My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 39KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A = 0;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::extruder_advance_k = LIN_ADVANCE_K,
  83. Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[E_STEPPERS],
  85. Stepper::current_adv_steps[E_STEPPERS];
  86. #else
  87. long Stepper::e_steps[E_STEPPERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. #if ENABLED(MIXING_EXTRUDER)
  98. long Stepper::counter_m[MIXING_STEPPERS];
  99. #endif
  100. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  101. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  102. unsigned short Stepper::OCR1A_nominal;
  103. volatile long Stepper::endstops_trigsteps[XYZ];
  104. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  105. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  106. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  107. #elif ENABLED(DUAL_X_CARRIAGE)
  108. #define X_APPLY_DIR(v,ALWAYS) \
  109. if (extruder_duplication_enabled || ALWAYS) { \
  110. X_DIR_WRITE(v); \
  111. X2_DIR_WRITE(v); \
  112. } \
  113. else { \
  114. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  115. }
  116. #define X_APPLY_STEP(v,ALWAYS) \
  117. if (extruder_duplication_enabled || ALWAYS) { \
  118. X_STEP_WRITE(v); \
  119. X2_STEP_WRITE(v); \
  120. } \
  121. else { \
  122. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  123. }
  124. #else
  125. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  126. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  127. #endif
  128. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  129. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  130. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  131. #else
  132. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  133. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  134. #endif
  135. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  136. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  137. #if ENABLED(Z_DUAL_ENDSTOPS)
  138. #define Z_APPLY_STEP(v,Q) \
  139. if (performing_homing) { \
  140. if (Z_HOME_DIR > 0) {\
  141. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  142. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  143. } \
  144. else { \
  145. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  146. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  147. } \
  148. } \
  149. else { \
  150. Z_STEP_WRITE(v); \
  151. Z2_STEP_WRITE(v); \
  152. }
  153. #else
  154. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  155. #endif
  156. #else
  157. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  158. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  159. #endif
  160. #if DISABLED(MIXING_EXTRUDER)
  161. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  162. #endif
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. /**
  222. * __________________________
  223. * /| |\ _________________ ^
  224. * / | | \ /| |\ |
  225. * / | | \ / | | \ s
  226. * / | | | | | \ p
  227. * / | | | | | \ e
  228. * +-----+------------------------+---+--+---------------+----+ e
  229. * | BLOCK 1 | BLOCK 2 | d
  230. *
  231. * time ----->
  232. *
  233. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  234. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  235. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  236. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  237. */
  238. void Stepper::wake_up() {
  239. // TCNT1 = 0;
  240. ENABLE_STEPPER_DRIVER_INTERRUPT();
  241. }
  242. /**
  243. * Set the stepper direction of each axis
  244. *
  245. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  246. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  247. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  248. */
  249. void Stepper::set_directions() {
  250. #define SET_STEP_DIR(AXIS) \
  251. if (motor_direction(AXIS ##_AXIS)) { \
  252. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  253. count_direction[AXIS ##_AXIS] = -1; \
  254. } \
  255. else { \
  256. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  257. count_direction[AXIS ##_AXIS] = 1; \
  258. }
  259. #if HAS_X_DIR
  260. SET_STEP_DIR(X); // A
  261. #endif
  262. #if HAS_Y_DIR
  263. SET_STEP_DIR(Y); // B
  264. #endif
  265. #if HAS_Z_DIR
  266. SET_STEP_DIR(Z); // C
  267. #endif
  268. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  269. if (motor_direction(E_AXIS)) {
  270. REV_E_DIR();
  271. count_direction[E_AXIS] = -1;
  272. }
  273. else {
  274. NORM_E_DIR();
  275. count_direction[E_AXIS] = 1;
  276. }
  277. #endif // !ADVANCE && !LIN_ADVANCE
  278. }
  279. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  280. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  281. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  282. void Stepper::isr() {
  283. if (cleaning_buffer_counter) {
  284. current_block = NULL;
  285. planner.discard_current_block();
  286. #ifdef SD_FINISHED_RELEASECOMMAND
  287. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  288. #endif
  289. cleaning_buffer_counter--;
  290. OCR1A = 200;
  291. return;
  292. }
  293. // If there is no current block, attempt to pop one from the buffer
  294. if (!current_block) {
  295. // Anything in the buffer?
