My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 249KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M80 - Turn on Power Supply
  129. * M81 - Turn off Power Supply
  130. * M82 - Set E codes absolute (default)
  131. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. * M84 - Disable steppers until next move,
  133. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. * M92 - Set axis_steps_per_unit - same syntax as G92
  136. * M104 - Set extruder target temp
  137. * M105 - Read current temp
  138. * M106 - Fan on
  139. * M107 - Fan off
  140. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. * M110 - Set the current line number
  144. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  145. * M112 - Emergency stop
  146. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. * M114 - Output current position to serial port
  148. * M115 - Capabilities string
  149. * M117 - Display a message on the controller screen
  150. * M119 - Output Endstop status to serial port
  151. * M120 - Enable endstop detection
  152. * M121 - Disable endstop detection
  153. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  154. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  155. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  157. * M140 - Set bed target temp
  158. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  159. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  160. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  161. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  162. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  163. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  164. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  165. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  166. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  167. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  168. * M206 - Set additional homing offset
  169. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  170. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  171. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  172. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  173. * M220 - Set speed factor override percentage: S<factor in percent>
  174. * M221 - Set extrude factor override percentage: S<factor in percent>
  175. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  176. * M240 - Trigger a camera to take a photograph
  177. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  178. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  179. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  180. * M301 - Set PID parameters P I and D
  181. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  182. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  183. * M304 - Set bed PID parameters P I and D
  184. * M380 - Activate solenoid on active extruder
  185. * M381 - Disable all solenoids
  186. * M400 - Finish all moves
  187. * M401 - Lower Z probe if present
  188. * M402 - Raise Z probe if present
  189. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. * M406 - Turn off Filament Sensor extrusion control
  192. * M407 - Display measured filament diameter
  193. * M410 - Quickstop. Abort all the planned moves
  194. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  195. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  196. * M428 - Set the home_offset logically based on the current_position
  197. * M500 - Store parameters in EEPROM
  198. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  199. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  200. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  201. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  202. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  203. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  204. * M666 - Set delta endstop adjustment
  205. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  206. * M907 - Set digital trimpot motor current using axis codes.
  207. * M908 - Control digital trimpot directly.
  208. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  209. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  210. * M350 - Set microstepping mode.
  211. * M351 - Toggle MS1 MS2 pins directly.
  212. *
  213. * ************ SCARA Specific - This can change to suit future G-code regulations
  214. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  215. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  216. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  217. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  218. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  219. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  220. * ************* SCARA End ***************
  221. *
  222. * ************ Custom codes - This can change to suit future G-code regulations
  223. * M100 - Watch Free Memory (For Debugging Only)
  224. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  225. * M928 - Start SD logging (M928 filename.g) - ended by M29
  226. * M999 - Restart after being stopped by error
  227. *
  228. * "T" Codes
  229. *
  230. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  231. *
  232. */
  233. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  234. void gcode_M100();
  235. #endif
  236. #if ENABLED(SDSUPPORT)
  237. CardReader card;
  238. #endif
  239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  240. TWIBus i2c;
  241. #endif
  242. bool Running = true;
  243. uint8_t marlin_debug_flags = DEBUG_NONE;
  244. static float feedrate = 1500.0, saved_feedrate;
  245. float current_position[NUM_AXIS] = { 0.0 };
  246. static float destination[NUM_AXIS] = { 0.0 };
  247. bool axis_known_position[3] = { false };
  248. bool axis_homed[3] = { false };
  249. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  250. static char* current_command, *current_command_args;
  251. static int cmd_queue_index_r = 0;
  252. static int cmd_queue_index_w = 0;
  253. static int commands_in_queue = 0;
  254. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  255. const float homing_feedrate[] = HOMING_FEEDRATE;
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedrate_multiplier = 100; //100->1 200->2
  258. int saved_feedrate_multiplier;
  259. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  260. bool volumetric_enabled = false;
  261. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  262. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  263. float position_shift[3] = { 0 };
  264. float home_offset[3] = { 0 };
  265. // Software Endstops. Default to configured limits.
  266. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  267. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  268. #if FAN_COUNT > 0
  269. int fanSpeeds[FAN_COUNT] = { 0 };
  270. #endif
  271. uint8_t active_extruder = 0;
  272. bool cancel_heatup = false;
  273. const char errormagic[] PROGMEM = "Error:";
  274. const char echomagic[] PROGMEM = "echo:";
  275. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  276. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  277. static int serial_count = 0;
  278. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  279. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  280. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  281. // Inactivity shutdown
  282. millis_t previous_cmd_ms = 0;
  283. static millis_t max_inactive_time = 0;
  284. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  285. Stopwatch print_job_timer = Stopwatch();
  286. static uint8_t target_extruder;
  287. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  288. int xy_travel_speed = XY_TRAVEL_SPEED;
  289. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  290. #endif
  291. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  292. float z_endstop_adj = 0;
  293. #endif
  294. // Extruder offsets
  295. #if EXTRUDERS > 1
  296. #ifndef EXTRUDER_OFFSET_X
  297. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  298. #endif
  299. #ifndef EXTRUDER_OFFSET_Y
  300. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  301. #endif
  302. float extruder_offset[][EXTRUDERS] = {
  303. EXTRUDER_OFFSET_X,
  304. EXTRUDER_OFFSET_Y
  305. #if ENABLED(DUAL_X_CARRIAGE)
  306. , { 0 } // Z offsets for each extruder
  307. #endif
  308. };
  309. #endif
  310. #if HAS_SERVO_ENDSTOPS
  311. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  312. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  313. #endif
  314. #if ENABLED(BARICUDA)
  315. int baricuda_valve_pressure = 0;
  316. int baricuda_e_to_p_pressure = 0;
  317. #endif
  318. #if ENABLED(FWRETRACT)
  319. bool autoretract_enabled = false;
  320. bool retracted[EXTRUDERS] = { false };
  321. bool retracted_swap[EXTRUDERS] = { false };
  322. float retract_length = RETRACT_LENGTH;
  323. float retract_length_swap = RETRACT_LENGTH_SWAP;
  324. float retract_feedrate = RETRACT_FEEDRATE;
  325. float retract_zlift = RETRACT_ZLIFT;
  326. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  327. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  328. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  329. #endif // FWRETRACT
  330. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  331. bool powersupply =
  332. #if ENABLED(PS_DEFAULT_OFF)
  333. false
  334. #else
  335. true
  336. #endif
  337. ;
  338. #endif
  339. #if ENABLED(DELTA)
  340. #define TOWER_1 X_AXIS
  341. #define TOWER_2 Y_AXIS
  342. #define TOWER_3 Z_AXIS
  343. float delta[3] = { 0 };
  344. #define SIN_60 0.8660254037844386
  345. #define COS_60 0.5
  346. float endstop_adj[3] = { 0 };
  347. // these are the default values, can be overriden with M665
  348. float delta_radius = DELTA_RADIUS;
  349. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  350. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  351. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  352. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  353. float delta_tower3_x = 0; // back middle tower
  354. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  355. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  356. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  357. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  358. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  359. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  360. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  361. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  362. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  363. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  364. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  365. int delta_grid_spacing[2] = { 0, 0 };
  366. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  367. #endif
  368. #else
  369. static bool home_all_axis = true;
  370. #endif
  371. #if ENABLED(SCARA)
  372. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  373. static float delta[3] = { 0 };
  374. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  375. #endif
  376. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  377. //Variables for Filament Sensor input
  378. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  379. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  380. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  381. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  382. int filwidth_delay_index1 = 0; //index into ring buffer
  383. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  384. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  385. #endif
  386. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  387. static bool filrunoutEnqueued = false;
  388. #endif
  389. static bool send_ok[BUFSIZE];
  390. #if HAS_SERVOS
  391. Servo servo[NUM_SERVOS];
  392. #endif
  393. #ifdef CHDK
  394. millis_t chdkHigh = 0;
  395. boolean chdkActive = false;
  396. #endif
  397. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  398. int lpq_len = 20;
  399. #endif
  400. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  401. // States for managing Marlin and host communication
  402. // Marlin sends messages if blocked or busy
  403. enum MarlinBusyState {
  404. NOT_BUSY, // Not in a handler
  405. IN_HANDLER, // Processing a GCode
  406. IN_PROCESS, // Known to be blocking command input (as in G29)
  407. PAUSED_FOR_USER, // Blocking pending any input
  408. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  409. };
  410. static MarlinBusyState busy_state = NOT_BUSY;
  411. static millis_t next_busy_signal_ms = 0;
  412. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  413. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  414. #else
  415. #define host_keepalive() ;
  416. #define KEEPALIVE_STATE(n) ;
  417. #endif // HOST_KEEPALIVE_FEATURE
  418. /**
  419. * ***************************************************************************
  420. * ******************************** FUNCTIONS ********************************
  421. * ***************************************************************************
  422. */
  423. void get_available_commands();
  424. void process_next_command();
  425. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  426. bool setTargetedHotend(int code);
  427. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  429. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  431. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  432. void gcode_M114();
  433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  434. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  435. SERIAL_ECHO(prefix);
  436. SERIAL_ECHOPAIR(": (", x);
  437. SERIAL_ECHOPAIR(", ", y);
  438. SERIAL_ECHOPAIR(", ", z);
  439. SERIAL_ECHOLNPGM(")");
  440. }
  441. void print_xyz(const char* prefix, const float xyz[]) {
  442. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  443. }
  444. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  445. void print_xyz(const char* prefix, const vector_3 &xyz) {
  446. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  447. }
  448. #endif
  449. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  450. #endif
  451. #if ENABLED(DELTA) || ENABLED(SCARA)
  452. inline void sync_plan_position_delta() {
  453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  454. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  455. #endif
  456. calculate_delta(current_position);
  457. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  458. }
  459. #endif
  460. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  461. float extrude_min_temp = EXTRUDE_MINTEMP;
  462. #endif
  463. #if ENABLED(HAS_Z_MIN_PROBE)
  464. extern volatile bool z_probe_is_active;
  465. #endif
  466. #if ENABLED(SDSUPPORT)
  467. #include "SdFatUtil.h"
  468. int freeMemory() { return SdFatUtil::FreeRam(); }
  469. #else
  470. extern "C" {
  471. extern unsigned int __bss_end;
  472. extern unsigned int __heap_start;
  473. extern void* __brkval;
  474. int freeMemory() {
  475. int free_memory;
  476. if ((int)__brkval == 0)
  477. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  478. else
  479. free_memory = ((int)&free_memory) - ((int)__brkval);
  480. return free_memory;
  481. }
  482. }
  483. #endif //!SDSUPPORT
  484. /**
  485. * Inject the next "immediate" command, when possible.
  486. * Return true if any immediate commands remain to inject.
  487. */
  488. static bool drain_queued_commands_P() {
  489. if (queued_commands_P != NULL) {
  490. size_t i = 0;
  491. char c, cmd[30];
  492. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  493. cmd[sizeof(cmd) - 1] = '\0';
  494. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  495. cmd[i] = '\0';
  496. if (enqueue_and_echo_command(cmd)) { // success?
  497. if (c) // newline char?
  498. queued_commands_P += i + 1; // advance to the next command
  499. else
  500. queued_commands_P = NULL; // nul char? no more commands
  501. }
  502. }
  503. return (queued_commands_P != NULL); // return whether any more remain
  504. }
  505. /**
  506. * Record one or many commands to run from program memory.
  507. * Aborts the current queue, if any.
  508. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  509. */
  510. void enqueue_and_echo_commands_P(const char* pgcode) {
  511. queued_commands_P = pgcode;
  512. drain_queued_commands_P(); // first command executed asap (when possible)
  513. }
  514. /**
  515. * Once a new command is in the ring buffer, call this to commit it
  516. */
  517. inline void _commit_command(bool say_ok) {
  518. send_ok[cmd_queue_index_w] = say_ok;
  519. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  520. commands_in_queue++;
  521. }
  522. /**
  523. * Copy a command directly into the main command buffer, from RAM.
  524. * Returns true if successfully adds the command
  525. */
  526. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  527. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  528. strcpy(command_queue[cmd_queue_index_w], cmd);
  529. _commit_command(say_ok);
  530. return true;
  531. }
  532. void enqueue_and_echo_command_now(const char* cmd) {
  533. while (!enqueue_and_echo_command(cmd)) idle();
  534. }
  535. /**
  536. * Enqueue with Serial Echo
  537. */
  538. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  539. if (_enqueuecommand(cmd, say_ok)) {
  540. SERIAL_ECHO_START;
  541. SERIAL_ECHOPGM(MSG_Enqueueing);
  542. SERIAL_ECHO(cmd);
  543. SERIAL_ECHOLNPGM("\"");
  544. return true;
  545. }
  546. return false;
  547. }
  548. void setup_killpin() {
  549. #if HAS_KILL
  550. SET_INPUT(KILL_PIN);
  551. WRITE(KILL_PIN, HIGH);
  552. #endif
  553. }
  554. void setup_filrunoutpin() {
  555. #if HAS_FILRUNOUT
  556. pinMode(FILRUNOUT_PIN, INPUT);
  557. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  558. WRITE(FILRUNOUT_PIN, HIGH);
  559. #endif
  560. #endif
  561. }
  562. // Set home pin
  563. void setup_homepin(void) {
  564. #if HAS_HOME
  565. SET_INPUT(HOME_PIN);
  566. WRITE(HOME_PIN, HIGH);
  567. #endif
  568. }
  569. void setup_photpin() {
  570. #if HAS_PHOTOGRAPH
  571. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  572. #endif
  573. }
  574. void setup_powerhold() {
  575. #if HAS_SUICIDE
  576. OUT_WRITE(SUICIDE_PIN, HIGH);
  577. #endif
  578. #if HAS_POWER_SWITCH
  579. #if ENABLED(PS_DEFAULT_OFF)
  580. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  581. #else
  582. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  583. #endif
  584. #endif
  585. }
  586. void suicide() {
  587. #if HAS_SUICIDE
  588. OUT_WRITE(SUICIDE_PIN, LOW);
  589. #endif
  590. }
  591. void servo_init() {
  592. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  593. servo[0].attach(SERVO0_PIN);
  594. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  595. #endif
  596. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  597. servo[1].attach(SERVO1_PIN);
  598. servo[1].detach();
  599. #endif
  600. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  601. servo[2].attach(SERVO2_PIN);
  602. servo[2].detach();
  603. #endif
  604. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  605. servo[3].attach(SERVO3_PIN);
  606. servo[3].detach();
  607. #endif
  608. #if HAS_SERVO_ENDSTOPS
  609. z_probe_is_active = false;
  610. /**
  611. * Set position of all defined Servo Endstops
  612. *
  613. * ** UNSAFE! - NEEDS UPDATE! **
  614. *
  615. * The servo might be deployed and positioned too low to stow
  616. * when starting up the machine or rebooting the board.
  617. * There's no way to know where the nozzle is positioned until
  618. * homing has been done - no homing with z-probe without init!
  619. *
  620. */
  621. for (int i = 0; i < 3; i++)
  622. if (servo_endstop_id[i] >= 0)
  623. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  624. #endif // HAS_SERVO_ENDSTOPS
  625. }
  626. /**
  627. * Stepper Reset (RigidBoard, et.al.)
  628. */
  629. #if HAS_STEPPER_RESET
  630. void disableStepperDrivers() {
  631. pinMode(STEPPER_RESET_PIN, OUTPUT);
  632. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  633. }
  634. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  635. #endif
  636. /**
  637. * Marlin entry-point: Set up before the program loop
  638. * - Set up the kill pin, filament runout, power hold
  639. * - Start the serial port
  640. * - Print startup messages and diagnostics
  641. * - Get EEPROM or default settings
  642. * - Initialize managers for:
  643. * • temperature
  644. * • planner
  645. * • watchdog
  646. * • stepper
  647. * • photo pin
  648. * • servos
  649. * • LCD controller
  650. * • Digipot I2C
  651. * • Z probe sled
  652. * • status LEDs
  653. */
  654. void setup() {
  655. #ifdef DISABLE_JTAG
  656. // Disable JTAG on AT90USB chips to free up pins for IO
  657. MCUCR = 0x80;
  658. MCUCR = 0x80;
  659. #endif
  660. setup_killpin();
  661. setup_filrunoutpin();
  662. setup_powerhold();
  663. #if HAS_STEPPER_RESET
  664. disableStepperDrivers();
  665. #endif
  666. MYSERIAL.begin(BAUDRATE);
  667. SERIAL_PROTOCOLLNPGM("start");
  668. SERIAL_ECHO_START;
  669. // Check startup - does nothing if bootloader sets MCUSR to 0
  670. byte mcu = MCUSR;
  671. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  672. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  673. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  674. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  675. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  676. MCUSR = 0;
  677. SERIAL_ECHOPGM(MSG_MARLIN);
  678. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  679. #ifdef STRING_DISTRIBUTION_DATE
  680. #ifdef STRING_CONFIG_H_AUTHOR
  681. SERIAL_ECHO_START;
  682. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  683. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  684. SERIAL_ECHOPGM(MSG_AUTHOR);
  685. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  686. SERIAL_ECHOPGM("Compiled: ");
  687. SERIAL_ECHOLNPGM(__DATE__);
  688. #endif // STRING_CONFIG_H_AUTHOR
  689. #endif // STRING_DISTRIBUTION_DATE
  690. SERIAL_ECHO_START;
  691. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  692. SERIAL_ECHO(freeMemory());
  693. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  694. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  695. // Send "ok" after commands by default
  696. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  697. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  698. Config_RetrieveSettings();
  699. lcd_init();
  700. tp_init(); // Initialize temperature loop
  701. plan_init(); // Initialize planner;
  702. #if ENABLED(DELTA) || ENABLED(SCARA)
  703. // Vital to init kinematic equivalent for X0 Y0 Z0
  704. sync_plan_position_delta();
  705. #endif
  706. #if ENABLED(USE_WATCHDOG)
  707. watchdog_init();
  708. #endif
  709. st_init(); // Initialize stepper, this enables interrupts!
  710. setup_photpin();
  711. servo_init();
  712. #if HAS_CONTROLLERFAN
  713. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  714. #endif
  715. #if HAS_STEPPER_RESET
  716. enableStepperDrivers();
  717. #endif
  718. #if ENABLED(DIGIPOT_I2C)
  719. digipot_i2c_init();
  720. #endif
  721. #if ENABLED(Z_PROBE_SLED)
  722. pinMode(SLED_PIN, OUTPUT);
  723. digitalWrite(SLED_PIN, LOW); // turn it off
  724. #endif // Z_PROBE_SLED
  725. setup_homepin();
  726. #ifdef STAT_LED_RED
  727. pinMode(STAT_LED_RED, OUTPUT);
  728. digitalWrite(STAT_LED_RED, LOW); // turn it off
  729. #endif
  730. #ifdef STAT_LED_BLUE
  731. pinMode(STAT_LED_BLUE, OUTPUT);
  732. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  733. #endif
  734. }
  735. /**
  736. * The main Marlin program loop
  737. *
  738. * - Save or log commands to SD
  739. * - Process available commands (if not saving)
  740. * - Call heater manager
  741. * - Call inactivity manager
  742. * - Call endstop manager
  743. * - Call LCD update
  744. */
  745. void loop() {
  746. if (commands_in_queue < BUFSIZE) get_available_commands();
  747. #if ENABLED(SDSUPPORT)
  748. card.checkautostart(false);
  749. #endif
  750. if (commands_in_queue) {
  751. #if ENABLED(SDSUPPORT)
  752. if (card.saving) {
  753. char* command = command_queue[cmd_queue_index_r];
  754. if (strstr_P(command, PSTR("M29"))) {
  755. // M29 closes the file
  756. card.closefile();
  757. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  758. ok_to_send();
  759. }
  760. else {
  761. // Write the string from the read buffer to SD
  762. card.write_command(command);
  763. if (card.logging)
  764. process_next_command(); // The card is saving because it's logging
  765. else
  766. ok_to_send();
  767. }
  768. }
  769. else
  770. process_next_command();
  771. #else
  772. process_next_command();
  773. #endif // SDSUPPORT
  774. commands_in_queue--;
  775. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  776. }
  777. checkHitEndstops();
  778. idle();
  779. }
  780. void gcode_line_error(const char* err, bool doFlush = true) {
  781. SERIAL_ERROR_START;
  782. serialprintPGM(err);
  783. SERIAL_ERRORLN(gcode_LastN);
  784. //Serial.println(gcode_N);
  785. if (doFlush) FlushSerialRequestResend();
  786. serial_count = 0;
  787. }
  788. inline void get_serial_commands() {
  789. static char serial_line_buffer[MAX_CMD_SIZE];
  790. static boolean serial_comment_mode = false;
  791. // If the command buffer is empty for too long,
  792. // send "wait" to indicate Marlin is still waiting.
  793. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  794. static millis_t last_command_time = 0;
  795. millis_t ms = millis();
  796. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  797. SERIAL_ECHOLNPGM(MSG_WAIT);
  798. last_command_time = ms;
  799. }
  800. #endif
  801. /**
  802. * Loop while serial characters are incoming and the queue is not full
  803. */
  804. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  805. char serial_char = MYSERIAL.read();
  806. /**
  807. * If the character ends the line
  808. */
  809. if (serial_char == '\n' || serial_char == '\r') {
  810. serial_comment_mode = false; // end of line == end of comment
  811. if (!serial_count) continue; // skip empty lines
  812. serial_line_buffer[serial_count] = 0; // terminate string
  813. serial_count = 0; //reset buffer
  814. char* command = serial_line_buffer;
  815. while (*command == ' ') command++; // skip any leading spaces
  816. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  817. char* apos = strchr(command, '*');
  818. if (npos) {
  819. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  820. if (M110) {
  821. char* n2pos = strchr(command + 4, 'N');
  822. if (n2pos) npos = n2pos;
  823. }
  824. gcode_N = strtol(npos + 1, NULL, 10);
  825. if (gcode_N != gcode_LastN + 1 && !M110) {
  826. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  827. return;
  828. }
  829. if (apos) {
  830. byte checksum = 0, count = 0;
  831. while (command[count] != '*') checksum ^= command[count++];
  832. if (strtol(apos + 1, NULL, 10) != checksum) {
  833. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  834. return;
  835. }
  836. // if no errors, continue parsing
  837. }
  838. else {
  839. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  840. return;
  841. }
  842. gcode_LastN = gcode_N;
  843. // if no errors, continue parsing
  844. }
  845. else if (apos) { // No '*' without 'N'
  846. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  847. return;
  848. }
  849. // Movement commands alert when stopped
  850. if (IsStopped()) {
  851. char* gpos = strchr(command, 'G');
  852. if (gpos) {
  853. int codenum = strtol(gpos + 1, NULL, 10);
  854. switch (codenum) {
  855. case 0:
  856. case 1:
  857. case 2:
  858. case 3:
  859. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  860. LCD_MESSAGEPGM(MSG_STOPPED);
  861. break;
  862. }
  863. }
  864. }
  865. // If command was e-stop process now
  866. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  867. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  868. last_command_time = ms;
  869. #endif
  870. // Add the command to the queue
  871. _enqueuecommand(serial_line_buffer, true);
  872. }
  873. else if (serial_count >= MAX_CMD_SIZE - 1) {
  874. // Keep fetching, but ignore normal characters beyond the max length
  875. // The command will be injected when EOL is reached
  876. }
  877. else if (serial_char == '\\') { // Handle escapes
  878. if (MYSERIAL.available() > 0) {
  879. // if we have one more character, copy it over
  880. serial_char = MYSERIAL.read();
  881. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  882. }
  883. // otherwise do nothing
  884. }
  885. else { // it's not a newline, carriage return or escape char
  886. if (serial_char == ';') serial_comment_mode = true;
  887. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  888. }
  889. } // queue has space, serial has data
  890. }
  891. #if ENABLED(SDSUPPORT)
  892. inline void get_sdcard_commands() {
  893. static bool stop_buffering = false,
  894. sd_comment_mode = false;
  895. if (!card.sdprinting) return;
  896. /**
  897. * '#' stops reading from SD to the buffer prematurely, so procedural
  898. * macro calls are possible. If it occurs, stop_buffering is triggered
  899. * and the buffer is run dry; this character _can_ occur in serial com
  900. * due to checksums, however, no checksums are used in SD printing.
