if (pix == ix && piy == iy) {
  4999. // Start and end on same mesh square
  5000. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5001. set_current_to_destination();
  5002. return;
  5003. }
  5004. float nx, ny, ne, normalized_dist;
  5005. if (ix > pix && (x_splits) & BIT(ix)) {
  5006. nx = mbl.get_x(ix);
  5007. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5008. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5009. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5010. x_splits ^= BIT(ix);
  5011. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5012. nx = mbl.get_x(pix);
  5013. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5014. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5015. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5016. x_splits ^= BIT(pix);
  5017. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5018. ny = mbl.get_y(iy);
  5019. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5020. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5021. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5022. y_splits ^= BIT(iy);
  5023. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5024. ny = mbl.get_y(piy);
  5025. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5026. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5027. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5028. y_splits ^= BIT(piy);
  5029. } else {
  5030. // Already split on a border
  5031. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5032. set_current_to_destination();
  5033. return;
  5034. }
  5035. // Do the split and look for more borders
  5036. destination[X_AXIS] = nx;
  5037. destination[Y_AXIS] = ny;
  5038. destination[E_AXIS] = ne;
  5039. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5040. destination[X_AXIS] = x;
  5041. destination[Y_AXIS] = y;
  5042. destination[E_AXIS] = e;
  5043. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5044. }
  5045. #endif // MESH_BED_LEVELING
  5046. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5047. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5048. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5049. float de = dest_e - curr_e;
  5050. if (de) {
  5051. if (degHotend(active_extruder) < extrude_min_temp) {
  5052. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5053. SERIAL_ECHO_START;
  5054. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5055. }
  5056. #ifdef PREVENT_LENGTHY_EXTRUDE
  5057. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5058. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5059. SERIAL_ECHO_START;
  5060. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5061. }
  5062. #endif
  5063. }
  5064. }
  5065. #endif // PREVENT_DANGEROUS_EXTRUDE
  5066. #if defined(DELTA) || defined(SCARA)
  5067. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5068. float difference[NUM_AXIS];
  5069. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5070. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5071. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5072. if (cartesian_mm < 0.000001) return false;
  5073. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5074. int steps = max(1, int(delta_segments_per_second * seconds));
  5075. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5076. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5077. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5078. for (int s = 1; s <= steps; s++) {
  5079. float fraction = float(s) / float(steps);
  5080. for (int8_t i = 0; i < NUM_AXIS; i++)
  5081. target[i] = current_position[i] + difference[i] * fraction;
  5082. calculate_delta(target);
  5083. #ifdef ENABLE_AUTO_BED_LEVELING
  5084. adjust_delta(target);
  5085. #endif
  5086. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5087. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5088. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5089. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5090. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5091. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5092. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5093. }
  5094. return true;
  5095. }
  5096. #endif // DELTA || SCARA
  5097. #ifdef SCARA
  5098. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5099. #endif
  5100. #ifdef DUAL_X_CARRIAGE
  5101. inline bool prepare_move_dual_x_carriage() {
  5102. if (active_extruder_parked) {
  5103. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5104. // move duplicate extruder into correct duplication position.
  5105. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5106. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5107. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5108. sync_plan_position();
  5109. st_synchronize();
  5110. extruder_duplication_enabled = true;
  5111. active_extruder_parked = false;
  5112. }
  5113. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5114. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5115. // This is a travel move (with no extrusion)
  5116. // Skip it, but keep track of the current position
  5117. // (so it can be used as the start of the next non-travel move)
  5118. if (delayed_move_time != 0xFFFFFFFFUL) {
  5119. set_current_to_destination();
  5120. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5121. delayed_move_time = millis();
  5122. return false;
  5123. }
  5124. }
  5125. delayed_move_time = 0;
  5126. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5127. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5130. active_extruder_parked = false;
  5131. }
  5132. }
  5133. return true;
  5134. }
  5135. #endif // DUAL_X_CARRIAGE
  5136. #if !defined(DELTA) && !defined(SCARA)
  5137. inline bool prepare_move_cartesian() {
  5138. // Do not use feedrate_multiplier for E or Z only moves
  5139. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5140. line_to_destination();
  5141. }
  5142. else {
  5143. #ifdef MESH_BED_LEVELING
  5144. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5145. return false;
  5146. #else
  5147. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5148. #endif
  5149. }
  5150. return true;
  5151. }
  5152. #endif // !DELTA && !SCARA
  5153. /**
  5154. * Prepare a single move and get ready for the next one
  5155. *
  5156. * (This may call plan_buffer_line several times to put
  5157. * smaller moves into the planner for DELTA or SCARA.)