  296. current_block = planner.get_current_block();
  297. if (current_block) {
  298. current_block->busy = true;
  299. trapezoid_generator_reset();
  300. // Initialize Bresenham counters to 1/2 the ceiling
  301. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  302. #if ENABLED(MIXING_EXTRUDER)
  303. MIXING_STEPPERS_LOOP(i)
  304. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  305. #endif
  306. step_events_completed = 0;
  307. #if ENABLED(Z_LATE_ENABLE)
  308. if (current_block->steps[Z_AXIS] > 0) {
  309. enable_z();
  310. OCR1A = 2000; //1ms wait
  311. return;
  312. }
  313. #endif
  314. // #if ENABLED(ADVANCE)
  315. // e_steps[TOOL_E_INDEX] = 0;
  316. // #endif
  317. }
  318. else {
  319. OCR1A = 2000; // 1kHz.
  320. return;
  321. }
  322. }
  323. // Update endstops state, if enabled
  324. if (endstops.enabled
  325. #if HAS_BED_PROBE
  326. || endstops.z_probe_enabled
  327. #endif
  328. ) endstops.update();
  329. // Take multiple steps per interrupt (For high speed moves)
  330. bool all_steps_done = false;
  331. for (int8_t i = 0; i < step_loops; i++) {
  332. #ifndef USBCON
  333. customizedSerial.checkRx(); // Check for serial chars.
  334. #endif
  335. #if ENABLED(LIN_ADVANCE)
  336. counter_E += current_block->steps[E_AXIS];
  337. if (counter_E > 0) {
  338. counter_E -= current_block->step_event_count;
  339. #if DISABLED(MIXING_EXTRUDER)
  340. // Don't step E here for mixing extruder
  341. count_position[E_AXIS] += count_direction[E_AXIS];
  342. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  343. #endif
  344. }
  345. #if ENABLED(MIXING_EXTRUDER)
  346. // Step mixing steppers proportionally
  347. const bool dir = motor_direction(E_AXIS);
  348. MIXING_STEPPERS_LOOP(j) {
  349. counter_m[j] += current_block->steps[E_AXIS];
  350. if (counter_m[j] > 0) {
  351. counter_m[j] -= current_block->mix_event_count[j];
  352. dir ? --e_steps[j] : ++e_steps[j];
  353. }
  354. }
  355. #endif
  356. #elif ENABLED(ADVANCE)
  357. // Always count the unified E axis
  358. counter_E += current_block->steps[E_AXIS];
  359. if (counter_E > 0) {
  360. counter_E -= current_block->step_event_count;
  361. #if DISABLED(MIXING_EXTRUDER)
  362. // Don't step E here for mixing extruder
  363. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  364. #endif
  365. }
  366. #if ENABLED(MIXING_EXTRUDER)
  367. // Step mixing steppers proportionally
  368. const bool dir = motor_direction(E_AXIS);
  369. MIXING_STEPPERS_LOOP(j) {
  370. counter_m[j] += current_block->steps[E_AXIS];
  371. if (counter_m[j] > 0) {
  372. counter_m[j] -= current_block->mix_event_count[j];
  373. dir ? --e_steps[j] : ++e_steps[j];
  374. }
  375. }
  376. #endif // MIXING_EXTRUDER
  377. #endif // ADVANCE or LIN_ADVANCE
  378. #define _COUNTER(AXIS) counter_## AXIS
  379. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  380. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  381. // Advance the Bresenham counter; start a pulse if the axis needs a step
  382. #define PULSE_START(AXIS) \
  383. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  384. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  385. // Stop an active pulse, reset the Bresenham counter, update the position
  386. #define PULSE_STOP(AXIS) \
  387. if (_COUNTER(AXIS) > 0) { \
  388. _COUNTER(AXIS) -= current_block->step_event_count; \
  389. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  390. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  391. }
  392. #define CYCLES_EATEN_BY_CODE 240
  393. // If a minimum pulse time was specified get the CPU clock
  394. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  395. static uint32_t pulse_start;
  396. pulse_start = TCNT0;
  397. #endif
  398. #if HAS_X_STEP
  399. PULSE_START(X);
  400. #endif
  401. #if HAS_Y_STEP
  402. PULSE_START(Y);
  403. #endif
  404. #if HAS_Z_STEP
  405. PULSE_START(Z);
  406. #endif
  407. // For non-advance use linear interpolation for E also
  408. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  409. #if ENABLED(MIXING_EXTRUDER)
  410. // Keep updating the single E axis
  411. counter_E += current_block->steps[E_AXIS];