  901. */
  902. if (commands_in_queue == 0) stop_buffering = false;
  903. uint16_t sd_count = 0;
  904. bool card_eof = card.eof();
  905. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  906. int16_t n = card.get();
  907. char sd_char = (char)n;
  908. card_eof = card.eof();
  909. if (card_eof || n == -1
  910. || sd_char == '\n' || sd_char == '\r'
  911. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  912. ) {
  913. if (card_eof) {
  914. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  915. print_job_timer.stop();
  916. char time[30];
  917. millis_t t = print_job_timer.duration();
  918. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  919. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  920. SERIAL_ECHO_START;
  921. SERIAL_ECHOLN(time);
  922. lcd_setstatus(time, true);
  923. card.printingHasFinished();
  924. card.checkautostart(true);
  925. }
  926. if (sd_char == '#') stop_buffering = true;
  927. sd_comment_mode = false; //for new command
  928. if (!sd_count) continue; //skip empty lines
  929. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  930. sd_count = 0; //clear buffer
  931. _commit_command(false);
  932. }
  933. else if (sd_count >= MAX_CMD_SIZE - 1) {
  934. /**
  935. * Keep fetching, but ignore normal characters beyond the max length
  936. * The command will be injected when EOL is reached
  937. */
  938. }
  939. else {
  940. if (sd_char == ';') sd_comment_mode = true;
  941. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  942. }
  943. }
  944. }
  945. #endif // SDSUPPORT
  946. /**
  947. * Add to the circular command queue the next command from:
  948. * - The command-injection queue (queued_commands_P)
  949. * - The active serial input (usually USB)
  950. * - The SD card file being actively printed
  951. */
  952. void get_available_commands() {
  953. // if any immediate commands remain, don't get other commands yet
  954. if (drain_queued_commands_P()) return;
  955. get_serial_commands();
  956. #if ENABLED(SDSUPPORT)
  957. get_sdcard_commands();
  958. #endif
  959. }
  960. bool code_has_value() {
  961. int i = 1;
  962. char c = seen_pointer[i];
  963. while (c == ' ') c = seen_pointer[++i];
  964. if (c == '-' || c == '+') c = seen_pointer[++i];
  965. if (c == '.') c = seen_pointer[++i];
  966. return NUMERIC(c);
  967. }
  968. float code_value() {
  969. float ret;
  970. char* e = strchr(seen_pointer, 'E');
  971. if (e) {
  972. *e = 0;
  973. ret = strtod(seen_pointer + 1, NULL);
  974. *e = 'E';
  975. }
  976. else
  977. ret = strtod(seen_pointer + 1, NULL);
  978. return ret;
  979. }
  980. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  981. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  982. bool code_seen(char code) {
  983. seen_pointer = strchr(current_command_args, code);
  984. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  985. }
  986. #define DEFINE_PGM_READ_ANY(type, reader) \
  987. static inline type pgm_read_any(const type *p) \
  988. { return pgm_read_##reader##_near(p); }
  989. DEFINE_PGM_READ_ANY(float, float);
  990. DEFINE_PGM_READ_ANY(signed char, byte);
  991. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  992. static const PROGMEM type array##_P[3] = \
  993. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  994. static inline type array(int axis) \
  995. { return pgm_read_any(&array##_P[axis]); }
  996. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  997. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  998. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  999. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1000. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1001. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1002. #if ENABLED(DUAL_X_CARRIAGE)
  1003. #define DXC_FULL_CONTROL_MODE 0
  1004. #define DXC_AUTO_PARK_MODE 1
  1005. #define DXC_DUPLICATION_MODE 2
  1006. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1007. static float x_home_pos(int extruder) {
  1008. if (extruder == 0)
  1009. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1010. else
  1011. /**
  1012. * In dual carriage mode the extruder offset provides an override of the
  1013. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1014. * This allow soft recalibration of the second extruder offset position
  1015. * without firmware reflash (through the M218 command).
  1016. */
  1017. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1018. }
  1019. static int x_home_dir(int extruder) {
  1020. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1021. }
  1022. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1023. static bool active_extruder_parked = false; // used in mode 1 & 2
  1024. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1025. static millis_t delayed_move_time = 0; // used in mode 1
  1026. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1027. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1028. bool extruder_duplication_enabled = false; // used in mode 2
  1029. #endif //DUAL_X_CARRIAGE
  1030. /**
  1031. * Software endstops can be used to monitor the open end of
  1032. * an axis that has a hardware endstop on the other end. Or
  1033. * they can prevent axes from moving past endstops and grinding.
  1034. *
  1035. * To keep doing their job as the coordinate system changes,
  1036. * the software endstop positions must be refreshed to remain
  1037. * at the same positions relative to the machine.
  1038. */
  1039. static void update_software_endstops(AxisEnum axis) {
  1040. float offs = home_offset[axis] + position_shift[axis];
  1041. #if ENABLED(DUAL_X_CARRIAGE)
  1042. if (axis == X_AXIS) {
  1043. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1044. if (active_extruder != 0) {
  1045. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1046. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1047. return;
  1048. }
  1049. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1050. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1051. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1052. return;
  1053. }
  1054. }
  1055. else
  1056. #endif
  1057. {
  1058. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1059. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1060. }
  1061. }
  1062. /**
  1063. * Change the home offset for an axis, update the current
  1064. * position and the software endstops to retain the same
  1065. * relative distance to the new home.
  1066. *
  1067. * Since this changes the current_position, code should
  1068. * call sync_plan_position soon after this.
  1069. */
  1070. static void set_home_offset(AxisEnum axis, float v) {
  1071. current_position[axis] += v - home_offset[axis];
  1072. home_offset[axis] = v;
  1073. update_software_endstops(axis);
  1074. }
  1075. static void set_axis_is_at_home(AxisEnum axis) {
  1076. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1077. if (DEBUGGING(LEVELING)) {
  1078. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1079. SERIAL_ECHOLNPGM(") >>>");
  1080. }
  1081. #endif
  1082. position_shift[axis] = 0;
  1083. #if ENABLED(DUAL_X_CARRIAGE)
  1084. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1085. if (active_extruder != 0)
  1086. current_position[X_AXIS] = x_home_pos(active_extruder);
  1087. else
  1088. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1089. update_software_endstops(X_AXIS);
  1090. return;
  1091. }
  1092. #endif
  1093. #if ENABLED(SCARA)
  1094. if (axis == X_AXIS || axis == Y_AXIS) {
  1095. float homeposition[3];
  1096. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1097. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1098. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1099. /**
  1100. * Works out real Homeposition angles using inverse kinematics,
  1101. * and calculates homing offset using forward kinematics
  1102. */
  1103. calculate_delta(homeposition);
  1104. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1105. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1106. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1107. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1108. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1109. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1110. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1111. calculate_SCARA_forward_Transform(delta);
  1112. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1113. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1114. current_position[axis] = delta[axis];
  1115. /**
  1116. * SCARA home positions are based on configuration since the actual
  1117. * limits are determined by the inverse kinematic transform.
  1118. */
  1119. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1120. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1121. }
  1122. else
  1123. #endif
  1124. {
  1125. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1126. update_software_endstops(axis);
  1127. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1128. if (axis == Z_AXIS) {
  1129. current_position[Z_AXIS] -= zprobe_zoffset;
  1130. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1131. if (DEBUGGING(LEVELING)) {
  1132. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1133. SERIAL_EOL;
  1134. }
  1135. #endif
  1136. }
  1137. #endif
  1138. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1139. if (DEBUGGING(LEVELING)) {
  1140. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1141. DEBUG_POS("", current_position);
  1142. }
  1143. #endif
  1144. }
  1145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1146. if (DEBUGGING(LEVELING)) {
  1147. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1148. SERIAL_ECHOLNPGM(")");
  1149. }
  1150. #endif
  1151. }
  1152. /**
  1153. * Some planner shorthand inline functions
  1154. */
  1155. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1156. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1157. int hbd = homing_bump_divisor[axis];
  1158. if (hbd < 1) {
  1159. hbd = 10;
  1160. SERIAL_ECHO_START;
  1161. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1162. }
  1163. feedrate = homing_feedrate[axis] / hbd;
  1164. }
  1165. //
  1166. // line_to_current_position
  1167. // Move the planner to the current position from wherever it last moved
  1168. // (or from wherever it has been told it is located).
  1169. //
  1170. inline void line_to_current_position() {
  1171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1172. }
  1173. inline void line_to_z(float zPosition) {
  1174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1175. }
  1176. //
  1177. // line_to_destination
  1178. // Move the planner, not necessarily synced with current_position
  1179. //
  1180. inline void line_to_destination(float mm_m) {
  1181. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1182. }
  1183. inline void line_to_destination() {
  1184. line_to_destination(feedrate);
  1185. }
  1186. /**
  1187. * sync_plan_position
  1188. * Set planner / stepper positions to the cartesian current_position.
  1189. * The stepper code translates these coordinates into step units.
  1190. * Allows translation between steps and units (mm) for cartesian & core robots
  1191. */
  1192. inline void sync_plan_position() {
  1193. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1194. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1195. #endif
  1196. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1197. }
  1198. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1199. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1200. static void setup_for_endstop_move() {
  1201. saved_feedrate = feedrate;
  1202. saved_feedrate_multiplier = feedrate_multiplier;
  1203. feedrate_multiplier = 100;
  1204. refresh_cmd_timeout();
  1205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1206. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1207. #endif
  1208. enable_endstops(true);
  1209. }
  1210. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1211. #if ENABLED(DELTA)
  1212. /**
  1213. * Calculate delta, start a line, and set current_position to destination
  1214. */
  1215. void prepare_move_raw() {
  1216. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1217. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1218. #endif
  1219. refresh_cmd_timeout();
  1220. calculate_delta(destination);
  1221. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1222. set_current_to_destination();
  1223. }
  1224. #endif
  1225. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1226. #if DISABLED(DELTA)
  1227. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1228. //plan_bed_level_matrix.debug("bed level before");
  1229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1230. plan_bed_level_matrix.set_to_identity();
  1231. if (DEBUGGING(LEVELING)) {
  1232. vector_3 uncorrected_position = plan_get_position();
  1233. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1234. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1235. }
  1236. #endif
  1237. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1238. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1239. vector_3 corrected_position = plan_get_position();
  1240. current_position[X_AXIS] = corrected_position.x;
  1241. current_position[Y_AXIS] = corrected_position.y;
  1242. current_position[Z_AXIS] = corrected_position.z;
  1243. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1244. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1245. #endif
  1246. sync_plan_position();
  1247. }
  1248. #endif // !DELTA
  1249. #else // !AUTO_BED_LEVELING_GRID
  1250. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1251. plan_bed_level_matrix.set_to_identity();
  1252. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1253. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1254. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1255. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1256. if (planeNormal.z < 0) {
  1257. planeNormal.x = -planeNormal.x;
  1258. planeNormal.y = -planeNormal.y;
  1259. planeNormal.z = -planeNormal.z;
  1260. }
  1261. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1262. vector_3 corrected_position = plan_get_position();
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. if (DEBUGGING(LEVELING)) {
  1265. vector_3 uncorrected_position = corrected_position;
  1266. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1267. }
  1268. #endif
  1269. current_position[X_AXIS] = corrected_position.x;
  1270. current_position[Y_AXIS] = corrected_position.y;
  1271. current_position[Z_AXIS] = corrected_position.z;
  1272. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1273. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1274. #endif
  1275. sync_plan_position();
  1276. }
  1277. #endif // !AUTO_BED_LEVELING_GRID
  1278. static void run_z_probe() {
  1279. /**
  1280. * To prevent stepper_inactive_time from running out and
  1281. * EXTRUDER_RUNOUT_PREVENT from extruding
  1282. */
  1283. refresh_cmd_timeout();
  1284. #if ENABLED(DELTA)
  1285. float start_z = current_position[Z_AXIS];
  1286. long start_steps = st_get_position(Z_AXIS);
  1287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1288. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1289. #endif
  1290. // move down slowly until you find the bed
  1291. feedrate = homing_feedrate[Z_AXIS] / 4;
  1292. destination[Z_AXIS] = -10;
  1293. prepare_move_raw(); // this will also set_current_to_destination
  1294. st_synchronize();
  1295. endstops_hit_on_purpose(); // clear endstop hit flags
  1296. /**
  1297. * We have to let the planner know where we are right now as it
  1298. * is not where we said to go.
  1299. */
  1300. long stop_steps = st_get_position(Z_AXIS);
  1301. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1302. current_position[Z_AXIS] = mm;
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1305. #endif
  1306. sync_plan_position_delta();
  1307. #else // !DELTA
  1308. plan_bed_level_matrix.set_to_identity();
  1309. feedrate = homing_feedrate[Z_AXIS];
  1310. // Move down until the Z probe (or endstop?) is triggered
  1311. float zPosition = -(Z_MAX_LENGTH + 10);
  1312. line_to_z(zPosition);
  1313. st_synchronize();
  1314. // Tell the planner where we ended up - Get this from the stepper handler
  1315. zPosition = st_get_axis_position_mm(Z_AXIS);
  1316. plan_set_position(
  1317. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1318. current_position[E_AXIS]
  1319. );
  1320. // move up the retract distance
  1321. zPosition += home_bump_mm(Z_AXIS);
  1322. line_to_z(zPosition);
  1323. st_synchronize();
  1324. endstops_hit_on_purpose(); // clear endstop hit flags
  1325. // move back down slowly to find bed
  1326. set_homing_bump_feedrate(Z_AXIS);
  1327. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1328. line_to_z(zPosition);
  1329. st_synchronize();
  1330. endstops_hit_on_purpose(); // clear endstop hit flags
  1331. // Get the current stepper position after bumping an endstop
  1332. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1333. sync_plan_position();
  1334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1335. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1336. #endif
  1337. #endif // !DELTA
  1338. }
  1339. /**
  1340. * Plan a move to (X, Y, Z) and set the current_position
  1341. * The final current_position may not be the one that was requested
  1342. */
  1343. static void do_blocking_move_to(float x, float y, float z) {
  1344. float oldFeedRate = feedrate;
  1345. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1346. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1347. #endif
  1348. #if ENABLED(DELTA)
  1349. feedrate = XY_TRAVEL_SPEED;
  1350. destination[X_AXIS] = x;
  1351. destination[Y_AXIS] = y;
  1352. destination[Z_AXIS] = z;
  1353. prepare_move_raw(); // this will also set_current_to_destination
  1354. st_synchronize();
  1355. #else
  1356. feedrate = homing_feedrate[Z_AXIS];
  1357. current_position[Z_AXIS] = z;
  1358. line_to_current_position();
  1359. st_synchronize();
  1360. feedrate = xy_travel_speed;
  1361. current_position[X_AXIS] = x;
  1362. current_position[Y_AXIS] = y;
  1363. line_to_current_position();
  1364. st_synchronize();
  1365. #endif
  1366. feedrate = oldFeedRate;
  1367. }
  1368. inline void do_blocking_move_to_xy(float x, float y) {
  1369. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1370. }
  1371. inline void do_blocking_move_to_x(float x) {
  1372. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1373. }
  1374. inline void do_blocking_move_to_z(float z) {
  1375. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1376. }
  1377. inline void raise_z_after_probing() {
  1378. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1379. }
  1380. static void clean_up_after_endstop_move() {
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1383. #endif
  1384. endstops_not_homing();
  1385. feedrate = saved_feedrate;
  1386. feedrate_multiplier = saved_feedrate_multiplier;
  1387. refresh_cmd_timeout();
  1388. }
  1389. #if ENABLED(HAS_Z_MIN_PROBE)
  1390. static void deploy_z_probe() {
  1391. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1392. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1393. #endif
  1394. if (z_probe_is_active) return;
  1395. #if HAS_SERVO_ENDSTOPS
  1396. // Engage Z Servo endstop if enabled
  1397. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1398. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1399. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1400. // If endstop is already false, the Z probe is deployed
  1401. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1402. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1403. if (z_probe_endstop)
  1404. #else
  1405. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1406. if (z_min_endstop)
  1407. #endif
  1408. {
  1409. // Move to the start position to initiate deployment
  1410. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1411. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1412. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1413. prepare_move_raw(); // this will also set_current_to_destination
  1414. // Move to engage deployment
  1415. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1416. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1417. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1418. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1419. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1420. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1421. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1422. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1423. prepare_move_raw();
  1424. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1425. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1426. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1427. // Move to trigger deployment
  1428. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1429. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1430. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1431. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1432. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1433. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1434. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1435. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1436. prepare_move_raw();
  1437. #endif
  1438. }
  1439. // Partially Home X,Y for safety
  1440. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1441. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1442. prepare_move_raw(); // this will also set_current_to_destination
  1443. st_synchronize();
  1444. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1445. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1446. if (z_probe_endstop)
  1447. #else
  1448. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1449. if (z_min_endstop)
  1450. #endif
  1451. {
  1452. if (IsRunning()) {
  1453. SERIAL_ERROR_START;
  1454. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1455. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1456. }
  1457. Stop();
  1458. }
  1459. #endif // Z_PROBE_ALLEN_KEY
  1460. #if ENABLED(FIX_MOUNTED_PROBE)
  1461. // Noting to be done. Just set z_probe_is_active
  1462. #endif
  1463. z_probe_is_active = true;
  1464. }
  1465. static void stow_z_probe(bool doRaise = true) {
  1466. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1467. UNUSED(doRaise);
  1468. #endif
  1469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1470. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1471. #endif
  1472. if (!z_probe_is_active) return;
  1473. #if HAS_SERVO_ENDSTOPS
  1474. // Retract Z Servo endstop if enabled
  1475. if (servo_endstop_id[Z_AXIS] >= 0) {
  1476. #if Z_RAISE_AFTER_PROBING > 0
  1477. if (doRaise) {
  1478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1479. if (DEBUGGING(LEVELING)) {
  1480. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1481. SERIAL_EOL;
  1482. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1483. SERIAL_EOL;
  1484. }
  1485. #endif
  1486. raise_z_after_probing(); // this also updates current_position
  1487. st_synchronize();
  1488. }
  1489. #endif
  1490. // Change the Z servo angle
  1491. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1492. }
  1493. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1494. // Move up for safety
  1495. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1496. #if Z_RAISE_AFTER_PROBING > 0
  1497. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1498. prepare_move_raw(); // this will also set_current_to_destination
  1499. #endif
  1500. // Move to the start position to initiate retraction
  1501. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1502. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1503. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1504. prepare_move_raw();
  1505. // Move the nozzle down to push the Z probe into retracted position
  1506. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1507. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1508. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1509. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1510. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1511. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1512. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1513. prepare_move_raw();
  1514. // Move up for safety
  1515. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1516. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1517. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1518. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1519. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1520. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1521. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1522. prepare_move_raw();
  1523. // Home XY for safety
  1524. feedrate = homing_feedrate[X_AXIS] / 2;
  1525. destination[X_AXIS] = 0;
  1526. destination[Y_AXIS] = 0;
  1527. prepare_move_raw(); // this will also set_current_to_destination
  1528. st_synchronize();
  1529. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1530. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1531. if (!z_probe_endstop)
  1532. #else
  1533. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1534. if (!z_min_endstop)
  1535. #endif
  1536. {
  1537. if (IsRunning()) {
  1538. SERIAL_ERROR_START;
  1539. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1540. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1541. }
  1542. Stop();
  1543. }
  1544. #endif // Z_PROBE_ALLEN_KEY
  1545. #if ENABLED(FIX_MOUNTED_PROBE)
  1546. // Nothing to do here. Just clear z_probe_is_active
  1547. #endif
  1548. z_probe_is_active = false;
  1549. }
  1550. #endif // HAS_Z_MIN_PROBE
  1551. enum ProbeAction {
  1552. ProbeStay = 0,
  1553. ProbeDeploy = _BV(0),
  1554. ProbeStow = _BV(1),
  1555. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1556. };
  1557. // Probe bed height at position (x,y), returns the measured z value
  1558. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1559. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1560. if (DEBUGGING(LEVELING)) {
  1561. SERIAL_ECHOLNPGM("probe_pt >>>");
  1562. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1563. SERIAL_EOL;
  1564. DEBUG_POS("", current_position);
  1565. }
  1566. #endif
  1567. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1568. if (DEBUGGING(LEVELING)) {
  1569. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1570. SERIAL_EOL;
  1571. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1572. SERIAL_EOL;
  1573. }
  1574. #endif
  1575. // Move Z up to the z_before height, then move the Z probe to the given XY
  1576. do_blocking_move_to_z(z_before); // this also updates current_position
  1577. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1578. if (DEBUGGING(LEVELING)) {
  1579. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1580. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1581. SERIAL_EOL;
  1582. }
  1583. #endif
  1584. // this also updates current_position
  1585. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1586. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1587. if (probe_action & ProbeDeploy) {
  1588. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1589. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1590. #endif
  1591. deploy_z_probe();
  1592. }
  1593. #endif
  1594. run_z_probe();
  1595. float measured_z = current_position[Z_AXIS];
  1596. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1597. if (probe_action & ProbeStow) {
  1598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1599. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1600. #endif
  1601. stow_z_probe();
  1602. }
  1603. #endif
  1604. if (verbose_level > 2) {
  1605. SERIAL_PROTOCOLPGM("Bed X: ");
  1606. SERIAL_PROTOCOL_F(x, 3);
  1607. SERIAL_PROTOCOLPGM(" Y: ");
  1608. SERIAL_PROTOCOL_F(y, 3);
  1609. SERIAL_PROTOCOLPGM(" Z: ");
  1610. SERIAL_PROTOCOL_F(measured_z, 3);
  1611. SERIAL_EOL;
  1612. }
  1613. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1614. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1615. #endif
  1616. return measured_z;
  1617. }
  1618. #if ENABLED(DELTA)
  1619. /**
  1620. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1621. */
  1622. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1623. if (bed_level[x][y] != 0.0) {
  1624. return; // Don't overwrite good values.
  1625. }
  1626. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1627. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1628. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1629. float median = c; // Median is robust (ignores outliers).
  1630. if (a < b) {
  1631. if (b < c) median = b;
  1632. if (c < a) median = a;
  1633. }
  1634. else { // b <= a
  1635. if (c < b) median = b;
  1636. if (a < c) median = a;
  1637. }
  1638. bed_level[x][y] = median;
  1639. }
  1640. /**
  1641. * Fill in the unprobed points (corners of circular print surface)
  1642. * using linear extrapolation, away from the center.
  1643. */
  1644. static void extrapolate_unprobed_bed_level() {
  1645. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1646. for (int y = 0; y <= half; y++) {
  1647. for (int x = 0; x <= half; x++) {
  1648. if (x + y < 3) continue;
  1649. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1650. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1651. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1652. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1653. }
  1654. }
  1655. }
  1656. /**
  1657. * Print calibration results for plotting or manual frame adjustment.
  1658. */
  1659. static void print_bed_level() {
  1660. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1661. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1662. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1663. SERIAL_PROTOCOLCHAR(' ');
  1664. }
  1665. SERIAL_EOL;
  1666. }
  1667. }
  1668. /**
  1669. * Reset calibration results to zero.
  1670. */
  1671. void reset_bed_level() {
  1672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1673. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1674. #endif
  1675. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1676. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1677. bed_level[x][y] = 0.0;
  1678. }
  1679. }
  1680. }
  1681. #endif // DELTA
  1682. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1683. void raise_z_for_servo() {
  1684. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1685. /**
  1686. * The zprobe_zoffset is negative any switch below the nozzle, so
  1687. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1688. */
  1689. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1690. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1691. }
  1692. #endif
  1693. #endif // AUTO_BED_LEVELING_FEATURE
  1694. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1695. static void axis_unhomed_error() {
  1696. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1697. SERIAL_ECHO_START;
  1698. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1699. }
  1700. #endif
  1701. #if ENABLED(Z_PROBE_SLED)
  1702. #ifndef SLED_DOCKING_OFFSET
  1703. #define SLED_DOCKING_OFFSET 0
  1704. #endif
  1705. /**
  1706. * Method to dock/undock a sled designed by Charles Bell.
  1707. *
  1708. * dock[in] If true, move to MAX_X and engage the electromagnet
  1709. * offset[in] The additional distance to move to adjust docking location
  1710. */
  1711. static void dock_sled(bool dock, int offset = 0) {
  1712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1713. if (DEBUGGING(LEVELING)) {
  1714. SERIAL_ECHOPAIR("dock_sled(", dock);
  1715. SERIAL_ECHOLNPGM(")");
  1716. }
  1717. #endif
  1718. if (z_probe_is_active == dock) return;
  1719. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1720. axis_unhomed_error();
  1721. return;
  1722. }
  1723. float oldXpos = current_position[X_AXIS]; // save x position
  1724. if (dock) {
  1725. #if Z_RAISE_AFTER_PROBING > 0
  1726. raise_z_after_probing(); // raise Z
  1727. #endif
  1728. // Dock sled a bit closer to ensure proper capturing
  1729. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1730. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1731. }
  1732. else {
  1733. float z_loc = current_position[Z_AXIS];
  1734. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1735. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1736. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1737. }
  1738. do_blocking_move_to_x(oldXpos); // return to position before docking
  1739. z_probe_is_active = dock;
  1740. }
  1741. #endif // Z_PROBE_SLED
  1742. /**
  1743. * Home an individual axis
  1744. */
  1745. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1746. static void homeaxis(AxisEnum axis) {
  1747. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1748. if (DEBUGGING(LEVELING)) {
  1749. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1750. SERIAL_ECHOLNPGM(")");
  1751. }
  1752. #endif
  1753. #define HOMEAXIS_DO(LETTER) \
  1754. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1755. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1756. int axis_home_dir =
  1757. #if ENABLED(DUAL_X_CARRIAGE)
  1758. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1759. #endif
  1760. home_dir(axis);
  1761. // Set the axis position as setup for the move
  1762. current_position[axis] = 0;
  1763. sync_plan_position();
  1764. #if ENABLED(Z_PROBE_SLED)
  1765. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1766. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1767. #define _Z_DEPLOY (dock_sled(false))
  1768. #define _Z_STOW (dock_sled(true))
  1769. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1770. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1771. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1772. #define _Z_DEPLOY (deploy_z_probe())
  1773. #define _Z_STOW (stow_z_probe())
  1774. #elif HAS_SERVO_ENDSTOPS
  1775. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1776. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1777. #endif
  1778. if (axis == Z_AXIS) {
  1779. // If there's a Z probe that needs deployment...
  1780. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1781. // ...and homing Z towards the bed? Deploy it.