  5158. */
  5159. void prepare_move() {
  5160. clamp_to_software_endstops(destination);
  5161. refresh_cmd_timeout();
  5162. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5163. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5164. #endif
  5165. #ifdef SCARA
  5166. if (!prepare_move_scara(destination)) return;
  5167. #elif defined(DELTA)
  5168. if (!prepare_move_delta(destination)) return;
  5169. #endif
  5170. #ifdef DUAL_X_CARRIAGE
  5171. if (!prepare_move_dual_x_carriage()) return;
  5172. #endif
  5173. #if !defined(DELTA) && !defined(SCARA)
  5174. if (!prepare_move_cartesian()) return;
  5175. #endif
  5176. set_current_to_destination();
  5177. }
  5178. /**
  5179. * Plan an arc in 2 dimensions
  5180. *
  5181. * The arc is approximated by generating many small linear segments.
  5182. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5183. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5184. * larger segments will tend to be more efficient. Your slicer should have
  5185. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5186. */
  5187. void plan_arc(
  5188. float target[NUM_AXIS], // Destination position
  5189. float *offset, // Center of rotation relative to current_position
  5190. uint8_t clockwise // Clockwise?
  5191. ) {
  5192. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5193. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5194. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5195. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5196. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5197. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5198. r_axis1 = -offset[Y_AXIS],
  5199. rt_axis0 = target[X_AXIS] - center_axis0,
  5200. rt_axis1 = target[Y_AXIS] - center_axis1;
  5201. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5202. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  5203. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  5204. if (clockwise) { angular_travel -= RADIANS(360); }
  5205. // Make a circle if the angular rotation is 0
  5206. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5207. angular_travel += RADIANS(360);
  5208. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  5209. if (mm_of_travel < 0.001) { return; }
  5210. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  5211. if (segments == 0) segments = 1;
  5212. float theta_per_segment = angular_travel/segments;
  5213. float linear_per_segment = linear_travel/segments;
  5214. float extruder_per_segment = extruder_travel/segments;
  5215. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5216. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5217. r_T = [cos(phi) -sin(phi);
  5218. sin(phi) cos(phi] * r ;
  5219. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5220. defined from the circle center to the initial position. Each line segment is formed by successive
  5221. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5222. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5223. all double numbers are single precision on the Arduino. (True double precision will not have
  5224. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5225. tool precision in some cases. Therefore, arc path correction is implemented.
  5226. Small angle approximation may be used to reduce computation overhead further. This approximation
  5227. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5228. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5229. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5230. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5231. issue for CNC machines with the single precision Arduino calculations.
  5232. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5233. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5234. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5235. This is important when there are successive arc motions.
  5236. */
  5237. // Vector rotation matrix values
  5238. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  5239. float sin_T = theta_per_segment;
  5240. float arc_target[NUM_AXIS];
  5241. float sin_Ti;
  5242. float cos_Ti;
  5243. float r_axisi;
  5244. uint16_t i;
  5245. int8_t count = 0;
  5246. // Initialize the linear axis
  5247. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5248. // Initialize the extruder axis
  5249. arc_target[E_AXIS] = current_position[E_AXIS];
  5250. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  5251. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5252. if (count < N_ARC_CORRECTION) {
  5253. // Apply vector rotation matrix to previous r_axis0 / 1
  5254. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  5255. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  5256. r_axis1 = r_axisi;
  5257. count++;
  5258. }
  5259. else {
  5260. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5261. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5262. cos_Ti = cos(i*theta_per_segment);
  5263. sin_Ti = sin(i*theta_per_segment);
  5264. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  5265. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  5266. count = 0;
  5267. }
  5268. // Update arc_target location
  5269. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5270. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5271. arc_target[Z_AXIS] += linear_per_segment;
  5272. arc_target[E_AXIS] += extruder_per_segment;
  5273. clamp_to_software_endstops(arc_target);
  5274. #if defined(DELTA) || defined(SCARA)
  5275. calculate_delta(arc_target);
  5276. #ifdef ENABLE_AUTO_BED_LEVELING
  5277. adjust_delta(arc_target);
  5278. #endif
  5279. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5280. #else
  5281. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5282. #endif
  5283. }
  5284. // Ensure last segment arrives at target location.