  412. // Tick the counters used for this mix
  413. MIXING_STEPPERS_LOOP(j) {
  414. // Step mixing steppers (proportionally)
  415. counter_m[j] += current_block->steps[E_AXIS];
  416. // Step when the counter goes over zero
  417. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  418. }
  419. #else // !MIXING_EXTRUDER
  420. PULSE_START(E);
  421. #endif
  422. #endif // !ADVANCE && !LIN_ADVANCE
  423. // For a minimum pulse time wait before stopping pulses
  424. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  425. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  426. #endif
  427. #if HAS_X_STEP
  428. PULSE_STOP(X);
  429. #endif
  430. #if HAS_Y_STEP
  431. PULSE_STOP(Y);
  432. #endif
  433. #if HAS_Z_STEP
  434. PULSE_STOP(Z);
  435. #endif
  436. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  437. #if ENABLED(MIXING_EXTRUDER)
  438. // Always step the single E axis
  439. if (counter_E > 0) {
  440. counter_E -= current_block->step_event_count;
  441. count_position[E_AXIS] += count_direction[E_AXIS];
  442. }
  443. MIXING_STEPPERS_LOOP(j) {
  444. if (counter_m[j] > 0) {
  445. counter_m[j] -= current_block->mix_event_count[j];
  446. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  447. }
  448. }
  449. #else // !MIXING_EXTRUDER
  450. PULSE_STOP(E);
  451. #endif
  452. #endif // !ADVANCE && !LIN_ADVANCE
  453. if (++step_events_completed >= current_block->step_event_count) {
  454. all_steps_done = true;
  455. break;
  456. }
  457. }
  458. #if ENABLED(LIN_ADVANCE)
  459. if (current_block->use_advance_lead) {
  460. int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
  461. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  462. #if ENABLED(MIXING_EXTRUDER)
  463. // Mixing extruders apply advance lead proportionally
  464. MIXING_STEPPERS_LOOP(j)
  465. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  466. #else
  467. // For most extruders, advance the single E stepper
  468. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  469. #endif
  470. }
  471. #endif
  472. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  473. // If we have esteps to execute, fire the next advance_isr "now"
  474. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  475. #endif
  476. // Calculate new timer value
  477. uint16_t timer, step_rate;
  478. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  479. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  480. acc_step_rate += current_block->initial_rate;
  481. // upper limit
  482. NOMORE(acc_step_rate, current_block->nominal_rate);
  483. // step_rate to timer interval
  484. timer = calc_timer(acc_step_rate);
  485. OCR1A = timer;
  486. acceleration_time += timer;
  487. #if ENABLED(LIN_ADVANCE)
  488. if (current_block->use_advance_lead)
  489. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  490. if (current_block->use_advance_lead) {
  491. #if ENABLED(MIXING_EXTRUDER)
  492. MIXING_STEPPERS_LOOP(j)
  493. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  494. #else
  495. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  496. #endif
  497. }
  498. #elif ENABLED(ADVANCE)
  499. advance += advance_rate * step_loops;
  500. //NOLESS(advance, current_block->advance);
  501. long advance_whole = advance >> 8,
  502. advance_factor = advance_whole - old_advance;
  503. // Do E steps + advance steps
  504. #if ENABLED(MIXING_EXTRUDER)
  505. // ...for mixing steppers proportionally
  506. MIXING_STEPPERS_LOOP(j)
  507. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  508. #else
  509. // ...for the active extruder
  510. e_steps[TOOL_E_INDEX] += advance_factor;
  511. #endif
  512. old_advance = advance_whole;
  513. #endif // ADVANCE or LIN_ADVANCE
  514. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  515. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]); //>> 3 is divide by 8. Reason: Timer 0 runs at 16/8=2MHz, Timer 1 at 16/64=0.25MHz. ==> 2/0.25=8.
  516. #endif
  517. }
  518. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  519. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  520. if (step_rate < acc_step_rate) { // Still decelerating?