  1782. if (axis_home_dir < 0) _Z_DEPLOY;
  1783. #endif
  1784. }
  1785. #if HAS_SERVO_ENDSTOPS
  1786. // Engage an X or Y Servo endstop if enabled
  1787. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1788. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1789. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1790. }
  1791. #endif
  1792. // Set a flag for Z motor locking
  1793. #if ENABLED(Z_DUAL_ENDSTOPS)
  1794. if (axis == Z_AXIS) In_Homing_Process(true);
  1795. #endif
  1796. // Move towards the endstop until an endstop is triggered
  1797. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1798. feedrate = homing_feedrate[axis];
  1799. line_to_destination();
  1800. st_synchronize();
  1801. // Set the axis position as setup for the move
  1802. current_position[axis] = 0;
  1803. sync_plan_position();
  1804. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1805. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1806. #endif
  1807. enable_endstops(false); // Disable endstops while moving away
  1808. // Move away from the endstop by the axis HOME_BUMP_MM
  1809. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1810. line_to_destination();
  1811. st_synchronize();
  1812. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1813. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1814. #endif
  1815. enable_endstops(true); // Enable endstops for next homing move
  1816. // Slow down the feedrate for the next move
  1817. set_homing_bump_feedrate(axis);
  1818. // Move slowly towards the endstop until triggered
  1819. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1820. line_to_destination();
  1821. st_synchronize();
  1822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1823. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1824. #endif
  1825. #if ENABLED(Z_DUAL_ENDSTOPS)
  1826. if (axis == Z_AXIS) {
  1827. float adj = fabs(z_endstop_adj);
  1828. bool lockZ1;
  1829. if (axis_home_dir > 0) {
  1830. adj = -adj;
  1831. lockZ1 = (z_endstop_adj > 0);
  1832. }
  1833. else
  1834. lockZ1 = (z_endstop_adj < 0);
  1835. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1836. sync_plan_position();
  1837. // Move to the adjusted endstop height
  1838. feedrate = homing_feedrate[axis];
  1839. destination[Z_AXIS] = adj;
  1840. line_to_destination();
  1841. st_synchronize();
  1842. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1843. In_Homing_Process(false);
  1844. } // Z_AXIS
  1845. #endif
  1846. #if ENABLED(DELTA)
  1847. // retrace by the amount specified in endstop_adj
  1848. if (endstop_adj[axis] * axis_home_dir < 0) {
  1849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1850. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1851. #endif
  1852. enable_endstops(false); // Disable endstops while moving away
  1853. sync_plan_position();
  1854. destination[axis] = endstop_adj[axis];
  1855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1856. if (DEBUGGING(LEVELING)) {
  1857. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1858. DEBUG_POS("", destination);
  1859. }
  1860. #endif
  1861. line_to_destination();
  1862. st_synchronize();
  1863. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1864. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1865. #endif
  1866. enable_endstops(true); // Enable endstops for next homing move
  1867. }
  1868. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1869. else {
  1870. if (DEBUGGING(LEVELING)) {
  1871. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1872. SERIAL_EOL;
  1873. }
  1874. }
  1875. #endif
  1876. #endif
  1877. // Set the axis position to its home position (plus home offsets)
  1878. set_axis_is_at_home(axis);
  1879. sync_plan_position();
  1880. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1881. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1882. #endif
  1883. destination[axis] = current_position[axis];
  1884. feedrate = 0.0;
  1885. endstops_hit_on_purpose(); // clear endstop hit flags
  1886. axis_known_position[axis] = true;
  1887. axis_homed[axis] = true;
  1888. // Put away the Z probe
  1889. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1890. if (axis == Z_AXIS && axis_home_dir < 0) {
  1891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1892. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1893. #endif
  1894. _Z_STOW;
  1895. }
  1896. #endif
  1897. // Retract Servo endstop if enabled
  1898. #if HAS_SERVO_ENDSTOPS
  1899. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1900. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1901. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1902. #endif
  1903. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1904. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1905. }
  1906. #endif
  1907. }
  1908. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1909. if (DEBUGGING(LEVELING)) {
  1910. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1911. SERIAL_ECHOLNPGM(")");
  1912. }
  1913. #endif
  1914. }
  1915. #if ENABLED(FWRETRACT)
  1916. void retract(bool retracting, bool swapping = false) {
  1917. if (retracting == retracted[active_extruder]) return;
  1918. float oldFeedrate = feedrate;
  1919. set_destination_to_current();
  1920. if (retracting) {
  1921. feedrate = retract_feedrate * 60;
  1922. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1923. plan_set_e_position(current_position[E_AXIS]);
  1924. prepare_move();
  1925. if (retract_zlift > 0.01) {
  1926. current_position[Z_AXIS] -= retract_zlift;
  1927. #if ENABLED(DELTA)
  1928. sync_plan_position_delta();
  1929. #else
  1930. sync_plan_position();
  1931. #endif
  1932. prepare_move();
  1933. }
  1934. }
  1935. else {
  1936. if (retract_zlift > 0.01) {
  1937. current_position[Z_AXIS] += retract_zlift;
  1938. #if ENABLED(DELTA)
  1939. sync_plan_position_delta();
  1940. #else
  1941. sync_plan_position();
  1942. #endif
  1943. //prepare_move();
  1944. }
  1945. feedrate = retract_recover_feedrate * 60;
  1946. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1947. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1948. plan_set_e_position(current_position[E_AXIS]);
  1949. prepare_move();
  1950. }
  1951. feedrate = oldFeedrate;
  1952. retracted[active_extruder] = retracting;
  1953. } // retract()
  1954. #endif // FWRETRACT
  1955. /**
  1956. * ***************************************************************************
  1957. * ***************************** G-CODE HANDLING *****************************
  1958. * ***************************************************************************
  1959. */
  1960. /**
  1961. * Set XYZE destination and feedrate from the current GCode command
  1962. *
  1963. * - Set destination from included axis codes
  1964. * - Set to current for missing axis codes
  1965. * - Set the feedrate, if included
  1966. */
  1967. void gcode_get_destination() {
  1968. for (int i = 0; i < NUM_AXIS; i++) {
  1969. if (code_seen(axis_codes[i]))
  1970. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1971. else
  1972. destination[i] = current_position[i];
  1973. }
  1974. if (code_seen('F')) {
  1975. float next_feedrate = code_value();
  1976. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1977. }
  1978. }
  1979. void unknown_command_error() {
  1980. SERIAL_ECHO_START;
  1981. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1982. SERIAL_ECHO(current_command);
  1983. SERIAL_ECHOPGM("\"\n");
  1984. }
  1985. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1986. /**
  1987. * Output a "busy" message at regular intervals
  1988. * while the machine is not accepting commands.
  1989. */
  1990. void host_keepalive() {
  1991. millis_t ms = millis();
  1992. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1993. if (PENDING(ms, next_busy_signal_ms)) return;
  1994. switch (busy_state) {
  1995. case IN_HANDLER:
  1996. case IN_PROCESS:
  1997. SERIAL_ECHO_START;
  1998. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1999. break;
  2000. case PAUSED_FOR_USER:
  2001. SERIAL_ECHO_START;
  2002. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2003. break;
  2004. case PAUSED_FOR_INPUT:
  2005. SERIAL_ECHO_START;
  2006. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2007. break;
  2008. default:
  2009. break;
  2010. }
  2011. }
  2012. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2013. }
  2014. #endif //HOST_KEEPALIVE_FEATURE
  2015. /**
  2016. * G0, G1: Coordinated movement of X Y Z E axes
  2017. */
  2018. inline void gcode_G0_G1() {
  2019. if (IsRunning()) {
  2020. gcode_get_destination(); // For X Y Z E F
  2021. #if ENABLED(FWRETRACT)
  2022. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2023. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2024. // Is this move an attempt to retract or recover?
  2025. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2026. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2027. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  2028. retract(!retracted[active_extruder]);
  2029. return;
  2030. }
  2031. }
  2032. #endif //FWRETRACT
  2033. prepare_move();
  2034. }
  2035. }
  2036. /**
  2037. * G2: Clockwise Arc
  2038. * G3: Counterclockwise Arc
  2039. */
  2040. inline void gcode_G2_G3(bool clockwise) {
  2041. if (IsRunning()) {
  2042. #if ENABLED(SF_ARC_FIX)
  2043. bool relative_mode_backup = relative_mode;
  2044. relative_mode = true;
  2045. #endif
  2046. gcode_get_destination();
  2047. #if ENABLED(SF_ARC_FIX)
  2048. relative_mode = relative_mode_backup;
  2049. #endif
  2050. // Center of arc as offset from current_position
  2051. float arc_offset[2] = {
  2052. code_seen('I') ? code_value() : 0,
  2053. code_seen('J') ? code_value() : 0
  2054. };
  2055. // Send an arc to the planner
  2056. plan_arc(destination, arc_offset, clockwise);
  2057. refresh_cmd_timeout();
  2058. }
  2059. }
  2060. /**
  2061. * G4: Dwell S<seconds> or P<milliseconds>
  2062. */
  2063. inline void gcode_G4() {
  2064. millis_t codenum = 0;
  2065. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2066. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2067. st_synchronize();
  2068. refresh_cmd_timeout();
  2069. codenum += previous_cmd_ms; // keep track of when we started waiting
  2070. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2071. while (PENDING(millis(), codenum)) idle();
  2072. }
  2073. #if ENABLED(FWRETRACT)
  2074. /**
  2075. * G10 - Retract filament according to settings of M207
  2076. * G11 - Recover filament according to settings of M208
  2077. */
  2078. inline void gcode_G10_G11(bool doRetract=false) {
  2079. #if EXTRUDERS > 1
  2080. if (doRetract) {
  2081. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2082. }
  2083. #endif
  2084. retract(doRetract
  2085. #if EXTRUDERS > 1
  2086. , retracted_swap[active_extruder]
  2087. #endif
  2088. );
  2089. }
  2090. #endif //FWRETRACT
  2091. /**
  2092. * G28: Home all axes according to settings
  2093. *
  2094. * Parameters
  2095. *
  2096. * None Home to all axes with no parameters.
  2097. * With QUICK_HOME enabled XY will home together, then Z.
  2098. *
  2099. * Cartesian parameters
  2100. *
  2101. * X Home to the X endstop
  2102. * Y Home to the Y endstop
  2103. * Z Home to the Z endstop
  2104. *
  2105. */
  2106. inline void gcode_G28() {
  2107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2108. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2109. #endif
  2110. // Wait for planner moves to finish!
  2111. st_synchronize();
  2112. // For auto bed leveling, clear the level matrix
  2113. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2114. plan_bed_level_matrix.set_to_identity();
  2115. #if ENABLED(DELTA)
  2116. reset_bed_level();
  2117. #endif
  2118. #endif
  2119. /**
  2120. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2121. * on again when homing all axis
  2122. */
  2123. #if ENABLED(MESH_BED_LEVELING)
  2124. uint8_t mbl_was_active = mbl.active;
  2125. mbl.active = false;
  2126. #endif
  2127. setup_for_endstop_move();
  2128. /**
  2129. * Directly after a reset this is all 0. Later we get a hint if we have
  2130. * to raise z or not.
  2131. */
  2132. set_destination_to_current();
  2133. feedrate = 0.0;
  2134. #if ENABLED(DELTA)
  2135. /**
  2136. * A delta can only safely home all axis at the same time
  2137. * all axis have to home at the same time
  2138. */
  2139. // Pretend the current position is 0,0,0
  2140. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2141. sync_plan_position();
  2142. // Move all carriages up together until the first endstop is hit.
  2143. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2144. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2145. line_to_destination();
  2146. st_synchronize();
  2147. endstops_hit_on_purpose(); // clear endstop hit flags
  2148. // Destination reached
  2149. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2150. // take care of back off and rehome now we are all at the top
  2151. HOMEAXIS(X);
  2152. HOMEAXIS(Y);
  2153. HOMEAXIS(Z);
  2154. sync_plan_position_delta();
  2155. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2156. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2157. #endif
  2158. #else // NOT DELTA
  2159. bool homeX = code_seen(axis_codes[X_AXIS]),
  2160. homeY = code_seen(axis_codes[Y_AXIS]),
  2161. homeZ = code_seen(axis_codes[Z_AXIS]);
  2162. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2163. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2164. if (home_all_axis || homeZ) {
  2165. HOMEAXIS(Z);
  2166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2167. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2168. #endif
  2169. }
  2170. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2171. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2172. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2173. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2174. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2176. if (DEBUGGING(LEVELING)) {
  2177. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2178. SERIAL_EOL;
  2179. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2180. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2181. }
  2182. #endif
  2183. line_to_destination();
  2184. st_synchronize();
  2185. /**
  2186. * Update the current Z position even if it currently not real from
  2187. * Z-home otherwise each call to line_to_destination() will want to
  2188. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2189. */
  2190. current_position[Z_AXIS] = destination[Z_AXIS];
  2191. }
  2192. #endif
  2193. #if ENABLED(QUICK_HOME)
  2194. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2195. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2196. #if ENABLED(DUAL_X_CARRIAGE)
  2197. int x_axis_home_dir = x_home_dir(active_extruder);
  2198. extruder_duplication_enabled = false;
  2199. #else
  2200. int x_axis_home_dir = home_dir(X_AXIS);
  2201. #endif
  2202. sync_plan_position();
  2203. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2204. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2205. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2206. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2207. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2208. line_to_destination();
  2209. st_synchronize();
  2210. set_axis_is_at_home(X_AXIS);
  2211. set_axis_is_at_home(Y_AXIS);
  2212. sync_plan_position();
  2213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2214. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2215. #endif
  2216. destination[X_AXIS] = current_position[X_AXIS];
  2217. destination[Y_AXIS] = current_position[Y_AXIS];
  2218. line_to_destination();
  2219. feedrate = 0.0;
  2220. st_synchronize();
  2221. endstops_hit_on_purpose(); // clear endstop hit flags
  2222. current_position[X_AXIS] = destination[X_AXIS];
  2223. current_position[Y_AXIS] = destination[Y_AXIS];
  2224. #if DISABLED(SCARA)
  2225. current_position[Z_AXIS] = destination[Z_AXIS];
  2226. #endif
  2227. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2228. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2229. #endif
  2230. }
  2231. #endif // QUICK_HOME
  2232. #if ENABLED(HOME_Y_BEFORE_X)
  2233. // Home Y
  2234. if (home_all_axis || homeY) HOMEAXIS(Y);
  2235. #endif
  2236. // Home X
  2237. if (home_all_axis || homeX) {
  2238. #if ENABLED(DUAL_X_CARRIAGE)
  2239. int tmp_extruder = active_extruder;
  2240. extruder_duplication_enabled = false;
  2241. active_extruder = !active_extruder;
  2242. HOMEAXIS(X);
  2243. inactive_extruder_x_pos = current_position[X_AXIS];
  2244. active_extruder = tmp_extruder;
  2245. HOMEAXIS(X);
  2246. // reset state used by the different modes
  2247. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2248. delayed_move_time = 0;
  2249. active_extruder_parked = true;
  2250. #else
  2251. HOMEAXIS(X);
  2252. #endif
  2253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2254. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2255. #endif
  2256. }
  2257. #if DISABLED(HOME_Y_BEFORE_X)
  2258. // Home Y
  2259. if (home_all_axis || homeY) {
  2260. HOMEAXIS(Y);
  2261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2262. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2263. #endif
  2264. }
  2265. #endif
  2266. // Home Z last if homing towards the bed
  2267. #if Z_HOME_DIR < 0
  2268. if (home_all_axis || homeZ) {
  2269. #if ENABLED(Z_SAFE_HOMING)
  2270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2271. if (DEBUGGING(LEVELING)) {
  2272. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2273. }
  2274. #endif
  2275. if (home_all_axis) {
  2276. /**
  2277. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2278. * No need to move Z any more as this height should already be safe
  2279. * enough to reach Z_SAFE_HOMING XY positions.
  2280. * Just make sure the planner is in sync.
  2281. */
  2282. sync_plan_position();
  2283. /**
  2284. * Set the Z probe (or just the nozzle) destination to the safe
  2285. * homing point
  2286. */
  2287. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2288. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2289. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2290. feedrate = XY_TRAVEL_SPEED;
  2291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2292. if (DEBUGGING(LEVELING)) {
  2293. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2294. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2295. }
  2296. #endif
  2297. // Move in the XY plane
  2298. line_to_destination();
  2299. st_synchronize();
  2300. /**
  2301. * Update the current positions for XY, Z is still at least at
  2302. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2303. */
  2304. current_position[X_AXIS] = destination[X_AXIS];
  2305. current_position[Y_AXIS] = destination[Y_AXIS];
  2306. // Home the Z axis
  2307. HOMEAXIS(Z);
  2308. }
  2309. else if (homeZ) { // Don't need to Home Z twice
  2310. // Let's see if X and Y are homed
  2311. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2312. /**
  2313. * Make sure the Z probe is within the physical limits
  2314. * NOTE: This doesn't necessarily ensure the Z probe is also
  2315. * within the bed!
  2316. */
  2317. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2318. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2319. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2320. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2321. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2322. // Home the Z axis
  2323. HOMEAXIS(Z);
  2324. }
  2325. else {
  2326. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2327. SERIAL_ECHO_START;
  2328. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2329. }
  2330. }
  2331. else {
  2332. axis_unhomed_error();
  2333. }
  2334. } // !home_all_axes && homeZ
  2335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2336. if (DEBUGGING(LEVELING)) {
  2337. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2338. }
  2339. #endif
  2340. #else // !Z_SAFE_HOMING
  2341. HOMEAXIS(Z);
  2342. #endif // !Z_SAFE_HOMING
  2343. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2344. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2345. #endif
  2346. } // home_all_axis || homeZ
  2347. #endif // Z_HOME_DIR < 0
  2348. sync_plan_position();
  2349. #endif // else DELTA
  2350. #if ENABLED(SCARA)
  2351. sync_plan_position_delta();
  2352. #endif
  2353. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2354. enable_endstops(false);
  2355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2356. if (DEBUGGING(LEVELING)) {
  2357. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2358. }
  2359. #endif
  2360. #endif
  2361. // For mesh leveling move back to Z=0
  2362. #if ENABLED(MESH_BED_LEVELING)
  2363. if (mbl_was_active && home_all_axis) {
  2364. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2365. sync_plan_position();
  2366. mbl.active = 1;
  2367. current_position[Z_AXIS] = 0.0;
  2368. set_destination_to_current();
  2369. feedrate = homing_feedrate[Z_AXIS];
  2370. line_to_destination();
  2371. st_synchronize();
  2372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2373. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2374. #endif
  2375. }
  2376. #endif
  2377. feedrate = saved_feedrate;
  2378. feedrate_multiplier = saved_feedrate_multiplier;
  2379. refresh_cmd_timeout();
  2380. endstops_hit_on_purpose(); // clear endstop hit flags
  2381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2382. if (DEBUGGING(LEVELING)) {
  2383. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2384. }
  2385. #endif
  2386. gcode_M114(); // Send end position to RepetierHost
  2387. }
  2388. #if ENABLED(MESH_BED_LEVELING)
  2389. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2390. inline void _mbl_goto_xy(float x, float y) {
  2391. saved_feedrate = feedrate;
  2392. feedrate = homing_feedrate[X_AXIS];
  2393. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2394. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2395. + MIN_Z_HEIGHT_FOR_HOMING
  2396. #endif
  2397. ;
  2398. line_to_current_position();
  2399. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2400. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2401. line_to_current_position();
  2402. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2403. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2404. line_to_current_position();
  2405. #endif
  2406. feedrate = saved_feedrate;
  2407. st_synchronize();
  2408. }
  2409. /**
  2410. * G29: Mesh-based Z probe, probes a grid and produces a
  2411. * mesh to compensate for variable bed height
  2412. *
  2413. * Parameters With MESH_BED_LEVELING:
  2414. *
  2415. * S0 Produce a mesh report
  2416. * S1 Start probing mesh points
  2417. * S2 Probe the next mesh point
  2418. * S3 Xn Yn Zn.nn Manually modify a single point
  2419. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2420. *
  2421. * The S0 report the points as below
  2422. *
  2423. * +----> X-axis 1-n
  2424. * |
  2425. * |
  2426. * v Y-axis 1-n
  2427. *
  2428. */
  2429. inline void gcode_G29() {
  2430. static int probe_point = -1;
  2431. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2432. if (state < 0 || state > 4) {
  2433. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2434. return;
  2435. }
  2436. int ix, iy;
  2437. float z;
  2438. switch (state) {
  2439. case MeshReport:
  2440. if (mbl.active) {
  2441. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2442. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2443. SERIAL_PROTOCOLCHAR(',');
  2444. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2445. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2446. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2447. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2448. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2449. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2450. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2451. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2452. SERIAL_PROTOCOLPGM(" ");
  2453. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2454. }
  2455. SERIAL_EOL;
  2456. }
  2457. }
  2458. else
  2459. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2460. break;
  2461. case MeshStart:
  2462. mbl.reset();
  2463. probe_point = 0;
  2464. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2465. break;
  2466. case MeshNext:
  2467. if (probe_point < 0) {
  2468. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2469. return;
  2470. }
  2471. // For each G29 S2...
  2472. if (probe_point == 0) {
  2473. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2474. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2475. sync_plan_position();
  2476. }
  2477. else {
  2478. // For G29 S2 after adjusting Z.
  2479. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2480. }
  2481. // If there's another point to sample, move there with optional lift.
  2482. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2483. mbl.zigzag(probe_point, ix, iy);
  2484. _mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
  2485. probe_point++;
  2486. }
  2487. else {
  2488. // One last "return to the bed" (as originally coded) at completion
  2489. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2490. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2491. + MIN_Z_HEIGHT_FOR_HOMING
  2492. #endif
  2493. ;
  2494. line_to_current_position();
  2495. st_synchronize();
  2496. // After recording the last point, activate the mbl and home
  2497. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2498. probe_point = -1;
  2499. mbl.active = true;
  2500. enqueue_and_echo_commands_P(PSTR("G28"));
  2501. }
  2502. break;
  2503. case MeshSet:
  2504. if (code_seen('X')) {
  2505. ix = code_value_long() - 1;
  2506. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2507. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2508. return;
  2509. }
  2510. }
  2511. else {
  2512. SERIAL_PROTOCOLPGM("X not entered.\n");
  2513. return;
  2514. }
  2515. if (code_seen('Y')) {
  2516. iy = code_value_long() - 1;
  2517. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2518. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2519. return;
  2520. }
  2521. }
  2522. else {
  2523. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2524. return;
  2525. }
  2526. if (code_seen('Z')) {
  2527. z = code_value();
  2528. }
  2529. else {
  2530. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2531. return;
  2532. }
  2533. mbl.z_values[iy][ix] = z;
  2534. break;
  2535. case MeshSetZOffset:
  2536. if (code_seen('Z')) {
  2537. z = code_value();
  2538. }
  2539. else {
  2540. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2541. return;
  2542. }
  2543. mbl.z_offset = z;
  2544. } // switch(state)
  2545. }
  2546. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2547. void out_of_range_error(const char* p_edge) {
  2548. SERIAL_PROTOCOLPGM("?Probe ");
  2549. serialprintPGM(p_edge);
  2550. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2551. }
  2552. /**
  2553. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2554. * Will fail if the printer has not been homed with G28.
  2555. *
  2556. * Enhanced G29 Auto Bed Leveling Probe Routine
  2557. *
  2558. * Parameters With AUTO_BED_LEVELING_GRID:
  2559. *
  2560. * P Set the size of the grid that will be probed (P x P points).
  2561. * Not supported by non-linear delta printer bed leveling.
  2562. * Example: "G29 P4"
  2563. *
  2564. * S Set the XY travel speed between probe points (in mm/min)
  2565. *
  2566. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2567. * or clean the rotation Matrix. Useful to check the topology
  2568. * after a first run of G29.
  2569. *
  2570. * V Set the verbose level (0-4). Example: "G29 V3"
  2571. *
  2572. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2573. * This is useful for manual bed leveling and finding flaws in the bed (to
  2574. * assist with part placement).
  2575. * Not supported by non-linear delta printer bed leveling.
  2576. *
  2577. * F Set the Front limit of the probing grid
  2578. * B Set the Back limit of the probing grid
  2579. * L Set the Left limit of the probing grid
  2580. * R Set the Right limit of the probing grid
  2581. *
  2582. * Global Parameters:
  2583. *
  2584. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2585. * Include "E" to engage/disengage the Z probe for each sample.
  2586. * There's no extra effect if you have a fixed Z probe.