  5285. #if defined(DELTA) || defined(SCARA)
  5286. calculate_delta(target);
  5287. #ifdef ENABLE_AUTO_BED_LEVELING
  5288. adjust_delta(target);
  5289. #endif
  5290. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5291. #else
  5292. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5293. #endif
  5294. // As far as the parser is concerned, the position is now == target. In reality the
  5295. // motion control system might still be processing the action and the real tool position
  5296. // in any intermediate location.
  5297. set_current_to_destination();
  5298. }
  5299. #if HAS_CONTROLLERFAN
  5300. void controllerFan() {
  5301. static millis_t lastMotor = 0; // Last time a motor was turned on
  5302. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5303. millis_t ms = millis();
  5304. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5305. lastMotorCheck = ms;
  5306. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5307. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5308. #if EXTRUDERS > 1
  5309. || E1_ENABLE_READ == E_ENABLE_ON
  5310. #if HAS_X2_ENABLE
  5311. || X2_ENABLE_READ == X_ENABLE_ON
  5312. #endif
  5313. #if EXTRUDERS > 2
  5314. || E2_ENABLE_READ == E_ENABLE_ON
  5315. #if EXTRUDERS > 3
  5316. || E3_ENABLE_READ == E_ENABLE_ON
  5317. #endif
  5318. #endif
  5319. #endif
  5320. ) {
  5321. lastMotor = ms; //... set time to NOW so the fan will turn on
  5322. }
  5323. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5324. // allows digital or PWM fan output to be used (see M42 handling)
  5325. digitalWrite(CONTROLLERFAN_PIN, speed);
  5326. analogWrite(CONTROLLERFAN_PIN, speed);
  5327. }
  5328. }
  5329. #endif // HAS_CONTROLLERFAN
  5330. #ifdef SCARA
  5331. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5332. // Perform forward kinematics, and place results in delta[3]
  5333. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5334. float x_sin, x_cos, y_sin, y_cos;
  5335. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5336. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5337. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5338. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5339. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5340. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5341. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5342. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5343. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5344. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5345. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5346. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5347. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5348. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5349. }
  5350. void calculate_delta(float cartesian[3]){
  5351. //reverse kinematics.
  5352. // Perform reversed kinematics, and place results in delta[3]
  5353. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5354. float SCARA_pos[2];
  5355. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5356. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5357. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5358. #if (Linkage_1 == Linkage_2)
  5359. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5360. #else
  5361. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5362. #endif
  5363. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5364. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5365. SCARA_K2 = Linkage_2 * SCARA_S2;
  5366. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5367. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5368. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5369. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5370. delta[Z_AXIS] = cartesian[Z_AXIS];
  5371. /*
  5372. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5373. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5374. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5375. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5376. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5377. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5378. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5379. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5380. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5381. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5382. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5383. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5384. SERIAL_EOL;
  5385. */
  5386. }
  5387. #endif // SCARA
  5388. #ifdef TEMP_STAT_LEDS
  5389. static bool red_led = false;
  5390. static millis_t next_status_led_update_ms = 0;
  5391. void handle_status_leds(void) {
  5392. float max_temp = 0.0;
  5393. if (millis() > next_status_led_update_ms) {
  5394. next_status_led_update_ms += 500; // Update every 0.5s