  521. step_rate = acc_step_rate - step_rate;
  522. NOLESS(step_rate, current_block->final_rate);
  523. }
  524. else
  525. step_rate = current_block->final_rate;
  526. // step_rate to timer interval
  527. timer = calc_timer(step_rate);
  528. OCR1A = timer;
  529. deceleration_time += timer;
  530. #if ENABLED(LIN_ADVANCE)
  531. if (current_block->use_advance_lead) {
  532. #if ENABLED(MIXING_EXTRUDER)
  533. MIXING_STEPPERS_LOOP(j)
  534. current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  535. #else
  536. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
  537. #endif
  538. }
  539. #elif ENABLED(ADVANCE)
  540. advance -= advance_rate * step_loops;
  541. NOLESS(advance, final_advance);
  542. // Do E steps + advance steps
  543. long advance_whole = advance >> 8,
  544. advance_factor = advance_whole - old_advance;
  545. #if ENABLED(MIXING_EXTRUDER)
  546. MIXING_STEPPERS_LOOP(j)
  547. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  548. #else
  549. e_steps[TOOL_E_INDEX] += advance_factor;
  550. #endif
  551. old_advance = advance_whole;
  552. #endif // ADVANCE or LIN_ADVANCE
  553. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  554. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  555. #endif
  556. }
  557. else {
  558. #if ENABLED(LIN_ADVANCE)
  559. if (current_block->use_advance_lead)
  560. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  561. eISR_Rate = (OCR1A_nominal >> 3) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  562. #endif
  563. OCR1A = OCR1A_nominal;
  564. // ensure we're running at the correct step rate, even if we just came off an acceleration
  565. step_loops = step_loops_nominal;
  566. }
  567. NOLESS(OCR1A, TCNT1 + 16);
  568. // If current block is finished, reset pointer
  569. if (all_steps_done) {
  570. current_block = NULL;
  571. planner.discard_current_block();
  572. }
  573. }
  574. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  575. // Timer interrupt for E. e_steps is set in the main routine;
  576. // Timer 0 is shared with millies
  577. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  578. void Stepper::advance_isr() {
  579. old_OCR0A += eISR_Rate;
  580. OCR0A = old_OCR0A;
  581. #define SET_E_STEP_DIR(INDEX) \
  582. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  583. #define START_E_PULSE(INDEX) \
  584. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  585. #define STOP_E_PULSE(INDEX) \
  586. if (e_steps[INDEX]) { \
  587. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  588. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  589. }
  590. SET_E_STEP_DIR(0);
  591. #if E_STEPPERS > 1
  592. SET_E_STEP_DIR(1);
  593. #if E_STEPPERS > 2
  594. SET_E_STEP_DIR(2);
  595. #if E_STEPPERS > 3
  596. SET_E_STEP_DIR(3);
  597. #endif
  598. #endif
  599. #endif
  600. #define CYCLES_EATEN_BY_E 60
  601. // Step all E steppers that have steps
  602. for (uint8_t i = 0; i < step_loops; i++) {
  603. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  604. static uint32_t pulse_start;
  605. pulse_start = TCNT0;
  606. #endif
  607. START_E_PULSE(0);
  608. #if E_STEPPERS > 1
  609. START_E_PULSE(1);
  610. #if E_STEPPERS > 2
  611. START_E_PULSE(2);
  612. #if E_STEPPERS > 3
  613. START_E_PULSE(3);
  614. #endif
  615. #endif
  616. #endif
  617. // For a minimum pulse time wait before stopping pulses
  618. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  619. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  620. #endif
  621. STOP_E_PULSE(0);
  622. #if E_STEPPERS > 1
  623. STOP_E_PULSE(1);
  624. #if E_STEPPERS > 2
  625. STOP_E_PULSE(2);
  626. #if E_STEPPERS > 3
  627. STOP_E_PULSE(3);
  628. #endif
  629. #endif
  630. #endif
  631. }
  632. }
  633. #endif // ADVANCE or LIN_ADVANCE
  634. void Stepper::init() {
  635. // Init Digipot Motor Current
  636. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  637. digipot_init();
  638. #endif
  639. // Init Microstepping Pins
  640. #if HAS_MICROSTEPS
  641. microstep_init();
  642. #endif
  643. // Init TMC Steppers
  644. #if ENABLED(HAVE_TMCDRIVER)
  645. tmc_init();
  646. #endif
  647. // Init L6470 Steppers
  648. #if ENABLED(HAVE_L6470DRIVER)
  649. L6470_init();
  650. #endif
  651. // Init Dir Pins
  652. #if HAS_X_DIR
  653. X_DIR_INIT;
  654. #endif
  655. #if HAS_X2_DIR
  656. X2_DIR_INIT;
  657. #endif
  658. #if HAS_Y_DIR
  659. Y_DIR_INIT;
  660. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  661. Y2_DIR_INIT;
  662. #endif
  663. #endif
  664. #if HAS_Z_DIR
  665. Z_DIR_INIT;
  666. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  667. Z2_DIR_INIT;
  668. #endif
  669. #endif
  670. #if HAS_E0_DIR
  671. E0_DIR_INIT;
  672. #endif
  673. #if HAS_E1_DIR
  674. E1_DIR_INIT;
  675. #endif
  676. #if HAS_E2_DIR
  677. E2_DIR_INIT;
  678. #endif
  679. #if HAS_E3_DIR
  680. E3_DIR_INIT;
  681. #endif
  682. // Init Enable Pins - steppers default to disabled.