  2587. * Usage: "G29 E" or "G29 e"
  2588. *
  2589. */
  2590. inline void gcode_G29() {
  2591. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2592. if (DEBUGGING(LEVELING)) {
  2593. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2594. DEBUG_POS("", current_position);
  2595. }
  2596. #endif
  2597. // Don't allow auto-leveling without homing first
  2598. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2599. axis_unhomed_error();
  2600. return;
  2601. }
  2602. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2603. if (verbose_level < 0 || verbose_level > 4) {
  2604. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2605. return;
  2606. }
  2607. bool dryrun = code_seen('D'),
  2608. deploy_probe_for_each_reading = code_seen('E');
  2609. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2610. #if DISABLED(DELTA)
  2611. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2612. #endif
  2613. if (verbose_level > 0) {
  2614. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2615. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2616. }
  2617. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2618. #if DISABLED(DELTA)
  2619. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2620. if (auto_bed_leveling_grid_points < 2) {
  2621. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2622. return;
  2623. }
  2624. #endif
  2625. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2626. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2627. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2628. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2629. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2630. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2631. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2632. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2633. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2634. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2635. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2636. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2637. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2638. if (left_out || right_out || front_out || back_out) {
  2639. if (left_out) {
  2640. out_of_range_error(PSTR("(L)eft"));
  2641. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2642. }
  2643. if (right_out) {
  2644. out_of_range_error(PSTR("(R)ight"));
  2645. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2646. }
  2647. if (front_out) {
  2648. out_of_range_error(PSTR("(F)ront"));
  2649. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2650. }
  2651. if (back_out) {
  2652. out_of_range_error(PSTR("(B)ack"));
  2653. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2654. }
  2655. return;
  2656. }
  2657. #endif // AUTO_BED_LEVELING_GRID
  2658. if (!dryrun) {
  2659. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2660. plan_bed_level_matrix.set_to_identity();
  2661. #if ENABLED(DELTA)
  2662. reset_bed_level();
  2663. #else //!DELTA
  2664. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2665. if (DEBUGGING(LEVELING)) {
  2666. vector_3 corrected_position = plan_get_position();
  2667. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2668. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2669. }
  2670. #endif
  2671. //vector_3 corrected_position = plan_get_position();
  2672. //corrected_position.debug("position before G29");
  2673. vector_3 uncorrected_position = plan_get_position();
  2674. //uncorrected_position.debug("position during G29");
  2675. current_position[X_AXIS] = uncorrected_position.x;
  2676. current_position[Y_AXIS] = uncorrected_position.y;
  2677. current_position[Z_AXIS] = uncorrected_position.z;
  2678. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2679. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2680. #endif
  2681. sync_plan_position();
  2682. #endif // !DELTA
  2683. }
  2684. #if ENABLED(Z_PROBE_SLED)
  2685. dock_sled(false); // engage (un-dock) the Z probe
  2686. #elif ENABLED(MECHANICAL_PROBE) || (ENABLED(DELTA) && SERVO_LEVELING)
  2687. deploy_z_probe();
  2688. #endif
  2689. st_synchronize();
  2690. setup_for_endstop_move();
  2691. feedrate = homing_feedrate[Z_AXIS];
  2692. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2693. // probe at the points of a lattice grid
  2694. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2695. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2696. #if ENABLED(DELTA)
  2697. delta_grid_spacing[0] = xGridSpacing;
  2698. delta_grid_spacing[1] = yGridSpacing;
  2699. float zoffset = zprobe_zoffset;
  2700. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2701. #else // !DELTA
  2702. /**
  2703. * solve the plane equation ax + by + d = z
  2704. * A is the matrix with rows [x y 1] for all the probed points
  2705. * B is the vector of the Z positions
  2706. * the normal vector to the plane is formed by the coefficients of the
  2707. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2708. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2709. */
  2710. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2711. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2712. eqnBVector[abl2], // "B" vector of Z points
  2713. mean = 0.0;
  2714. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2715. #endif // !DELTA
  2716. int probePointCounter = 0;
  2717. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2718. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2719. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2720. int xStart, xStop, xInc;
  2721. if (zig) {
  2722. xStart = 0;
  2723. xStop = auto_bed_leveling_grid_points;
  2724. xInc = 1;
  2725. }
  2726. else {
  2727. xStart = auto_bed_leveling_grid_points - 1;
  2728. xStop = -1;
  2729. xInc = -1;
  2730. }
  2731. zig = !zig;
  2732. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2733. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2734. // raise extruder
  2735. float measured_z,
  2736. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2737. if (probePointCounter) {
  2738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2739. if (DEBUGGING(LEVELING)) {
  2740. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2741. SERIAL_EOL;
  2742. }
  2743. #endif
  2744. }
  2745. else {
  2746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2747. if (DEBUGGING(LEVELING)) {
  2748. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2749. SERIAL_EOL;
  2750. }
  2751. #endif
  2752. }
  2753. #if ENABLED(DELTA)
  2754. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2755. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2756. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2757. #endif //DELTA
  2758. ProbeAction act;
  2759. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2760. act = ProbeDeployAndStow;
  2761. else if (yCount == 0 && xCount == xStart)
  2762. act = ProbeDeploy;
  2763. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2764. act = ProbeStow;
  2765. else
  2766. act = ProbeStay;
  2767. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2768. #if DISABLED(DELTA)
  2769. mean += measured_z;
  2770. eqnBVector[probePointCounter] = measured_z;
  2771. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2772. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2773. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2774. indexIntoAB[xCount][yCount] = probePointCounter;
  2775. #else
  2776. bed_level[xCount][yCount] = measured_z + zoffset;
  2777. #endif
  2778. probePointCounter++;
  2779. idle();
  2780. } //xProbe
  2781. } //yProbe
  2782. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2783. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2784. #endif
  2785. clean_up_after_endstop_move();
  2786. #if ENABLED(DELTA)
  2787. if (!dryrun) extrapolate_unprobed_bed_level();
  2788. print_bed_level();
  2789. #else // !DELTA
  2790. // solve lsq problem
  2791. double plane_equation_coefficients[3];
  2792. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2793. mean /= abl2;
  2794. if (verbose_level) {
  2795. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2796. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2797. SERIAL_PROTOCOLPGM(" b: ");
  2798. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2799. SERIAL_PROTOCOLPGM(" d: ");
  2800. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2801. SERIAL_EOL;
  2802. if (verbose_level > 2) {
  2803. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2804. SERIAL_PROTOCOL_F(mean, 8);
  2805. SERIAL_EOL;
  2806. }
  2807. }
  2808. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2809. // Show the Topography map if enabled
  2810. if (do_topography_map) {
  2811. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2812. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2813. SERIAL_PROTOCOLPGM(" | |\n");
  2814. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2815. SERIAL_PROTOCOLPGM(" E | | I\n");
  2816. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2817. SERIAL_PROTOCOLPGM(" T | | H\n");
  2818. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2819. SERIAL_PROTOCOLPGM(" | |\n");
  2820. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2821. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2822. float min_diff = 999;
  2823. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2824. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2825. int ind = indexIntoAB[xx][yy];
  2826. float diff = eqnBVector[ind] - mean;
  2827. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2828. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2829. z_tmp = 0;
  2830. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2831. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2832. if (diff >= 0.0)
  2833. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2834. else
  2835. SERIAL_PROTOCOLCHAR(' ');
  2836. SERIAL_PROTOCOL_F(diff, 5);
  2837. } // xx
  2838. SERIAL_EOL;
  2839. } // yy
  2840. SERIAL_EOL;
  2841. if (verbose_level > 3) {
  2842. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2843. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2844. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2845. int ind = indexIntoAB[xx][yy];
  2846. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2847. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2848. z_tmp = 0;
  2849. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2850. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2851. if (diff >= 0.0)
  2852. SERIAL_PROTOCOLPGM(" +");
  2853. // Include + for column alignment
  2854. else
  2855. SERIAL_PROTOCOLCHAR(' ');
  2856. SERIAL_PROTOCOL_F(diff, 5);
  2857. } // xx
  2858. SERIAL_EOL;
  2859. } // yy
  2860. SERIAL_EOL;
  2861. }
  2862. } //do_topography_map
  2863. #endif //!DELTA
  2864. #else // !AUTO_BED_LEVELING_GRID
  2865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2866. if (DEBUGGING(LEVELING)) {
  2867. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2868. }
  2869. #endif
  2870. // Actions for each probe
  2871. ProbeAction p1, p2, p3;
  2872. if (deploy_probe_for_each_reading)
  2873. p1 = p2 = p3 = ProbeDeployAndStow;
  2874. else
  2875. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2876. // Probe at 3 arbitrary points
  2877. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2878. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2879. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2880. p1, verbose_level),
  2881. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2882. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2883. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2884. p2, verbose_level),
  2885. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2886. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2887. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2888. p3, verbose_level);
  2889. clean_up_after_endstop_move();
  2890. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2891. #endif // !AUTO_BED_LEVELING_GRID
  2892. #if ENABLED(DELTA)
  2893. // Allen Key Probe for Delta
  2894. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2895. stow_z_probe();
  2896. #elif Z_RAISE_AFTER_PROBING > 0
  2897. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2898. #endif
  2899. #else // !DELTA
  2900. if (verbose_level > 0)
  2901. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2902. if (!dryrun) {
  2903. /**
  2904. * Correct the Z height difference from Z probe position and nozzle tip position.
  2905. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2906. * from the nozzle. When the bed is uneven, this height must be corrected.
  2907. */
  2908. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2909. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2910. z_tmp = current_position[Z_AXIS],
  2911. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2913. if (DEBUGGING(LEVELING)) {
  2914. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2915. SERIAL_EOL;
  2916. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2917. SERIAL_EOL;
  2918. }
  2919. #endif
  2920. // Apply the correction sending the Z probe offset
  2921. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2922. /*
  2923. * Get the current Z position and send it to the planner.
  2924. *
  2925. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2926. * (most recent plan_set_position/sync_plan_position)
  2927. *
  2928. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2929. * (set by default, M851, EEPROM, or Menu)
  2930. *
  2931. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2932. * after the last probe
  2933. *
  2934. * >> Should home_offset[Z_AXIS] be included?
  2935. *
  2936. *
  2937. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2938. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2939. * not actually "homing" Z... then perhaps it should not be included
  2940. * here. The purpose of home_offset[] is to adjust for inaccurate
  2941. * endstops, not for reasonably accurate probes. If it were added
  2942. * here, it could be seen as a compensating factor for the Z probe.
  2943. */
  2944. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2945. if (DEBUGGING(LEVELING)) {
  2946. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2947. SERIAL_EOL;
  2948. }
  2949. #endif
  2950. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2951. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2952. + Z_RAISE_AFTER_PROBING
  2953. #endif
  2954. ;
  2955. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2956. sync_plan_position();
  2957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2958. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2959. #endif
  2960. }
  2961. // Sled assembly for Cartesian bots
  2962. #if ENABLED(Z_PROBE_SLED)
  2963. dock_sled(true); // dock the sled
  2964. #elif Z_RAISE_AFTER_PROBING > 0
  2965. // Raise Z axis for non-delta and non servo based probes
  2966. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2967. raise_z_after_probing();
  2968. #endif
  2969. #endif
  2970. #endif // !DELTA
  2971. #ifdef Z_PROBE_END_SCRIPT
  2972. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2973. if (DEBUGGING(LEVELING)) {
  2974. SERIAL_ECHO("Z Probe End Script: ");
  2975. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2976. }
  2977. #endif
  2978. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2979. #if ENABLED(HAS_Z_MIN_PROBE)
  2980. z_probe_is_active = false;
  2981. #endif
  2982. st_synchronize();
  2983. #endif
  2984. KEEPALIVE_STATE(IN_HANDLER);
  2985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2986. if (DEBUGGING(LEVELING)) {
  2987. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2988. }
  2989. #endif
  2990. gcode_M114(); // Send end position to RepetierHost
  2991. }
  2992. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2993. /**
  2994. * G30: Do a single Z probe at the current XY
  2995. */
  2996. inline void gcode_G30() {
  2997. #if HAS_SERVO_ENDSTOPS
  2998. raise_z_for_servo();
  2999. #endif
  3000. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3001. st_synchronize();
  3002. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3003. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3004. feedrate = homing_feedrate[Z_AXIS];
  3005. run_z_probe();
  3006. SERIAL_PROTOCOLPGM("Bed X: ");
  3007. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3008. SERIAL_PROTOCOLPGM(" Y: ");
  3009. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3010. SERIAL_PROTOCOLPGM(" Z: ");
  3011. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3012. SERIAL_EOL;
  3013. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3014. #if HAS_SERVO_ENDSTOPS
  3015. raise_z_for_servo();
  3016. #endif
  3017. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3018. gcode_M114(); // Send end position to RepetierHost
  3019. }
  3020. #endif //!Z_PROBE_SLED
  3021. #endif //AUTO_BED_LEVELING_FEATURE
  3022. /**
  3023. * G92: Set current position to given X Y Z E
  3024. */
  3025. inline void gcode_G92() {
  3026. if (!code_seen(axis_codes[E_AXIS]))
  3027. st_synchronize();
  3028. bool didXYZ = false;
  3029. for (int i = 0; i < NUM_AXIS; i++) {
  3030. if (code_seen(axis_codes[i])) {
  3031. float p = current_position[i],
  3032. v = code_value();
  3033. current_position[i] = v;
  3034. if (i == E_AXIS)
  3035. plan_set_e_position(v);
  3036. else {
  3037. position_shift[i] += v - p; // Offset the coordinate space
  3038. update_software_endstops((AxisEnum)i);
  3039. didXYZ = true;
  3040. }
  3041. }
  3042. }
  3043. if (didXYZ) {
  3044. #if ENABLED(DELTA) || ENABLED(SCARA)
  3045. sync_plan_position_delta();
  3046. #else
  3047. sync_plan_position();
  3048. #endif
  3049. }
  3050. }
  3051. #if ENABLED(ULTIPANEL)
  3052. /**
  3053. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3054. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3055. */
  3056. inline void gcode_M0_M1() {
  3057. char* args = current_command_args;
  3058. uint8_t test_value = 12;
  3059. SERIAL_ECHOPAIR("TEST", test_value);
  3060. millis_t codenum = 0;
  3061. bool hasP = false, hasS = false;
  3062. if (code_seen('P')) {
  3063. codenum = code_value_short(); // milliseconds to wait
  3064. hasP = codenum > 0;
  3065. }
  3066. if (code_seen('S')) {
  3067. codenum = code_value() * 1000UL; // seconds to wait
  3068. hasS = codenum > 0;
  3069. }
  3070. if (!hasP && !hasS && *args != '\0')
  3071. lcd_setstatus(args, true);
  3072. else {
  3073. LCD_MESSAGEPGM(MSG_USERWAIT);
  3074. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3075. dontExpireStatus();
  3076. #endif
  3077. }
  3078. lcd_ignore_click();
  3079. st_synchronize();
  3080. refresh_cmd_timeout();
  3081. if (codenum > 0) {
  3082. codenum += previous_cmd_ms; // wait until this time for a click
  3083. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3084. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3085. KEEPALIVE_STATE(IN_HANDLER);
  3086. lcd_ignore_click(false);
  3087. }
  3088. else {
  3089. if (!lcd_detected()) return;
  3090. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3091. while (!lcd_clicked()) idle();
  3092. KEEPALIVE_STATE(IN_HANDLER);
  3093. }
  3094. if (IS_SD_PRINTING)
  3095. LCD_MESSAGEPGM(MSG_RESUMING);
  3096. else
  3097. LCD_MESSAGEPGM(WELCOME_MSG);
  3098. }
  3099. #endif // ULTIPANEL
  3100. /**
  3101. * M17: Enable power on all stepper motors
  3102. */
  3103. inline void gcode_M17() {
  3104. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3105. enable_all_steppers();
  3106. }
  3107. #if ENABLED(SDSUPPORT)
  3108. /**
  3109. * M20: List SD card to serial output
  3110. */
  3111. inline void gcode_M20() {
  3112. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3113. card.ls();
  3114. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3115. }
  3116. /**
  3117. * M21: Init SD Card
  3118. */
  3119. inline void gcode_M21() {
  3120. card.initsd();
  3121. }
  3122. /**
  3123. * M22: Release SD Card
  3124. */
  3125. inline void gcode_M22() {
  3126. card.release();
  3127. }
  3128. /**
  3129. * M23: Open a file
  3130. */
  3131. inline void gcode_M23() {
  3132. card.openFile(current_command_args, true);
  3133. }
  3134. /**
  3135. * M24: Start SD Print
  3136. */
  3137. inline void gcode_M24() {
  3138. card.startFileprint();
  3139. print_job_timer.start();
  3140. }
  3141. /**
  3142. * M25: Pause SD Print
  3143. */
  3144. inline void gcode_M25() {
  3145. card.pauseSDPrint();
  3146. }
  3147. /**
  3148. * M26: Set SD Card file index
  3149. */
  3150. inline void gcode_M26() {
  3151. if (card.cardOK && code_seen('S'))
  3152. card.setIndex(code_value_short());
  3153. }
  3154. /**
  3155. * M27: Get SD Card status
  3156. */
  3157. inline void gcode_M27() {
  3158. card.getStatus();
  3159. }
  3160. /**
  3161. * M28: Start SD Write
  3162. */
  3163. inline void gcode_M28() {
  3164. card.openFile(current_command_args, false);
  3165. }
  3166. /**
  3167. * M29: Stop SD Write
  3168. * Processed in write to file routine above
  3169. */
  3170. inline void gcode_M29() {
  3171. // card.saving = false;
  3172. }
  3173. /**
  3174. * M30 <filename>: Delete SD Card file
  3175. */
  3176. inline void gcode_M30() {
  3177. if (card.cardOK) {
  3178. card.closefile();
  3179. card.removeFile(current_command_args);
  3180. }
  3181. }
  3182. #endif //SDSUPPORT
  3183. /**
  3184. * M31: Get the time since the start of SD Print (or last M109)
  3185. */
  3186. inline void gcode_M31() {
  3187. millis_t t = print_job_timer.duration();
  3188. int min = t / 60, sec = t % 60;
  3189. char time[30];
  3190. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3191. SERIAL_ECHO_START;
  3192. SERIAL_ECHOLN(time);
  3193. lcd_setstatus(time);
  3194. autotempShutdown();
  3195. }
  3196. #if ENABLED(SDSUPPORT)
  3197. /**
  3198. * M32: Select file and start SD Print
  3199. */
  3200. inline void gcode_M32() {
  3201. if (card.sdprinting)
  3202. st_synchronize();
  3203. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3204. if (!namestartpos)
  3205. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3206. else
  3207. namestartpos++; //to skip the '!'
  3208. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3209. if (card.cardOK) {
  3210. card.openFile(namestartpos, true, call_procedure);
  3211. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3212. card.setIndex(code_value_short());
  3213. card.startFileprint();
  3214. // Procedure calls count as normal print time.
  3215. if (!call_procedure) print_job_timer.start();
  3216. }
  3217. }
  3218. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3219. /**
  3220. * M33: Get the long full path of a file or folder
  3221. *
  3222. * Parameters:
  3223. * <dospath> Case-insensitive DOS-style path to a file or folder
  3224. *
  3225. * Example:
  3226. * M33 miscel~1/armchair/armcha~1.gco
  3227. *
  3228. * Output:
  3229. * /Miscellaneous/Armchair/Armchair.gcode
  3230. */
  3231. inline void gcode_M33() {
  3232. card.printLongPath(current_command_args);
  3233. }
  3234. #endif
  3235. /**
  3236. * M928: Start SD Write
  3237. */
  3238. inline void gcode_M928() {
  3239. card.openLogFile(current_command_args);
  3240. }
  3241. #endif // SDSUPPORT
  3242. /**
  3243. * M42: Change pin status via GCode
  3244. *
  3245. * P<pin> Pin number (LED if omitted)
  3246. * S<byte> Pin status from 0 - 255
  3247. */
  3248. inline void gcode_M42() {
  3249. if (code_seen('S')) {
  3250. int pin_status = code_value_short();
  3251. if (pin_status < 0 || pin_status > 255) return;
  3252. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3253. if (pin_number < 0) return;
  3254. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3255. if (pin_number == sensitive_pins[i]) return;
  3256. pinMode(pin_number, OUTPUT);
  3257. digitalWrite(pin_number, pin_status);
  3258. analogWrite(pin_number, pin_status);
  3259. #if FAN_COUNT > 0
  3260. switch (pin_number) {
  3261. #if HAS_FAN0
  3262. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3263. #endif
  3264. #if HAS_FAN1
  3265. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3266. #endif
  3267. #if HAS_FAN2
  3268. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3269. #endif
  3270. }
  3271. #endif
  3272. } // code_seen('S')
  3273. }
  3274. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3275. /**
  3276. * This is redundant since the SanityCheck.h already checks for a valid
  3277. * Z_MIN_PROBE_PIN, but here for clarity.
  3278. */
  3279. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3280. #if !HAS_Z_PROBE
  3281. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3282. #endif
  3283. #elif !HAS_Z_MIN
  3284. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3285. #endif
  3286. /**
  3287. * M48: Z probe repeatability measurement function.
  3288. *
  3289. * Usage:
  3290. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3291. * P = Number of sampled points (4-50, default 10)
  3292. * X = Sample X position
  3293. * Y = Sample Y position
  3294. * V = Verbose level (0-4, default=1)
  3295. * E = Engage Z probe for each reading
  3296. * L = Number of legs of movement before probe
  3297. * S = Schizoid (Or Star if you prefer)
  3298. *
  3299. * This function assumes the bed has been homed. Specifically, that a G28 command
  3300. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3301. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3302. * regenerated.
  3303. */
  3304. inline void gcode_M48() {
  3305. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3306. axis_unhomed_error();
  3307. return;
  3308. }
  3309. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3310. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3311. if (code_seen('V')) {
  3312. verbose_level = code_value_short();
  3313. if (verbose_level < 0 || verbose_level > 4) {
  3314. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3315. return;
  3316. }
  3317. }
  3318. if (verbose_level > 0)
  3319. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3320. if (code_seen('P')) {
  3321. n_samples = code_value_short();
  3322. if (n_samples < 4 || n_samples > 50) {
  3323. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3324. return;
  3325. }
  3326. }
  3327. float X_current = current_position[X_AXIS],
  3328. Y_current = current_position[Y_AXIS],
  3329. Z_current = current_position[Z_AXIS],
  3330. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3331. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3332. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3333. bool deploy_probe_for_each_reading = code_seen('E');
  3334. if (code_seen('X')) {
  3335. X_probe_location = code_value();
  3336. #if DISABLED(DELTA)
  3337. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3338. out_of_range_error(PSTR("X"));
  3339. return;
  3340. }
  3341. #endif
  3342. }
  3343. if (code_seen('Y')) {
  3344. Y_probe_location = code_value();
  3345. #if DISABLED(DELTA)
  3346. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3347. out_of_range_error(PSTR("Y"));
  3348. return;
  3349. }
  3350. #endif
  3351. }
  3352. #if ENABLED(DELTA)
  3353. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3354. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3355. return;
  3356. }
  3357. #endif
  3358. bool seen_L = code_seen('L');
  3359. if (seen_L) {
  3360. n_legs = code_value_short();
  3361. if (n_legs < 0 || n_legs > 15) {
  3362. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3363. return;
  3364. }
  3365. if (n_legs == 1) n_legs = 2;
  3366. }
  3367. if (code_seen('S')) {
  3368. schizoid_flag++;
  3369. if (!seen_L) n_legs = 7;
  3370. }
  3371. /**
  3372. * Now get everything to the specified probe point So we can safely do a
  3373. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3374. * we don't want to use that as a starting point for each probe.
  3375. */
  3376. if (verbose_level > 2)
  3377. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3378. #if ENABLED(DELTA)
  3379. // we don't do bed level correction in M48 because we want the raw data when we probe
  3380. reset_bed_level();
  3381. #else
  3382. // we don't do bed level correction in M48 because we want the raw data when we probe
  3383. plan_bed_level_matrix.set_to_identity();
  3384. #endif
  3385. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3386. do_blocking_move_to_z(Z_start_location);
  3387. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3388. /**
  3389. * OK, do the initial probe to get us close to the bed.
  3390. * Then retrace the right amount and use that in subsequent probes
  3391. */
  3392. setup_for_endstop_move();
  3393. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3394. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3395. verbose_level);
  3396. raise_z_after_probing();
  3397. for (uint8_t n = 0; n < n_samples; n++) {
  3398. randomSeed(millis());
  3399. delay(500);
  3400. if (n_legs) {
  3401. float radius, angle = random(0.0, 360.0);
  3402. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3403. radius = random(
  3404. #if ENABLED(DELTA)
  3405. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3406. #else
  3407. 5, X_MAX_LENGTH / 8
  3408. #endif
  3409. );
  3410. if (verbose_level > 3) {
  3411. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3412. SERIAL_ECHOPAIR(" angle: ", angle);
  3413. delay(100);
  3414. if (dir > 0)
  3415. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3416. else
  3417. SERIAL_ECHO(" Direction: Clockwise \n");
  3418. delay(100);
  3419. }
  3420. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3421. double delta_angle;
  3422. if (schizoid_flag)
  3423. // The points of a 5 point star are 72 degrees apart. We need to
  3424. // skip a point and go to the next one on the star.
  3425. delta_angle = dir * 2.0 * 72.0;
  3426. else
  3427. // If we do this line, we are just trying to move further
  3428. // around the circle.
  3429. delta_angle = dir * (float) random(25, 45);
  3430. angle += delta_angle;
  3431. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3432. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3433. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3434. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3435. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3436. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3437. #if DISABLED(DELTA)
  3438. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3439. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3440. #else
  3441. // If we have gone out too far, we can do a simple fix and scale the numbers
  3442. // back in closer to the origin.
  3443. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3444. X_current /= 1.25;
  3445. Y_current /= 1.25;
  3446. if (verbose_level > 3) {
  3447. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3448. SERIAL_ECHOPAIR(", ", Y_current);
  3449. SERIAL_EOL;
  3450. delay(50);
  3451. }
  3452. }
  3453. #endif
  3454. if (verbose_level > 3) {
  3455. SERIAL_PROTOCOL("Going to:");
  3456. SERIAL_ECHOPAIR("x: ", X_current);
  3457. SERIAL_ECHOPAIR("y: ", Y_current);
  3458. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3459. SERIAL_EOL;
  3460. delay(55);
  3461. }
  3462. do_blocking_move_to_xy(X_current, Y_current);
  3463. } // n_legs loop
  3464. } // n_legs
  3465. /**
  3466. * We don't really have to do this move, but if we don't we can see a
  3467. * funny shift in the Z Height because the user might not have the
  3468. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3469. * height. This gets us back to the probe location at the same height that
  3470. * we have been running around the circle at.