  5395. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5396. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5397. #if HAS_TEMP_BED
  5398. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5399. #endif
  5400. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5401. if (new_led != red_led) {
  5402. red_led = new_led;
  5403. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5404. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5405. }
  5406. }
  5407. }
  5408. #endif
  5409. void enable_all_steppers() {
  5410. enable_x();
  5411. enable_y();
  5412. enable_z();
  5413. enable_e0();
  5414. enable_e1();
  5415. enable_e2();
  5416. enable_e3();
  5417. }
  5418. void disable_all_steppers() {
  5419. disable_x();
  5420. disable_y();
  5421. disable_z();
  5422. disable_e0();
  5423. disable_e1();
  5424. disable_e2();
  5425. disable_e3();
  5426. }
  5427. /**
  5428. * Standard idle routine keeps the machine alive
  5429. */
  5430. void idle() {
  5431. manage_heater();
  5432. manage_inactivity();
  5433. lcd_update();
  5434. }
  5435. /**
  5436. * Manage several activities:
  5437. * - Check for Filament Runout
  5438. * - Keep the command buffer full
  5439. * - Check for maximum inactive time between commands
  5440. * - Check for maximum inactive time between stepper commands
  5441. * - Check if pin CHDK needs to go LOW
  5442. * - Check for KILL button held down
  5443. * - Check for HOME button held down
  5444. * - Check if cooling fan needs to be switched on
  5445. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5446. */
  5447. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5448. #if HAS_FILRUNOUT
  5449. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5450. filrunout();
  5451. #endif
  5452. if (commands_in_queue < BUFSIZE - 1) get_command();
  5453. millis_t ms = millis();
  5454. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5455. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5456. && !ignore_stepper_queue && !blocks_queued()) {
  5457. #if DISABLE_X == true
  5458. disable_x();
  5459. #endif
  5460. #if DISABLE_Y == true
  5461. disable_y();
  5462. #endif
  5463. #if DISABLE_Z == true
  5464. disable_z();
  5465. #endif
  5466. #if DISABLE_E == true
  5467. disable_e0();
  5468. disable_e1();
  5469. disable_e2();
  5470. disable_e3();
  5471. #endif
  5472. }
  5473. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5474. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5475. chdkActive = false;
  5476. WRITE(CHDK, LOW);
  5477. }
  5478. #endif
  5479. #if HAS_KILL
  5480. // Check if the kill button was pressed and wait just in case it was an accidental
  5481. // key kill key press
  5482. // -------------------------------------------------------------------------------
  5483. static int killCount = 0; // make the inactivity button a bit less responsive
  5484. const int KILL_DELAY = 750;
  5485. if (!READ(KILL_PIN))
  5486. killCount++;
  5487. else if (killCount > 0)
  5488. killCount--;
  5489. // Exceeded threshold and we can confirm that it was not accidental
  5490. // KILL the machine
  5491. // ----------------------------------------------------------------
  5492. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5493. #endif
  5494. #if HAS_HOME
  5495. // Check to see if we have to home, use poor man's debouncer
  5496. // ---------------------------------------------------------
  5497. static int homeDebounceCount = 0; // poor man's debouncing count
  5498. const int HOME_DEBOUNCE_DELAY = 750;
  5499. if (!READ(HOME_PIN)) {
  5500. if (!homeDebounceCount) {
  5501. enqueuecommands_P(PSTR("G28"));
  5502. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5503. }
  5504. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5505. homeDebounceCount++;
  5506. else
  5507. homeDebounceCount = 0;
  5508. }
  5509. #endif
  5510. #if HAS_CONTROLLERFAN
  5511. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5512. #endif
  5513. #ifdef EXTRUDER_RUNOUT_PREVENT
  5514. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5515. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5516. bool oldstatus;
  5517. switch(active_extruder) {
  5518. case 0:
  5519. oldstatus = E0_ENABLE_READ;
  5520. enable_e0();
  5521. break;
  5522. #if EXTRUDERS > 1
  5523. case 1:
  5524. oldstatus = E1_ENABLE_READ;
  5525. enable_e1();
  5526. break;
  5527. #if EXTRUDERS > 2
  5528. case 2:
  5529. oldstatus = E2_ENABLE_READ;
  5530. enable_e2();
  5531. break;
  5532. #if EXTRUDERS > 3
  5533. case 3:
  5534. oldstatus = E3_ENABLE_READ;
  5535. enable_e3();
  5536. break;
  5537. #endif
  5538. #endif
  5539. #endif
  5540. }
  5541. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5542. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5543. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5544. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5545. current_position[E_AXIS] = oldepos;