  683. #if HAS_X_ENABLE
  684. X_ENABLE_INIT;
  685. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  686. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  687. X2_ENABLE_INIT;
  688. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  689. #endif
  690. #endif
  691. #if HAS_Y_ENABLE
  692. Y_ENABLE_INIT;
  693. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  694. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  695. Y2_ENABLE_INIT;
  696. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  697. #endif
  698. #endif
  699. #if HAS_Z_ENABLE
  700. Z_ENABLE_INIT;
  701. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  702. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  703. Z2_ENABLE_INIT;
  704. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  705. #endif
  706. #endif
  707. #if HAS_E0_ENABLE
  708. E0_ENABLE_INIT;
  709. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  710. #endif
  711. #if HAS_E1_ENABLE
  712. E1_ENABLE_INIT;
  713. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  714. #endif
  715. #if HAS_E2_ENABLE
  716. E2_ENABLE_INIT;
  717. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  718. #endif
  719. #if HAS_E3_ENABLE
  720. E3_ENABLE_INIT;
  721. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  722. #endif
  723. // Init endstops and pullups
  724. endstops.init();
  725. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  726. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  727. #define _DISABLE(axis) disable_## axis()
  728. #define AXIS_INIT(axis, AXIS, PIN) \
  729. _STEP_INIT(AXIS); \
  730. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  731. _DISABLE(axis)
  732. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  733. // Init Step Pins
  734. #if HAS_X_STEP
  735. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  736. X2_STEP_INIT;
  737. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  738. #endif
  739. AXIS_INIT(x, X, X);
  740. #endif
  741. #if HAS_Y_STEP
  742. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  743. Y2_STEP_INIT;
  744. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  745. #endif
  746. AXIS_INIT(y, Y, Y);
  747. #endif
  748. #if HAS_Z_STEP
  749. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  750. Z2_STEP_INIT;
  751. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  752. #endif
  753. AXIS_INIT(z, Z, Z);
  754. #endif
  755. #if HAS_E0_STEP
  756. E_AXIS_INIT(0);
  757. #endif
  758. #if HAS_E1_STEP
  759. E_AXIS_INIT(1);
  760. #endif
  761. #if HAS_E2_STEP
  762. E_AXIS_INIT(2);
  763. #endif
  764. #if HAS_E3_STEP
  765. E_AXIS_INIT(3);
  766. #endif
  767. // waveform generation = 0100 = CTC
  768. CBI(TCCR1B, WGM13);
  769. SBI(TCCR1B, WGM12);
  770. CBI(TCCR1A, WGM11);
  771. CBI(TCCR1A, WGM10);
  772. // output mode = 00 (disconnected)
  773. TCCR1A &= ~(3 << COM1A0);
  774. TCCR1A &= ~(3 << COM1B0);
  775. // Set the timer pre-scaler
  776. // Generally we use a divider of 8, resulting in a 2MHz timer
  777. // frequency on a 16MHz MCU. If you are going to change this, be
  778. // sure to regenerate speed_lookuptable.h with
  779. // create_speed_lookuptable.py
  780. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  781. OCR1A = 0x4000;
  782. TCNT1 = 0;
  783. ENABLE_STEPPER_DRIVER_INTERRUPT();
  784. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  785. for (int i = 0; i < E_STEPPERS; i++) {
  786. e_steps[i] = 0;
  787. #if ENABLED(LIN_ADVANCE)
  788. current_adv_steps[i] = 0;
  789. #endif
  790. }
  791. #if defined(TCCR0A) && defined(WGM01)
  792. CBI(TCCR0A, WGM01);
  793. CBI(TCCR0A, WGM00);
  794. #endif
  795. SBI(TIMSK0, OCIE0A);
  796. #endif // ADVANCE or LIN_ADVANCE
  797. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  798. sei();
  799. set_directions(); // Init directions to last_direction_bits = 0
  800. }
  801. /**
  802. * Block until all buffered steps are executed
  803. */
  804. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  805. /**
  806. * Set the stepper positions directly in steps
  807. *
  808. * The input is based on the typical per-axis XYZ steps.