  3471. */
  3472. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3473. if (deploy_probe_for_each_reading)
  3474. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3475. else {
  3476. if (n == n_samples - 1)
  3477. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3478. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3479. }
  3480. /**
  3481. * Get the current mean for the data points we have so far
  3482. */
  3483. sum = 0.0;
  3484. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3485. mean = sum / (n + 1);
  3486. /**
  3487. * Now, use that mean to calculate the standard deviation for the
  3488. * data points we have so far
  3489. */
  3490. sum = 0.0;
  3491. for (uint8_t j = 0; j <= n; j++) {
  3492. float ss = sample_set[j] - mean;
  3493. sum += ss * ss;
  3494. }
  3495. sigma = sqrt(sum / (n + 1));
  3496. if (verbose_level > 1) {
  3497. SERIAL_PROTOCOL(n + 1);
  3498. SERIAL_PROTOCOLPGM(" of ");
  3499. SERIAL_PROTOCOL((int)n_samples);
  3500. SERIAL_PROTOCOLPGM(" z: ");
  3501. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3502. delay(50);
  3503. if (verbose_level > 2) {
  3504. SERIAL_PROTOCOLPGM(" mean: ");
  3505. SERIAL_PROTOCOL_F(mean, 6);
  3506. SERIAL_PROTOCOLPGM(" sigma: ");
  3507. SERIAL_PROTOCOL_F(sigma, 6);
  3508. }
  3509. }
  3510. if (verbose_level > 0) SERIAL_EOL;
  3511. delay(50);
  3512. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3513. } // End of probe loop code
  3514. // raise_z_after_probing();
  3515. if (verbose_level > 0) {
  3516. SERIAL_PROTOCOLPGM("Mean: ");
  3517. SERIAL_PROTOCOL_F(mean, 6);
  3518. SERIAL_EOL;
  3519. delay(25);
  3520. }
  3521. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3522. SERIAL_PROTOCOL_F(sigma, 6);
  3523. SERIAL_EOL; SERIAL_EOL;
  3524. delay(25);
  3525. clean_up_after_endstop_move();
  3526. gcode_M114(); // Send end position to RepetierHost
  3527. }
  3528. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3529. /**
  3530. * M75: Start print timer
  3531. */
  3532. inline void gcode_M75() {
  3533. print_job_timer.start();
  3534. }
  3535. /**
  3536. * M76: Pause print timer
  3537. */
  3538. inline void gcode_M76() {
  3539. print_job_timer.pause();
  3540. }
  3541. /**
  3542. * M77: Stop print timer
  3543. */
  3544. inline void gcode_M77() {
  3545. print_job_timer.stop();
  3546. }
  3547. /**
  3548. * M104: Set hot end temperature
  3549. */
  3550. inline void gcode_M104() {
  3551. if (setTargetedHotend(104)) return;
  3552. if (DEBUGGING(DRYRUN)) return;
  3553. if (code_seen('S')) {
  3554. float temp = code_value();
  3555. setTargetHotend(temp, target_extruder);
  3556. #if ENABLED(DUAL_X_CARRIAGE)
  3557. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3558. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3559. #endif
  3560. /**
  3561. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3562. * stand by mode, for instance in a dual extruder setup, without affecting
  3563. * the running print timer.
  3564. */
  3565. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3566. print_job_timer.stop();
  3567. LCD_MESSAGEPGM(WELCOME_MSG);
  3568. }
  3569. /**
  3570. * We do not check if the timer is already running because this check will
  3571. * be done for us inside the Stopwatch::start() method thus a running timer
  3572. * will not restart.
  3573. */
  3574. else print_job_timer.start();
  3575. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3576. }
  3577. }
  3578. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3579. void print_heaterstates() {
  3580. #if HAS_TEMP_HOTEND
  3581. SERIAL_PROTOCOLPGM(" T:");
  3582. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3583. SERIAL_PROTOCOLPGM(" /");
  3584. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3585. #endif
  3586. #if HAS_TEMP_BED
  3587. SERIAL_PROTOCOLPGM(" B:");
  3588. SERIAL_PROTOCOL_F(degBed(), 1);
  3589. SERIAL_PROTOCOLPGM(" /");
  3590. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3591. #endif
  3592. #if EXTRUDERS > 1
  3593. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3594. SERIAL_PROTOCOLPGM(" T");
  3595. SERIAL_PROTOCOL(e);
  3596. SERIAL_PROTOCOLCHAR(':');
  3597. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3598. SERIAL_PROTOCOLPGM(" /");
  3599. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3600. }
  3601. #endif
  3602. #if HAS_TEMP_BED
  3603. SERIAL_PROTOCOLPGM(" B@:");
  3604. #ifdef BED_WATTS
  3605. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3606. SERIAL_PROTOCOLCHAR('W');
  3607. #else
  3608. SERIAL_PROTOCOL(getHeaterPower(-1));
  3609. #endif
  3610. #endif
  3611. SERIAL_PROTOCOLPGM(" @:");
  3612. #ifdef EXTRUDER_WATTS
  3613. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3614. SERIAL_PROTOCOLCHAR('W');
  3615. #else
  3616. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3617. #endif
  3618. #if EXTRUDERS > 1
  3619. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3620. SERIAL_PROTOCOLPGM(" @");
  3621. SERIAL_PROTOCOL(e);
  3622. SERIAL_PROTOCOLCHAR(':');
  3623. #ifdef EXTRUDER_WATTS
  3624. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3625. SERIAL_PROTOCOLCHAR('W');
  3626. #else
  3627. SERIAL_PROTOCOL(getHeaterPower(e));
  3628. #endif
  3629. }
  3630. #endif
  3631. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3632. #if HAS_TEMP_BED
  3633. SERIAL_PROTOCOLPGM(" ADC B:");
  3634. SERIAL_PROTOCOL_F(degBed(), 1);
  3635. SERIAL_PROTOCOLPGM("C->");
  3636. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3637. #endif
  3638. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3639. SERIAL_PROTOCOLPGM(" T");
  3640. SERIAL_PROTOCOL(cur_extruder);
  3641. SERIAL_PROTOCOLCHAR(':');
  3642. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3643. SERIAL_PROTOCOLPGM("C->");
  3644. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3645. }
  3646. #endif
  3647. }
  3648. #endif
  3649. /**
  3650. * M105: Read hot end and bed temperature
  3651. */
  3652. inline void gcode_M105() {
  3653. if (setTargetedHotend(105)) return;
  3654. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3655. SERIAL_PROTOCOLPGM(MSG_OK);
  3656. print_heaterstates();
  3657. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3658. SERIAL_ERROR_START;
  3659. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3660. #endif
  3661. SERIAL_EOL;
  3662. }
  3663. #if FAN_COUNT > 0
  3664. /**
  3665. * M106: Set Fan Speed
  3666. *
  3667. * S<int> Speed between 0-255
  3668. * P<index> Fan index, if more than one fan
  3669. */
  3670. inline void gcode_M106() {
  3671. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3672. p = code_seen('P') ? code_value_short() : 0;
  3673. NOMORE(s, 255);
  3674. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3675. }
  3676. /**
  3677. * M107: Fan Off
  3678. */
  3679. inline void gcode_M107() {
  3680. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3681. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3682. }
  3683. #endif // FAN_COUNT > 0
  3684. /**
  3685. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3686. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3687. */
  3688. inline void gcode_M109() {
  3689. if (setTargetedHotend(109)) return;
  3690. if (DEBUGGING(DRYRUN)) return;
  3691. bool no_wait_for_cooling = code_seen('S');
  3692. if (no_wait_for_cooling || code_seen('R')) {
  3693. float temp = code_value();
  3694. setTargetHotend(temp, target_extruder);
  3695. #if ENABLED(DUAL_X_CARRIAGE)
  3696. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3697. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3698. #endif
  3699. /**
  3700. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3701. * stand by mode, for instance in a dual extruder setup, without affecting
  3702. * the running print timer.
  3703. */
  3704. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3705. print_job_timer.stop();
  3706. LCD_MESSAGEPGM(WELCOME_MSG);
  3707. }
  3708. /**
  3709. * We do not check if the timer is already running because this check will
  3710. * be done for us inside the Stopwatch::start() method thus a running timer
  3711. * will not restart.
  3712. */
  3713. else print_job_timer.start();
  3714. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3715. }
  3716. #if ENABLED(AUTOTEMP)
  3717. autotemp_enabled = code_seen('F');
  3718. if (autotemp_enabled) autotemp_factor = code_value();
  3719. if (code_seen('S')) autotemp_min = code_value();
  3720. if (code_seen('B')) autotemp_max = code_value();
  3721. #endif
  3722. bool wants_to_cool = isCoolingHotend(target_extruder);
  3723. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3724. if (no_wait_for_cooling && wants_to_cool) return;
  3725. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3726. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3727. if (wants_to_cool && degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3728. #if TEMP_RESIDENCY_TIME > 0
  3729. millis_t residency_start_ms = 0;
  3730. // Loop until the temperature has stabilized
  3731. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3732. #else
  3733. // Loop until the temperature is very close target
  3734. #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
  3735. #endif //TEMP_RESIDENCY_TIME > 0
  3736. cancel_heatup = false;
  3737. millis_t now, next_temp_ms = 0;
  3738. do {
  3739. now = millis();
  3740. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3741. next_temp_ms = now + 1000UL;
  3742. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3743. print_heaterstates();
  3744. #endif
  3745. #if TEMP_RESIDENCY_TIME > 0
  3746. SERIAL_PROTOCOLPGM(" W:");
  3747. if (residency_start_ms) {
  3748. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3749. SERIAL_PROTOCOLLN(rem);
  3750. }
  3751. else {
  3752. SERIAL_PROTOCOLLNPGM("?");
  3753. }
  3754. #else
  3755. SERIAL_EOL;
  3756. #endif
  3757. }
  3758. idle();
  3759. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3760. #if TEMP_RESIDENCY_TIME > 0
  3761. float temp_diff = fabs(degTargetHotend(target_extruder) - degHotend(target_extruder));
  3762. if (!residency_start_ms) {
  3763. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3764. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3765. }
  3766. else if (temp_diff > TEMP_HYSTERESIS) {
  3767. // Restart the timer whenever the temperature falls outside the hysteresis.
  3768. residency_start_ms = millis();
  3769. }
  3770. #endif //TEMP_RESIDENCY_TIME > 0
  3771. } while (!cancel_heatup && TEMP_CONDITIONS);
  3772. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3773. }
  3774. #if HAS_TEMP_BED
  3775. /**
  3776. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3777. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3778. */
  3779. inline void gcode_M190() {
  3780. if (DEBUGGING(DRYRUN)) return;
  3781. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3782. bool no_wait_for_cooling = code_seen('S');
  3783. if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value());
  3784. bool wants_to_cool = isCoolingBed();
  3785. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3786. if (no_wait_for_cooling && wants_to_cool) return;
  3787. #if TEMP_BED_RESIDENCY_TIME > 0
  3788. millis_t residency_start_ms = 0;
  3789. // Loop until the temperature has stabilized
  3790. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3791. #else
  3792. // Loop until the temperature is very close target
  3793. #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
  3794. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3795. cancel_heatup = false;
  3796. millis_t now, next_temp_ms = 0;
  3797. // Wait for temperature to come close enough
  3798. do {
  3799. now = millis();
  3800. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3801. next_temp_ms = now + 1000UL;
  3802. print_heaterstates();
  3803. #if TEMP_BED_RESIDENCY_TIME > 0
  3804. SERIAL_PROTOCOLPGM(" W:");
  3805. if (residency_start_ms) {
  3806. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3807. SERIAL_PROTOCOLLN(rem);
  3808. }
  3809. else {
  3810. SERIAL_PROTOCOLLNPGM("?");
  3811. }
  3812. #else
  3813. SERIAL_EOL;
  3814. #endif
  3815. }
  3816. idle();
  3817. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3818. #if TEMP_BED_RESIDENCY_TIME > 0
  3819. float temp_diff = fabs(degBed() - degTargetBed());
  3820. if (!residency_start_ms) {
  3821. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3822. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  3823. }
  3824. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3825. // Restart the timer whenever the temperature falls outside the hysteresis.
  3826. residency_start_ms = millis();
  3827. }
  3828. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3829. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3830. LCD_MESSAGEPGM(MSG_BED_DONE);
  3831. }
  3832. #endif // HAS_TEMP_BED
  3833. /**
  3834. * M110: Set Current Line Number
  3835. */
  3836. inline void gcode_M110() {
  3837. if (code_seen('N')) gcode_N = code_value_long();
  3838. }
  3839. /**
  3840. * M111: Set the debug level
  3841. */
  3842. inline void gcode_M111() {
  3843. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3844. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3845. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3846. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3847. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3848. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3850. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3851. #endif
  3852. const static char* const debug_strings[] PROGMEM = {
  3853. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3854. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3855. str_debug_32
  3856. #endif
  3857. };
  3858. SERIAL_ECHO_START;
  3859. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3860. if (marlin_debug_flags) {
  3861. uint8_t comma = 0;
  3862. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3863. if (TEST(marlin_debug_flags, i)) {
  3864. if (comma++) SERIAL_CHAR(',');
  3865. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3866. }
  3867. }
  3868. }
  3869. else {
  3870. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3871. }
  3872. SERIAL_EOL;
  3873. }
  3874. /**
  3875. * M112: Emergency Stop
  3876. */
  3877. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3878. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3879. /**
  3880. * M113: Get or set Host Keepalive interval (0 to disable)
  3881. *
  3882. * S<seconds> Optional. Set the keepalive interval.
  3883. */
  3884. inline void gcode_M113() {
  3885. if (code_seen('S')) {
  3886. host_keepalive_interval = (uint8_t)code_value_short();
  3887. NOMORE(host_keepalive_interval, 60);
  3888. }
  3889. else {
  3890. SERIAL_ECHO_START;
  3891. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3892. SERIAL_EOL;
  3893. }
  3894. }
  3895. #endif
  3896. #if ENABLED(BARICUDA)
  3897. #if HAS_HEATER_1
  3898. /**
  3899. * M126: Heater 1 valve open
  3900. */
  3901. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3902. /**
  3903. * M127: Heater 1 valve close
  3904. */
  3905. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  3906. #endif
  3907. #if HAS_HEATER_2
  3908. /**
  3909. * M128: Heater 2 valve open
  3910. */
  3911. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3912. /**
  3913. * M129: Heater 2 valve close
  3914. */
  3915. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  3916. #endif
  3917. #endif //BARICUDA
  3918. /**
  3919. * M140: Set bed temperature
  3920. */
  3921. inline void gcode_M140() {
  3922. if (DEBUGGING(DRYRUN)) return;
  3923. if (code_seen('S')) setTargetBed(code_value());
  3924. }
  3925. #if ENABLED(ULTIPANEL)
  3926. /**
  3927. * M145: Set the heatup state for a material in the LCD menu
  3928. * S<material> (0=PLA, 1=ABS)
  3929. * H<hotend temp>
  3930. * B<bed temp>
  3931. * F<fan speed>
  3932. */
  3933. inline void gcode_M145() {
  3934. int8_t material = code_seen('S') ? code_value_short() : 0;
  3935. if (material < 0 || material > 1) {
  3936. SERIAL_ERROR_START;
  3937. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3938. }
  3939. else {
  3940. int v;
  3941. switch (material) {
  3942. case 0:
  3943. if (code_seen('H')) {
  3944. v = code_value_short();
  3945. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3946. }
  3947. if (code_seen('F')) {
  3948. v = code_value_short();
  3949. plaPreheatFanSpeed = constrain(v, 0, 255);
  3950. }
  3951. #if TEMP_SENSOR_BED != 0
  3952. if (code_seen('B')) {
  3953. v = code_value_short();
  3954. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3955. }
  3956. #endif
  3957. break;
  3958. case 1:
  3959. if (code_seen('H')) {
  3960. v = code_value_short();
  3961. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3962. }
  3963. if (code_seen('F')) {
  3964. v = code_value_short();
  3965. absPreheatFanSpeed = constrain(v, 0, 255);
  3966. }
  3967. #if TEMP_SENSOR_BED != 0
  3968. if (code_seen('B')) {
  3969. v = code_value_short();
  3970. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3971. }
  3972. #endif
  3973. break;
  3974. }
  3975. }
  3976. }
  3977. #endif
  3978. #if HAS_POWER_SWITCH
  3979. /**
  3980. * M80: Turn on Power Supply
  3981. */
  3982. inline void gcode_M80() {
  3983. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3984. /**
  3985. * If you have a switch on suicide pin, this is useful
  3986. * if you want to start another print with suicide feature after
  3987. * a print without suicide...
  3988. */
  3989. #if HAS_SUICIDE
  3990. OUT_WRITE(SUICIDE_PIN, HIGH);
  3991. #endif
  3992. #if ENABLED(ULTIPANEL)
  3993. powersupply = true;
  3994. LCD_MESSAGEPGM(WELCOME_MSG);
  3995. lcd_update();
  3996. #endif
  3997. }
  3998. #endif // HAS_POWER_SWITCH
  3999. /**
  4000. * M81: Turn off Power, including Power Supply, if there is one.
  4001. *
  4002. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4003. */
  4004. inline void gcode_M81() {
  4005. disable_all_heaters();
  4006. finishAndDisableSteppers();
  4007. #if FAN_COUNT > 0
  4008. #if FAN_COUNT > 1
  4009. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4010. #else
  4011. fanSpeeds[0] = 0;
  4012. #endif
  4013. #endif
  4014. delay(1000); // Wait 1 second before switching off
  4015. #if HAS_SUICIDE
  4016. st_synchronize();
  4017. suicide();
  4018. #elif HAS_POWER_SWITCH
  4019. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4020. #endif
  4021. #if ENABLED(ULTIPANEL)
  4022. #if HAS_POWER_SWITCH
  4023. powersupply = false;
  4024. #endif
  4025. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4026. lcd_update();
  4027. #endif
  4028. }
  4029. /**
  4030. * M82: Set E codes absolute (default)
  4031. */
  4032. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4033. /**
  4034. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4035. */
  4036. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4037. /**
  4038. * M18, M84: Disable all stepper motors
  4039. */
  4040. inline void gcode_M18_M84() {
  4041. if (code_seen('S')) {
  4042. stepper_inactive_time = code_value() * 1000UL;
  4043. }
  4044. else {
  4045. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4046. if (all_axis) {
  4047. finishAndDisableSteppers();
  4048. }
  4049. else {
  4050. st_synchronize();
  4051. if (code_seen('X')) disable_x();
  4052. if (code_seen('Y')) disable_y();
  4053. if (code_seen('Z')) disable_z();
  4054. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4055. if (code_seen('E')) {
  4056. disable_e0();
  4057. disable_e1();
  4058. disable_e2();
  4059. disable_e3();
  4060. }
  4061. #endif
  4062. }
  4063. }
  4064. }
  4065. /**
  4066. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4067. */
  4068. inline void gcode_M85() {
  4069. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4070. }
  4071. /**
  4072. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4073. * (Follows the same syntax as G92)
  4074. */
  4075. inline void gcode_M92() {
  4076. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4077. if (code_seen(axis_codes[i])) {
  4078. if (i == E_AXIS) {
  4079. float value = code_value();
  4080. if (value < 20.0) {
  4081. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4082. max_e_jerk *= factor;
  4083. max_feedrate[i] *= factor;
  4084. axis_steps_per_sqr_second[i] *= factor;
  4085. }
  4086. axis_steps_per_unit[i] = value;
  4087. }
  4088. else {
  4089. axis_steps_per_unit[i] = code_value();
  4090. }
  4091. }
  4092. }
  4093. }
  4094. /**
  4095. * M114: Output current position to serial port
  4096. */
  4097. inline void gcode_M114() {
  4098. SERIAL_PROTOCOLPGM("X:");
  4099. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4100. SERIAL_PROTOCOLPGM(" Y:");
  4101. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4102. SERIAL_PROTOCOLPGM(" Z:");
  4103. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4104. SERIAL_PROTOCOLPGM(" E:");
  4105. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4106. CRITICAL_SECTION_START;
  4107. extern volatile long count_position[NUM_AXIS];
  4108. long xpos = count_position[X_AXIS],
  4109. ypos = count_position[Y_AXIS],
  4110. zpos = count_position[Z_AXIS];
  4111. CRITICAL_SECTION_END;
  4112. #if ENABLED(COREXY) || ENABLED(COREXZ)
  4113. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  4114. #else
  4115. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  4116. #endif
  4117. SERIAL_PROTOCOL(xpos);
  4118. #if ENABLED(COREXY)
  4119. SERIAL_PROTOCOLPGM(" B:");
  4120. #else
  4121. SERIAL_PROTOCOLPGM(" Y:");
  4122. #endif
  4123. SERIAL_PROTOCOL(ypos);
  4124. #if ENABLED(COREXZ)
  4125. SERIAL_PROTOCOLPGM(" C:");
  4126. #else
  4127. SERIAL_PROTOCOLPGM(" Z:");
  4128. #endif
  4129. SERIAL_PROTOCOL(zpos);
  4130. SERIAL_EOL;
  4131. #if ENABLED(SCARA)
  4132. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4133. SERIAL_PROTOCOL(delta[X_AXIS]);
  4134. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4135. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4136. SERIAL_EOL;
  4137. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4138. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4139. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4140. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4141. SERIAL_EOL;
  4142. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4143. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  4144. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4145. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  4146. SERIAL_EOL; SERIAL_EOL;
  4147. #endif
  4148. }
  4149. /**
  4150. * M115: Capabilities string
  4151. */
  4152. inline void gcode_M115() {
  4153. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4154. }
  4155. /**
  4156. * M117: Set LCD Status Message
  4157. */
  4158. inline void gcode_M117() {
  4159. lcd_setstatus(current_command_args);
  4160. }
  4161. /**
  4162. * M119: Output endstop states to serial output
  4163. */
  4164. inline void gcode_M119() {
  4165. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4166. #if HAS_X_MIN
  4167. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4168. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4169. #endif
  4170. #if HAS_X_MAX
  4171. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4172. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4173. #endif
  4174. #if HAS_Y_MIN
  4175. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4176. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4177. #endif
  4178. #if HAS_Y_MAX
  4179. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4180. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4181. #endif
  4182. #if HAS_Z_MIN
  4183. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4184. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4185. #endif
  4186. #if HAS_Z_MAX
  4187. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4188. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4189. #endif
  4190. #if HAS_Z2_MAX
  4191. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4192. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4193. #endif
  4194. #if HAS_Z_PROBE
  4195. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4196. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4197. #endif
  4198. }
  4199. /**
  4200. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4201. */
  4202. inline void gcode_M120() { enable_endstops_globally(true); }
  4203. /**
  4204. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4205. */
  4206. inline void gcode_M121() { enable_endstops_globally(false); }
  4207. #if ENABLED(BLINKM)
  4208. /**
  4209. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4210. */
  4211. inline void gcode_M150() {
  4212. SendColors(
  4213. code_seen('R') ? (byte)code_value_short() : 0,
  4214. code_seen('U') ? (byte)code_value_short() : 0,
  4215. code_seen('B') ? (byte)code_value_short() : 0
  4216. );
  4217. }
  4218. #endif // BLINKM
  4219. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4220. /**
  4221. * M155: Send data to a I2C slave device
  4222. *
  4223. * This is a PoC, the formating and arguments for the GCODE will
  4224. * change to be more compatible, the current proposal is:
  4225. *
  4226. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4227. *
  4228. * M155 B<byte-1 value in base 10>
  4229. * M155 B<byte-2 value in base 10>
  4230. * M155 B<byte-3 value in base 10>
  4231. *
  4232. * M155 S1 ; Send the buffered data and reset the buffer
  4233. * M155 R1 ; Reset the buffer without sending data
  4234. *
  4235. */
  4236. inline void gcode_M155() {
  4237. // Set the target address
  4238. if (code_seen('A'))
  4239. i2c.address((uint8_t) code_value_short());
  4240. // Add a new byte to the buffer
  4241. else if (code_seen('B'))
  4242. i2c.addbyte((int) code_value_short());
  4243. // Flush the buffer to the bus
  4244. else if (code_seen('S')) i2c.send();
  4245. // Reset and rewind the buffer
  4246. else if (code_seen('R')) i2c.reset();
  4247. }
  4248. /**
  4249. * M156: Request X bytes from I2C slave device
  4250. *
  4251. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4252. */
  4253. inline void gcode_M156() {
  4254. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4255. int bytes = code_seen('B') ? code_value_short() : 0;
  4256. if (addr && bytes) {
  4257. i2c.address(addr);
  4258. i2c.reqbytes(bytes);
  4259. }
  4260. }
  4261. #endif //EXPERIMENTAL_I2CBUS
  4262. /**
  4263. * M200: Set filament diameter and set E axis units to cubic millimeters
  4264. *
  4265. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4266. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4267. */
  4268. inline void gcode_M200() {
  4269. if (setTargetedHotend(200)) return;
  4270. if (code_seen('D')) {
  4271. float diameter = code_value();
  4272. // setting any extruder filament size disables volumetric on the assumption that
  4273. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4274. // for all extruders
  4275. volumetric_enabled = (diameter != 0.0);
  4276. if (volumetric_enabled) {
  4277. filament_size[target_extruder] = diameter;
  4278. // make sure all extruders have some sane value for the filament size
  4279. for (int i = 0; i < EXTRUDERS; i++)
  4280. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4281. }
  4282. }
  4283. else {
  4284. //reserved for setting filament diameter via UFID or filament measuring device
  4285. return;
  4286. }
  4287. calculate_volumetric_multipliers();
  4288. }
  4289. /**
  4290. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4291. */
  4292. inline void gcode_M201() {
  4293. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4294. if (code_seen(axis_codes[i])) {
  4295. max_acceleration_units_per_sq_second[i] = code_value();
  4296. }
  4297. }
  4298. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4299. reset_acceleration_rates();
  4300. }
  4301. #if 0 // Not used for Sprinter/grbl gen6
  4302. inline void gcode_M202() {
  4303. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4304. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4305. }
  4306. }
  4307. #endif
  4308. /**
  4309. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4310. */
  4311. inline void gcode_M203() {
  4312. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4313. if (code_seen(axis_codes[i])) {
  4314. max_feedrate[i] = code_value();
  4315. }
  4316. }
  4317. }
  4318. /**
  4319. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4320. *
  4321. * P = Printing moves
  4322. * R = Retract only (no X, Y, Z) moves
  4323. * T = Travel (non printing) moves
  4324. *
  4325. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4326. */
  4327. inline void gcode_M204() {