  5546. destination[E_AXIS] = oldedes;
  5547. plan_set_e_position(oldepos);
  5548. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5549. st_synchronize();
  5550. switch(active_extruder) {
  5551. case 0:
  5552. E0_ENABLE_WRITE(oldstatus);
  5553. break;
  5554. #if EXTRUDERS > 1
  5555. case 1:
  5556. E1_ENABLE_WRITE(oldstatus);
  5557. break;
  5558. #if EXTRUDERS > 2
  5559. case 2:
  5560. E2_ENABLE_WRITE(oldstatus);
  5561. break;
  5562. #if EXTRUDERS > 3
  5563. case 3:
  5564. E3_ENABLE_WRITE(oldstatus);
  5565. break;
  5566. #endif
  5567. #endif
  5568. #endif
  5569. }
  5570. }
  5571. #endif
  5572. #ifdef DUAL_X_CARRIAGE
  5573. // handle delayed move timeout
  5574. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5575. // travel moves have been received so enact them
  5576. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5577. set_destination_to_current();
  5578. prepare_move();
  5579. }
  5580. #endif
  5581. #ifdef TEMP_STAT_LEDS
  5582. handle_status_leds();
  5583. #endif
  5584. check_axes_activity();
  5585. }
  5586. void kill(const char *lcd_msg) {
  5587. #ifdef ULTRA_LCD
  5588. lcd_setalertstatuspgm(lcd_msg);
  5589. #endif
  5590. cli(); // Stop interrupts
  5591. disable_all_heaters();
  5592. disable_all_steppers();
  5593. #if HAS_POWER_SWITCH
  5594. pinMode(PS_ON_PIN, INPUT);
  5595. #endif
  5596. SERIAL_ERROR_START;
  5597. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5598. // FMC small patch to update the LCD before ending
  5599. sei(); // enable interrupts
  5600. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5601. cli(); // disable interrupts
  5602. suicide();
  5603. while(1) { /* Intentionally left empty */ } // Wait for reset
  5604. }
  5605. #ifdef FILAMENT_RUNOUT_SENSOR
  5606. void filrunout() {
  5607. if (!filrunoutEnqueued) {
  5608. filrunoutEnqueued = true;
  5609. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5610. st_synchronize();
  5611. }
  5612. }
  5613. #endif // FILAMENT_RUNOUT_SENSOR
  5614. #ifdef FAST_PWM_FAN
  5615. void setPwmFrequency(uint8_t pin, int val) {
  5616. val &= 0x07;
  5617. switch (digitalPinToTimer(pin)) {
  5618. #if defined(TCCR0A)
  5619. case TIMER0A:
  5620. case TIMER0B:
  5621. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5622. // TCCR0B |= val;
  5623. break;
  5624. #endif
  5625. #if defined(TCCR1A)
  5626. case TIMER1A:
  5627. case TIMER1B:
  5628. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5629. // TCCR1B |= val;
  5630. break;
  5631. #endif
  5632. #if defined(TCCR2)
  5633. case TIMER2:
  5634. case TIMER2:
  5635. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5636. TCCR2 |= val;
  5637. break;
  5638. #endif
  5639. #if defined(TCCR2A)
  5640. case TIMER2A:
  5641. case TIMER2B:
  5642. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5643. TCCR2B |= val;
  5644. break;
  5645. #endif
  5646. #if defined(TCCR3A)
  5647. case TIMER3A:
  5648. case TIMER3B:
  5649. case TIMER3C:
  5650. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5651. TCCR3B |= val;
  5652. break;
  5653. #endif
  5654. #if defined(TCCR4A)
  5655. case TIMER4A:
  5656. case TIMER4B:
  5657. case TIMER4C:
  5658. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5659. TCCR4B |= val;
  5660. break;
  5661. #endif
  5662. #if defined(TCCR5A)
  5663. case TIMER5A:
  5664. case TIMER5B:
  5665. case TIMER5C:
  5666. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5667. TCCR5B |= val;
  5668. break;
  5669. #endif
  5670. }
  5671. }
  5672. #endif // FAST_PWM_FAN
  5673. void Stop() {
  5674. disable_all_heaters();
  5675. if (IsRunning()) {
  5676. Running = false;
  5677. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5678. SERIAL_ERROR_START;
  5679. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5680. LCD_MESSAGEPGM(MSG_STOPPED);
  5681. }
  5682. }
  5683. /**
  5684. * Set target_extruder from the T parameter or the active_extruder
  5685. *
  5686. * Returns TRUE if the target is invalid
  5687. */
  5688. bool setTargetedHotend(int code) {
  5689. target_extruder = active_extruder;
  5690. if (code_seen('T')) {
  5691. target_extruder = code_value_short();
  5692. if (target_extruder >= EXTRUDERS) {
  5693. SERIAL_ECHO_START;
  5694. SERIAL_CHAR('M');
  5695. SERIAL_ECHO(code);
  5696. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5697. SERIAL_ECHOLN(target_extruder);
  5698. return true;
  5699. }
  5700. }
  5701. return false;
  5702. }
  5703. float calculate_volumetric_multiplier(float diameter) {
  5704. if (!volumetric_enabled || diameter == 0) return 1.0;
  5705. float d2 = diameter * 0.5;
  5706. return 1.0 / (M_PI * d2 * d2);
  5707. }
  5708. void calculate_volumetric_multipliers() {
  5709. for (int i=0; i<EXTRUDERS; i++)
  5710. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5711. }