  809. * For CORE machines XYZ needs to be translated to ABC.
  810. *
  811. * This allows get_axis_position_mm to correctly
  812. * derive the current XYZ position later on.
  813. */
  814. void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
  815. synchronize(); // Bad to set stepper counts in the middle of a move
  816. CRITICAL_SECTION_START;
  817. #if ENABLED(COREXY)
  818. // corexy positioning
  819. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  820. count_position[A_AXIS] = x + y;
  821. count_position[B_AXIS] = x - y;
  822. count_position[Z_AXIS] = z;
  823. #elif ENABLED(COREXZ)
  824. // corexz planning
  825. count_position[A_AXIS] = x + z;
  826. count_position[Y_AXIS] = y;
  827. count_position[C_AXIS] = x - z;
  828. #elif ENABLED(COREYZ)
  829. // coreyz planning
  830. count_position[X_AXIS] = x;
  831. count_position[B_AXIS] = y + z;
  832. count_position[C_AXIS] = y - z;
  833. #else
  834. // default non-h-bot planning
  835. count_position[X_AXIS] = x;
  836. count_position[Y_AXIS] = y;
  837. count_position[Z_AXIS] = z;
  838. #endif
  839. count_position[E_AXIS] = e;
  840. CRITICAL_SECTION_END;
  841. }
  842. void Stepper::set_position(const AxisEnum &axis, const long& v) {
  843. CRITICAL_SECTION_START;
  844. count_position[axis] = v;
  845. CRITICAL_SECTION_END;
  846. }
  847. void Stepper::set_e_position(const long& e) {
  848. CRITICAL_SECTION_START;
  849. count_position[E_AXIS] = e;
  850. CRITICAL_SECTION_END;
  851. }
  852. /**
  853. * Get a stepper's position in steps.
  854. */
  855. long Stepper::position(AxisEnum axis) {
  856. CRITICAL_SECTION_START;
  857. long count_pos = count_position[axis];
  858. CRITICAL_SECTION_END;
  859. return count_pos;
  860. }
  861. /**
  862. * Get an axis position according to stepper position(s)
  863. * For CORE machines apply translation from ABC to XYZ.
  864. */
  865. float Stepper::get_axis_position_mm(AxisEnum axis) {
  866. float axis_steps;
  867. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  868. // Requesting one of the "core" axes?