  4328. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4329. travel_acceleration = acceleration = code_value();
  4330. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4331. SERIAL_EOL;
  4332. }
  4333. if (code_seen('P')) {
  4334. acceleration = code_value();
  4335. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4336. SERIAL_EOL;
  4337. }
  4338. if (code_seen('R')) {
  4339. retract_acceleration = code_value();
  4340. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4341. SERIAL_EOL;
  4342. }
  4343. if (code_seen('T')) {
  4344. travel_acceleration = code_value();
  4345. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4346. SERIAL_EOL;
  4347. }
  4348. }
  4349. /**
  4350. * M205: Set Advanced Settings
  4351. *
  4352. * S = Min Feed Rate (mm/s)
  4353. * T = Min Travel Feed Rate (mm/s)
  4354. * B = Min Segment Time (µs)
  4355. * X = Max XY Jerk (mm/s/s)
  4356. * Z = Max Z Jerk (mm/s/s)
  4357. * E = Max E Jerk (mm/s/s)
  4358. */
  4359. inline void gcode_M205() {
  4360. if (code_seen('S')) minimumfeedrate = code_value();
  4361. if (code_seen('T')) mintravelfeedrate = code_value();
  4362. if (code_seen('B')) minsegmenttime = code_value();
  4363. if (code_seen('X')) max_xy_jerk = code_value();
  4364. if (code_seen('Z')) max_z_jerk = code_value();
  4365. if (code_seen('E')) max_e_jerk = code_value();
  4366. }
  4367. /**
  4368. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4369. */
  4370. inline void gcode_M206() {
  4371. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4372. if (code_seen(axis_codes[i]))
  4373. set_home_offset((AxisEnum)i, code_value());
  4374. #if ENABLED(SCARA)
  4375. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4376. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4377. #endif
  4378. sync_plan_position();
  4379. }
  4380. #if ENABLED(DELTA)
  4381. /**
  4382. * M665: Set delta configurations
  4383. *
  4384. * L = diagonal rod
  4385. * R = delta radius
  4386. * S = segments per second
  4387. * A = Alpha (Tower 1) diagonal rod trim
  4388. * B = Beta (Tower 2) diagonal rod trim
  4389. * C = Gamma (Tower 3) diagonal rod trim
  4390. */
  4391. inline void gcode_M665() {
  4392. if (code_seen('L')) delta_diagonal_rod = code_value();
  4393. if (code_seen('R')) delta_radius = code_value();
  4394. if (code_seen('S')) delta_segments_per_second = code_value();
  4395. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4396. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4397. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4398. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4399. }
  4400. /**
  4401. * M666: Set delta endstop adjustment
  4402. */
  4403. inline void gcode_M666() {
  4404. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4405. if (DEBUGGING(LEVELING)) {
  4406. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4407. }
  4408. #endif
  4409. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4410. if (code_seen(axis_codes[i])) {
  4411. endstop_adj[i] = code_value();
  4412. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4413. if (DEBUGGING(LEVELING)) {
  4414. SERIAL_ECHOPGM("endstop_adj[");
  4415. SERIAL_ECHO(axis_codes[i]);
  4416. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4417. SERIAL_EOL;
  4418. }
  4419. #endif
  4420. }
  4421. }
  4422. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4423. if (DEBUGGING(LEVELING)) {
  4424. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4425. }
  4426. #endif
  4427. }
  4428. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4429. /**
  4430. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4431. */
  4432. inline void gcode_M666() {
  4433. if (code_seen('Z')) z_endstop_adj = code_value();
  4434. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4435. SERIAL_EOL;
  4436. }
  4437. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4438. #if ENABLED(FWRETRACT)
  4439. /**
  4440. * M207: Set firmware retraction values
  4441. *
  4442. * S[+mm] retract_length
  4443. * W[+mm] retract_length_swap (multi-extruder)
  4444. * F[mm/min] retract_feedrate
  4445. * Z[mm] retract_zlift
  4446. */
  4447. inline void gcode_M207() {
  4448. if (code_seen('S')) retract_length = code_value();
  4449. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4450. if (code_seen('Z')) retract_zlift = code_value();
  4451. #if EXTRUDERS > 1
  4452. if (code_seen('W')) retract_length_swap = code_value();
  4453. #endif
  4454. }
  4455. /**
  4456. * M208: Set firmware un-retraction values
  4457. *
  4458. * S[+mm] retract_recover_length (in addition to M207 S*)
  4459. * W[+mm] retract_recover_length_swap (multi-extruder)
  4460. * F[mm/min] retract_recover_feedrate
  4461. */
  4462. inline void gcode_M208() {
  4463. if (code_seen('S')) retract_recover_length = code_value();
  4464. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4465. #if EXTRUDERS > 1
  4466. if (code_seen('W')) retract_recover_length_swap = code_value();
  4467. #endif
  4468. }
  4469. /**
  4470. * M209: Enable automatic retract (M209 S1)
  4471. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4472. */
  4473. inline void gcode_M209() {
  4474. if (code_seen('S')) {
  4475. int t = code_value_short();
  4476. switch (t) {
  4477. case 0:
  4478. autoretract_enabled = false;
  4479. break;
  4480. case 1:
  4481. autoretract_enabled = true;
  4482. break;
  4483. default:
  4484. unknown_command_error();
  4485. return;
  4486. }
  4487. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4488. }
  4489. }
  4490. #endif // FWRETRACT
  4491. #if EXTRUDERS > 1
  4492. /**
  4493. * M218 - set hotend offset (in mm)
  4494. *
  4495. * T<tool>
  4496. * X<xoffset>
  4497. * Y<yoffset>
  4498. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4499. */
  4500. inline void gcode_M218() {
  4501. if (setTargetedHotend(218)) return;
  4502. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4503. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4504. #if ENABLED(DUAL_X_CARRIAGE)
  4505. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4506. #endif
  4507. SERIAL_ECHO_START;
  4508. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4509. for (int e = 0; e < EXTRUDERS; e++) {
  4510. SERIAL_CHAR(' ');
  4511. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4512. SERIAL_CHAR(',');
  4513. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4514. #if ENABLED(DUAL_X_CARRIAGE)
  4515. SERIAL_CHAR(',');
  4516. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4517. #endif
  4518. }
  4519. SERIAL_EOL;
  4520. }
  4521. #endif // EXTRUDERS > 1
  4522. /**
  4523. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4524. */
  4525. inline void gcode_M220() {
  4526. if (code_seen('S')) feedrate_multiplier = code_value();
  4527. }
  4528. /**
  4529. * M221: Set extrusion percentage (M221 T0 S95)
  4530. */
  4531. inline void gcode_M221() {
  4532. if (code_seen('S')) {
  4533. int sval = code_value();
  4534. if (setTargetedHotend(221)) return;
  4535. extruder_multiplier[target_extruder] = sval;
  4536. }
  4537. }
  4538. /**
  4539. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4540. */
  4541. inline void gcode_M226() {
  4542. if (code_seen('P')) {
  4543. int pin_number = code_value();
  4544. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4545. if (pin_state >= -1 && pin_state <= 1) {
  4546. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4547. if (sensitive_pins[i] == pin_number) {
  4548. pin_number = -1;
  4549. break;
  4550. }
  4551. }
  4552. if (pin_number > -1) {
  4553. int target = LOW;
  4554. st_synchronize();
  4555. pinMode(pin_number, INPUT);
  4556. switch (pin_state) {
  4557. case 1:
  4558. target = HIGH;
  4559. break;
  4560. case 0:
  4561. target = LOW;
  4562. break;
  4563. case -1:
  4564. target = !digitalRead(pin_number);
  4565. break;
  4566. }
  4567. while (digitalRead(pin_number) != target) idle();
  4568. } // pin_number > -1
  4569. } // pin_state -1 0 1
  4570. } // code_seen('P')
  4571. }
  4572. #if HAS_SERVOS
  4573. /**
  4574. * M280: Get or set servo position. P<index> S<angle>
  4575. */
  4576. inline void gcode_M280() {
  4577. int servo_index = code_seen('P') ? code_value_short() : -1;
  4578. int servo_position = 0;
  4579. if (code_seen('S')) {
  4580. servo_position = code_value_short();
  4581. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4582. servo[servo_index].move(servo_position);
  4583. else {
  4584. SERIAL_ERROR_START;
  4585. SERIAL_ERROR("Servo ");
  4586. SERIAL_ERROR(servo_index);
  4587. SERIAL_ERRORLN(" out of range");
  4588. }
  4589. }
  4590. else if (servo_index >= 0) {
  4591. SERIAL_ECHO_START;
  4592. SERIAL_ECHO(" Servo ");
  4593. SERIAL_ECHO(servo_index);
  4594. SERIAL_ECHO(": ");
  4595. SERIAL_ECHOLN(servo[servo_index].read());
  4596. }
  4597. }
  4598. #endif // HAS_SERVOS
  4599. #if HAS_BUZZER
  4600. /**
  4601. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4602. */
  4603. inline void gcode_M300() {
  4604. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4605. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4606. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4607. buzz(beepP, beepS);
  4608. }
  4609. #endif // HAS_BUZZER
  4610. #if ENABLED(PIDTEMP)
  4611. /**
  4612. * M301: Set PID parameters P I D (and optionally C, L)
  4613. *
  4614. * P[float] Kp term
  4615. * I[float] Ki term (unscaled)
  4616. * D[float] Kd term (unscaled)
  4617. *
  4618. * With PID_ADD_EXTRUSION_RATE:
  4619. *
  4620. * C[float] Kc term
  4621. * L[float] LPQ length
  4622. */
  4623. inline void gcode_M301() {
  4624. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4625. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4626. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4627. if (e < EXTRUDERS) { // catch bad input value
  4628. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4629. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4630. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4631. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4632. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4633. if (code_seen('L')) lpq_len = code_value();
  4634. NOMORE(lpq_len, LPQ_MAX_LEN);
  4635. #endif
  4636. updatePID();
  4637. SERIAL_ECHO_START;
  4638. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4639. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4640. SERIAL_ECHO(e);
  4641. #endif // PID_PARAMS_PER_EXTRUDER
  4642. SERIAL_ECHO(" p:");
  4643. SERIAL_ECHO(PID_PARAM(Kp, e));
  4644. SERIAL_ECHO(" i:");
  4645. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4646. SERIAL_ECHO(" d:");
  4647. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4648. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4649. SERIAL_ECHO(" c:");
  4650. //Kc does not have scaling applied above, or in resetting defaults
  4651. SERIAL_ECHO(PID_PARAM(Kc, e));
  4652. #endif
  4653. SERIAL_EOL;
  4654. }
  4655. else {
  4656. SERIAL_ERROR_START;
  4657. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4658. }
  4659. }
  4660. #endif // PIDTEMP
  4661. #if ENABLED(PIDTEMPBED)
  4662. inline void gcode_M304() {
  4663. if (code_seen('P')) bedKp = code_value();
  4664. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4665. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4666. updatePID();
  4667. SERIAL_ECHO_START;
  4668. SERIAL_ECHO(" p:");
  4669. SERIAL_ECHO(bedKp);
  4670. SERIAL_ECHO(" i:");
  4671. SERIAL_ECHO(unscalePID_i(bedKi));
  4672. SERIAL_ECHO(" d:");
  4673. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4674. }
  4675. #endif // PIDTEMPBED
  4676. #if defined(CHDK) || HAS_PHOTOGRAPH
  4677. /**
  4678. * M240: Trigger a camera by emulating a Canon RC-1
  4679. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4680. */
  4681. inline void gcode_M240() {
  4682. #ifdef CHDK
  4683. OUT_WRITE(CHDK, HIGH);
  4684. chdkHigh = millis();
  4685. chdkActive = true;
  4686. #elif HAS_PHOTOGRAPH
  4687. const uint8_t NUM_PULSES = 16;
  4688. const float PULSE_LENGTH = 0.01524;
  4689. for (int i = 0; i < NUM_PULSES; i++) {
  4690. WRITE(PHOTOGRAPH_PIN, HIGH);
  4691. _delay_ms(PULSE_LENGTH);
  4692. WRITE(PHOTOGRAPH_PIN, LOW);
  4693. _delay_ms(PULSE_LENGTH);
  4694. }
  4695. delay(7.33);
  4696. for (int i = 0; i < NUM_PULSES; i++) {
  4697. WRITE(PHOTOGRAPH_PIN, HIGH);
  4698. _delay_ms(PULSE_LENGTH);
  4699. WRITE(PHOTOGRAPH_PIN, LOW);
  4700. _delay_ms(PULSE_LENGTH);
  4701. }
  4702. #endif // !CHDK && HAS_PHOTOGRAPH
  4703. }
  4704. #endif // CHDK || PHOTOGRAPH_PIN
  4705. #if ENABLED(HAS_LCD_CONTRAST)
  4706. /**
  4707. * M250: Read and optionally set the LCD contrast
  4708. */
  4709. inline void gcode_M250() {
  4710. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4711. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4712. SERIAL_PROTOCOL(lcd_contrast);
  4713. SERIAL_EOL;
  4714. }
  4715. #endif // HAS_LCD_CONTRAST
  4716. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4717. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4718. /**
  4719. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4720. */
  4721. inline void gcode_M302() {
  4722. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4723. }
  4724. #endif // PREVENT_DANGEROUS_EXTRUDE
  4725. /**
  4726. * M303: PID relay autotune
  4727. *
  4728. * S<temperature> sets the target temperature. (default 150C)
  4729. * E<extruder> (-1 for the bed) (default 0)
  4730. * C<cycles>
  4731. * U<bool> with a non-zero value will apply the result to current settings
  4732. */
  4733. inline void gcode_M303() {
  4734. #if ENABLED(PIDTEMP)
  4735. int e = code_seen('E') ? code_value_short() : 0;
  4736. int c = code_seen('C') ? code_value_short() : 5;
  4737. bool u = code_seen('U') && code_value_short() != 0;
  4738. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4739. if (e >= 0 && e < EXTRUDERS)
  4740. target_extruder = e;
  4741. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4742. PID_autotune(temp, e, c, u);
  4743. KEEPALIVE_STATE(IN_HANDLER);
  4744. #else
  4745. SERIAL_ERROR_START;
  4746. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4747. #endif
  4748. }
  4749. #if ENABLED(SCARA)
  4750. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4751. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4752. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4753. if (IsRunning()) {
  4754. //gcode_get_destination(); // For X Y Z E F
  4755. delta[X_AXIS] = delta_x;
  4756. delta[Y_AXIS] = delta_y;
  4757. calculate_SCARA_forward_Transform(delta);
  4758. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4759. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4760. prepare_move();
  4761. //ok_to_send();
  4762. return true;
  4763. }
  4764. return false;
  4765. }
  4766. /**
  4767. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4768. */
  4769. inline bool gcode_M360() {
  4770. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4771. return SCARA_move_to_cal(0, 120);
  4772. }
  4773. /**
  4774. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4775. */
  4776. inline bool gcode_M361() {
  4777. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4778. return SCARA_move_to_cal(90, 130);
  4779. }
  4780. /**
  4781. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4782. */
  4783. inline bool gcode_M362() {
  4784. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4785. return SCARA_move_to_cal(60, 180);
  4786. }
  4787. /**
  4788. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4789. */
  4790. inline bool gcode_M363() {
  4791. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4792. return SCARA_move_to_cal(50, 90);
  4793. }
  4794. /**
  4795. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4796. */
  4797. inline bool gcode_M364() {
  4798. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4799. return SCARA_move_to_cal(45, 135);
  4800. }
  4801. /**
  4802. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4803. */
  4804. inline void gcode_M365() {
  4805. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4806. if (code_seen(axis_codes[i])) {
  4807. axis_scaling[i] = code_value();
  4808. }
  4809. }
  4810. }
  4811. #endif // SCARA
  4812. #if ENABLED(EXT_SOLENOID)
  4813. void enable_solenoid(uint8_t num) {
  4814. switch (num) {
  4815. case 0:
  4816. OUT_WRITE(SOL0_PIN, HIGH);
  4817. break;
  4818. #if HAS_SOLENOID_1
  4819. case 1:
  4820. OUT_WRITE(SOL1_PIN, HIGH);
  4821. break;
  4822. #endif
  4823. #if HAS_SOLENOID_2
  4824. case 2:
  4825. OUT_WRITE(SOL2_PIN, HIGH);
  4826. break;
  4827. #endif
  4828. #if HAS_SOLENOID_3
  4829. case 3:
  4830. OUT_WRITE(SOL3_PIN, HIGH);
  4831. break;
  4832. #endif
  4833. default:
  4834. SERIAL_ECHO_START;
  4835. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4836. break;
  4837. }
  4838. }
  4839. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4840. void disable_all_solenoids() {
  4841. OUT_WRITE(SOL0_PIN, LOW);
  4842. OUT_WRITE(SOL1_PIN, LOW);
  4843. OUT_WRITE(SOL2_PIN, LOW);
  4844. OUT_WRITE(SOL3_PIN, LOW);
  4845. }
  4846. /**
  4847. * M380: Enable solenoid on the active extruder
  4848. */
  4849. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4850. /**
  4851. * M381: Disable all solenoids
  4852. */
  4853. inline void gcode_M381() { disable_all_solenoids(); }
  4854. #endif // EXT_SOLENOID
  4855. /**
  4856. * M400: Finish all moves
  4857. */
  4858. inline void gcode_M400() { st_synchronize(); }
  4859. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4860. /**
  4861. * M401: Engage Z Servo endstop if available
  4862. */
  4863. inline void gcode_M401() {
  4864. #if HAS_SERVO_ENDSTOPS
  4865. raise_z_for_servo();
  4866. #endif
  4867. deploy_z_probe();
  4868. }
  4869. /**
  4870. * M402: Retract Z Servo endstop if enabled
  4871. */
  4872. inline void gcode_M402() {
  4873. #if HAS_SERVO_ENDSTOPS
  4874. raise_z_for_servo();
  4875. #endif
  4876. stow_z_probe(false);
  4877. }
  4878. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4879. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4880. /**
  4881. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4882. */
  4883. inline void gcode_M404() {
  4884. if (code_seen('W')) {
  4885. filament_width_nominal = code_value();
  4886. }
  4887. else {
  4888. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4889. SERIAL_PROTOCOLLN(filament_width_nominal);
  4890. }
  4891. }
  4892. /**
  4893. * M405: Turn on filament sensor for control
  4894. */
  4895. inline void gcode_M405() {
  4896. if (code_seen('D')) meas_delay_cm = code_value();
  4897. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4898. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4899. int temp_ratio = widthFil_to_size_ratio();
  4900. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4901. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4902. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4903. }
  4904. filament_sensor = true;
  4905. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4906. //SERIAL_PROTOCOL(filament_width_meas);
  4907. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4908. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4909. }
  4910. /**
  4911. * M406: Turn off filament sensor for control
  4912. */
  4913. inline void gcode_M406() { filament_sensor = false; }
  4914. /**
  4915. * M407: Get measured filament diameter on serial output
  4916. */
  4917. inline void gcode_M407() {
  4918. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4919. SERIAL_PROTOCOLLN(filament_width_meas);
  4920. }
  4921. #endif // FILAMENT_WIDTH_SENSOR
  4922. /**
  4923. * M410: Quickstop - Abort all planned moves
  4924. *
  4925. * This will stop the carriages mid-move, so most likely they
  4926. * will be out of sync with the stepper position after this.
  4927. */
  4928. inline void gcode_M410() { quickStop(); }
  4929. #if ENABLED(MESH_BED_LEVELING)
  4930. /**
  4931. * M420: Enable/Disable Mesh Bed Leveling
  4932. */
  4933. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4934. /**
  4935. * M421: Set a single Mesh Bed Leveling Z coordinate
  4936. */
  4937. inline void gcode_M421() {
  4938. float x = 0, y = 0, z = 0;
  4939. bool err = false, hasX, hasY, hasZ;
  4940. if ((hasX = code_seen('X'))) x = code_value();
  4941. if ((hasY = code_seen('Y'))) y = code_value();
  4942. if ((hasZ = code_seen('Z'))) z = code_value();
  4943. if (!hasX || !hasY || !hasZ) {
  4944. SERIAL_ERROR_START;
  4945. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4946. err = true;
  4947. }
  4948. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4949. SERIAL_ERROR_START;
  4950. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4951. err = true;
  4952. }
  4953. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4954. }
  4955. #endif
  4956. /**
  4957. * M428: Set home_offset based on the distance between the
  4958. * current_position and the nearest "reference point."
  4959. * If an axis is past center its endstop position
  4960. * is the reference-point. Otherwise it uses 0. This allows
  4961. * the Z offset to be set near the bed when using a max endstop.
  4962. *
  4963. * M428 can't be used more than 2cm away from 0 or an endstop.
  4964. *
  4965. * Use M206 to set these values directly.
  4966. */
  4967. inline void gcode_M428() {
  4968. bool err = false;
  4969. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4970. if (axis_homed[i]) {
  4971. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  4972. diff = current_position[i] - base;
  4973. if (diff > -20 && diff < 20) {
  4974. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  4975. }
  4976. else {
  4977. SERIAL_ERROR_START;
  4978. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4979. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4980. #if HAS_BUZZER
  4981. buzz(200, 40);
  4982. #endif
  4983. err = true;
  4984. break;
  4985. }
  4986. }
  4987. }
  4988. if (!err) {
  4989. sync_plan_position();
  4990. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4991. #if HAS_BUZZER
  4992. buzz(200, 659);
  4993. buzz(200, 698);
  4994. #endif
  4995. }
  4996. }
  4997. /**
  4998. * M500: Store settings in EEPROM
  4999. */
  5000. inline void gcode_M500() {
  5001. Config_StoreSettings();
  5002. }
  5003. /**
  5004. * M501: Read settings from EEPROM
  5005. */
  5006. inline void gcode_M501() {
  5007. Config_RetrieveSettings();
  5008. }
  5009. /**
  5010. * M502: Revert to default settings
  5011. */
  5012. inline void gcode_M502() {
  5013. Config_ResetDefault();
  5014. }
  5015. /**
  5016. * M503: print settings currently in memory
  5017. */
  5018. inline void gcode_M503() {
  5019. Config_PrintSettings(code_seen('S') && code_value() == 0);
  5020. }
  5021. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5022. /**
  5023. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5024. */
  5025. inline void gcode_M540() {
  5026. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  5027. }
  5028. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5029. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5030. inline void gcode_SET_Z_PROBE_OFFSET() {
  5031. SERIAL_ECHO_START;
  5032. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5033. SERIAL_CHAR(' ');
  5034. if (code_seen('Z')) {
  5035. float value = code_value();
  5036. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5037. zprobe_zoffset = value;
  5038. SERIAL_ECHO(zprobe_zoffset);
  5039. }
  5040. else {
  5041. SERIAL_ECHOPGM(MSG_Z_MIN);
  5042. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5043. SERIAL_ECHOPGM(MSG_Z_MAX);
  5044. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5045. }
  5046. }
  5047. else {
  5048. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5049. }
  5050. SERIAL_EOL;
  5051. }
  5052. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5053. #if ENABLED(FILAMENTCHANGEENABLE)
  5054. /**
  5055. * M600: Pause for filament change
  5056. *
  5057. * E[distance] - Retract the filament this far (negative value)
  5058. * Z[distance] - Move the Z axis by this distance
  5059. * X[position] - Move to this X position, with Y
  5060. * Y[position] - Move to this Y position, with X
  5061. * L[distance] - Retract distance for removal (manual reload)
  5062. *
  5063. * Default values are used for omitted arguments.
  5064. *
  5065. */
  5066. inline void gcode_M600() {
  5067. if (degHotend(active_extruder) < extrude_min_temp) {
  5068. SERIAL_ERROR_START;
  5069. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5070. return;
  5071. }
  5072. float lastpos[NUM_AXIS];
  5073. #if ENABLED(DELTA)
  5074. float fr60 = feedrate / 60;
  5075. #endif
  5076. for (int i = 0; i < NUM_AXIS; i++)
  5077. lastpos[i] = destination[i] = current_position[i];
  5078. #if ENABLED(DELTA)
  5079. #define RUNPLAN calculate_delta(destination); \
  5080. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5081. #else
  5082. #define RUNPLAN line_to_destination();
  5083. #endif
  5084. //retract by E
  5085. if (code_seen('E')) destination[E_AXIS] += code_value();
  5086. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5087. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5088. #endif
  5089. RUNPLAN;
  5090. //lift Z
  5091. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5092. #ifdef FILAMENTCHANGE_ZADD
  5093. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5094. #endif
  5095. RUNPLAN;
  5096. //move xy
  5097. if (code_seen('X')) destination[X_AXIS] = code_value();
  5098. #ifdef FILAMENTCHANGE_XPOS
  5099. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5100. #endif
  5101. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5102. #ifdef FILAMENTCHANGE_YPOS
  5103. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5104. #endif
  5105. RUNPLAN;
  5106. if (code_seen('L')) destination[E_AXIS] += code_value();
  5107. #ifdef FILAMENTCHANGE_FINALRETRACT
  5108. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5109. #endif
  5110. RUNPLAN;
  5111. //finish moves
  5112. st_synchronize();
  5113. //disable extruder steppers so filament can be removed
  5114. disable_e0();
  5115. disable_e1();
  5116. disable_e2();
  5117. disable_e3();
  5118. delay(100);
  5119. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5120. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5121. millis_t next_tick = 0;
  5122. #endif
  5123. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5124. while (!lcd_clicked()) {
  5125. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5126. millis_t ms = millis();
  5127. if (ELAPSED(ms, next_tick)) {
  5128. lcd_quick_feedback();
  5129. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5130. }
  5131. idle(true);
  5132. #else
  5133. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5134. destination[E_AXIS] = current_position[E_AXIS];
  5135. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5136. st_synchronize();
  5137. #endif
  5138. } // while(!lcd_clicked)
  5139. KEEPALIVE_STATE(IN_HANDLER);
  5140. lcd_quick_feedback(); // click sound feedback
  5141. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5142. current_position[E_AXIS] = 0;
  5143. st_synchronize();
  5144. #endif
  5145. //return to normal
  5146. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5147. #ifdef FILAMENTCHANGE_FINALRETRACT
  5148. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5149. #endif
  5150. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5151. plan_set_e_position(current_position[E_AXIS]);
  5152. RUNPLAN; //should do nothing
  5153. lcd_reset_alert_level();
  5154. #if ENABLED(DELTA)
  5155. // Move XYZ to starting position, then E
  5156. calculate_delta(lastpos);
  5157. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5158. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5159. #else
  5160. // Move XY to starting position, then Z, then E
  5161. destination[X_AXIS] = lastpos[X_AXIS];
  5162. destination[Y_AXIS] = lastpos[Y_AXIS];
  5163. line_to_destination();
  5164. destination[Z_AXIS] = lastpos[Z_AXIS];
  5165. line_to_destination();
  5166. destination[E_AXIS] = lastpos[E_AXIS];
  5167. line_to_destination();
  5168. #endif
  5169. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5170. filrunoutEnqueued = false;
  5171. #endif
  5172. }
  5173. #endif // FILAMENTCHANGEENABLE
  5174. #if ENABLED(DUAL_X_CARRIAGE)
  5175. /**
  5176. * M605: Set dual x-carriage movement mode
  5177. *
  5178. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5179. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5180. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5181. * millimeters x-offset and an optional differential hotend temperature of
  5182. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5183. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5184. *
  5185. * Note: the X axis should be homed after changing dual x-carriage mode.