  869. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  870. CRITICAL_SECTION_START;
  871. long pos1 = count_position[CORE_AXIS_1],
  872. pos2 = count_position[CORE_AXIS_2];
  873. CRITICAL_SECTION_END;
  874. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  875. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  876. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  877. }
  878. else
  879. axis_steps = position(axis);
  880. #else
  881. axis_steps = position(axis);
  882. #endif
  883. return axis_steps * planner.steps_to_mm[axis];
  884. }
  885. void Stepper::finish_and_disable() {
  886. synchronize();
  887. disable_all_steppers();
  888. }
  889. void Stepper::quick_stop() {
  890. cleaning_buffer_counter = 5000;
  891. DISABLE_STEPPER_DRIVER_INTERRUPT();
  892. while (planner.blocks_queued()) planner.discard_current_block();
  893. current_block = NULL;
  894. ENABLE_STEPPER_DRIVER_INTERRUPT();
  895. }
  896. void Stepper::endstop_triggered(AxisEnum axis) {
  897. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  898. float axis_pos = count_position[axis];
  899. if (axis == CORE_AXIS_1)
  900. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  901. else if (axis == CORE_AXIS_2)
  902. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  903. endstops_trigsteps[axis] = axis_pos;
  904. #else // !COREXY && !COREXZ && !COREYZ
  905. endstops_trigsteps[axis] = count_position[axis];
  906. #endif // !COREXY && !COREXZ && !COREYZ
  907. kill_current_block();
  908. }
  909. void Stepper::report_positions() {
  910. CRITICAL_SECTION_START;
  911. long xpos = count_position[X_AXIS],
  912. ypos = count_position[Y_AXIS],
  913. zpos = count_position[Z_AXIS];
  914. CRITICAL_SECTION_END;
  915. #if ENABLED(COREXY) || ENABLED(COREXZ) || IS_SCARA
  916. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  917. #else
  918. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  919. #endif
  920. SERIAL_PROTOCOL(xpos);
  921. #if ENABLED(COREXY) || ENABLED(COREYZ) || IS_SCARA
  922. SERIAL_PROTOCOLPGM(" B:");
  923. #else
  924. SERIAL_PROTOCOLPGM(" Y:");
  925. #endif
  926. SERIAL_PROTOCOL(ypos);
  927. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  928. SERIAL_PROTOCOLPGM(" C:");
  929. #else
  930. SERIAL_PROTOCOLPGM(" Z:");
  931. #endif
  932. SERIAL_PROTOCOL(zpos);
  933. SERIAL_EOL;
  934. }
  935. #if ENABLED(BABYSTEPPING)
  936. // MUST ONLY BE CALLED BY AN ISR,
  937. // No other ISR should ever interrupt this!
  938. void Stepper::babystep(const uint8_t axis, const bool direction) {
  939. #define _ENABLE(axis) enable_## axis()
  940. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  941. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  942. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  943. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  944. _ENABLE(axis); \
  945. uint8_t old_pin = _READ_DIR(AXIS); \
  946. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  947. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  948. delayMicroseconds(2); \
  949. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  950. _APPLY_DIR(AXIS, old_pin); \
  951. }
  952. switch (axis) {
  953. case X_AXIS:
  954. BABYSTEP_AXIS(x, X, false);
  955. break;
  956. case Y_AXIS:
  957. BABYSTEP_AXIS(y, Y, false);
  958. break;
  959. case Z_AXIS: {
  960. #if DISABLED(DELTA)
  961. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  962. #else // DELTA
  963. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  964. enable_x();
  965. enable_y();
  966. enable_z();
  967. uint8_t old_x_dir_pin = X_DIR_READ,
  968. old_y_dir_pin = Y_DIR_READ,
  969. old_z_dir_pin = Z_DIR_READ;
  970. //setup new step
  971. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  972. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  973. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  974. //perform step
  975. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  976. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  977. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  978. delayMicroseconds(2);
  979. X_STEP_WRITE(INVERT_X_STEP_PIN);
  980. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  981. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  982. //get old pin state back.
  983. X_DIR_WRITE(old_x_dir_pin);
  984. Y_DIR_WRITE(old_y_dir_pin);
  985. Z_DIR_WRITE(old_z_dir_pin);
  986. #endif
  987. } break;
  988. default: break;
  989. }
  990. }
  991. #endif //BABYSTEPPING
  992. /**
  993. * Software-controlled Stepper Motor Current
  994. */
  995. #if HAS_DIGIPOTSS
  996. // From Arduino DigitalPotControl example
  997. void Stepper::digitalPotWrite(int address, int value) {
  998. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  999. SPI.transfer(address); // send in the address and value via SPI:
  1000. SPI.transfer(value);
  1001. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1002. //delay(10);
  1003. }
  1004. #endif //HAS_DIGIPOTSS
  1005. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1006. void Stepper::digipot_init() {
  1007. #if HAS_DIGIPOTSS
  1008. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1009. SPI.begin();
  1010. SET_OUTPUT(DIGIPOTSS_PIN);