  5186. */
  5187. inline void gcode_M605() {
  5188. st_synchronize();
  5189. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5190. switch (dual_x_carriage_mode) {
  5191. case DXC_DUPLICATION_MODE:
  5192. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5193. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5194. SERIAL_ECHO_START;
  5195. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5196. SERIAL_CHAR(' ');
  5197. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5198. SERIAL_CHAR(',');
  5199. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5200. SERIAL_CHAR(' ');
  5201. SERIAL_ECHO(duplicate_extruder_x_offset);
  5202. SERIAL_CHAR(',');
  5203. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5204. break;
  5205. case DXC_FULL_CONTROL_MODE:
  5206. case DXC_AUTO_PARK_MODE:
  5207. break;
  5208. default:
  5209. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5210. break;
  5211. }
  5212. active_extruder_parked = false;
  5213. extruder_duplication_enabled = false;
  5214. delayed_move_time = 0;
  5215. }
  5216. #endif // DUAL_X_CARRIAGE
  5217. /**
  5218. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5219. */
  5220. inline void gcode_M907() {
  5221. #if HAS_DIGIPOTSS
  5222. for (int i = 0; i < NUM_AXIS; i++)
  5223. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5224. if (code_seen('B')) digipot_current(4, code_value());
  5225. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5226. #endif
  5227. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5228. if (code_seen('X')) digipot_current(0, code_value());
  5229. #endif
  5230. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5231. if (code_seen('Z')) digipot_current(1, code_value());
  5232. #endif
  5233. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5234. if (code_seen('E')) digipot_current(2, code_value());
  5235. #endif
  5236. #if ENABLED(DIGIPOT_I2C)
  5237. // this one uses actual amps in floating point
  5238. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5239. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5240. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5241. #endif
  5242. #if ENABLED(DAC_STEPPER_CURRENT)
  5243. if (code_seen('S')) {
  5244. float dac_percent = code_value();
  5245. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5246. }
  5247. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5248. #endif
  5249. }
  5250. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5251. /**
  5252. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5253. */
  5254. inline void gcode_M908() {
  5255. #if HAS_DIGIPOTSS
  5256. digitalPotWrite(
  5257. code_seen('P') ? code_value() : 0,
  5258. code_seen('S') ? code_value() : 0
  5259. );
  5260. #endif
  5261. #ifdef DAC_STEPPER_CURRENT
  5262. dac_current_raw(
  5263. code_seen('P') ? code_value_long() : -1,
  5264. code_seen('S') ? code_value_short() : 0
  5265. );
  5266. #endif
  5267. }
  5268. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5269. inline void gcode_M909() { dac_print_values(); }
  5270. inline void gcode_M910() { dac_commit_eeprom(); }
  5271. #endif
  5272. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5273. #if HAS_MICROSTEPS
  5274. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5275. inline void gcode_M350() {
  5276. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5277. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5278. if (code_seen('B')) microstep_mode(4, code_value());
  5279. microstep_readings();
  5280. }
  5281. /**
  5282. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5283. * S# determines MS1 or MS2, X# sets the pin high/low.
  5284. */
  5285. inline void gcode_M351() {
  5286. if (code_seen('S')) switch (code_value_short()) {
  5287. case 1:
  5288. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5289. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5290. break;
  5291. case 2:
  5292. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5293. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5294. break;
  5295. }
  5296. microstep_readings();
  5297. }
  5298. #endif // HAS_MICROSTEPS
  5299. /**
  5300. * M999: Restart after being stopped
  5301. */
  5302. inline void gcode_M999() {
  5303. Running = true;
  5304. lcd_reset_alert_level();
  5305. // gcode_LastN = Stopped_gcode_LastN;
  5306. FlushSerialRequestResend();
  5307. }
  5308. /**
  5309. * T0-T3: Switch tool, usually switching extruders
  5310. *
  5311. * F[mm/min] Set the movement feedrate
  5312. */
  5313. inline void gcode_T(uint8_t tmp_extruder) {
  5314. if (tmp_extruder >= EXTRUDERS) {
  5315. SERIAL_ECHO_START;
  5316. SERIAL_CHAR('T');
  5317. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5318. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5319. }
  5320. else {
  5321. target_extruder = tmp_extruder;
  5322. #if EXTRUDERS > 1
  5323. bool make_move = false;
  5324. #endif
  5325. if (code_seen('F')) {
  5326. #if EXTRUDERS > 1
  5327. make_move = true;
  5328. #endif
  5329. float next_feedrate = code_value();
  5330. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5331. }
  5332. #if EXTRUDERS > 1
  5333. if (tmp_extruder != active_extruder) {
  5334. // Save current position to return to after applying extruder offset
  5335. set_destination_to_current();
  5336. #if ENABLED(DUAL_X_CARRIAGE)
  5337. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5338. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5339. // Park old head: 1) raise 2) move to park position 3) lower
  5340. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5341. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5342. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5343. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5344. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5345. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5346. st_synchronize();
  5347. }
  5348. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5349. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5350. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5351. active_extruder = tmp_extruder;
  5352. // This function resets the max/min values - the current position may be overwritten below.
  5353. set_axis_is_at_home(X_AXIS);
  5354. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5355. current_position[X_AXIS] = inactive_extruder_x_pos;
  5356. inactive_extruder_x_pos = destination[X_AXIS];
  5357. }
  5358. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5359. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5360. if (active_extruder == 0 || active_extruder_parked)
  5361. current_position[X_AXIS] = inactive_extruder_x_pos;
  5362. else
  5363. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5364. inactive_extruder_x_pos = destination[X_AXIS];
  5365. extruder_duplication_enabled = false;
  5366. }
  5367. else {
  5368. // record raised toolhead position for use by unpark
  5369. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5370. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5371. active_extruder_parked = true;
  5372. delayed_move_time = 0;
  5373. }
  5374. #else // !DUAL_X_CARRIAGE
  5375. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5376. // Offset extruder, make sure to apply the bed level rotation matrix
  5377. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5378. extruder_offset[Y_AXIS][tmp_extruder],
  5379. 0),
  5380. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5381. extruder_offset[Y_AXIS][active_extruder],
  5382. 0),
  5383. offset_vec = tmp_offset_vec - act_offset_vec;
  5384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5385. if (DEBUGGING(LEVELING)) {
  5386. SERIAL_ECHOLNPGM(">>> gcode_T");
  5387. tmp_offset_vec.debug("tmp_offset_vec");
  5388. act_offset_vec.debug("act_offset_vec");
  5389. offset_vec.debug("offset_vec (BEFORE)");
  5390. DEBUG_POS("BEFORE rotation", current_position);
  5391. }
  5392. #endif
  5393. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5394. current_position[X_AXIS] += offset_vec.x;
  5395. current_position[Y_AXIS] += offset_vec.y;
  5396. current_position[Z_AXIS] += offset_vec.z;
  5397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5398. if (DEBUGGING(LEVELING)) {
  5399. offset_vec.debug("offset_vec (AFTER)");
  5400. DEBUG_POS("AFTER rotation", current_position);
  5401. SERIAL_ECHOLNPGM("<<< gcode_T");
  5402. }
  5403. #endif
  5404. #else // !AUTO_BED_LEVELING_FEATURE
  5405. // Offset extruder (only by XY)
  5406. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5407. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5408. #endif // !AUTO_BED_LEVELING_FEATURE
  5409. // Set the new active extruder and position
  5410. active_extruder = tmp_extruder;
  5411. #endif // !DUAL_X_CARRIAGE
  5412. #if ENABLED(DELTA)
  5413. sync_plan_position_delta();
  5414. #else
  5415. sync_plan_position();
  5416. #endif
  5417. // Move to the old position if 'F' was in the parameters
  5418. if (make_move && IsRunning()) prepare_move();
  5419. }
  5420. #if ENABLED(EXT_SOLENOID)
  5421. st_synchronize();
  5422. disable_all_solenoids();
  5423. enable_solenoid_on_active_extruder();
  5424. #endif // EXT_SOLENOID
  5425. #endif // EXTRUDERS > 1
  5426. SERIAL_ECHO_START;
  5427. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5428. SERIAL_PROTOCOLLN((int)active_extruder);
  5429. }
  5430. }
  5431. /**
  5432. * Process a single command and dispatch it to its handler
  5433. * This is called from the main loop()
  5434. */
  5435. void process_next_command() {
  5436. current_command = command_queue[cmd_queue_index_r];
  5437. if (DEBUGGING(ECHO)) {
  5438. SERIAL_ECHO_START;
  5439. SERIAL_ECHOLN(current_command);
  5440. }
  5441. // Sanitize the current command:
  5442. // - Skip leading spaces
  5443. // - Bypass N[-0-9][0-9]*[ ]*
  5444. // - Overwrite * with nul to mark the end
  5445. while (*current_command == ' ') ++current_command;
  5446. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5447. current_command += 2; // skip N[-0-9]
  5448. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5449. while (*current_command == ' ') ++current_command; // skip [ ]*
  5450. }
  5451. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5452. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5453. char *cmd_ptr = current_command;
  5454. // Get the command code, which must be G, M, or T
  5455. char command_code = *cmd_ptr++;
  5456. // Skip spaces to get the numeric part
  5457. while (*cmd_ptr == ' ') cmd_ptr++;
  5458. uint16_t codenum = 0; // define ahead of goto
  5459. // Bail early if there's no code
  5460. bool code_is_good = NUMERIC(*cmd_ptr);
  5461. if (!code_is_good) goto ExitUnknownCommand;
  5462. // Get and skip the code number
  5463. do {
  5464. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5465. cmd_ptr++;
  5466. } while (NUMERIC(*cmd_ptr));
  5467. // Skip all spaces to get to the first argument, or nul
  5468. while (*cmd_ptr == ' ') cmd_ptr++;
  5469. // The command's arguments (if any) start here, for sure!
  5470. current_command_args = cmd_ptr;
  5471. KEEPALIVE_STATE(IN_HANDLER);
  5472. // Handle a known G, M, or T
  5473. switch (command_code) {
  5474. case 'G': switch (codenum) {
  5475. // G0, G1
  5476. case 0:
  5477. case 1:
  5478. gcode_G0_G1();
  5479. break;
  5480. // G2, G3
  5481. #if DISABLED(SCARA)
  5482. case 2: // G2 - CW ARC
  5483. case 3: // G3 - CCW ARC
  5484. gcode_G2_G3(codenum == 2);
  5485. break;
  5486. #endif
  5487. // G4 Dwell
  5488. case 4:
  5489. gcode_G4();
  5490. break;
  5491. #if ENABLED(FWRETRACT)
  5492. case 10: // G10: retract
  5493. case 11: // G11: retract_recover
  5494. gcode_G10_G11(codenum == 10);
  5495. break;
  5496. #endif //FWRETRACT
  5497. case 28: // G28: Home all axes, one at a time
  5498. gcode_G28();
  5499. break;
  5500. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5501. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5502. gcode_G29();
  5503. break;
  5504. #endif
  5505. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5506. #if DISABLED(Z_PROBE_SLED)
  5507. case 30: // G30 Single Z probe
  5508. gcode_G30();
  5509. break;
  5510. #else // Z_PROBE_SLED
  5511. case 31: // G31: dock the sled
  5512. case 32: // G32: undock the sled
  5513. dock_sled(codenum == 31);
  5514. break;
  5515. #endif // Z_PROBE_SLED
  5516. #endif // AUTO_BED_LEVELING_FEATURE
  5517. case 90: // G90
  5518. relative_mode = false;
  5519. break;
  5520. case 91: // G91
  5521. relative_mode = true;
  5522. break;
  5523. case 92: // G92
  5524. gcode_G92();
  5525. break;
  5526. }
  5527. break;
  5528. case 'M': switch (codenum) {
  5529. #if ENABLED(ULTIPANEL)
  5530. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5531. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5532. gcode_M0_M1();
  5533. break;
  5534. #endif // ULTIPANEL
  5535. case 17:
  5536. gcode_M17();
  5537. break;
  5538. #if ENABLED(SDSUPPORT)
  5539. case 20: // M20 - list SD card
  5540. gcode_M20(); break;
  5541. case 21: // M21 - init SD card
  5542. gcode_M21(); break;
  5543. case 22: //M22 - release SD card
  5544. gcode_M22(); break;
  5545. case 23: //M23 - Select file
  5546. gcode_M23(); break;
  5547. case 24: //M24 - Start SD print
  5548. gcode_M24(); break;
  5549. case 25: //M25 - Pause SD print
  5550. gcode_M25(); break;
  5551. case 26: //M26 - Set SD index
  5552. gcode_M26(); break;
  5553. case 27: //M27 - Get SD status
  5554. gcode_M27(); break;
  5555. case 28: //M28 - Start SD write
  5556. gcode_M28(); break;
  5557. case 29: //M29 - Stop SD write
  5558. gcode_M29(); break;
  5559. case 30: //M30 <filename> Delete File
  5560. gcode_M30(); break;
  5561. case 32: //M32 - Select file and start SD print
  5562. gcode_M32(); break;
  5563. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5564. case 33: //M33 - Get the long full path to a file or folder
  5565. gcode_M33(); break;
  5566. #endif // LONG_FILENAME_HOST_SUPPORT
  5567. case 928: //M928 - Start SD write
  5568. gcode_M928(); break;
  5569. #endif //SDSUPPORT
  5570. case 31: //M31 take time since the start of the SD print or an M109 command
  5571. gcode_M31();
  5572. break;
  5573. case 42: //M42 -Change pin status via gcode
  5574. gcode_M42();
  5575. break;
  5576. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5577. case 48: // M48 Z probe repeatability
  5578. gcode_M48();
  5579. break;
  5580. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5581. case 75: // Start print timer
  5582. gcode_M75();
  5583. break;
  5584. case 76: // Pause print timer
  5585. gcode_M76();
  5586. break;
  5587. case 77: // Stop print timer
  5588. gcode_M77();
  5589. break;
  5590. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5591. case 100:
  5592. gcode_M100();
  5593. break;
  5594. #endif
  5595. case 104: // M104
  5596. gcode_M104();
  5597. break;
  5598. case 110: // M110: Set Current Line Number
  5599. gcode_M110();
  5600. break;
  5601. case 111: // M111: Set debug level
  5602. gcode_M111();
  5603. break;
  5604. case 112: // M112: Emergency Stop
  5605. gcode_M112();
  5606. break;
  5607. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5608. case 113: // M113: Set Host Keepalive interval
  5609. gcode_M113();
  5610. break;
  5611. #endif
  5612. case 140: // M140: Set bed temp
  5613. gcode_M140();
  5614. break;
  5615. case 105: // M105: Read current temperature
  5616. gcode_M105();
  5617. KEEPALIVE_STATE(NOT_BUSY);
  5618. return; // "ok" already printed
  5619. case 109: // M109: Wait for temperature
  5620. gcode_M109();
  5621. break;
  5622. #if HAS_TEMP_BED
  5623. case 190: // M190: Wait for bed heater to reach target
  5624. gcode_M190();
  5625. break;
  5626. #endif // HAS_TEMP_BED
  5627. #if FAN_COUNT > 0
  5628. case 106: // M106: Fan On
  5629. gcode_M106();
  5630. break;
  5631. case 107: // M107: Fan Off
  5632. gcode_M107();
  5633. break;
  5634. #endif // FAN_COUNT > 0
  5635. #if ENABLED(BARICUDA)
  5636. // PWM for HEATER_1_PIN
  5637. #if HAS_HEATER_1
  5638. case 126: // M126: valve open
  5639. gcode_M126();
  5640. break;
  5641. case 127: // M127: valve closed
  5642. gcode_M127();
  5643. break;
  5644. #endif // HAS_HEATER_1
  5645. // PWM for HEATER_2_PIN
  5646. #if HAS_HEATER_2
  5647. case 128: // M128: valve open
  5648. gcode_M128();
  5649. break;
  5650. case 129: // M129: valve closed
  5651. gcode_M129();
  5652. break;
  5653. #endif // HAS_HEATER_2
  5654. #endif // BARICUDA
  5655. #if HAS_POWER_SWITCH
  5656. case 80: // M80: Turn on Power Supply
  5657. gcode_M80();
  5658. break;
  5659. #endif // HAS_POWER_SWITCH
  5660. case 81: // M81: Turn off Power, including Power Supply, if possible
  5661. gcode_M81();
  5662. break;
  5663. case 82:
  5664. gcode_M82();
  5665. break;
  5666. case 83:
  5667. gcode_M83();
  5668. break;
  5669. case 18: // (for compatibility)
  5670. case 84: // M84
  5671. gcode_M18_M84();
  5672. break;
  5673. case 85: // M85
  5674. gcode_M85();
  5675. break;
  5676. case 92: // M92: Set the steps-per-unit for one or more axes
  5677. gcode_M92();
  5678. break;
  5679. case 115: // M115: Report capabilities
  5680. gcode_M115();
  5681. break;
  5682. case 117: // M117: Set LCD message text, if possible
  5683. gcode_M117();
  5684. break;
  5685. case 114: // M114: Report current position
  5686. gcode_M114();
  5687. break;
  5688. case 120: // M120: Enable endstops
  5689. gcode_M120();
  5690. break;
  5691. case 121: // M121: Disable endstops
  5692. gcode_M121();
  5693. break;
  5694. case 119: // M119: Report endstop states
  5695. gcode_M119();
  5696. break;
  5697. #if ENABLED(ULTIPANEL)
  5698. case 145: // M145: Set material heatup parameters
  5699. gcode_M145();
  5700. break;
  5701. #endif
  5702. #if ENABLED(BLINKM)
  5703. case 150: // M150
  5704. gcode_M150();
  5705. break;
  5706. #endif //BLINKM
  5707. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5708. case 155:
  5709. gcode_M155();
  5710. break;
  5711. case 156:
  5712. gcode_M156();
  5713. break;
  5714. #endif //EXPERIMENTAL_I2CBUS
  5715. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5716. gcode_M200();
  5717. break;
  5718. case 201: // M201
  5719. gcode_M201();
  5720. break;
  5721. #if 0 // Not used for Sprinter/grbl gen6
  5722. case 202: // M202
  5723. gcode_M202();
  5724. break;
  5725. #endif
  5726. case 203: // M203 max feedrate mm/sec
  5727. gcode_M203();
  5728. break;
  5729. case 204: // M204 acclereration S normal moves T filmanent only moves
  5730. gcode_M204();
  5731. break;
  5732. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5733. gcode_M205();
  5734. break;
  5735. case 206: // M206 additional homing offset
  5736. gcode_M206();
  5737. break;
  5738. #if ENABLED(DELTA)
  5739. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5740. gcode_M665();
  5741. break;
  5742. #endif
  5743. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5744. case 666: // M666 set delta / dual endstop adjustment
  5745. gcode_M666();
  5746. break;
  5747. #endif
  5748. #if ENABLED(FWRETRACT)
  5749. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5750. gcode_M207();
  5751. break;
  5752. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5753. gcode_M208();
  5754. break;
  5755. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5756. gcode_M209();
  5757. break;
  5758. #endif // FWRETRACT
  5759. #if EXTRUDERS > 1
  5760. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5761. gcode_M218();
  5762. break;
  5763. #endif
  5764. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5765. gcode_M220();
  5766. break;
  5767. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5768. gcode_M221();
  5769. break;
  5770. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5771. gcode_M226();
  5772. break;
  5773. #if HAS_SERVOS
  5774. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5775. gcode_M280();
  5776. break;
  5777. #endif // HAS_SERVOS
  5778. #if HAS_BUZZER
  5779. case 300: // M300 - Play beep tone
  5780. gcode_M300();
  5781. break;
  5782. #endif // HAS_BUZZER
  5783. #if ENABLED(PIDTEMP)
  5784. case 301: // M301
  5785. gcode_M301();
  5786. break;
  5787. #endif // PIDTEMP
  5788. #if ENABLED(PIDTEMPBED)
  5789. case 304: // M304
  5790. gcode_M304();
  5791. break;
  5792. #endif // PIDTEMPBED
  5793. #if defined(CHDK) || HAS_PHOTOGRAPH
  5794. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5795. gcode_M240();
  5796. break;
  5797. #endif // CHDK || PHOTOGRAPH_PIN
  5798. #if ENABLED(HAS_LCD_CONTRAST)
  5799. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5800. gcode_M250();
  5801. break;
  5802. #endif // HAS_LCD_CONTRAST
  5803. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5804. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5805. gcode_M302();
  5806. break;
  5807. #endif // PREVENT_DANGEROUS_EXTRUDE
  5808. case 303: // M303 PID autotune
  5809. gcode_M303();
  5810. break;
  5811. #if ENABLED(SCARA)
  5812. case 360: // M360 SCARA Theta pos1
  5813. if (gcode_M360()) return;
  5814. break;
  5815. case 361: // M361 SCARA Theta pos2
  5816. if (gcode_M361()) return;
  5817. break;
  5818. case 362: // M362 SCARA Psi pos1
  5819. if (gcode_M362()) return;
  5820. break;
  5821. case 363: // M363 SCARA Psi pos2
  5822. if (gcode_M363()) return;
  5823. break;
  5824. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5825. if (gcode_M364()) return;
  5826. break;
  5827. case 365: // M365 Set SCARA scaling for X Y Z
  5828. gcode_M365();
  5829. break;
  5830. #endif // SCARA
  5831. case 400: // M400 finish all moves
  5832. gcode_M400();
  5833. break;
  5834. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5835. case 401:
  5836. gcode_M401();
  5837. break;
  5838. case 402:
  5839. gcode_M402();
  5840. break;
  5841. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5842. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5843. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5844. gcode_M404();
  5845. break;
  5846. case 405: //M405 Turn on filament sensor for control
  5847. gcode_M405();
  5848. break;
  5849. case 406: //M406 Turn off filament sensor for control
  5850. gcode_M406();
  5851. break;
  5852. case 407: //M407 Display measured filament diameter
  5853. gcode_M407();
  5854. break;
  5855. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5856. case 410: // M410 quickstop - Abort all the planned moves.
  5857. gcode_M410();
  5858. break;
  5859. #if ENABLED(MESH_BED_LEVELING)
  5860. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5861. gcode_M420();
  5862. break;
  5863. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5864. gcode_M421();
  5865. break;
  5866. #endif
  5867. case 428: // M428 Apply current_position to home_offset
  5868. gcode_M428();
  5869. break;
  5870. case 500: // M500 Store settings in EEPROM
  5871. gcode_M500();
  5872. break;
  5873. case 501: // M501 Read settings from EEPROM
  5874. gcode_M501();
  5875. break;
  5876. case 502: // M502 Revert to default settings
  5877. gcode_M502();
  5878. break;
  5879. case 503: // M503 print settings currently in memory
  5880. gcode_M503();
  5881. break;
  5882. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5883. case 540:
  5884. gcode_M540();
  5885. break;
  5886. #endif
  5887. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5888. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5889. gcode_SET_Z_PROBE_OFFSET();
  5890. break;
  5891. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5892. #if ENABLED(FILAMENTCHANGEENABLE)
  5893. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5894. gcode_M600();
  5895. break;
  5896. #endif // FILAMENTCHANGEENABLE
  5897. #if ENABLED(DUAL_X_CARRIAGE)
  5898. case 605:
  5899. gcode_M605();
  5900. break;
  5901. #endif // DUAL_X_CARRIAGE
  5902. case 907: // M907 Set digital trimpot motor current using axis codes.
  5903. gcode_M907();
  5904. break;
  5905. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5906. case 908: // M908 Control digital trimpot directly.
  5907. gcode_M908();
  5908. break;
  5909. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5910. case 909: // M909 Print digipot/DAC current value
  5911. gcode_M909();
  5912. break;
  5913. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5914. gcode_M910();
  5915. break;
  5916. #endif
  5917. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5918. #if HAS_MICROSTEPS
  5919. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5920. gcode_M350();
  5921. break;
  5922. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5923. gcode_M351();
  5924. break;
  5925. #endif // HAS_MICROSTEPS
  5926. case 999: // M999: Restart after being Stopped
  5927. gcode_M999();
  5928. break;
  5929. }
  5930. break;
  5931. case 'T':
  5932. gcode_T(codenum);
  5933. break;
  5934. default: code_is_good = false;
  5935. }
  5936. KEEPALIVE_STATE(NOT_BUSY);
  5937. ExitUnknownCommand:
  5938. // Still unknown command? Throw an error
  5939. if (!code_is_good) unknown_command_error();
  5940. ok_to_send();
  5941. }
  5942. void FlushSerialRequestResend() {
  5943. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5944. MYSERIAL.flush();
  5945. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5946. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5947. ok_to_send();
  5948. }
  5949. void ok_to_send() {
  5950. refresh_cmd_timeout();
  5951. if (!send_ok[cmd_queue_index_r]) return;
  5952. SERIAL_PROTOCOLPGM(MSG_OK);
  5953. #if ENABLED(ADVANCED_OK)
  5954. char* p = command_queue[cmd_queue_index_r];
  5955. if (*p == 'N') {
  5956. SERIAL_PROTOCOL(' ');
  5957. SERIAL_ECHO(*p++);
  5958. while (NUMERIC_SIGNED(*p))
  5959. SERIAL_ECHO(*p++);
  5960. }
  5961. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5962. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5963. #endif
  5964. SERIAL_EOL;
  5965. }
  5966. void clamp_to_software_endstops(float target[3]) {
  5967. if (min_software_endstops) {
  5968. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  5969. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  5970. float negative_z_offset = 0;
  5971. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5972. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5973. if (home_offset[Z_AXIS] < 0) {
  5974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5975. if (DEBUGGING(LEVELING)) {
  5976. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5977. SERIAL_EOL;
  5978. }
  5979. #endif
  5980. negative_z_offset += home_offset[Z_AXIS];
  5981. }
  5982. #endif
  5983. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS] + negative_z_offset);
  5984. }
  5985. if (max_software_endstops) {
  5986. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  5987. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  5988. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  5989. }
  5990. }
  5991. #if ENABLED(DELTA)
  5992. void recalc_delta_settings(float radius, float diagonal_rod) {
  5993. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5994. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5995. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5996. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5997. delta_tower3_x = 0.0; // back middle tower
  5998. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5999. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6000. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6001. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6002. }
  6003. void calculate_delta(float cartesian[3]) {
  6004. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6005. - sq(delta_tower1_x - cartesian[X_AXIS])
  6006. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6007. ) + cartesian[Z_AXIS];
  6008. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6009. - sq(delta_tower2_x - cartesian[X_AXIS])
  6010. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6011. ) + cartesian[Z_AXIS];
  6012. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6013. - sq(delta_tower3_x - cartesian[X_AXIS])
  6014. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6015. ) + cartesian[Z_AXIS];
  6016. /**
  6017. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6018. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6019. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6020. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6021. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6022. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6023. */
  6024. }
  6025. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6026. // Adjust print surface height by linear interpolation over the bed_level array.
  6027. void adjust_delta(float cartesian[3]) {
  6028. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6029. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6030. float h1 = 0.001 - half, h2 = half - 0.001,
  6031. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6032. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6033. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6034. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6035. z1 = bed_level[floor_x + half][floor_y + half],
  6036. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6037. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6038. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6039. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6040. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6041. offset = (1 - ratio_x) * left + ratio_x * right;
  6042. delta[X_AXIS] += offset;
  6043. delta[Y_AXIS] += offset;
  6044. delta[Z_AXIS] += offset;
  6045. /**
  6046. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6047. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6048. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6049. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6050. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6051. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6052. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6053. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6054. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6055. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6056. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6057. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6058. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6059. */
  6060. }
  6061. #endif // AUTO_BED_LEVELING_FEATURE
  6062. #endif // DELTA
  6063. #if ENABLED(MESH_BED_LEVELING)
  6064. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6065. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6066. if (!mbl.active) {
  6067. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6068. set_current_to_destination();
  6069. return;
  6070. }
  6071. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  6072. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6073. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  6074. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  6075. pix = min(pix, MESH_NUM_X_POINTS - 2);
  6076. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  6077. ix = min(ix, MESH_NUM_X_POINTS - 2);
  6078. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  6079. if (pix == ix && piy == iy) {
  6080. // Start and end on same mesh square
  6081. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6082. set_current_to_destination();
  6083. return;
  6084. }
  6085. float nx, ny, nz, ne, normalized_dist;
  6086. if (ix > pix && TEST(x_splits, ix)) {
  6087. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  6088. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6089. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6090. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6091. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6092. CBI(x_splits, ix);
  6093. }
  6094. else if (ix < pix && TEST(x_splits, pix)) {
  6095. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  6096. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6097. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6098. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6099. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6100. CBI(x_splits, pix);
  6101. }
  6102. else if (iy > piy && TEST(y_splits, iy)) {
  6103. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6104. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6105. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6106. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6107. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6108. CBI(y_splits, iy);
  6109. }
  6110. else if (iy < piy && TEST(y_splits, piy)) {
  6111. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6112. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6113. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6114. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6115. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6116. CBI(y_splits, piy);
  6117. }
  6118. else {
  6119. // Already split on a border
  6120. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6121. set_current_to_destination();
  6122. return;
  6123. }
  6124. // Do the split and look for more borders
  6125. destination[X_AXIS] = nx;
  6126. destination[Y_AXIS] = ny;
  6127. destination[Z_AXIS] = nz;
  6128. destination[E_AXIS] = ne;
  6129. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6130. destination[X_AXIS] = x;
  6131. destination[Y_AXIS] = y;
  6132. destination[Z_AXIS] = z;
  6133. destination[E_AXIS] = e;
  6134. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6135. }
  6136. #endif // MESH_BED_LEVELING
  6137. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6138. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6139. if (DEBUGGING(DRYRUN)) return;
  6140. float de = dest_e - curr_e;
  6141. if (de) {
  6142. if (degHotend(active_extruder) < extrude_min_temp) {
  6143. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6144. SERIAL_ECHO_START;
  6145. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6146. }
  6147. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6148. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6149. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6150. SERIAL_ECHO_START;
  6151. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6152. }
  6153. #endif
  6154. }
  6155. }
  6156. #endif // PREVENT_DANGEROUS_EXTRUDE
  6157. #if ENABLED(DELTA) || ENABLED(SCARA)
  6158. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6159. float difference[NUM_AXIS];
  6160. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6161. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6162. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6163. if (cartesian_mm < 0.000001) return false;
  6164. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6165. int steps = max(1, int(delta_segments_per_second * seconds));
  6166. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6167. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6168. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6169. for (int s = 1; s <= steps; s++) {
  6170. float fraction = float(s) / float(steps);
  6171. for (int8_t i = 0; i < NUM_AXIS; i++)
  6172. target[i] = current_position[i] + difference[i] * fraction;
  6173. calculate_delta(target);
  6174. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6175. adjust_delta(target);
  6176. #endif
  6177. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  6178. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  6179. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  6180. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  6181. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6182. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6183. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6184. }
  6185. return true;
  6186. }
  6187. #endif // DELTA || SCARA
  6188. #if ENABLED(SCARA)
  6189. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6190. #endif
  6191. #if ENABLED(DUAL_X_CARRIAGE)
  6192. inline bool prepare_move_dual_x_carriage() {
  6193. if (active_extruder_parked) {
  6194. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6195. // move duplicate extruder into correct duplication position.
  6196. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6197. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6198. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6199. sync_plan_position();
  6200. st_synchronize();
  6201. extruder_duplication_enabled = true;
  6202. active_extruder_parked = false;
  6203. }
  6204. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6205. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6206. // This is a travel move (with no extrusion)
  6207. // Skip it, but keep track of the current position
  6208. // (so it can be used as the start of the next non-travel move)
  6209. if (delayed_move_time != 0xFFFFFFFFUL) {
  6210. set_current_to_destination();
  6211. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6212. delayed_move_time = millis();
  6213. return false;
  6214. }
  6215. }
  6216. delayed_move_time = 0;
  6217. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6218. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6220. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6221. active_extruder_parked = false;
  6222. }
  6223. }
  6224. return true;
  6225. }
  6226. #endif // DUAL_X_CARRIAGE
  6227. #if DISABLED(DELTA) && DISABLED(SCARA)
  6228. inline bool prepare_move_cartesian() {
  6229. // Do not use feedrate_multiplier for E or Z only moves
  6230. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6231. line_to_destination();
  6232. }
  6233. else {
  6234. #if ENABLED(MESH_BED_LEVELING)
  6235. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6236. return false;
  6237. #else
  6238. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6239. #endif
  6240. }
  6241. return true;
  6242. }
  6243. #endif // !DELTA && !SCARA
  6244. /**
  6245. * Prepare a single move and get ready for the next one
  6246. *
  6247. * (This may call plan_buffer_line several times to put
  6248. * smaller moves into the planner for DELTA or SCARA.)
  6249. */
  6250. void prepare_move() {
  6251. clamp_to_software_endstops(destination);
  6252. refresh_cmd_timeout();
  6253. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6254. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6255. #endif
  6256. #if ENABLED(SCARA)
  6257. if (!prepare_move_scara(destination)) return;
  6258. #elif ENABLED(DELTA)
  6259. if (!prepare_move_delta(destination)) return;
  6260. #endif
  6261. #if ENABLED(DUAL_X_CARRIAGE)
  6262. if (!prepare_move_dual_x_carriage()) return;
  6263. #endif
  6264. #if DISABLED(DELTA) && DISABLED(SCARA)
  6265. if (!prepare_move_cartesian()) return;
  6266. #endif
  6267. set_current_to_destination();
  6268. }
  6269. /**
  6270. * Plan an arc in 2 dimensions
  6271. *
  6272. * The arc is approximated by generating many small linear segments.
  6273. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6274. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6275. * larger segments will tend to be more efficient. Your slicer should have
  6276. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6277. */
  6278. void plan_arc(
  6279. float target[NUM_AXIS], // Destination position
  6280. float* offset, // Center of rotation relative to current_position
  6281. uint8_t clockwise // Clockwise?
  6282. ) {
  6283. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6284. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6285. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6286. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6287. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6288. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6289. r_Y = -offset[Y_AXIS],
  6290. rt_X = target[X_AXIS] - center_X,
  6291. rt_Y = target[Y_AXIS] - center_Y;
  6292. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6293. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6294. if (angular_travel < 0) angular_travel += RADIANS(360);
  6295. if (clockwise) angular_travel -= RADIANS(360);
  6296. // Make a circle if the angular rotation is 0
  6297. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6298. angular_travel += RADIANS(360);
  6299. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6300. if (mm_of_travel < 0.001) return;
  6301. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6302. if (segments == 0) segments = 1;
  6303. float theta_per_segment = angular_travel / segments;
  6304. float linear_per_segment = linear_travel / segments;
  6305. float extruder_per_segment = extruder_travel / segments;
  6306. /**
  6307. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6308. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6309. * r_T = [cos(phi) -sin(phi);
  6310. * sin(phi) cos(phi] * r ;
  6311. *
  6312. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6313. * defined from the circle center to the initial position. Each line segment is formed by successive
  6314. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6315. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6316. * all double numbers are single precision on the Arduino. (True double precision will not have
  6317. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6318. * tool precision in some cases. Therefore, arc path correction is implemented.
  6319. *
  6320. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6321. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6322. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6323. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6324. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6325. * issue for CNC machines with the single precision Arduino calculations.
  6326. *
  6327. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6328. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6329. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6330. * This is important when there are successive arc motions.
  6331. */
  6332. // Vector rotation matrix values
  6333. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6334. float sin_T = theta_per_segment;
  6335. float arc_target[NUM_AXIS];
  6336. float sin_Ti, cos_Ti, r_new_Y;
  6337. uint16_t i;
  6338. int8_t count = 0;
  6339. // Initialize the linear axis
  6340. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6341. // Initialize the extruder axis
  6342. arc_target[E_AXIS] = current_position[E_AXIS];
  6343. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6344. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6345. if (++count < N_ARC_CORRECTION) {
  6346. // Apply vector rotation matrix to previous r_X / 1
  6347. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6348. r_X = r_X * cos_T - r_Y * sin_T;
  6349. r_Y = r_new_Y;
  6350. }
  6351. else {
  6352. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6353. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6354. // To reduce stuttering, the sin and cos could be computed at different times.
  6355. // For now, compute both at the same time.
  6356. cos_Ti = cos(i * theta_per_segment);
  6357. sin_Ti = sin(i * theta_per_segment);
  6358. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6359. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6360. count = 0;
  6361. }
  6362. // Update arc_target location
  6363. arc_target[X_AXIS] = center_X + r_X;
  6364. arc_target[Y_AXIS] = center_Y + r_Y;
  6365. arc_target[Z_AXIS] += linear_per_segment;
  6366. arc_target[E_AXIS] += extruder_per_segment;
  6367. clamp_to_software_endstops(arc_target);
  6368. #if ENABLED(DELTA) || ENABLED(SCARA)
  6369. calculate_delta(arc_target);
  6370. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6371. adjust_delta(arc_target);
  6372. #endif
  6373. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6374. #else
  6375. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6376. #endif
  6377. }
  6378. // Ensure last segment arrives at target location.
  6379. #if ENABLED(DELTA) || ENABLED(SCARA)
  6380. calculate_delta(target);
  6381. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6382. adjust_delta(target);
  6383. #endif
  6384. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6385. #else
  6386. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6387. #endif
  6388. // As far as the parser is concerned, the position is now == target. In reality the
  6389. // motion control system might still be processing the action and the real tool position
  6390. // in any intermediate location.
  6391. set_current_to_destination();
  6392. }
  6393. #if HAS_CONTROLLERFAN
  6394. void controllerFan() {
  6395. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6396. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6397. millis_t ms = millis();
  6398. if (ELAPSED(ms, nextMotorCheck)) {
  6399. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6400. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6401. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6402. #if EXTRUDERS > 1
  6403. || E1_ENABLE_READ == E_ENABLE_ON
  6404. #if HAS_X2_ENABLE
  6405. || X2_ENABLE_READ == X_ENABLE_ON
  6406. #endif
  6407. #if EXTRUDERS > 2
  6408. || E2_ENABLE_READ == E_ENABLE_ON
  6409. #if EXTRUDERS > 3
  6410. || E3_ENABLE_READ == E_ENABLE_ON
  6411. #endif
  6412. #endif
  6413. #endif
  6414. ) {
  6415. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6416. }
  6417. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6418. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6419. // allows digital or PWM fan output to be used (see M42 handling)
  6420. digitalWrite(CONTROLLERFAN_PIN, speed);
  6421. analogWrite(CONTROLLERFAN_PIN, speed);
  6422. }
  6423. }
  6424. #endif // HAS_CONTROLLERFAN
  6425. #if ENABLED(SCARA)
  6426. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6427. // Perform forward kinematics, and place results in delta[3]
  6428. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6429. float x_sin, x_cos, y_sin, y_cos;
  6430. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6431. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6432. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6433. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6434. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6435. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6436. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6437. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6438. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6439. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6440. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6441. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6442. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6443. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6444. }
  6445. void calculate_delta(float cartesian[3]) {
  6446. //reverse kinematics.
  6447. // Perform reversed kinematics, and place results in delta[3]
  6448. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6449. float SCARA_pos[2];
  6450. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6451. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6452. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6453. #if (Linkage_1 == Linkage_2)
  6454. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6455. #else
  6456. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6457. #endif
  6458. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6459. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6460. SCARA_K2 = Linkage_2 * SCARA_S2;
  6461. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6462. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6463. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6464. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6465. delta[Z_AXIS] = cartesian[Z_AXIS];
  6466. /**
  6467. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6468. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6469. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6470. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6471. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6472. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6473. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6474. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6475. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6476. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6477. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6478. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6479. SERIAL_EOL;
  6480. */
  6481. }
  6482. #endif // SCARA
  6483. #if ENABLED(TEMP_STAT_LEDS)
  6484. static bool red_led = false;
  6485. static millis_t next_status_led_update_ms = 0;
  6486. void handle_status_leds(void) {
  6487. float max_temp = 0.0;
  6488. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6489. next_status_led_update_ms += 500; // Update every 0.5s
  6490. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6491. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6492. #if HAS_TEMP_BED
  6493. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6494. #endif
  6495. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6496. if (new_led != red_led) {
  6497. red_led = new_led;
  6498. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6499. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6500. }
  6501. }
  6502. }
  6503. #endif
  6504. void enable_all_steppers() {
  6505. enable_x();
  6506. enable_y();
  6507. enable_z();
  6508. enable_e0();
  6509. enable_e1();
  6510. enable_e2();
  6511. enable_e3();
  6512. }
  6513. void disable_all_steppers() {
  6514. disable_x();
  6515. disable_y();
  6516. disable_z();
  6517. disable_e0();
  6518. disable_e1();
  6519. disable_e2();
  6520. disable_e3();
  6521. }
  6522. /**
  6523. * Standard idle routine keeps the machine alive
  6524. */
  6525. void idle(
  6526. #if ENABLED(FILAMENTCHANGEENABLE)
  6527. bool no_stepper_sleep/*=false*/
  6528. #endif
  6529. ) {
  6530. manage_heater();
  6531. manage_inactivity(
  6532. #if ENABLED(FILAMENTCHANGEENABLE)
  6533. no_stepper_sleep
  6534. #endif
  6535. );
  6536. host_keepalive();
  6537. lcd_update();
  6538. }
  6539. /**
  6540. * Manage several activities:
  6541. * - Check for Filament Runout
  6542. * - Keep the command buffer full
  6543. * - Check for maximum inactive time between commands
  6544. * - Check for maximum inactive time between stepper commands
  6545. * - Check if pin CHDK needs to go LOW
  6546. * - Check for KILL button held down
  6547. * - Check for HOME button held down
  6548. * - Check if cooling fan needs to be switched on
  6549. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6550. */
  6551. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6552. #if HAS_FILRUNOUT
  6553. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6554. filrunout();
  6555. #endif
  6556. if (commands_in_queue < BUFSIZE) get_available_commands();
  6557. millis_t ms = millis();
  6558. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6559. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6560. && !ignore_stepper_queue && !blocks_queued()) {
  6561. #if ENABLED(DISABLE_INACTIVE_X)
  6562. disable_x();
  6563. #endif
  6564. #if ENABLED(DISABLE_INACTIVE_Y)
  6565. disable_y();
  6566. #endif
  6567. #if ENABLED(DISABLE_INACTIVE_Z)
  6568. disable_z();
  6569. #endif
  6570. #if ENABLED(DISABLE_INACTIVE_E)
  6571. disable_e0();
  6572. disable_e1();
  6573. disable_e2();
  6574. disable_e3();
  6575. #endif
  6576. }
  6577. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6578. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6579. chdkActive = false;
  6580. WRITE(CHDK, LOW);
  6581. }
  6582. #endif
  6583. #if HAS_KILL
  6584. // Check if the kill button was pressed and wait just in case it was an accidental
  6585. // key kill key press
  6586. // -------------------------------------------------------------------------------
  6587. static int killCount = 0; // make the inactivity button a bit less responsive
  6588. const int KILL_DELAY = 750;
  6589. if (!READ(KILL_PIN))
  6590. killCount++;
  6591. else if (killCount > 0)
  6592. killCount--;
  6593. // Exceeded threshold and we can confirm that it was not accidental
  6594. // KILL the machine
  6595. // ----------------------------------------------------------------
  6596. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6597. #endif
  6598. #if HAS_HOME
  6599. // Check to see if we have to home, use poor man's debouncer
  6600. // ---------------------------------------------------------
  6601. static int homeDebounceCount = 0; // poor man's debouncing count
  6602. const int HOME_DEBOUNCE_DELAY = 2500;
  6603. if (!READ(HOME_PIN)) {
  6604. if (!homeDebounceCount) {
  6605. enqueue_and_echo_commands_P(PSTR("G28"));
  6606. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6607. }
  6608. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6609. homeDebounceCount++;
  6610. else
  6611. homeDebounceCount = 0;
  6612. }
  6613. #endif
  6614. #if HAS_CONTROLLERFAN
  6615. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6616. #endif
  6617. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6618. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6619. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6620. bool oldstatus;
  6621. switch (active_extruder) {
  6622. case 0:
  6623. oldstatus = E0_ENABLE_READ;
  6624. enable_e0();
  6625. break;
  6626. #if EXTRUDERS > 1
  6627. case 1:
  6628. oldstatus = E1_ENABLE_READ;
  6629. enable_e1();
  6630. break;
  6631. #if EXTRUDERS > 2
  6632. case 2:
  6633. oldstatus = E2_ENABLE_READ;
  6634. enable_e2();
  6635. break;
  6636. #if EXTRUDERS > 3
  6637. case 3:
  6638. oldstatus = E3_ENABLE_READ;
  6639. enable_e3();
  6640. break;
  6641. #endif
  6642. #endif
  6643. #endif
  6644. }
  6645. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6646. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6647. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6648. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6649. current_position[E_AXIS] = oldepos;
  6650. destination[E_AXIS] = oldedes;
  6651. plan_set_e_position(oldepos);
  6652. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6653. st_synchronize();
  6654. switch (active_extruder) {
  6655. case 0:
  6656. E0_ENABLE_WRITE(oldstatus);
  6657. break;
  6658. #if EXTRUDERS > 1
  6659. case 1:
  6660. E1_ENABLE_WRITE(oldstatus);
  6661. break;
  6662. #if EXTRUDERS > 2
  6663. case 2:
  6664. E2_ENABLE_WRITE(oldstatus);
  6665. break;
  6666. #if EXTRUDERS > 3
  6667. case 3:
  6668. E3_ENABLE_WRITE(oldstatus);
  6669. break;
  6670. #endif
  6671. #endif
  6672. #endif
  6673. }
  6674. }
  6675. #endif
  6676. #if ENABLED(DUAL_X_CARRIAGE)
  6677. // handle delayed move timeout
  6678. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6679. // travel moves have been received so enact them
  6680. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6681. set_destination_to_current();
  6682. prepare_move();
  6683. }
  6684. #endif
  6685. #if ENABLED(TEMP_STAT_LEDS)
  6686. handle_status_leds();
  6687. #endif
  6688. check_axes_activity();
  6689. }
  6690. void kill(const char* lcd_msg) {
  6691. #if ENABLED(ULTRA_LCD)
  6692. lcd_setalertstatuspgm(lcd_msg);
  6693. #else
  6694. UNUSED(lcd_msg);
  6695. #endif
  6696. cli(); // Stop interrupts
  6697. disable_all_heaters();
  6698. disable_all_steppers();
  6699. #if HAS_POWER_SWITCH
  6700. pinMode(PS_ON_PIN, INPUT);
  6701. #endif
  6702. SERIAL_ERROR_START;
  6703. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6704. // FMC small patch to update the LCD before ending
  6705. sei(); // enable interrupts
  6706. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6707. cli(); // disable interrupts
  6708. suicide();
  6709. while (1) {
  6710. #if ENABLED(USE_WATCHDOG)
  6711. watchdog_reset();
  6712. #endif
  6713. } // Wait for reset
  6714. }
  6715. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6716. void filrunout() {
  6717. if (!filrunoutEnqueued) {
  6718. filrunoutEnqueued = true;
  6719. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6720. st_synchronize();
  6721. }
  6722. }
  6723. #endif // FILAMENT_RUNOUT_SENSOR
  6724. #if ENABLED(FAST_PWM_FAN)
  6725. void setPwmFrequency(uint8_t pin, int val) {
  6726. val &= 0x07;
  6727. switch (digitalPinToTimer(pin)) {
  6728. #if defined(TCCR0A)
  6729. case TIMER0A:
  6730. case TIMER0B:
  6731. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6732. // TCCR0B |= val;
  6733. break;
  6734. #endif
  6735. #if defined(TCCR1A)
  6736. case TIMER1A:
  6737. case TIMER1B:
  6738. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6739. // TCCR1B |= val;
  6740. break;
  6741. #endif
  6742. #if defined(TCCR2)
  6743. case TIMER2:
  6744. case TIMER2:
  6745. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6746. TCCR2 |= val;
  6747. break;
  6748. #endif
  6749. #if defined(TCCR2A)
  6750. case TIMER2A:
  6751. case TIMER2B:
  6752. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6753. TCCR2B |= val;
  6754. break;
  6755. #endif
  6756. #if defined(TCCR3A)
  6757. case TIMER3A:
  6758. case TIMER3B:
  6759. case TIMER3C:
  6760. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6761. TCCR3B |= val;
  6762. break;
  6763. #endif
  6764. #if defined(TCCR4A)
  6765. case TIMER4A:
  6766. case TIMER4B:
  6767. case TIMER4C:
  6768. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6769. TCCR4B |= val;
  6770. break;
  6771. #endif
  6772. #if defined(TCCR5A)
  6773. case TIMER5A:
  6774. case TIMER5B:
  6775. case TIMER5C:
  6776. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6777. TCCR5B |= val;
  6778. break;
  6779. #endif
  6780. }
  6781. }
  6782. #endif // FAST_PWM_FAN
  6783. void Stop() {
  6784. disable_all_heaters();
  6785. if (IsRunning()) {
  6786. Running = false;
  6787. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6788. SERIAL_ERROR_START;
  6789. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6790. LCD_MESSAGEPGM(MSG_STOPPED);
  6791. }
  6792. }
  6793. /**
  6794. * Set target_extruder from the T parameter or the active_extruder
  6795. *
  6796. * Returns TRUE if the target is invalid
  6797. */
  6798. bool setTargetedHotend(int code) {
  6799. target_extruder = active_extruder;
  6800. if (code_seen('T')) {
  6801. target_extruder = code_value_short();
  6802. if (target_extruder >= EXTRUDERS) {
  6803. SERIAL_ECHO_START;
  6804. SERIAL_CHAR('M');
  6805. SERIAL_ECHO(code);
  6806. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6807. SERIAL_ECHOLN((int)target_extruder);
  6808. return true;
  6809. }
  6810. }
  6811. return false;
  6812. }
  6813. float calculate_volumetric_multiplier(float diameter) {
  6814. if (!volumetric_enabled || diameter == 0) return 1.0;
  6815. float d2 = diameter * 0.5;
  6816. return 1.0 / (M_PI * d2 * d2);
  6817. }
  6818. void calculate_volumetric_multipliers() {
  6819. for (int i = 0; i < EXTRUDERS; i++)
  6820. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6821. }