  1011. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1012. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1013. digipot_current(i, digipot_motor_current[i]);
  1014. }
  1015. #elif HAS_MOTOR_CURRENT_PWM
  1016. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1017. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1018. digipot_current(0, motor_current_setting[0]);
  1019. #endif
  1020. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1021. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1022. digipot_current(1, motor_current_setting[1]);
  1023. #endif
  1024. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1025. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1026. digipot_current(2, motor_current_setting[2]);
  1027. #endif
  1028. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1029. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1030. #endif
  1031. }
  1032. void Stepper::digipot_current(uint8_t driver, int current) {
  1033. #if HAS_DIGIPOTSS
  1034. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1035. digitalPotWrite(digipot_ch[driver], current);
  1036. #elif HAS_MOTOR_CURRENT_PWM
  1037. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1038. switch (driver) {
  1039. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1040. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1041. #endif
  1042. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1043. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1044. #endif
  1045. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1046. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1047. #endif
  1048. }
  1049. #endif
  1050. }
  1051. #endif
  1052. #if HAS_MICROSTEPS
  1053. /**
  1054. * Software-controlled Microstepping
  1055. */
  1056. void Stepper::microstep_init() {
  1057. SET_OUTPUT(X_MS1_PIN);
  1058. SET_OUTPUT(X_MS2_PIN);
  1059. #if HAS_MICROSTEPS_Y
  1060. SET_OUTPUT(Y_MS1_PIN);
  1061. SET_OUTPUT(Y_MS2_PIN);
  1062. #endif
  1063. #if HAS_MICROSTEPS_Z
  1064. SET_OUTPUT(Z_MS1_PIN);
  1065. SET_OUTPUT(Z_MS2_PIN);
  1066. #endif
  1067. #if HAS_MICROSTEPS_E0
  1068. SET_OUTPUT(E0_MS1_PIN);
  1069. SET_OUTPUT(E0_MS2_PIN);
  1070. #endif
  1071. #if HAS_MICROSTEPS_E1
  1072. SET_OUTPUT(E1_MS1_PIN);
  1073. SET_OUTPUT(E1_MS2_PIN);
  1074. #endif
  1075. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1076. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1077. microstep_mode(i, microstep_modes[i]);
  1078. }
  1079. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1080. if (ms1 >= 0) switch (driver) {
  1081. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1082. #if HAS_MICROSTEPS_Y
  1083. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1084. #endif
  1085. #if HAS_MICROSTEPS_Z
  1086. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1087. #endif
  1088. #if HAS_MICROSTEPS_E0
  1089. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1090. #endif
  1091. #if HAS_MICROSTEPS_E1
  1092. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1093. #endif
  1094. }
  1095. if (ms2 >= 0) switch (driver) {
  1096. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1097. #if HAS_MICROSTEPS_Y
  1098. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1099. #endif
  1100. #if HAS_MICROSTEPS_Z
  1101. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1102. #endif
  1103. #if HAS_MICROSTEPS_E0
  1104. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1105. #endif
  1106. #if HAS_MICROSTEPS_E1
  1107. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1108. #endif
  1109. }
  1110. }
  1111. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1112. switch (stepping_mode) {
  1113. case 1: microstep_ms(driver, MICROSTEP1); break;
  1114. case 2: microstep_ms(driver, MICROSTEP2); break;
  1115. case 4: microstep_ms(driver, MICROSTEP4); break;
  1116. case 8: microstep_ms(driver, MICROSTEP8); break;
  1117. case 16: microstep_ms(driver, MICROSTEP16); break;
  1118. }
  1119. }
  1120. void Stepper::microstep_readings() {
  1121. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1122. SERIAL_PROTOCOLPGM("X: ");
  1123. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1124. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1125. #if HAS_MICROSTEPS_Y
  1126. SERIAL_PROTOCOLPGM("Y: ");
  1127. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1128. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1129. #endif
  1130. #if HAS_MICROSTEPS_Z
  1131. SERIAL_PROTOCOLPGM("Z: ");
  1132. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1133. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1134. #endif
  1135. #if HAS_MICROSTEPS_E0
  1136. SERIAL_PROTOCOLPGM("E0: ");
  1137. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1138. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1139. #endif
  1140. #if HAS_MICROSTEPS_E1
  1141. SERIAL_PROTOCOLPGM("E1: ");
  1142. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1143. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1144. #endif
  1145. }
  1146. #endif // HAS_MICROSTEPS
  1147. #if ENABLED(LIN_ADVANCE)
  1148. void Stepper::advance_M905(const float &k) {
  1149. if (k >= 0) extruder_advance_k = k;
  1150. SERIAL_ECHO_START;
  1151. SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
  1152. SERIAL_EOL;
  1153. }
  1154. #endif // LIN_ADVANCE